
Expressive Rendering with Watercolor

Patrick J. Doran∗

Brown University
John Hughes†

Brown University

Figure 1: Source and result of watercolor rendering

Abstract

We propose comprehensible rendering of Google Streetview Im-
ages using watercolor textures and line drawings. We discuss our
experiments and results of watercolor rendering.

Keywords: watercolor, texture synthesis, non-photorealistic

1 Introduction

This work is part of a larger project, whose goal is to replace Google
Streetview images with non-photorealistic renderings because it
can be visually pleasing, reduce bandwidth requirements, and be
more informative than the original photos. We do so using water-
color textures and line drawing of important features. This work
describes our experiments with watercolor rendering.

In particular, we aim to render trees in watercolor texture like
Michael Gage’s watercolors, see Figure 2. Another student has
worked on indentifying vegetation.

We took two approaches: texture synthesis and watercolor process-
ing. We first tried to transfer an existing watercolor texture onto
the photo. We alter the monchrome texture to be in the target’s col-
orspace and then try existing texture tranfer algorithms. Next we
tried applying image segmentation and filters to fake watercolor ef-
fects. In the following we discuss our experiments, report on the
results and on future designs.

∗e-mail: pdoran@cs.brown.com
†e-mail: jfh@cs.brown.edu

1.1 Related Work

There has been a lot of work in collecting images of cities at the
street level for navigation, most notably Google’s Street View 360◦

panoramas. These sort of images are helpful in determining what
your destination will look like at eye level. This information has
moved to mobile devices, but can use significant bandwidth.

Similar work to our own has been done for Large City Mod-
els [Quillet et al. 2006]. They focus on rendering edges and re-
constructing the images as a 3d model of the city. We do not seek
to reconstruct 3d models. We want only to process existing data in
such a way that it can reduce bandwidth and still be as informative
as the original photo.

2 Approaches

2.1 Computer Generated Watercolor

Simulating watercolor effects certainly would produce the desired
effect. However, a proper simulation is too complex and slow for
our purposes. We do not seek to be physically accurate like [Curtis
et al. 1997]; we want near real-time processing of images.

2.2 Texture Synthesis

Texture synthesis appeared to be a reasonable approach to the prob-
lem. The idea is that a watercolor painting already has the texture
we want, so we need only copy it.

The original intent of this work was to transform a monochrome re-
gion, specifically green representing trees, into a watercolor texture.
The source watercolor texture may not have the same color as the
the target region, e.g. we may want to use a blue watercolor texture
and a green region as a target. This can be remedied by transform-
ing the watercolor texture to the target’s colorspace. In an example
pipeline, an artist provides a monochrome watercolor painting with
a light-to-dark variation. The algorithm performs PCA on the tex-
ture and target image in RGB colorspace. Change of basis is per-
formed mapping the texture into the target image’s colorspace. This
only works well if both the target region and watercolor texture are



(a) Piazza Roma (b) Las Terrazas

Figure 2: Goal paintings by Michael Gage

(a) Texture (b) Target

(c) New Texture (d) Ashikhmin Synthesis (e) Image Quilting

Figure 3: Texture Synthesis Approach

monochrome. Once the texture has the correct color, texture syn-
thesis (guided by an input image) can be performed.

2.2.1 Ashikmin’s Texture Synthesis

Synthesizing Natural Textures [Ashikhmin 2001] was our first ap-
proach to render watercolor because it was fast and easy to imple-
ment. The algorithm works by initializing the output to random
noise and then for each pixel in scanline order search the L-shaped
neighborhood of the current pixel in the output image for a can-
didate whose neighborhood in the texture is most like the current
pixel’s; then copy the corresponding texture pixel to the output im-
age. This is a very straightfoward way to render a texture. This
tends to copy strips of the original texture to the output image and
using larger neighborhoods increases the size of the strips.

This works well for what its intended purpose: quasi-repeating pat-
terns of irregularly shaped objects. This did not work well for wa-
tercolor. The watercolor texture is not a quasi-repeating pattern.
The underlying paper texture may be so, but the color is not. The
result tended to be more pointillist than watercolor.

2.2.2 Image Quilting

Image Quilting [Efros and Freeman 2001] is a slighlty more com-
plicated approach to texture synthesis. This algorithm differs from
the above by copying patches of texture instead of single pixel ren-
dering. The algorithm works by choosing a patch from the texture
that minimizes the difference between the underlying target image

and the overlap region of the patches that came before it and then
performing a minimum seam cut in the overlap region.

Instead of using dynamic programming to solve for the cut, we used
a GraphCut approach. This effectively turned the algorithm into
GraphCut textures [Kwatra et al. 2003]. This worked well to copy
sections of watercolor into the output image, but the seams were
far too noticeable. To minimize the appearance of seams, Poisson
image blending [Pérez et al. 2003] was used during the composite
of each patch. Unfortunately, Poisson blending tended to flatten the
color of the output image to the point where the algorithm no longer
appeared to be guided by the input image. Following these texture
synthesis experiments, we abandoned this approach.

2.3 Bousseau’s Watercolor Rendering

In Bousseau’s Interactive Watercolor Rendering [Bousseau et al.
2006] watercolor images are created from photos by first abstract-
ing the photo by some form of color segmentation, such as mean
shift or other clustering algorithms. Then the colors are modified by
a darkening formula based on an intensity image input that fakes a
simulated effect such as turbulent flow or edge darkening. This ap-
proach works better for our purposes as it was created specifically
for rendering watercolor. Also, it is much faster than the texture
synthesis. For this reason, we chose to build off Bousseau’s work.



3 Watercolor Processing

3.1 Bousseau’s Work

Bousseau’s work on interactive watercolor rendering was for more
than just non-photorealistic rendering of images, but also for ren-
dering 3d scenes. We are modifying existing photos, so we built
our algorithm off his photo processing.

3.1.1 Color Modification

Bousseau provides a formula for color darkening where C and C′

are colors and d is the pigment density parameter. The parameter d
is determined by image intensity T ∈ [0, 1] and a global darkness
scale β. The color is repeatedly modified by the darkening formula
using input T that fakes a type of watercolor effect (turbulent flow,
edge darkening, etc.).

C′ = C − (C − C2)(d− 1) (1)
d = 1 + β(T − 0.5) (2)

3.1.2 Pigment Density Variation

A watercolor image appears darker where the pigment is denser.
Paper, turbulent flow and pigment dispersion all affect the density
of watercolor in the image. The greyscale image of a paper, Perlin
noise, and sum of gaussians can be used as input the pigment den-
sity function to simulate such effects. We chose to remove the sum
of gaussians as the effect it produced was not what we wanted.

3.2 Our Work

Bousseau’s work was designed for running on a GPU. We have
no such constraint for speed right now, we only want a reasonable
way to process images into a watercolor. We have expanded upon
Bousseau’s work without realtime constraints.

3.2.1 Image Segmentation

Bousseau’s work calls for using mean shift clustering to segment
the image. For our work we have used mean shift and a K-Means
based clustering approach. Both are equally viable for segmenting
the image. For mean-shift we use a radius that is 10% of the RGB
colorspace. We use K-means clustering for targeting specific ob-
jects in an image to get a color scale for the object, e.g. a green
scale for trees where K is 4.

After clustering, small color regions remain. We apply morpholical
smoothing to further abstract the photo. The size of the morpholog-
ical smoothing kernel can be viewed as the brush size. We choose
a smoothing size based on the size of the image with the intent to
reduce most of the fine details in favor of large color regions.

3.2.2 Edge Darkening

Bousseau’s paper creates darker edges by modifying the pigment
density function using the gradient intensity of the original image
over a very small window. This leads to very limited edge darken-
ing. We found that this window should be adjusted to reflect the
size of an image. In a large image it would be difficult to notice
the 1-pixel width edge-darkening region. For this reason, we use a

variable size gradient filter applied vertically and horizontally.

H3 =

−1 −2 −1
0 0 0
1 2 1

 (3)

H5 =


−1 −2 −3 −2 −1
−2 −3 −4 −3 −2
0 0 0 0 0
2 3 4 3 2
1 2 3 2 1

 (4)

Hn =



−1 . . . d−n/2e . . . −1
...

−bn/2c . . . −(n− 1) ... −bn/2c
0 0 0 0 0
bn/2c . . . (n− 1) ... bn/2c

...
1 . . . dn/2e . . . 1


(5)

We choose n based on the size of the feature we would like to rep-
resent. In this regard, it should be related to the size of the mor-
pholocial smoothing kernel. We have found setting N to be 60% of
the smoothing kernel size produces acceptable results.

3.2.3 Wobbling

One of the effects described in Bousseau’s paper is the wobbling
effect of pigment along edges due to paper granularity. Wobbling
is applied by offsetting pixels by the gradient of the paper. Exactly
how this is done is not described. Basing our idea on the paper’s
general description we found that the pixels were only ever offset a
small amount. We improve upon this by normalizing the gradient
at each pixel location and then scaling it, where the scale is equiva-
lent to the number of pixels moved if the gradient is 1 at that pixel.
This resulted in noisy, jittered edges that are far from the desired
wobbled edges. We solved this by applying morphological smooth-
ing after jittering the pixels. By keeping the scale small, say 3, and
repeating this step multiple times, the desired wobble effect can be
achieved.

3.2.4 Gamma Correction

One of the problems we came across in Bousseau’s original work is
that all of the images tended to come out very dark. We solved this
by applying gamma correction to the saturation and value channels
of the final image. We found that a saturation gamma of 0.6 and a
value gamma of 0.45 produce good results for most input images.
Unfortunately, this introduces more parameters to control.

h = h (6)
s = s0.6 (7)
v = v0.45 (8)

4 Results

The results we achieved are promising, but not sufficient. If we
just apply Bousseau’s rendering technique to the photo the resulting
image is quite dark. By applying gamma correction, we can control
how light and saturated an image appears. These additional controls
add more complexity to controlling the watercolor processing, but
still do so without the overhead of fluid simulation. As can be seen
in Figure 4b, gamma correction makes the resulting image brighter
and more contrasted; it is arguably a more pleasing image.



(a) Source (b) Processed (c) Gamma Corrected

Figure 4: Watercolor Renderings

Processing time was typically under 10 seconds in Matlab software.
Most of the processing time was spent segmenting the image us-
ing mean shift and performing image wobbling, as that involves
repeated convolution using a large filter.

4.1 Problems

Wobble size and morphological smoothing kernel size are param-
eters that need to be configured based on the image scale. Thus,
using multiple scale images can become difficult to configure. For-
tunately, Google Streetview images appear to have little variation
in the scale of features.

The wobbling processing step can result in segmented regions be-
coming separated. In Figure 5, this happens between the blue and
orange region. This problem can be reduced by choosing a smaller
wobbling size, but then using a larger image becomes difficult. It
may also be useful to reevaluate how the wobbling effect is gener-
ated.

Meanshift and morplogical smoothing can result in speckling and
noisy regions that do not make sense in a watercolor. Figure 8 ex-
emplifies this. Since segmentation is based on color it can remove
sense of structure in the image as seen in Figures 16 and 15. In ad-
dition to this, semi-obstructed objects can become more obstructed
as in Figure 18.

5 Conclusion

We have presented the effectiveness of different algorithms for ex-
pressive rendering in watercolor. Fluid simulation is far too com-
plex and time consuming to run. Texture Synthesis is also slow and
produces inadequate results. Faking watercolor effects is a better
approach than either full simulation or texture transfer.

5.1 Future Work

There are potential improvements to this process. One such im-
provement would be to find an improved segmentation method
based on structure of features. Another improvement would be
to find a way to automatically configure parameters for wobbling,
morphological smoothing, and gamma correction. Alternatively,
finding an image-scale independent method to apply wobbling and
morphological smoothing.

Acknowledgements

Thanks to John “Spike” Hughes for his ideas and advice, Milagro
Feijoo for collaborating on line drawings and watercolor and Robert
“Moustache Man” Mustacchi for his support.

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. In Pro-
ceedings of 2001 ACM Symposium on Interactive 3D Graphics,
ACM, 217–226.

BOUSSEAU, A., KAPLAN, M., THOLLOT, J., AND SILLION, F. X.
2006. Interactive watercolor rendering with temporal coherence
and abstraction. In NPAR ’06: Proceedings of the 4th interna-
tional symposium on Non-photorealistic animation and render-
ing, ACM, New York, NY, USA, 141–149.

BOYKOV, Y., AND KOLMOGOROV, V. 2004. An experimental
comparison of min-cut/max-flow algorithms for energy mini-
mization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26,
9, 1124–1137.

COMANICIU, D., AND MEER, P. 1999. Mean shift analysis and ap-
plications. In ICCV ’99: Proceedings of the International Con-
ference on Computer Vision-Volume 2, IEEE Computer Society,
Washington, DC, USA, 1197.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER,
K. W., AND SALESIN, D. H. 1997. Computer-generated water-
color. In SIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
421–430.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In SIGGRAPH ’01: Proceedings
of the 28th annual conference on Computer graphics and inter-
active techniques, ACM, New York, NY, USA, 341–346.

GAGE, M. Michael gage: Artist.
http://www.michaelgage.co.uk/.

GOOGLE. Google street view. maps.google.com.

HUANG, J., BUE, B., PATTATH, A., EBERT, D. S., AND
THOMAS, K. M. 2007. Interactive illustrative rendering on
mobile devices. IEEE Comput. Graph. Appl. 27, 3, 48–56.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. ACM Transactions on Graphics, SIGGRAPH 2003
22, 3 (July), 277–286.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Trans. Graph. 22, 3, 313–318.

PERLIN, K. 1985. An image synthesizer. SIGGRAPH Comput.
Graph. 19, 3, 287–296.

QUILLET, J.-C., THOMAS, G., GRANIER, X., GUITTON, P., AND
MARVIE, J.-E. 2006. Using expressive rendering for remote



visualization of large city models. In Web3D ’06: Proceedings
of the eleventh international conference on 3D web technology,
ACM, New York, NY, USA, 27–35.



Figure 5: Test image using fully saturated colors

Figure 6: Initially too dark, gamma correction brightens this image

Figure 7: Initially quite grey, gamma correction brings out pinks and blues

Figure 8: Landscape segmented into very simple regions



Figure 9: Too cluttered to get detail out with just color

Figure 10: Landscape that is not very affected by our processing

Figure 11: Cityscape

Figure 12: Cityscape



Figure 13: Cityscape with arguably too much detail for a watercolor painting

Figure 14: Building clearly visible, but color is not pleasant

Figure 15: Overly simplified segmentation

Figure 16: Overly simplified segmentation



Figure 17: Structure clearly visible

Figure 18: Same structure obstructed by trees


