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Abstract

Pathways of genes found in protein interaction networks are used to establish a
functional linkage between genes. A challenging problem in analysis of gene networks
is to find pairs of compensatory pathways which can substitute for each other in case of
a defective gene. All previous approaches on finding between-pathway models (BPMs)
use the genetic network, while some of them also require each pathway to be a connected
component in the physical network. In this thesis, we show that physical interactions
can be used to induce missing genetic information and assist in finding BPMs. We
extend the definition of a pair of compensatory pathways and propose a new method
for finding BPMs which takes into account both networks. Experimental results on
yeast interactome data set show that our method reveals more functionally enriched
BPMs according to Gene Ontology database than previous work.

1 Introduction

Yeast genome is estimated to consist of 18.7% of essential genes, deletion of any of them

leads to the death of a cell. Why can a cell survive a defect or deletion of a non-essential

gene? This phenomenon is explained by the ability of a cell to buffer some of its func-

tionality among several groups of genes. Such sets of genes involved in the same process

that can compensate for each other, are called redundant pathways. Consider example in

Figure 1, where blue arrows represent the information flow inside the cell. In the presence

of redundant pathways 1 and 2, when a gene in pathway 1 is defected, pathway 2 is used

instead, and vice versa. The natural question that arises is how to find pathways redundant

in their functionality.

A synthetic lethal (SL) interaction between a pair of genes is present when deletion of

both of the genes leads to a death of a cell, while a cell can survive a deletion of one of

them. Furthermore, SL interaction usually exists between genes involved in the same or

similar processes [9]. While this provides an inside look at buffering between genes, we

are interested in whole pathways that can be removed and not affect cell viability. Kelley



Figure 1: Between Pathway Model.

and Ideker [4] proposed to represent redundant pathways using a Between Pathway Model

(BPM), a pair of pathways connected by SL interactions (red dashed links in Figure 1).

SL network comes from laboratory experiments with estimated 17–41% [8] false nega-

tives. Since BPM model strongly relies on SL interactions inferring missing links from other

types of data could improve the findings. Previous studies show that network of physical

interactions (PI) among genes correlates with synthetic lethal network [6, 8]. For example

a gene with many physical interactions has many SL interactions. In this paper, we show

that physical interactions can be used to infer missing SL links. We then propose methods

for finding BPMs based on this inference.

The layout of the paper is as follows. We first present the past work, followed by the

notation in Section 3. We explain our methods in Section 4. Comparison of our methods

with all known algorithms for finding BPMs is presented in Section 5.

2 Prior Work

We refer to synthetic lethal interactions as genetic interactions or lethal links, interchange-

ably.

Past work can be split into two parts: methods that use both SL and PI networks,
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and methods that solely rely on genetic interactions, where each defines a BPM using

assumptions about biological data.

Kelley and Ideker [4] were first to propose the Between Pathway Model and an algorithm

for finding it. They defined a BPM to be a pair of physical pathways densely connected by

lethal interactions, where each pathway is densely connected by physical interactions. They

used a probabilistic method assigning each pair of pathways a score proportional to density

of physical links within each pathway and density of genetic links between the pathways.

Shamir and Ulitsky [10] then extended this model requiring each pathway to be a con-

nected component in the physical network. They explained more SL edges than Kelley and

Ideker, since they relaxed the required connectivity of a BPM. There are two details in the

methods by Kelley et al. and Shamir et al. that restrict the BPMs that can be found. First,

both methods are initialized from small connected components which impose the physical

and lethal interactions considered during search. Second, requiring BPMs to be fully or

highly connected in a physical network relies on the fact that all physical interactions have

been discovered.

The later work concentrated on SL network only, arguing that for some organisms

physical network might not be available or contains many false positives and false negatives.

Based on these assumptions Ma et al. [5] defined a BPM to be an approximately complete

bipartite graph within the synthetic lethal interaction network. A similar work was done

by Brady et al. [3] where they used the same definition of a BPM but proposed a greedy

randomized algorithm which looks for stable bipartite subgraphs. Since neither of the

methods required physical connectivity within pathways they found larger number of BPMs.

However, the lack of knowledge about physical interactions resulted in lower functional

homogeneity within the pathways.

The results from past work indicate that synthetic lethal interactions are a good source

of data when looking for redundant pathways, while adding physical connections helps to

find functional pathways. In this paper, we try to address the question of how to use

physical links to find BPMs and not restrict the set of lethal links we consider.
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(a) (b) (c)

Figure 2: (a) Physical interactions and (b) lethal interactions networks, where green solid
edges represent physical links, and red dashed edges are synthetic lethal links.

(c) Both networks combined.

3 Preliminaries

We can view each network as a graph, where a node represents a gene and an edge represents

an interaction between corresponding genes. Let V be a set of yeast genes, EL and EP set

of synthetic lethal and physical edges, correspondingly. Then, GL = (V,EL) is a synthetic

lethal network and GP = (V,EP ) is a network of physical interactions (Figure 2). Then a

BPM B = (P1, P2) consists of two sets of genes (pathways), s.t. P1∩P2 = ∅ and P1∪P2 ⊆ V .

Figure 3 shows an example of a Between Pathway Model, with each pathway containing

physical interactions, and 8 lethal links connecting them.

Using this notation we can summarize the properties of the BPMs found by past meth-

ods:

• Kelley and Ideker [4]: B = (P1, P2) is a BPM if the number of lethal links between P1

and P2 is higher than expected on average, and each P1 and P2 are densely connected

in VP .

• Ulitsky and Shamir [10]: Same as above except P1 and P2 are required to be connected

components in VP .

• Ma et al. [5] try to maximize the size of each BPM (|P1| + |P2|) while maintaining

many lethal edges between P1 and P2, and only a few inside of each pathway.
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Figure 3: An example of redundant pathways P1 and P2.

3.1 Data

We analyze the network used by Kelley and Ideker [4] and Brady et al. [3]1. We remove

essential genes since we expect them to not appear inside of redundant pathways (see [10] for

the discussion on essential genes inside of a BPM). After filtering the network contains 682

genes with 1858 synthetic lethal and 583 physical interactions (protein binding interactions).

3.2 Validation

We use FuncAssociate [2] web tool to analyze if pathways in a found BPM have a biological

meaning. For each pathway FuncAssociate returns a set of Gene Ontology (GO) attributes

with associated p-values. The lower the p-value the less likely it is that a pathway is

annotated with this GO attribute by chance (see [2] for more details). We say that a BPM

is validated, or functionally homogeneous, if it is annotated with at least one GO attribute

with significance value is at least 0.01. We refer to GO attribute, as an attribute or function,

interchangeably.

4 Methodology

We relax the definition of a BPM given by Kelley and Ideker [4]. We do not require pathways

in a BPM to be connected components in GP , due to the limitations it poses (see Section 2).

We still use physical links in our algorithms but for a different purpose. All our methods

are based on this definition.

We first discuss the similarities between the correlation clustering problem and finding
1http://www.cellcircuits.org/Kelley2005/

5



BPMs, and explain why the methods for solving the former cannot be used in the latter

case. We then propose two novel approaches for building BPMs both centered on the idea

of using the PI network to induce missing SL edges.

4.1 Correlation clustering

The problem of finding BPMs slightly resembles correlation clustering [1] (CC): given a set

of data objects and information about which pairs of these objects can appear in the same

cluster and which cannot, the objective is to cluster these objects satisfying as many of

pair-wise restrictions as possible. We can view this problem as a graph with objects being

the nodes, and two types of edges, a must-link edge for pairs of objects that have to appear

in the same cluster, and cannot-link edged for pairs that have to be in different clusters. If

we consider each pathway to be a cluster, lethal and physical links to be cannot-link and

must-link edges, respectively, then our problem can be presented as correlation clustering.

However, there are several distinctions.

A pathway in a BPM is a functional unit, and since a gene can be annotated with several

functions it can participate in more than one pathway. Hence, pathways are not necessarily

disjoint, whereas clustering procedure builds disjoint sets of points. Second, the data we

work with is not complete, i.e. we have 1858 out of possible 232,221 edges in GL, while most

CC methods work with almost complete pair-wise information graphs. Another significant

difference is the objective. We not only want to satisfy all must-link and cannot-link edges

but also find pairs of clusters that are densely connected by cannot-link edges (each such

pair is a BPM).

A greedy local search approach for solving the CC problem is to move a point to a

cluster that would improve the objective the most, until no possible move results in a

better objective value. We extend this greedy heuristic to overcome the aforementioned

limitations of correlation clustering. We initialize each cluster using connected components

of GP , since we expect pathways to have physical interactions. This procedure resulted

in only 30 clusters, one containing 1/3 of all genes. To increase the reliability on physical

network we split clusters by removing articulation points and bridges. We are now left with

127 clusters, while the large cluster decreased in size it still remained significantly larger
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Figure 4: Genes ga and gb participate in two different biological processes (red and blue).
However, it does not imply that g1 and g4 are from the same process.

than the rest of the clusters. We then extend the set of moves in our local search procedure

to move, remove and replicate a gene to a cluster, forbidding moves which would violate

must-link (physical) and cannot-link (lethal) edges. Note that a gene can be moved to a

cluster with which it has no physical interactions (which is in line with our BPM definition).

Our objective was to maximize the sum of edges between pairs of highly connected clusters.

The main shortcoming of the above approach is the presence of big clusters that biases

the search since all other clusters tend to connect to it. We think that each of these highly

connected components is an overlap of several pathways, where the physical interactions

connecting each cluster are of different types and are not transitive (see Figure 4).

4.2 Ma et al. on extended GL network

Synthetic lethal network contains many false negatives, which means that information about

many lethal interactions is not present in the data either due to the nature or complexity

of the conducted experiments. Due to existence of high correlation between physical and

synthetic lethal networks [6, 8], we propose to use physical interactions to infer missing links

in GL.

We now explain how we can increase network GL with edges inferred from graph GP .

Consider example in Figure 5, where genes g1, g2, g3 and g4 are all physically connected

to each other, but only g2, g3 and g4 are lethally connected to gene g5. It is interesting

that a group of first 4 genes has such a strong binding while only three of them are lethally

connected to g5. The intuition suggests that there must be a synthetic lethal edge present

between g1 ad g5.
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Figure 5: Inducing missing lethal link from physical links.

We create a new lethal network GL,β = (V,EL,β) as follows. For every g ∈ V we find

a set P (g) of genes physically connected to g. Initially, EL,β = EL. We then add an edge

(g, g′) to EL,β if β fraction of genes in P (g) have lethal interactions with g′:

EL,β ∪ {(g, g′)} ⇔ |{p | ∀p ∈ P (g), (l′, p) ∈ EL}| ≥ β|P (g)| ∧ (g, g′) /∈ EL.

Consider again example in Figure 5. Since all genes in P (g1) = {g2, g3, g4} have lethal

interactions with g5, we add SL edge (g1, g5).

Using the above approach we created two networks GL,1 and GL,0.5 containing 146 and

264 new edges, respectively. To verify the edges that we added we consider a more recent

network from BioGRID 2.0.31 [7]. We find that 46 out of 146 new edges in GL,1 have been

discovered in the recent version. This is a promising result, since it shows that links induced

from a physical network were indeed missing.

This new combination of physical and lethal networks can now be used by algorithms

that are based on lethal links only, i.e. [5] and [3], and olya: provides better comparison

between different methods.

4.3 Inducing lethal interactions from PI network

We propose an algorithm for finding Between Pathway Models which is based on a finding

from previous method. It is closely related to the algorithm by Ma et al. [5] but instead of

using only lethal interactions to measure the connectivity between pathways we use both:

physical and lethal interactions. The algorithm is presented in Figure 6. For a given lethal

edge, it tries to grow a BPM (P1, P2) around this edge while the score between P1 and P2

is above some threshold T . The score of each BPM is based on the number of lethal links
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Algorithm FindBPMs(V,EL, EP )
Input: Set of yeast genes V ;

Lethal interactions EL;
Physical Interactions EP ;

Output: Set of Redundant Pathways; R
1. R ←{}
2. for (g, g′) ∈ EL

3. P1 ←{g}, P2 ←{g′}
4. while (true)
5. // S1 and S2 sets of genes that can be added to P1 and P2, respectively.
6. S1 ←{v | ∀v ∈ V : ∃p ∈ P2 ∧ (v, p) ∈ EL ∨ ∃p ∈ P1 ∧ (v, p) ∈ EP }
7. S2 ←... // Similar to S1

8. if S1 and S2 are empty
9. then break
10. for v ∈ S1

11. score[v] = Score(P1 ∪ {v}, P2)
12. for v ∈ S2

13. score[v] = Score(P1, P2 ∪ {v})
14. v ←argmaxv′ score[v′]
15. if score[v] < T break
16. if v ∈ S1

17. P1 ←P1 ∪ {v}
18. else
19. P2 ←P2 ∪ {v}
20. R ←R ∪ {(P1, P2)}
21. return R

Figure 6: Algorithm for finding redundant pathways.

between P1 and P2 out of total possible. Additionally, we consider the physical links within

each pathway to derive the number of missing lethal links between P1 and P2. We derive

Score(P1, P2) as follows:

Score(P1, P2) =

∑
i∈P1,j∈P2

conn(i, j)
|P1| × |P2|

where

conn(i, j) =

 1 if (i, j) ∈ EL,

|{g | ∀g ∈ P (i) : (g, j) ∈ EL}| / |P (i)| otherwise.

Notice that the physical links contribute to the score, but only as support for missing links.

Example: Let the subnetwork in Figure 5 be a BPM, where P1 = {g1, g2, g3, g4} and

9



P2 = {g5}. Then conn(gi, g5) = 1, for 1 ≤ i ≤ 4, and:

Score(P1, P2) =
1 + 1 + 1 + 1

4× 1
= 1

We set T to 0.75, since Ma et al. [5] used the same level. We omit the check for level of

violation of lethal links within each pathway from Figure 6.

5 Results

We compared our method with 4 previously known algorithms for finding redundant path-

ways. For each method we remove overlapping BPMs as done in [4, 5, 10]: if two BPMs

share more than 50% synthetic lethal interactions, we remove the smaller one. The results

are presented in Table 1. The BPM algorithms are split into groups depending on what net-

work they use (please find specifics of each method in Sections 2 and 3). We are interested

in finding BPMs that contain functionally homogeneous pathways. The columns 4 and 5

show the number of BPMs with one or both pathways validated for at least one attribute

in GO database, while the sixth column presents how many contained pathways enriched

for the same function.

We first run Brady et al. [3] and Ma et al. [5] which are developed to use only lethal

interactions, GL (row 1 in Table 1). We see that Ma et al. finds a slightly larger number

of BPMs, while a much higher percentage of them is validated. We then analyze the result

of Ma et al. on the extended networks that we built in Section 4.2, GL,1 and GL,0.5 (rows

2–3 in Table 1). We observe that the number of found BPMs and the number of validated

pathways within them increases as we extend the original network with induced missing

links. We attribute this result to the addition of missing links to the semi-dense parts of

the GL network which improves the connectivity of the subnetworks that were previously

below the threshold level.

We now analyze results on the network containing both physical and lethal interactions,

GP+GL. Kelley and Ideker [4] and Ulitsky and Shamir [10] require high connectivity in

GP and, hence, produce a small number of BPMs but most of them are validated. Both [3]
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Network Method BPMs found
(%validated)

Validated Pathways Ave
BPM sizeP1 or P2 P1 and P2 Same func.

GL
Brady et al. 139 2(66%) 44 48 31 29.15
Ma et al. 147 (96%) 29 112 44 10.24

GL,1 Ma et al. 171 (96%) 33 132 46 10.78
GL,0.5 Ma et al. 217 (97%) 51 159 56 11.38

GP +GL

Kelley et al. 20 (95%) 1 18 4 8.4
Shamir et al. 16 (100%) 0 16 8 25.43
Ours 267 (97%) 58 201 75 11.14

Table 1: Numerical Results on Finding BPMs.

and [5] find more redundant pathways as only SL network is considered. Although our

method is similar to [5], connectivity of our BPMs and the scoring function we use rely on

both networks without being as strict on connectivity in GP as [4] and [10]. Overall, our

method finds the most number of validated BPMs with 75 of them validated with the same

GO attribute. The improvement produced from our BPM scoring model is related to the

result on GL,β network, since both take into consideration the missing lethal edges inferred

from the physical interactions.

6 Conclusion

We present two methods for finding Between Pathway Models. The first method extends

the synthetic lethal interaction network with missing links, which are inferred from physical

interactions network. We find that 1/3 of predicted missing links are present in recent

version of SL database. Moreover, SL-based method finds more validated pathways on

extended network than on the original one, since now it indirectly uses PI network. Based

on this finding, we propose an algorithm with a novel BPM scoring model that takes into

account both physical and lethal interactions. Our approach finds more validated BPMs

than previously known methods. Experimental results from both of our methods show that

physical interactions are indeed useful when looking for BPMs. Since the data we used

contains many false positives and false negatives, the analysis of another type of data on

yeast, e.g. gene expression data, is left for our future work.

2Brady et al. [3] do not remove overlapping pathways, hence they report 602 pathways, instead of 139.
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