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Abstract— We present an analytical model of water diffusion and exchange in white matter for estimating axon radii. Estimates of
direct microstructural features such as axon radii, density, and permeability are important for early disease detection. Our model for
white matter has two compartments between which there is an exchange of water molecules. Our analytical formulas examine the
derivation of microstructure parameters that affect signal attenuation in diffusion-weighted MR experiments in white matter. The model
is fitted to six constant-gradient diffusion-MRI experiments based on Monte-Carlo simulation with gradient strength 200−700 (mT/m).
Our results demonstrate the feasibility of recovering underlying axon radii of [1,1.9,3,5,7] (µm) using the model. Axon radii are
typically in the range [0.25−10] (µm) in brain tissue. Our work is aimed at non-invasively recovering microstructure features using a
geometric model that incorporates water exchange.

Index Terms—diffusion MRI; axon radii, microstructure, restricted diffusion, neural tissue, white matter

1 INTRODUCTION

Diffusion MRI measures the displacement of water molecules within
tissue over a fixed time interval. We can derive information about
the tissue microstructure from measurements of the water molecules’
displacement over time. Common biomarkers derived from diffusion
MRI, such as mean diffusivity (MD) and fractional anisotropy (FA),
are useful indicators of major microstructural changes, but they are
non-specific at the microstructural level: changes in FA can result
from changes in axon density, radius distribution, orientation, or per-
meability, and we cannot distinguish among these possibilities. Fur-
thermore, different combinations of changes in these microstructure
features may result in no change in FA at all. Axon radii directly af-
fect different nerve functions. In myelinated axons, nerve conduction
velocity is directly proportional to axon radii [12] [14]. Therefore,
estimates of direct microstructural features such as axon radii could
provide insights into brain diseases and aid in their early detection.

This paper develops a new composite analytical model for water
diffusion and exchange in white matter from diffusion MRI and a pro-
cedure to recover the microstructure model parameters, mainly axon
radii, using Markov chain Monte Carlo (MCMC). We discuss some
previous approaches in recovering axon radii in the next section. Sec-
tion 3 outlines our analytical model of water diffusion and exchange
from diffusion MRI and its derivation. The simulation data and results
in sections 4 and 5 assess the feasibility and accuracy with which we
estimate axon radii and other direct microstructure features from the
model. We discuss our findings and draw conclusions in sections 6
and 7.

2 RELATED WORK

Despite their importance, axon radii have not been reliably measurable
in vivo. Electron microscopy is currently considered the most accurate
way to obtain axon radii distribution. However, it is an invasive histo-
logical procedure and can access only a limited area of a tissue section.
Tissue preparation is difficult and tedious and the results are subject to
many artifacts, including tissue shrinkage and cracking.

One approach to measuring axon radii uses diffraction patterns from
the diffusion-MRI signal in vivo. This approach has been controver-
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sial, however: while diffraction patterns have recovered correct radii
in some cases [3], in others they do not reflect the mean axon ra-
dius as measured microscopically [15]. Lätt et al. [8] concluded that
10 (µm) is the smallest identifiable radius using diffusion patterns
with current hardware. This suggests a difficulty in measuring axon
radii using diffraction patterns, since they are typically in the range
0.25−10 (µm) in brain tissue [1].

A recent alternative approach formulates a geometric model of
white-matter microstructures and predicts the MR signal from water
diffusing within the model. The model typically has two compart-
ments: intra- and extra-axonal volumes. Model-based techniques po-
tentially demonstrate microstructural features such as axon radii and
their distribution, diffusion coefficients of the water molecules, etc.,
and can thus estimate distinct microstructure features simultaneously.
Previous work [1] [2] showed that diffusion MRI can provide estimates
of features such as axon radii. However, to simplify the model, all
previous techniques assumed no exchange of water between the intra-
and extra-axonal compartments. This constraint on water exchange
could restrict accurate extraction of radii distribution of very small
(≈ 2µm) and very large (≈ 20µm) axons. In addition, experimental
results have indicated that exchange of water molecules between com-
partments does occur [13][7][10]. Recent work [9] has also demon-
strated that if diffusion is modeled by two compartments of which one
is restricted, exchange must be included in the model.

Here we develop a new geometric model of water in white mat-
ter that integrates diffusion and exchange of water molecules between
axonal compartments. Our results, based on Monte-Carlo simulation
data, demonstrate the feasibility of recovering underlying axon radii
using the model. Our work is a first attempt at non-invasively recover-
ing microstructure features incorporating water exchange.

3 MODEL FOR WATER DIFFUSION IN WHITE MATTER

Our model for white matter has two compartments between which
there is an exchange of water molecules. The model assumes parallel
non-abutting cylindrical axon cells with equal radii and partially per-
meable membranes embedded in an extra-cellular medium. MR signal
attenuation reflects water diffusion in white matter by two processes:
restricted water diffusion within the cylindrical intra-axonal space
and hindered water diffusion outside the cylinders, in the extra-axonal
space (Fig. 1). We use subscript and superscript 1 and 2 to denote the
intra-axonal and extra-axonal compartments, respectively.



The normalized MRI signal is then

E(~q,∆) = υE1(~q,∆)+(1−υ)E2(~q,∆) (1)

where

• E(~q,∆) is the total observed diffusion signal decay

– wavenumber~q = γδ ~G, γ is the gyromagnetic ratio, δ is the

pulse duration, and ~G is the applied gradient

– ∆ is the diffusion time between pulses in MRI experiments

• E1 and E2 represent the signal decay of water molecules in the
intra- and extra-axonal compartments, respectively

• υ ∈ [0,1] is the volume fraction of the intra-axonal compartments

Sections 3.1 and 3.2 below demonstrate how we derive the sig-
nal decay of water molecules in the intra- and extra-axonal compart-
ments (E1 and E2 respectively). Section 3.3 summarizes our compos-
ite model.

Fig. 1. Modeling of water diffusion in white matter by two processes:
restricted water diffusion within the cylindrical intra-axonal space and
hindered water diffusion outside the cylinders in the extra-axonal space.

3.1 Water Diffusion in the Intra-axonal Space

In order to determine how water diffusion affects signal attenuation in
diffusion-weighted MR experiments in white matter, we examine the
conditional propagator and the conditions in the intra-axonal space
that govern the motion of the water molecules.

Propagators for water diffusion

The motion of molecules undergoing diffusion can be described by
the conditional propagator, Ps(~r0|~r, t), an ensemble-averaged probabil-
ity density for spin displacement from ~r0 to~r over time t. Ps(~r0|~r, t)
obeys:

• The Fick’s Law differential equation governing Ps(~r0|~r, t):

∂P
(1)
s

∂ t
= D1∇2P

(1)
s (2)

• The initial condition Ps(~r0|~r, t) for spin displacement from ~r0 to
~r over time t:

P
(1)
s (~r0|~r,0) = δ (~r−~r0) (3)

• Boundary condition for partially permeable membranes:

D1
∂P

(1)
s

∂ρ
|ρ=a +MP

(1)
s |ρ=a = 0 (4)

• Boundary relationship of the intra- and extra-cellular compart-
ments:

D1
∂P

(1)
s

∂ρ
|ρ=a = D2

∂P
(2)
s

∂ρ
|ρ=a (5)

where D1 and D2 are free diffusion coefficients and a is axon radius.

Boundary condition for partially permeable membranes (Eq. (7))
The boundary condition describes the displacement probability at

the membrane. In the partially permeable membrane condition [4], we
may confine our consideration to the molecules that do not leave the
cylinder [11]. Once they have left, their contribution to the echo signal
with increasing field gradient intensities drops to zero as a function
of q. Thus, we derive the corresponding boundary condition Eq. (7),
where M(m/s) is the permeability coefficient. Below we shall see that
it is convenient to relate the microscopic reduced permeability h of an
axon of radius a to the permeability coefficient as:

h =
aM

D1
(6)

Boundary relationship of the intra and extra-cellular compart-
ments (Eq. (5))

The boundary relationship describes the diffusion flux density at
two sides of the membrane. The diffusion equation must satisfy both
the above boundary condition and boundary relationship. The Fick’s
Law diffusion equation (2) can be rewritten as:

∂Ps

∂ t
= ∇ · (D ·∇Ps) (7)

If we define diffusion flux density as:

~j = −D ·∇Ps (8)

Eq. (7) is then:
∂Ps

∂ t
+∇ ·~j = 0 (9)

Eq. (9) is equivalent to the continuity equation in electrodynamics,

which implies that the normal component of ~j on the boundary should
be continuous:

~n · (~j1 −~j2) = j1n − j2n = 0 (10)

~j1 and ~j2 indicate ~j on two sides of the boundary, respectively.

We denote the normal component of ~j, jn. By definition of ~j,

jn = −D
∂Ps

∂n
|s (11)

In the cylindrical coordinate system, the outward surface normal ~n
direction is in the direction along the polar axis direction (i.e. across
a diameter). Therefore, we derive our boundary relationship Eq. (5)
from Eqs. (10) and (11):

D1
∂P

(1)
s

∂ρ
|ρ=a = D2

∂P
(2)
s

∂ρ
|ρ=a

MRI signal attenuation in the intra-axonal compartment

The diffusion problem posed in Eqs. (2)-(5) above may be solved
using the standard eigenmode expansion [5]:

P
(1)
s (~r0|~r, t)) =

∞

∑
n=0

Cne−λntun(~r0)u
∗
n(~r) (12)

where the un(~r) are orthonormal sets of solutions to the Helmholtz
equation parameterized by the eigenvalue λn. Based on our Cauchy



boundary condition in Eq. (7), which specifies a linear combination
of the values that a solution of a differential equation can take on the
boundary of the domain and the normal derivative at the boundary, the
problem is well posed. Given the input and the cylindrical boundary
limits to the problem, there exists a unique discrete eigenvalue solu-
tion.

We solve the problem in a cylindrical coordinate system in which
the longitudinal z axis is a symmetry axis for the system. The relevant
coordinates are (ρ,ϕ) and the gradient is applied along the polar axis
direction (i.e. across a diameter). Eq. (12) becomes:

P
(1)
s (~r0|~r, t) =

∞

∑
n=0

Cne−λntJn(kρ ρ0)Jn(kρ ρ)ein(ϕ−ϕ0) (13)

The permeable membrane boundary is at a radial distance r = a from
the cylinder center. For notational convenience, we define the roots
kρ of the Bessel function Jn as kρ = αnm

a . Considering our boundary
condition Eq. (7), the eigenfunction expansion for the propagator is
then given by:

P
(1)
s (~r0|~r, t) =

∞

∑
n=0

∞

∑
m=1

A2
nme

−α2
nmD1∆

a2 Jn(
αnm

a
ρ0)Jn(

αnm

a
ρ)

×cos(nϕ0)cos(nϕ)

(14)

where Jn are the standard (cylindrical) Bessel functions, while the
eigenvalues αnm are determined by the boundary condition Eq. (7),
which is:

αnmJ′n(αnm)

Jn(αnm)
= −h (15)

Anm are normalizing constants:

A2
0m =

1

πa2

α2
0m

J2
0 (α0m)(h2 +α2

0m)
(16)

A2
nm =

2

πa2

α2
nm

J2
n (αnm)(h2 +α2

nm −n2)
,n 6= 0 (17)

The derivation of Eq. (15)-(17) is developed in detail in Appendices A
and B.

Finally, we can derive the echo attenuation in Q-space by applying
Fourier transformation on the propagator function in X-space Eq. (14):

E1(~q,∆) =
∫ ∫

ρ(r,0)P
(1)
s (~r0|~r,∆)ei2π~q·(~r−(~r0))d~r0d~r

=
∞

∑
m=1

4e
−α2

0m
D1∆

a2
α2

0m

h2 +α2
0m

[2πqaJ′0(2πqa)+hJ0(2πqa)]2

[(2πqa)2 −α2
0m]2

+
∞

∑
n=1

∞

∑
m=1

8e
−α2

nmD1∆

a2
α2

nm

h2 +α2
nm −n2

×
[2πqaJ′n(2πqa)+hJn(2πqa)]2

[(2πqa)2 −α2
nm]2

(18)

In a typical experiment, only the lowest eigenvalue α = α01 is impor-
tant [11]. Thus, for the purpose of measuring the axon radii, we can
simplify the echo attenuation equation, (18), and Eq. (15) becomes:

α01J′0(α01)

J0(α01)
= −h (19)

According to the Bessel function, J′n(x) = ( n
x )Jn(x)− Jn+1(x), we can

derive J′0(x) =−J1(x). Therefore, our final derivation of the boundary
condition is:

α01J1(α01)

J0(α01)
= h (20)

We can approximate
α2

01

h2+α2
01

= 1 similarly. Our final simplified MRI

signal attenuation in the intra-axonal compartment is:

E1(~q,∆) = 4e
−α2

01
D1∆

a2
[hJ0(2πqa)−2πqaJ1(2πqa)]2

[(2πqa)2 −α2
01]

2
(21)

where a is axon radius and all other parameters have the meanings
above.

3.2 Water Diffusion in the Extra-axonal Space

By applying a Fourier transformation on the Fick’s Law differential
equation (2) governing Ps(~r0|~r, t) in X-space, we can derive differen-
tial equations describing echo signal intensities in Q-space:

∂E(~q, t)

∂ t
= −q2DE(~q, t) (22)

The solution to the equation has the form E(~q, t) = E0e−q2Dt . There-
fore, we model the hindered diffusion surrounding the axons with
Gaussian distribution. By assuming a large exchange time τ , q2τD2 ≫
1, the apparent diffusion coefficient of the extra-axonal compartment

can be approximated as D2app = D2 + 1
q2τ

[8]. The MRI signal atten-

uation in the extra-axonal compartment is then:

E2(~q,∆) = e−q2D2∆+ ∆
τ (23)

3.3 Composite Model for Water Diffusion in Axonal Space

In summary, referring to Eqs. (1), (21), and (23), our composite model
for normalized MRI signals from water diffusion in axonal space is:

E(~q,∆) = υE1(~q,∆)+(1−υ)E2(~q,∆)

= υ(4e
−α2

01
D1∆

a2
[hJ0(2πqa)−2πqaJ1(2πqa)]2

[(2πqa)2 −α2
01]

2
)

+(1−υ)(e−q2D2∆+ ∆
τ )

(24)

with boundary condition

α01J1(α01)

J0(α01)
= h (25)

where

• Jn are the standard (cylindrical) Bessel functions and the eigen-
values αnm are determined by boundary condition Eq. (15)

Fig. 2. Histogram of 100 samples drawn from posterior distribution on
radii a = [1,1.9,3,5,7] (µm) using MCMC; orange lines indicate the true
value of various radii; black lines indicate the mean value of each es-
timate with error bars showing standard deviation. The model was fit-
ted to six constant-gradient diffusion-MRI experiments based on Monte-
Carlo simulation with gradient strength 200− 700 (mT/m). The results
demonstrate the feasibility of recovering underlying axon radii using the
model.



• experimental parameters are:

– The wavenumber ~q = γδ ~G, γ is the gyromagnetic ratio, δ

is the pulse duration, and ~G is the applied gradient

– The time between pulses in MRI experiments is ∆

• The microstructure parameters are:

– The axon radius, a

– The volume fraction of the intra-axonal compartment f ∈
[0,1]

– The free diffusion coefficients of the intra- and extra-
axonal compartments respectively, D1 and D2

– The permeability h =
Ma

D
in the intra-axonal compart-

ment; M is the permeability coefficient

– The exchange time in the extra-axonal compartments,τ

4 SIMULATION DATA

In order to estimate the underlying microstructure parameters and val-
idate our model, we performed several experiments using simulation
data. The benefit of using simulation data is that the ground truth about
the microstructure parameters is known and controllable.

Our diffusion MRI simulation data was derived from Monte Carlo
simulation of the geometric model with rectangular arrangement of
cylinders using CAMINO [6]. Our model was fitted to six constant-
gradient experiments with the following microstructure parameters:
various cylindrical radii: a = [1,1.9,3,5,7] (µm); the exchange rate
τ = 0.6 (s); the free diffusion coefficients of the intra-axonal and

extra-axonal water were assumed to be the same, D = 2e−9 (m2/s);
and the intra-axonal volume fraction f = 0.708. We set our experi-
mental parameters to be: δ = 2 (ms); diffusion time was chosen from
20 to 1060 (ms) with 14 linear increments; diffusion gradients were
applied only perpendicular to the axon axis (i.e. across a diameter)
and each simulation was repeated for six linear gradient amplitudes of
200−700 (mT/m) with SNR = 16.

5 RESULTS

We used a Markov chain Monte Carlo procedure to get samples of the
posterior distribution of the model parameters given the data. We used
broad uniform priors for all the scalar model parameters. Our proposed
distributions were Gaussian with standard deviations chosen manually
to give suitable acceptance rates. We initialized parameters to the true
value to speed up convergence. The MCMC was run for 10,000 itera-
tions, which yields approximately 100 independent samples from the
marginal posterior distribution of model parameters.

Figures 2 and 3 show our main results. Each histogram combines
a total number of 100 samples from MCMC runs. Figure 2 shows the
histogram of the marginal posterior distribution on radii a for each
of the various true a = [1,1.9,3,5,7] (µm). As mentioned earlier,
previous work [1] had much lower accuracy in recovery of smaller
radii (≈ 2µm) compared to larger radii. Our study was able to re-
cover radii at about the same variance for both small and large radii
(a = 1e−7−7e−7 (µm)). Figure 3 shows the histogram of the marginal
posterior distribution of the other microstructure parameters f (vol-
ume fraction), D (free diffusion coefficient) and τ (exchange rate). In
previous work [1], there was a downward bias in estimating the free
diffusion coefficient D. We were able to recover the diffusion coeffi-
cient quite close to the true value. For comparison, the orange lines in
the graph indicate the true value of the corresponding parameters from
simulation data. The black vertical lines indicate the mean value of
each estimation and their error bar corresponds to standard deviation.
Overall, the estimate of the microstructure parameters is accurate and
demonstrates the feasibility of recovering underlying microstructure
radii.

Fig. 3. Histogram of 100 samples drawn from posterior distributions on
volume fraction f , free diffusion coefficient D, and exchange rate τ at
various radii: a = [1,1.9,3,5,7] (µm) with color coding as in Figure 2.
The orange lines indicate the true value of f = 0.708, D = 2e−9 (m2/s)
and τ = 0.6 (s). The black lines indicate the mean value of each estimate
with error bars showing standard deviation. Note that overlapping bars
may not show on the figure.

6 DISCUSSION

We show here that we can recover axon radii and other microstruc-
tural features such as volume fraction and diffusion coefficient using
our model through a MCMC procedure. This lets us measure anatom-
ical and microstructural features of tissue noninvasively with a more
realistic model that integrates water exchange. Direct measurement



of axon radii could have a significant impact on our understanding of
white matter architecture and connectivity and improve detection of
abnormal development and changes.

Our model is based on two assumptions: (1) water diffusion within
axon is restricted, and (2) water molecules exhibit a slow exchange
rate. The first assumption, while not proven, is supported by much ex-
perimental evidence. It is reasonable to model the intra-axonal com-
partment of axons as a pack of cylinders containing water. The second
condition is also supported by studies that show the exchange rate may
be as high as 700ms [7].

Currently, a single value for the axon radius has been assumed per
voxel for simplicity. This can easily be extended in the future to in-
tegrate over a model distribution of axon radii. Also, in the current
model, we are assuming single axon direction per voxel. It could be
extended to model the distribution for direction using spherical har-
monic decomposition to detect fiber crossing and fiber kissing.

Our feasibility study of estimating direct microstructure features
such as radii based on simulation data provides compelling results,
but clearly requires further study. The next step is to apply our model
to real macaque data. Our method will be validated with radii distri-
butions measured from photomicrographs on the corpus callosum and
the cingulum bundle.

7 CONCLUSION

We presented a new composite analytical model of diffusion and ex-
change of water in white matter from diffusion MRI. Our work is a
first attempt to estimate microstructure features through diffusion MRI
model incorporating water exchage. Our results demonstrate the fea-
sibility of recovering underlying axon radii and other microstructure
features such as volume fraction and diffusion coefficient using the
model through the MCMC procedure from Monte Carlo simulation
data. We were able to achieve higher accuracy in recovering small
axon radii (≈ 2 µm) and diffusion coefficient than in previous work.

APPENDIX A

This derivation shows how we formulate the boundary condition, Eq.

(15). Based on our general solution to P
(1)
s (~r0|~r, t) in Eq. (13):

P
(1)
s (~r0|~r, t) = ∑∞

n=0 Cne−λntJn(kρ ρ0)Jn(kρ ρ)ein(ϕ−ϕ0)

we can derive:

D1
∂P

(1)
s

∂ρ
|ρ=a =

∞

∑
n=0

CnD1e−λntJn(kρ ρ0)J
′
n(kρ a)kρ ein(ϕ−ϕ0) (A-1)

MP
(1)
s |ρ=a =

∞

∑
n=0

CnMe−λntJn(kρ ρ0)Jn(kρ a)ein(ϕ−ϕ0) (A-2)

Incorporating Eq. (A-1)-(A-2) into our initial boundary condition for
the permeable membrane, Eq. (4):

D1
∂P

(1)
s

∂ρ
|ρ=a +MP

(1)
s |ρ=a = 0

gives us:

∞

∑
n=0

Cne−λntJn(kρ ρ0)[D1J′n(kρ a)kρ +MJn(kρ a)]ein(ϕ−ϕ0) = 0 (A-3)

which is equivalent to:

D1J′n(kρ a)kρ +MJn(kρ a) = 0 (A-4)

The parameters we defined earlier, kρ =
αnm

a
and h =

aM

D1
, have been

integrated into Eq. (A-4). We derive our boundary condition in Eq.
(15):

αnmJ′n(αnm)+hJn(αnm) = 0

APPENDIX B

Here we demonstrate how we derive the normalizing constants Anm in
Eqs. (16)-(17). Based on the orthogonality of Bessel functions, we
have:

∫ a

0
ρJn(kiρ)Jn(k jρ)dρ = 0(i 6= j)

= Ni(i = j)
(A-5)

where

Ni =
a2

2
{[J′n(kia)]2 +(1−

n2

a2k2
i

)J2
n (kia)} (A-6)

We define ki =
αnm

a
as before and can rewrite Eq. (A-6) as:

Nnm =
a2

2
[J′n(αnm)]2 +(1−

n2

α2
nm

)J2
n (αnm) (A-7)

Given our boundary condition Eq. (15): αnmJ′n(αnm)+hJn(αnm) = 0,
we can derive:

Nnm =
a2

2
(

h2 +α2
nm −n2

α2
nm

)J2
n (αnm) (A-8)

In order to derive our normalizing constant Anm in Eqs. (16)-(17), we
integrate Eq. (14), the propagator, on the cylindrical cross section at

time t = 0,ρ = ρ0,ϕ = ϕ0 and P
(1)
s = δ (~r−~r0):

∫ ∫
P

(1)
s ds = 1 (A-9)

Therefore, we have:

A2
nm

∫ ρ=a

ρ=0

∫ ϕ=2π

ϕ=0
ρJ2

n (
αnm

a
ρ)cos2(nϕ)dρdϕ = 1 (A-10)

Given that:

∫ 2π

0
cos2(nϕ)d(ϕ) = π(n 6= 0)

= 2π(n = 0)

(A-11)

we can derive A2
nm based on Eq. (A-8) and Eq. (A-11),

A2
nm =

1

2π

1

Nn
(n = 0)

=
1

π

1

Nn
(n 6= 0)

(A-12)

which is equivalent to the following in Eqs. (16)-(17):

A2
0m =

1

πa2

α2
0m

J2
0 (α0m)(h2 +α2

0m)
(A-13)

A2
nm =

2

πa2

α2
nm

J2
n (αnm)(h2 +α2

nm −n2)
,n 6= 0 (A-14)
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