TRADING AGENTS
Lutfi Ilke Kaya

Department of Computer Science
Brown University

Introduction

In this paper, I am going to report my work and achievements on three different
Trading Agent Competition (TAC) projects: TAC Supply Chain Management (SCM),
TAC Ad Auctions (AA) and TAC Prediction Challenge (PC).

Supply Chain Management

1. Replacement Costs

Replacement cost is the cost of replacing a component in the inventory, after it is
used to build a computer. Its necessity and implementation were one of the longest
and most important discussions in our group in Fall 2008.

a. Necessity

[prepared several tests and analyzed their results to show the necessity of
these artificial costs. Results showed that replacement costs are extremely
important because of our bidding strategy.

Our bidder considers 3 costs for each increment: cost of having the computer
in the inventory, cost of having the components in the inventory, and cost of
procuring the components. Minimum of these three costs is considered to be the
cost of that increment. Let’s say in an increment, we decided to procure
components. When these arrive, they may sit in the inventory for days before they
are used. As they are sitting in the inventory, for another increment, the bidder may
use all or some these components (because the cost of that increment will be 0, as
components are already in the inventory).

This is a main source of sub-optimality, causing negative millions of dollars of
profit and dozens of unused components sitting in the inventory. After analyzing
these results, we decided that replacement costs are necessary for our greedy
algorithm.

b. New Configuration

While analyzing the implementation of replacement costs; [noticed that only
the running-out-of-stock dates of components are considered while calculating
replacement costs. However, a component may be replaced anytime between the
procurement and the running out of stock date. [modified the code to work this
way. This change fixed the sub-optimality, however the calculations became
computationally more demanding. Because of that, [made this new change
configurable, in a simple model, the previous implementation may be used.

c. Redundant Computations

Already calculated replacement costs were recalculated every day, even
though they do not change. I fixed this problem and saved some computation time.

2. Overlapping Parts

a. Optimality

During our discussions about replacement costs and optimality of the greedy
algorithm, we ended up with settings that caused our algorithm to work sub-
optimally with overlapping parts. I implemented these settings to prove our claims
and ran games. Results proved their sub-optimal effects.

We did not find a solution to this problem, however we did some
brainstorming and we had the idea of performing local search after marginal
procurer returns its solution to see if any increments could be given up for two
more profitable increments. We did not implement this idea and decided to address
other sources of sub-optimality first; also ILP does not have this problem.

b. No Overlapping Parts Configuration

After we proved the effect of overlapping parts, we decided to take it out of
the scene so that we can have a simpler setting to analyze and find possible flaws in
the algorithm. I implemented a configuration that products have no overlapping
parts. We used this configuration to check the optimality of our other algorithms.

3. ILP and Greedy Algorithm Comparisons

We decided to compare ILP and Greedy Algorithm in our bidder and procurers.
Expected Bidder and Procurer use ILP and Marginal Bidder and Procurer use
Greedy Algorithm. [created 8 unique settings, each one using either marginal or
expected bidder, marginal or expected procurer and replacement costs or not. [ran
8 games with these settings. Greedy algorithm did really bad in these tests, it
completed games with -400 million dollars and the inventory filled with unused
components, ILP was doing much better than the greedy algorithm, but it was still
far away from being optimal. In the light of these tests, we decided to focus on the
sources of sub-optimality in our greedy algorithm.

4. Sources of Sub-optimality in Marginal Procurer

We decided to address the sources of sub-optimality in marginal procurer. We
ended up with 7 problems: infinite supplier RFQs, past increments, future
increments, late lead-time increments using procurement, late lead-time increments
using inventory, overlapping parts and initial inventory. We created and
implemented several tests and example cases and analyzed their results. Then, we
wrote a report on each of these items.

Ad Auctions

A detailed report of our group’s work on our agent, Shlemazl, can be found in our
paper “Autonomous Bidding in Ad Auctions”.

1. Bid to Position Models

My first responsibility in this project was designing and implementing Bid to
Position models. These models return the expected average position for a given
query and bid. Here [will explain two models, a third model, Ensemble Model, is
also present in one of the following items.

a. Linear Bid to Position Model

A very simple model, which was intended to use as a test case at first. [t
keeps the previous days bid and position for each query, and calculates the position
of a given bid with the formula (q: query)

bid(q) = lastBid(q) + lastBid(q) * m * (lastPos(q) - pos(q))

m is the slope here, and [used 5 different linear bid to position models with
m=1/3,1/4,1/5,1/6 and 1/7.

This model does not require training, inserting a point to the model implicitly
trains it.

If the predicted position is smaller than 1, its set to 1. If its smaller than the
number of slots, its set to Double.NaN.

b. Bucket Bid to Position Model

This is a model that clumps up bids into buckets and map buckets to
positions instead. Bucket size is a constant in the code and its default value is 0.4. An
improvement to this model would be to find the optimal bucket size empirically, but
0.4 worked fine.

Every bid is assigned to a bucket with the following formula:

bucket(query, bid) = (int) bid / BUCKET_SIZE

Every query has its own buckets and there is not a fixed number of buckets,
i.e. if bid = 4 and BUCKET_SIZE = 0.5, that bid will be assigned to bucket 8. However,
if we never see a bid as high as 4, there will not be an 8th bucket.

After a bid is assigned to a bucket, the bid’s corresponding position is added
to that bucket. In other words, buckets carry the sum of positions:

bucket += position(query, bid)
bucketAppearance(query, bucket) += 1

When we are given a query and bid to predict a position, we simply get the bucket of
the bid, return the sum of positions in the bucket divided by the number of times
that bucket was incremented.

position(query, bid) =
content(bucket(query, bid)) / bucketAppearance(query, bucket)

In this model, “no position” is represented as (“number of slots” + 1). Position
is returned as Double.NaN (which is used in case of no position in the actual game) if
we get a position higher than the number of slots.

Of course, it is possible that the bucket of the bid that the model needs to
predict does not exist. In this case, the model uses the closest buckets on its left and
right and returns an average distance according to the distance.

2. Position to Bid Models

These models can be used to predict Position - Bid relations.

They are almost the same with bid to position models except some minor changes.
Because of this, | am not going into details. To give an idea about the changes, in
Bucket Position to Bid Model, bucket size is set to 1.0 instead of 0.4 to represent a
position. Positions are assigned to buckets and buckets carry the sum of bids for
that position.

3. Model Evaluation

[implemented a comparable model infrastructure that can be extended by any
model. This way, a user can evaluate their models by directly passing them to the
evaluator without changing any part of the code, provided their models extend the
comparable structure. This made it very easy to use the evaluators; furthermore it
gave the freedom of implementing new evaluators easily by just extending the basic
evaluator. Also, this structure made it possible to develop the ensemble model.

[implemented two simple evaluators using this structure:

a. Absolute Error Model Comparison

This evaluator calculates the absolute errors of the models.

In my implementation, TEST_SIZE was 5 and it worked fine. As an
improvement, an optimal size can be found empirically.

Input
List<ModelDataPoint> datapoints (from game log)
List<AbstractComparableModel> models

Output
Best model & Absolute error of each model

foreach model in Candidate Models
for d = datapoints.size - TEST_SIZE; d < datapoints.size; d++
fort=0;t<d; t++
insert data[t] to model
end
train model
get the prediction for data point at d
increment error of model by absolute (prediction - actual)
reset model

end
end

b. Norm-Squared Error Model Comparison
This evaluator is the same as Absolute Error Model Comparison, except it
computes norm-squared error.

c. Evaluate From Log

This may be handy if users would like to evaluate their models using game
logs. It loads model data points from a (already parsed) log file, creates the objects
that the evaluator requires, passes them to the evaluator and evaluates them.

4. Ensemble Model

This model utilizes the model evaluator and basically evaluates a set of candidate
models on the fly and uses the one that fits the current data the best. The best model
is selected by the evaluator and is basically the model that gave predictions with the
least error for the last TEST_SIZE days.

This is evaluation process is done every day with updated data and a new model is
selected every day (the same model can be selected consecutively of course). Then,
the position is computed with:

position(query, bid) = bestModel.getPosition(query, bid)

This is a very good model because we do not have to stick with a single model but
use the best fitting one instead. Of course, this does not necessarily mean that it will
perform better than any candidate model it considers. Because, a model may
perform poorly in the last 5 days, therefore not be selected by this model, but still
get the best predictions for the next day.

We entered TAC AA 2009 with this model and a set of 25 candidate models.

Prediction Challenge Modules

Prediction Challenge is a TAC game where teams focus on the prediction part of TAC
SCM. Our Prediction Challenge models make almost perfect predictions and we
would like to use these predictions in TAC SCM. In other words, we wanted to create
two models in TAC SCM, which are modules that feed daily information to
Prediction Challenge (in regular usage, PC gets this information from parsed game
logs) and get predictions from it.

These models needed to access to Prediction Challenge code, so Prediction
Challenge source is now referenced from TAC SCM.

1. Component Prices Predictor Module

This module passes daily information from TAC SCM to a component prices
predictor in Prediction Challenge and returns component price predictions. Itis
used as a Supply Model in TAC SCM, therefore it extends the SupplyModeler class
and implements its abstract methods. These methods are where we fill in the in and

out message vector to Prediction Challenge. These vectors represent the
information in the game logs, the messages received and sent by the agent,
respectively. This was one of the most important parts of this implementation; any
problem here would affect the predictions in a very bad way.

Another challenge I faced during the implementation was the lack of deep copying in
Prediction Challenge classes. After [implemented the initial module and ran tests to
make sure that daily data is passed correctly, [noticed that the predictions were
wrong. After analyzing some reports, [noticed that it was caused by the
“backtracking” nature of SCM Supply Model, basically it deep copies itself before
each try and then backtracks to that copy, thus lack of deep copying in Prediction
Challenge caused faulty copies of the predictor in the module. Fixing this problem
was very problematic because no class in Prediction Challenge had deep copy
methods and had a very deep structure, so | had to add deep copies to almost every
class in Prediction Challenge. I made the deep copies working for
SimplestComponentPricesPredictor, and ran tests to make sure that data flow is
correct. I could not run a comparison between predictions using the logs and
predictions using the module, because SimplestComponentPricesPredictor could
not make any predictions using the game log, even though other predictors could.
Unfortunately I could not fix the parser because [had no documentation on how it
worked (and it wouldn’t worth the time because the problem was caused by just a
dummy predictor) and did not have time to get another price predictor to work with
the module because of the necessity of implementing deep copies.

Instead, [wrote a report about what I did and what needs to be done. Basically, all
that needs to be done is just implementing deep copies to the predictors the users
would like to use. Then, the module can use these predictors, and the success of the
predictions can also be checked.

2. Computer Prices Predictor Module

Initially [was only planning to implement Component Prices Predictor but as I
understood the code and noticed that some parts of the modules are very similar, I
decided to begin working on this as well.

The way that this module works is very similar with the module above, except it
predicts product prices instead thus has a computer prices predictor in it. This one
did not require any deep copies, so implementation was much easier.

After finishing the implementation, | made sure that data flow is correct and
everything is working properly. Here I started my work on the simplest predictor as
well, and during the tests [noticed that it was so simple that it did not allow me to
make a healthy comparison between the predictions from the log and the ones from
the module. As far as I checked, everything is working properly, but other predictors
may be modified to be compatible with the module so that we are 100% sure the
predictions are correct.

Again, [wrote a report explaining this part, even though what is left to do is very
straightforward: users need to make sure that the predictors they would like to use
are compatible with the module (SimplestComputerPricesPredictor can be used as
an example).

