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Abstract

We explore recently proposed nonparametric Bayesiarsttati models of image
partitions. These models are attractive because they smlapages of different
complexity, successfully modeling uncertainty in sizeggsh, and structure of hu-
man segmentations of natural scenes. We improve upon thamumber of key
ways to achieve performance comparable to state-of-theathods. Our first
major contribution is a novel discrete search based paostiefierence algorithm
which, compared to previous approaches, is significantlyennobust and accu-
rate. We then present a low rank version of the spatially deeet Pitman-Yor
processes model, critical for efficient inference. Funtihare, we show how the
Gaussian process covariance functions underlying theosezp models can be
calibrated to accurately match the statistics of human segmtions. Finally, we
present accurate segmentations of complex scenes as wallltple hypothe-
sized image partitions (capturing the inherent uncergaimthuman scene inter-
pretations) produced by our method.

1 Introduction

Image understanding, or interpreting images by locatirthcraracterizing their content, is arguably
the holy grail of computer vision. A general image underdbag system must flexibly deal with
“stuff” (materials) and “things” (objects) [1]. Forsyth at. [8], define stuff as “a homogeneous
or repetitive pattern of fine-scale properties, but no deor distinctive spatial extent or shape”
while a thing is defined as “an object with specific shape amd”si For instance, foliage, sky
and gravel are examples of stuff, while cars, tigers andsbas examples of objects (Figure 1).
Traditionally,  statistical
models have dealt with
either stuff (under the
umbrella of image segmen-
tation) or things (object
detectors) [21] but rarely

both. Recently however, “Thing:
some progress has been
made in leveraging one
model to better learn the
other.  Typically, object
models for a fixed number

of object categories are ) .
specified and learnt from Figure 1: Stuff and Things

training data. These are

then used to detect potential objects in an image. Thesécticats are then combined in a coherent
fashion using “stuff” models. For instance, Heitz et al. (8 “stuff” based clusters (segments) to
prune away false positives from the predictions of a slidingdow based car (“thing”) detector.
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The success of such models depend crucially on accuraté™stedeling, i.e., on producing
accurate image segmentations, which is the primary foctta®fvork.

Image segmentation deals with the problem of partitionmmggdes into “homogeneous” chunks
based on their appearance, location and possibly even sernantent. It has seen a large amount
of research in the computer vision community over the pastre¢decades [3, 7, 17]. However,
in spite of the intense amount of work, segmentation remailasgely unsolved problem. Part of
the reason behind disappointing results is the fact thatiagi segmentation algorithms tend to be
semi-automatic at best. They often come endowed with a Hdshable parameters, which need
to be adjusted for each image until the produced segmensalimk “reasonable”. Furthermore,
some popular techniques (e.g., [17]) have implicit biasbglwencourage the segments to be of
roughly equal size. This is in sharp contrast to the segnm@ouced by humans, which tend to
span a wide range of sizes even in a single image. Suddertbhoaddn [18] have recently put forth
spatially dependent Pitman-Yor process hierarchical unétmodels which make a first attempt at
addressing many of these issues. In this paper, we deserilzels improvements necessary to make
this approach competitive with state-of-the-art methods.

Our first major contribution involves a new posterior infece algorithm. In [18] the authors pro-

pose a mean field based variational inference algorithm n\iell methods are known to be highly

susceptible to local optima. As a result, there is reasoret@\® that the promising results of

[18] can be further improved with a better inference techaidn particular, we combine a discrete
stochastic search to make large moves in the space of imatifeopa, with an accurate higher-order
variational approximation (based on expectation propaghto marginalize high-dimensional con-

tinuous latent variables. Our results do indeed show imgt@ccuracy and robustness to initializa-
tion.

Next, we present a novel low rank representation of the mpaslented in [18]. Such a represen-
tation significantly reduces the computational burden ofé3#&n inference, allowing for a useful

image segmentation algorithm. Our next contribution lreseiplacing various manually tuned pa-
rameters (in [18]) with ones estimated quantitatively floaman segmentations.

Also, note that because we employ a nonparametric model wetineed to specify the number
of segments observed in each image. In fact we infer a postistributions over segmentations
of varying structure and resolution. We provide interagstaxamples of multiple modes of this
posterior distribution. Lastly, we demonstrate that ouerall performance is both quantitatively
and qualitatively competitive with state-of-the-art nadk.

2 Nonparametric Bayesian Segmentation

In this section, we fist review various nonparametric Bagresnodels proposed in the literature for
modeling image partitions. In Sec. 2.4, we then propose aehwidich exploits the low-rank repre-
sentation of the Gaussian distributions underlying our ehothis is essential for the computational
tractability of our later algorithms.

2.1 Image Representation

We begin by first dividing each image into roughly 1,8(perpixel§15] using the normalized cuts
spectral clustering algorithm [17]. The color of each sppesl is described using a histogram of
HSV color values withiW, = 120 bins. We choose a non-regular quantization to more coarsely
group low saturation values. Similarly, the texture of eagperpixel is modeled via a locHl;, =

128 bin texton histogram [12], using quantized band-pass fiksponses. Superpixélis then
represented by histograms = (z!, z¢) indicating its texture:! and colorzs.

2.2 Pitman-Yor Mixture Models

Natural scenes contain widely varying numbers of objectganying sizes. Not surprisingly, hu-
man segmentations of natural scenes also consist of segwfenidely varying sizes. It has been
observed that histograms over segment areas [11] and edatagths [14] are well explained by
power law distributions. Previous work [18] has shown thettspower law distributions in natural
images are well modeled via the Pitman-Yor process [13].
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Figure 2: Learned Pitman-Yor prior model for image partispwherer ~ GEM(0.6, 3.0). Left:
Beta distributions from which stick proportions, are sampled fok = 1 (blue), k = 10 (red),
k = 20 (green) Right: Corresponding distributions on thresholds for an equiviadenerative model
employing zero mean, unit variance Gaussians (dashed)black

Here, we consider the stick breaking representation of ttrea®-Yor (PY) process. Letr =
(m1,m2,73,...), >rey Tk = 1, denote an infinitgartition of a unit area region (in our case, an
image). The Pitman-Yor process defines a prior distributiothis partition via the followingtick-
breakingconstruction:

k—1 k—1
T = Wk H(l —’LU[) —wk(l—ZTQ)
(=1 =1

wg, ~ Beta(l — ag, ap + kay) Q)

This distribution, denoted byt ~ GEM(«,, o), is defined by two hyperparameters satisfying
0<a, <1, ap>—a, Whena, = 0, we recover airichlet process(DP) with concentration
parametery,. For the DPE[r;] decreases exponentially with for the PY, it instead has a heavier-

tailed, polynomial decay rat@[r;] oc k—1/@e,

For image segmentation, each indebs associated with a different segment or region with its own
appearance modefs = (6}, 6) parameterized by multinomial distributions on flig texture and
W, color bins, respectively. Each superpixehen independently selects a regign~ Mult (),
and a set of quantized color and texture responses accdoding

p(al, @f | 2;,0) = Mult(x} | 6° , M;) Mult(xf | 65, M;). 2

77 K2

Note that conditioned on the region assignmentthe color and texture features for each of the
M; pixels within superpixef are sampled independently. The appearance feature ckgmoel
vide weak cues for grouping superpixels into regions. Sittemodel doesn’t enforce any spatial
neighborhood cues, it is referred to as the “bag of feat(B£3F) model (Figure 3).

2.3 Spatially Dependent Pitman-Yor Process Mixture Models

Here, we review the approach of Sudderth and Jordan [18Jwehitends the BOF model with spatial
grouping cues. The model is a generalization of earlier worgeneralized spatial Dirichlet process
models [6] and combines ideas from Bayesian nonparametitbsdeas from layered models of

image sequences [22], and level set representations foresgdoundaries [5].

We begin by elucidating the analogy between PY processes layeted image models.
Consider the PY stick-breaking representation of Eq. (1)f wé sample a random vari-
able z; such thatz; ~ Mult(w) where 7, = wk]_[;:ll(l —wy), it immediately follows that
w =Plz; =k | z; #k —1,...,1]. The stick-breaking proportiony, is thus theconditionalprob-
ability of choosing segmerit, given that segments with indexés< k have been rejected. If we
further interpret the ordered PY regions as a sequence efday can be sampled by proceeding
through the layers in order, flipping biased coins (with @dolities wy) until a layer is chosen.
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Figure 3: Generative models of image partitiofsom left to right. Bag of features model, full
rank model, low rank model.

Given this, the probability of assignment to subsequerdrais zero; they are effectivebccluded
by the chosen “foreground” layer.

The spatially dependent Pitman-Yor process of [18] presetliis PY construction,while adding
spatial dependence among superpixels, via thresholdedreasinGaussian process€&Ps)uy,

zizmin{k | wps <<I>_1(wk)}, up; ~ N(0,1). 3)

Here,uy; L uy; for k # ¢ and®(u) is the standard normalimulative distribution functio(CDF).
Let§x = ®~!(wy) denote the threshold for layér Since®(u;) is uniformly distributed or0, 1],
we have

]P)[Zi = 1] = ]P)[’U,li < 51] = ]P’[@(uh) < wl] = w1 (4)
P[Zl = 2] = P[UM > 51] P[Uai < 52] = (1 — wl)wg (5)

and so on. The extent of each layer is determined via the megiowhich a real-valued function
lies below some threshold, akin to level set methods. If tRs Gave identity covariance functions,
we recover the basic PY mixture model. More general covaeaman be used to encode the prior
probability that each feature pair occupies the same sega@reloping methods for learning these
probabilities is a major contribution of this paper.

The power law prior on segment sizes is retained by transfarmriors on stick proportions
wy ~ Beta(1l — aq, ap + kay,) into corresponding randomly distributed threshalgs= &~ (wy,):

p(0k | @) = N (x| 0,1) - Beta(®(dx) | 1 — g, ap + k) (6)

Fig. 2 illustrates the threshold distributions correspogdo a PY stick-breaking prior learned from
human segmentationsin Sec. 4. Figure 3 displays the graphadel corresponding to the spatially
dependent Pitman-Yor process Mixture model.

2.4 Low-Rank Covariance Representations

In the preceding generative model, the layer support fansti;, ~ N(0,3) are samples from
some Gaussian distribution over thepixels. Analogously to factor analysis models, we can edte
employ a low-rank representation based®»r< N dimensions. Sampling, ~ A (0, Ip), we then
setur, = Avg + e, where A in a N-by-D matrix and, ~ A(0,¥), andV¥ is a diagonal matrix
chosen to ensure that= AA” + ¥ has unit diagonal. Figure 3 displays the graphical moddieo t
generative process described in this section.



3 Inference

In this section we provide a detailed description of therafiee algorithm for the low rank model.
The proposed inference scheme lies in the family of MaxitioraExpectation (ME) [23] tech-
nigues. In contrast to the popular Expectation Maximizatechniques, we marginalize out the
model parameters and maximize over the latent variablesmFigure 3, we observe that our la-
tent variables correspond to segment assignments of giyes. Thus, any configuration of these
variables defines a partition of the image. Our strategy setrch over the space of these image
partitions with the goal of maximizing the posterior maailikelihood

5= argmaz p (| 2,1) ™

wheren represents the set of hyper-parameters governing the mtdslworth noting that since
different partitions will have different numbers of segrtgnve are in fact searching over models of
varying complexities as in traditional model selectiorhtgiques.

Thus, the proposed inference scheme has to first evaluatposterior marginal likelihood for
a given image partitiorz. It then has to modify the image partition in an interestirghi-
ion to generate a new partitiosfl and compute the posterior marginal fer, acceptingz’ if
p(z" | z,n) > p(z | 2,n). This process is repeated until convergence. In what faljome first
describe the innovations required for evaluating the pimstenarginal, followed by the discrete
search responsible for generating new partitions from argpartition.

3.1 Posterior Marginal Computation
In our model Figure 3) p (z | z, n) factorizes conveniently as
p(zlz,n) o plx]zpp(z]laAT) 8
x p(aAw) [p]=0)p©|pdo ©)

for the spatial models, whege(z | a, A, ¥) can be further expanded as follows

p(zla, A, W) = / /5 D216, 11 (o)t 1oy | AAT + O)p(3])dur._) d5(10)
Ul.. . K(z)
K(z)
= L/ [ »louwuwp ] 447+ 0)p (6o | a)duds @)
k=1 7wk Ok

whereK (z) is the number of layers in a given partition. Note that thiamfity is a function of the
partitionz. From here on we denof€(z) by just K, to simplify our notation. Unfortunately, these
integrals do not have a closed form solution. Significanoirations are required to evaluate them.
For the BOF modet depends only on and the prior simplifies tp(z|«).

3.1.1 Likelihood Computation

The likelihood computation involves evaluating the indegent color and texture integrals

/ p( | 2,0)p(® | p)do = / p(a® | 2, 69p(6° | p°)db° / p(at | =, 09p(68" | p)det  (12)
e oe

ot

which is a standard Multinomial-Dirichlet integral, withcbbsed form solution given by

K c t
[ 15000 | prao = [ 2 (13)

i1 A+ 2f) At +2))

A detailed derivation is provided in the appendix.



3.1.2 Bag Of Features Prior Evaluation

The prior for the BOF model is just

K
(z | a) U / (z | wi)p(wg | a)dwy, (14)

For K segments or regions. The above integral has a closed foutiaglwhich follows from the
generalized Chinese restaurant proc€3K) representation of the Pitman-Yor process.

 w D(/aa+ K)T(w) (7 T(M, — ay)
Pl ) = 0w T T TN + o) <k—1 (1 — ) ) 13)

Since both the likelihood and the prior for the BOF model carebaluated in closed form, our
search based inference for this model is highly efficient.

3.1.3 Thresholded Gaussian Process prior evaluation

Unfortunately, no closed form solution exists for evalogtihe spatial prior. Substantial innovations
are required to evaluate the integrals in Equation 11. Nuat these integrals can be evaluated
independently for each layer. In the following analysidgsitmplied that we are dealing with the
k" layer allowing us to simplify our notation by dropping thepgedence ok. From Figure 3 the
per-layer integral can be expressed as follows

p(z | a, A, U) = // (2] 6,u) p(u| AAT + ) p( 5|ad5du—/// u,v, 0, z | a)dvdddu (16)

plu,0,6,2 | @) = p(v) p(3 | @) H (n | ©) p(zn | s 9) (17)

Our strategy here is to approximate the joint distribufion, v, J, z | «) with an easy to deal with
approximate distributiog(u, v, d, z | «) and to compute the marginal likelihoedz | «) as an
approximation to the true marginalz | «). Specifically, we choose the approximating distribution
to be a Gaussian, and use expectation propagation (EP)rimaésthe “closest” such Gaussian.

In the proposed model,, is a discrete random variable which takes values in the réhge. K'}.
We now introduce a auxiliary binary random variable whose value is deterministically related to
Zn
| 41 if 2z, =k = u, <9¢
tn—{—1 it 20 > k = w, > 6 (18)

Note that super-pixels with,, < & have already been assigned to a preceding layer. The corre-
sponding likelihoods are uninformative for th&" layer and are marginalized out before inferring
the latent Gaussian function for tt&" layer and can be effectively ignored. For each layer we are
thus inferring latent Gaussian functions corresponding lbinary classification, with the two class

labels being:, = k or (¢, = +1) andz, > k or (¢, = —1). Let us now consider the posterior
distribution:
1 N
p(u,v,5 | Z,Oé) Zp 5 | @ nl;[lp Unp | v Zn | un,5) (19)
Equivalently,
1 N
p(u, 0,8 t,0) = —p(v 6|an[[1 p(un | 0) ptn | un,6) (20)
1 N
p(u,0,6 | ,0) = —p(v) 5|agpun|v n(6 = un) > 0) (21)

N
(0,5 | 2,0) = ; (010,1) p(0la) [T N(un | 20, )Tt (6 — wa) > 0)  (22)
n=1



where Z is the appropriate normalization constant @i an indicator function. At this stage it
is worth noting that although we have a binary GP classificafiroblem, it is distinct from the
traditional binary GPC presented in the literature. Outbfgm is complicated by the presence of
an additional random variable (the random thresholdin addition to the random variables,()
corresponding to the latent GP functions seen in standatdrines of GPC. Furthermore, the prior
distribution ond is a non standard distribution, requiring numerical appr@tions during EP.

We approximate the likelihood factarst,, (6 — u,) < 0) and the threshold prior factg(s | «) with
un-normalized Gaussians, Zs,N (un | fin, 62)N(8 | jisn,5s2) and Z,N'(8 | fip, 52)respectively.
The approximate posterior is thus itself a Gaussian digidh

1 o N
Q(uavaé | Z,Oé) - EN(’U | Ovj)N(6 | /’LZHUZQ)) HN(UH | azvawn) (un | ,Un, n) (5 | NJn,UJn)

n=1
(23)
where we have absorbed the normalization constants of tttmalized Gaussians iz p. EP
can now be run to progressively refine our approximate piostentil convergence.

3.1.4 Posterior Marginal Computation

Finally, we approximatg(z | «) with
N

i€zl A0 = Zor = 5, ] 2 [ ] [veo.nne .5 TL NG 00Nt | fns SN | 357 deduds

- (24)
We now have all the tools to evalugtéz|x, n) and climb the log posteridog p(z|x,n) surface.
However, note that our likelihood is defined over pixels, ievithe prior is defined over super-pixels.
To balance the prior and likelihood terms, we rescale thelugerior as follows

1
log p(z | =,n) = — log p(x | z,p) +1log q(z | o, A, ) (25)

wherem is the average number of pixels per super-pixel, and clirelréiscaled log posterior sur-
face. A more principled approach to likelihood rescalingpines modeling within super-pixel de-
pendencies instead of treating pixels within a super-pndgpendently. This is a direction we plan
to explore further in future work.

3.1.5 Low Rank Inference

First we note that EP progressively updates the approxipwteriorg(z|a, A, ¥) to be closer to
the true posterior. When the approximating family is Gaarssas is the case here, this amounts to a
rank one update of the approximate posterior distribusipnécision matrix. Moreover, at least one
such rank one update needs to be carried out for each irtitadtactor in the model.

Observe that the full rank model (Figure 3), hst 1 intractable factorsiV likelihood terms one
for each super-pixel and ordeterm. Updating the posterior for each factor via a rank ongatg

is anO(N?) operation. Looping through all intractable factors is@fV?) operation. Evaluating
the spatial prior and the posterior margipét |z, n) once is thus a®)(cN?) operation, where is

a constant proportional to the product of number of layesraimber of EP iterations. Since, we
need to compute the posterior marginal numerous times éidigcrete search phase), we find that
for typical settings ofV = 1000, this cost is prohibitively high.

Figure 3 which displays our lower rank model also Bag- 1 intractable factors. Crucially though,
we can compute the moments of the intractable likelihootbfadrom the moments afasE[u,] =
alE[v] andcov[u,] = alcov[v]a, + 1. This observation frees us from maintaining an explicit
posterior over theV dimensional quantity.. Instead, requiring us to only maintain and update the
posterior over thé) dimensional quantity. Thus the cost of evaluating the posterior in the low
rank model isO(cN D?). By settingD < N we can extract significant computational speedups,
making the overall search based inference tractable.

3.2 Discrete Tabu Search

We explore the distribution over image segmentations ugdisgrete tabu search. The search per-
forms hill climbing on the posterior probability surfacedeexplores high probability regions of the



segmentation space. This is similar in spirit to MCMC tecfueis, but has the advantage that it is
considerable easier to incorporate flexible search mowvs.flexibility allows for robust inference,
avoiding local optima problems.

Search moves which change the state of a collection of randwiables are referred to as global,
while those which change one random variable at a time a&b |@ur algorithm uses a combination
of global and local moves. Given a segmentation we choose fnee of the following moves, for
a fixed number of iterations, with a new segmentation beirnggied if it has a higher posterior
probability.

1. Merge - Merge two layers. The segments to be merged ardeaafnpm a uniform distri-
bution over the segments in the current segmentation. &umtbre, we maintain a tabu list
of merges, which were proposed but not accepted, to avoiditiag previously rejected
proposals.

2. Split- Alayer is splitinto two. The split move works, byn@omly picking a super-pixel in
the segment to be split. Next we sample a second super-pitkepvobability proportional
to its distance(in likelihood space) from the former supieel. All other super-pixels are
assigned to one of the two selected super-pixel dependitigeinrespective distances from
either super-pixel. Note that there are many possible spites for any segment and it is
hence infeasible to maintain a tabu list.

3. Split Connected Components - We also employ another syglite, which as the name
suggests, splits disconnected components of a segment.

4. Swap - This move is only used with the spatial model. In traial model, the relative or-
dering of segments is explicitly modeled, and partitionthwlifferent ordering of segments
have different posterior probabilities. The swap movedeos the depth of two segments
in the current partition. Here, we again maintain a list dtanoves.

5. Shift - This is a local move which iterates over all the sypigels in the image and assigns
each super-pixel to a segment which maximizes the posterddrability. The purpose of
the shift move is to refine the partitions proposed by therotheves. To understand the
working of the shift move observe that for any super-pix@le have:

pl2m) 5 plealzon @y A W)p(z_nla, K) /O p(lz,©)p(Olp)dO  (26)

wherez_,, refers to random variables corresponding to all butttfesuper-pixel. Further,
observe that assigning, to 2,, where

b = argmaz p(alzn 0, A D) / D]z, ©)p(O]p)de (27)
€]

Zn

%

argmas q(enl-n, 0 A) [ plalz, O)p(©]p)d0 (28)
Zn ©

takes us a step in the direction 8fThe shift move loops through all super-pixels in an
image and assigns each super-pixéb the corresponding,.

3.3 Segmentation Refinement

The partitions produced by the inference can contain layiish are spatially non-contiguous. To
produce the final image segmentation we run connected coanp®on the inference output. This
splits up layers into spatially contiguous segments. Afjrsents containing four or less super-
pixels are merged with a larger spatial neighbor. If mudtifrger neighbors exist, then the one
which maximizes the appearance likelihood is chosen.

4 Learning from Human Segmentations

In the previous sections we have described the spatiallgri#gnt Pitman Yor process mixture
model and made a case for how it captures important quastigatures of human segmentations. In
this section, we provide methods for quantitatively caitbrg the models to the appropriate human



segmentation biases. Specifically, we tune the model hyaexmeters to the human segmentations
from the 200 training images of the Berkeley Segmentatiota& (BSDS) [11]. We show that in
spite of the inherent uncertainty in the segmentations dfreage, we are able to learn important
low level grouping cues.

It is worth noting that although, supervised learning isvptent for training Markov Random Field
(MRF) models for segmenting predefined predefined objeegoates [20], the parametrization and
statistical properties of our layered Gaussian Processhard significantly different from that of
discrete MRFs. Furthermore, image segmentation is a lesgtreaned problem than the problem of
segmenting out predefined object categories. As a reselintipping between model parameters
and human annotations is more subtle and trickier to infearhing nevertheless is both possible
and effective for our proposed model, as outlined below.

4.1 Segment Size Distributions

For each imagg in a given training database, [} denote the number of segmented regions, and
1 >aj > aj > --- > ajr, > 0 their proportions of the image area. To compare these cadants
7 ~ GEM(ay, ap), We also sort the sampled frequencies, producing@parameter Poisson—
Dirichlet (PD) distributed partitionm = (71, T2, 73, . . .) satisfying 7, > 71 with probability
one [13]. These ordered histograms then allow the likelihobthe data under any Pitman-Yor
model to be computed, producing maximum likelihood (ML) rabparameterg = (&, y). For
the BSDS, the estimated parameters edyat 0.6, &y, = 3.

4.2 Pairwise Grouping Probabilities

We would like to accurately segment images containing nobgcts and materials. While we
cannot expect our training data to provide examples of glidrrant region appearance patterns,
it does provide other important cues. In particular, via hRarsegmentations we can can learn to
predict the probability thgbairs of superpixels (or image patches) occupy the same segment.

For every pair of superpixels, we consider several potipiiaformative low-level features: (i)
pairwise Euclidean distance between superpixel cent@ra)térvening contours, quantified as the
maximal response of the probability of boundary (Pb) dete[dt2] on the straight line linking su-
perpixel centers; (iii) local feature differences, estiesavia log empirical likelihood ratios of?
distances between superpixel color and texture histogfaijs To model non-linear relationships
between these four raw features and superpixel groupiagh,feature is represented via the activa-
tion of 20 radial basis functions. Concatenating these gives a feagatorg,; for every superpixel
pairi, j.

Defining a vector of regression weighfsof the same dimension as;, the predicted probability
that a given superpixel pair lies in the same segment equals

1
p(zi =z | dij, f) = U(fT@'j)v ofa) = ltea

We train this logistic regression model via MAP estimatidnfaunder a Gaussian prior. Both the

variance of this prior, and an appropriate bandwidth forrdtial basis functions, were determined
via cross-validation. When probabilities are chosen toedéponly on the distance between su-
perpixels, the distribution constructed in subsequertiaex defines a generative model of image
features. When these probabilities also incorporate corizes, the model becomes a conditionally
specified distribution on image partitions, analogous torad@ional random field [10].

(29)

4.3 From Grouping to Correlations

Our layered image model employs a sequence of support inmscsiampled from multivariate Gaus-
sian distributions. These Gaussians, whose dimensionetignumber of superpixels, have unit
variance and a potentially different correlatiofn for each superpixel pair j. For each superpixel
pair, the probability that they lie in the same segmerihdependentlyletermined by the corre-
sponding correlation coefficient. As detailed in the appendsing low-dimensional numerical
integrations we can determine the probability that bothespigels are assigned to layer 1, or to
layer 2, and so on. Summing these overkathen produces the overall probability of assignment



to the same layer, whatever its index. This process inducegdo-one mapping between pairwise
correlationsp;;, and probabilitiesy;; that the pair of superpixels lie in a common segment. Ap-
plying this mapping produces a model corresponding to amgrgprobability estimates. Figure 5
visualizes the learnt mapping.

Prior samples. Figure 4 displays samples drawn from the spatially deperéiégman Yor process

prior. Depending on the features used to estimate pairwiperspixel correlations, qualitatively
different partitions are produced. As expected, condiilynspecified image specific partitions
resultin segmentations closer to “true” human segmenmtstialso, note the effect of dimensionality
on the quality of sampled partitions. With dimensionali tyuality of partitions improve, at the
expense of computational efficiency during inference.

Figure 4: Samples from various prior models. Image partitions sampled from PY process as-
signments coupled by Thresholded GPs with different cavae functions. From left to right we
present samples from (a)distance based GP covariancédiific} 100 dimensional projection of a
GP covariance function learnt from low level features idtroed in section 4.2 (These are used in
all our experiments) (c) 500 dimensional projection (d)@@imensional projection.
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Figure 5: Left. Heuristic vs Learnt covariance functions. Each point in pk@ represents one
image from the BSDS test set. A majority of the points fall abthe diagonal suggesting that
higher posterior scores are achieved by the learnt cowaiamctions on a majority of the images.
RightMapping between correlation coefficients and pairwise abiliiies.

5 Experiments and Results

We benchmark our algorithm on the Berkeley Image Segment&tataset (BSDS300 [11]) and a
set of images extracted from the LabelMe [16] dataset. B&IDS$8ntains 300 images, 200 training
and 100 testimages. The second dataset contains a subdiwiaf@d Torralba’s [19] eight natural
categories dataset. We sampled 30 images at random fronoé#uh eight categories to create a
240 image dataset.

The performance of the algorithms are quantified using tbbeatrilistic Rand IndexRRI) and the
segmentation coveringegCovermetric introduced in [2]. To be consistent with [2] we repibie



covering of a set of Ground truth segmentations by a machimdyzed segmentation. Furthermore,
we present a number of segmentations discovered by ouiithligoas a qualitative measurement of
segmentation quality. In all experiments, our mo@Y-learnt)used al00 dimensional low rank
representation and the corresponding inference utilia@dliscrete search iterations.

We start off by investigating the effect of the learnt coaade functions. On the 100 BSDS test
images, we compare the log posterior marginal likelihoodswe human segmentations, under
models using learnt and heuristic covariance functionguiféi 5 shows the corresponding scatter
plot. As is evident, the learnt covariance functions assiiginer posterior marginal likelihoods to
human segmentations.

Next, we explore the effect of explicitly modeling the poviaw characteristic of human segment
sizes. We compare against two spectral clustering basedthigs normalized cuts (Ncuts) [17] and
multi-scale normalized cuts [4] algorithms. Ncuts biasésegments to have roughly equal size,
while multi scale Ncuts somewhat relaxes this bias by inomfng a multi-resolution hierarchy.
Both Ncuts and multi-scale Ncuts require the user to speledynumber of segments to partition an
image into, our algorithm being nonparametric does noteHse initialize both spectral algorithms
with the average number of segments in the correspondinghsegmentations of the image. The
algorithms thus initialized, are denoteduts-oracleand hncuts-oraclén Table 1. Our algorithm
outperforms both of these algorithms, in spite of the laltteing tuned to the “true” number of
segments per image. This gain in performance can be atidtiot the fact that the region size
statistics of our model matches the region size statisfibsiman segmentations.

Next, we quantify the performance PY-learnt and the progasterence algorithm. We compare

our model against the work of Sudderth and Jordan[18], wko amploy thresholded dependent
Gaussian processes to segment images. Remember that theresented here improves upon [18]
by using a better calibrated model and a more sophisticafedeince algorithm. To quantify the

effects of the proposed improvements, we compare our modkirderence with three variants of

previously proposed models

1. As a baseline we compare against the Bag of Features nR@€) (
2. The model and inference presented by Sudderth and Jdb@soi{ed by SJ in table)1
3. Sudderth and Jordan’s model with our search based irder€d+searci.

From table 1, we observe the efficacy of both our inferenceth@groposed modeBSJ+searchs
significantly better tha®J demonstrating the utility of the proposed inference athor. Combin-
ing the search based inference with the model proposedsmpéper leads to a further performance
jump which is close to state-of-the-art performance. Havewe do note that the algorithm pre-
sented in [2] outperforms our algorithm on the BSDS300 tetst s

Figure 9 illustrates yet another interesting prop-
erty of our modelJayer ordering Remember i
that each image partition consists of a particular| _Algorithms PRI SegCover
order of layers. Thus, in addition to recovering | PY-learnt | 0.77+0.12 | 0.51£0.02
the most likely image partitions we also auto- | SJ+search | 0.71+0.17 | 0.51:£0.17
matically recover the ordering of layers. Here, | Nncuts-oracle| 0.74+£0.14 | 0.34+£0.07
we illustrate some layer orders recovered by our| hncuts-oraclg 0.75+0.14 | 0.394-0.08
algorithm. For the image on the left, the in- SJ 0.49+0.14 | 0.40+£0.01
ferred ordering of the layers matches the true BOF 0.46+0.24 | 0.40+0.20
ordering of the objects in the scene. The im-

ages on the rightillustrates a case when we inféable 1: Quantitative performance of various al-
an incorrect ordering. Since the model thresigorithms on BSDS300

old’s smooth GP functions it prefers explaining

the generation of complex shapes through oc-

clusion. As a result when an object in the foreground has gtioated shape, the model infers that
it is more likely to have been generated as a result of oantusnd is moved back in the order.

Figure 8 presents a set of diverse segmentations discolsgredr algorithm. Although, our infer-
ence scheme searches for the MAP estimate, the searchesxhigh probability regions of the dis-
tribution over partitions, hopping from partition to paidn. In addition to the most likely partition,
we also store other high probability partitions, leading ticher description of the distribution over



Figure 7: Comparisons across modelsFrom Left to Right: Our model, BOF model,SJ+search,
Multi scale Ncuts

partitions(segmentations). Figure 6 presents a randonsauipling of our results from BSDS300
for qualitative evaluationThe complete set of segmentation results for the 240 LabelMenages
can be found athttp://www.cs.brown.edu/ ~sghosh/results.html



Figure 8: Diverse SegmentationsDiverse Segmentations discovered by our proposed algerith
Each row depicts multiple segmentations for a given imagbe 3egmentations are ordered in
decreasing order of probabilifpccording to our modelirom left to right.
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Figure 9:Depth Ordering. Blue segments are closest to the camera and red segmenasthestfaway. The
two left images display a example where the algorithm infleescorrect ordering. The two right images display
a example where the wrong ordering of layers is inferred.

Algorithms PRI SegCover
gPb-ucm | 0.68+0.17 | 0.54+0.17
PY-learnt | 0.72+0.13 | 0.52£0.16

Table 2: Quantitative performance on LabelMe images

Finally, note that we tuned the hyper-parameters and nqtah@meters (there are none to tune) of
our model to the Berkeley Training set. One would hope thaihhyper-parameters would lead to
better generalizability than algorithms such as the onsgmied in [2] §Pb-ucm which tune model
parameters via cross validation. To test this, we segmeh&e#d40 LabelMe images using models
tuned to the Berkeley dataset. Table 2 and figure 10 presen¢gults of the comparison. While the
segCover score achieved by [2] is higher than our algorithensignificantly outperform them both
qualitatively and in rand index scores.

6 Conclusion and Future Work

We have presented spatially dependent Pitman Yor procedamaimodels and developed an effi-

cient, robust and accurate inference algorithm for thesgsabf models. Further, we have shown the
effectiveness of the presented model in partitioning cexphtural scenes and its ability to model

the inherent uncertainty found in human segmentations.

There are various natural extensions of this work. Our cuinmeodels are limited to segment each
image independently. In future work we plan on developirgrdnichical versions of our models,
which will collectively segment a group of images leveraginformation from one image to help
partition other images. Another aspect of the model whickedees attention is the appearance
model. Our model currently uses naive color and texturegistms. As is standard practice, each
bin of the histogram is considered independent. Theretis Jitstification for such independence
assumptions other than computational ease. In fact, imalatnages, different bins are often highly
correlated. For instance, the colehite andblue often occur together (blue sky with white clouds)
suggesting that the corresponding bins should be positoatelated. We will address this issue in
future work, by replacing the Dirichlet prior on the appea@ histograms with a logistic Normal
prior. Another exciting avenue of research is to furtheestigate the layer orderings recovered
by the algorithm. Modeling shape should help the recoversnofe accurate orderings. Finally,
a long term goal of this work is to develop an image understandystem. Our current work
only addresses the problem of “stuff” modeling and we arg \rterested in incorporating “thing”
models and varying degrees of supervision to enable hotistiural scene interpretations.



Figure 10:Comparison on LabelME From Left to Right: PY-learnt, gPb-ucm
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7 Appendix

7.1 Likelihood Computation Details

We provide the solution to the color integral here for theesakcompletenesg¢ simplify notation
we denoté®, x¢ by justd andx).

For K segments and N super-pixels we have,

K N
/ep(wlz,H)pWIpC)d@ = H/e POklo%) T p(nlzn, 0x) n=F)d6), (30)
k=1""k
K We . N W,
=11 / NSRS H H O )F =R dgy, (31)
k=1"0% w=1 n=1w=1

:ﬁ / Hepw—ll_[ ) S Fr ¥ Ton=H) g, (32)

k=1 Ok w=1 w=1
K
~T126 [ T[ G010, (33)
k=1 Ok =1
K
A(p©)
=[] =55 (34)
c k
s Alpe + k)
In the above derivatiol (p©) = % andz¥ = number of times worav occurs with segment

k.

7.2 Covariance Calibration Details

We are interested in estimating a mapping between the atioel(p) of a pair of Gaussian random
variables (u; andu;), and the conditionally learned probability; of the corresponding super-pixels
1 andj being assigned to the same layer. According to our generatodel, two super-pixelisand

j can be assigned to the same layéff both u; andu; are less than the threshaig. Hence, the
probability of two super-pixels being assigned to layés

i [ L )

Furthermore, we can marginalize out the unknown threshialds

tap= [ [N w0 ) poa)duiduydse (36)
I A : p




Let us further define

o= [ 5 (5B 4] o e

which is the probability that both; andu,; are greater than thg,. Note that neitheg_ norg can
be computed in closed form and are both numerically appratéch

Now observe that two super-pixeland; can be assigned to the same layer, if they are both assigned
to the first layer or if neither is assigned to the first layet limth are assigned to the second layer
or if neither is assigned to the first two layers but both astga®d to the third layer and so on. We
can thus express; as

pij = (o p)+ ¢ (a,p)d) (a, p) + ¢ (o, p)g (a, p) (e, p) + . .. (38)
K K—-1

~ > " (ap) [] di(ep) (39)
k=1 =1

where we have explicitly truncated our model to hdvgsome large number) layers. The above
equation defines the sought relationship and allows us tocuagitionally learnt;; to pairwise
correlations of Gaussian random variables. The mappingiglized in figure 5.



