
Bound Consistency for Binary Length-Lex Set Constraints

Justin Yip
Brown University

Supervisor: Pascal Van Hentenryck
Collaborators: Carmen Gervet, Grégoire Dooms

Abstract

The length-lex representation has been recently proposed for
representing sets in Constraint Satisfaction Problems. The
length-lex representation directly captures cardinality infor-
mation, provides a total ordering for sets, and allows bound
consistency on unary constraints to be enforced in time Õ(c),
where c is the cardinality of the set. However, no algo-
rithms were given to enforce bound consistency on binary
constraints. This paper addresses this open issue. It presents
algorithms to enforce bound consistency on disjointness and
cardinality constraints in time O(c3). Moreover, it presents
a generic bound-consistency algorithm for any binary con-
straint S which requires Õ(c2) calls to a feasibility subrou-
tine for S.

Introduction
The length-lex representation has been recently proposed
for representing sets in CSPs (Gervet & Van Hentenryck
2006) and it offers two computational benefits. First, con-
trary to earlier set representations such as the subset-bound
domain (Puget 1992; Gervet 1997), it features a total or-
dering on sets, which makes it possible to define, and en-
force, bound consistency (Van Hentenryck 1989). Bound
consistency cannot be enforced for subset-bound domains,
since they only use a partial ordering on sets.1 Second, the
length-lex domain directly integrates cardinality and lexi-
cographic information which are so important in set CSPs
as eloquently articulated in (Azevedo & Barahona 2000;
Sadler & Gervet 2008).

Gervet and Van Hentenryck (2006) showed how to en-
force bound consistency on many unary constraints in time
Õ(c), where c is the cardinality of the length-lex intervals.
However, they did not discuss binary constraints beyond
suggesting a number of inference rules to reduce the search
space. This is unfortunate since set CSPs typically involve
binary constraints over fixed cardinality sets such as disjoint-
ness (X ∩ Y = ∅) or, more generally cardinality constraints
of the form |X∩Y | ≤ k or |X∩Y | ≥ k where k is a positive
integer. These constraints naturally appear in applications
such as balanced incomplete block designs, Steiner systems,

1Some authors have proposed weaker definitions of bound con-
sistency for such cases.

cryptography problems, network design, and sport schedul-
ing problems, which are more generally cast as Combinato-
rial Design Problems (Colbourn, Dinitz & Stinson 1999).

This paper remedies this limitation. It presents a generic
bound-consistency algorithm for arbitrary binary constraints
over sets. The bound-consistency algorithm only assumes
the existence of an algorithm to check whether a constraint
C has a solution in two length-lex intervals X and Y , i.e.,
∃s ∈ X, t ∈ Y : C(s, t). The generic algorithm makes
O(c2 log n) calls to the feasibility algorithm, where c is the
cardinality of the sets and n is the size of the universe, i.e.,
the set of elements which may appear in the sets. The paper
also shows that, for disjoint and cardinality constraints, fea-
sibility checking can be performed in time O(c). Moreover,
by exploiting the constraint semantics, it is possible to re-
duce the complexity of the bound-consistency algorithm to
O(c3) for disjoint and cardinality constraints. These results
are particularly appealing, since the complexity is indepen-
dent of the size of the underlying universe.

To our knowledge, this paper thus presents the first poly-
nomial algorithms for enforcing bound consistency on set
constraints. The key technical insight of the paper is to rec-
ognize that length-lex intervals can be naturally decomposed
into a class of intervals that enjoys some nice closure proper-
ties, greatly simplifying the design of the algorithms. Once
this decomposition is obtained, the schema of the algorithms
resembles the overall design for unary constraints and com-
binatorial design algorithms in general.

The rest of the paper is organized as follows. The first two
sections recall the main notions in length-lex domains and
define the concepts of bound consistency. We then provide
an overview of the concepts and algorithms in the paper. The
concept of PF-closed interval is presented and we then show
how a length-lex interval can be decomposed into a sequence
of PF-closed intervals. The paper then covers the generic
successor algorithm at the core of the bound-consistency al-
gorithm and analyzes its complexity. A section is devoted to
the implementation of the disjoint constraint and the paper
is then concluded.

Length-lex Domains
Conventions For simplicity, we assume that sets take their
values in a universe U of integers {1, . . . , n} equipped with
traditional set operations. Set variables are denoted by

S1, S2, Elements of U are denoted by the letters e and
f possibly subscripted and sets are denoted by the letters
m,M, s, t, x, and y. A subset m of U of cardinality c is
denoted {m1,m2, ...,mc} (m1 < m2 < m3... < mc) and
thus mj denotes the j-th smallest value in m. The notation
mi..j is the shorthand for {mi,mi+1, ...,mj}. Finally, we
call c-set any set of cardinality c. Some algorithms in this
paper are only given for a fixed cardinality c but are easily
extended to the general case.

Length-lex Ordering The length-lex ordering � totally
orders sets first by cardinality and then lexicographically.
Definition 1 The length-lex ordering � is defined by:
s � t iff s = ∅ ∨ |s| < |t| ∨
|s| = |t| ∧ (s1 < t1 ∨ s1 = t1 ∧ s \ {s1} � t \ {t1})

Example 1 Given U = {1, .., 4}, we have ∅ � {1} �
{2} � {3} � {4} � {1, 2} � {1, 3} � {1, 4} � {2, 3} �
{2, 4} � {3, 4} � {1, 2, 3} � {1, 2, 4} � {1, 3, 4} �
{2, 3, 4} � {1, 2, 3, 4}.
Definition 2 Given a universe U , a length-lex interval is a
pair of sets 〈m,M〉. It represents the sets between m and
M in the length-lex ordering, i.e., {s ⊆ U | m � s �M}.
Example 2 (Length-Lex Interval) Given U = {1, .., 6},
the interval 〈{1, 3, 4}, {1, 5, 6}〉 denotes the set
{{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}}.

Bound Consistency
Since the length-lex ordering is a total order on sets, it is
possible to enforce bound consistency on set constraints. A
constraint is bound-consistent if each bound of each domain
belongs to at least one solution of the constraint which sat-
isfies the bound constraints.
Definition 3 (Bound Consistency) A constraint C over two
set variables S1 and S2 with respective domains X =
〈mX ,MX〉 and Y = 〈mY ,MY 〉 is bound-consistent if

∃y ∈ Y : C(mX , y) ∧ ∃y ∈ Y : C(MX , y) ∧
∃x ∈ X : C(x,mY) ∧ ∃x ∈ X : C(x,MY).

A bound-consistency algorithm (see Algorithm 1) deter-
mines if the constraint is consistent with some values in the
domains and finds the first (resp. last) values in the domains
for which there exists a solution. Our bound-consistency al-
gorithms are expressed in terms of three functions hs, succ,
and pred for feasibility checking and updating the bounds.
Only the first two are discussed in this paper, the predecessor
computation being essentially similar to the successor func-
tion. They are specified as follows for the left variable of the
constraint (interval X). The right variable is symmetric.
Specification 1 (hs) Given a constraint C and length-lex in-
tervals X and Y , hs〈C〉(X,Y) ≡ ∃x ∈ X, y ∈ Y : C(x, y).

Specification 2 (succX) For a constraint C and two length-
lex intervals X and Y such that hs〈C〉(X,Y), function
succX〈C〉(X,Y) returns the smallest set x ∈ X in the �
ordering which belongs to a solution of the constraint, i.e.,

succX〈C〉(X,Y) ≡ min
�
{x ∈ X

∣∣∣∃y ∈ Y : C(x, y)}.

Algorithm 1 bc〈C〉(X = 〈mX ,MX〉, Y = 〈mY ,MY 〉)
1: if hs〈C〉(X,Y) then
2: mX ← succX〈C〉(X,Y)
3: MX ← predX〈C〉(X,Y)
4: mY ← succY 〈C〉(Y,X)
5: MY ← predY 〈C〉(Y,X)
6: return true
7: else
8: return false

Specification 3 (predX) For a constraint C and two length-
lex intervals X and Y such as hs〈C〉(X,Y), function
pred〈C〉(X,Y) returns the largest set x ∈ X in the � or-
dering which belongs to a solution of the constraint, i.e.,

predX〈C〉(X,Y) ≡ max
�
{x ∈ X

∣∣∣∃y ∈ Y : C(x, y)}.

Overview of the Generic Successor Algorithm
This paper first presents a generic bound-consistency algo-
rithm for binary set constraints. The algorithm only relies
on the implementation of function hs, the functions succ
and pred being implemented generically in terms of hs. In
other words, it only relies on a function checking the exis-
tence of a solution. We show later in the paper that, for some
specific constraints, the time complexity of the generic algo-
rithm can be improved by providing dedicated implementa-
tions of succ and pred.

To ease understanding, it is useful to give a high-level
overview of the structure of the algorithm. They key step is
to partition the length-lex interval into so-called PF-closed
set intervals which greatly simplify the design of the algo-
rithm. Informally speaking, a PF-closed set interval consists
of four parts: a prefix P , a set F , a sub-universe V , and a
cardinality c. Such a PF-closed set interval 〈P, F, V, c〉 de-
notes all the c-sets starting with prefix P , following by at
least one element of F , and taking their remaining values in
V . These PF-closed intervals are attractive since they enjoy
some compactness properties that simplify the inferences.

The bound-consistency algorithm thus partitions the do-
mains X and Y of the variables in sequences of PF-closed
set intervals [X1, . . . , Xk] and [Y1, . . . , Yl]. To find, say, a
new lower bound for X , the algorithm considers the PF-
closed set intervals Xi in sequence until a new bound is
found. For a specificXi, the algorithm finds the lower bound
with respect to each Yj and selects the smallest one in the
length-lex ordering if one exists. Otherwise, the algorithm
moves to Xi+1.

The core of the generic algorithm thus consists of apply-
ing bound consistency on domains which are PF-closed set
intervals. This step can be decomposed into a number of
feasibility checks and hence the generic algorithm only re-
lies over the existence of a function hs〈C〉 over PF-closed
set intervals. If hs〈C〉 runs in time α, the complexity of the
generic algorithm is O(αc2 log |U |), the decomposition step
generating at most O(c) PF-closed set intervals. We now go
into the detail of the algorithm.

〈{1, 2, 5, 6}, {4, 6, 7, 8}〉

H:〈{1, 2, 5, 6}, {1, 6, 7, 8}〉 B:〈{2, 3, 4, 5}, {4, 6, 7, 8}〉 T :〈〉

B′:〈{1, 3, 4, 5}, {1, 6, 7, 8}〉H ′:〈{1, 2, 5, 6}, {1, 2, 7, 8}〉 T ′:〈〉

1

Figure 1: Illustrating the Decomposition.

PF-Closed Intervals
We now specify PF-closed intervals formally

Definition 4 Let P , F and V be sets and c, an integer. A
PF-closed interval is a 4-tuple pf〈P, F, V, c〉 satisfying

F ⊆ V ∧ ∀e ∈ V \ F : e > max(F)∧
|V \ F | ≥ c− |P | − 1 ∧max(P) < min(F)

and denoting all sets{
P ∪ {f} ∪ s

∣∣f ∈ F ∧ s ⊆ V ∧ |P ∪ {f} ∪ s| = c
}
.

A key property of a PF-closed interval is that it contains all
the c-sets starting with P , taking at least an element in F ,
and its other elements in V . In the following, we use Xpf to
denote the PF-closed interval pf〈PX , FX , VX , cX〉.
Example 3 (PF-closed interval) Consider the length-
lex interval 〈{1, 3, 4}, {1, 5, 8}〉 and universe
{1, .., 8}. It is equivalent to the PF-closed inter-
val pf〈{1}, {3, 4, 5}, {3, .., 8}, 3〉 which contains all
sets {e1, e2, e3} with e1 = 1, e2 ∈ {3, 4, 5}, and
e3 > e2 ∧ e3 ∈ {3, .., 8}.
Example 4 (Counter-example) Consider the length-lex in-
terval 〈{1, 2, 5, 6}, {1, 6, 7, 8}〉 and universe {1, .., 8}. Its
denotation cannot be captured by a PF-closed interval. In-
deed, it it does not contain all sets with a second element in
{2, .., 6}, since {1, 2, 3, 4} is not in the length-lex interval.

We now describe how to partition a length-lex interval into
a minimal set of PF-closed intervals.

Domain Decomposition
Let X be a length-lex interval 〈m,M〉. The decomposition
first partitions X into a head H, a body B, and a tail T. The
body, if it exists, is guaranteed to be a PF-closed interval.
The head, if it exists, is a length-lex interval containing all
c-sets in X beginning with m1, while the tail, if it exists,
is the length-lex interval containing all c-sets in X begin-
ning with M1. The head and the tail are not guaranteed to
be PF-closed intervals, in which case the decomposition is
applied recursively. The decomposition is described visu-
ally in Figure 1 and Example 5. Observe that the body has
a lower bound which is the smallest set starting with 2. The
recursive decompositions of the head always produce empty
tails, which is critical for the complexity and the size of the
decomposition. Indeed, the head has an upper bound which
is the largest element starting with 1. So, when we decom-
pose the head H further, the tail T ′ is empty.

More formally, the decomposition algorithm takes a
length-lex interval 〈m,M〉 in a universe U = {1, .., n} and
returns its minimal partition into PF-closed intervals. Since
the decomposition is recursive, the specification needs to in-
clude a prefix set P which is initially empty. The algorithm

also receives the integer n to represent the universe and uses
:: to denote the concatenation of two sequences and ε to de-
note an empty sequence.
Specification 4 Given universe U = {1, .., n}, Algo-
rithm decomp(m,M,P, n) returns an ordered sequence
[X1

pf , · · · , Xw
pf] of PF-closed intervals satisfying]

i∈[1,..,w]

Xi
pf = 〈P]m,P]M〉

and ∀i < j ∈ [1, .., w] : ∀s ∈ Xi
pf , t ∈ X

j
pf : s ≺ t.

Algorithm 2 decomp(m,M,P, n)
1: c← |m|
2: H,B, T ← ε, ε, ε
3: h, t← m1,M1

4: if h = t then
5: return decomp(m2..c,M2..c, P ∪ {h}, n)
6: if m 6= {m1,m1 + 1, ..,m1 + c− 1} then
7: H ← decomp(m2..c, {n− c+ 2, .., n}, P ∪ {m1}, n)
8: h← h+ 1
9: if M 6= {M1, n− c+ 2, .., n} then

10: T ← decomp({M1 + 1, ..,M1 + c − 1},M2..c, P ∪
{M1}, n)

11: t← t− 1
12: if h ≤ t then
13: B ←

ˆ
pf〈P, {h, .., t}, {h, .., n}, c+ |P |〉

˜
14: return H :: B :: T

The algorithm is depicted in Algorithm 2. Lines 4–5 create
factorize the common prefixes. Lines 6–8 create a head if
necessary, i.e., if m is not minimal. Lines 9–11 creates a
tail if M is not maximal. Line 12–13 create the body if
necessary (e.g., 〈{1, 2, 5, 6}, {2, 5, 7, 8}〉 has no body) and
line 14 returns the partition. These two recursive calls in
lines 7 and 10 increment the size of the prefix. The first in
line 7 now has a maximal second argument compatible with
the prefix, while the recursive call in line 10 has a minimal
first argument compatible with its prefix.

Example 5 (The Decomposition) We illustrate the algo-
rithm on the length-lex interval 〈{1, 2, 5, 6}, {4, 6, 7, 8}〉
and universe U = {1, .., 8}. The set m = {1, 2, 5, 6}
is not minimal ({1, 2, 3, 4} would be) and we ob-
tain two disjoint intervals H:〈{1, 2, 5, 6}, {1, 6, 7, 8}〉 and
B:〈{2, 3, 4, 5}, {4, 6, 7, 8}〉. Observe that B contains all
sets beginning with either 2, 3, or 4 and it is a PF-closed
interval pf〈∅, {2, 3, 4}, {2, .., 8}, 4〉.

A recursive call is performed on H . The algorithm
sets the prefix to {1}, obtaining a length-lex interval
〈{2, 5, 6}, {6, 7, 8}〉. Observe that {6, 7, 8} is maximal,
so subsequent recursive calls do not generate tails. Once
again, we obtain two sub-intervals 〈{2, 5, 6}, {2, 7, 8}〉 and
〈{3, 4, 5}, {6, 7, 8}〉 which when added to the current prefix
{1} form H ′ and B′ = pf〈{1}, {3, .., 6}, {3, .., 8}, 4〉.

Since all sets in the first interval begin with 2, the algo-
rithm adds it to the prefix and continues recursively again.
Since 〈{5, 6}, {7, 8}〉 in addition to prefix {1, 2} forms the
PF-closed interval pf〈{1, 2}, {5, 6, 7}, {5, .., 8}, 4〉 which
is equal to H ′, there is no head and tail in this call and the

Algorithm 3 succ〈C〉(〈mX ,MX〉, 〈mY ,MY 〉)
1: [X1

pf , .., X
i
pf]← decomp(mX ,MX , ∅, n)

2: [Y 1
pf , .., Y

j
pf]← decomp(mY ,MY , ∅, n)

3: m′X ← >
4: for Xpf = X1

pf to Xi
pf do

5: for Ypf = Y 1
pf to Y j

pf do
6: if hs〈C〉(Xpf , Ypf) then
7: m′X ← min(m′X , succ〈C〉(Xpf , Ypf))
8: if m′X 6= > then
9: return m′X

10: return >

algorithm concludes. As a result, 〈{1, 2, 5, 6}, {4, 6, 7, 8}〉
is partitioned into

〈{1, 2, 5, 6}, {1, 2, 7, 8}〉
〈{1, 3, 4, 5}, {1, 6, 7, 8}〉
〈{2, 3, 4, 5}, {4, 6, 7, 8}〉

giving the PF-closed intervals

pf〈{1, 2}, {5, 6, 7}, {5, .., 8}, 4〉
pf〈{1}, {3, .., 6}, {3, .., 8}, 4〉
pf〈∅, {2, 3, 4}, {2, .., 8}, 4〉.

Lemma 1 Algorithm decomp partitions a length-lex inter-
val of c-sets into O(c) PF-closed intervals and takes O(c2)
time.

Proof: (sketch) After the first call of Algorithm 2, the head
H is subsequently decomposed only into heads and bodies
(no tails) and the tail is subsequently decomposed only in
bodies and tails (no heads). Hence each call will only make
one additional PF-closed interval and the depth of recursion
can be at most c since the prefix length is incremented in
each recursive call. Hence the maximum number of calls
and PF-closed intervals is 2c−1, which isO(c). For each of
those calls, the comparisons in lines 4 and 7 take O(c) time
and the total time complexity is O(c2). �

Note that the sets generated from the decomp algorithm
satisfy the conditions of PF-closed intervals. These proper-
ties always hold in the remainder of this paper as well. When
PF-closed intervals are created, it will always be by remov-
ing the same set from the F and V parts of a PF-closed inter-
val, an operation which obviously preserves the properties.

Generic Successor Algorithm
We now turn to the generic successor algorithm for finding
a new lower bound which is specified in Specification 2 and
depicted in Algorithm 3. The algorithm takes a binary con-
straint and the length-lex intervalsXll and Yll over universe
U = {1, .., n} as inputs. Recall that its goal is to find a
new lower bound for Xll. The algorithm first partitions each
length-lex intervals into minimal sequences of PF-closed in-
tervals X and Y (line 1..2). It then seeks, for each of PF-
closed interval Xpf ∈ X , the first set having a support in Y .
The algorithm returns the smallest of those sets as the new
lower bound for X .

The successor algorithm on length-lex intervals uses the
feasibility algorithm hs〈C〉(Xpf , Ypf) on PF-closed inter-
vals, as well as the successor algorithm succ〈C〉(Xpf , Ypf)
on PF-closed intervals. The feasibility algorithm must
be provided for each constraint. The successor algorithm
succ〈C〉(Xpf , Ypf) on PF-closed intervals can be defined
generically in terms of the feasibility algorithm.

The implementation of succ〈C〉(Xpf , Ypf) is shown in
Algorithm 4 and returns the set s satisfying the specification.
The algorithm first assigns the prefix set to the beginning of
s (line 1) and then iterates over the remaining positions in
the set s (lines 3–6). The first execution of line 4 selects the
element of FX , while subsequent ones take the value from
VX . The selection of the value f in line 4 can be obtained
by a dichotomic search on the range [l, h], calling hs〈C〉 at
most O(log(h − l + 1)) times. Line 5 ensures that the se-
lected values are increasing, while line 6 allows values of
VX to be selected.

Algorithm 4 succ〈C〉(Xpf = pf〈PX , FX , VX , cX〉, Ypf)
1: s1..|PX | ← PX

2: l, h = min(FX),max(FX)
3: for i = |PX |+ 1 to cX do
4: si ← min

˘
l ≤ f ≤ h

˛̨
hs〈C〉(pf〈s1..i−1, {f}, {e ∈

VX |e ≥ f}, c〉, Ypf)
¯

5: l← si + 1
6: h← max(VX)
7: return s

We illustrate the algorithm on the binary disjoint constraint
D(s, t) ≡ s ∩ t = ∅.
Example 6 (succ〈C〉(Xll, Yll)) Consider the binary dis-
joint constraint over the length-lex intervalsXll =
〈{1, 2, 5}, {4, 6, 7}〉, Yll = 〈{1, 2, 3}, {2, 4, 7}〉. The de-
composition yields the sequences

X1
pf = pf〈{1, 2}, {5, 6, 7}, {5, .., 7}, 3〉,

X2
pf = pf〈{1}, {3, .., 6}, {3, .., 7}, 3〉,

X3
pf = pf〈∅, {2, 3, 4}, {2, .., 7}, 3〉

and
Y 1

pf = pf〈∅, {1}, {1, .., 7}, 3〉
Y 2

pf = pf〈{2}, {3, 4}, {3, .., 7}, 3〉.
Lines 4-9 in Algorithm 3 find the first PF-closed in-
terval in [X1

pf , X
2
pf , X

3
pf] with a support in Y 1

pf or
Y 2

pf (if it exists). The first PF-closed interval is X1
pf

(pf〈{1, 2}, {5, 6, 7}, {5, 6, 7}, 3〉) which is tested for feasi-
bility with the Y intervals. By just considering the prefix of
X1

pf , it can be seen that X1
pf has no support in the Y inter-

vals which contain either 1 or 2 and the new lower bound of
X will be greater than any set in X1

pf . The algorithm then
considers X2

pf . There is no solution with Y 1
pf since both in-

tervals always contain 1. The condition hs〈D〉(X2
pf , Y

2
pf)

holds and hence there exists a supported value in X2
pf . Line

7 invokes the succ algorithm applied to two PF-closed in-
tervals, which will return the first successor. This last com-
putation is discussed in the next example.

Example 7 (succ〈C〉(Xpf , Ypf)) Consider a
call succ〈D〉(Xpf , Ypf) to Algorithm 4 with
Xpf = 〈{1}, {3, .., 6}, {3, .., 7}, 3〉 and Ypf =
〈{2}, {3, 4}, {3, .., 7}, 3〉. Since all sets in Xpf begin
with PX , it is also a prefix of s and line 1 executes
s1..|PX | ← PX . As a result, we have s1 = 1, i starts at 2,
l = 3, and h = 6. On line 4, the algorithm sets s2 to 3 since
there exists a set starting with {1, 3} compatible with Ypf

(for instance {1,3,6} and {2,4,7}). On line 5, the l is set to
4 and the algorithm searches for values not less than 4 in
the next iteration. On line 6, h is set to 7 for all subsequent
iterations. In the last iteration 5 is found on line 4 and the
set {1, 3, 5} is returned.

We prove several results on the generic successor algorithm.

Lemma 2 Algorithm 4 satisfies the Specification 2 when the
two arguments are both PF-closed intervals.

Proof: The algorithm constructs the value s from left to
right. At each step (line 4), it inserts the minimum consistent
value which will eventually lead to a solution. If there would
exist another solution s′ with s′ ≺ s, those should differ at
some index i and s′i < si. But this contradicts the fact that
si is assigned to the smallest value which leads to a solution.
�

Lemma 3 Assume that algorithm hs〈C〉(Xpf , Ypf) takes
time O(α). Then, Algorithm 4, succ〈C〉(Xpf , Ypf), takes
time O(αc log n).

Proof: The for-loop in line 3 iterates at most from 1 to cX .
In each iteration, the search in line 4 uses a binary search,
giving a time complexity of O(αc log n). �

Lemma 4 Algorithm 3, succ〈C〉(Xll, Yll), takes time
O(αc2 log n).

Proof: By lemma 1, lines 1-2 take O(c2) and the number
of PF-closed intervals in the partitions is O(c). Hence the
total complexity of the calls to hs〈C〉 in line 6 is O(αc2).
Moreover, because of lines 8–9, there can be at most c calls
to Algorithm 4 on line 7, which is O(αc log n). The overall
complexity is thus O(αc2 log n). �

Consider now the case in which there exists a dedicated
implementation of succ〈C〉(Xpf , Ypf) for C and assume that
succ〈C〉(Xpf , Ypf) takes time O(β). Then, Algorithm 3
takes O(αc2 + βc). The next sections study specific im-
plementations of hs〈C〉(Xpf , Ypf) and succ〈C〉(Xpf , Ypf).

Binary Disjoint Constraint
Consider the binary disjoint constraint D(s, t) ≡ s ∩ t = ∅.
We give the feasibility check hs〈D〉(Xpf , Ypf) and a spe-
cialized implementation of succ〈D〉(Xpf , Ypf). Algorithms
for cardinality constraints such as atmost-k or atleast-k are
similar but omitted for space reasons.

Feasibility Check
The feasibility check hs〈D〉(Xpf , Ypf) is defined for two
PF-closed intervals : Xpf = pf〈PX , FX , VX , cX〉 and
Ypf = pf〈PY , FY , VY , cY 〉. For simplifying the presenta-
tion, we first assume the prefixes PX and PY are empty and

introduce a shorthand notation for PF-closed intervals with
an empty prefix: A F-closed interval is a 3-tuple f〈F, V, c〉
denoting the interval pf〈∅, F, V, c〉.

Consider hs〈D〉(Xf , Yf) defined for two F-closed inter-
vals : Xf = f〈FX , VX , cX〉 and Yf = f〈FY , VY , cY 〉. In
other words, the goal is to find two sets s ∈ Xf and t ∈ Yf

such that s ∩ t = ∅. To ensure feasibility, there must exist
enough elements for s and t, i.e., cX + cY ≤ |UX ∪ UY |.
Moreover, at least one element of FX and FY must be taken
by s and t respectively. We have the following conditions:
(1) the union of FX and FY must contain at least 2 ele-
ments since each set must take at least one (distinct from
the other), (2) we denote FY = FY \ VX and symmetrically
FX = FX \ VY . If Xf is a singleton, then FY cannot be
empty (cX = |VX | ⇒ FY 6= ∅) . All of these conditions
lead to the following feasibility function hs of the binary
disjoint over two F-closed intervals.

Algorithm 5 hs〈D〉(Xf , Yf)
1: return cX + cY ≤ |VX ∪ VY | ∧ |FX ∪ FY | ≥ 2 ∧

cX = |VX | ⇒ FY 6= ∅ ∧ cY = |VY | ⇒ FX 6= ∅

Lemma 5 Algorithm 5 implements Specification 1 when the
two arguments are F-closed intervals.
Proof: ⇒: If a pair of disjoint sets exists in Xf and Yf , it
clearly satisfies the conditions.
⇐:We construct a pair of disjoint sets (s ∈ Xf ,t ∈ Yf).
Note first that, since all elements from FX are smaller than
the elements from VX \ FX , we first ensure that s and t
contain at least one element from FX and FY respectively.
Then we add more elements to reach the right cardinality.
There are four cases regarding FX and FY :

1. FX 6= ∅ and FY 6= ∅. This is the easiest case: Just pick
min(FX) for s and min(FY) for t.

2. FX 6= ∅ and FY = ∅. Pick min(FX) for s but for t we
must pick an element which could be used by s as well.
However by cX = |VX | ⇒ FY 6= ∅, we can assign an
element from FY ∩ VX to t and build a disjoint s since
cX < |VX |.

3. The case FX = ∅ and FY 6= ∅ is symmetric.
4. Finally, when both sets FX and FY are empty, by |FX ∪
FY | > 2, we can pick two disjoint elements for s and t.

Now, the F constraints are solved, s and t each contain one
element and two elements have been consumed from VX ∪
VY . We fill s and t to their respective cardinality by inserting
cX − 1 elements in s and cY − 1 elements in t. We can do
so since |VY ∪ VX | − 2 ≥ cX + cY − 2. �

The disjoint feasibility function over PF-closed intervals
builds on Algorithm 5 over F-closed intervals. It further
takes into account the prefix sets PX and PY .

Algorithm 6 hs〈D〉(Xpf , Ypf)
1: return (PX ∩ PY = ∅) ∧ hs〈D〉(f〈FX \ PY , VX \
PY , cX − |PX |〉, f〈FY \ PX , VY \ PX , cY − |PY |〉)

Lemma 6 Algorithm 6 implements Specification 1 when
two arguments are PF-closed intervals.

Proof: (sketch) We construct a pair of sets s ∈ Xpf and
t ∈ Ypf s.t. s∩t = ∅. Clearly PX must be disjoint from PY .
Since s should be disjoint from PY , s must take its value
in VX \ PY . Similarly for t. The feasibility check is now
applied to two F-closed intervals (see conditions above).
Note that by removing the same prefix PX from FY and
VY , we satisfy the properties of PF-closed intervals. �

Lemma 7 Algorithm 6 takes O(c).

Proof: (sketch) The proof relies on the fact that the sets
manipulated by this algorithm can be represented by O(c)
intervals. First, the P -sets contain at most c elements. Then
the sets F and V generated by the decomp algorithm are just
one interval (see line 11). Algorithm 6 removes a set P from
those intervals F and V leading to at most c + 1 intervals.
Finally, Algorithm 5 computes the intersection and union of
these sets, operations taking O(c). �

Specialized succ〈D〉
We now present a succ algorithm for the binary disjoint con-
straint over PF-closed intervals. Like for the hs algorithm,
the algorithm removes the prefixes and calls a F-closed inter-
vals version of the algorithm. Algorithm 7 works by building
a set s one element at a time from index 1 to index cX (lines
2–10). All elements which are not used by s can be used by
t (line 9). The smallest available element cur (lines 1, 5, and
10) is typically added to set s. However, two special cases
must be recognized. First, if the set t is empty and cur is the
last element in FY (lines 3–5), then cur must be assigned to
t and cannot be assigned to s (line 5). Second, if the set t
must take all its available elements (line 6), then we simply
assign to s the smallest elements remaining (line 7). Note
that, when elements are skipped in s, they are assigned to t
(line 9), allowing as much freedom for s as possible.
Lemma 8 Algorithm 7 implements Specification 2 when the
two arguments are F-closed intervals.

Proof: Omitted due to lack of space.

Lemma 9 Algorithm 8 succ〈D〉(Xpf , Ypf) takes O(c).

Proof: (sketch) As in the previous proof, the sets involved
are composed of O(c) intervals. Now, in algorithm 8, in

Algorithm 7 succ〈D〉(Xf , Yf)
Assume: s0 = −∞
1: cur ← min(FX)
2: for i = 1 to cX do
3: t← {e ∈ VY \ s|e < cur}1..cX

4: if t = ∅ ∧ cur = max(FY) then
5: t← {cur}
6: cur ← min{e ∈ VX |e > cur}
7: if |t] {e ∈ VY |e > si−1}| = cY then
8: return (s] {e ∈ VX \ VY |e ≥ cur})1..cX

9: si ← cur
10: cur ← min{e ∈ VX |e > cur}
11: return s1..cX

Algorithm 8 succ〈D〉(Xpf , Ypf)
return PX]succ〈D〉(f〈FX\PY , VX\PY , cX−|PX |〉, f〈FY \
PX , VY \ PX , cY − |PY |〉)

lines 3, 6 and 10, we can compute the required values by
storing the current position in VX and VY and performing
only one pass from left to right over these sets during the
whole loop of line 2. It is similar in line 7, in which we can
compute the quantity |{e ∈ VY |e > si−1}| by computing
|VY | beforehand and then remove the size of the intervals
we need to skip as i grows and si−1 becomes known.

Conclusion
Gervet and Van Hentenryck (2006) introduced the length-lex
representation for sets and showed that bound consistency
can be enforced in Õ(n) for unary constraints. They left
open whether it is possible to achieve bound consistency on
binary constraints. This paper answered this question pos-
itively and showed how to enforce bound consistency for
binary constraints in time Õ(c2α), where c is the cardinality
of the sets (typically much smaller than n = |U |) and α is
the complexity of a feasibility subroutine. The paper also
presented a specialized algorithm in O(c3) for the disjoint
constraint, which generalizes to atmost-k and atleast-k con-
straints. The result should extend to constraints of arity k ,
giving an algorithm which runs in time Õ(ckα). It would be
interesting to study whether this can be improved by exploit-
ing the constraint semantics. Similarly, the implementation
of global constraints and pushing lexicographic constraints
within existing constraints are important research directions.

References
Azevedo, F., Barahona, P. 2000. Modelling Digital Circuits Prob-
lems with Set Constraints. in CL-2000.
Colbourn, C. J. , Dinitz, J.H., Stinson. 1999. Applications of
Combinatorial Designs to Communications, Cryptography, and
Networking. Cambridge Univ. Press.
Gervet, C. 1997. Interval Propagation to Reason about Sets:
Definition and Implementation of a Practical Language. In Con-
straints journal, volume 1(3).
Gervet, C., Van Hentenryck, P. 2006. Length-lex Ordering for
Set CSPs. In Proc. AAAI’06.
Kreher, D.L., Stinson, D.R. 1999. Combinatorial Algorithms.
The CRC Press.
Puget, J-F. 1992 PECOS a High Level Constraint Programming
Language In Proc. of Spicis.
Sadler, A., Gervet, C. 2008 Enhancing Set Constraint Solvers
with Lexicographic Bounds. Journal of Heuristics, volume 14(1).
Van Hentenryck, P. 1989 Constraint Satisfaction in Logic Pro-
gramming. The MIT Press.

