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Abstract

Many researchers test graph scheduling algorithms on “random” graphs. We show that many of the random

graphs used in the literature are not representative of actual programs by comparing random graphs to

graphs derived from the SPECINT2000 benchmarks. We introduce Ragnarok (RAndom Graphs Never ARe

OK), a new graph benchmark suite embodying characteristics of SPECINT2000 programs. We hope this

benchmark suite will be used instead of random graphs.

1 Introduction

The process of mapping tasks to processors and the determination of start times for each task is called

task scheduling. Subtask decomposition, the process of decomposing a program into subtasks connected

by precedence constraints, facilitates task scheduling for programs. Precedence constraints define data and

control dependences within the program. Subtask decomposition yields a task graph where nodes are tasks

and edges are precedence constraints. A scheduler maps tasks to processors and determines start times

for each task. Edges may be weighted to represent cost of communication between tasks. The assignment

of tasks to processors and allocation of start times is called scheduling. Optimal scheduling is NP hard.

Therefore heuristics are used to achieve efficient results.

Usually, scheduling is performed on directed acyclic graphs (DAGs). Representing program execution

with a DAG misses opportunities for loop optimization. The execution of loops generally consumes the

majority of the total execution time. Therefore, it is beneficial to represent loops in the graph and then

optimize for them. Thus, prior work has demonstrated results on cyclic and acyclic task graphs.

In the past, no standard existed for either type of graph. Validating techniques required transforming

codes into graphs by hand or randomly generating graphs with likely characteristics of real graphs. A wide
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array of previous work generates results on random graphs [1 − 70]. Previous researchers assumed random

graphs were characteristic of real program graphs. This assumption has never been validated. Without such

validation, performance claims based on random graphs may be misleading; they may not translate into

improved efficiency in real applications. Additionally, fair comparison between different techniques remains

difficult due to the multitude and variety of evaluation methodologies.

We conduct a detailed analysis of random graphs compared to real program graphs. We conclude random

graphs are unsuitable inputs for validation. Random graphs are easily constructed but are poor substitutes

for real program graphs. Ragnarok (RAndom Graphs Never ARe OK), a new benchmark suite composed of

real program graphs, allows researchers to evaluate techniques utilizing identical inputs with the guarantee

of real applicable results.

Composed of program graphs from the SPECINT2000 benchmark suite, there are no random graphs

in Ragnarok. To compare scheduling algorithms requires head-to-head comparison. When previous studies

incorporate random graphs, it is unclear how to perform this comparison fairly. In the past researchers simply

generated more random graphs, acquiescing to the fact that they were neither using identical inputs in their

comparison nor testing on real inputs. This phenomenon leads to many disparate random graph generation

methodologies, an environment not conducive to impartial head-to-head comparison or an intuitive evaluation

methodology. Realistically, head-to-head comparison should be performed using identical inputs from related

work. Validation on random graphs creates ambiguity as to whether the technique has real merit. Ragnarok

allows fair head-to-head comparison with identical inputs by incorporating characteristics of real programs.

The paper outline is as follows. Section 2 provides background. Section 3 provides a detailed evaluation.

Section 4 discusses related work. Finally, Section 5 concludes and Section 6 describes future work.

2 Background

The timeline provided in Figure 1 helps motivate the advantages of Ragnarok. Each data point represents

a scheduling algorithm evaluated with random graphs. Connected points indicate researchers specifically

citing a previous work’s random graph generation methodology for their random graphs. As a whole there

are few edges in the timeline. There exists a vast number of random graph generation methodologies,

but no clear ancestral history tying all methodologies together. A large body of prior work uses unique

methodologies, not citing any previous methodology. Low citations per methodology and the large number

of single use methodologies is significant. No standard inputs exist for the community to rally behind. A lack

of standardization impairs scientific effort. Attempts to compare scheduling algorithms reduce to unraveling

the intricacies of experimental methodology for generating random graphs. No authors validate the use
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of random graphs for evaluation. Scheduling jobs are not normally random, so it is confusing to test on

uncommon random inputs.

All of the works cited use random graphs, not real graphs to evaluate their scheduling algorithms. In this

paper, we show that random graphs do not display the same characteristics as real program graphs and are

therefore unrepresentative. Using random graphs to evaluate techniques causes confusion and is misleading.

These challenges can be overcome by using real program graphs found in Ragnarok.

Section 4 provides a brief survey of random graph generation methodologies in chronological order. To

provide a complete survey would be impractical. Many methodologies are unique, never cited subsequently,

and provide inadequate detail to reimplement.

Some techniques also supply a means of generating task execution time. Execution time will not be

discussed. We concern ourselves with the connectedness or flow of the task graph. As such, all nodes and

edges have unit execution time.

3 Results

In this section we introduce Ragnarok, a new standard benchmark suite of cyclic and acyclic task graphs

from SPECINT2000 programs. Details of Ragnarok’s construction are given. Additionally, we compare

Ragnarok to traditional random graphs. Details of the random graph generator used in the evaluation are

given as well. Every attempt was made to use a random graph generation methodology with commonalities

with a majority of previous work.

3.1 Creating Random Task Graphs

Considering prior work we opt for a simple random graph technique comparable with previous techniques.

The random graph generator takes two parameters: the number of nodes in the graph and the density (the

number of edges).

Definition 1. Given the number of vertices |V | and density ∈ (0, 1], the number of edges |E| is

|E| = density × (|V |)2.

We use density as the metric for number of edges to maintain parallels with prior work.

For this study, cyclic graphs were generated with between 5–500 nodes in increments of 5 and with

density 0.05–0.60 in increments of 0.05. The random graph generator is an accurate reimplementation of
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Figure 1: A timeline of random graph methodologies and citations.
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1) decyclify(Graph G)
2) SCCs = strongly connected components(G)
3) DAGSCC = coalesce SCCs(G, SCCs)
4) return DAGSCC

Figure 2: Algorithm to transform a cyclic graph into an acylic graph.

Sandnes and Sinnen’s generator [46]. The parameters and the density range are the same. We generate

graphs with up to 500 nodes while Sandnes and Sinnen stop at 100. With a density above 0.60, random

graphs almost always form a single strongly connected component (SCC) composed of nearly all the nodes

in the graph. Generating graphs with density beyond 0.60 does not increase the diversity of the data set.

These parameters adequately capture the size and degree of random graphs described in prior work.

The generation of acyclic graphs proceeds in a similar fashion to cyclic graph generation with an extra

step performed at the end. It is worth noting that DAGs, by definition, cannot have as many edges as a

cyclic graph because they do not have back edges.

Definition 2. Given the number of vertices |V | and density ∈ (0, 1], the maximum number of edges E in a

DAG is

|E| =
|V | × |V − 1|

2
.

Consequently, choosing a lower upper bound for density has the added benefit of allowing one to use

Definition 1 for both cyclic and acyclic graphs.

The extra step required for acyclic task graphs handles back edges. First, SCCs in the graph are identified.

Then, for each SCC in the graph, we coalesce it into a single node. These steps are simple and solve the

problem of cycles. We provide the pseudo-code for decyclify in Figure 2.

3.2 Ragnarok Benchmark

To create a new set of standard graphs that embody real characteristics of programs, we start with real pro-

grams rather than a random graph generator. We exploit a widely-used benchmark suite, the SPECINT2000

benchmark suite. Because it is tedious and error prone to transform programs into task graphs by hand, we

use the LLVM compiler with the Clang front-end for translation. We translate with full alias analysis. Alias

analysis more accurately characterizes program dependences.

These steps are all that is necessary for generating accurate cyclic task graphs from SPECINT2000

programs. To represent acyclic task graphs, we apply the decyclify algorithm. Other techniques to remove

cycles by arbitrarily cutting edges is unsound.
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3.3 Results for Acyclic Task Graphs
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(a) Acyclic Ragnarok task graphs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

D
en

si
ty

Nodes

(b) Acyclic random task graphs.

Figure 3: Comparison of cyclic Ragnarok task graphs and random task graphs

Figure 3 contrasts acyclic random graphs and acyclic Ragnarok graphs. The random graphs were gener-

ated using the methodology similar to Yang and Gerasoulis [66]. Acyclic random graphs are characterized

by a higher mode for the number of out edges. A higher modal score corresponds to a more strongly con-

nected graph, reducing opportunities for parallelism, adversely affecting performance. Global connectedness

throughout the program serializes execution. Acyclic random graphs are homogeneous in structure.

In contrast, real program graphs tend to have a lower mode, and therefore have a small number of nodes

with very high and very low out degree. The variable density of different subgraphs within real graphs is

not a normal distribution and defies random graph generation.

If acyclic random graphs are homogeneous, then real program graphs are heterogeneous. In practice,

many real programs are known to contain parallelizable sections. Density in real program graphs is a local

phenomenon, lowering the modal score. A lower modal score enables optimization opportunities. Real

program graphs contain local diversity. Optimization leverages these natural opportunities for performance

benefits.

3.4 Results for Cyclic Task Graphs

Results of comparing number of nodes and edges for cyclic graphs are shown in Figure 4. The generation

methodology for cyclic random graphs parallels the technique in Sandnes and Sinnen [46]. The results are

quite similar to the previous section. Considering the number of edges found in real programs, size of graph

does not correlate to the number of edges. To the contrary, program graphs exhibit low density compared

to random graphs. In real program graphs, larger graphs tend to have lower densities. Intuitively, programs
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do not have large areas of task-parallelism, rather parallelism is locked inside SCCs. The SCCs represent

loops and loop nests in the program.
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(a) Cyclic Ragnarok task graphs.
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(b) Cyclic random task graphs.

Figure 4: Comparison of cyclic Ragnarok task graphs and random task graphs.

In order to diagnose whether cyclic random graphs are representative of real program graphs, we attempt

to software pipeline both cyclic random graphs and cyclic Ragnarok graphs. Software pipelining is a graph-

based compiler optimization that has demonstrated performance on program graphs. Software pipelining

partitions a graph into subgraphs. Each subgraph becomes a stage in a pipeline, executing separately on

its own processor and communicating its results to neighboring stages via a queue. Pipelining is most

effective when stages are balanced. Pipelining achieves high performance because it maximizes throughput.

Figure 5(a) shows the relationship between the size of the critical path for the largest SCC and the critical

path for the whole program. A high ratio of CP
MAX(SCC CP ) strongly indicates increasing performance using

software pipelining. Graphs with ratios close to 1.0 execute sequentially. The ratio therefore displays the

raw ability of the graph to attain speedups using pipelining. Ragnarok is composed of many programs that

can take advantage of software pipelining. On the other hand, random graphs show very little capability

for software pipelining. Notice how the number of graphs with higher speedups abruptly stops after 1.05.

Contrarily, Ragnarok graphs have a slow decrease in the number of graphs in each step to 2.0.

As indicated by Figure 4(a), random graphs are unrepresentative of real program structure. Thus,

techniques utilizing real program structure fail on random graphs. An example of this fallacy is shown in

Figure 5(a). Software pipelining shows potential performance benefits with Ragnarok graphs, but little to

no speedup on random graphs. Consequently, techniques validated on random graphs may not show similar

results on real program graphs.

Changing the parameters to the random graph generator does not help generate more “real” graphs.

In Figure 5(b) the number of nodes and density for each cyclic Ragnarok graph was used to generate a
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(a) Speedup with pipeline parallelism for cyclic task graphs.
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(b) Speedup with pipelin parallelism for cyclic task graphs:
random graphs parameterized with Ragnarok values.

Figure 5: Parallelism exhibited by SCCs within cyclic task graphs and random task graphs.

Nodes versus Edges(density) versus CP / MAX(SCC CP)
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(a) Cyclic random graphs.

Nodes versus Edges(density) versus CP / MAX(SCC CP)
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(b) Cyclic Ragnarok graphs.

Figure 6: The effect of the number of nodes and density of cyclic graphs on pipeline parallelism.

corresponding cyclic random graph. The results in Figure 5(b) for random graphs are strictly worse than

the results in Figure 5(a).

Complementing the results from Figure 5(a), Figure 6 helps characterize the types of graphs amenable to

pipelining. As shown in Figure 6(a), only a sub-class of random graphs display the characteristics necessary

for effective software pipelining. This sub-class includes random graphs with a very small number of nodes

between 5 and 20 and densities of 0.05–0.30. As the number of edges grows quadratically with the number

of nodes, large random graphs are characterized by a single SCC composed of a majority of the nodes. Real

graphs, depicted in Figure 6(b), do not have these problems. Larger, more dense real graphs are amenable

to pipelining. Random graphs are not representative of real graphs. Random graphs are unsuitable for

validating scheduling algorithms.

Ragnarok enables easy validation of techniques for real inputs. Random graphs only guarantee demon-
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strable performance benefits for random inputs. Ragnarok achieves the standardization and fair comparison

required.

4 Related Work

Task graphs are most often modeled as DAGs. Previous work on scheduling assumes this acyclic represen-

tation of tasks and communication for scheduling purposes. Many languages provide some form of looping

construct for iterative computation. Consequently, DAGs cannot accurately represent program structure.

We first explore random acyclic task graph generation and subsequently move on to cyclic task graphs.

4.1 Random Acyclic Task Graphs

Adam et al. [1] generate random task graphs using four characteristics: (a) number of nodes, (b) height

of the graph, (c) number of nodes at each level, and (d) average number of successors per node. Edges

are randomly connected vertices from higher to lower levels. Edges must not violate this “high-to-lower”

property lest the acyclic property be violated.

Almeida et al.’s technique favors a more probabilistic approach [7]. Random graphs have parameter π,

representing the probability that two nodes are connected by an edge. Given an incidence matrix A with

elements a(i, j) representing a task graph with N nodes:

P [a(i, j) = 0] = 1 − π for 1 ≤ i < j ≤ N

P [a(i, j) = 0] = 1 if i ≥ j. (1)

Consequently, π serves a metric for the number of edges to insert into the graph. Task graphs exhibiting

high parallelism will have π close to 1.0, while sequential task graphs will have π close to 0.0. Equation (1)

prevents the formation of cycles.

Yang and Gerasoulis’s approach to generating random task graphs compares favorably to Adam et al.’s

[66]. Again Yang and Gerasoulis parameterize on number of nodes and number of levels. Instead of first

choosing the number of nodes, the algorithm starts by randomly generating the number of levels. Then

the number of nodes per level is chosen. Finally, nodes from disparate levels are connected by edges. It is

assumed that some means of preventing cycles is imposed when inserting edges.

The methodology used in Ahmad and Kwok is very tersely described and thus the most mysterious. The

authors control the number of nodes. No other details are given. With only this information, it would be

hard to recreate this implementation. Wu and Shu [58] state they were provided the original implementation

9



of the random graph generator for their use.

TGFF provides a standard method for generating random task graphs [18]. It has fine-grained control

of all conceivable attributes for composing nodes and edges. Publicly available, TGFF solves the problem

of fair comparison between scheduling techniques. While exact recreation of a previous work’s method for

task graph generation may be impossible due to lack of details, TGFF supplies a shareable and reproducible

set of tasks. Looking at the timeline in Figure 1, TGFF is the de facto standard tool for random graph

generation. It is clearly the most cited. On the other hand, contemporaneous work exists that does not not

cite it. Moreover, TGFF makes no effort to observe characteristics of real programs in its generated graphs.

Not specifically created for validation purposes, TGFF only generates random graphs. The usefulness of

these graphs is left open.

Strangely, we encounter a second random graph generator by Kwok and Ahmad [28]. This generator takes

as input the number of nodes. The number of edges for each node is chosen from a uniform distribution with

mean equal to |V |
10 . Consequently, larger graphs have higher connectivity. Why this behavior is beneficial or

valid is not discussed.

Similar to Adam et al.’s methodology, Topcuouglu et al. [55] generate task graphs using three parameters:

(a) number of nodes N , (b) shape of the graph α, and (c) out degree of a node. The height of a graph is

calculated from a uniform distribution with mean value equal to
√

N
α

. The width of each level is chosen from

a uniform distribution with mean value equal to α(
√

N). A short dense graph with high parallelism has α

close to 1.0, whereas α close to 0 generates a long graph with low parallelism.

All the methodologies work similarly, but none use the same implementation. All the descriptions fail

as adequate specifications for exact reimplementation; separate is inherently unequal. Fair comparison of

scheduling algorithms cannot be made when no definitive standard exists.

Ragnarok alleviates the problem of standard inputs. The reimplementation of random graph methodolo-

gies becomes necessary. In addition, fair comparison can be performed easily. Ragnarok solves the problems

in prior work.

4.2 Random Cyclic Task Graphs

Few previous works attempt to expose higher performance by utilizing a cyclic task graph representation. To

statically schedule a cyclic graph, a “decyclifying” process must remove the cycles. Sandnes and Sinnen [46]

implement a decyclification process to transform a cyclic task graph into a DAG. Their process is presented in

two stages. In stage one, for each start node in a cyclic graph, construct a new acyclic graph by removing back

edges. The decyclify algorithm behaves similarly to depth-first search. In stage two, search the constructed
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DAGs for the graph with the shortest critical path.

Definition 3. The length of a path p in G = (V,E, w, c) is the sum of its nodes and edges:

len(p) =
∑

n∈p,V

w(n) +
∑

e∈p,E

c(e).

Definition 4. A critical path CP of a graph G = (V,E, w, c) is a longest path in G.

len(cp) = max
p∈G

{len(p)}.

Sandnes and Sinnen evaluate their decyclify algorithm on random cyclic task graphs. The two tunable

parameters are the number of nodes and the graph density. Cyclic task graphs more successfully capture

the flow of computation and communication inherent in the program.

Ragnarok’s simple and straightforward methodology releases the researcher from the burden of fair com-

parison, few suitable inputs, and random graphs. Ragnarok contains program graphs from the SPECINT2000

benchmark. These programs provide a wide variety of characteristics found in other programs. Ragnarok

enables fair comparison and a multitude of different inputs to facilitate standardization. Using random

graphs for testing, it is both unclear and unlikely that results are applicable to real programs. Ragnarok fills

the gap of uncertainty by providing real world inputs.

5 Conclusion

Random Task Graph generation is simple and creates a large set of inputs to test against. However, rather

than preventing bias toward a particular scheduling algorithm, we conclude that the use of random graph

generation creates an unrealistic experiment environment and a barrier for fair comparison between schedul-

ing algorithms. Ragnarok incorporates characteristics of programs from SPECINT2000 benchmarks. Rag-

narok achieves the necessary standardization to facilitate realistic and therefore useful comparison between

disparate scheduling algorithms, while still incorporating a wide diversity of real program graph structure.

6 Future Work

In the near future, the Ragnarok Benchmark Suite of program graphs will be made publicly accessible via

web site. We hope that Ragnarok will be used instead of random graphs for validating future work. A

standardized benchmark would also facilitate comparison of related work. We also plan to reevaluate prior
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work using Ragnarok. Certainly random graphs are a poor choice for validation, but most of the scheduling

algorithms have merit, albeit less than initially advertised.
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