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Abstract

Non-interactive zero-knowledge proofs, particularly those constructed on top of bilinear
groups, have been significantly studied in cryptography and used in a wide variety of ap-
plications in recent years. One very powerful suite of techniques for proofs over bilinear
groups is the Groth-Sahai proof system, which provides efficient non-interactive witness-
indistinguishable and zero-knowledge proofs without relying on any one assumption or lan-
guage.

The Groth-Sahai suite of proofs has already been used in a number of applications,
including group signature schemes, anonymous voting, and anonymous credentials. In this
paper, we describe a technique that allows us to prove that two GS commitments open
to the same value. We then use this technique to create a non-interactive zero-knowledge
protocol that satisfies a stronger version of zero-knowledge than the original GS protocol.
Finally, we use both these techniques to provide a new extension of the proof system that
makes it into a non-interactive zero-knowledge proof of knowledge of an exponent. We
then outline new building blocks based on this technique that can be used in a variety of
applications. The main application of our technique will involve using it to construct a fully
unforgeable non-interactive anonymous credentials scheme.
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Chapter 1

Introduction

Non-interactive zero-knowledge (NIZK) proofs have become increasingly important in cryp-
tographic theory and practice in the last few years. Initially introduced by Blum et
al. [BFM88], there has been much exploration of various constructions and applications
[FLS90, Dam92, KP98] and it has been shown that NIZK proofs exist for all languages in
NP. Unfortunately, although known proofs do yield interesting theoretical results, most are
too inefficient to be used in practice.

The root of this inefficiency is mainly the reliance on using one particular NP-complete
language, such as 3-SAT or Circuit-SAT. To create a proof for a general statement it is first
necessary to reduce the original statement to a statement in the appropriate language; while
this is certainly feasible, it is often quite computationally expensive. Rather than attempt
to fix this problem by trying to use a different NP-complete language, Groth and Sahai
[GS08] focus instead on a set of group-dependent languages. Their work is based on the
observation that many cryptographic protocols are based on finite abelian groups; they focus
more specifically on groups that induce a bilinear map. Using these groups, they are able to
construct efficient non-interactive zero-knowledge proofs that are not limited to one specific
language, and furthermore are not even based on one specific cryptographic assumption.
The generality with which these proofs are outlined means that in addition to being much
more efficient than any previous constructions, their proofs are also highly flexible. Groth
and Sahai outline proofs of satisfiability of many different kinds of equations, such as multi-
exponentiation equations, multi-scalar multiplication equations, pairing product equations,
and quadratic equations (in this paper, I talk just about the last two), but there is nothing
to suggest that these same techniques can’t be extended to prove satisfiability of other types
of equations. Similarly, although the instantiations they highlight are based on specific Zp-
and Zn-modules, the techniques can be extended to work for other groups that induce a
bilinear map under a variety of cryptographic assumptions.

Because of their flexibility, there have been many applications of the proofs of Groth
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and Sahai. One application is Groth’s construction of an efficient group signature scheme
[Gro07]. Briefly, group signatures allow a member of a group to anonymously sign messages
on behalf of the group. A group manager controls group membership and also has the
power to open a signature and reveal the identity of the signer if a member has abused
his privileges. Although group signatures have been studied for many years, most schemes
given are either too inefficient to be used in practice or require the random oracle model to
prove security. Using GS proofs, Groth constructs the first group signature scheme where
the keys and signatures both contain a constant number of group elements and the proof
of security does not require the random oracle model.

In an extension using the GS proofs for satisfiability of both multi-exponentiations and
pairing product equations, Groth and Lu [GL07] give the first non-interactive proof for the
correctness of a shuffle, where a shuffle is defined as a permutation and re-encryption of a set
of ciphertexts. Because it is the first proof that works non-interactively, this construction
has significant applications in the development of mix-nets useful for anonymous voting and
broadcasting schemes.

Another application of GS proofs has been work in anonymous credentials. Belenkiy et
al. [BCKL08] provide the first non-interactive construction of unforgeable anonymous cre-
dentials based on GS proofs and a signature scheme inspired by the Boneh-Boyen signature
scheme [BB04]. Anonymous credentials is a very useful problem, as it allows a user Alice
to prove to another user Bob that she has been given a certificate by a third user Carol in
a secure manner; i.e. without Bob or Carol linking Alice’s proof to Alice’s certificate (and
thus to Alice herself). In addition, if Alice then proves her possession of a credential to a
fourth user Dave, the proofs that Alice gives to Bob and Dave cannot be linked to each
other and so the authentication scheme remains anonymous.

In this thesis, I focus on further applications of GS proofs. More specifically, I focus on
the use of GS proofs in the setting of proving satisfiability of quadratic equations, which
can often give us better efficiency results than using pairing product equations. I also
extend the GS proofs to allow the prover to construct a non-interactive zero-knowledge
proof of knowledge of an exponent, whereas in the original system it is only possible to
prove knowledge of a group element. While the proof of knowledge of an exponent is less
efficient than the proof of knowledge of a group element, there are many applications where
it is nevertheless useful. To demonstrate one of these applications, I show how this technique
can be used to simplify the cryptographic assumptions used by Belenkiy et al. and construct
an unforgeable non-interactive anonymous credentials scheme that uses the Boneh-Boyen
signature scheme directly.
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Chapter 2

Definitions and Notation

The following definitions and discussions will be essential in our exploration of Groth-Sahai
proofs, and of non-interactive zero-knowledge proofs in general. We first go over some
definitions from probability, and then discuss the idea of a complexity class (specifically P,
NP, and NP-complete). In the third section, we discuss one-way functions and commitment
schemes. In the fourth and fifth sections, we introduce interactive protocols and discuss
what it means for an interactive protocol to be zero-knowledge or a proof of knowledge.
Finally, we bring all this notation together to introduce non-interactive zero-knowledge
proofs. Many of the definitions in this chapter are taken from [Gol01], and many of them
appear in my undergraduate thesis [Mei08].

2.1 Probability notation

Definition 2.1.1. A function µ : N→ R is called negligible if for all positive polynomials
p(·) there exists a value N such that µ(n) < 1

p(n) for all n ≥ N .

A good example of a negligible function is f(x) = 2−x, or any other function that
eventually gets very close to zero. These functions appear everywhere in cryptography,
especially in definitions of security. It is often hard to guarantee that an event occurs with
probability exactly 0, so saying that the probability an event occurs is negligible is often as
close as we can get.

Definition 2.1.2. Two distribution ensembles {Dn}n∈N and {En}n∈N are computationally
indistinguishable if for all probabilistic polynomial time algorithms A, we have

|Prx←Dn [A(x) = 1]− Prx←En [A(x) = 1]| = ν(n)

for some negligible function ν(·).
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All this definition says is that given a random element x and a reasonable amount of
computation, we should still be able to do only negligibly better than a random guess when
deciding if it came fromDn or En. There are also two important variants on this definition to
consider. The first definition is called statistical indistinguishability, in which we remove the
condition that A run in polynomial time (this is also sometimes called information-theoretic
indistinguishability). The second is called perfect indistinguishability and it occurs when
we require that ν(k) = 0 for all k; that is that the distributions are in fact identical.

2.2 Complexity classes

The idea of a complexity class is a group of problems that have related levels of difficulty.
In computer science, unlike in many other disciplines, we can actually define what it means
for a problem to be “hard.” Intuitively, the more steps a problem requires, the harder it
is. The first complexity class we look at is the group of problems that can be solved using
polynomially many steps.

Definition 2.2.1. A language L is recognizable in polynomial time, or L ∈ P, if there
exists a deterministic Turing machine M and polynomial p(·) such that

1. On input x, M halts after at most p(|x|) steps, and

2. M(x) = 1 if and only if x ∈ L.

For now, we don’t need to worry about the Turing machine and what it means to take
p(|x|) steps; we will see all this formally in Section 2.4. All the definition really says is that
if we are given an element x, after a reasonable amount of computation we should be able
to say definitively if x is in the related language or not.

Next we see a group of languages known as NP, where each language L is verifiable in
polynomial time (and not necessarily recognizable as it was with P).

Definition 2.2.2. L ∈ NP if there exists a binary relation RL ⊆ {0, 1}∗ × {0, 1}∗ and
a polynomial p(·) such that RL ∈ P, and x ∈ L if and only if there exists a y such that
|y| ≤ p(|x|) and (x, y) ∈ RL.

In the above definition, the value y is referred to as a witness to the fact that x ∈ L.
In general, the set of all witnesses can be denoted RL(x). The definition simply says that
if L ∈ NP, then for all x ∈ L there must exist a witness y that demonstrates this fact, and
that once given this valid witness we should be able to verify (in polynomial time) that x
is in fact in L.

Next we look at what it means for a language to be NP-complete. To define this class,
we first need to define what it means to be able to reduce one language to another.
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Definition 2.2.3. L is polynomially reducible to L′ if there exists a polynomial-time com-
putable function f such that x ∈ L if and only if f(x) ∈ L′.

Definition 2.2.4. L is NP-complete if L ∈ NP and every language in NP is polynomially
reducible to it.

Essentially, the problems that are NP-complete are the most difficult problems in NP,
as a solution for one would generate a solution for all other problems in NP (because of this
reducibility property).

2.3 One-way functions and commitment schemes

One-way functions are one of the most basic building blocks in cryptography. No one
has yet shown that P 6= NP so we cannot actually say that one-way functions exist, but
assuming their existence is considered to be a relatively weak cryptographic assumption.
The intuition behind a one-way function is something that is easy to compute but hard to
invert.

Definition 2.3.1. A function f : {0, 1}∗ → {0, 1}∗ is called one-way if it satisfies the
following two conditions:

1. Easy to compute: there exists a polynomial-time algorithm A such that A(x) = f(x)
for all x ∈ {0, 1}∗.

2. Hard to invert: for all polynomial-time algorithms A there exists a negligible function
ν(·) such that

Pr[x← {0, 1}n, y = f(x), x′ ← A(y) : f(x′) = y] < µ(n).1

In addition, if the pre-image x is unique (so if f(x) = f(x′) it must hold that x = x′)
we call f a one-way permutation.

There are many cryptographic primitives that are based on the assumption of one-way
functions, but one that will be very important for us is the idea of a commitment scheme.
A commitment scheme should be seen as the cryptographic equivalent of a sealed envelope.
The sender S will take a certain value v and send a commitment of this value to the receiver
R. The commitment acts as the envelope; with just the committed value the receiver still
doesn’t know the value v, but at any point the sender can open the envelope, reveal v,
and prove that this was the value inside the envelope all along. More formally, let’s say
that both S and R receive as common input a security parameter 1n and that Com(x; r)
represents a commitment to the input x ∈ {0, 1}k using randomness r ∈ {0, 1}n. Then:

1This experiment notation can be a bit confusing. In English, we are saying that, given a random x in
the domain of f and y = f(x), the probability that an algorithm A outputs a value x′ such that f(x′) = y
is negligible.
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Definition 2.3.2. A perfectly binding commitment scheme for k-bit strings is a probabilis-
tic algorithm Com satisfying the following:

1. Perfect binding: Com(x; r) 6= Com(y; s) for any x, y ∈ {0, 1}k, r, s ∈ {0, 1}n.

2. Computational hiding: for any x, y ∈ {0, 1}k, the two probability ensembles (where
Un represents the uniform distribution) {Com(x;Un)}n∈N and {Com(y;Un)}n∈N are
computationally indistinguishable.

Note that here we pick perfect binding, which means that once we have committed to
a particular value, there is no other value to which the commitment can be opened. It is
also possible to have perfect hiding, which means that the two probability ensembles are in
fact identical. It is not possible, however, to have both these properties at once: if one is
perfect, the other can only be computational.

2.4 Interactive machines

Definition 2.4.1 ([GMR85]). An interactive Turing machine is a deterministic multi-tape
Turing machine consisting of the following seven tapes: a read-only input tape, a read-only
random tape, a read-and-write work tape, a write-only output tape, a pair of communication
tapes where one is read-only and the other is write-only, and a read-and-write switch tape
that consists of a single cell.

This definition may seem extremely complicated, but seen in the context of an interactive
protocol it is actually quite straightforward. The input and output tapes are fairly self-
explanatory, and the work tape can be thought of as where the Turing machine keeps track
of what it has done so far.

The switch tape works to signify that the machine is either idle or active. This makes
the most sense in the context of pairs of machines, when we think about alternating moves -
when one machine becomes idle the other becomes active. When active, it is that machine’s
turn in the protocol, and once it is finished it changes the switch cell to indicate that it is
now the other machine’s turn to move. If one machine halts without changing the switch
cell, we know that the protocol is now terminated and we should examine the final output
tapes. The machines can also share their communication tapes: the read-only tape for a
machine represents the messages it has received from the other, and the write-only tape
represents the messages it sends.

Finally, we need to consider the notion of randomness. The Turing machine we have
described above is probabilistic because it has the addition of a random tape. Without
the random tape, upon receiving the same input the machine will always output the same
answer and is then known as deterministic. We will almost always talk about probabilistic
polynomial time Turing machines (PPT for short).
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Definition 2.4.2. An interactive machine A has time complexity t : N → N if for all
interactive machines B and strings x, it holds that when interacting with B on common
input x, A always halts within t(|x|) steps.

In particular, we say that A is polynomial-time if there exists a polynomial p(·) such
that A has time complexity p. We also need to discuss the idea of expected polynomial time,
which means that the running time is ‘polynomial on the average.’ There are a number
of ways to try to define this formally, but it is really best to use intuition and say that it
means that the algorithm usually runs in polynomial time, but there might be cases where
it runs slower (but also cases where it runs faster!).

Definition 2.4.3. A two-party game between a prover P and a verifier V is called an
interactive argument system for a language L if both the prover and the verifier run in
probabilistic polynomial time (PPT) and it satisfies the following two properties:

1. Completeness: for every x ∈ L the verifier will always accept after interacting with
the prover on common input x.

2. Soundness: for some negligible function ν(·) and for all x 6∈ L and potentially cheating
provers P ∗, the verifier V will reject with probability at most ν(|x|) after interacting
with P ∗ on common input x.

We can note that if the prover P is allowed to be computationally unbounded, the above
game becomes an interactive proof system instead of an argument system.

This definition should hopefully be intuitive. The completeness property just means
that both parties can be satisfied that the protocol was run in a fair way, and the soundness
property protects the verifier from a cheating prover. In the next section we see a way to
protect the prover from a cheating verifier.

An important concepts associated with an interactive proof (or argument) system is the
idea of a view. The view can be defined for either the prover or the verifier, and consists
of the public and private inputs, the random tape, and a list of all the previous messages.
The verifier’s view will be denoted as viewPV (x), while the prover’s view can be written
viewVP (x).

2.5 Zero knowledge and proofs of knowledge

The zero-knowledge property is the most important thing we need to consider in this chap-
ter. Informally, this property means that when a verifier is engaged in a zero-knowledge
proof that a statement T is true, at the end of the protocol he learns nothing beyond the
validity of the statement. This can be stated more formally as follows:
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Definition 2.5.1. An interactive proof system (P, V ) is called zero-knowledge if for all PPT
verifiers V ∗ there exists a PPT simulator SV ∗ such that the ensembles {viewPV ∗(x)}x∈L and
{SV ∗(x)}x∈L are computationally indistinguishable.

At first glance, this definition may seem somewhat non-intuitive. All it is saying, how-
ever, is that at the end of an interaction, the verifier cannot be sure if he was talking to
the actual prover P or some simulator S who did not know any valid witness. This may
seem impossible, but we will see in our next section that the simulator is given some extra
power, such as a trapdoor that allows it to open commitments in many different ways. We
will use the notation V ∗ or P ∗ instead of just V or P to represent a potentially cheating
verifier or prover.

There are many different variations on zero-knowledge. For example, if the ensembles
described in the definition are identical rather than just indistinguishable, the protocol is
known as perfect zero-knowledge, which means that the simulator produced an exact replica
of a possible conversation with the prover. Another stronger version of zero-knowledge is
auxiliary-input zero-knowledge, which accounts for an auxiliary input y given to the verifier
before the protocol begins. Formally,

Definition 2.5.2. An interactive proof system (P, V ) is auxiliary-input zero-knowledge if
for all PPT verifiers V ∗ there exists a PPT simulator SV ∗ and a value y such that |y| =
p(|x|) for some polynomial p(·) such that the ensembles {viewPV ∗(x, y)}x∈L and {SV ∗(x)}x∈L
are computationally indistinguishable.

This definition simply accounts for possibly malicious or cheating verifiers that have
managed to find out some additional piece of information. In fact, this version of zero-
knowledge has been so useful that it is now considered the standard definition rather than
the definition given before.

Another important concept in proof systems is the idea of a proof of knowledge. In an
ordinary proof system, all the prover needs to show is the validity of the statement, namely
that x ∈ L. This is known as a proof of membership. A proof of knowledge takes the
idea one step further, as the prover now needs to show that it actually knows a witness w
proving the fact that x ∈ L. But what does it mean to say that a machine knows something?
Formally,

Definition 2.5.3. A proof (or argument) system (P, V ) for a language L is a proof of
knowledge with knowledge error κ(·) if it satisfies:

1. Completeness: if P has a w such that (x,w) ∈ RL, V accepts.

2. Knowledge extraction: there exists a polynomial p(·) and a knowledge extractor E such
that if the prover’s probability of making the verifier accept is ε(x), after interacting
with the prover the extractor outputs a solution s ∈ RL(x) in expected time p(|x|)

ε(x)−κ(x) .
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What exactly does this mean? The knowledge extractor is analogous to a simulator: it
has black-box access to the prover, and it also may have access to some trapdoor. At the
end of the day, the knowledge extractor is successful if it manages to retrieve a valid witness
w. This is known as a proof of knowledge because if an extractor is able to extract a valid
witness from the prover, the prover must have had knowledge of such a witness all along.

There do exist proof systems which are capable of satisfying both the above definitions
at the same time; these are known as zero-knowledge proofs of knowledge and must satisfy
the completeness, soundness, zero-knowledge, and knowledge extraction properties outlined
in Definitions 2.4.3, 2.5.2, and 2.5.3. We will see more on such proof systems in Chapters 3
and 4.

2.6 Non-interactive zero knowledge

One final property we want to consider is when the game run in Definition 2.4.3 has only
one round: a single message sent from the prover to the verifier. In this case, we call the
proof system non-interactive. Formally,

Definition 2.6.1 ([BFM88]). A non-interactive zero-knowledge proof system for a language
L and security parameter k consists of a setup algorithm G, a pair of PPT algorithms P
and V , and a PPT simulator S such that the following three properties are satisfied:

1. Completeness: for all x ∈ L,

Pr[σ ← G(1k); π ← P (x, σ, k); V (x, σ, π) = accept] = 1.

2. Soundness: for any x 6∈ L and possibly cheating prover P ∗, there exists a negligible
function ν(·) such that

Pr[σ ← G(1k); π ← P ∗(x, σ, k); V (x, σ, π) = accept] ≤ ν(k).

3. Zero-knowledge: there exists a PPT simulator S that outputs a distribution space such
that the ensembles {S(x, k)}x∈L and {(σ, P (x, σ, k))}x∈L are indistinguishable.

The proof in the definition above is in the common reference string (CRS) model, which
means that a common reference string σ is generated by G and given to both the prover
and the verifier. For some NIZK proof systems [BdSMP91, FLS90], it is enough for G to
simply output a random string (in which case we call it the shared random string model),
although in our case G will always output the description of a bilinear group.

While the definition above is a useful formulation of NIZK proofs, it has the problem
that only one proof can be generated for each CRS σ. In terms of efficiency, it would be
very useful to be able to prove multiple statements using the same σ. This formulation of
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NIZK is called multi-theorem NIZK and was first introduced by Blum et al. [BdSMP91],
who demonstrated a multi-theorem NIZK proof system for 3-SAT, which because 3-SAT
is NP-complete further implies existence for all L ∈ NP (assuming quadratic residuosity).
In addition, Feige et al. [FLS90] demonstrated a multi-prover multi-theorem NIZK proof
system, assuming trapdoor permutations. More recently, Groth, Ostrovsky, and Sahai
[GOS06] gave a construction for Circuit-SAT that achieved perfect zero-knowledge.

2.6.1 Groth-Sahai non-interactive proofs

As discussed in Chapter 1, the proof systems mentioned above are quite inefficient because
of their reliance on a single NP-complete language and the need to reduce any statement
we might want to prove to this particular language. To generalize this notion, we are finally
ready to discuss NIZK proof systems as defined by Groth and Sahai. First, we let R be
some efficiently computable ternary relation. We look at elements in R of the form (gk, x, w)
where gk is considered the setup, x is the statement, and w is the witness. We can also
consider the language L consisting of statements in R for a fixed gk; because we will always
take gk to be the description of a bilinear group this means a language L corresponding to
some bilinear group.

The Groth-Sahai proof system consists of four PPT algorithms: a generation (setup)
algorithm G2, a CRS generation algorithm K, a prover P , and a verifier V . The setup
algorithm G will take in the security parameter and output information (gk, sk), where
gk is some public information (in our case, the description of a bilinear group) and sk is
some secret information (for example, it may be the factorization of the group order if it
is composite). The CRS generation algorithm K will take (gk, sk) as input and output a
common reference string σ. The prover P will then take (gk, σ, x, w) as input and output
a proof π. Finally, the verifier will take input (gk, σ, x, π) and output 1 if the proof verifies
and 0 otherwise. We require the following properties:

1. Perfect completeness: For all adversaries A and (gk, x, w) ∈ R,

Pr[(gk, sk)← G(1k); σ ← K(gk, sk); (x,w)← A(gk, σ);
π ← P (gk, σ, x, w) : V (gk, σ, x, π) = 1] = 1.

2. Perfect soundness: For all adversaries A and x 6∈ L,

Pr[(gk, sk)← G(1k); σ ← K(gk,sk); (x, π)← A(gk, σ) : V (gk, σ, x, π) = 1] = 0.

3. Perfect Lco soundness: In some cases, we may want to consider a language Lco

which depends on gk and σ. We can then provide an alternate definition of soundness
2This setup algorithm is not included in the original GS paper outlining pairing product equations, but

it will be useful for our purposes and for comparison with quadratic equations.
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where the adversary succeeds if it creates a valid proof for x ∈ Lco. Note if we set Lco

to be the complement of L we end up with the version of soundness above. Formally
then, we say that for all adversaries A and (x, gk, σ) 6∈ Lco,

Pr[(x, π)← A(gk, σ) : V (gk, σ, x, π) = 1] = 0.

4. CRS indistinguishability: We need to use the idea of a simulated CRS in order to
define witness indistinguishability and zero-knowledge. We require that for all PPT
adversaries A, there exists a negligible function ν(·) such that

|Pr[(gk, sk)← G(1k); σ ← K(gk, sk) : A(gk, σ) = 1]

− Pr[(gk, sk)← G(1k); σ ← S(gk, sk) : A(gk, σ) = 1]| = ν(k),

in other words that an adversary cannot distinguish between a real and and simulated
CRS.

5. Perfect witness indistinguishability: We require that on a simulated CRS the
witnesses of the prover are perfectly indistinguishable; in experiment notation we
write this as

Pr[(gk, sk)← G(1k); σ ← S(gk, sk); (x,w0, w1, s)← A(gk, σ);
π ← P (gk, σ, x, w0) : A(π, s) = 1]

= Pr[(gk, sk)← G(1k); σ ← S(gk, sk); (x,w0, w1, s)← A(gk, σ);
π ← P (gk, σ, x, w1) : A(π, s) = 1]

for state information s and (gk, x, w0), (gk, x, w1) ∈ R.

6. Perfect zero-knowledge: Finally, we must consider the notion of composable zero-
knowledge. We again require that the adversary cannot distinguish between a real
and a simulated CRS. We now look at two simulators: S1 to produce the simulation
string and S2 to produce the proof π. We also allow for S1 to output some secret
information td and require that even with access to td our adversary still cannot
distinguish between the outputs of the real prover P and the simulator S2.

Formally, we write

Pr[(gk, sk)← G(1k);(σ, td)← S1(gk, sk);
(x,w, s)← A(gk, σ, td);π ← P (gk, σ, x, w) : A(π, s) = 1]

= Pr[(gk, sk)← G(1k);(σ, td)← S1(gk, sk);
(x,w, s)← A(gk, σ, td);π ← S2(gk, σ, td, x) : A(π, s) = 1].

11



In addition, we will need to define the idea of a bilinear map (also called a bilinear
pairing). Such maps have received a lot of attention in recent years [DBS04] and serve as
the basis for a branch of cryptography called pairing-based cryptography.

Definition 2.6.2. A function e : G1 ×G2 → GT , where G1, G2, and GT are all cyclic, is
called a cryptographic bilinear map if it satisfies the following three properties:

1. Computability: e is efficiently computable.

2. Bilinearity: for all a ∈ G1, b ∈ G2, x, y ∈ Z, e(ax, by) = e(a, b)xy.

3. Non-degeneracy: if a is a generator of G1 and b is a generator of G2 then e(a, b) is a
generator of GT .

Because the groups are all cyclic, one consequence of the second property is that our
map is bilinear in the typical mathematical sense, so that

e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′)

for u, u′ ∈ G1 and v, v′ ∈ G2. In addition to these three properties, we will see in Chapter
4 that there are sometimes extra properties we will need to require of our bilinear maps.
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Chapter 3

GS Proofs

As discussed in Chapter 1, the Groth-Sahai proofs are highly flexible and can be used for
proving satisfiability of various kinds of equations under various cryptographic assumptions.
Here we highlight a few of them that will be the most useful for our purposes. In Section
3.2 we outline how to prove satisfiability of quadratic equations, and in Section 3.3 we
outline how to prove satisfiability of pairing product equations. In Section 3.5 we talk
briefly about the instantiation of GS proofs under the Subgroup Decision assumption; while
this instantiation is not necessarily useful for our applications, it is still interesting and
demonstrates how GS proofs can be used even in composite-order groups. In Sections 3.6
and 3.7, we give detailed outlines of the instantiation of GS proofs under the SXDH and
DLIN assumptions, both for quadratic and pairing product equations. Finally, in Chapter
4 we outline applications of GS proofs, including a new way to non-interactively prove
knowledge of an exponent and a new construction of non-interactive anonymous credentials
using the Boneh-Boyen signature scheme.

3.1 Notation disclaimer

One confusing part of the sections that will follow is the difference in notation. In both
the quadratic equations and pairing product equations we will consider a bilinear map
f : G1 × G2 → GT . In the quadratic equations, it will be much more convenient to think
of G1 and G2 as additive groups (as it corresponds more closely with the notation used
in traditional elliptic curve literature), but to think of GT as a multiplicative group. In
the pairing product equations, however, we will use the usual multiplicative notation for
all groups. Despite these differences, it is important to note that the commitment schemes
used in both are in fact identical and it is only the proofs that are fundamentally different.
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3.2 Quadratic equations

3.2.1 Introduction and definition

Definition 3.2.1. Let (R,+, ·, 0, 1) be a finite commutative ring. Then an R-module A is
an abelian group (A,+, 0) such that there exists an operator (scalar multiplication) R×A→
A that maps (r, x) for r ∈ R and x ∈ A to rx ∈ A. We also satisfy the following properties
for all r, s ∈ R, x, y ∈ A:

• (r + s)x = rx+ sx.

• r(x+ y) = rx+ ry.

• r(sx) = (rs)x.

• 1x = x.

As an example, any cyclic group of order n can be viewed as a Zn-module. We will
be considering R-modules A1, A2, and AT that have some associated bilinear map f :
A1 ×A2 → AT . Using this map, we will focus on sets of quadratic equations of the form

n∑
j=1

f(aj , yj) +
m∑
i=1

f(xi, bi) +
m∑
i=1

n∑
j=1

γijf(xi, yj) = t (3.1)

where the xi and bi are drawn from A1, the yj and aj are drawn from A2, t is drawn from
AT , and the γij are drawn from R. To simplify this equation, we can use vector notation
and define

~x · ~y =
n∑
i=1

f(xi, yi).

This allows us to rewrite Equation (3.1) as

~a · ~y + ~x ·~b+ ~x · Γ~y = t. (3.2)

Note that Γ is a m × n matrix in R, and that by the bilinear properties of f we have
that ~x · Γ~y = ΓT~x · ~y.

3.2.2 Commitment

To commit to elements from an R-module A we define two homomorphisms τ : A→ B and
ρ : B → A. We will use n elements ui drawn from B for the commitment, and require that
ρ(ui) = 0 for all i and that ρ ◦ τ is the identity for all elements such that τ(x) is not in
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U = 〈u1, . . . , un〉1. To commit to some x ∈ A, we first pick n random values ri from R and
then compute

c(x) = τ(x) +
n∑
i=1

riui.

We can use the same vector notation as before to write ~c = τ(~x) +R~u when committing
to multiple values.

The key for our commitment will be (B, τ, ρ, u1, . . . , un). There are two cases:

• Hiding keys: in this case, the ui generate the whole module B, which means that
U = 〈u1, . . . , un〉 = B. This implies that τ(A) ⊆ U , which means that c(x) is
perfectly hiding.

• Binding keys: in this case, U 6= B. This means that c reveals some non-trivial
information about x; in particular, it reveals the coset of U where τ(x) lives. This
means that in order for our commitment to be binding, we must restrict the space of x
to be the set of all x such that τ(x) is in the quotient group B/U ; because U 6= B both
B/U and its inverse image τ−1(B/U) are non-trivial. Note that for the quotient group
to be well-defined U must be a normal submodule of B; this is fine since modules are
by definition abelian, so every submodule is normal. One final thing to add to this
argument is that, while it might not seem to be a very strong binding property, we
often work in groups where each coset has a unique “representative element” and so
our restriction of τ(x) to the space B/U really is binding. This will hopefully become
more clear when we discuss instantiations later on.

We can also note that because we are restricting our choices of x to be in the inverse
image τ−1(B/U), we have that ρ(~c) = ρ(τ(~x) +R~u) = ~x.

It is clear that we cannot have both these cases at the same time, as one implies that
ρ ◦ τ is the zero map for all x ∈ A and the other one requires that it is the identity
for elements x ∈ τ−1(B/U). From Property 4 in Section 2.6, however, we know that the
settings in which these keys are used need to be indistinguishable in order to get any witness
indistinguishability or zero knowledge properties. This means that we will need to use an
assumption that implies that these two cases are indistinguishable.

3.2.3 CRS setup

The common reference string (CRS) contains commitment keys that allow us to commit to
elements in A1 and A2 (so these commitment keys will define B1 and B2, as well as our
maps τ1, τ2, ρ1, ρ2, and some elements u1, . . . , um and v1, . . . , vn). The CRS must also

1Note that here we deviate from Groth and Sahai – they only require that ρ ◦ τ is not the zero map.
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Figure 3.1: Commutative Diagram for Groth-Sahai Proofs

define BT and the maps τT , ρT , and F . We can extend our vector notation here as well to
say that

~X ∗ ~Y =
n∑
i=1

F (X,Y ).

for ~X ∈ Bn
1 and ~Y ∈ Bn

2 . Finally, our CRS must define the set of matrices H1, . . . ,Hk

that are a basis for the R-module of all matrices H that satisfy ~u ∗H~v = 0.
In general, we work with two different settings (note U = 〈u1, . . . , um〉 and V =

〈v1, . . . , vn〉):

• Binding setting: the commitment keys are binding for x1 ∈ τ−1
1 (B1/U) and x2 ∈

τ−1
2 (B2/V ), which means that ρ1 ◦ τ1(x1) = x1 and ρ2 ◦ τ2(x2) = x2 for all x1, x2

values to which we will be forming commitments. We will use this setting to prove
soundness and extractability.

• Hiding setting: the commitment keys are hiding, which means B1 = U and similarly
B2 = V . This implies that ρ1 ◦ τ1(x1) = 0 and ρ2 ◦ τ2(x2) = 0 for all x1 ∈ A1

and x2 ∈ A2. We will use this setting to prove witness indistinguishability and zero-
knowledge.

As with our commitment cases, we will need these two settings to be indistinguishable.

3.2.4 Proving committed values satisfy a quadratic equation

Remember that a quadratic equation is of the form

~a · ~y + ~x ·~b+ ~x · Γ~y = t

where ~a ∈ An1 , ~b ∈ Am2 , Γ ∈ Rm×n and t ∈ AT are constants and ~x ∈ Am1 , ~y ∈ An2 are the
variables that satisfy the equation. We would like to prove that we know ~c = Com(~x) and
~d = Com(~y); in other words commitments whose openings satisfy the equation.
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Suppose that to prove this we compute values (~π, ~ψ) that satisfy the following equation:

τ1(~a) ∗ ~d+ ~c ∗ τ2(~b) + ~c ∗ Γ~d = τT (t) + ~u ∗ ~π′ + ~ψ′ ∗ ~v. (3.3)

Why would such a proof be sound? To see this, remember that in the binding setting
there exist maps ρ1, ρ2, and ρT such that ρ1(~u) = 0 and ρ2(~v) = 0. If we then apply these
maps to the above equation, we end up with

a ∗ ρ2(~d) + ρ1(~c) ∗~b+ ρ1(~c) ∗ Γρ2(~d) = ρT (τT (t)).

Because the binding setting further requires that ρ1 ◦τ1 is the identity, it will also be the
case that ρ1(~c) = ρ1(τ1(~x)) + ρ1(R~u) = ~x. Similarly, ρ2(~d) = ~y, and ρT (τT (t)) = t. Since
the witnesses are completely uncovered, this gives us perfect soundness.

Now that we have an idea of soundness, we of course need to figure out how to actually
form this proof (~π, ~ψ). One naive approach to forming a NIWI proof is to just plug com-
mitments to ~x and ~y into the original equation. This turns out to be almost good enough.
Remember that the commitments are of the form ~c = τ1(~x) + R~u and ~d = τ2(~y) + S~v.
Because ~c ∈ Bm

1 and ~d ∈ Bn
2 we need to map ~a into Bn

1 and ~b into Bm
2 in order to pair them

with ~d and ~c respectively, which means that we end up with the left-hand side of Equation
3.3. Plugging in the values for our commitments and expanding them out, we get

(LHS of 3.3) = τ1(~a) ∗ (τ2(~y) + S~v) + (τ1(~x) +R~u) ∗ τ2(~b) + (τ1(~x) +R~u) ∗ Γ(τ2(~y) + S~v)
= τ1(~a) ∗ τ2(~y) + τ1(~a) ∗ S~v + τ1(~x) ∗ τ2(~b) +R~u ∗ τ2(~b) + τ1(~x) ∗ Γτ2(~y)

+R~u ∗ Γτ2(~y) + τ1(~x) ∗ ΓS~v +R~u ∗ ΓS~v
= τ1(~a) ∗ τ2(~y) + τ1(~x) ∗ τ2(~b) + τ1(~x) ∗ Γτ2(~y)

+R~u ∗ τ2(~b) +R~u ∗ Γτ2(~y) +R~u ∗ ΓS~v
+τ1(~a) ∗ S~v + τ1(~x) ∗ ΓS~v

= τT (t) + ~u ∗R>τ2(~b) + ~u ∗R>Γτ2(~y) + ~u ∗R>ΓS~v
+S>τ1(~a) ∗ ~v + S>Γ>τ1(~x) ∗ ~v

= τT (t) + ~u ∗ (R>τ2(~b) +R>Γτ2(~y) +R>ΓS~v︸ ︷︷ ︸
~π

) + (S>τ1(~a) + S>Γ>τ1(~x)︸ ︷︷ ︸
~ψ

) ∗ ~v

Now if we form our proof (~π′, ~ψ′) as defined above we have that (LHS of 3.3) = τT (t) +
~u ∗ ~π′ + ~ψ′ ∗ ~v, which is what we wanted for soundness. Unfortunately, this is not quite
enough for witness indistinguishability.

Recall that to prove witness indistinguishability we work in the hiding setting, where
the commitments are perfectly hiding. Consider as an example the symmetric case where
A1 = A2 and ~u = ~v. Then ~π′ is the only thing that could reveal any information about either
~x or ~y. If ~π′ is unique then we trivially have WI, so we only need to consider the case where
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we have two values ~π′1 and ~π′2 that satisfy the equation. This means that ~u ∗ (~π′1 − ~π′2) = 0.
To guarantee the same distribution regardless of our value, we can add

∑k
i=1 riHi~v to ~π′

(remember that by the nature of the Hi when this is multiplied on the left by ~u we will get
0). This means that our new ~π′ will satisfy the verification equation but also have the same
distribution no matter what “real ~π′” is contained within.

In the non-symmetric case, we still have ~ψ′ to take care of. We can pick a matrix T at
random to randomize ~ψ′ so that we end up with ~ψ′+T~u. We will therefore need to balance
this term out in ~π′ (so that it does not affect our series of equations from above), so we get

(LHS of 3.3) = τT (t) + ~u ∗ ~π + ~ψ ∗ ~v = τT (t) + ~u ∗ (~π′ +
k∑
i=1

riHi~v − T>~v) + (~ψ′ + T~u) ∗ ~v.

This means that our protocol proceeds as follows:

Prover: Pick T and r1, . . . , rk at random. Compute

~π = R>τ2(~b) +R>Γτ2(~y) +R>ΓS~v − T>~v +
k∑
i=1

riHiv

~ψ = R>τ1(~a) + S>Γ>τ1(~x) + T~u

and return (~π, ~ψ).

Verifier: Accept if and only if

τ1(~a) ∗ ~d+ ~c ∗ τ2(~b) + ~c ∗ Γ~d = τT (t) + ~u ∗ ~π + ~ψ ∗ ~v.

Our construction above shows that we have already satisfied completeness, which means
that we now only need to prove soundness and witness indistinguishability. For soundness,
we recall from our discussion above that the idea is to apply the inverse map ρ for every τ .
Because ρ ◦ τ is the identity map we end up with perfect soundness.

Theorem 3.2.2. In the witness indistinguishability setting defined in Section 3.2.3, all
satisfying witnesses ~x, ~y, R, S yield proofs ~π ∈ 〈v1, . . . , vn〉m and ~ψ ∈ 〈u1, . . . , um〉n that
are uniformly distributed (conditioned on the satisfication of the verification equation).

Proof. We know that τ1(A1) ⊆ 〈u1, . . . , um〉 and similarly that τ2(A2) ⊆ 〈v1, . . . , vn〉. Then
we know there exist matrices A, B, X, and Y over R such that τ1(~a) = A~u, τ1(~x) = X~u,
τ2(~b) = B~v, and τ2(~y) = Y ~v. This means we can rewrite our commitments as ~c = (X+R)~u
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and ~d = (Y + S)~v. We can also rewrite our proofs ~π and ~ψ as

~ψ = (S>A+ S>Γ>X + T )~u and

~π = (R>B +R>ΓY +R>ΓS − T>)~v + (
k∑
i=1

riHi)~v.

Since T was chosen at random, we can think of ~ψ as a random variable given by ~ψ = Ψ~v
for a random matrix Ψ. Similarly, we can think of ~π = Π~v where Π depends on Ψ.

We know we can write any two choices of Π as Π1 = Π2 +
∑k

i=1 riHi. Based on how we
form ~π, we know that we get a uniform distribution over ~π if we condition on ~ψ. Finally,
because ~ψ is uniformly chosen, we know that we get a uniform distribution over ~π, ~ψ for
any witness.

3.2.5 NIWI proof

To summarize all that we have done above, we outline a fully composable NIWI proof for
satisfiability of a set of quadratic equations.

• Setup: (gk, sk) = ((R, A1, A2, AT , f), sk)← G(1k).

• Binding: σ = (B1, B2, BT , F, τ1, ρ1, τ2, ρ2, τT , ρT , ~u,~v) ← K(gk, sk), where ~u and ~v
are commitment keys for binding commitment schemes.

• Hiding: σ = (B1, B2, BT , F, τ1, ρ1, τ2, ρ2, τT , ρT , ~u,~v)← S(gk, sk), where ~u and ~v are
commitment keys for hiding commitment schemes.

• Prover: On input gk, σ, a set of quadratic equations {(~ai, ~bi,Γi, ti)}Ni=1 and a sat-
isfying witness ~x, ~y, pick R and S at random and then form the commitments ~c =
τ1(~x)+R~u and ~d = τ2(~y)+S~v. Now, for each quadratic equation pick Ti and ri1, . . . , rik
at random and compute

~πi = R>τ2(~bi) +R>Γτ2(~y) +R>ΓS~v − T>i ~v +
k∑
j=1

rijHj~v (3.4)

~ψi = S>τ1(~ai) + S>Γ>τ1(~x) + Ti~u. (3.5)

Output the proof (~c, ~d, {~πi, ~ψi}Ni=1).

• Verifier: On input gk, σ, a set of quadratic equations, and a proof ~c, ~d, {~πi, ~ψi}Ni=1,
check for each equation that

τ1(~ai) ∗ ~d+ ~c ∗ τ2(~bi) + ~c ∗ Γi~d = τT (ti) + ~u ∗ ~πi + ~ψi ∗ ~v.

Accept the proof if and only all these checks pass.
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In addition, our discussions in the previous section have proved the following theorem:

Theorem 3.2.3. The protocol outlined above is a non-interactive witness-instinguishable
proof of satisfiability of a set of quadratic equations with perfect completeness, perfect sound-
ness, and perfect composable witness-indistinguishability.

3.2.6 The symmetric setting

One interesting case we can consider is when A1 = A2, our commitment keys ~u and ~v are
the same, and our bilinear map F is symmetric, i.e. F (x, y) = F (y, x) for all x, y. This
case arises when we look at the DLIN assumption in Section 3.7 and it turns that we can
improve efficiency by having our proof consist of one value ~φ instead of both ~π and ~ψ. To
see this, note the verification equation will collapse to

τ1(~a) ∗ ~d+ ~c ∗ τ2(~b) + ~c ∗ Γ~d = τT (t) + ~u ∗ ~π + ~ψ ∗ ~u
= τT (t) + ~u ∗ (~π + ~ψ)

since F is symmetric. This means that we end up with a proof of the form

~φ = R>τ2(~b) +R>Γτ2(~y) +R>ΓS~u− T>~u+
k∑
i=1

riHi~u+ S>τ1(~a) + S>Γ>τ1(~x) + T~u.

This is certainly a little messy, but it is possible to simplify it a little by noting that the
symmetry of F implies ~u ∗ (T − T>)~u = 0, so that these terms will be cancelled when the
proof is plugged into the verification equation. This means that we can use

~φ = R>τ2(~b) +R>Γτ2(~y) +R>ΓS~u+ S>τ1(~a) + S>Γ>τ1(~x) +
k∑
i=1

riHi~u. (3.6)

3.2.7 Zero knowledge

It turns out that in some cases it not so hard to use the above NIWI proof system to
create a proof system that satisfies the zero-knowledge property from Section 2.6.1. This
formulation of zero-knowledge is slightly non-standard; we are not proving that values in a
set of commitments satisfy the equations, but that a set of values satisfy the equations (so no
commitments involved). This means the prover is allowed to form his own commitments,
which means that the simulator in turn is allowed to form its own commitments. We
address a stronger version of zero-knowledge in Chapter 4 in which the simulator is given a
commitment that it does not necessarily know how to open, but for now we focus on this
weaker version.
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First, we consider the case of prime-order groups, which means that the job of the
simulator is made much easier. Given the equations {~ai, ~bi,Γi, ti}Ni=1 and witnesses ~x and
~y, the prover proceeds as normal (so forms the commitments and proofs just as in Section
3.2.5). The simulator, on the other hand, does not know the witnesses. For each individual
equation, however, the simulator is able to simply solve for ~x and ~y. The simulator can
then form a pair of commitments ~c and ~d to ones of these “witnesses” ~x and ~y; these are
not witnesses in the real sense as they do not satisfy all the equations simultaneously. This
means that in order to allow the simulator to form the proofs, we need it to have access to
a trapdoor td that allows it to open ~c and ~d to any ~x and ~y – in particular this means that
the simulator can use ~c and ~d as commitments to each of the pairs ~x and ~y that it found
for an individual equation. In other words, with this trapdoor the simulator can compute
the proofs {~πi, ~ψi}Ni=1 exactly as the prover would, using the same commitments ~c and ~d
but different values of ~x and ~y for each equation.

Theorem 3.2.4. The protocol described in Section 3.2.5 is a composable non-interactive
zero-knowledge proof of satisfiability of a set of quadratic equations with perfect complete-
ness, perfect soundness, and perfect composable zero-knowledge.

Proof. First, the perfect completeness and perfect soundness properties follow directly from
Theorem 3.2.3, as the protocol has not been altered in any way.

Why are these proofs also zero-knowledge? We use the simulator described above, which
gets the set of equations and computes a satisfying witness ~x and ~y for each individual
equation, and then uses commitments ~c and ~d to form proofs for these witnesses. Consider
a hybrid distribution Hybi in which the commitments ~c and ~d are still sent, but the real
witnesses are used for the first i equations and the simulator witnesses are used for the
last N − i equations (we can consider this distribution since we do not need to bound our
hybrid’s computational power; this means the commitments ci and di can be opened to the
simulator’s xi and yi using brute force). To show that Hybi and Hybi+1 are indistinguishable,
we recall that the commitments are perfectly hiding and so neither ci nor di will reveal any
information about the witness contained within. As for the proofs, since each individual
proof formed by the simulator is a valid proof (since the simulator knows a valid witness
for that particular equation), Theorem 3.2.3 tells us that the distribution of ~πi+1, ~ψi+1 will
be identical for the prover and the simulator, and so the hybrid distributions are in fact
perfectly indistinguishable.

In a Zn-module G we cannot just solve for each equation, since a given element will
not necessarily have an inverse. Therefore, the case of a composite order group is more
work. In fact, there is currently no known method for simulating a proof for a generic
quadratic equation, which means there is no known way to achieve this version of zero-
knowledge. If our equations are of the form (a, b,Γ, 1), however, then ~x = ~0 and ~y = ~0 are
always witnesses (recall that we are using t = 1 because although A1 and A2 are considering
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additively, we use multiplicative notation for AT and therefore 1 and not 0 represents the
identity). Therefore, we can trivially guarantee zero knowledge in the case where t = 1.

3.2.8 Proof of knowledge

One final thing to note is that these proofs are also proofs of knowledge. As we will see
in Sections 3.6 and 3.7, it is often possible for the CRS generator K to output a trapdoor
that makes it possible to compute the ρ maps. This means that an extractor given this
trapdoor is able to compute ρ1(τ1(~x)) = ~x and ρ2(τ2(~y)) = ~y and thus fully recover both the
witnesses, making the proofs perfect proofs of knowledge. It turns out, however, that the ρ
maps are only efficiently computable for elements X ∈ A. We also consider commitments
to exponents x ∈ R. For these elements, computing ρ is infeasible (even with a trapdoor)
if we assume the hardness of the Discrete Log Assumption. Therefore, we won’t be able to
see proofs of knowledge of exponents until Chapter 4.

3.3 Pairing product equations

Here we will be using multiplicative notation instead of additive notation. This means that
an R-module will now be defined as an abelian group (A, ·, 1) such that for r, s ∈ R and
u, v ∈ A we have ur+s = urus and (uv)r = urvr.

3.3.1 Introduction and definition

In general, we are interested in proving a pairing product equation of the form

N∏
q=1

f(aq
m∏
i=1

x
αqi

i , bq

n∏
j=1

y
βqj

j ) = t (3.7)

where aq ∈ A1, bq ∈ A2, αqi, βqj ∈ R, and t ∈ AT are the equation constants and
xi ∈ A1, yj ∈ A2 are the variables we are trying to prove satisfy the equation. As with
quadratic equations, we will do this using commitments to the variables (which will be
outlined in the next section). This means that for rik, sjl ← R we have committed to the
values xi and yj as

ci = τ1(xi)
m∏
k=1

urikk and dj = τ2(yj)
n∏
l=1

v
sjl

l .
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Because our commitments are homomorphic, we have that

aq

N∏
i=1

c
αqi

i = aq

N∏
i=1

(τ1(xi)
m∏
k=1

urikk )αqi

= aq

N∏
i=1

τ1(xi)αqi ·
m∏
k=1

u
∑I

i=1 αqirki

k .

In particular, this means that anyone can compute a commitment to aq
∏
i τ1(xi)αqi and

that, by the same reasoning, anyone can compute a commitment to bq
∏
j τ(yj)βqj . Looking

back at Equation (3.7), this means that anyone can compute commitments to the values on
the left-hand side and so they can be treated as single module elements. Putting all this
together, we see that this general equation can be reduced to a simplified version of the
form

N∏
q=1

f(xq, yq) = t (3.8)

If we use vector notation similar to that in Section 3.2.1, we can define

~x • ~y =
N∏
q=1

f(xq, yq)

to rewrite Equation (3.8) as
~x • ~y = t.

3.3.2 Commitment

We will here require the same homomorphisms as for the quadratic equations, namely maps
τ : A → B and ρ : B → A. To commit to an element x ∈ A we can let u1, . . . , un be
elements in B. We choose random r1, . . . , rn ∈ R and form the commitment as

c = τ(x)
n∏
i=1

urii .

We require the same properties of our maps τ and ρ. Recall from Section 3.2.2 that
when U = B we get perfect hiding because ρ(ui) = 0 for all i, and when U 6= B we get
binding for all x ∈ τ−1(B/U) because ρ ◦ τ is the identity for such values x.

These τ and ρ maps correspond to our notation used in the quadratic equations section,
but not to the original Groth-Sahai notation. The maps will hopefully serve to highlight
the similarities between the quadratic equations and pairing product equations settings, as
well as allow us to more easily integrate our discussion of commitment to group elements
and commitment to exponents.
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3.3.3 CRS setup

Let A1, A2, AT , and B1, B2, and BT be R-modules, where the relations between the
modules are the same as in the quadratic equations setting and can be found in Figure 3.1.

We let u1, . . . , um be elements in B1 and v1, . . . , vn be elements in B2, and denote
U = 〈u1, . . . , um〉 and V = 〈v1, . . . , vn〉. The bilinear map F will produce mn elements (not
necessarily distinct) in BT . This gives rise to a linear map µ~u,~v : Rmn → BT such that

(α11, . . . , αmn) 7→
m∏
i=1

n∏
j=1

F (ui, vj)αij .

We know that (0, . . . , 0) is always in the kernel of µ, but there may be other elements as
well which we denote as h1, . . . , hk. This means that any vector (α11, . . . , αmn) such that

m∏
i=1

n∏
j=1

F (ui, vj)αij = 1

can therefore be written as a linear combination of these hi (in other words, they form a basis
for the kernel). Our CRS will consist of descriptions of the modules and the commitment
keys ~u and ~v, as well as the bilinear map F and these elements h1, . . . , hk that generate the
kernel of µ~u,~v.

3.3.4 Proving committed values satisfy a pairing product equation

Suppose that we have commitments ~c to ~x in A1 and commitments ~d to ~y in A2, so com-
mitments of the form

cq = τ(xq)
m∏
i=1

u
rqi

i and dq = τ(yq)
n∏
j=1

v
sqj

j

for random rqi, sqj ∈ R.
We want to prove that the values contained within our commitments satisfy the simpli-

fied pairing product equation in Equation 3.8. Suppose we have a proof ~π, ~ψ such that

N∏
q=1

F (cq, dq) = τT (t) ·
m∏
i=1

F (ui, πi)
n∏
j=1

F (ψj , vj). (3.9)

As with the quadratic equations setting, we first want to consider why such a proof
would be sound. To see this, we again extend our vector notation to define

~c ∗ ~d =
N∏
q=1

F (cq, dq)

24



and write Equation 3.9 even more succinctly as

~c ∗ ~d = τT (~t)(~u ∗ ~π)(~ψ ∗ ~v). (3.10)

Any proofs that satisfy this equation will imply that

ρ1(τ1(~x)) • ρ2(τ2(~y)) = ρT (τT (t)),

which because ρ1◦τ1, ρ2◦τ2, and ρT ◦τT are all the identity will further imply that ~x•~y = t,
which is what we were originally trying to prove. So we have perfect soundness.

Now, we need to actually construct our proofs. We use the following series of equalities
for tij , tl ← R:

N∏
q=1

F (cq, dq) · τT (t−1) =
N∏
q=1

F (τ1(xq)
m∏
i=1

u
rqi

i , τ2(yq)
n∏
j=1

v
sqj

j ) · τT (t−1)

=
N∏
q=1

F (τ1(xq), τ2(yq)) · τT (t−1)
N∏
q=1

m∏
i=1

F (urqi

i , τ2(yq)
n∏
j=1

v
sqj

j ) ·

N∏
q=1

n∏
j=1

F (τ1(xq), v
sqj

j )

= 1 ·
m∏
i=1

F (ui ,
N∏
q=1

d
rqi
q )

n∏
j=1

F (
N∏
q=1

τ1(xq)sqj , vj)

=
m∏
i=1

F (ui ,
n∏
j=1

v
tij
j

N∏
q=1

d
rqi
q )

n∏
j=1

F (
m∏
i=1

u
−tij
i

N∏
q=1

τ1(xq)sqj , vj)

=
m∏
i=1

F (ui ,
n∏
j=1

v
tij
j

N∏
q=1

d
rqi
q︸ ︷︷ ︸

πi

)
n∏
j=1

F (
m∏
i=1

u
−tij+

∑k
l=1 tlhlij

i

N∏
q=1

τ1(xq)sqj

︸ ︷︷ ︸
ψj

, vj).

If we then define πi and ψj as indicated above, we get our verification equation from
Equation 3.9.

3.3.5 NIWI proof

To summarize all that we have done above, we outline a NIWI proof for satisfiability of a
set of pairing product equations.

• Setup: (gk, sk) = ((R, A1, A2, AT , f), sk)← G(1k).
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• Binding: σ = (B1, B2, BT , F, τ1, ρ1, τ2, ρ2, τT , ρT , ~u,~v) ← K(gk, sk), where ~u and ~v
are commitment keys for binding commitment schemes.

• Hiding: σ = (B1, B2, BT , F, τ1, ρ1, τ2, ρ2, τT , ρT , ~u,~v)← S(gk, sk), where ~u and ~v are
commitment keys for hiding commitment schemes.

• Prover: As input we get gk, σ, a set of pairing product equations {ti}Ni=1 and a
satisfying witness ~x, ~y. For each xi form a commitment ci = τ1(xi)

∏
j u

rj
j for rj ← R.

Similarly, for each yi form a commitment di = τ2(yi)
∏
j v

sj

j for sj ← R. Now, for
each pairing product equation pick tij and tl at random and compute

~πi =
n∏
j=1

v
tij
j

N∏
q=1

d
rqi
q (3.11)

~ψi =
m∏
j=1

u
−tij+

∑k
l=1 tlhijl

j

N∏
q=1

τ1(xq)sqi . (3.12)

Output the proof (~c, ~d, {~πi, ~ψi}Ni=1).

• Verifier: On input gk, σ, a set of equations, and a proof ~c, ~d, {~πi, ~ψi}Ni=1, check for
each equation that

~c ∗ ~d = τT (ti)(~u ∗ ~πi)( ~ψi ∗ ~v).

Accept the proof if and only if all these checks pass.

Theorem 3.3.1. A proof system constructed as above, where the proof is ~π, ~ψ and the
verification equation is Equation (3.9), satisfies perfect completeness, perfect soundness,
and perfect composable witness indistinguishability.

Proof. Perfect completeness follows from Equation 3.9 and its derivation, and perfect sound-
ness follows from the discussion at the beginning of the section.

This means that all that is really left to prove is witness indistinguishability; it turns out
that the proof of witness indistinguishability is quite similar to that for quadratic equations.
We first recall that for witness indistinguishability our commitments are perfectly hiding,
which means that U = B1 and V = B2. This means there exists constants X, Y , R
and S such that τ1(~x) = X~u and τ2(~y) = Y ~v, which furthermore means we can write our
commitments as ~c = XR~u and ~d = Y S~v. Extending this idea to our proofs, we can now
write them as

~π = TY SR~v and ~ψ = T ′TXRS~u.

Since T and T ′ are completely random (as they represent the randomness introduced by
the tij and tl respectively), we can think of ~π and ~ψ as being random variables ~π = Π~v and
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~ψ = Ψ~u. Conditioned on the joint satisfication of the verification equation, we can see that
we get a uniform distribution over these random variables for any witness, meaning that
our proofs are perfectly witness indistinguishable.

3.3.6 The symmetric setting

One immediate thing we can see is that if we have a setting in which A1 = A2, we use the
same commitment keys ~u and ~v, and our bilinear map F is symmetric, we can collapse the
verification equation to

N∏
q=1

F (cq, dq) · τT (t)−1 =
m∏
i=1

F (ui, πi)
m∏
j=1

F (ψj , uj)

=
m∏
i=1

F (ui, πiψi).

This will prove to be more efficient since it means our proof will consist of a single
element ~φ = ~π · ~ψ. To write this out more fully, we have for each equation a proof of the
form

~φi =
m∏
j=1

u
∑k

l=1 tlhlji

j

N∏
q=1

d
rqi
q x

sqi
q . (3.13)

3.3.7 Zero Knowledge

As with the quadratic equations setting, we only outline here how to achieve zero-knowledge
in the non-standard sense (so where the prover and simulator are allowed to form their
commitments themselves). In the case of prime-order groups, the technique is the same as
with quadratic equations. The simulator can simply solve for ~x and ~y in every individual
equation. When it comes to forming commitments, the simulator will form commitments ~c
and ~d to one particular pair ~x and ~y. When it comes time to form the proofs, the simulator
will require a trapdoor that allows it to open ~c and ~d to the individual ~x and ~y that it found
for each equation. Using this trapdoor, it can form the proofs exactly as the prover would.

Because the techniques are exactly the same as in the quadratic equations setting, we
reference Theorem 3.2.4 for a proof of the following theorem:

Theorem 3.3.2. The above protocol is a composable non-interactive zero-knowledge proof
for satisfiability of a set of pairing product equations with perfect completeness, perfect
soundness, and perfect composable zero-knowledge.

Again, we run into problems when attempting to extend these ideas to composite-order
groups, as it is not necessarily feasible to find elements ~x and ~y such that ~x•~y = t. Therefore,
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we can again only guarantee zero-knowledge for a composite-order group in the trivial case
when t = 1.

3.3.8 Proof of knowledge

As with the quadratic equations, it is often possible for the CRS generation algorithm K
to output some information that would allow us to extract elements from the commitments
and therefore from the proofs. We will see more on this in Sections 3.6 and 3.7.

3.4 NIWI proof for satisfiability of a set of equations

Just to tie together all we have done in the previous sections, we outline here a non-
interactive witness-indistinguishable proof for proving satisfiability of a set of equations.
The protocol is essentially just a mix of the protocols seen in Section 3.2.5 and 3.3.5, and
runs as follows:

• Setup: (gk, sk) = ((R, A1, A2, AT , f), sk)← G(1k).

• Binding: We need to consider separate commitment schemes here. This means that
σ = (B1, B2, BT , F, τ

′
1, ρ
′
1, τ1, ρ1, τ

′
2, ρ
′
2, τ2, ρ2, τ

′
T , ρ

′
T , τT , ρT , ~u,~v) ← K(gk, sk), where

τ ′i and ρ′i represent the maps used for group elements, τi and ρi represent the maps used
for exponents, and ~u and ~v are commitment keys for binding commitment schemes.

• Hiding: Again, we need to consider separate commitment schemes. This means that
σ = (B1, B2, BT , F, τ

′
1, ρ
′
1, τ1, ρ1, τ

′
2, ρ
′
2, τ2, ρ2, τ

′
T , ρ

′
T , τT , ρT , ~u,~v)← S(gk, sk), where τ ′i

and ρ′i represent the maps used for group elements, τi and ρi represent the maps used
for exponents, and ~u and ~v are commitment keys for hiding commitment schemes.

• Prover: As input we get gk, σ, a set ofN equations and a satisfying witness ~x, ~X, ~y, ~Y ,
where xi, yj ∈ R and Xi ∈ A1, Yj ∈ A2.

1. For each xi form a commitment ci = τ1(xi)
∏
j u

rj
j for rj ← R2. Similarly, for

each yi form a commitment di = τ2(yi) +
∏
j v

sj

j for sj ← R. For each group

elementXi form a commitment Ci = τ ′1(Xi)
∏
j u

r′j
j and for Yi form a commitment

Di = τ ′2(Yi)
∏
j v

s′j
j .

2. For each pairing product equation (tj), invoke the prover from Section 3.3.5 to
get a proof ~πj , ~ψj .

2Here we choose to switch back to the multiplicative notation, but of course the commitment is the same
no matter what notation we use.
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3. Similarly, for each quadratic equation ( ~ak, ~bk,Γk, tk), invoke the prover from Sec-
tion 3.2.5 to get a proof ~πk, ~ψk.

4. Output the proof (~c, ~d, ~C, ~D, {~πi, ~ψi}Ni=1).

• Verifier: On input gk, σ, a set of equations, and a proof ~c, ~d, ~C, ~D, {~πi, ~ψi}Ni=1:

1. For each pairing product equation (tj), check that

~C ∗ ~D = τ ′T (tj)(~u ∗ ~πj)( ~ψj ∗ ~v).

2. For each quadratic equation ( ~ak, ~bk,Γk, tk), check that

~ak ∗ ~d+ ~c ∗ ~bk + ~c ∗ Γk ~d = τT (t) + ~u ∗ ~πk + ~ψk ∗ ~v.

3. Accept the proof if and only if all these checks pass.

3.5 Subgroup Decision

Although we do not fully outline here the instantiation based on the Subgroup Decision
assumption, it is worth discussing. We first recall the assumption:

Assumption 3.5.1 ([BGN05]). Assuming a generation algorithm G that outputs a tuple
(p, q,G,GT , e) such that e : G×G→ GT and G and GT are both groups of order n = pq, it
is computationally infeasible to distinguish between an element of G and an element of Gp.
More formally, for all PPT adversaries A there exists a negligible function ν(·) such that

|Pr[(p, q,G,GT , e)← G(1k); n = pq; x← G : A(n,G,GT , e, x) = 0]

− Pr[(p, q,G,GT , e)← G(1k); n = pq; x← G : A(n,G,GT , e, xq) = 0]| < ν(k)

where A outputs a 1 if it believes x ∈ Gp and 0 otherwise.

In order to use this assumption, the instantiation uses a group G of order n = pq. For
the commitments, we have A = B = G and use one commitment key: an element u chosen
to either generate G or have order q; Subgroup Decision tells us that these choices are
indistinguishable. For group elements X, we use τ as the identity. For ring elements x,
we use τ(x) = gx (or xg if working additively), where g is a generator of G. To define
our ρ map, we use an element λ ∈ Zn such that λ ≡ 1 mod p and λ ≡ 0 mod q and define
ρ(c) = λc.

The problem with this instantiation is that it is longer the case that ρ◦ τ is the identity;
instead, ρ ◦ τ maps X to its p-component. This means that our commitments cannot be
perfectly binding, which further implies that our proofs cannot be perfectly sound. If we

29



recall Property 3 from Section 2.6.1 we see that we can still create proofs that are Lco

sound, so this instantiation does still have many interesting and useful properties. For
our purposes, however, the problem lies in the extractability properties. In Section 4.2 we
would like to prove knowledge of an exponent x ∈ R, and in our applications of this proof
technique we will also need to prove knowledge of group elements. To apply these proofs
in a useful way, we need them to be perfectly extractable, which means that extracting just
the p-component will not suffice. We could try to remedy this by restricting the space of X
to Gp (which is what Groth and Sahai suggest) but this causes problems for a prover who
might not know the factorization of n, as he does not know p and therefore has no way to
efficiently sample from Gp.

3.6 SXDH

Here we use the symmetric external Diffie-Hellman assumption (SXDH), which involves a
prime order bilinear group defined by (p,G1, G2, GT , f, g1, g2), where g1 and g2 generate
G1 and G2 respectively, f(g1, g2) generates GT , and all the Gi are cyclic groups of order
p. This assumption states that it is hard to distinguish between (ga, gb, gab) and (ga, gb, gc)
(for a random c) in both G1 and G2. To define this more formally, we first need to define
the decisional Diffie-Hellman assumption:

Assumption 3.6.1 ([NR97]). Assuming a generation algorithm G that outputs a tuple
(p,G, g) such that G is of order p and has generator g, it is computationally infeasible to
distinguish between (g, ga, gb, gc) and (g, ga, gb, gab) for a, b, c ← Zp. More formally, for all
PPT adversaries A there exists a negligible function ν(·) such that

|Pr[(p,G, g)← G(1k); a, b, c← Zp : A(g, ga, gb, gc) = 0]

− Pr[(p,G, g)← G(1k); a, b← Zp : A(g, ga, gb, gab) = 0]| < ν(k)

where A outputs a 1 if it believes c = ab and 0 otherwise.

This assumption is only defined for a single group G, but the SXDH assumpion [Sco02]
says the decisional Diffie-Hellman problem is hard in both G1 and G2.

It is worth spending a little bit of time to discuss how practical it is to use the SXDH
assumption. First of all, it is clear that the assumption breaks down in the symmetric case
when G1 = G2 = G, since it would be easy to check if f(ga, gb) = f(g, gc) and thus decide
if c = ab or not. Currently, the groups G1 and G2 for which SXDH is still considered to
be hard are defined as follows: let E be an MNT elliptic curve defined over a finite field
Fq such that E(Fq) has a subgroup of (large) prime order p and small embedding degree
d. Define G1 to be this subgroup. If we apply the Frobenius map on Fqd/Fq to obtain the
trace-0 subgroup of E(Fqd), we can now define G2 to be this subgroup. In this setting (and
if we use f to be the Tate pairing), SXDH is still assumed to be a reasonable assumption.
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The reason the problem defined by SXDH can be assumed to be hard in groups defined
as above is that there exists no efficiently computable distortion map from G1 to G2 (there
does exist a distortion map from G2 to G1 though). This is a result of Verheul [Ver04] and
while it does not prove that the SXDH assumption holds in such groups, it does rule out all
currently known attacks on DDH (which involve combining distortion maps with pairings).

Type of proof G1 G2 Total
NIWI pairing product equations 4 4 8
NIZK pairing product equations 20 20 40
NIWI quadratic equations (in Zp) 2 2 4
NIZK quadratic equations 18 18 36

Figure 3.2: Costs for each type of equation under the SXDH assumption

3.6.1 Quadratic equations

Commitment

Here we will define A = G (so A has prime order p) and B = G2, both of which are modules
over Zp. The commitment key will contain u1 = (g, h), where h = αg for some random
α ∈ Z∗p, and u2, where u2 is such that either u2 = tu1 or u2 = tu1 − (0, g) for a random
t ∈ Z∗p.

To commit to some X ∈ G we define τ(X) = (0, X)3. We pick randomness r1, r2 ∈ Zp
and form our commitment c(X) = τ(X) + r1u1 + r2u2. We also define ρ(c1, c2) = c2 − αc1,
so that ρ ◦ τ is the identity map. In the case where u2 = tu1 we have c(X) = (0, X) +
r1(g, h) + r2t(g, h) = ((r1 + r2t)g, (r1 + r2t)h+X), which we can recognize as an ElGamal
encryption [ElG84] (in additive form) and so the commitment is perfectly binding. If
instead u1 and u2 are linearly independent then they form a basis for B = G2, so τ(A) ⊆
〈u1, u2〉 and therefore the commitment is perfectly hiding. Note that the commitment keys
are computationally indistinguishable, since any algorithm that could distinguish between
(tg, tαg) and (tg, tαg− 1) given (g, αg) could also distinguish between (tg, tαg) and (tg, rg)
for random r, and this would violate SXDH.

To commit to an exponent, we define u to be either tu1 or tu1 + (0, g) with τ(x) = xu
and ρ(c1, c2) = logg(c2 − αc1). We then compute c(x) = τ(x) + ru1. On a binding key we
use u = tu1 + (0, g), which means c(x) = x(tu1 + (0, g)) + ru1 = ((xt+ r)g, (xt+ r)h+ xg),
which we again recognize (in additive form) as an ElGamal encryption of xg.

3This is what we meant back in Section 3.2.2 when we said that the coset where τ(X) lived would have
a ‘representative element.’ If we saw an element of B that looked like b = (b1, b2) for b1 6= 0, we could
immediately know that b 6= τ(X) for any X ∈ A.
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Note that here the decryption key α is enough to allow us to compute ρ for group
elements. Since ρ(c(X)) = X for X ∈ G, access to α would allow us to extract the
value inside the commitment, which means that we can make our proofs perfect proofs of
knowledge of group elements. For exponents, however, there is no possible trapdoor that
will allow us to efficiently compute the discrete log, which means that all we can extract is
xg.

Setup

Here we set B1 = G2
1, B2 = G2

2, and BT = G4
T . We can also define F such that

F

((
x1

x2

)
,

(
y1

y2

))
=
(
f(x1, y1) f(x1, y2)
f(x2, y1) f(x2, y2)

)
.

We have A1 = A2 = AT = Zp and f(x, y) ≡ xy mod p if we are using exponents, and
A1 = G1, A2 = G2, AT = GT , f the Tate pairing if we are using group elements. We can
define

τ ′T (z) =
(

1 1
1 z

)
and ρ′T

((
z11 z12

z21 z22

))
= z22 · z−α1

12 (z21 · z−α1
11 )−α2

where the αi come from the commitment keys – recall that u1 = (g1, α1g1) and v1 =
(g2, α2g2). If we are using group elements, we use the maps τ ′T and ρ′T ; it is easy to check
that ρ′T ◦ τ ′T is the identity. To use exponents, we can expand on these maps to define
τT (z) = τ ′T (f(g, g)z) and ρT (z) = logg(f−1(ρ′T (z))), where f−1(f(g, z)) := z. We can see
that ρT ◦τT is the identity map as well, and also that F (u1, Hv1) has no non-trivial solution.
This means we don’t have to specify any generators Hi.

NIWI proof

• Setup: gk = (p,G1, G2, GT , e, g1, g2)← G(1k).

• Binding: On input gk compute σ as outlined in the previous section, using (u1, u2, v1, v2)
such that u2 = t1u1 and v2 = t2v1 for random t1, t2 ∈ Zp.

• Hiding: On input gk compute σ as outlined in the previous section, using (u1, u2, v1, v2)
such that u2 = t1u1 − (0, g1) and v2 = t2v2 − (0, g2) for random t1, t2 ∈ Zp.

• Prover: On input gk, σ, a set of equations, and a witness ~x, ~y:

1. Commit to ~x as ~c = τ1(~x) + ~ru1. Similarly, commit to ~y as ~d = τ2(~y) + ~sv1.
2. For each quadratic equation {~ai, ~bi,Γi, ti} form

πi = ~r>τ2(~bi) + ~r>Γiτ2(~y) + (~r>Γi~s− Ti)v1
ψi = ~s>τ1(~ai) + ~s>Γ>i τ1(~x) + Tiu1.
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• Verifier: On input gk, σ, a set of equations, and a proof ~c, ~d, {(πi, ψi)}Ni=1, check for
each equation that

τ1(~ai) ∗ ~d+ ~c ∗ τ2(~bi) + ~c ∗ Γ~d = τ ′T (ti) + F (u1, πi) + F (ψi, v1).

3.6.2 Pairing product equations

Commitment

This will be identical to the commitment scheme for the quadratic equations (as mentioned
in Section 3.1), but for the convenience of the reader we outline it here using the multi-
plicative notation.

We again consider A = G and B = G2 for our group G. We define u1 = (g, h)
and u2 = (v, w) as two elements in B, where h = gα for α ∈ Zp and either u2 = us1
for some s or u1 and u2 are linearly independent (so u2 = (gs, gsα−1) will work). The
DDH assumption tells us that distinguishing between these keys is hard. To commit to
an element X ∈ A we define τ(X) = (1, X) and ρ(c1, c2) = c2/c

α
1 . We then compute

c = ur11 u
r2
2 τ(X) = (gr1wr2 , hr1vr2X) for random r1, r2. In the binding setting, we have

c = (gr1+sr2 , hr1+sr2X), which we can recognize as an ElGamal encryption (this time in the
usual multiplicative form!). In the hiding setting, c is perfectly hiding.

To commit to a ring element x, we use A = Zp and the same u1 and u2 as before, but
we now define τ(x) = ux, where u = (gs, gsα+1) for a binding key and us1 for a hiding key
(note u = u2 · (1, g)). This means that ρ(c1, c2) = logg(c2/cα1 ) and c = τ(x)ur1. Note that in
the hiding setting we have a perfectly hiding Pedersen commitment, whereas in the binding
setting we have that c = (gsx+r, gα(sx+r)+x), which means that x is determined uniquely
and the commitment is therefore binding.

As with the quadratic equations setting, ρ◦ τ is the identity and all we need to compute
ρ for an element X ∈ A is the value α such that gα = h. This means that we can have
perfect proofs of knowledge for group elements, but for ring elements all we can extract
efficiently is gx (since there is no trapdoor that makes computing the discrete log efficient).

Setup

Here we again have three groups G1, G2, and GT all of prime order p and generators g1
and g2 for G1 and G2 respectively. Our Zp modules, as described in the previous section,
will be B1 = G2

1, B2 = G2
2, and BT = G4

T . Our bilinear map is the same as with quadratic
equations, where

F

((
x1

x2

)
,

(
y1

y2

))
=
(
f(x1, y1) f(x1, y2)
f(x2, y1) f(x2, y2)

)
.

We can also define our τT and ρT maps to be as they were in the quadratic equations
scenario. It is easy to see here (again, as with the quadratic equations) that µ~u,~v has a
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trivial kernel when u1 and u2 are linearly independent in B1 and v1 and v2 are linearly
independent in B2. This means that we do not need to include any hi elements.

NIWI proof

• Setup: gk = (p,G1, G2, GT , f, g1, g2)← G(1k).

• Binding: On input gk form σ as described in the previous section, using (u1, u2, v1, v2)
such that u1 = ur2 and v1 = vs2 for random r, s ∈ Zp.

• Hiding: On input gk form σ as described in the previous section, using (u1, u2, v1, v2)
such that u2 = ur1 ∗ (1, g−1

1 ) and v2 = vs1 ∗ (1, g−1
2 ) for random r, s ∈ Zp.

• Prover: On input gk, σ, a set of pairing product equations {ti}Ni=1, and a witness
~x, ~y:

1. Commit to each value x1, . . . , xN as cq = τ1(xq)
∏
u
rqi

i and to each value y1, . . . , yN
as dq = τ2(yq) ·

∏
v
sqj

j for randomly chosen rqi, sqj ∈ Zp.
2. For each equation pick ti1, ti2 ← Zp, then for j = 1, 2 form and send

πij = v
tj1
1 v

tj2
2

N∏
q=1

d
rqi
q

ψij = u
−tj1
1 u

−tj2
2

N∏
q=1

(1, xq)sqi

• Verifier: On input gk, σ, a set of pairing product equations {ti}Ni=1, and a proof ~c,
~d, {(~πi, ~ψi)}Ni=1, check for each equation that

N∏
q=1

F (cq, dq) =
(

1 1
1 ti

)
F (u1, πi1)F (u2, πi2)F (ψi1, v1)F (ψi2, v2).

3.7 DLIN

Here we use the decisional linear assumption (DLIN) which states that for a prime order bi-
linear group (p,G,GT , f, g) (so G1 = G2 = G this time) we have that for (gα, gβ, grα, gsβ, gt)
with random α, β, r, s ∈ Zp it is hard to tell whether t = r+s or t is random. More formally,
we define this as follows:
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Assumption 3.7.1 ([BBS04]). Assuming a generation algorithm G that outputs a tuple
(p,G, g) such that G is of order p and has generator g, it is computationally infeasible to
distinguish between (a, b, c, ar, bs, ct) and (a, b, c, ar, bs, cr+s) for a, b, c← G and r, s, t← Zp.
More formally, for all PPT adversaries A there exists a negligible function ν(·) such that

|Pr[(p,G, g)← G(1k); a, b, c← G; r, s← Zp : A(a, b, c, ar, bs, cr+s) = 0]

− Pr[(p,G, g)← G(1k); a, b, c← G; r, s, t← Zp : A(a, b, c, ar, bs, ct) = 0]| < ν(k)

where A outputs a 1 if it believes t = r + s and 0 otherwise.

Again, it is worthwhile to take a minute and discuss the relative strengths and weaknesses
of using this assumption. It can be shown that DLIN is at least as hard as DDH; that is
that given an algorithm that breaks the DLIN assumption it is possible to construct an
algorithm that breaks the DDH assumption. The converse has not been shown, however,
which means that it may be possible to be less restrictive in our choice of curves when
operating under the DLIN assumption than when operating under the SXDH assumption.
The downside, as we see in the following figure, is that DLIN requires more group elements
per proof.

Type of proof G Total
NIWI pairing product equations 9 9
NIZK pairing product equations 45 45
NIWI quadratic equations (in Zp) 6 6
NIZK quadratic equations 42 42

Figure 3.3: Costs for each type of equation under the DLIN assumption

3.7.1 Quadratic equations

Commitment

We’ll start by letting f = αg and h = βg for random α, β ∈ Z∗p. We use Zp-modules A = G
and B = G3. We will have three ui in our commitment, where u1 = (f, 0, g), u2 = (0, h, g),
and u3 = ru1 + su2 or u3 = ru1 + su2 − (0, 0, g) for random r, s ∈ Zp. The former will
produce a binding key, and the latter a hiding key. The DLIN assumption tells us that
these are indistinguishable, since an adversary who could distinguish (rf, sh, (r+ s)g) from
(rf, sh, (r + s− 1)g) could also distinguish (rf, sh, (r + s)g) from (rf, sh, tg) for random t.

To commit to some X ∈ A, we define τ(X) = (0, 0, X). We then pick three random
values ri and compute c(X) = τ(X) +

∑
riui. As usual, if the ui are linearly independent
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we end up with a perfectly hiding commitment scheme. In the other case, we end up with

c(X) = ((r1 + rr3) · f, (r2 + sr3) · h, (r1 + r2 + (r + s)r3) · g +X).

We can recognize this as a BBS encryption of X, where ρ(c1, c2, c3) = c3 − 1
αc1 −

1
β c2

corresponds to the decryption function. Since ρ ◦ τ is the identity map, this is perfectly
binding.

To commit to an exponent x ∈ R we define u = u3 + (0, 0, g), τ(x) = xu, and
ρ(c1, c2, c3) = logg(c3 − 1

αc1 −
1
β c2). The commitment is very similar – we compute c(x) =

xu + r1u1 + r2u2. The hiding case is just the same as above, and in the binding case we
have a BBS encryption of xg.

Here the decryption keys α, β provide us with enough information to fully extract X ∈ A
from its commitment. As before, this means that we can turn our proofs into perfect proofs
of knowledge of group elements but for exponents can only hope to extract xg.

Setup

Here we have A1 = A2 = AT = Zp for exponents and A1 = A2 = G, AT = GT for group
elements, and B1 = B2 = G3, BT = G9

T . We use two different bilinear maps F and F̃
defined as follows:

F̃

x1

x2

x3

 ,

y1

y2

y3

 =

f(x1, y1) f(x1, y2) f(x1, y3)
f(x2, y1) f(x2, y2) f(x2, y3)
f(x3, y1) f(x3, y2) f(x3, y3)

 .

The map F is defined as F (x, y) = 1
2 F̃ (x, y) + 1

2 F̃ (y, x). We also define our bilinear map
as f(x, y) = xy mod p when using exponents, and f as the Weil or Tate pairing for group
elements. Note that for F̃ we have no non-trivial matrices H, while for F we have the
matrices

H1 =

 0 1 0
−1 0 0
0 0 0

 , H2 =

 0 0 1
0 0 0
−1 0 0

 , and H3 =

0 0 0
0 0 1
0 −1 0

 .

Now all that remains is to define our maps τT (·) and ρT (·). We can first define

τ ′T (z) =

1 1 1
1 1 1
1 1 z


and

ρ′T

z11 z12 z13

z21 z22 z23

z31 z32 z33

 = (z33z
−α
13 z

−1/β
23 )(z31z

−1/α
11 z

−1/β
21 )(z32z

−1/α
12 z

−1/β
22 )−1/β.
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We can see that ρ′T ◦τ ′T is the identity map; these are the maps we will use when dealing
with group elements. We can further define τ ′′T (z) = τ ′T (f(g, z)) and ρ′′T (z) = f−1(ρ′T (z)),
where f−1(f(g, z)) := z. Finally, we define the maps we will be using for exponents as
τT (z) = τ ′T (f(g, g)z) and ρT (z) = logg(ρ′′T (z)).

NIWI proof

• Setup: gk = (p,G,GT , f, g)← G(1k)

• Binding: On input gk form σ as described in the previous section, using (u1, u2, u3)
such that u3 = t1u1 + t2u2 for random t1, t2 ∈ Zp.

• Hiding: On input gk form σ as described in the previous section, using (u1, u2, u3)
such that u3 = t1u1 + t2u2 − (0, 0, g) for random t1, t2 ∈ Zp.

• Prover: On input gk, σ, a set of equations {~ai, ~bi,Γi, ti}Ni=1, and a witness ~x, ~y:

1. Commit to ~x as ~c = τ(~x) +R~u and to ~y as ~d = τ(~y) + S~v.

2. For each equation form and send

~φi = R>τ2(~bi) +R>Γτ2(~y) +R>ΓS~u+ S>τ1(~ai) + S>Γ>τ1(~x) +
k∑
j=1

rjHj~u.

• Verifier: On input gk, σ, a set of equations {~ai, ~bi,Γi, ti}Ni=1, and a proof ~c, ~d, {~φi}Ni=1,
check for each equation that

τ(~ai) ∗ ~d+ ~c ∗ τ(~bi) + ~c ∗ Γ~d = τT (ti) + ~u ∗ ~φi.

3.7.2 Pairing product equations

Commitment

Let f , g, and h be three generators of G such that f = gα and h = gβ. The Zp-module we
will work with here is G3, and we use commitment keys u1 = (f, 1, g), u2 = (1, h, g), and
u3 such that u3 = (f ru , hsv , gtw), where either tw = ru + sv or tw is random. The DLIN
assumption tells us that these choices of keys are indistinguishable.

To commit to a group element we use A = G and B = G3. For X ∈ A we define
τ(X) = (1, 1, X) and ρ(c1, c2, c3) = c

−1/α
1 c

−1/β
2 c3 and then compute c = τ(X)ur1u

s
2u
t
3 for

random r, s, t ∈ Zp. In the case where these elements are all linearly independent (so
tw is random) they generate the whole module B and we end up with a perfectly hiding
commitment. In the other scenario, we know that ρ◦τ is the identity and so our commitment
is perfectly binding.
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To commit to an element x ∈ Zp, we use A = Zp and B = G3. We further define
u = u3 · (1, 1, g), τ(x) = ux and ρ(c1, c2, c3) = logg(c

−1/α
1 c

−1/β
2 c3). To commit, we pick

r, s ∈ Zp randomly and compute c = τ(x)ur1u
s
2. In this case the scenarios are reversed: if

tw = ru + sv then this is a perfectly hiding commitment scheme, and if they are linearly
independent it is binding.

As with the quadratic equations, α and β are enough to compute ρ for group elements
X, but for exponents we can only extract gx.

Setup

As with quadratic equations, we have Zp modules B1 = B2 = G3 and BT = G9
T , and a

bilinear map F defined asx1

x2

x3

 ,

y1

y2

y3

 7→
f(x1, y1) f(x1, y2)f(x2, y1) f(x1, y3)f(x3, y1)

0 f(x2, y2) f(x2, y3)f(x3, y2)
0 0 f(x3, y3)

 .

In this case, the corresponding map µ~u has a non-trivial kernel that will need to be
specified in the CRS, namely the elements

h1 = (0, 1, 0,−1, 0, 0, 0, 0, 0), h2 = (0, 0, 1, 0, 0, 0,−1, 0, 0), and h3 = (0, 0, 0, 0, 0, 1, 0,−1, 0).

NIWI proof

• Setup: gk = (p,G,GT , f, g)← G(1k).

• Binding: On input gk, form σ as described in the previous section, using (u1, u2, u3)
such that u1 = (f, 1, g), u2 = (1, h, g), and u3 = (f ru , hsv , gru+sv) for random ru, sv ∈
Zp, where f, g, h are generators of G.

• Hiding: On input gk, form σ as described in the previous section, using (u1, u2, u3)
so the ui elements are linearly independent in G3.

• Prover: On input gk, σ, a set of equations {ti}Ni=1, and a witness ~x, ~y:

1. Commit to each value x1, . . . , xQ as cq = τ(xq)
∏
i u

rqi

i and to each value y1, . . . , yQ
as dq = τ(yq)

∏
j u

sqj

j for randomly chosen rqi, sqj ∈ Zp.
2. For each equation and for j = 1, 2, 3 form

φij =
3∏

k=1

u
∑3

l=1 tlhljk

k

Q∏
q=1

(1, 1, xq)sqid
rqi
q .
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• Verifier: On input gk, σ, a set of equations {ti}Ni=1, and a proof ~c, ~d, {~φi}Ni=1, check
for each equation that

~c ∗ ~d =

1 1 1
0 1 1
0 0 ti

 (~u ∗ ~φi).
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Chapter 4

Extensions and Applications

4.1 Proving two commitments open to the same value

In this section, we use the ideas of Belenkiy et al. [BCKL08] to prove in zero knowledge that
two commitments D1 = Com(y1;~r) and D2 = Com(y2;~s) are commitments to the same
value for y1, y2 ∈ A2 (the proof for x1, x2 ∈ A1 is analogous). As we see in the next section,
one of the main applications of this technique will be to create NIZK proofs that satisfy
a more robust definition of zero-knowledge. To get this stronger notion of zero-knowledge,
we first need a stronger requirement on our bilinear map f . Looking back at Property 3
from Definition 2.6.2, we see that we require there to be some values g1 and g2 such that
f(g1, g2) is not the identity, but that we do not require this for all elements. To strengthen
this requirement, we now say that f(a, b) = 1 if and only if either a = 1 or b = 1. We will
refer to this property as strong non-degeneracy1.

Using this stronger definition of a bilinear map, we first form a commitment C to g1,
a generator for the module A1. Then we prove that the values x and y, contained in the
commitments C and D1/D2 respectively, are such that f(x, y) = 1 and f(x/g1, g2) = 1.
Since f(a, b) = 1 if and only if either a = 1 or b = 1, these proofs show that y = 1 and
therefore the values contained in D1 and D2 must be the same. More precisely, the second
proof shows us that C really is a commitment to g1; it then follows from the first proof (and
the fact that g1 6= 1) that the value contained in D1/D2 must be 1 and so the commitments
contain the same value.

Since the prover knows the openings for the commitments, he will have no trouble
forming the proofs in the usual way. The simulator, on the other hand, will first form
C = Com(g1;~r) just as the prover would (since g1 and g2 are public this will not be a
problem). It then needs a trapdoor that allows it to open C to 1; in other words a way

1It is fairly easy (using a distortion map) to create modified versions of the Weil and Tate pairings that
satisfy this property, so it is not unreasonable to expect it from the bilinear maps we use.
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to compute randomness ~r′ such that C = Com(1;~r′). For the second proof, the simulator
has formed the commitments itself and so can form the proof (~π, ~ψ) normally, using C as a
commitment to g1. It turns out that if the simulator uses C as a commitment to 1 for the
first proof, it will be able to form the proof normally here as well. To see this, we first look
at ~πi in Equation (3.11). Other than the public commitment keys vj , ~πi involves knowing
the commitment values d and randomness ri. Since the equation here is f(x, y) = 1 where
x is the value contained in C, the simulator knows the randomness ri (since it formed C
itself). In addition, since D1 and D2 are public, the simulator can just directly compute
d = D1/D2. As for the second part of our proof (Equation 3.12), ~ψj involves knowing x from
the commitment C and the randomness sj from the commitment D1/D2. The randomness
would otherwise be a problem, but since the simulator is using C as a commitment to x = 1
it can form

~ψj = τ1(x)sj

m∏
i=1

u
∑k

l=1 tlhli

i

m∏
i=1

u−tii

= 1sj

m∏
i=1

u
∑k

l=1 tlhli

i

m∏
i=1

u−tii

=
m∏
i=1

u
∑k

l=1 tlhli

i

m∏
i=1

u−tii ,

since τ1 is a homomorphism. So the simulator can compute ~ψj without having to know the
randomness sj .

To summarize, here is the zero-knowledge protocol for proving that two commitments
D1 and D2 are commitments to the same value:

• Setup: (gk, sk) = ((R, A1, A2, AT , f, g1, g2), sk) ← G(1k), where f is strongly non-
degenerate (so f(a, b) = 1 if and only if a = 1 or b = 1).

• Binding: σ = (B1, B2, BT , F, ~u,~v) ← K(gk, sk), where ~u and ~v are keys for binding
commitment schemes in A1 and A2 respectively.

• Hiding: (σ = (B1, B2, BT , F, ~u,~v), td) ← S1(gk, sk), where ~u and ~v are keys for
hiding commitment schemes in A1 and A2 respectively, and td is a trapdoor that
allows the simulator S2 to open a commitment to g1 as a commitment to a 1.

• Prover: On input gk, σ, commitments D1, D2, and their openings (y1, ~r), (y2, ~s), do
the following:

1. Form a commitment C = Com(g1).
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2. Denote the value contained inside D1/D2 as y and the value contained in C as
x. Then form a proof ~π1, ~ψ1 as outlined in Section 3.3.5 for the pairing product
equation f(x, y) = 1 (using commitments C and D1/D2).

3. Next, form a proof ~π2, ~ψ2 (again, as in Section 3.3.5) to prove that f(x/g1, g2) =
1. Because the commitments are homomorphic the prover can use C/τ1(g1) as a
commitment to x/g1 and τ2(g2) as a commitment to g2 (with randomness 0).

4. Send the proofs ~π1, ~ψ1, ~π2, ~ψ2 as well as the commitment C.

• Verifier: On input gk, σ, commitments D1, D2 and a proof C,~π1, ~ψ1, ~π2, ~ψ2, check
the following (see Section 3.3.1 if you don’t remember the vector notation):

F (C,D1/D2) = (~u ∗ ~π1)( ~ψ1 ∗ ~v) and

F (C/τ1(g1), τ2(g2)) = (~u ∗ ~π2)( ~ψ2 ∗ ~v).

Accept iff both checks pass.

• Simulator: On input gk, σ, td, and commitments D1 and D2 do the following:

1. Form a commitment C = Com(g1;~r). Use td to compute ~r′ such that C =
Com(1;~r′).

2. Denote the value contained in D1/D2 as y and the value contained in C as x.
Form a proof ~π1, ~ψ1 as outlined in Section 3.3.5 to prove that f(x, y) = 1, using
randomness ~r′ (in other words, using C as a commitment to 1).

3. Next, form the proof ~π2, ~ψ2 exactly as in Step 3 of the prover, this time using
randomness ~r (so using C as a commitment to g1).

4. Send the proofs ~π1, ~ψ1, ~π2, ~ψ2 as well as the commitment C.

Theorem 4.1.1. The protocol outlined above is a non-interactive zero-knowledge proof
that the values contained inside two commitments D1 and D2 are the same with perfect
completeness, perfect soundness, and perfect zero-knowledge.

Proof. Let’s start with completeness. For a valid pair of proofs, the values contained within
D1 and D2 really will be the same, which means by the homomorphic properties of our
commitments that the value contained in D1/D2 will be 1. Similarly, the prover will have
formed the commitments correctly, which means that the value contained in C will be
g1. This means that both the first and second proofs are correct, since f(g1, 1) = 1 and
f(g1/g1 = 1, g2) = 1.

To show perfect soundness, we first analyze our second equation f(x/g1, g2) = 1. Since
we know from gk that g2 6= 1, the strong non-degeneracy property of f tells us that x/g1 = 1.
By the perfect soundness from Theorem 3.3.2, this means that x = g1, so that C is a
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commitment to g1. Now, we plug this information into our first equation to see that
f(x, y) = f(g1, y) = 1. Again, by the perfect soundness from Theorem 3.3.2 and the strong
non-degeneracy of f , this implies that y = y1/y2 = 1 and so it must be the case that y1 = y2

and the values contained in D1 and D2 are the same.
Finally, we must prove zero-knowledge. To do this, we recall that in the hiding setting,

the proofs are perfectly witness indistinguishable and the commitments are perfectly hiding.
The prover and the simulator both form the commitment C = Com(g1); because the
commitment the simulator sends is really a commitment to g1 the commitments received by
the verifier will be perfectly indistinguishable. For the proofs, we notice that the simulator
does have a valid pair of witnesses for each individual statement and so his proofs for
these statements will be valid proofs (and so they will pass the verifier’s checks). This
means by the perfect WI property of the proofs that the proofs of the simulator will be
perfectly indistinguishable from the proofs of the prover and so the verifier will be unable
to distinguish between input from the prover and input from the simulator.

4.1.1 Proving satisfiability of quadratic equations in zero-knowledge

One implication of the above construction is the ability to prove satisfiability of a set of
equations in a more robust version of zero-knowledge2. If we look back at Section 3.2.7
we can see that our prover (and therefore simulator) is forming the commitments as he
forms the proofs. In many applications, however, it makes much more sense for the prover
to already have a set of commitments and then form the proofs separately when the time
comes. We therefore need a stronger notion of zero-knowledge in which the prover has a set
of publicly available commitments; then upon forming a proof for satisfiability of a set of
equations he can form new commitments and prove that they are the same as the old ones.
Although this adds an extra step in the proof (and therefore makes it less efficient) it has
the bonus that now we can simulate the proof quite easily. The simulator will receive the
same commitments as the prover, but it will form its own unrelated commitments ~C ′, ~D′ to
values that it knows will work for the set of equations. When it comes time to prove that
these are commitments to the same values as ~c and ~d the simulator will fake this proof and
then proceed with the values it has chosen.

To make this explicit, we outline a new version of the GS proofs that achieves full zero
knowledge:

• Setup: (gk, sk) = ((R, A1, A2, AT , f, g1, g2), sk) ← G(1k), where f is strongly non-
degenerate (as defined in the previous section).

• Binding: σ = (B1, B2, BT , F, ~u,~v) ← K(gk, sk), where ~u and ~v are keys for binding
commitment schemes in A1 and A2 respectively.

2For simplicity of exposition we only highlight the proof for satisfiability of quadratic equations here, but
the technique is easily extended to proofs for a general set of equations.
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• Hiding: (σ = (B1, B2, BT , F, ~u,~v), td)← S1(gk, sk), where ~u and ~v are keys for hiding
commitment schemes in A1 and A2 respectively, and td is a trapdoor that allows S2

to open a commitment c ∈ B1 or d ∈ B2 (that it formed itself) as a commitment to
any value.

• Prover: On input gk, σ, a set of quadratic equations, and commitments ~c, ~d and
their openings (~x,R), (~y, S), do the following:

1. Form a new pair of commitments ~C = Com(~x;R′) and ~D = Com(~y;S′).

2. Using the techniques of the previous section, prove that ~c and ~C are commitments
to the same value ~x, and that ~d and ~D are commitments to the same value ~y.
Call this proof πs.

3. Now, use the commitments ~C and ~D to form the WI proofs as in Section 3.4.
Call this proof πe.

4. Send the proofs πs, πe, as well as the commitments ~C and ~D.

• Verifier: On input gk, σ, a set of quadratic equations, commitments ~c, ~d, and a proof
of the form ~C, ~D, πs, πe, do the following:

1. Perform the checks from the previous section using the proof πs to see that ~c and
~C are commitments to the same values, and that ~d and ~D are commitments to
the same values.

2. Next, perform the checks from Section 3.4 using πe to see that ~C and ~D (and
therefore ~c and ~d) satisfy the given set of equations.

3. Accept iff these checks pass.

• Simulator: On input gk, σ, td, a set of quadratic equations, and commitments ~c and
~d do the following:

1. For each quadratic equation, use the techniques of Section 3.2.7 to either solve
for ~x and ~y (in the case of a prime-order group) or simply use ~x = ~0 and ~y = ~0
if the equation is of a form with t = 1 (in the case of a composite-order group).

2. Using one pair of values ~x and ~y that we found for a particular equation, form
commitments ~C and ~D. Invoke the simulator from the previous section using td
(here, we use td to allow us to open a commitment c ∈ B1 to g1 as a commitment
to 1) to get a (fake) proof πs that ~c and ~C are commitments to the same value,
as are ~d and ~D.

3. Next, invoke the prover from Section 3.4 to get a proof πe for the equations,
using td to get openings for ~C and ~D to the witnesses ~x and ~y for each equation.
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4. Send the proofs πs, πe, as well as the commitments ~C and ~D.

In terms of efficiency, this adds an extra 32 elements if operating under the SXDH
assumption and an extra 36 elements if operating under the DLIN assumption, since each
commitment pair requires two WI proofs for pairing product equations, and there are two
sets of commitments. We can look back at Figures 3.2 and 3.3 to understand now where
these extra group elements come from. It would be possible to reduce these costs somewhat
if we were able form the proof πs in the quadratic equations setting (since in that setting
each proof costs either 4 or 6 elements instead of 8 or 9), but there is currently no known
method for doing this.

4.2 Proving knowledge of an exponent

One major drawback of the proofs seen in Sections 3.2 and 3.3 is that, while they are proofs
of knowledge of group elements, they are not proofs of knowledge of exponents. Recall that
in every instantiation, the best we could hope to extract from a commitment to x ∈ R
was the value gx (or xg if working additively). If we assume the Discrete Log problem is
hard, there is no way to extract x given this value. In many applications of non-interactive
zero-knowledge proofs, however, it is often necessary (or at least very useful!) to be able to
extract the exponent. For example, one of the necessary properties in anonymous credentials
is unforgeability, which requires that no PPT adversary A can create a proof for a message
on which he has not previously obtained a signature or a proof. Belenkiy et al. [BCKL08]
prove unforgeability by using a signature scheme reminiscent of the Boneh-Boyen signature
scheme [BB04] under a slightly non-standard assumption. In Section 4.3 we show how
using our technique for proving knowledge of an exponent we can construct an unforgeable
non-interactive anonymous credentials scheme directly based on the Boneh-Boyen signature
scheme, thus getting around many of the extra steps and assumptions.

4.2.1 Proving two commitments open to the same bit

Before we can outline our non-interactive proof of knowledge (NIZKPoK) of an exponent,
we first need to be able to prove that two commitments c ∈ B1 and d ∈ B2 open to the
same bit b = 0 or b = 1. To do this, we extend a technique of Groth, Ostrovsky, and
Sahai [GOS06] to work in the asymmetric setting. If we define x1 ∈ A1 to be the group
element contained in c and x2 ∈ A2 to be the group element contained in d, we see that we
first need to prove that x1 and x2 have the same discrete logarithm, and then show that
this common discrete logarithm is in fact 0 or 1. To prove the first part of this, we prove
satisfiability of the pairing product equation f(x1, g2) = f(g1, x2), which can also be written
as f(x1, g2) · f(g1, 1/x2) = 1. Then, to prove that their common discrete logarithm must
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either be 0 or 1, we prove satisfiability of the equation f(x1, x2/g2) = 1. The full protocol
runs as follows:

• Setup: (gk, sk) = ((R, A1, A2, AT , f, g1, g2), sk)← G(1k).

• Binding: (σ = (B1, B2, BT , F, ~u,~v), tde) ← K(gk, sk), where ~u and ~v are keys for
binding commitment schemes in A1 and A2 respectively, and tde is a trapdoor that
allows the extractor E to compute the maps ρ1 and ρ2 for group elements.

• Hiding: (σ = (B1, B2, BT , F, ~u,~v) ← S(gk, sk), where ~u and ~v are keys for hiding
commitment schemes in A1 and A2 respectively.

• Prover: On input gk, σ, and a value b ∈ {0, 1}:

1. Form commitments c ∈ B1 and d ∈ B2 to b. Using the openings for these
commitments and defining x1 ∈ A1 as the value in c and x2 ∈ A2 as the value
in d, form a proof as in Section 3.3.5 for the pairing product equation f(x1, g2) ·
f(g1, 1/x2) = 1. Call this proof πe.

2. Next, use the openings for the commitments to form another proof (again, as in
Section 3.3.5) for the pairing product equation f(x1, x2/g2) = 1. Call this proof
πb.

3. Send the commitments c and d, as well as the proofs πe and πb.

• Verifier: On input gk, σ, and a proof c, d, πe, πb, do the following:

1. Invoke the verifier from Section 3.3.5 on input c, d, πe to check the pairing product
equation f(x1, g2) · f(g1, 1/x2) = 1.

2. Invoke the verifier from Section 3.3.5 on input c, d, πb to check the pairing product
equation f(x1, x2/g2) = 1.

3. Accept iff both the above checks pass.

• Extractor: On input gk, σ, tde, and a proof c, d, πe, πb, do the following:

1. Compute ρ1(c) to obtain the witness x1 inside the commitment c.

2. Similarly, compute ρ2(d) to obtain x2.

3. If x1 = 1 and x2 = 1, output b = 0. If x1 = g1 and x2 = g2, output b = 1.
Otherwise, output ⊥.

Theorem 4.2.1. The above protocol for proving two commitments open to a 0 or 1 is a
witness-indistinguishable non-interactive proof of knowledge that satisfies perfect complete-
ness, perfect soundness, perfect witness indistinguishability, and perfect extractability.
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Proof. To show perfect completeness, we have that x1 = gx1 and x2 = gx2 , where x = 0 or
x = 1. Then for the first equation we have

f(x1, g2)f(g1, 1/x2) = f(gx1 , g2)f(g1, 1/gx2 )
= f(g1, g2)xf(g1, g2)−x

= f(g1, g2)x−x

= 1,

and for the second equation we have

f(x1, x2/g2) = f(gx1 , g
x
2/g2)

= f(g1, g2)x(x−1).

In the case that x = 0, this becomes f(g1, g2)0(−1) = 1. In the case that x = 1, this becomes
f(g1, g2)1(1−1) = 1. Since equality holds in either case, we get perfect completeness.

To show perfect soundness of the protocol, let x1 = gx1 and x2 = gy2 . Then we have the
following derivation:

f(x1, g2)f(g1, 1/x2) = f(gx1 , g2)f(g1, 1/g
y
2)

= f(g1, g2)xf(g1, g
−y
2 )

= f(g1, g2)xf(g1, g2)−y

= f(g1, g2)x−y.

So, if it is the case that f(x1, g2)f(g1, 1/x2) = 1, it must be the case that f(g1, g2)x−y = 1,
which further implies by the non-degeneracy of f and the soundness from Theorem 3.3.1
that x − y = 0, x = y. So, any two values x1 and x2 satisfying the first pairing product
equation really must have the same discrete logarithm. We can now plug this information
into the second equation to see that

f(x1, x2/g2) = f(gx1 , g
x
2/g2)

= f(gx1 , g
x−1
2 )

= f(g1, g2)x(x−1).

Again, the non-degeneracy of our bilinear map and Theorem 3.3.1 tell us that in order for
the equation f(x1, x2/g2) = 1 to hold, it must be the case that x(x − 1) = 0, or x2 = x.
Since this is only true when x = 0 or x = 1, this second equation tells us that the common
discrete log of x1 and x2 really must be 0 or 1.

Perfect witness indistinguishability follows directly from Theorem 3.3.1, so all we have
left to show is perfect extractability. This follows from the fact that, in the binding setting,
ρ1 ◦ τ1 and ρ2 ◦ τ2 are both required to be the identity map. In addition, it is also the case
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that ρ1(ui) = 0 for all i and ρ2(vj) = 0 for all j. This means that ρ1(c) = x1 and ρ2(d) = x2,
where x1 = gb1 and x2 = gb2. Because we are only interested in extracting b ∈ {0, 1}, we
can ignore all other possible values for b (as the proof will not verify for other values of b
anyway). For b = 0, it will be the case that x1 = 1 and x2 = 1, which means our extractor
as defined above will output the correct bit. For b = 1 it will be the case that x1 = g1 and
x2 = g2, which means our extractor will be correct in this case as well and we are done.

4.2.2 Proof of knowledge for an exponent

To prove knowledge of the exponent contained in a given commitment c ∈ B1
3, we consider

as usual an R-module A1 with a binding key ~u for forming commitments. We can then
commit to an exponent x ∈ R by first considering the binary representation of x, which we
can write as x =

∑k
j=1 xj · 2j for k = blog2(x)c. First, we form commitments in A1 to each

bit of x; call these commitments {ci}ki=1. Because we are not necessarily in the symmetric
setting, we will also need to form commitments in A2 to each bit of x. Next, we use the
techniques of the previous section to prove that each of these pairs of commitments opens
to either a 0 or a 1. Finally, we compute c′ =

∏k
i=1 ci · 2i. Since the commitments are

homomorphic, this will be a commitment to x =
∑k

j=1 xj · 2j as long as we have formed
our commitments correctly. So, all that’s left to do is use the techniques of Section 4.1 to
prove that c and c′ are commitments to the same value, which is our original exponent x.

• Setup: (gk, sk) = ((R, A1, A2, AT , f, g1, g2), sk) ← G(1k), where f is strongly non-
degenerate.

• Binding: (σ = (B1, B2, BT , F, ~u,~v), tde) ← K(gk, sk), where ~u and ~v are keys for
binding commitment schemes in A1 and A2 respectively, and tde is a trapdoor that
allows the extractor E to compute the maps ρ1 and ρ2 for elements in A1 and A2.

• Hiding: (σ = (B1, B2, BT , F, ~u,~v), tds) ← S1(gk, sk), where ~u and ~v are keys for
hiding commitment schemes in A1 and A2 respectively, and tds is a trapdoor that
allows the simulator S2 to open a commitment to g1 as a commitment to 1.

• Prover: On input gk, σ, a commitment c to a value x ∈ R and its opening (x, r), do
the following:

1. Form 2k commitments (recall that k = blog2(x)c) ci = Com(xi) in A1 and
di = Com(xi) in A2, where the xi are such that x =

∑k
j=1 xj · 2j . Compute also

the commitment c′ =
∏k
j=1 cj · 2j .

2. Use the techniques of Section 4.2.1 to prove that ci and di are commitments to
0 or 1 for all i. Call this proof πor.

3We describe the proof here for c ∈ B1, but the proof is analogous for a commitment d ∈ B2.
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3. Use the techniques of Section 4.1 to prove that c and c′ are commitments to the
same value. Call this proof πs.

4. Send the proofs πor and πs as well as the commitments {ci}ki=1, and {di}ki=1.

• Verifier: On input gk, σ, a commitment c, and a proof {ci}ki=1, {di}ki=1, πor, πs, do
the following:

1. Use the techniques of Section 4.2.1 to check the proof πor for showing that each
ci and di are commitments to the same bit b.

2. Compute the value c′ =
∏k
j=1 cj · 2j and invoke the verifier from Section 4.1 on

input c, c′, πs to check that c and c′ are commitments to the same value.

3. Accept iff all these checks pass.

• Simulator: On input gk, σ, tds, and a commitment c do the following:

1. Pick a value x ∈ R and complete Steps 1 and 2 as the prover would to form
the commitments {ci}k=blog2(x)c

i=1 in A1 and {di}ki=1 in A2 to the bits xi, c′ =∏k
j=1 cj · 2j , and the proof πor.

2. Use the trapdoor tds to invoke the simulator in Section 4.1 and simulate the
proof that c and c′ are commitments to the same value. Denote the simulated
proof as πs.

3. Send all the same information as the prover; namely the proofs πor and πs as
well as the commitments {ci}ki=1, and {di}ki=1.

• Extractor: On input gk, σ, tde, a commitment c, and a proof consisting of commit-
ments {ci}ki=1, {di}ki=1 and proofs πor, πs, do the following:

1. For each commitment ci, use tde to invoke the extractor in Section 4.2.1 and
recover the i-th bit xi of x.

2. Use the individual bits to recover the exponent x by computing x =
∑k

j=1 xj ·2j .

Theorem 4.2.2. The above protocol constitutes a non-interactive zero-knowledge proof of
knowledge of an exponent that satisfies perfect completeness, perfect soundness, perfect zero
knowledge, and perfect extractability.

Proof. The completeness of the protocol follows from the completeness of its individual
parts. An honest prover committing to the bits of an exponent x ∈ R will be forming
commitments to 0 or 1 values, so by Theorem 4.2.1 the verifier will accept πor. Similarly,
the homomorphic property of GS commitments tells us that c(x) =

∏log2(x)
i=1 ci · 2i (where
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each ci represents a commitment to the i-th bit of x), so that c and c′ really are commitments
to the same value and Theorem 4.1.1 tells us that the proof πs will verify as well.

Similarly, perfect soundness also follows from Theorems 4.2.1 and 4.1.1.
To show perfect zero-knowledge, we observe that in Step 1, the simulator is forming the

bit commitments {ci} and {di} just as the prover would. This means that the simulator will
have legitimate witnesses for the proof πor, which by the perfect witness indistinguishability
from Theorem 4.2.1 means the πor output by the prover and the πor output by the simulator
will have the same distribution. Finally, Theorem 4.1.1 gives us perfect zero-knowledge on
πs, which means the total outputs of the prover and simulator will be distributed identically
and so we get perfect zero-knowledge.

Finally, we need to show perfect extractability. By Theorem 4.2.1, we know that each of
the individual bit commitments ci is perfectly extractable. This means that we can recover
each bit of x, which of course means we can recover the whole exponent x.

4.2.3 The symmetric setting

One important observation about the above protocol is that it becomes twice as efficient
if run in the symmetric setting where A1 = A2 = A. In Step 1, the prover will no longer
need to form two sets of commitments to the bits of x and so will instead just compute
k = blog2(x)c commitments ci = Com(xi). In Step 2, the proof πor will be half the size. To
see this, recall that for each pair ci and di we were proving

f(x1, g2)f(g1, 1/x2) = 1 and f(x1, x2/g2) = 1.

Because it is now the case that x1 = x2 = x and g1 = g2 = g, we need only prove the second
equation to show that the discrete logarithm of x is equal to 0 or 1, as the first equation
follows trivially. So, while the proof πs remains the same, there will only be half as many
bit commitments and the proof πor will be twice as small as in the asymmetric setting.

4.2.4 Efficiency

To analyze the efficiency of the above protocol for an exponent x ∈ R, we consider in-
stantiating it under the SXDH and DLIN assumptions. Under SXDH the prover sends
commitments {ci} and {di} and proofs πor and πs. Each commitment ci or di contains
2 group elements, and there are 2 log2(x) of them, which means that our commitments
contribute 4 log2(x) group elements. The proof πor consists of proofs for 2 log2(x) pairing
product equations (two for each bit) and the proofs contain 8 group elements each. This
means that πor contains 16 log2(x) group elements in total. Finally, πs consists of one com-
mitment and proofs for 2 pairing product equations. This means that our grand total under
the SXDH assumption is a proof consisting of 20 log2(x) + 18 group elements.
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Because the DLIN assumption operates in the symmetric setting, we can reduce the cost
somewhat. This time the prover only has to send log2(x) commitments {ci}, where each
commitment contains 3 group elements, and so the commitments contribute 3 log2(x) group
elements. The proof πor now only consists of proofs for log2(x) pairing product equations
(this time one equation per bit), where each proof contains 9 group elements, so that the
size of πor is 9 log2(x) group elements. The number of commitments and equations in πs
remains the same, but it now contains 3 additional group elements (one for each equation
and one for the commitment). This means our total number of group elements under the
DLIN assumption is 12 log2(x) + 21.

It would be possible to reduce this cost even further by formulating the equations in
Section 4.2.1 as quadratic equations instead of pairing product equations, as proofs for
quadratic equations are half the size under the SXDH assumption (4 elements instead of
8) and two-thirds the size under the DLIN assumption (6 instead of 9). We leave this as
an interesting open question. We also mention that because the common reference string σ
does not require any additional elements, its size remains constant.

4.2.5 Proving a value is contained within a given range

One case in which we can use the above technique in existing protocols is proving knowledge
of an exponent x that is contained within a range whose size is a power of 2. We can consider
only the case when we want to prove that 0 ≤ x < ∆, since it is always possible to formulate
a range proof in this way (as an example, consider a proof of the form lo ≤ x < hi. Then
we can prove 0 ≤ x− lo < hi− lo and since lo and hi are public parameters this will prove
the original statement).

If ∆ is a power of 2 (so log2(∆) = δ), then to prove that 0 ≤ x ≤ ∆ we can prove
knowledge of an exponent using the techniques of Section 4.2. In addition to the normal
verification, the verifier will also check the number of commitments {ci}ki=1 received. If
there are at most δ of these, the verifier will know that k = blog2(x)c ≤ log2(∆) and so x
really is in the correct range.

4.3 Anonymous credentials

An important application of our protocol for proving knowledge of an exponent is in anony-
mous credentials. In particular, the extractability of exponents allows us to relax the
assumptions made by Belenkiy et al. [BCKL08] in their construction of anonymous creden-
tials, and rely instead only on the Strong Diffie-Hellman (SDH) assumption used by Boneh
and Boyen [BB04]. We first recall a rather strong assumption used by Belenkiy et al. called
the Hidden SDH assumption:
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Assumption 4.3.1 ([BCKL08]). Assuming a bilinear map e : G1 ×G2 → GT where g1 is
a generator for G1 and g2 is a generator for G2, on input g1, gx1 , u ∈ G1, g2, gx2 ∈ G2 and
{g1/(x+ci)

1 , gci2 , u
ci}q(k)i=1 for a function q(·) polynomially bounded in the size of the security

parameter k, it is computationally infeasible to output a new tuple (g1/(x+c)
1 , gc2, u

c). To put
this more formally, there exists a negligible function ν(·) such that for all PPT A and all
polynomially bounded functions q : Z→ Z

Pr[(p,G1, G2, GT , e, g1, g2)← G(1k); u← G1; x, c1, . . . , cq(k) ← Zp;

(A,B,C)← A(p,G1, G2, GT , e, g1, g
x
1 , g2, g

x
2 , u, {g

1/(x+ci)
1 , gci2 , u

ci}q(k)i=1 ) :

(A,B,C) = (g1/(x+c)
1 , gc2, u

c) ∧ c 6= ci ∀ 1 ≤ i ≤ q(k)] < ν(k).

This assumption is analogous to the Hidden SDH assumption as put forth by Boyen and
Waters [BW07], but it extends the assumption further by defining it over asymmetric maps.
In addition to this assumption, Belenkiy et al. rely on another new assumption: the Triple
DH assumption.

Assumption 4.3.2 ([BCKL08]). Assuming a bilinear map e : G1 ×G2 → GT where g1 is
a generator for G1 and g2 is a generator for G2, on input g1, gx1 , g

y
1 , g2, g

x
2 , {ci, g

1/(x+ci)
1 }q(k)i=1

for q(·) polynomially bounded in the size of the security parameter k, it is computationally
infeasible to output a new tuple (gax2 , gay1 , gaxy1 ). More formally, there exists a negligible
function ν(·) such that for all PPT A and polynomially bounded functions q : Z→ Z

Pr[(p,G1, G2, GT , e, g1, g2)← G(1k); (x, y, {ci}q(k)i=1 )← Zp;

(A,B,C)← A(p,G1, G2, GT , e, g1, g
x
1 , g

y
1 , g2, g

x
2 , {ci, g

1/(x+ci)
1 }q(k)i=1 ) :

∃ a : (A,B,C) = (gax2 , gay1 , gaxy1 )] < ν(k).

Finally, we also recall the SDH assumption:

Assumption 4.3.3 ([BB04]). Assuming a bilinear map e : G1 × G2 → GT where g1 is
a generator for G1 and g2 is a generator for G2, on input (g1, gx1 , g

(x2)
1 , . . . , gx

q

1 , g2, g
x
2 ) it

is computationally infeasible to output a pair (g1/(x+c)
1 , c) where c 6= −x. More formally,

there exists a negligible function ν(·) such that for all PPT A and all polynomially bounded
functions q : Z→ Z

Pr[(p,G1, G2, GT , e, g1, g2)← G(1k); x← Zp;

(A,B)← A(p,G1, G2, GT , e, g1, {g(xi)
1 }i=1,...,q(k), g2, g

x
2 ) :

(A,B) = (g1/(x+c), c) ∧ c 6= −x] < ν(k).
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SDH is a weaker assumption than Hidden SDH and Triple DH and so it would be nice
to rely on this assumption alone, while still gaining the advantages of the constructions put
forth by Belenkiy et al. To do this, we use the techniques from Section 4.2 to bypass the
need for the Hidden SDH and Triple DH assumptions.

One of the core building blocks for anonymous credentials is the idea of a signature
scheme. A signature scheme consists of four PPT algorithms: a setup algorithm Setup that
outputs some public parameters, a key generation algorithm KeyGen that uses the public
parameters to generate signing public and private keys (pk, sk), a signing algorithm Sign
that takes in the secret key and a message m to sign and outputs a signature σ, and finally
a signature verification algorithm VerifySig that takes in (pk,m, σ) and accepts if and only
if σ is a valid signature on m. Here we recall these algorithms as defined by Boneh and
Boyen:

• Setup: gk = (p,G1, G2, GT , e, g1, g2) ← Setup(1k), where G1, G2, and GT are all
groups of order p, e is a bilinear map from G1×G2 to GT , and g1 and g2 are generators
for G1 and G2 respectively.

• Key generation: (pk, sk) ← KeyGen(gk), where pk and sk are chosen as follows:
KeyGen picks random values x, y ← Z∗p and computes u = gx2 and v = gy2 . Then
pk = (u, v) and sk = (x, y).

• Signing: (σ, r) ← Sign(gk, sk,m), where r is chosen randomly from Z∗p and σ is

computed as σ = g
1/(x+m+yr)
1 .

• Verifying a signature: b ← VerifySig(gk, pk,m, (σ, r)), where b = 1 if and only if
e(σ, u · gm2 · vr) = e(g1, g2).

Boneh and Boyen showed that, under the SDH assumption, this signature scheme
achieves existential unforgeability against adaptive chosen-message attacks, so that it is
secure in the strongest sense possible. While this signature scheme is initially only well-
defined if we consider m ∈ Z∗p, it is possible to use a collision-resistant hash function that
takes a value m from some larger domain and maps it into Z∗p to achieve a larger message
space.

In order to use this signature scheme for anonymous credentials, we will need to define
three more algorithms to extend our signature scheme into a P-signature scheme (more
specifically, a non-interactive P-signature scheme), as defined by Belenkiy et al. We now
require interactive ObtainSig and IssueSig algorithms for issuing credentials, as well as non-
interactive Prove and VerifyProof algorithms for proving/verifying possession of a credential.
We must also extend our Setup algorithm to output parameters for the GS commitment
scheme in addition to the parameters for the Boneh-Boyen signature scheme. These new
algorithms run as follows:
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• Obtaining/Issuing signatures: Here, the user would like to obtain a signature from
the issuer on a message m without revealing m to the issuer. To do this, the user
forms a GS commitment c = Com(m; r) and gives c to the issuer. The user then picks
r1 and r2 randomly from Zp and the user and the issuer engage in a secure two-party
computation protocol4. The user’s private inputs are r1, r2, and the opening (m, r) for
c; the issuer’s private inputs are the secret key for the Boneh-Boyen signature scheme,
namely sk = (x, y), and a randomly picked r′ ← Zp. As private output, the issuer
obtains α = (x + m + yr1r

′) · r2 if (m, r) was a valid opening for c and ⊥ otherwise.
If α = ⊥, the issuer terminates. If α 6= ⊥, the issuer computes σ′ = gα1 and sends σ′

and r′ to the user. The user then computes σ = (σ′)r2 and r = r1 · r′. The user must
also check that (σ, r) is a valid signature (using VerifySig from above).

• Proving a valid signature: To prove knowledge of a valid signature (σ, r) on a
message m, first form Groth-Sahai commitments cσ = Com(σ), cm = Com(gm2 ), and
cr = Com(vr)5. For the latter two commitments, also form the commitments to the
bits of m and r as outlined in Section 4.2. Form a proof πs for the pairing product
equation e(σ, u · gm2 · vr) = e(g1, g2) to prove the validity of the signature, and then
also form proofs (again, as outlined in Section 4.2) πm and πr to prove knowledge of
the values m and r contained in cm and cr respectively.

• Verifying a proof: To verify that a proof formed as above is correct, perform all
the checks from Section 4.2 to check the proofs of knowledge πm and πr, as well as
a check that the proof πs has been formed correctly for the pairing product equation
e(σ, u · gm2 · vr) = e(g1, g2). Output accept if and only if all these checks pass.

In addition, we also need to define what it means for a P-signature scheme to be secure.
For this, we require the underlying signature scheme be secure, the underlying commitment
scheme to be perfectly binding and strongly computationally hiding, and the underlying
non-interactive proof system to satisfy the properties from Section 2.6.1. We also require
the following five properties6:

1. Correctness: If all parties behave honestly, a user who obtains a P-signature from
an issuer will always be able to prove that he has a valid signature.

2. Signer privacy: No PPT adversaryA can distinguish between an IssueSig interaction
with the honest issuer and with a simulator who has access to a signing oracle.

4We follow Belenkiy et al. in saying that, although it is slightly expensive, the two-party protocol of
Jarecki and Shmatikov [JS07] can be adapted to work here.

5This operation and the extraction properties required for cr are not quite well-defined, as we have not
considered commitments with a base other than a group generator. For a full treatment of this question,
see [BCKL08].

6For more rigorous definitions, see Definition 3 from [BCKL08].
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3. User privacy: No PPT adversary A1,A2 can distinguish between an ObtainSig in-
teraction with the honest user who wants a signature on a message m and with a
simulator who does not have access to m.

4. Zero knowledge: No PPT adversary A can distinguish between the output of the
Prove algorithm and a simulator.

5. Unforgeability: No PPT adversary A can create a proof for a message m for which
he has not previously obtained either a signature or a proof.

Theorem 4.3.4. The above P-signature construction is secure given the security of the
Boneh-Boyen signature scheme and the Groth-Sahai commitments and proofs.

Proof. The security of the signature scheme follows directly from Boneh and Boyen [BB04],
and the binding of the commitment scheme as well as the completeness, soundness, and
zero-knowledge properties of the proof system follow directly from Groth and Sahai [GS08].
Similarly, correctness and zero-knowledge follow from the perfect completeness and perfect
zero-knowledge in Theorems 3.3.2 and 4.2.2.

Signer privacy and user privacy both follow from the security of the two-party com-
putation; we’ll start with signer privacy. To show this property, we need to construct an
algorithm SimIssue with access to a signing oracle that can successfully simulate the be-
havior of the issuer, even when dealing with an adversarial user. First, upon input the
commitment c, SimIssue will invoke the simulator SI for the two-party computation. This
simulator has the power that it can extract the user’s private input, so from SI we obtain r1,
r2, and (m, r). SimIssue must then check that (m, r) is a valid opening for the commitment
c; if not, it will terminate (as the issuer would). Otherwise, it queries the signing oracle
on message m to get back a valid signature (σ, r) for m. It then sends σ′ = σ1/r2 and
r′ = r/r1 to the user. Since we know that (σ, r) is a valid signature for m, the only way
for the user to distinguish between talking to the simulator and the issuer would be if the
user’s input to the two-party computation was incorrect. This breaks the security of the
two-party computation.

To show user privacy we construct a simulator SimObtain who has as input a commit-
ment c to the user’s message m but does not know the opening of c. SimObtain forms a
commitment c′ to a random value x (it is enough to always use x = 0), using some ran-
domness r′. SimObtain then sends this value c′ to the adversarial issuer and then invokes
the simulator SU for the two-party computation (unlike SI , SU acts as the user). This
simulator can extract the issuer’s private input, which in this case is some sk′ = (x′, y′).
The simulator SU will pick a random value α and continue to act as the user in the protocol
such that if the adversarial issuer outputs a value α′ 6= ⊥, it will be the case that α′ = α.
Upon receiving the outcome of the two-party computation, SimObtain acts just as the user
would (so checks the signature obtained for the message x). Any issuer who could tell that
he was talking with a simulator would break the security of the two-party computation.
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Finally, we must show unforgeability. By our definition of unforgeability, we know
that for an adversary A to succeed in outputting a successful forgery it must be that
VerifyProof(cσ, cm, cr, πs, πm, πr) = accept and we extract m,σ, r, but one of three cases
holds: either (1) VerifySig(m,σ, r) = reject, (2) cm is not a commitment to m, or (3) A
never queried the signing oracle on message m. We know that (1) can never happen, as the
soundness properties from Theorem 3.3.2 ensure that πs proves the validity of the signature.
Similarly, we know from Theorem 4.2.2 that πm proves that cm must be a commitment to
m, so (2) can never happen. Finally, by the unforgeability of the Boneh-Boyen signature
scheme, we know that (3) can never happen and so we are done.

The construction of anonymous credentials on top of this P-signature scheme is straight-
forward and given by Belenkiy et al., we therefore do not need to describe it in depth here.
Briefly, an anonymous credentials scheme consists of various users and a credential author-
ity, where each user has a secret key skU . Suppose a user Alice wishes to obtain a credential
from Carol, and then prove (anonymously) to Bob and Dave that she does in fact have this
credential. First, Alice must obtain a credential from the credential authority. Then, she
must register two pseudonyms with Carol – she does this by forming commitments CB
and CD to her secret key skA and using these commitments as her pseudonyms. By the
hiding/binding properties of the GS commitment scheme the identity associated with both
CB and CD is unique, but at the same time it is hard for users Bob and Dave to link these
two pseudonyms. Now, under either pseudonym, Alice and Carol run the ObtainSig and
IssueSig protocols. The resulting output for Alice will be a signature (σ, r) on her secret
key skA; this is her credential. To prove possession of this credential to Bob, Alice can first
run the Prove protocol to obtain a proof cσ, cm, cr, πs, πm, πr, where in this case m = skA.
She also must link this proof to her pseudonym, which means proving, using the techniques
of Section 4.1, that cm and CB are commitments to the same value (to prove possession
to Dave Alice would instead prove that cm and CD are commitments to the same value).
Upon receiving this proof, Bob or Dave need only run the VerifyProof algorithm and the
verification from Section 4.1 to be satisfied with Alice’s possession of the credential.

In addition to being useful for anonymous credentials, P-signature schemes are a valuable
building block on their own. Although the P-signature scheme created here is less efficient
than the one created by Belenkiy et al., it has the advantage that it is a much simpler
scheme with a proof of security that it only requires the SDH assumption, as opposed to
the Hidden SDH and Triple DH assumptions required by Belenkiy et al. in their proof of
security.
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Chapter 5

Conclusions

In this thesis, I have demonstrated the usefulness of the Groth-Sahai proof system by
extending it to form a non-interactive zero-knowledge proof of knowledge of an exponent.
This allows GS proofs to be used more fully in a variety of applications; to demonstrate one
of these applications I construct a simple and unforgeable anonymous credentials scheme. I
have also shown the usefulness of the quadratic equations setting and its improved efficiency
over the pairing product equations setting, an observation which will hopefully encourage
others in the future to formulate problems in terms of quadratic equations.

Although I have demonstrated a way to extend the GS proof system to obtain NIZKPoK
proofs for exponents, using such proofs in practice would require thousands of group ele-
ments if working over prime-order elliptic curve groups with a 384-bit modulus (which is
the current security standard). Therefore, one immediate open question is whether or not
such proofs can be made more efficient.

Another important open area is to find new instantiations of the Groth-Sahai proof
system. There are many examples of groups which induce a bilinear map beyond those
used in the three instantiations given by Groth and Sahai, and it would be interesting to
see if any improvements in efficiency could be made by using such groups. It would also
be interesting to see what sorts of cryptographic assumptions are necessary to use different
instantiations.
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