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1 Introduction

1.1 Definition of the problem

Bone tracking from X-Ray sequences is important for biological and evolu-
tionary applications like motion analysis of species, and also in human health,
for example in surgical guidance, study of kinematics, or post-operative im-
plant assessment. Since X-Ray data is 2-dimensional, it does not provide
enough information about the 3D position of the bones. C-Arm technology
(Fig. 1) reduces this problem by capturing two simultaneous views of the
bone. Using this stereo vision and a volumetric model of the bone, typically
a CT scan, the search is performed by comparison of a synthetically com-
puted view (Digitally Reconstructed Radiography or DRR) and the X-Ray
image. The objective is to solve for the transformation of the bone that
produced each X-Ray image. The high density of the CT scan data makes
DRR synthesis a computationally expensive task. Also, high frame rate in
the sequences is desired for tracking accuracy, but it results in noisy and
low contrast X-Ray images [1], which makes the registration difficult. Fur-
thermore, comparing multi-modal data like in the case of X-Ray and CT
is challenging because they don’t follow linear transformations [2]. In this
project we explore three techniques, that address these issues.

e We define a function that compares the DRRs and the X-Rays. For
a given set of values of the rotation and translation parameters, this
function outputs a similarity measurement between the DRRs and the
X-Rays. The objective is to minimize this function and retrieve the
rotation and translation parameters of the position of the bone. Unlike



current techniques, we explicitly compute the derivative of this function
with respect to the rotation and translation parameters. This avoids
the numerical computation of the gradient, speeding up the process.

e To decrease the size of the data and prevent multi-modal data compar-
ison, we use only the surface of the bone and compare the edges of the
synthetic view and the reference X-Ray image.

e To incorporate knowledge about the intensity in the search, we take a
segmentation approach by minimizing the entropy of the background.

Each of this approaches has strengths and weaknesses. In future work we
will consider the principled combination of these methods.

Figure 1: C-Arm Technology provides stereoview (left). X-Ray image (cen-
ter). DRR (right).

1.2 Previous work

X-Ray registration methods can be classified into two categories: geometry-
based and intensity-based. Geometry-based methods solve for the transfor-
mation that converts a set of points or lines in 3D space into their correspon-
dence in 2D space. These points can be either detected features or implanted
fiducial. One major advantage of this approach is that it reduces the size of
the data, thus decreasing the computational cost. However, the quality of the
registration relies on the assumption of finding natural landmarks in the case
of feature-detection and artificial markers have the disadvantage of being an
invasive method that requires surgery. [Intensity-based methods match the
two data sets by minimizing a distance function based on the intensity of the



pixels or voxels. Typically, this is done by synthesizing the 2D projection of
the volume into what is called a Digitally Reconstructed Radiograph (DRR),
simulating the physical process of a X-Ray projector. The DRRs are then
compared to the real X-Ray sequences to minimize their difference. This
turns into an optimization problem, where the goal is to minimize a distance
function with respect to the 6 DOF in the bone position. Since multi-modal
data is difficult to compare, some previous techniques have used non-linear
distance metrics, like mutual information [3, 4]. Normalized cross correlation
(NCC) is the traditional distance metric [5, 6], but it is combined with other
characteristics like VLNC (Variance of Local Normalized Correlation), in [6]
and edge detection in [5]. Other similarity metrics are pattern intensity [7].
The biggest bottleneck in these DRR based approaches is the computation
time. There have been efforts to deal with this obstacle at different levels. In
8], they focus in the graphics problem. In [6] they sacrifices accuracy, com-
puting only parts of a DRR that are considered of interest. In [5] they use
parallelization, limiting the application of the system to cluster availability.
In this project we seek a solution that can run in a desktop machine.

1.3 Data set

The data used in our experiments was collected by the Department of Evolu-
tionary Biology at Brown University, in collaboration with the Rhode Island
Hospital. We have used two alligator bones, a coracoid and a humerus.
The 3D data consists of a CT scan of the two bones, represented using a 3-
dimensional matrix of high level of detail (0.1925 mm in two of the dimensions
and 0.625 mm in the third). Using the Marching Cubes algorithm for isosur-
face extraction, we also obtained a mesh of the bone surface. The 2D data
consist of pairs of X-Ray sequences, of high spatial resolution (1024x1024
pixels). The planes of the views form approximately a 90 degree angle as
shown in Fig. 1. These sequences have been corrected for distortion. For the
purpose of study, these bones had been inserted metal markers. The markers
have been manually identified to provide ground truth for the experiments.



2 Methods

2.1 DRR generation

Computation time still remains a challenge in the DRR approach. A 512x512
image takes 40-50 seconds to converge using 13 parallelized machines, using
the state of the art technique [5]. Our objective is to speed up the optimiza-
tion process by providing a explicit derivative of the function to minimize.
This is difficult because the traditional approach to generate DRRs uses ray
tracing over the voxels of the volume. This means that the function of the
intensity of a pixel with respect to the movement of the object has discon-
tinuities in the borders of the voxels, and therefore cannot be differentiated.
We generalize ray tracing to a continuous function. A 3D Gaussian is placed
around the center of each bone voxel. The intensity at a given pixel of the
DRR is the integral of the distance between the ray and every point in the
volume according to the Gaussian function, as shown in Fig 2. The objec-
tive is to minimize the difference between this DRR and the X-Ray using
NCC. We use correlation instead of NCC to simplify the derivative. In our
experience with this data set this simplification did not affect the results.
We optimize f; (1) using an optimization technique based on [9, 10]. Each
iteration involves the approximate solution of a large linear system using the
method of preconditioned conjugate gradients.
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Where 6 are the three parameters that describe the rotation, t are the
three parameters that describe the translation, ||.S;|| is the norm of the image
St as a vector, *x is the matrix multiplication component by component, R;
is the reference X-Ray image, and S7(6,t) is the synthesized DRR image
computed as follows. The intensity of pixel (z,y) in the synthetic DRR is:
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Here p € V are all the points in the volume and r, ) is the ray that passes
through the center of the camera and pixel (z, y). The term ||r g4y X p(60,7)||/||7 @ ||
represents the distance from the ray to point p. Finally, p(, ) is point p of



the volume, after the transformation of # and ¢ has been applied
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Figure 2: Continuous Ray Tracer Model (left). Full DRR, created using all
points in the volume (center-left), Reference Image (center-right) and DRR
created with subsampled volume, approximately 1/50 number of points of
the full volume (right)

We compute the first and second derivatives of f; with respect to the
transformation parameters.The function S;(6,t) is written as S for clarity.
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Where S} is the partial derivative of the synthetic image with respect
to each of the 6 parameters of the transformation and ||.S;||" is the partial
derivative of the norm of the synthetic image, also with respect to each of the
6 parameters. To evaluate the accuracy and speed of the proposed method
we shifted the bone in each dimension of the translation and searched for the
local minima. We have compared the time for the optimization to converge
using finite differences as in [12] to the time using explicit derivatives, and
it is improved by a factor of 6. The accuracy in both cases is 0.14 mm,
starting from 2.5 mm away. In this project we only implemented translation
transformation. To improve performance, the volume was downsampled us-
ing a Poisson disk distribution. In practice this did not influence accuracy.
Since the results are promising in speed up and accuracy, implementing also
rotation is included in our future work.




Comparison of performance of the two optimization algorithms
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Figure 3: Comparison between finite differences and explicit derivative tech-
nique

2.2 Silhouette matching

Operating only with the silhouette provides a major reduction in the size of
the data, thus speeding up the computation. We want to minimize the func-
tion of the distance between the model’s projected edges and the reference
image edges. This is computed by adding the distance of every pixel in one
edge to the closest point in the other edge. This is done both ways to better
constrain the function. The edges in the reference image are detected using
Canny algorithm [11].
The new energy function to optimize is fs:

£2(0,1) = Z Edge(Project(Mesh,0,t)) x Chf(Canny(Ry))
2 |Edge(Project(Mesh, 6,t))]

Canny(Ry) * Chf(Project(Mesh,0,t))
|Canny(Ry)|

+

(z,y)

Where Mp is the projected mesh, C'hf is the Chamfer distance of an
edge, Fdge(I) returns the edge of an image I and * is matrix multiplication
component by component.

This function f5 is optimized using the Downhill Simplex algorithm. This
technique produces an average accuracy of 3.37 mm with a maximum value
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Figure 4: Chamfer distance computed over the Reference Image Edges. Syn-
thetic edge overlaid in blue. Notice, at the bottom of the bone that X-Ray
edges can be incomplete

of 5.18 mm.

2.3 Background subtraction

Using the edge eliminates the computational load of dealing with 3D data.
The main disadvantage is that the intensity of the X-Ray is not being used
explicitly. Using this added information can improve the accuracy and ro-
bustness of the results. In this approach we treat the pose estimation problem
as a background subtraction case. The goal is to minimize the error in back-
ground subtraction. We make the assumption that a well segmented image
has low entropy in the background and foreground distributions, while max-
imizes the distance between them. As shown in figure 5, the mesh silhouette
is overlaid on top of the reference image. The pixels inside the silhouette of
a well segmented bone should have lower entropy than the pixels of a silhou-
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Figure 5: Tracking results using Silhouette Matching. Tracking error (top).
Worst registration frames in both cameras (bottom)

ette that covers part of the background. Similarly, the distribution of pixels
outside the silhouette will have a lower entropy of none of the darker bone
pixels are included.

f5(0,t) = Hpg(0,t) + M Hpy(0,t) + N K L(0,1) (4)

Where H is the Shannon entropy, and KL is the Kullback-Leibler diver-
gence. In our experience for this particular data set, the background entropy
is the strongest term. Since intensities in the background are more uniform
than in the bone, the entropy in the foreground increases quickly with small
misplacements of the silhouette.

Tracking results with this technique produce a maximum error of 12 mm
and and average of 6 mm, as shown in Figure 7.
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Figure 6: Example of mesh silhouette overlaid on top of the reference image
(right). All pixels colored in red are considered foreground, and the rest
are considered background. This instance would output high entropy in
the foreground and background distributions, and thus high energy in the
function to minimize. Entropy with respect to translation (left). Evaluation
of frame 14 using the pose of the bone in frames 1-30. The entropy reaches
the lowest value in frame 14, where the position is right.

3 Conclusion and future work

We present three different techniques to address the main problems in bone
tracking from bi-planar X-Ray: speed and accuracy. Silhouette matching
and background subtraction provide a fast way to find a position close to
optimal, while the DRR approach finds a more accurate position starting
from a close point. These seem to be complementary features, and we will
consider combining them into a two step algorithm, that identifies a close to
optimal position quickly and then refines it in a slower but more accurate
phase.
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Figure 7: Tracking error across the sequence using background entropy min-
imization

Radiographs: Application to Knee Kinematics IEEE TRANSACTIONS ON
MEDICAL IMAGING, VOL. 20, NO. 6, JUNE 2001

2] Alexis Roche, Gregoire Malandain, Nicholas Ayache. Unifying Maximum
Likelihood Approaches in Medical Image Registration. INRIA, EPIDAURE
Project, 2004

[3] Aouadi, Souha and Sarry, Laurent. Accurate and precise 2D-3D registra-
tion based on X-ray intensity. Computer Vision and Image Understanding
110 (2008) 134151

[4] L. Zollei, E. Grimson, A. Norbash, W. Wells. 2D-3D Rigid Registra-
tion of X-Ray Fluoroscopy and CT Images Using Mutual Information and
Sparsely Sampled Histogram Estimators. IEEE Computer Society Confer-
ence on Computer Vision and Image Understanding. 2001

[5] Michael J. Bey, Roger Zauel, Stephanie K. Brock, and Scott Tashman.
Validation of a New Model-Based Tracking Technique for Measuring Three-
Dimensional, In Vivo Glenohumeral Joint Kinematics. J. Biomech. Eng. —
August 2006 — Volume 128, Issue 4, 604

(6] D. Knaan and L. Joskowicz. Effective Intensity-Based 2D /3D Rigid Reg-

10



istration between Fluoroscopic X-Ray and CT. Medical Image Computing
and Computer-Assisted Intervention - MICCAT 2003

[7] Weese J; Penney G P; Desmedt P; Buzug T M; Hill D L; Hawkes D
J. Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans
for image-guided surgery. TEEE transactions on information technology in
biomedicine : a publication of the IEEE Engineering in Medicine and Biology
Society 1997;1(4):284-93.

[8] David LaRose; John Bayouth; Takeo Kanade. Transgraph: interactive
intensity-based 2D /3D registration of x-ray and CT data. Medical Imaging
2000: Image Processing, Kenneth M. Hanson, Editors, pp.385-396

[9] Coleman, T.F. and Y. Li, ” An Interior, Trust Region Approach for Non-
linear Minimization Subject to Bounds,” SIAM Journal on Optimization,
Vol. 6, pp. 418-445, 1996.

[10] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,” Math-
ematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[11] Canny, John. A Computational Approach to Edge Detection. IEEE
TRANS. PATTERN ANAL. MACH. INTELLIG. Vol. PAMI-8, no. 6, pp.
679-698. 1986 [12] Michael J. Bey, Stephanie K. Klinea, Roger Zauela, Ter-
rence R. Locka and Patricia A. Kolowicha. Measuring dynamic in-vivo gleno-
humeral joint kinematics: Technique and preliminary results. Journal of
Biomechanics Volume 41, Issue 3, 2008, Pages 711-714

11



