
Linear Gesture Recognition and Large Screen

Simulation of Gesture Select

Hsu-Sheng Ko

Jan 8, 2010

1 Abstract

Gesture Select is a new technique for selecting remote targets on large screen.

Instead of walking to distant target and selecting it, users draw an initial
stroke with a direction toward the target. This would create a region of interest
in which every target would be assigned a linear gesture. Users continue on
drawing the correspondent gesture of the target to have it selected.

To implement Gesture Select, there are two primary technical problems :

1. Linear gesture recognition :

Gesture Select needs a robust linear gesture recognizer that supports suffi-
cient gestures. These gestures should be simple enough so that the user response
time – the time spent on recognizing and completing the gesture – could be lower
than 2.5 seconds. This recognizer should also be stable: the error rate must be
in a reasonable range.

1

2. Large screen simulation :

Since there’s no large screen device available on campus, we need to simulate
a large screen by connecting two projectors and one smart board. A communi-
cation software runs between these devices to synchronize the input from users.

2 Linear Gesture Recognition

Algorithm Design:

A linear gesture is composed of a series of input points recorded by input
device. Since parts of this algorithm relies on vector-based computation, input
points will be translated to a series of vectors. The final output is a series of
vectors with different directions. We call these vectors with different directions
’segment’ in the following article.(Fig. 1)

This gesture recognition algorithm contains 6 phases :

1. Resample and vector translation

Devices tend to record some extremely close points which can be considered
as noise (This is probably caused by slight moves done by users unconsciously).
In order to get rid of this noise, we resample the inputs points to gain a new
series of points in which distance between two points is larger than a specific
threshold. This new series of samples is then translated to vectors.

2. Curve Detection

A curve is detected by comparing angles between vectors within a specific
distance. If the angle is larger than a specific value, there’s a curve and these
two vectors possibly belong to different segment.(Fig. 2) Note that the specific

2

distance is defined as a relative value to the length of whole gesture. This is
because different user tends to draw the same gesture in different size.

3. Erroneous Input Gesture Correction

Users may make mistakes shown in Fig. 3. To gain better user response
time and lower error rate, the recognizer must be able to tolerate these errors.
Again, the threshold is a relative value to the length of whole gesture. Those
segments with shorter length would be removed.

4. Recognition

Based on the segments given by the previous phase, segment direction could
be simply defined by computing the angle between segment and the x-axis and
comparing this angle with angle ranges of different directions. The compari-
son logic can be easily modified to support four-direction recognition or eight-
direction recognition.

3

5. Integration

In the Curvature Detection phase, for better sensitivity, the detection dis-
tance is set to a large value, and the threshold angle is set to a small value.
This would cause the problem shown in Fig. 4. Since the continuous segment
has the same direction, it should be considered as only one segment.

6. Exception Handling

This phase deals with some erroneous cases which can’t be detected in the
previous phases.

If the user draws a very smooth curve as Fig. 5, the recognizer may fail to

4

recognize it in curve detection phase and only finds two vectors and a blank
between them. For this case, we could assume there’s something in-between,
which is a ’UP’ segment.

Consider also the case shown in the same figure. The recognizer might re-
turn a recognition result with 4 segments. Assume our recognizer only supports
a set of 3-segments gestures, the shortest segment would be removed.

5

The above figure shows all phases of this algorithm and an example of how
a linear gesture is recognized.

Tuning Algorithm :

Before starting the tuning process, we need some real gesture data from
users. We conducted a few user experiments (described in next section) and
recorded the results. For those gestures failed to be recognized, we run a visual
tool to help us find out the reason (Fig. 7). If it’s a mistake made by the user,
it can be ignored. If it’s a problem that could be solved by modifying algorithm
or adjusting parameters defined in algorithm, we do the correction. However,
sometimes, these changes may solve the current case by produce more error
cases. Therefore, after doing some corrections, a program would be executed to
input all the gesture data to the recognition algorithm and output the average
error rate and user response time.

By continuously doing corrections and comparing the error rate and user
response time, finally, we will have a robust gesture recognizer.

6

Experiment Design :

We conducted two experiments with different variables to inspect the per-
formance of Gesture Select under various circumstance :

Experiment 1
This experiment has three variables : target distance (46", 68.4", 90"),

target size (2" x 2", 4" x 4", 6" x 6"), and distractor count (16, 32, 64).
We have :

10 participants
x 4 blocks (1 training + 3 measured)
x 3 distances
x 3 widths
x 3 distractor counts
x 4 trials
= 4,320 trials completed

Experiment 2
This experiment has three variables: target distance (63.3", 78.2"), direction

(E, NE, SE, W, SW, NW), and path distractor density (0%, 40%, 80%).
We have :

10 participants
x 4 blocks (1 training + 3 measured)
x 2 distances
x 6 directions

7

x 3 path distractor densities
= 1,440 trials completed

Result :

The result of above experiments shows that target distances, target size, di-
rection and number of distractors has very small influence on the user response
time and error rate of Gesture Select.

1. Eight-directional recognition :

The average user error rate of a Eight-directional recognizer is higher than
15%, which is not acceptable. We found that users can’t distinguish between
these eight directions accurately. The average user response time is 2.2 second,
which is acceptable.

2. Four-directional recognition :

Four-directional recognizer performs much better than an eight-directional
one. The average user error rate is 8%. Among these errors, only 35.3% are
caused by failure of recognition. Others are wrong gestures done by users.

3 Large Screen Simulation

First, we tried to run MaxiVista - a screen sharing software to extend the
screen from smart board to two projectors, but there’s a severe lag problem.

We then came up with another solution. The idea is to have the large screen
application running on all the computers connected to the output devices and
synchronize the inputs. This would create several copies on the large screen
application running on different computer. We only need to apply different
translation on computers to show different part of the large screen application.
To synchronize the inputs, we have a server program running on the computer
connected to the smart board. This server would send all the inputs received
from users to all the clients (two computers connected to the two projectors).

However, if the server sends all mouse events to two clients, there would be
too many packets flown through the network and thus causes lag between server
and clients. A tricky way to solve this is rather than sending all mouse events
to clients, the server only send the recognized results to clients. Since server is
the only computer connected to the smart board and could receive the gesture
drawn by users, this would generate exact the same effect as sending all mouse

8

inputs to two clients. The following figure shows how the entire solution works.

9

