
A Rank-Based Skip Lists in Dynamic Provable Data Possession

Juexin Wang

Brown University
wjx@cs.brown.edu

Abstract

This system is designed for data integrity proving at untrusted servers. In cloud storage, the client
may not fully trust the server who stores the data, therefore users would like to check if their data has
been tampered with. In provable data possession (PDP) model, the client processes the data to get a
small metadata before outsourcing it to the storage server. After sending the whole data out, only the
metadata is kept by the client, the client will ask the server to prove that the stored data has not been
tampered with without downloading the actual data. However, the original PDP scheme applies only to
static (or append-only) files.

In the paper [1], Chris et al. have provided a dynamic provable data possession (DPDP) mechanism,
which extends the PDP model to support updates to the stored data. Here, we provide an
implementation of the DPDP, use a new version of authenticated dictionaries based on rank
information. With this rank information together with the digest on the retrieval path, our approach can
support insertions, deletions and modifications on the outsourced data while maintain the provability of
the data integrity. The evaluation shows that the performance of this implementation follows the
theoretical results, the price of updating time and the space is O(log n).

 Introduction and Previous Works

In cloud storage systems, the server that stores the client’s data is not necessarily trusted.
Therefore, users need a scheme to check if their data is still accurate. However, it’s inefficient to
download all stored data in order to validate its integrity. Ateniese et al. have formalized a model called
provable data possession (PDP), it hires cryptographic algorithms, provides probabilistic guarantees of
possession, where the client checks a random subset of stored blocks with each challenge. But the PDP
and related schemes, apply only the case of static archival storage, at most support the appending at the
end of current, not for updating any data block at any position of the data set.

In the paper [1], former members in our group have already generated the idea of a framework of
DPDP, which extends from the PDP model to support provable updates on the stored data. Given a file F
consisting of n blocks, it defined an update as either insertion of a new block (anywhere in the file, not

only append), or modification of an existing block, or deletion of any block. This solution is based on a
new variant of authenticated dictionaries, where uses rank information to organize dictionary entries.
Thus we are able to support efficient authenticated operations on files at the block level, such as
authenticated insert and delete. It theoretically should bring a low price in performance changes while
maintaining the same (or better, respectively) probability of misbehavior detection.

 Model

Our system consists of two players, the client and storage server. The most unique feature of this
system is that it supports the updating on stored data, that is, after clients uploading the original files to
the server while keeping the metadata local, the client can send update requests and verify if the server
perform this update correctly. The process of these behaviors can be described as follow:

Client Side

verif

Server Side

Authenticate
d dictionary

Updating
requests

metadata Stored
data

Prepare
updates

Perform updates

Update/query
proof

ACCEPT

REJECT

 Implementation Details

 Rank-based skip list
In order to implement our first DPDP construction, we develop a modification of the authenticated skip
list data structure, which we call a rank-based authenticated skip list. We recall that in a skip list, each
node v stores two pointers, denoted rgt(v) and dwn(v), that are used for searching. In an authenticated
skip list, a node v also stores a label f(v) computed by applying a collision-resistant hash function to
f(rgt(v)) and f(dwn(v)). We can use an authenticated skip list to check the integrity of the file blocks. [1]

In Figure 1, we show an example of rank-based skip list, each node has a integer value as its rank. This
integer value states the number of nodes at the bottom level that can be reached from it. The bottom
level nodes represented the data blocks one by one. We call this value the rank of node v and denote it
with r(v). An insertion, deletion, or modification of a file block affects only the nodes of the skip list
along a search path. We can recompute bottom-up the ranks of the affected nodes in constant time per
node.

In implementation, for a n-blocks data set we build n columns of nodes, in each column, some nodes
within it is have the effect in the skip list and others not, those affective nodes are logically exist, they
are actually counted in the retrieval path, as drawn in Figure 1. Since the top leftmost node of a skip list
will be referred to as the start node that can reach to every bottom blocks, we create two special
columns which do not refer to any actual data blocks. These two columns are head and tail, with the
highest level. The Figure 2 is the same example as Figure 1 but in implementation view. This will help
understand the structure.

 Commutative Hash
Given a collision resistant hash function h, the label f(v) of a node v of a rank-based authenticated skip
list is defined as follows. [1]

Case 0: v = null

f(v) = 0 ;

Case 1: l(v) > 0

f(v) = h(l(v), r(v), f(dwn(v)), f(rgt(v))) ;

Case 2: l(v) = 0

f(v) = h(l(v), r(v), x(v), f(rgt(v))) .

Comparing the implementation view and the logic view, we can classify the nodes into plateaus and
towers. An element that exists in Si−1 but not in Si is said to be a plateau element of Si−1. An element that
is in both Si−1 and Si is said to be a tower element in Si−1.

 In figure 2 we can easily see, if one node’s right pointing node is plateau, his attributes(except level) will
be same as all nodes who are under it in same column until reaching one whose right pointing node is
another plateau. To save space and computation time, we can only record the nodes who have a
plateau right neighbor as effect nodes. Then we come to Figure 1.

 Retrieval Path
Using the ranks stored at the nodes, we can reach the i-th node of the bottom level by traversing a path
that begins at the start node, as follows. For the current node v, assume we know low(v) and high(v). Let
w = rgt(v) and z = dwn(v). We set

high(w) = high(v) ,

low(w) = high(v) − r(w) + 1 ,

high(z) = low(v) + r(z) − 1 ,

low(z) = low(v) .

If i � [low(w), high(w)], we follow the right pointer and set v = w, else we follow the down pointer and
set v = z. We continue until we reach the i-th bottom node. Let vk, . . . , v1 be the path from the start
node, vk, to the node associated with block i, v1. The reverse path v1, . . . , vk is called the retrieval path of
block i. Only the effective nodes (described in the last part) should be counted in the path. Figure 3
shows two paths of retrieving two blocks separately.

 Predict the updated metadata
The algorithms of querying the i’th block and verify the proof of a response are already introduced in [1],
this implementation mostly followed these ideas. One more important thing is the client to prepare the
update.

In preparing a update, a client should generate a atRank(i-th) query, then use the response together
with the current metadata to predict a new metadata. After this preparation, the client then can ask the
server to perform the update. At last, the client generate another query and check the metadata by
computing from the response to see if the newly computed metadata matches the predicted one. The
algorithm 1 and 2 described the prediction of an insertion update and removing update separately.

Algorithm 1: predict the metadata for insert(i-th, level, newItem, metadata).

/* parameters :

 int i-th, i.e., the index of the block which the new item will be added after.
 int level, i.e., the level that the new item would be.
 Object newItem, i.e., the item which is being added.
 metadata, i.e., the current metadata.
 Return:
 void
*/

1: response_i = atRank(i-th)
2: if response_i is ACCETPABLE then
3: proof_i = response_i.getProof
4: // find the node on the path that need to be modified: add_point
5: for all proof nodes pn from size()-1 to 0
6: if pn.level >= level && (pn.next.level < level || pn is tail) then
7: add_point = pn
8: construct a new proof: proof_new, used to proof the new item
9: for all nodes lower than the add_point
10: if its direction is DOWN then
11: move this node from proof_i to proof_new's beginning
12: create the last-bottom node newItemNode for newItem, i.e., node referring to the data block.
13: Add newItemNode to the proof_new's beginning.

14: proof_i[0].neighborRank = (level > 0) ? 0 : 1;
15: proof_i[0].neighborLabel = (level > 0) ?
16: hash(0, 0):
17: hash(0, newItemNode.neighborRank+1, item, newItemNode.neighborLabel)
18: sigmaRank = 0, label = proof_i.blockHash
19: for all nodes vi between add-point and proof[0] in proof_i
20: sigmaRank += vi.neighborRank
21: if its direction is DOWN then
22: label = h(level, sigmaRank, label, vi.neighborLabel);
23: else
24: label = h(level, sigmaRank, vi.neighborLabel, label);
25: // decide if need to create a new node before add-point in proof_new
26: if (level == add_point.level &&
27: (add-point. direction == DOWN || add_point is head of proof_i)) then
28: change add-point's direction to RIGHT // must be DOWN before
29: add-point.neighborRank = sigmaRank
30: add-point.neighborLabel = label
31: else
32: new_node = node(level, RIGHT, sigmaRank, label)
33: add new_node to proof_new's tail
34: append nodes in proof_i of index [add-point, proof_i.size()) to proof_new
35:
36: sigmaRank = 0, newMetadata = proof_new.blockHash
37: for all nodes vi in proof_new
38: sigmaRank += vi.neighborRank
39: if its direction is DOWN then
40: newMetadata = h(level, sigmaRank, newMetadata, vi.neighborLabel);
41: else
42: newMetadata = h(level, sigmaRank, vi.neighborLabel, newMetadata);

Algorithm 2: predict the metadata for remove(i-th, metadata).

/* parameters :

 int i, i.e., the index of the block which the new item will be added after.
 int level, i.e., the level that the new item would be.
 Object newItem, i.e., the item which is being added.
 metadata, i.e., the current metadata.
 Return:
 int , level of the removed item
*/

1: response_i = atRank(i), response_pre = atRank(i – 1);
2: if response_i and response_pre are both ACCETPABLE then
3: proof_i = response_i.proof, proof_pre = response_pre.proof,
4: // find the lowest node that two path shared: divide_point
5: int divide_pre = proof_pre.size -1, divide_i = proof_i.size-1;
6: for(; index_pre >= 0 && index_i >= 0 ; index_pre--, index_i--)
7: if proof_pre[index_pre].direction != proof_i[index_i].direction then
8: removing level is current level;
9: break;
10: if index_pre == 0 then

11: level = 0;
12: break;
13:
14: node_i = proof_i[0], node_pre = proof_pre[0]
15: for all nodes from index 0 to next-to-divide_point in proof_i
16: if node_pre goes further than divide_point then
17: break;
18: else if node_i.level == node_pre.level then
19: if node_i is proof_i[0] || node_pre.direction == DWN then
20: replace node_pre's fetures by node_i's features
21: else if node_pre.direction == RIGHT && node_pre.level < node_i.level then
22: insert node_i into proof_pre at current index of proof_pre
23: divide_pre++
24: node_i = next, node_pre = next
25: else if node_i.level < node_pre.level then
26: insert node_i into proof_pre at current index of proof_pre
27: divide_pre++
28: node_i = next
29: else
30: node_pre = next

31: if proof_pre[divide_pre] . level == proof_i[divide_i] . level then
32: replace features' values of proof_pre[divide_pre] by the values of proof_i[divide_i]'s
33: else remove node of index divide_pre from proof_pre
34:
35: // Now use the predecessor path proof_pre to predict the supposed new metadata
36: sigmaRank = 0, newMetadata = proof_pre blockHash
37: for all nodes vi in proof_pre
38: sigmaRank += vi.neighborRank
39: if its direction is DOWN then
40: newMetadata = h(level, sigmaRank, newMetadata, vi.neighborLabel);
41: else
42: newMetadata = h(level, sigmaRank, vi.neighborLabel, newMetadata);
43: return level
44: return -1;

 Guide to run the program

• The authenticated dictionary of class RkASLAuthenticatedDictionary is supposed to be run on
the server side, and the implementation of the interface RkClient should be on the client side.
All clients who want to work with a ranked based skip list authenticated dictionary should
implement the RkClient interface.

• In a run with the basic implementation of RkClient, class RkBasicClient, a instance of the client
should first construct a new dictionary on the server, or reference a already-existed one to this
client.

• After assigned a RkASLAuthenticatedDictionary to the client, we can call these dictionary’s
public methods within the client to get some information about the dictionary:

o Int _dict.size(): return the current dictionary’s size. It can tell how many data blocks are
in the dictionary.

o Boolean _dict.isEmpty(): return true if the dictionary currently has no item.

o Int _dict.level(): return the current level of the skip list. This equals to the highest node
in the list.

o Int _dict.rootHash(): return the root hash of the skip list. It creates a copy of the root
hash to prevent tampering with the original value.

o Void draw(): This will display the dictionary’s contents, visualize the structure, including
rank, key and/or hash. level from bottom to top is 0 to maxLevel.

• The client can also call the RkASLAuthenticatedDictionary ‘s public method atRank() to perform
a query for a data block at specific index. The atRank() will return a RkASLAuthenticResponse,
then the client should call its method verifyProof() to verify this response to see if it’s could be
ACCEPT.

• From the client side, users should use insertAndVerify() method to insert a data into the
Authenticated Dictionary. If it returns a ACCEPT, the data is successfully inserted into the skip list
and a new metadata(root Hash) is already passed to the client. This method will automate verify
the proof of the update. If provided by an invalid index, the insertion will insert the new item
into beginning, if the index is less than 0, or into the end, if the index is larger than the
dictionary’s size.

• Similarly, users should call the client’s removeAndVerify(), modifyAndVerify() methods to
perform other kinds of updates to the Authenticated Dictionary, only need to care about the
Boolean return.

• If provided by an invalid index, the above 2 methods will directly return false without doing
anything towards the dictionary.

• If the proof of an update is not ACCEPT, there are two possible steps that this may occur. The
first one is the proof of the first atRank() query is fail, the other one is the updated metadata
mismatch the predicted one. In the first scenario, the dictionary (skip list) is secure but in the
second scenario the dictionary (skip list) must be already modified.

• If only test the RkASLAuthenticatedDictionary, as the main() function in it shows, after
constructing a dictionary we can keep calling the insert() and remove() functions to insert or
remove a data block into/from the dictionary to see if there is any failure. Call the draw() when
you want to visualizedly check the dictionary.

 Evaluations

We evaluated our rank-based skip list DPDP implementation on local environment to test the algorithm
and implementation’s efficiency regards the networks’ interfere. Our test cases are run on PC with 4
core 3.2GHz CPU (AMD Phenom X4 955) and 3.2G memory.

Test case 1:

Do 100 times insertions, removes and lookups separately. Run on a data set of size from 50 to 200000,
record the operation time. The inserting position, inserting level are randomly picked up. Also the
deletion index, lookup index are also randomly picked up. The result is shown in Figure 3.

Test case 2:

Do 100 times lookups on a data set of size from 5000 to 200000, record the proof length. The lookup
index is randomly picked up. The result is shown in Figure 4.

Theoretically, the update time and the proof size is O(log n), where n is block amount of dictionaries.
This implementation

Figure 3: update and look up time

Figure 4: Proof size of each lookup

 Classes/Interfaces Details

Package:

stms.authdict.rkasl

Interface/Class:

RkClient

RkBasicClient

RkASLAuthenticatedDictionary
RkASLAuthenticResponse
RkASLAuthResponseEntry

RkASLBasis

 1. Class stms.authdict.rkasl.RkASLAuthenticatedDictionary
• Authenticated Dictionary using ranked based skip list.
• The key and the element are the same thing.
• The key in the bottom level are not sorted, their position(index) is specified by inserting parameters
• There are sentinel values used for the head and tail nodes.
• The head node is the starting point for all traversals.
• Contained in both source and mirror dictionaries.
• Based on paper: "Efficient Authenticated Dictionaries with Skip Lists and Commutative Hashing" and "Dynamic Provable

Data Possession"
Version:

$Id: RkASLAuthenticatedDictionary.java,v 1.5 2010-05-01
Author:

Juexin Wang
stms@cs.brown.edu

 Important Public Methods:

int

RkASLAuthenticatedDictionary.siz
e()

Runs in O(1) time. This is due to the fact
that we cache the value of the size of the
container instead of traversing the list each
time there is a query for the size.

int

insert(int pos, Object key,

int babyLevel)

throws

InvalidKeyIndexException,

IncompatibleDataException

Runs in expected O(log n) time, where n
is the number of elements in the skip list.
Creates and inserts a locator with the
given height and containing the given
object

Parameters:
pos: position(index) to insert at
key: key to insert
babyLevel: height of locator to
create

Returns:
level of node if successful -1
otherwise.

Throws:
InvalidKeyIndexException -

mailto:stms@cs.brown.edu�

 IncompatibleDataException

 - if the object is not of the
correct type.

int

insert(int pos, Object key)

throws

IncompatibleDataException,

InvalidKeyIndexException

Runs in expected O(log n) time, where n
is the number of elements in the skip list.
Creates and inserts a locator with a
random height containing the given
object.

Parameters:
pos: position to insert at
key: key to insert.

Throws:
authdict.api.IncompatibleDataException

- if the object is not of the
correct type or
if we tried to insert an existing
key.

 InvalidKeyIndexException -

Boolean

remove(int ith)

throws

InvalidKeyIndexException

Runs in expected O(log n), where n is the
number of elements.
Remove the ith item in the bottom level of
the skip list

Parameters
 ith index of the item to remove.

Returns:
 true -if successful.

 False -otherwise.
 Throws: InvalidKeyIndexException

AuthenticResponse

atRank(int ith)

Runs in expected O(log n) time, where n
is the number of elements. Answer the
query atRank() described in the paper,
return a Response with the item in Byte
and its proof

Parameters:
ith: index of bottom level to
retrieval.

Returns:
the authenticated response

Throws:
 InvalidKeyIndexException

- if the index is out of the
bound: (1,size()). ## index
starts from 1

 authdict.api.NotYetInitializedException

- if the object is not of the
correct type.

byte[]

simpleHash(Object x)

Hash function for one element. Since we
already use the commutative hash, cm,
we set: h(x) = cm(x, x)

Parameters:
x the object to be hashed

Returns:
the hash of x

void

draw()

Display the dictionary, visualize the
structure, including rank, hash, key level
from bottom to top is 0 to maxLevel

 2. Class stms.authdict.rkasl.RkASLAuthenticResponse
• Authenticated response. Consist of:
• sub_: the subject
• blockhash: the hash of the item;
• proof: the proof this response, it's a list of RkASLAuthResponseEntry

Version:
$Id: RkASLAuthenticResponse.java,v 1.5 2010-05-01 11:55:15 $

Author:
Juexin Wang

stms@cs.brown.edu

mailto:stms@cs.brown.edu�

 Important Public Methods:

void

addProofEntry

(RkASLAuthResponseEntry pe)

Add one proof entry into the proof list The
order of the entrys in the proof should to
carefully match the path

Parameters:
pe: the proof entry to be
added in

ArrayList<RkASLAuthResponseEntry
>

 getProof()

return the proof

boolean

validatesAgainst(Basis b)

throws

NotYetInitializedException

Checks to see that the response is authentic.
First, checks to see that the authentication
data contains the subject (if
subjectContained() == true), or two
adjacent elements, one larger than the
subject and one smaller (if
subjectContained() == false). Then verifies
that the sequence of authentication data is
correct by using it to recompute the basis.
This recomputation involves hashing the
elements of the sequence using the
commutative hashing function specified by
the basis.

Parameters:
b The basis against which
to check this response.

Returns:
true iff the response is a
valid conclusion from the
given basis. Must return
false if
isValidatable()
returns false.

Throws:
NotYetInitializedException

 3. Interface stms.authdict.rkasl.RkClient

The interface of the client side program. This interface content the methods that a client can call to perform requests to the
dictionary that on a server This interface doesn't content the network communication part. So a real "client" class should implement
this interface together with others that needed to have full functionility The RkBasicClient.java provide a basic implementation of
this interface for testing

Version:
$Id: RkClient.java,v 1.5 2010-05-01 11:55:15 $

Author:
Juexin Wang
stms@cs.brown.edu

 Important Contents:
public static boolean ACCEPT = true;
public static boolean REJECT = false;

boolean

RkClient.verifyProof(int i, byte[] metadata,
AuthenticResponse resp)

verify the proof which contained
by a AuthenticResponse. The
algorithm is described in the
DPDP paper. The client need to
store the metadata somewhere

Parameters:
metadata the supposed
rootHash. will compute a
rootHash from the proof, and
compare with it.
i the index of the data block
that challenged/queried
resp the response come from
a request, should contain the
T and proof

Returns:
ACCEPT/REJECT

boolean the entrance of the insertion
operation. Prepare the insertion,

Parameters:
i the index the new item

mailto:stms@cs.brown.edu�

RkClient.insertAndVerify(int i, byte[]
metadate, Object newItem, int level)

ask the dictionary on the server to
perform this insertion, and finally
verify the inserting proof

should be added at;
metadata the current
rootHash, used to predict a
new rootHash;
newItem
level
resp the response get from
atRank() to verify the
accuracy.
metadate

Returns:
ACCEPT/REJECT

boolean

RkClient.removeAndVerify(int i, byte[]
metadate)

the entrance of the removing
operation. Prepare the deletion,
ask the dictionary on the server
to perform this deletion, and
finally verify the deletion proof

Parameters:
i the index the new item
should be deleted;
metadata the current
rootHash, used to predict a
new rootHash;
resp the response get from
atRank() to verify the
accuracy.
metadate

Returns:
ACCEPT/REJECT

boolean

RkClient.modifyAndVerify(int i, byte[]
metadata, Object newItem, AuthenticResponse
resp)

the entrance of the modify a
block. the modify should remove
the old block, and insert a new
one at same position with same
level.

Parameters:
i the index the new item
should be added at;
metadata the current
rootHash, used to predict a
new rootHash;
newItem
resp the response get from
atRank() to verify the
accuracy.

Returns:
ACCEPT/REJECT

4. Class stms.authdict.rkasl.RkASLAuthResponseEntry
The proof of a data block is a list of objects of this Entry. Each this entry consists of the informations of one node which on the
retrieval path: [level, direction, neighbor_rank, neighbor_label] , Together with:

• _exist: if this node is still exist in the updated path
• _atHead: if this node is on the Head AuthenticatedDictionary.ASLLocator

@ Date: 2010-04-15
 Author: wjx@cs

 5. Class stms.authdict.rkasl.RkBasicClient

A basic implementation of the interface RkClient.

Achieved the methods of insert, remove, modify the blocks in a dictionary and verufy the response's proof.

Version:
$Id: RkClient.java,v 1.5 2010-05-01 11:55:15 $

Author:
Juexin Wang
stms@cs.brown.edu

 Important Contents:

byte[]

RkBasicClient._metadata

The metadata (root hash) of a
dictionary which is associated with
this client

byte[]
RkBasicClient._tempMetadata

The predicted metadata (root hash)
of a dictionary which is being
updated. If finally the proof is
accept after this modification, the
old metadata will be replaced by this
tempMetadata

boolean

RkBasicClient.insertAndVerify(int i, byte[]
metadata, Object newItem, int level)

Specified by: insertAndVerify(...) in RkClient

Implementation of the abstract
method in the interface
RkClient.java. In this
implementation, it will call the
insert() function to perform the
action, and call verify() to verify the
proof.

Parameters:
i the index the new item
should be added at;
metadata
newItem
level

Returns:
ACCEPT/REJECT

boolean

RkBasicClient.insert(int i, Object newItem, byte[]
metadata, int level)

Private inner method that ask the
dictionary to perform the
insertion. Before actually insert,
this function will predict a new
metadata. After insertion, the
actual metadata should match
with this(check in
insertAndVerify() function)

Parameters:
i the index the new item
should be inserted at
newItem the key to be
inserted
metadata the current
rootHash, used to predict
a new rootHash
level client decide to
insert the new item into
which level

boolean

RkBasicClient.removeAndVerify(int i, byte[]
metadata)

Specified by: removeAndVerify(...) in RkClient

Implementation of the abstract
method in the interface
RkClient.java. In this
implementation, it will call
remove() function to perform the

Parameters:
i the index the new item
should be deleted;
metadata the current
rootHash, used to predict
a new rootHash;

mailto:stms@cs.brown.edu�

action, and call verify() function
to verify the proof.

resp the response get
from atRank() to verify
the accuracy.

Returns:
ACCEPT/REJECT

boolean

RkBasicClient.remove(int i, byte[] metadata)

Private inner method to ask the
dictionary to perform the
deletion. Before actually insert,
this function will predict a new
metadata. After deletion, the
actual metadata should match
with this(check in
removeAndVerify() function)

Parameters:
i the index the new item
should be deleted;
metadata: the current
rootHash, used to predict
a new rootHash;
metadata

boolean

RkBasicClient.modifyAndVerify(int i, byte[]
metadate, Object newItem, AuthenticResponse
resp)

 Implementation of the abstract
method in the interface
RkClient.java.

boolean

RkBasicClient.verifyProof(int i, byte[] metadata,
AuthenticResponse resp)

Specified by: verifyProof(...) in RkClient

Implementation of the abstract
method verifyProof() in the
interface RkClient.java. The
algorithm is described in the DPDP
paper.

Parameters:
i
metadata
resp

Returns:
ACCEPT/REJECT

RkBasicClient.RkBasicClient()

Constructor
Use the DEFAULT_MIN,
DEFAULT_MAX,
DEFAULT_MAX_LEVEL,
CommutativeHash ch,
Comparator comparator to
construct a new Dictionary for
this client while construct the
client itself

 References
[1]. C. Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, Roberto Tamassia. Dynamic Provable
Data Possession. CCS’09, November 9–13, 2009, Chicago, Illinois, USA.

[2]. Michaelt. Goodrich, Roberto Tamassia. Efficient Authenticated Dictionaries with Skip Lists and

Commutative Hashing. January 13, 2001.

[3]. Charalampos Papamanthou, Roberto Tamassia. Time and Space Efficient Algorithms for Two-Party
Authenticated Data Structures.

	Abstract
	Introduction and Previous Works
	Model
	Implementation Details
	Rank-based skip list
	Commutative Hash
	Retrieval Path
	Predict the updated metadata

	Guide to run the program
	Evaluations
	Classes/Interfaces Details
	1. Class stms.authdict.rkasl.RkASLAuthenticatedDictionary
	Important Public Methods:
	void
	draw()

	2. Class stms.authdict.rkasl.RkASLAuthenticResponse
	Important Public Methods:
	ArrayList<RkASLAuthResponseEntry>
	getProof()

	3. Interface stms.authdict.rkasl.RkClient
	Important Contents:

	4. Class stms.authdict.rkasl.RkASLAuthResponseEntry
	5. Class stms.authdict.rkasl.RkBasicClient
	Important Contents:
	byte[]
	RkBasicClient._metadata
	byte[]
	boolean
	RkBasicClient.modifyAndVerify(int i, byte[] metadate, Object newItem, AuthenticResponse resp)
	RkBasicClient.RkBasicClient()

	References

