
Towards a Generic Data Compression Advisor

Jennie Rogers
Brown University

Providence, RI, USA
jennie@cs.brown.edu

Abstract— Compression allows scalable storage of large
amounts of data and alleviates the I/O bottleneck for data-
intensive applications. Over the years, a large number of
compression algorithms have been developed to support
various data types. Our goal is to develop a generic tool
that helps quickly and accurately decide what compression
scheme(s) best match the constraints and expectations of
users with respect to factors such as compression time
(encoding/decoding), space (data/meta-data), and quality
(lossiness).

As an initial step, we investigate techniques for generat-
ing and expanding time-space-quality Pareto frontiers for
multidimensional array data. To this end, we studied sev-
eral enhancements to traditional algorithms; these include
1) partitioning the arrays into multidimensional tiles and
applying heterogeneous compression schemes across the
tiles; (2) introducing lossiness to trade accuracy for space;
(3) generalizing uni-dimensional compression schemes to
recognize and leverage multidimensional patterns; and
(4) adaptively adjusting compression parameters on the
basis of data characteristics and memory limitations. Our
measurements based on two real-world data sets reveal
that these techniques are effective in generating new Pareto
optimal points.

I. I NTRODUCTION

Data compression is critical to making large
datasets scalable. By minimizing size datasets like
the Sloan Digital Sky Survey [10] can scalably col-
lect high resolution imagery. Scientific and surveil-
lance applications especially need this type of sup-
port, although many other domains benefit from it
as well.

Compression may be used to expedite processing
by allowing data to be read from disk faster. This is
caused by disk access being the bottleneck for many
processing applications. Allowing this phase to go
by faster may make processes execute faster on data
despite the processor overhead of decompression.

In this study we will target scientific data, espe-
cially in the form of arrays to find the best compres-
sion scheme for a given workload. In this context

“best” may be defined in a few ways including times
for encoding, decoding, space saved by compression
or a trade-off among these criteria. We aim to
provide a tool to help users make a decision to best
fit their needs in an efficient manner.

In this work we will first survey common com-
pression techniques from a variety of domains. We
will look at well-known compression schemes such
as Huffman Encoding and Lempel-Ziv. In addition
we will examine simple shortcuts such as Suppres-
sion and Run-Length Encoding.

Next we will discuss the trade-offs associated
with compression in terms of time taken in encoding
and decoding as well as space taken by compressed
data. There are situations under which each char-
acteristic is beneficial and the user will need to
indicate where their priorities lie. We will plot these
characteristics for specific datasets on a three or
four-dimensional plane and analyze our options by
generating a Pareto frontier. We will then select
from this set of Pareto-optimal points based on user
needs and algorithm performance.

Finally we will look at additional enhancements
possible for our compression schemes. We will
explore extending these algorithms to exploit multi-
dimensionality. After that we will discuss how to
generalize these algorithms to support controlled
levels of lossiness as a means to save space and
time. We will also examine extending these algo-
rithms to work in the temporal domain, capitalizing
on similarity between successive measurements of
a dataset. We will talk about future work involv-
ing temporal compression and hybrid compression
approaches.

II. RELATED WORK

Until now research on compression has mostly
focused on a specific problem domain or been a
very simple shortcut. For example, JPEG [8] is



finely tuned to compress photographs well. Lempel-
Ziv [12] encoding is geared towards text, encoding
losslessly while looking for repeating patterns such
as those typical to words. A simple shortcut is some-
thing such as Suppression, where instances of the
most common value is omitted from the output of a
dataset with appropriate annotation regarding where
it occurred. We will use these algorithms as the base
choices for our decision-making framework.

The trade-off of fidelity for space in lossy com-
pression was first studied by Shannon in 1948 [9].
He created the Rate-Distortion Theory in which
he determined that the minimum information (R)
needed to transmit information over a channel with-
out exceeding a distortion rateD can be modeled.
R is generally modeled as bits per sample andD
usually refers to the variance between the original
and compressed data. This is useful for if we know
how much lossiness we can tolerate and want to
determine the output size as a consequence. In
contrast, we are more focused on modeling our
lossiness in terms of the range because this is a more
intuitive approach for users and potentially makes
uncertainty analysis easier.

Space-efficient bit map indexing by binning (i.e.
encompassing ranges) has been studied in [6]. Here
they primarily framed it as an indexing technique
to speed up query evaluation for data warehousing.
We are using similar methods to exploit the space-
fidelity trade-off as a compression technique, but
will also benefit from these attributes. The notion
of binning is used to group similar values for lossy
compression.

Combining various levels of compression was
first studied in [1]. This system exclusively looked
at image data and attempted to isolate areas of
high contrast for lossless compression and encoded
homogeneous regions lossily. It also exclusively
codes in 8x8 pixel blocks. Our system both does not
use domain-specific information and incorporates
more than two compression options per encoding.

History-less multidimensional lossy data com-
pression has been studied in [3]. In this work
they looked at how to build a dictionary of basis
functions to compress the data from this. In contrast
to this work, they focused primarily on frequency
domain algorithms. This does transform-based cod-
ing that is more sensitive to the data being passed

Fig. 1. Axes for a typical Pareto frontier.

in.
For our compression algorithm select recommen-

dations we generate Pareto frontiers [13]. Pareto
frontiers were first studied in economics as a way
to determine what decisions can make some players
better off without making anyone else worse off. We
extend this in a three dimensional plot on a training
set using encoding and decoding time paired with
compressed size.

III. PARETO-OPTIMAL DECISION MAKING

Pareto efficiency is a method in economics used
to allocate income and other resources. A Pareto
efficient point is one in which a party involved
is at the best position it can be without adversely
affecting other points with the same value. At its
simplest it creates a “Pareto frontier” or a list of
points that are most beneficial with regards to each
dimension. In our case we will be looking for strong
Pareto optimal points, where someone must benefit
for a point to be chosen over another potential
solution.

We developed a framework to narrow down our
candidate list of compression schemes and pick the
right one. To do this we will generate a three-
dimensional Pareto frontier based on encode time,
decode time and compressed size for a representa-
tive training set of the dataset to be encoded.

Our graph will be based on a set of axes such as
the ones in figure 1.

IV. COMPRESSIONSCHEMES

We use several off-the-shelf compression schemes
for our initial analysis. Below we will outline their
mechanisms, strengths and best uses.



Lempel-Ziv [12] looks for patterns in data and
creates pointers to previous occurrences of a se-
quence of bytes. This is especially useful for natural
language text and anything that will have variable
length sequences of repetition. We are using a
variant on the LZOP implementation [7] for our
experiments.

Huffman Encoding [4] finds the minimum length
of a code (in bits) to properly compress an alphabet
one byte at time. It does this by analyzing the dataset
and building a dictionary where the symbols that
occur most frequently are encoded with a smaller
number of bits and less frequent dictionary entries
are encoded with longer codes. The codes are built
with a binary tree with the most frequent dictionary
entries on top and less frequent entries occurring
further down. This encoding scheme is beneficial
for data sets with a skewed distribution of values,
where several values occur more frequently than the
rest of the alphabet.

Run-Length Encoding [11] compresses data by
converting it to a set of runs, typically of the
form (value; start offset; run length) to denote
a run comprised a single value starting at the offset
specified and continuing for the length given. This
is primarily geared toward sets of data where like
values are found together and can be quite beneficial
under those circumstances as demonstrated by [2].

Suppression omits the most commonly occurring
value in a data set. It accomplishes this by con-
verting the dataset into a set of runs of the form
(start offset; run length; non − common data).
This works best for skewed dataset where one value
is highly dominant to the rest.

V. BASE EXPERIMENTAL RESULTS

We set up a series of experiments to demonstrate
how the Pareto frontiers narrow down options for a
couple of image-based data sets.

A. Sloan Digital Sky Survey

In this experiment we took 2-d arrays of images
from the Sloan Digital Sky Survey [10]. We used
imagery from data release 6, stripe 94, camera
column 4. We selected only the infrared channel
to have a simple two-dimensional example. Each
frame is 2048x1489, with one byte index values.
We stream 201 frames for this test.

In this experiment all but one of our algorithms
was on the Pareto frontier. Huffman encoding lost
out because its output was just too big.

Suppression did well in terms of its compression
ratio because the background is dominant in most
star scenes. It is sufficiently simple and conse-
quently fast such that it is a competitive option.
Lempel-Ziv benefitted in similar ways, only looking
for more complex patterns of stars rather than
simply background.

Run Length Encoding made its mark by being
faster than any of the others. Its compression ratio
was not excellent, but it could not be dominated due
to its speediness among this set.

B. Charlotte

In this test we are compressing a short video
of complex data. We are looking at a series of
320x240x3 images with 8-bit color depth. This
is a video of people walking around to simulate
a complex workload in which there is temporal
correlation, but limited spatial correlation. It is also
a good case for how this system will perform with
traditional surveillance data. As with the previous
set, we use 201 frames.

The Pareto frontier consisted of one point for
this experiment: Lempel-Ziv. It is both faster and
produces smaller output making the compression
algorithm selection process trivial. The next closest
algorithm was Suppression, but it still lagged behind
in every dimension.

VI. ENHANCEMENTS

We can better tailor compression decisions to
scientific and other array-based data by extending
the algorithms we have to support more features
in the form of lossiness, hybrid encoding, temporal
support and multidimensionality.

A. Multidimensionality

Arrays are useful for scientific and visualization
data and frequently generate large datasets. Thus
they make a good test case for compression needs.
Multidimensional data presents unique challenges
and opportunities for compression. By exploiting
spatial relationships along multiple dimensions we
can theoretically encode complex patterns with less
bits. Examining arrays as multidimensional entities



also requires more analysis to correctly select what
feature size best fits a dataset to isolate repetition, as
well as more complex for data partitioning options.
Most of these problems will be explored further in
future work. Below I will discuss algorithms that
have been extended into multidimensional forms.

Run-length encoding has been generalized to
multiple dimensions by allowing runs to traverse
all dimensions in an array. In this case our runs
now look like (value; start point; run length in
each dimension). This extension is only useful
for datasets where similarity extends along multiple
dimensions. If data does not satisfy this requirement
then performance may suffer dramatically due to the
size of overhead (an extra 4 bytes per dimension per
run).

Huffman Multidimensional extends traditional
Huffman encoding to make dictionary entries
tiles instead of individual bytes. Tiles are non-
overlapping multidimensional subarrays that may
represent features in a dataset. They form a grid over
the entire array to be encoded which is analyzed
to generate Huffman codes. Tiles must be selected
judiciously to be small enough to have a high
probability of repetition, but not so small that there
is significant overhead in encoding them due to
more outputs.

JPEG [8] is a common compression scheme
for images. It requires that all of its inputs be
either two or three dimensional. It works in several
phases. First it is converted into luma-chroma space
(YCbCr) from RGB space. Then it cuts the chroma
(color component) down by half of its accuracy after
it is coverted (to capitalize on human eyes being less
sensitive to color variations than light ones). After it
is brought into the frequency domain via a discrete
cosine transform. Next the data is quantized with a
specialized matrix where different numbers of bits
are truncated depending on the indexes. Lastly the
data is compressed with entropy encoding using a
zig-zag pattern.

B. Lossiness

Lossiness may allow us to profitably trade accu-
racy for time and space. If one considers the data
we are processing already a discretization of reality
this is simply recording it at a lower fidelity (or
irreversible compression). We define lossiness by

allowing the user to specify a range of values the
data may occupy. At the simplest level all of our
previous algorithms may be extended to support
lossiness by “binning” the data before encoding
it into its appropriate ranges. For example, if we
have a range of five and a sequence of values (0,
7, 13, 125) it would be binned as (0, 5, 15, 125)
by rounding each value into its closest neighbor in
our new continuum. This makes it so like values
are guaranteed to be compared correctly without
accounting for all potential cases.

In addition to making our algorithms produce
smaller output lossiness may make our algorithms
run faster. For example in Run-Length Encoding it
may make the runs longer thus making it so we do
not have to query the data many times to build our
runs. Naturally it also makes decoding faster.

Also lossiness may make some of our algorithms
more scalable. In the case of Huffman Multidimen-
sional its biggest bottleneck is sorting the frequency
counts on every dictionary entry. In the lossless
case this dictionary may grow exponentially. For
example, while a 1 byte dictionary entry only has
256 potential values, a 2x2 tile may have up to
232 or 4,294,967,296 potential values. By imposing
binning we reduce the number of combinations a tile
could produce. If we have a range of 10 each byte
can only be one of 26 values. Now our 2x2 tile can
only have264 or 456,976 possible combinations. So,
as you can see, just a little lossiness may bring down
our codebook by almost four orders of magnitude.
This makes our huffman codes shorter as well as
making the algorithm run faster by lessening our
search and code creation time.

Quantization lossily encodes data by chopping off
the lower order bits. This provides an approximation
of the original data in an efficient manner. Unfor-
tunately it is coarse grained because it can only
approximate in powers of two.

Downsampling combines multidimensionality
with lossiness by breaking an array into tiles and
taking the average of each tile for output. This can
be made coarser or finer grained by varying tile
size. It is good for data where similarity occurs
across dimensions.

Both of these techniques are only beneficial for
lossy compression due to their natures.



C. Temporal Encoding

Temporal data is a stream of arrays provided in a
sequence of recordings. In a manner reminiscent of
MPEG we can use relationships between subsequent
measurements to limit redundant records.

Delta Encoding statically breaks the array into
uniform n-dimensional tiles and compares them to
their predecessors. When the arrays have changed
enough then we pass on update tiles for the cells.
The user specifies the degree of change acceptable
as the maximum deviation from the cached version
of a tile.

Adaptive Huffman brings Huffman Multidimen-
sional encoding into a scalable online technique.
In Adaptive Huffman we dynamically build codes
using the Faller-Gallager-Knuth method [5]. This is
different from Huffman Multidimensional in that the
codes reflect the current known frequency of a sym-
bol, whereas the other implementation works strictly
with global knowledge. It allows for faster updates
by doing incremental sorts of the tree. Adaptive
Huffman consequently exploits local optima in code
generation.

In the same vein as Huffman Multidimensional
this algorithm’s biggest weakness is scalability as
the code book grows. In addition lossiness we keep
the dictionary manageable in Adaptive Huffman by
maintaining a cache of values rather than maintain-
ing “true” global knowledge. This has the advantage
of making encoding go faster due to a smaller
code book (because codes are recalculated at every
insertion). The downside is that we potentially may
have to output the same tile twice uncompressed if
it is evicted and reinstated.

We experimented with a couple of strategies to
limit the dictionary growth (and subsequent growth
in code length). First we examined the least recently
used eviction pattern. In this approach we timestamp
all of our dictionary entries by the last time they
were accessed. When our cache is full we evict the
one that was accessed longest ago, replacing it with
the new entry. We record the evicted entry with the
tile number it was evicted from for reconstruction.

Secondly we experimented with least frequently
used eviction, where the code with the lowest num-
ber of accesses gets evicted when the cache fills.
The results of these schemes on Charlotte data are

Fig. 2. Adaptive Huffman eviction strategies on Charlotte data

in figure 2.

Least recently used performed significantly better
than least frequently used. This is primarily because
least frequently used caused a lot of thrashing in
the cache. For LFU an entry can easily be evicted,
immediately reinstated with a frequency of one and
now appear least frequently used again. This is
wasteful in that it would cause us to output the
tile twice uncompressed for our dynamic dictionary.
Thus, unless evictions are very infrequent this is not
a viable option.

Least recently used performed better because it
did not cause thrashing. In this case entries were
only deleted if we had not seen them for longer
than all of their neighbors. We called each incoming
array an epoch and randomly selected a victim from
the oldest epoch in our dictionary. For the rest of our
experimental results we omit caching for simplicity.

Motion Vectors are an extension to delta pro-
cessing. This is a composition of Delta Encoding
with Adaptive Huffman. For this approach we first
had delta encoding filter out which tiles to en-
code. We maintain a cache and only mark tiles
that had changed significantly enough for encod-
ing. Next Adaptive Huffman encodes the selected
tiles for output. This allows us to both filter for
change on the temporal dimension while allowing
selected changes to be compared to neighbors. This
manifests in searching our known vocabulary for
a tile, regardless of where it had appeared last.
Approaching the search for a prior match is much
more efficient than a traditional sliding windowed
search, but in exchange relies on the matching tile
occurring along tile boundaries.



D. Hybrid Encoding

We can achieve better compression ratios at the
expense of time by systematically encoding differ-
ent areas of an array with different schemes. We
investigated several of these hybrid compression
approaches for this work with mixed results. In
all of our schemes we break our array up into a
grid of non-overlapping areas and encode each one
individually.

1) Exhaustive Approach: For the highest com-
pression ratio possible in this framework we can
iteratively encode each area with each scheme and
find the algorithm which takes the minimum amount
of space for compressing an area. This is basically
the extreme case of hybrid compression where we
pledge the most time in exchange for an approxi-
mately guaranteed best performance.

2) Downsampled Decision: This is a slightly
smarter version of the exhaustive approach. Here we
take our input array and significantly downsample
it. Then we iterate over every algorithm we have
on the downsampled version of an area and select
the minimum output size for to encode the original
version of our chunk. It saves significant time by not
experimenting with the whole version of the chunk
(usually the sampled area is about the square root
of the original size), but may not always pick the
right option. Frequently it picks an option that is
good enough though as we shall see later.

3) Decision Tree: We have started investigating
a simple decision tree for choosing the right scheme
for a set of data. We do this by hierarchically
characterizing what makes an algorithm save space.
For example, one of our highest branch points
checks to see if the distribution of the input data is
skewed. This observation eliminates about half of
our algorithms and we continue down this tree until
we reach a branch. Unfortunately this design is not
very extensible to adding new algorithms and may
require some artificial intelligence or automation to
make it well tuned to individual datasets.

4) Similarity Scoring: Here we exhaustively en-
code everynth area in a stream of arrays. When we
do this we add it a our vocabulary, a list of known
tiles paired with its “correct” scheme. We then
generate a signature for each vocabulary entry. The
signature characterizes the distribution of values,
how often features (i.e., tiles) are repeated and other

salient characteristics. For each are that is not to
be added to the vocabulary we generate a signature
and compare it to the values in the vocabulary.
We then encode it with the correct scheme for its
closest match. In the background we also make sure
that our vocabulary only maintains entries that are
sufficiently different from each other. We also evict
old entries in our vocabulary to prevent the search
for a match from becoming more expensive than the
exhaustive approach.

E. Restricted Hybrid

This is a blend of the previous approaches. First
we prune our search to only the algorithms found
on the Pareto frontier. Next we apply the exhaustive
approach, but only iterating over the ones that were
already on the Pareto frontier. This makes it so that
our search will probably not take too long and every
algorithm considered performs well for at least one
dimension of our criteria on the dataset.

In our experimental section we compare the
performance of Downsampled Decision, Restricted
Hybrid and Exhaustive Approach. The other two
have not been finely tuned enough yet to produce
meaningful results.

VII. SAMPLING

In order for the Pareto frontier to make efficient
recommendations we need to judiciously sample
the dataset. We start out given a percentage of the
dataset that the analyzer may access and need to
distribute the samples around the set. Presently we
do this by sampling a fixed length bandn times
wheren is equal to the sample frames divided by the
band size. In future work we may experiment with
varying both the band size and number of bands.

VIII. E XPERIMENTAL RESULTS WITH

ENHANCEMENTS

We ran experiments with the same datasets dis-
cussed in the base experimental results section. In
this set of experiments we examined the compres-
sion algorithm performance along four dimensions.
Our first dimension was space consumed by com-
pressed data. The second metric we used was lossi-
ness, as expressed by a range that individual indices
may occupy. We varied this parameter between 0
and 15, in increments of 5. Finally we examined



Fig. 3. Pareto frontier for base and enhanced compression algorithmson SDSS data. Comparison of lossiness vs. compression size vs.
encoding time with detail of Pareto frontier.

Fig. 4. Pareto frontier for base and enhanced compression algorithmson SDSS data. Comparison of lossiness vs. compression size vs.
decompression time with detail of Pareto frontier.



encoding and decoding times, to assess how long
each algorithm will take end-to-end on a sample
set of the data. For each data set we created two
3-d scatterplots. Each contained space and lossiness
axes and was paired with one time dimension, either
encoding or decoding. This is primarily to simplify
the visualization of our results.

We then generate a Pareto frontier for all four
dimensions. We will examine the results we get with
this superset of information and how it differs from
the results on three (selecting only one of the time
dimensions). Theoretically the more dimensions you
use the better your results will be, but we are still
investigating this hypothesis. If this pans out then
it is possible to trade efficient decisionmaking for
a reduction in quality by limiting the number of
dimensions we explore. The downside to using more
dimensions though is that this approach will gener-
ally produce more points on the frontier because it
is harder for a candidate point to be dominated in
all dimensions at the same time by another point.

A. Sloan Digital Sky Survey

This dataset was the same. We applied 5x5 tiles
for Huffman Multidimensional dictionary entries
and other compression algorithms that required tiles.
For hybrid encoding we broke each frame into
an approximate 5x5 grid. The results for various
degrees of compression are displayed in figures 3
and 4.

In figure 3 we.looked at the Pareto frontier as
a function of compressed size, encoding time and
lossiness. This graph clearly demonstates that as
lossiness increases we effectively reduce the cost
of compression in terms of time and of course
get better compression ratios. For the first frontier
we found our most effective points to be hybrid
encoding (at all degrees of lossiness), Lempel-Ziv
(for lossiness ranges 0 and 15), Suppression (at all
degrees of lossiness) and Run-Length Encoding 1-
D at all degrees of lossiness. Restricted encoding
also appeared for 0 lossiness. For the piecewise
evaluation Lempel-Ziv also occurred on lossiness
10.

Suppression produced a good point for trading
off between space and time. It achieved this by
having output that was only nominally larger than

hybrid while being up to two orders of magnitude
faster than it. This is unsurprising for this dataset
given that the images are dominated by a dark
background. Restricted Hybrid worked for similar
reasons. It was not dominated by any point for at
least one dimension.

Hybrid maintained its place on the curve by being
smaller than everyone else, but as mentioned at the
cost of speed. This is simply a side effect of the cost
of running every algorithm for every chunk of the
array. It is very hard to beat hybrid sizewise unless
a dataset is completely dominated by one algorithm
at which point the cost of metadata starts to become
a factor.

Lempel-Ziv and Run-Length Encoding 1-D both
occupied the niche of being very fast with
reasonably-sized output. When they were both on
the frontier one would fail to dominate the other by
the slimmest of margins, sometimes the difference
being down to a second in encoding time difference.
Run-length encoding does well in this set because of
the skewed distribution of values (that also happen
to be grouped together often). Lempel-Ziv is more
complex, but has a highly optimized implementa-
tion.

One thing this clearly result set demonstrates for
star data encoding is that lossiness does not heavily
impact algorithm selection choices. This is because
the data is highly polarized. That is to say that
almost everything in the scene is either a bright star
or a black background and limited shades of gray
are used. As a consequence changing the lossiness
does not really change our compressed data size all
that much as well as our selections. As the range
increases values rarely change what bins they fall
into due to this contrast.

For the trade-off among lossiness, compression
space and decoding time we plotted the results of
SDSS experiments in figure 4. It is worth noting
that encode and decode times for some compres-
sion algorithm are highly asymmetrical. Thus al-
gorithms that were clear leaders in the past (such
as null suppression) may lose out here because
they have symmetrical decode times whereas others
make huge gains in comparison to their encode
time. Hybrid encoding is a good example of this.
Its encoding time is extremely expensive, but the
decoding process is a deterministic decompression



Compression Scheme Lossiness Encoding Time Decoding Time Compressed Size
Run-Length Encoding 0 18 54 14706213
Suppression 0 47 96 6011631
Lempel-Ziv 0 68 60 4945143
Restricted Hybrid 0 178.93 69 4549022
Hybrid Encoding 0 14046 69 4297949
Run-Length Encoding 5 13 72 2446674
Delta 5 21 55 3942358
Suppression 5 29 74 657537
Lempel-Ziv 5 87 58 3012493
Hybrid Encoding 5 20083 71 588170
Lempel-Ziv 10 13 62 2774295
Run-Length Encoding 10 15 75 1466493
Delta Encoding 10 22 60 3638448
Suppression 10 30 73 436126
Hybrid Encoding 10 19461 71 382610
Lempel-Ziv 15 12 58 2702585
Run-Length Encoding 15 13 75 1078089
Suppression 15 28 75 338904
Hybrid Encoding 15 11314 92 299398

TABLE I

PARETO POINTS ON FOUR DIMENSIONAL FRONTIER FORSDSSDATA .

Fig. 5. Pareto frontiers for sampling of star data at 5%, 10%, 15% and allsamples. Compressed size vs. encoding time vs. quality



Fig. 6. Pareto frontiers for sampling of star dataset at 5%, 10%, 15% and all samples. Compressed size vs. decoding time vs. quality

Fig. 7. Pareto frontier for base and enhanced compression algorithmson Charlotte data. Comparison of lossiness vs. compression size vs.
encoding time with detail of Pareto frontier.



using whatever algorithm was elected during the
compression phase so it is relatively fast. Hybrid
and Lempel-Ziv were the only algorithms to appear
on the Pareto frontier for every degree of lossiness.
Lempel-Ziv maintained its position on the frontier
throughout due to a reasonable compressed data size
paired with a very fast decompression time. Again,
this is primarily because we are using a highly
tuned implementation of a well-known algorithm.
In contrast run-length encoding made the frontier
only for the lossless case. In decoding its timing
and larger output size made it lose out to some of
the faster algorithms.

The four dimensional frontier is basically con-
sistent with the three-dimensional ones. The only
big difference is that now delta encoding earned a
spot on the curve. By adding a fourth dimension it
makes it harder for a point to be dominated in every
dimension so its fast times pay off with a slot on
the curve. This is because the comparisons used in
delta are very fast and the majority of its overhead is
disk access. Disk access on this algorithm is roughly
comparable in terms of cost to the other algorithms.

Preliminary results for the sampling algorithm are
in figures 5 and 6. We plotted a time, either encoding
or decoding against space consumed and lossiness.
Sampling selections were generally close to the
desired ones and the Pareto frontier of the complete
one only contained values that had appeared on one
or more of the sampled ones.

B. Charlotte

Charlotte used the same setup but with a 4x4x3
tile set. Hybrid encoding broke up the array into
40x40x3 areas. Again we ran trials on the same
frames as in the base case. Charlotte data is char-
acterized as having extremely limited spatial corre-
lation, but strong temporal correlation.

In figure 7 we examine the trade offs of lossiness
versus size versus encoding time. Naturally most
of the three-dimensional Pareto-optimal points are
closer to the zero lossiness. Lempel-Ziv occurs on
the Pareto frontier for all levels of lossiness except
15. Again, this is because it is fast and has a good
enough compression ratio to not be strongly domi-
nated by any points up until the lossiness weighting
pulls it from the curve (lower lossiness is always
considered a more efficient solution). JPEG is very

well designed for this sort of dataset because it
handles the lack of correlation in the spatial domain
very well with frequency domain transformations.
It appears on the Pareto curve for every degree of
lossiness.

Figure 8 depicts the scattergram for decoding
time. Again, JPEG is preferred in most cases (all of
the JPEG points are selected for the 3-d curve except
lossiness 10, where its slightly slower decompress
time eliminates it).

Surprisingly Huffman Multidimensional occurred
for lossinesses 0, 5 and 10. This is because it decom-
presses very fast (due to it knowing the dictionary
already and thus not having to calculate codes).
Also, the Charlotte set is given to having patterns
between successive arrays, so the dictionary works
well at capturing those features succinctly.

Motion Vectors appeared on the three dimen-
sional curve for lossiness level 5. Much like Huff-
man Multidimensional this is because it decom-
presses very fast. Also it has a reasonably good
compression ratio because the underlying Adaptive
Huffman is exploiting the same recurring patterns.
This paired with the filtering step produces a solid
compression ratio.

Restricted hybrid appears for the lossless case. It
benefits from a fast (deterministic) decode time and
a relatively good compression ratio.

The 3-D curve also contained Downsampled Hy-
brid for lossiness 5 and 10. These points had very
good compression ratios paired with a relatively fast
decompression times. The five point also fairly low
on the lossiness scale which helped its ranking.

Table II shows a solid superset of the three
dimensional graphs. Motion Vectors gets buoyed up
by its fast compress and decompress times. This
is a benefit of the online technique of Adaptive
Huffman and strong temporal redundancy. Lempel-
Ziv also performs well due to the pattern-oriented
nature of this data. Restricted Hybrid also showed
well here because it is faster and generally selects
a method well enough so that the choice does not
too negatively impact the output despite it perhaps
not being the optimal choice.

What is a more interesting result in this set is
the Hybrid Encoding never makes it on a Charlotte
Pareto frontier. This is because it is prohibitively



Fig. 8. Pareto frontier for base and enhanced compression algorithmson Charlotte data. Comparison of lossiness vs. compression size vs.
decompression time with detail of Pareto frontier.

Compression Scheme Lossiness Encoding Time Decoding Time Compressed Size
Lempel-Ziv 0 16 18 27446418
JPEG 0 24 19 4817158
Huffman MD 0 1500 13 20177202
Lempel-Ziv 5 14 16 21388621
Motion Vectors 5 33 15 12016162
JPEG 5 35 20 2661262
Huffman MD 5 1731 14 18467505
Lempel-Ziv 10 15 14 17633017
Motion Vectors 10 32 14 7226869
JPEG 10 35 22 2133109
Restricted Hybrid 10 51.85 17 5084225
Huffman MD 10 1058 12 17022065
JPEG 15 10 8 1150613

TABLE II

PARETO POINTS ON FOUR DIMENSIONAL FRONTIER FORCHARLOTTE DATA .

expensive to try every algorithm when one scheme
is optimal the vast majority of the time (JPEG in
this case). As mentioned earlier the cost of main-
taining each chunk header outweighs the benefits of
selecting the optimal chunk.

As always JPEG occurs for every point it can
on the set. It may not always be the fastest, but it
produces a great compression ratio. While consider-

ing that with encoding and decoding speeds that are
“good enough” it makes this choice a solid trade-off
for Charlotte’s data.

IX. CONCLUSIONS ANDFUTURE RESEARCH

Compression algorithm performance varies dra-
matically based on input data and parameter se-
lection. In this work we generate a Pareto frontier
using a representative training set to aid users in



determining the best compression algorithm for their
needs.

In future work we will examine how to use the
recommendations provided by this curve to aid in
algorithm selection. We will vary tile selection sizes,
hybrid area sizes. We may adapt to support better
hybrid partitioning schemes as well.

We will also look at other recommendations such
as composite objective functions. We are consid-
ering weighting approaches (where a user assigns
weights for each dimension and the advisor works
along the decision space accordingly). Another po-
tential avenue is prioritization of user needs or
constraint application.

We will also further enhance our compression
signature generation and improve the decision tree.
Semantic compression (based on context) could also
potentially improve our results. Future work may
include trying this data on other datasets (such as
text or filesystems) and accounting for time in our
hybrid decision-making.

Regardless of the next step, building a Pareto
frontier is a cost-effective way of pruning our deci-
sion space for compression algorithm selection.

REFERENCES

[1] M. E. Banton. System and method for segmentation dependent
lossy and lossless compression. InUS patent number 6198850.

[2] S. M. Daniel J. Abadi and M. Ferreira. Integrating compres-
sion and execution in column-oriented database systems. In
SIGMOD Proceedings, pages 671–682. ACM, June 2006.

[3] M. B. de Carvalho and E. A. B. da Silva. A universal multi-
dimensional lossy compression algorithm. InInternational
Conference on Image Processing. IEEE, October 1999.

[4] D. A. Huffman. A method for the construction of minimum-
redundancy codes. InProceedings of the Institute of Radio
Engineers.

[5] D. E. Knuth. Dynamic huffman coding. InJournal of
Algorithms, volume 6, pages 163–180. ACM, 1985.

[6] N. Koudas. Space efficient bitmap indexing. InConference on
Information and Knowledge Management. ACM, 2000.

[7] M. F. Oberhumer. http://www.lzop.org/, 2008. Online; accessed
24 January 2008.

[8] W. B. Pennebaker and J. L. Mitchell.JPEG Still Image Data
Compression Standard. Van Nostrand, New York, NY, 1992.

[9] C. E. Shannon.The Mathematical Theory of Communication.
University of Illinois Press, Champaign, IL, 1948.

[10] S. D. S. Survey. http://www.sdss.org/.
[11] Wikipedia. Run-length encoding — Wikipedia, the free ency-

clopedia, 2007. [Online; accessed 3-November-2007].
[12] Wikipedia. Lempel-ziv-welch — Wikipedia, the free encyclo-

pedia, 2008. [Online; accessed 3-September-2008].
[13] Wikipedia. Pareto efficiency— Wikipedia, the free encyclope-

dia, 2008. [Online; accessed 3-September-2008].


