
Resolving Ambiguous Paths Using BorderPatrol

Ning Shi
Brown University

ning@cs.brown.edu

Abstract
BorderPatrol successfully uses active observation to ob-
tain precise causal paths as requests traverse many black-
box modules, such as Apache, Zeus, Postgres, MySQL,
and BIND. However, BorderPatrol was limited in sev-
eral ways that prevented operators from relying on these
traces. Several assumptions were made about the in-
ternal designs of traced modules, and when these as-
sumptions were violated, BorderPatrol returned incorrect
paths without warning.

Here, we have shown how BorderPatrol can apply con-
flicting evidence to detect assumption violations, back-
track to discover possible explanations for these con-
flicts, and use “known-good” paths to advise users which
possible explanation is most likely.

In addition, we demonstrate several enhancements
that make BorderPatrol suitable for tracing web applica-
tions in common deployment scenarios, including multi-
machine tracing, new protocol processors, and greater
flexibility in protocol determination. We demonstrate
BorderPatrol’s ambiguous path resolution and real-world
applicability by tracing HAProxy [1], Lighttpd, and
MySQL exactly as it is normally deployed.

1 Introduction

BorderPatrol [2] was built to solve the problem of discov-
ering the relationships between modules and construct-
ing request paths in complex distributed applications. It
gives developers and maintainers information about what
resources a request uses, which are the anomaly requests
that consume resources more than expected.

BorderPatrol does not require modules to be modified
in order to trace them. Each module is treated as a black
box. BorderPatrol uses active observation which care-
fully modifies the event stream observed by these mod-
ules, simplifying precise observation. It also uses pro-
tocol processors to leverage knowledge about standard
protocols, avoiding application-specific instrumentation.

However, BorderPatrol has difficulties in constructing
the correct request paths when the applications use in-
ternal work queues or user-level scheduling. Single pro-
cess event-driven applications which use internal queues
to buffer work units and multi-thread applications which
also use internal work queues all fall into this category of
applications which present problems to BorderPatrol.

BorderPatrol tries to follow requests in those appli-
cations which use internal work queues or user-level
scheduling and does not know when it fails. Our con-
tribution is improvements to BorderPatrol so that it does
not only know when it fails to resolve request paths, but
also tries its best to recover correct request paths. We use
immediacy and message witnesses extensively to spot
failures in path resolution and to recover correct paths.
A catalog is built based on correct paths which Border-
Patrol is confident about. The catalog is used later as a
guidance to resolve those which BorderPatrol thinks con-
fusing.

Our evaluation consists of case studies and an eval-
uation. We show that the improved version of Border-
Patrol knows when it cannot resolve paths and how it
tries to recover possible correct paths. Our experiments
were performed on servers and proxies include MySQL,
Lighttpd, and HAProxy, without modifications to server
source code.

2 Background

BorderPatrol constructs causal paths of requests by ob-
serving inputs and outputs to and from modules which
are considered as black boxes. The paths show which
modules were used in which requests, what resources
each request accessed, and how long it took a certain
module to process the inputs. Although BorderPatrol
treats modules as black boxes, it makes assumptions
about how real-world applications work.

1



2.1 Black Box Model

Request traces can be categorized into two types, namely
internal and external. Internal links are those which con-
nects a module input to a module output. External links
are those which connects a module output to the input of
another module.

Only external links can be observed without modify-
ing the source code of modules. BorderPatrol makes as-
sumptions about internal links. It assumes the internal
links must behonest, immediate, and independent. A
black box module is honest if it faithfully implements the
protocols it uses. Immediacy says that it should process
the input event immediately after it is presented with. At
last, a black box is independent if it handles concurrent
requests the same way as it would if the requests arrived
sequentially. All three assumptions must be true for each
module so that BorderPatrol can construct the request
paths correctly.

However, these assumptions are not necessarily true
in all possible applications. BorderPatrol argues that
most real-world applications do follow these assump-
tions. These assumptions make it possible for Border-
Patrol to guess the internal request flow in each module.

2.2 Active Observation

In the hope of precisely tracing modules which follow
the assumptions mentioned in the previous section, Bor-
derPatrol usesactive observation which consists of the
following techniques.

Protocol processors adds knowledge of different pro-
tocols to active observation. They understand different
protocols well enough to separate messages on a sin-
gle channel. BorderPatrol has protocol processors for
HTTP (1.0 & 1.1), FastCGI, PostgreSQL, X11 (client-
side only), DNS (client-side only), One-shot, and Line-
oriented protocols. ”One-shot” protocol processor pro-
cesses protocols which include only one request/reply
pair in a single TCP connection. The ”line-oriented’ pro-
tocol processor handles protocols which use newlines to
delimit request/reply messages.Message witnesses are
the data in input and output messages which can be ex-
tracted and used to match requests and replies. Since
protocol processors are implemented using library inter-
position, they can process incoming data before forward-
ing to the black boxes, and process outgoing data before
passing it on.Event isolation uses protocol processors to
separate multiple requests into individual requests so that
BorderPatrol can follow internal links without witnesses
(due to immediacy).

Message witnesses are facts embedded in messages
which bind them together. For example, a one-shot con-
nection is identified by both of its end points. If two

Figure 1: An example showing BorderPatrol traces. There are three
black-box modules involved, an event-driven web server Lighttpd
which uses php-cgi as the backend to handle PHP file requests,and
a MySQL database. Two external requestsA andB arrives at the web
server one after the other. All messages are sent in the labeled order.
RequestA, shown in solid lines, is passed on to php-cgi to handle the
PHP script which further accesses the database. Meanwhile,requestB,
which only reads a static file, arrives.

distinct messages have the same witnesses, they must be
part of the same request. In other words, unlike the im-
mediacy assumption, message witnesses are facts which
can be trusted directly.

Figure 1 shows an example of BorderPatrol traces.
The setup includes an event-driven web server Lighttpd
which talks to php-cgi using FastCGI, and MySQL as
the database. BorderPatrol uses library interposition and
protocol processors to obtain resource accessing events
of the three black-box modules. These traced events are
transferred to a central log file. Once the events are
recorded, they are sorted by time stamp. A joiner then
correlates events by temporal joining them to construct
paths.

Notice that in the traces, even though BorderPatrol
cannot observe any of the internal links in the black
boxes, it knows that message 2 belongs to requestA be-
cause of immediacy. As soon as the application server
module (php-cgi in this case) receives message 2, it ini-
tiates computation for requestA immediately due to im-
mediacy. Once the computation for requestA is done in
the database, the database sends a reply message back to
the application server module. Since message 6 and mes-
sage 5 use the same protocol, and message 6 is a reply to
message 5’s request, they are matched up by witness. For
the same reason, message 8 is matched up with message
7, message 9 with 2, message 10 with 1, and message 4
with message 3.

In order to handle concurrent requests, real-world ap-
plications multiplex requests one way or the other. In the
example above, Lighttpd multiplexes requests by using
an event-driven model. A single request is divided into
smaller tasks. Each task can be done in a relatively short
period of time. This way, Lighttpd can switch to requests
which have tasks ready to be processed while the current
task blocks.

There are several paradigms of multiplexing requests
as presented by Paiet al. [3], namely multi-process or
multi-threaded, single process event-driven, asymmetric
multi-process event-driven, work queues, and user-level
scheduling. While BorderPatrol works well on most of

2



Figure 2: An example showing ambiguous paths. RequestA is shown
in solid lines, requestB in dashed lines. Grey solid lines means that
they can belong to either request. The requests are the same as those in
Figure 1. But now HAProxy sits in front of the web server. HAProxy
receives requestB immediately following requestA. Then HAProxy
forwards one of the request to the web server first. After getting a
reply from the web server, the other request is forwarded. Because of
internal work queue, BorderPatrol does not know if the first request
being forwarded to the web server is requestA or requestB.

them, it has problems constructing paths for applica-
tions that make use of internal work queues and user-
level scheduling. In these two paradigms, requests might
be queued up and scheduled in any order. Without un-
derstanding the internal links, immediacy has difficulties
correlating the outputs of a black box to the requests.

A big drawback of BorderPatrol is that it does not
know when any of the assumptions are violated. In other
words, BorderPatrol is not self-aware. Although Border-
Patrol works well on most applications, there are types of
applications which do not follow the assumptions. When
BorderPatrol runs on these applications, it does not know
when it makes mistakes.

Applications which use internal work queues and user-
level scheduling to multiplex requests are among those
that violates the assumptions. HAProxy is a high avail-
ability, load balancing HTTP proxy. It allows users to
specify a maximum number of outstanding requests in
each web server backend. Once the maximum connec-
tion is reached, no more requests are forwarded to the
backend until some or all of the existing ones finishes.
Meanwhile, new requests are forwarded to other back-
ends which have not saturated the maximum connec-
tions. If all backends have reached their maximum num-
bers of connections, HAProxy will push all new requests
into its own internal work queue and wait until some
backends become available. Once one or more back-
ends become available, HAProxy will dequeue the re-
quests in the work queue based on a specified scheduling
algorithm and forward them to the web servers.

Figure 2 shows the same requests as in Figure 1 but
with HAProxy added in front of the web server. As-
sume at the time requestA arrives, all backends have
reached the maximum numbers of outstanding requests
in HAProxy. No backends become available until some
time after requestB comes. So both requestA and
B are queued up in HAProxy upon arrival. When the
web server finishes processing the existing requests,
HAProxy resumes forwarding requests again. In this
case, immediacy tells BorderPatrol that message 3 be-

longs to requestB, because it follows message 2’s arrival
immediately. Consequently, accesses to the application
server and the database are all assigned to requestB.
For requestA, BorderPatrol thinks it arrives at HAProxy
and returns without interacting with any other modules.
However, we know that requestB only reads a static file.
It does not require any CGI application, nor does it need
to access the database. On the other hand, requestA calls
a PHP script which accesses the database.

3 Ambiguous Paths

In applications that make use of internal work queues and
user-level scheduling, paths may be ambiguous without
tracing the internal links. BorderPatrol did not have the
capability of detecting such ambiguous paths. In order
to resolve them, we need to identify the ambiguous paths
first.

3.1 Identifying False Paths

Ambiguous paths are identified by observing immediacy
and witness mismatches. When a mismatch takes place,
it is likely that immediacy is wrong about what the in-
ternal links should be. Because immediacy is merely a
guess of what might happened inside a module based on
the assumptions mentioned in Section 2.1, it is less reli-
able. On the other hand, message witnesses are facts pro-
vided by messages themselves, which must be correct.
The same example in Figure 2 shows such a mismatch.

Each pair of arrows in Figure 2 represents a request-
reply pair in a protocol. So each reply message can be
matched up with the corresponding request message by
witness. BorderPatrol will process the events in the flow
depicted in Figure 3. Notice that immediacy thinks mes-
sage 11 should belong to requestB, since the last time
this module processed an event it belonged to requestB.
However, there is a witness relating message 11 to mes-
sage 1, which marked the beginning of requestA. This
conflicts with what immediacy says. Hence, the paths
which are currently being built are possibly wrong. Bor-
derPatrol will go on and switch the currently processing
request toA. Message 14 will then be considered belong-
ing to requestA by immediacy. But witness says differ-
ently because message 14 is a reply to message 2, which
was believed to belong to requestB at that moment.

With the capability of identifying false paths, Border-
Patrol is able to detect its own mistakes and become self-
aware. The makes the system more robust against dif-
ferent types of applications. Even in applications which
BorderPatrol cannot handle, it will not generate false
paths.

3



Figure 3: Process flow of events shown in Figure 2. Each vertical line
represents a module. Time flows from the top to bottom. Each arrow
represents a message sent, and it is labeled with the requestID of what
BorderPatrol thinks it belong to. Messages linked to requests by imme-
diacy are shown in dashed lines, and messages linked by witnesses are
shown in solid lines. Two immediacy and message witness mismatches
occur.

3.2 Backtracking

Once a false path is identified, BorderPatrol needs to
know what portion of the path down to the point of mis-
match is ambiguous. Starting from the mismatch event,
BorderPatrol backtracks each event just processed until
it is confident that an event belongs to a certain request.
In Figure 3, immediacy thinks message 14 belongs to re-
questA, and witness believes it belongs to requestB.
BorderPatrol stops backtracking when it reaches (a) an
event belongs to requestB, (b) the termination of a re-
quest, (c) an event which links to another event that hap-
pened before requestB arrived by witness.

If BorderPatrol is certain that an event belongs to ei-
ther requestB or some other request, all events before it
must be correct. The events between this breaking point
and the mismatch event are the ones BorderPatrol is not
confident about.

Stopping condition (a) is obvious that an event cer-
tainly belongs toB. Condition (b) says that an event can
be linked with the beginning of a request by witness, such
as message 11. So it is clear that the event certainly be-
longs to a request other thanB. Condition (c) describes
an event which can be confirmed by witness that it does
not belong to requestB, because it started before request
B arrived. In our example, message 11 can be confirmed

by witness that it is linked with message 1, which arrived
before requestB started. So backtracking ends here.

3.3 Ambiguity

Backtracking only tells BorderPatrol what fragment of a
path is ambiguous. In order to find the correct path, Bor-
derPatrol still needs to know what the ambiguous paths
are by placing the ambiguous fragment differently.

There are different types of feasible request paths in
real-world applications, paths which are non-forking,
paths which forks, paths which are non-terminating, and
paths which terminates. Non-forking paths are the kind
of paths which do not branch. They are linear. In con-
trast, forking paths have branches. They include black-
box modules which fork a single input into multiple
outputs. Non-terminating paths are paths which have
branches left even after the request is being responded.
On the other hand, terminating paths end when a re-
quest is being replied. Applications such as online shop-
ping stores take orders and reply to customers immedi-
ately, then they process the orders in background. Notice
that a non-forking path must also be terminating. Non-
terminating path can occur if the path is non-forking.

Forking modules are not common. However, they
do fit into some use cases. A forking module can ex-
ecute tasks of a single request simultaneously. In con-
trast, modules in real-world applications tend to be lin-
ear. They execute one task of a request at a time. In
a single request, subsequent tasks may depend on pre-
vious tasks. Requests may be multiplexed, but tasks in
a single request are sequentially executed. For example,
application server has to read in the CGI file before it can
make decision whether or not to access database. In the
modules we have studied, including HAProxy, Lighttpd,
php-cgi, and MySQL, tasks in a request are processed
linearly.

The example shown in Figure 2 can result in four dif-
ferent possible versions of paths. If requestA accesses
the application server and the database, it takes the long
path. Depends on whether the load balancer black box
is terminating or not, the last access to the web server
(messages 12 and 13) may or may not belong to request
B, shown in Figures 5(a) and 5(c), respectively. On the
other hand, if requestB is the one that accesses the appli-
cation server and the database, requestA takes the short
path. Similarly, the last access to the web server also de-
pends on the load balancer’s termination property, see
Figures 5(d) and 5(b). These paths are ambiguous to
BorderPatrol because it has no knowledge of the inter-
nal properties of the black boxes.

There are different approaches to resolve ambigu-
ous paths, including marking modules as forking or
non-forking, marking modules as terminating or non-

4



Figure 4: Possible paths from example shown in Figure 2. They are produced by placing the ambiguous fragments in different requests. Notice
that 5(a) and 5(b), and 5(c) and 5(d) are symmetric pairs. There are two ambiguous fragments in Figure 3, messages 3 to 10 and messages 12 to 13.
Which request messages 12 and 13 belong to depends on the termination property of HAProxy.

(a) Possible paths where HAProxy does not terminate (b) Possible paths symmetric to 5(a)

(c) Possible paths where HAProxy terminates (d) Possible paths symmetric to 5(c)

terminating, using witness to match black box inputs and
outputs, or comparing with past unambiguous paths.

(a) BorderPatrol uses message witness like file descrip-
tor and network end points to identify replies to re-
quests. A similar idea can be used. Aweak witness
is data extracted from both input and output protocol
messages, such as URI in HTTP protocol. It requires
that the messages are in similar protocols so that the
request identifier can be extracted from both proto-
col messages, like HTTP and FastCGI protocols. If
the output of a black box is in the protocol as the in-
put, they can also be linked by weak witness. For
example, proxies usually forward messages without
changing protocol.

(b) Users of BorderPatrol can mark each module as fork-
ing or non-forking in a configuration file. When
BorderPatrol resolves ambiguous paths, it will dis-
card the possible paths which conflict with the fork-
ing property of modules. Besides the forking prop-
erty, users can also tell BorderPatrol which modules
terminate and which do not. So when BorderPa-
trol resolves ambiguous paths, it can discard those
which include non-terminating paths if the modules
are marked as terminating, such as Figures 5(c) and
5(b).

(c) Sometimes not all paths are ambiguous. Clear paths

can be recorded and used as guidance in resolv-
ing ambiguous paths later. If all clear paths show
that a module is terminating, it is likely that a non-
terminating ambiguous path isnot what really hap-
pened. Similarly, the forking property of modules
can also be indicated by clear paths.

Approach (a) works well on modules which speak the
same protocol in both input and output messages, and
they are one-to-one correspondences. An example shows
how this approach restricts the types of requests it can
resolve. For an HTTP proxy, it is normal to get multi-
ple requests to the same URL concurrently. In this case,
all output messages from the proxy will have the same
URL embedded, which makes it impossible to distin-
guish them. However, weak witnesses can still be useful
in telling which outputs arenot linked with an input.

Approaches (b) is easy to implement. However, it re-
quires users have some knowledge about the modules
in the applications to determine the properties. Often
times, properties like forking and terminating are not
stated clearly in the documentation of the modules. So
the only way to find them out is to either ask an expert or
read the source code, which is hard or even impossible to
users who do not have access to these information.

We use approach (c) in BorderPatrol to resolve am-
biguous paths. For each path which do not have any
mismatch, it is simplified and stored in a catalog. The
simplification shortens the path so that it only contains

5



the order of module occurrences. These simplified paths
should indicate the forking and terminating properties of
the modules. When BorderPatrol hits an ambiguous path,
it compares all possibilities with the simplified paths in
the catalog. The possible path that has an exact match
in the catalog or more similar to paths in the catalog is
likely to be the correct path.

4 Implementation

We added the capability of identifying ambiguous paths
to the temporal joiner of BorderPatrol. Using this tech-
nique, BorderPatrol simplifies correct paths into the cat-
alog. The catalog is then used as a guidance in resolving
ambiguous paths.

4.1 Identifying Ambiguous Paths

The joiner is modified so that when a message can be
confirmed by a witness, the result is compared with im-
mediacy. If a mismatch happens, the normal operation
pauses and BorderPatrol starts backtracking (see Sec-
tion 3.2). Once backtracking is done, BorderPatrol re-
sumes where it left off.

4.2 Building Catalog

Paths without mismatching immediacy and witnesses are
correct. These paths are then simplified by only includ-
ing module names in the order they appear in the paths.
Simplified paths are added into a catalog for path resolu-
tion (See Section 4.3).

The way a single path is simplified is by only record-
ing the module names associated with read events. If
multiple contiguous read events occur, they are short-
ened and the module name is only recorded once. Take
the actual path of requestA in Figure 2 for example, the
simplified path is shown in Table 1.

4.3 Resolving Paths

To recover all possible paths, we usebacktracking (see
Section 3.2) when a mismatch is identified. It takes the
request ID given by witness as the new ID and backtracks
the events before the mismatching event, adding the new
ID to the list of request IDs they possibly belong to, until
any one of the stopping conditions is satisfied.

All events being backtracked at the same time fall into
the same fragment. They are assigned the same set of
request IDs, meaning that they might belong to any one
of the requests as a batch, but not more than one. All
possible sets of paths are produced by including these
fragments in different requests they were assigned to one
at a time.

Process Message Simplified
HAProxy Read request A HAProxy
HAProxy Write to Lighttpd
Lighttpd Read from HAProxy Lighttpd
Lighttpd Write to php-cgi
php-cgi Read from Lighttpd php-cgi
php-cgi Write to MySQL
MySQL Read from php-cgi MySQL
MySQL Write to php-cgi
php-cgi Read from MySQL php-cgi
php-cgi Write to MySQL
MySQL Read from php-cgi MySQL
MySQL Write to php-cgi
php-cgi Read from MySQL php-cgi
php-cgi Write to Lighttpd
Lighttpd Read from php-cgi Lighttpd
Lighttpd Write to HAProxy
HAProxy Read from Lighttpd HAProxy
HAProxy Reply to request A

Table 1: Simplified path of requestA in Figure 2. The simplified path
is [HAProxy, Lighttpd, php-cgi, MySQL, php-cgi, MySQL, php-cgi,
Lighttpd, HAProxy].

Each possible path is then simplified using the same
procedure discussed in Section 4.2. The simplified path
is compared to the ones in the catalog. A score is calcu-
lated based on the smallest difference between the sim-
plified path and the ones in the catalog. Difference is
recorded as negative value. If there is an exact match
in the catalog, a high positive value is given. The score
is assigned to the path fragments in the current possible
path as weights.

After calculating the weights of all path fragments, all
possible paths are presented to the user with path frag-
ments colored based on their weights. This can guide the
user in determining the correct paths.

4.4 MySQL Protocol Processor

The only database protocol BorderPatrol supported was
PostgreSQL. We added MySQL protocol processor be-
cause it is widely deployed and popular among web ap-
plications. It is implemented in 156 lines of code in total
for all functions. The MySQL protocol processor also
logs SQL queries to the corresponding events. They can
be used to show which requests account for what queries.

4.5 Multi-machine Support

Although BorderPatrol was designed with multi-
machine support in mind, it did not have all the proper
pieces in place. To make it work across network on mul-
tiple machines, we made the following changes.

6



In the original BorderPatrol paper [2], the logging dae-
mon only accepted local unix domain sockets for connec-
tions. This obviously does not work across network. We
modified the logging daemon and the tracing library to
use TCP connections instead.

BorderPatrol was using kernel cycle count as time
stamp. It worked well on a single machine with high pre-
cision. However, it did not work on multiple machines,
since kernel cycle count is different on each machine.
Depends on the architecture of the systems, 32-bit or 64-
bit, the precisions of the cycle counts are also different.
Some machines may have power management features
which will scale CPU speed down when not needed. This
changes the cycle count as well. So we modified the log-
ging daemon and the tracing library to use the time of
day given bygettimeofday()as time stamp. The clocks
do not need to be synchronized precisely. However, the
differences have to be within a small constant. In order to
accommodate one-way network delays, we use a simple
method to adjust the time stamps of the events received
at the logging daemon. The logging daemon records the
time differences between each machine and the machine
it runs on based on the first event from them. Then it ap-
plies the corresponding recorded difference to all events
from each machine.

Applications that span multiple machines use TCP or
UDP sockets for module communication. In order to
recognize what protocol a module uses to talk to an-
other module, we use the same approach as the Inter-
net network service list. When a connection establishes,
both the host end port and the destination end port are
searched in/etc/services. If the user wants to specify cus-
tom service ports, a custom service-port mapping file can
be provided to BorderPatrol. The custom mappings will
override those in/etc/services.

4.6 Dark Corners of the Linux API

Most real-world applications use non-blocking system
calls in modules, especially event-driven applications.
Non-blocking connect() returns immediately with error
code EINPROGRESS to indicate that the connection is
in progress. Then the programmer has to call poll()
or select() on the socket file descriptor to check if the
connection succeeded. On the destination end, accept()
may return before the host calls poll()/select(). This
confuses BorderPatrol as if accept() happened before
connect() takes place, because BorderPatrol records the
CONNECT event at the time of success. We modified
the interposed connect() and poll()/select() so that when
connect() returns EINPROGRESS, it records a CON-
NECT DELAYED event. Later when poll()/select() re-
turns the file descriptor, it is recorded as the actual CON-
NECT event with the time stamp of the corresponding

CONNECT DELAYED event. This guarantees that the
CONNECT event appears before the ACCEPT event to
the joiner.

BorderPatrol greatly relies on the effectiveness of li-
brary interception. Modules which support plugins usu-
ally use dynamic linking loader to load them into mem-
ory at run-time. On Linux, the flag RTLDDEEPBIND
to dlopen() puts the symbols in the loaded plugins ahead
of the global scope, making them untraceable to Border-
Patrol. As a result, we have to interpose on dlopen() to
remove RTLDDEEPBIND from the flag argument.

Some applications, such as Lighttpd, use ioctl() to
check if a file descriptor has data ready to be read. If
the file descriptor has data ready, the application calls
read() and compares the bytes read with what ioctl() re-
ported. This did not work in BorderPatrol because pro-
tocol processors may decide to isolate multiple messages
in a single packet and present one message at a time. We
interposed on ioctl() to report the exact number of bytes
which will be returned by the interposed read().

5 Evaluation

The evaluation is divided into two subsections. The first
subsection shows the correctness and effectiveness of
ambiguous path resolution. The second section shows
the overhead of the tracing library under realistic work-
load on real-world deployment. Our experiments were
conducted on two servers, one running 2.2GHz Athlon
Dual Core CPU and 2GB of RAM, and the other one
running two 2.8GHz Pentium 4 CPUs and 1GB of RAM.
The servers are of different architectures, 32-bit on the
faster machine and 64-bit on the slower one. MySQL
database was run on the 32-bit machine, with the logging
daemon running locally. Lighttpd and HAProxy were
both run on the other machine, sharing the logging dae-
mon with MySQL. All modules communicated through
TCP connections.

We worked with the maintainers ofpassiveaggres-
sivenotes.comso that we set up a similar environment
as their website. All modules were configured using the
configuration file they provided. Lighttpd was set up to
accept 2048 simultaneous connections and with 16 php-
cgi backends. They were not using HAProxy as load bal-
ancer, we added HAProxy in front of the web server be-
cause it uses internal work queues. A single services file
was provided with custom port numbers included for the
protocols. The blog platform they used was wordpress.
We installed wordpress 2.8.4 and submitted several sim-
ple posts. The deployment is similar to that shown in
Figure 2, but with more php-cgi modules.

7



5.1 Ambiguous Path Resolution

The experiment was conducted on application set up the
same as in real-world deployment. All modules were
traced using BorderPatrol tracing library. We took the
log file of passiveaggressivenotes.comand replayed
20 seconds of the requests. The 20-second request frag-
ment was extracted from the access log of 3pm of a Mon-
day. There were 402 requests in the fragment, mostly
static file requests. 28 of the total requests were to PHP
scripts.

All requests were sent out from a dedicated thread, so
that no request wait for the other to finish. Although in
realistic scenarios, static files in a single page always fol-
low the request to the page. The static files themselves
may or may not be requested concurrently depending
on the behavior of the browsers. Since the precision of
the time stamps in the log file is second, we made re-
quests with the same time stamp to happen at random
time within the second.

Stretch factor 0.5 1 2
Total requests 402 402 402
Clear paths 172 91 299

Table 2: Results of replaying realistic requests frompassiveaggres-
sivenotes.comwith different stretch factors. There were 402 requests
in total, mostly static file requests. Clear paths show the number of
requests with no ambiguous paths. These paths were simplified and
inserted into the catalog.

The result of the experiment is shown in Table 2. We
replayed the same requests in the same order with dif-
ferent stretch factors, twice the normal speed, normal
speed, and half the normal speed. The clear paths did not
have ambiguous fragments. They were simplified and
inserted into the catalog. We were able to obtain the fol-
lowing four types of paths in the catalog in all three ex-
periments. The first type is requests to static files, which
only involve HAProxy and Lighttpd. The second type is
requests to PHP scripts which do not access the database.
It includes php-cgi in addition to HAProxy and Lighttpd.
The third type is requests to PHP scripts which also ac-
cess the database, so MySQL is also involved. The last
type is requests which were rejected by HAProxy due
to overload. The simplified paths of all four types are
shown in Table 3. These four types of paths cover all
types of scenarios the blog can produce. All four types
of paths indicate that all modules are terminating.

The joiner was run twice to resolve the paths. The first
run found all clear paths and insert them into the catalog.
The second run was to resolve the ambiguous paths using
the catalog. Each run took about half an hour to finish.

5 10 15 20 25 30

Concurrent clients

0

20

40

60

80

100

120

140

160

L
a
te
n
c
y
 (
m
s
)

normal

tracing on

tracing off

Figure 5: Latency overhead for realistic workload. The workload was
requests to a wordpress blog. The benchmarks were run without Bor-
derPatrol tracing library, with the tracing library turnedon and off at
run-time.

5.2 Overhead Benchmarks

The tracing library of BorderPatrol can be turned off at
run-time. We now show the run-time overhead of the
tracing library on a real-world deployment. The same
set up is used in the benchmarks. We used the same
20-second requests extracted from the access log ofpas-
siveaggressivenotes.com. However, requests were not
replayed. They were randomly chosen from the same list
of URLs and sent out as soon as possible by closed-loop
feedback clients. So there were more static file requests
than CGI requests.

The result of the benchmarks is shown in Figure 5.
The concurrent clients were run on the local machine to
reduce network latency. Note that MySQL forks a new
process each time a new client connects to it. Once the
static files were read, they were loaded into memory and
subsequent accesses to the same files represent overhead
of making system calls. With BorderPatrol tracing li-
brary turned on, the mean overhead was 60.97%. With
BorderPatrol tracing library loaded but turned off at run-
time, the overall latency overhead was 4.80%.

6 Conclusions

We improved BorderPatrol to be able to work on real-
world deployments. We also modified BorderPatrol so
that it knows when it makes mistakes. Beyond this,
we also showed possible ways of solving the ambiguous
paths when mistakes are made. We implemented one of
the ambiguity resolution algorithms which requires no
user interruption in BorderPatrol so that it can handle ap-
plications which make use of internal work queues and
user-level scheduling.

BorderPatrol with all the improvements and the
ambiguity resolution algorithm is available from

8



Static haproxy, lighttpd, haproxy
PHP w/o database haproxy, lighttpd, php-cgi, lighttpd, haproxy, lighttpd,haproxy, php-cgi
PHP with database haproxy, lighttpd, php-cgi, mysqld, ..., php-cgi, lighttpd, haproxy, php-cgi

Rejected haproxy

Table 3: Four types of paths in the catalog built from the clear paths.

http://cs.brown.edu/research/borderpatrol/.

Acknowledgements

The authors would like to thank Eric Koskine for the
help at the initial stage of the project, and C. Chris Er-
way for the kindness of providing configuration files of
passiveaggressivenotes.com.

References

[1] HAProxy - event-driven http load balancer.http://
haproxy.1wt.eu/.

[2] Eric Koskinen and John Jannotti. Borderpatrol: isolating
events for black-box tracing.SIGOPS Oper. Syst. Rev.,
42(4):191–203, 2008.

[3] Vivek Pai, Peter Druschel, and Willy Zwaenepoel. Flash:
an efficient and portable web server.

9


