
Improving Mobile GeoMaps Applications with Expressive Rendering:
A Test Case

Milagro I. Feijoo∗ John F. Hughes†

Department of Computer Science
Brown University

(a) Example input image (b) Reference image from Michael Gage’s travel journals

Figure 1: We want to take the Google street view image (a) as input and produce an illustration that resembles (b)

Abstract

We present a collection of techniques that take a Google Street View
image and generates an expressive rendering of vegetation based on
the style of Michael Gage’s travel journals. This serves as a proto-
type for the general problem of rendering an expressive representa-
tion of an urban enviroment from a photorealistic image. With this
prototype we can evaluate the feasibility of generating these images
adequately and the usefulness of this approach.

Keywords: expressive rendering, non-photorealistic rendering,
image simplification

1 Introduction

It is said that a picture is worth a thousand words, referring to the
idea that complex stories can be described using a single still image.
This idea is the basis for this project, in which we use illustrations
in place of photos in mobile geographic mapping applications. Our
ultimate goal is to produce comprehensible imagery of urban envi-
ronments in place of Google street view images –comprehensible
in the sense that it is easy for the viewer to see and understand the
essential elements of a scene without having to process less impor-
tant information. In this particular project, we work on some small
parts of this larger goal.

Figure 1(a) shows a photograph of an urban environment. Fig-
ure 1(b) shows a watercolor illustration of a similar environment
drawn by Michael Gage. It is evident that it is much easier to grasp
the essential information of the environment from looking at the
watercolor illustration as opposed to the photograph. The problem
with photorealism is that it gives equal importance to everything,
including information that might be unnecessary in helping some-
one navigate through an urban environment. Expressive rendering
(also called non-photorealistic rendering or NPR) has the advan-
tage of bringing clarity to these types of scenes. In the context of
mobile geographic mapping applications, it provides several advan-
tages when compared to photographs:

∗mfeijoo@cs.brown.edu
†jfh@cs.brown.edu

• Images with less information are viewed more clearly on
small displays, such as those on PDAs and smartphones.

• The files of expressive renderings are significantly smaller
than the original photographs. This translates into faster
download times since it requires less bandwidth.

• Labels and other visual aids can be applied to the image with-
out making it too visually cluttered.

Features

We analyzed both illustrations from Michael Gage’s travel journals
and many streetview images to identify features which we consid-
ered important for providing the viewer with the necessary infor-
mation to navigate his surroundings. We identified the following
features:

- Buildings / Other structures
- Vegetation: Trees, Bushes, Flowers
- Color
- Building number / Traffic signs / Street names
- Walls / Fences
- Doors / Windows / Awnings
- Pools / Parks / Fields
- Decorative features, such as sculptures and flower pots
- Stairs / Ramps
- Bus stops
- Traffic lights / Lamp posts / Power lines
- Mailboxes / Newspaper boxes
- Garbage bins
- Fire hydrants

Goal

The focus of this particular project is to create a prototype that will
aid us in evaluating the proposed approach for the larger goal. A
fast way to create a proof of concept is to focus on just one of the
features listed above. Buildings and other architectural structures,
such as bridges, seem like the natural choice since they are essential
for urban scene understanding. We believe that combining Google’s
existing data on building geometry, street view and satellite images,
it should be relatively straightforward to identify and render these



Figure 2: Sample of the input for the algorithm. Most of the images are screen captures of Google Street View except the last two which are
raw images from a modest camera on a day with very good lighting. Notice how the four images on the top are less saturated than the images
on the bottom.

buildings, by drawing the outline and doing a flood fill with their
main color. Another feature that dominates most scenes is vegeta-
tion. The type, size, height, color or placement of a tree or bush will
surely help a person get their bearings. However, when depicted by
a photograph, vegetation contains a lot of details, particularly in
terms of texture and shape. This provides a good place to examine
what the abstraction process will produce.

Figure 3: Architecture Diagram.

2 Related Work

The goal of a lot of the work that has been done in expressive ren-
dering has been to take a photorealistic image or a scene descrip-
tion, in either 2D or 3D, and make it look like an image from a
particular artist or style.

In general, “there is ample evidence that non-photorealistic rendi-
tions are in fact more effective for communicating specific infor-
mation than photographs or photorealistic renditions in many sit-
uations” as stated in [Strothotte and Schlechtweg 2002]. In fact
‘Over and above this empirical evidence, many studies have been

carried out by cognitive and educational psychologists that attest to
the superiority of such handmade graphics over photolike images.”

We have a slightly different goal in this project in the sense that
we are trying to create a non-photorealistic representation that cor-
responds to an abstaction of an urban scene. We need to pick out
the elements of the image that say a lot about the scene in the sim-
plest way possible, trying to bring out the large scale details while
omitting the smaller scale ones which, despite providing a realis-
tic representation of a scene, clutter the image with non-essential
information.

Some work has been done in stylization and abstraction of pho-
tographs by [DeCarlo and Santella 2002]. They describe a com-
putational approach for clarifying the meaningful structure of an
image. They use data collected from a visual perception study to
obtain information about the important areas of the picture and use
this information to create an abstraction that considers the visual
structure of the image.

3 The Vegetation Problem

As described above, we want to create a prototype for expressive
rendering of urban scenes. Vegetation is a dominant feature that
provides enough varying characteristics to aid navigation in an un-
familiar place. The solution we propose is a two step process. First,
we need to process the source image to identify vegetation and ob-
tain the data describing that vegetation. Then, we need to come up
with a representation that captures the simplicity, clarity and beauty
of our reference illustrations.

The problem of identifying vegetation is a difficult one. Even if we
can correctly mark the green pixels as candidates for vegetation,
we need to get rid of green pixels that belong to things like build-
ings and cars. We could do that by looking at the texture of the
green area, as cars and buildings generally have smoother and less
varying texture. After getting rid of the green pixels which are not
vegetation, we still have the issue of determining what type of tree
should be drawn: deciduous, evergreen or palm trees, to name a
few. This problem remains unsolved, but we have achieved reason-
able results using photographs with good lighting and without green
cars or buildings. Also, we do not attempt to determine the type of
tree; the user selects what type of tree they want drawn in that par-
ticular scene. That is, in our prototype, the tree-classification is a
transformation step implemented by a human rather than an algo-
rithm.



3.1 Input and Output Description

The input for our algorithm consists of an image taken from Google
Street View, examples of which you can see in Figure 2. For the
purposes of this project we took screen captures of Google’s Street
View and cropped out the extra information provided by the appli-
cation. It seems as though most of these images were taken in bad
lighting situations as their saturation values are very low. We can
speculate about the reasons why this is so. The images might have
been blurred to combine it with others to simulate the environment
or down-sampled to display well on browsers. As for the bad light-
ing, these photographs are probably taken at times when traffic is
low, like dawn or dusk, which do not provide good lighting. Per-
haps if this application were to be developed within Google it could
use the raw images, which would likely provide better results.

Our output image is a modification of the source image where the
trees have been replaced by the tree abstraction.

3.2 Tree Identification

In our efforts to generate a tree identification algorithm we at-
tempted several different approaches. None were completely suc-
cessful, but some yielded interesting results that if investigated fur-
ther could provide a solution to the given problem. We now proceed
to describe these successes and failures, since they may be useful
to others who attempt to solve this problem.

3.2.1 Image Segmentation with k-means

For this algorithm we work with the image in L*a*b color space.
This color model is designed to approximate human vision, so it
can help us determine if two colors are perceptually close to each
other. We remove the luminance channel L, since we only need
to compare the chromaticity of a pixel to determine whether it is
green. We then take these two channels and run a k-means cluster-
ing algorithm on them with k ∈ {3, 4, 5}. To guarantee that at least
one of the clusters is green we initialize the cluster centers at green.
For each of the clusters returned we take the mean of the RGB value
of the pixels in that cluster and replace the original RGB value of
these pixels with this mean RGB. Then we take a predefined set of
greens and compare them with the cluster colors. We mark the pix-
els in the cluster with the smallest distance to this set of greens as
tree. This provides the input for the tree representation algorithm
that will be described in section [3.3].

3.2.2 Tree Marking Tool

While trying to obtain the tree pixels automatically, to aid our test-
ing in other areas of the project, we implemented a simple selection
tool to mark a polygon that defines the outline of the tree crown.
This tool allows the user to select as many trees as they want. Upon
closing the polygon the tool generates a splined curve from the
polygon points to smooth the outline for the tree crown. The tool
outputs the outline points, the mask, and the pixels that are con-
tained in the outline.

3.2.3 Naive Vegetation Detection

Before segmenting the image with k-means as described in [3.2.1]
we took a naive approach at vegetation detection in which we com-
pared the color value of each pixel to a set of greens to determine
whether to mark it as vegetation.

We work with the image in L*u*v color space because it is percep-
tually uniform, so distances between colors are measured by their
euclidean distance. As when working with L*a*b space, we also

Figure 4: Segmentation with k-means. The top left image shows
the input. The top right image shows the segmented image with
k=4. The bottom left image shows the detected vegetation pixels.
The bottom right image shows the output of our algorithm.

remove the luminance channel and work with the two channels that
represent the pixel’s chromaticity. The algorithm consists of going
through each pixel in the image and calculating the euclidean dis-
tance between its uv values and the uv values of a set of greens,
and, if the distance is smaller than a certain threshold, the pixel is
marked as green. We expected to obtain a very scattered collec-

Figure 5: Naive Tree Detection

tion of pixels, given that photographs have a lot of inter-pixel color
variation. However, if we obtained good enough results, we could
apply a filter to the detected pixels such that we could mark whole
sections of pixels as vegetation. These extensions are explained in
the next three sections. With this in mind, the results obtained were
not very good and we believe this has to do with the fact that the
threshold is an arbitrary number. Given that there is a significant
amount of inter-scene variation, specifically in terms of lighting, a
single value for this threshold does not successfully detect greens in
every image. This means that some of the detected pixels in some
of the scenes appear to be more brown or gray than green and some
pixels that appear to be green were not detected as so.

3.2.4 Dilation/Erosion Filter

To improve these results we include an additional step in which we
dilate and erode the image once. The parameters of the dilation
filter used are a line structure element (strel) with length 4 and 0
degrees and another line structure element with length 4 and 90



degrees. The parameter of the erosion filter used is a disk structure
element with a radius of 4. In preprocessing we apply this filter to
the original source image before running the vegetation detection
algorithm.

Figure 6: Dilation/Erosion Filter in Preprocessing

In postprocessing we apply this filter to the pixels that were detected
by running the vegetation detection algorithm on the original source
image.

Figure 7: Dilation/Erosion Filter in Postprocessing

We expected, specifically by doing this in postprocessing, that this
filter would get rid of very small areas of detected groups of pixels
and reduce the holes in the bigger areas. We applied it also in pre-
processing to see what would happen in that case. The actual result
was worse than expected, since the naive vegetation detection does
not actually output big solid areas of detected pixels, but instead
areas that appear very porous from the amount of holes in them.

3.2.5 Median Filter

Just as with the dilation and erosion filter, we apply a median filter
to the image in preprocessing and to the tree mask in postprocess-
ing. In preprocessing we use a neighborhood of 10x10 and apply
the filter twice. In postprocessing we use a neighborhood of 2x2
and apply the filter 10 times. These parameters seemed to provide
the best results for vegetation detection. Same as with the dilation
and erosion filter we expected this to reduce the amount of holes
in the green areas and get rid of small green areas surrounded by
other colors, in this case, we thought that by applying the median
filter as a preprocessing step we could blur these small green ar-
eas and holes out of the original image. We also tried to apply it
in postprocessing to see what would happen. This filter does not
produce good results either, but in this case the algorithm is overly
aggressive and detects areas that are not green.

3.2.6 Multi-scale Naive Green Detection

Another approach at improving these results we took was running
the original green detection on an image pyramid. We tried this
as an extension of the median filter, so that we could examine the

Figure 8: Median Filter in Preprocessing

Figure 9: Median Filter in Postprocessing

effect of this filter at various scales. This did not improve results
very much. As you can see in Figure 10 this modification makes
the algorithm overly aggressive and large sections of the image are
marked as green when they are not.

3.2.7 Color Image Segmentation (Matlab File Exchange)

There was also an off-the-shelf solution to a related problem
that seemed to have the potential to work well for vegetation
detection. Unfortunately, the clustering is overly aggressive, and
detects more clusters than necessary and does not separate greens
appropriately. We found it on the Matlab File Exchange website
http://www.mathworks.com/matlabcentral/fileexchange/25257-
color-image-segmentation

3.2.8 Summary

We found that the best option for vegetation detection is Image Seg-
mentation with k-means, given that the detected regions were the
most consistent across the spectrum of images we tested.

3.3 Tree representation

From examining several reference illustrations of trees we identi-
fied a few distinct qualities that we considered were important in
conveying the essential information necessary for a human to un-
derstand that they are looking at a tree. On one hand we need to
provide an outline for the tree. Typically humans draw a loopy out-
line to describe a tree in line-drawing style. In Figure 11 we can see
some examples of line drawings of trees as humans typically draw
them.

On the other hand we would like to create an abstraction for the
color of the trees. The original photograph contains a lot of texture
that visually clutters the scene with information that is unnecessary
to convey the essential scene elements. So simplifying the pixels
contained in the tree outline to only a few greens seems like the
natural solution. Additionally, to give it a more artistic look, we
imitate our reference illustrations for providing shading and depth



Figure 10: Multi-scale Naive Green Detection. At left the source image. At right, in order of iteration number, are the multi-scale results for
a section of one of the images.

Figure 11: Examples of line drawings of trees

to the scene, by using a watercolor style. Deciduous trees and ev-
ergreens can be depicted very similarly by defining a bushy outline
and filling it in with color. As for the palm trees we thought it
would be best to use the position and size of the palm tree and draw
a general palm tree shape.

3.3.1 Drawing a bushy tree outline

Given the set of pixels that got marked as tree pixels we obtain
the boundaries of each disconnected section, represented as a list
of points. We then get rid of boundaries with less than 30 points,
since we consider these to be too small to draw. These outlines
are defined by a polygon. After we obtain each of the polygons
we generate a spline curve with the points in the polygons as the
spline control points. We then generate the loopy outline from this
spline with a function based on a mfeijoo: cycloid function with a
radius of 20 pixels. There are a few tuning parameters to generate
different variations of the loopy outline. We can alter the height,
the width and overlap of each loop. There are a few randomization
steps throughout the generation of this curve, so as to introduce
variations in the roundness of the loop, or small variations in height,

width and overlap based on the set values for these parameters. This
is intended to reduce the regularity of a computer generated curve.
We also introduce a smooth variation to the thickness of the line,
so that it simulates the difference in the pressure that a human can
exert on the paper while drawing a curve.

Figure 12: Drawing a bushy tree outline. The image on the top
left shows, in red, the polygon drawn by a user. The image on the
top right shows, in blue, the spline generated by the points of the
polygon. The image on the bottom left shows, in black, the loopy
outline generated. The image on the bottom right incorporates the
thickness variation to simulate a pen stroke.

3.3.2 Coloring in the bushy tree crown

As mentioned before, we need to incorporate abstraction to the tex-
ture of the color fill of the tree crown. To do this we run k-means
to obtain the 3 most popular greens. We follow a similar approach
as when color segmenting the image where we set each pixel to its
cluster color. This creates a particular shading to the trees that is
very much influenced by the original image structure. So the shad-
ing is very close to what is desired. However, the edges between



cluster sections are very sharp and they end up looking very pixe-
lated, so it still feels computer generated. You can see results of this
algorithm in Figure 12.

Figure 13: Coloring in the bushy tree crown. On the left are the
original pixel values of the marked tree crown. On the right the
colors have been reduced to only three greens that are calculated
by clustering the existing colors and assigning the mean color to
each cluster.

Another member of the research group applied watercolor to this
output and produced the results in Figure 13.

Figure 14: Watercolor modification of color fill. Project by Patrick
Doran.

3.3.3 Drawing Palm Fronds

The input of this algorithm is the region where the palm is to be
drawn defined by a center point and its size defined by a width and a
height. We then define a radius as the maximum of height and width
and that will determine the length of each frond on the palm tree. A
real palm tree has about 15 or 20 fronds, however an artists’ depic-
tion of a palm tree usually shows between 5 and 9 fronds, so we pick
the number we draw at random from this range. We set the position
guide of each frond at i∗(2π/lq) where i indicates which frond and
lq is the frond quantity. We then compute the position guide points
for each of the fronds. We take these points and add a small ran-
dom rotation to break up some of the uniformity that the guide lines
originally have. We then proceed to alter their shape by sampling
three points: the first and last points of the guide line and one in the
middle. We compute a curvature based on the length of the leaf and
use that to alter the middle point by that amount in the direction of
the normal of the frond. We then proceed to create a spline based
on these 3 control points, which will constitute the frond midrib.
We replicate this procedure to determine two other curves that will
serve as boundaries for the leaf length in each frond. To draw each
leaf on the frond we sample points on the midrib line such that the
distance between them is given by ceil(max(w, h)/5), where w
and h correspond to the width and height of the desired palm tree.
This means that the sampling rate for the leaves will vary accord-
ing to the size of the palm tree. We then draw a line from each of
these points to the boundary line at a 45◦ from the midrib line. To
make it seem a bit more palm-like, we draw a black 1 pixel width
line through our midrib and leaf points and also a green line, whose

Figure 15: Drawing Palm Fronds. An example of drawing palm
fronds.

width is given by 2∗ceil(max(w, h)/100), as before w and h cor-
respond to the width and height of the desired palm tree. Sampling
the root of leaves and the width of the green line this way aids in
maintaining a sense of scale for the palms.

4 Results and Future Work

Our current algorithm runs in an average of 20 seconds and the
bulk of processing time occurs in the vegetation detection algo-
rithm. Figure 16 shows several results.

There are many ways in which this algorithm could be further de-
veloped to generate better results, both in the identification step and
in the representation step.

For instance, the vegetation detection could be improved by using
object detection algorithms or image segmentation algorithms, such
as the porous classifier of Hoiem et al. [Hoiem et al. 2005] or even
their Scene Interpretation framework [Hoiem et al. 2008]

The tree outline representation has room for improvement. The
boundary of areas marked as tree in the vegetation identification
step is jagged at a very fine scale. This causes mfeijoo: some -
does it say red? artifacts when drawing the loopy outline of the
tree. If we apply a smoothing algorithm to these areas, we could
generate a smoother and better looking tree outline. An abstraction
algorithm such as the one proposed in [Mi et al. 2009], might be
useful in obtaining an outline that maintains the global shape of
the tree crown and smooths out the local smaller features of the
shape boundary. The current continuous manner in which strokes
are drawn makes these drawings appear computer generated. Even
if that is the case, we would like to make them appear more like a
human drew them. It is possible to do this by cutting out the outline
at random places by a small amount, in this way simulating the fact
that people lift the pen when drawing.

Similarly, the tree outline stroke can be improved. Our sugges-
tion to those trying to further this research is to look at earlier re-
search on stroke synthesis, such as that of Northrup and Markosian
in [Northrup and Markosian 2000].

A natural progression towards creating an application that gener-
ates expressive renderings of urban scenes is to find solutions to the
different problems that arise when attempting to identify and repre-
sent each of the other features that compose these scenes. Each of



Figure 16: The first three rows show somewhat good results, the fourth row is not very good, and the last four rows are very bad.



these features in turn has the potential to be a very active research
topic in other areas, such as text recognition in Computer Vision.

We suggest to the reader to read [DeCarlo and Santella 2002] as a
source of alternative ideas as to how to reduce visual clutter from
the scene by removing texture information.

5 Conclusion

In this paper, we present a collection of techniques that were put
together to render an expressive rendering of vegetation from a
Google Street View photograph. The main goal was to create a
prototype for the general problem of rendering an expressive rep-
resentation of an urban environment, to examine the feasibility and
usefulness of generating such imagery, in particular for mobile ap-
plications. For this goal, we chose a specific representation with an
abstraction level that includes the essential information for environ-
ment navigation and a very picturesque feel.

Our process is modular in that we can combine several simple
techniques to produce these expressive renderings. Each of these
techniques could potentially be replaced by a more complex
technique such that better results are produced for that particular
subproblem, which in turn means a better overall solution to the
vegetation identification and representation problem.

References

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. ACM Trans. Graph. 21, 3, 769–776.

HOIEM, D., EFROS, A. A., AND HEBERT, M. 2005. Geomet-
ric context from a single image. In ICCV ’05: Proceedings of
the Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, IEEE Computer Society, Washington, DC,
USA, 654–661.

HOIEM, D., EFROS, A. A., AND HEBERT, M. 2008. Closing
the loop on scene interpretation. In Proc. Computer Vision and
Pattern Recognition (CVPR).

MI, X., DECARLO, D., AND STONE, M. 2009. Abstraction of 2d
shapes in terms of parts. In NPAR ’09: Proceedings of the 7th
International Symposium on Non-Photorealistic Animation and
Rendering, ACM, New York, NY, USA, 15–24.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artistic silhou-
ettes: a hybrid approach. In NPAR ’00: Proceedings of the 1st
international symposium on Non-photorealistic animation and
rendering, ACM, New York, NY, USA, 31–37.

STROTHOTTE, T., AND SCHLECHTWEG, S. 2002. Non-
photorealistic computer graphics: modeling, rendering, and an-
imation. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.


