
Using Probabilistic Tree Substitution Grammars

Ben Swanson

January 24, 2011

1 Abstract

Probabilistic Tree Substitution Grammars model the syntactic structure of
natural language, and can be learned in an unsupervised manner from anno-
tated sentences such as the Penn Treebank. In this work we use this gram-
mar in a novel approach to Form Function Tagging, using a specialized data
structure to efficiently implement the sum-product algorithm. We also ex-
tend the existing induction algorithm to a hierarchical form, which we use to
simultaneously induce grammars from a corpus split into document classes.
We evaluate this model on the task of document dating and show that it
outperforms other models commonly employed in previous work. Further-
more, we use the data structure for efficient sum-product calculation in an
implementation of a block sampler for grammar induction, and investigate
the effects of grammar markovization on experimental performance.

2 Introduction

Due to the requirements of efficient parsing algorithms, most parsing re-
search has focused on Probabilistic Context Free Grammars (PCFG). How-
ever, techniques developed for PCFG models can be leveraged on more ex-
pressive grammatical formalisms. We apply one such technique, hierarchical
modeling, to Probabilistic Tree Substitution Grammars (PTSG), and eval-
uate its effect on the task of document classification.

Document classification includes such concrete tasks as authorship at-
tribution, author verification, spam filtering, and sentiment analysis. The
general formulation of the problem requires a corpus where each unit of text
is associated with one or more classes. With this type of data, statistical
machine learning techniques can be used to determine the most likely class
of a piece of novel text.

1

One straightforward approach to text classification is language modeling.
This involves the characterization of a block of natural language as a set of
events and the definition of the joint probability function of those events.
These models generally fall into one of two categories, n-gram or syntac-
tic. Due to variability across data sets it is not clear if one type generally
outperforms the other. However, the patterns of style captured by these
models differ and have been shown to provide complementary information
for classification [13]. This work focuses on the use of syntactic language
models for document classification by using a PTSG, which can capture
lexical dependancies within a syntactic framework.

PTSGs are similar to the PCFG model commonly employed in syntactic
parsing in that they define probabilities of rewrite rules for each nonterminal
symbol in a grammar. A PTSG is in fact a strict generalization of a PCFG in
that it models a superset of rewrite rules. This model has become popular
in natural language processing following the recent development of Gibbs
sampling techniques for grammar induction [6] [12].

Language modeling with a PTSG involves computing the probability of
all derivations of a parse tree. This is equivalent to calculating the inside
probability of the root of the tree, and if implemented naively can lead to
redundant computation. In Section 4, we present a data structure which
allows for efficient determination of the PTSG rules used in all derivations
of a given parse tree. We also use this data structure in an implementation
of the block sampler presented in [5]. Our implementation avoids the full
annotation burden of the grammar transform they employ, and has been
packaged for easy third party use.

The recently popularized probabilistic model for PTSG induction is the
Dirichlet Process (DP). This stochastic process exhibits a rich-get-richer
dynamic which identifies commonly occurring patterns in parse tree data.
In applications such as document classification, there is added information
in the form of class labels. In order to incorporate these labels we modify
the PTSG and its induction algorithm through the use of a Hierarchical
Dirichlet Process. In this work we show that tying together the PTSG
models of each class with a common prior distribution in this way leads to
principled smoothing and better generalization.

We also apply the PTSG to the task of Form Function Tagging, which
involves the classification of syntactic non-terminals into linguistically mo-
tivated groups. We construct and evaluate a novel PTSG based algorithm
which performs this classification with near state of the art accuracy.

2

3 Related Work

This work combines three relatively distinct threads of research in natural
language processing and machine learning. The first is authorship attribu-
tion, a common form of document classification. The second is recent work
on induction of PTSGs using Gibbs Sampling [6] [12] , and the third is the
Hierarchical Dirichlet Process (HDP) of [15].

3.1 Authorship Attribution

Authorship attribution has clear real world application, with such notable
historical examples as the disputed authorship of the Federalist Papers and
Bill Clinton’s unofficial campaign “biography” Primary Colors. The mod-
els employed in authorship attribution seek to identify stylometric features
which disambiguate one author from another. Examples include [14], which
investigates a range of classification methods using n-gram lexical features,
and [8], which compares n-gram features with stylometric features such as
vocabulary richness and sentence length.

There is also a nascent trend in authorship attribution using syntactic
features. Most recently [13] showed not only that syntactic PCFG features
give competitive classification accuracy but that syntactic and lexical mod-
els can be used in conjunction to improve classification accuracy. It has
also been shown by [7] that using syntactic features with longer dependen-
cies (loosely equivalent to PTSG rules) leads to accuracies which outper-
form not only the simpler PCFG features but also function word and POS
tag features. Our work is quite similar to this tree mining technique, but
is preferable not only in that it provides a principled probabilistic frame-
work (e.g., for comparing confidence in classification results) but also in the
nonparametric formulation which does not require parameter selection for
maximum tree size.

3.2 Hierarchical Grammars

To explore new syntactic models for authorship attribution, we extend the
PTSG model of [6] to the hierarchical case using the HDP. Such hierarchical
grammars have been previously employed by [4]. Our approach is similar in
this aspect, but we use the provided class labels to determine the grouping
structure of the HDP.

3

3.3 Form Function Tagging

There are two items of previous work for Form Function tagging which are
most relevant. [2] uses a feature based discriminative classifier, conditioning
the decision on surrounding nodes or linguistic head words. [10] uses a
generative parser to jointly model the parse tree and form function tags,
and yields the current state of the art. Our work is similar to this latter
technique, differing in our use of Tree Substitution Grammars instead of
Context Free Grammars.

4 HDP-PTSG

The formal description of a Tree Substitution Grammar is a four-tuple G =
(T,N, S,R). N and T are the nonterminal and terminal symbols of the
grammar, S ∈ N is a unique start symbol, and R is a set of rewrite rules.
We assume a familiarity with this model and refer the interested reader to
[6] for a full exposition. The basic intuition for those familiar with PCFGs is
that we now allow rewrite rules which contain any parse tree substructure.

S

NP

VP

NNP

PP

IN DT

NP

NNVBZ
Ace is in the house

S

NP

[VP]

[NNP]

VP
[PP]

VBZ
is

PP

IN

NP

[NN]
in the

DT

NN
house

NNP
Ace

Figure 1: A tree substitution grammar derivation, with its constituent elementary
trees on the right. Nodes with brackets around their symbol denote nonterminal
substitution sites.

4.1 HDP Extension

The members of R are segments of full parse trees and are referred to as
elementary trees. PTSG models define the probability of each elementary

4

tree e ∈ R using a multinomial distribution Ps(e) for each nonterminal s ∈ N
over rules which rewrite the nonterminal s.

We consider the case where elementary trees are additionally associated
with a single discrete label. For document classification this association is
determined by the class labels in the data and corresponds to information
such as the sentence’s author or the time period in which the sentence was
written. Let there be K such labels, and associate each elementary tree with
a label index k. The HDP-PTSG extends the PTSG by defining multinomial
distributions P ks (e) for all pairs (s, k).

The probability of a sample of text under a HDP-PTSG is defined as
follows. The probability of a corpus C of parse trees is given as

P (C) =
∏
t∈C

P (t)

where the corpus probability factorizes over the probability of the parse trees
for each sentence. For a parse tree with n nonterminal nodes, there are 2n

derivations which could have produced the tree. The probability of a parse
tree is given as the sum over the probabilities of the tree’s derivations Dt,
and the probability of a derivation factorizes over the multiset of elementary
trees it employs as rewrite rules

P (t) =
∑
d∈Dt

∏
e∈d

P ks (e)

where in document classification k is the class label of t.

4.2 Induction of P k
s (e)

While the straightforward estimation algorithm for P ks (e) would be to con-
sider all possible derivations of a corpus of trees, the exponential number of
derivations for each tree makes this computationally intense. This method
has been employed through compressed data structures in [1], yielding state
of the art parsing performance but large memory and computational costs.
Instead we employ the algorithm of [6] which takes a parse tree corpus
and efficiently induces derivations for each tree corresponding to a compact
PTSG.

To sample these derivations we treat e, the set of elementary trees in all
derivations, as a collection of exchangeable items. We define a set of DP
distributed Gks , one for each (s, k). The Chinese Restaurant Process (CRP)
provides the probability of incremental local changes in the derivations.

5

Our technique is similar to that of Cohn et al, which induces |N | DPs,
one for each nonterminal s ∈ N . This work extends their model to the
hierarchical case where we subdivide these DPs for each label k ∈ {1, ...,K},
where theK subdivided DPs are linked by a common DP priorHs, as defined
below.

This gives |N |K total DPs, and each elementary tree e in our sampled
derivation is mapped to one such DP. This mapping is uniquely defined by
the class label k of the section of the corpus in which e is found and e’s root
nonterminal s. The generative model is now given by

Hs | γs, P0 ∼ DP (γs, P0)
Gks | αks , Hs ∼ DP (αks , Hs)

e ∼ Gks

where P0 is a PCFG distribution with added parameters βs for each nonter-
minal symbol, as described in [6]. This serves to bias the induction algorithm
towards smaller elementary trees.

The DP is an infinite extension of the finite mixture model, and is there-
fore a distribution over mixture components, not data items. It is a useful
feature of this induction model that these mixture components are delta dis-
tributions which give mass to single elementary trees. Such a model creates
a one to one mapping between customers and possible dishes which allows
us to simplify the integral over tables when calculating the likelihood of a
data item.

After performing this grammar induction procedure, we can estimate the
multinomial distribution P ks (e) by truncating the infinite mixture models,
as a mixture of delta functions is equivalent to a multinomial distribution.
Since our mixture components are delta distributions, truncating this dis-
tribution is equivalent to including or excluding elementary trees in our
grammar. We include all trees which have non-zero counts in the sampled
derivations, as well as all PCFG rules which appear in the training data but
do not appear in a derivation. The remaining mass is distributed equally
among all members of the multinomial.

4.3 Sampler Implementation

[6] describe a Gibbs sampling algorithm for PTSG induction, and [5] pro-
vides an alternative algorithm which exhibits better convergence. These
algorithms make use of certain modeling techniques which allow efficient
sampling. Unfortunately, one of these techniques does not generalize to the
HDP-PTSG. To explain this we use the metaphors of the CRP, assuming a

6

familiarity with the concept of restaurants, customers, dishes, and tables as
outlined in [15].

In the induction algorithm of [6] dishes are defined to be delta distribu-
tions, which allows the use of the CRP for sampling. The CRP defines the
probability of an elementary tree e which maps to Gks as outlined above.
If this Gks is drawn from a DP with concentration parameter α and base
distribution H, the probability of e is given as

P (e|e−, α,H) =
ne + αH(e)

n• + α

where e− is the set of previous elementary trees which map to (s, k), ne is
the count of e in e−, and n• is the size of e−. When sampling derivations
as outlined in existing PTSG sampling algorithms, we iteratively choose
between possible modifications of our current multiset of elementary trees
by considering ratios of these probabilities. We omit the specifics as they
follows identically from previous work.

This probability function is the sum of two terms which have allegorical
equivalents in the CRP. The first, ne

n•+α
, is the probability that the cus-

tomer e sits at a table which is already occupied. The second, αH(e)
n•+α

, is the
probability that the customer sits at a new table.

The subtlety which arises when using another DP as the prior distribu-
tion H is that in the second case, when a customer sits at a new table, we
must seat a customer in the restaurant associated with H. This involves
an additional sampling step in which we sample against the ratio αH(e)

ne
to

decide if a customer is seated in H’s restaurant. When removing a customer
from a restaurant, we must decide if this leaves a table empty, in which case
the base distribution must also have a customer removed. The simplest ap-
proach is to keep a table index for each customer, but this is not ideal. This
subtlety has been studied in previous work by [3] and we employ their tech-
nique of maintaining a histogram of table counts for each restaurant in the
CRP, which allows for a smaller memory footprint and less book-keeping.

5 Language Modeling

Probabilistic models of natural language such as the HDP-PTSG can be
used to calculate the likelihood of an arbitrary block of text under a class
specific model. If this computation is performed for each of a set of classes,
document classification can be done by choosing the class which gives the
highest likelihood.

7

Full language modeling with a grammatical model would require consid-
eration of all possible parse trees for a sentence. For the sake of computa-
tional efficiency, in our work we approximate the language model score by
scoring only the most probable parse of a PCFG parser.

With the HDP-PTSG, the likelihood of a set of parse trees t given a
class k is

P (t|k) =
∏
t∈t

∑
d∈Dt

∏
e∈d

P ks (e)

The exponential number of possible derivations in Dt makes this value
computationally intensive to calculate. Fortunately, the sum-product al-
gorithm can be used to perform this calculation efficiently using dynamic
programming, as the probability of a parse tree is the marginal probability
of the root node. This is equivalent to running the inside portion of the
inside-outside algorithm and reading off the inside probability of the tree’s
root.

Using the sum-product algorithm on a tree t with TSG rules requires a
subroutine which runs for each node s in the tree. This subroutine must
return all possible TSG rules which could have been used to rewrite s in
a derivation of t. The naive algorithm simply performs a traversal of each
elementary tree with probability in P ks (e). While this algorithm works rela-
tively well for evaluating small blocks of text, it does not scale well to large
test documents.

5.1 Compact Overlay Dictionary

We present a data structure which we call the Compact Overlay Dictionary
(COD) which efficiently calculates the subroutine necessary for computing
the inside probability of a parse tree under a PTSG. Credit for the creation
of algorithm is due to the illustrious Micha Elsner. The input is a reference
parse tree t and a nonterminal node n in t with symbol s. The output is
e′ ⊂ e, the elementary trees which could have been used to rewrite n in
a derivation of t, and the nodes in t which correspond to the non-terminal
leaves of each member of e′. A useful way to visualize e′ is as the members
of e which we could overlay consistently on top of t.

A COD is precomputed for s using the set e of elementary trees in the
PTSG. Figure 1 shows an example COD computed for the symbol S given
the grammar consisting of the three elementary trees pictured on the right.

The COD is a tree structure where each node keeps track of information
which can be used to confirm or deny the ability to overlay grammar rules.

8

Figure 2: A Compact Overlay Dictionary in the center constructed from the set
of elementary trees A, B, and C on the right. When the tree on the left queries this
COD for node 1, the COD reveals that only A and C overlay the tree consistently.
It also returns the indexes of the nodes where these trees’ substitution sites overlay,
allowing efficient implementation of the inside-outside algorithm. The intermediate
recursive results of the lookup algorithm are shown in upper-left superscript, with
the return value of the lookup as the superscript of the COD’s root node. The node
containing bites does not have a superscript because the lookup algorithm does not
visit that node.

Formally, a COD node is a four-tuple (N, i, j, E).
As a motivating example, consider the first left child in the COD pictured

in Figure 1. This node encodes NP symbols produced with index 1 in rules
of arity 2, corresponding to the values of N , i, and j respectively. Its value
for E contains all of the elementary trees which have leaves at this location,
which for our small grammar is the set consisting of trees B and C.

5.1.1 COD Construction

To construct a COD we require only e, the domain of one of our P ks multi-
nomial distributions. All of these elementary trees share the same root
nonterminal symbol s.

The recursive algorithm for COD construction is initialized with a one
node tree consisting of (s, 0, 0, ∅). Construction proceeds by iteratively
adding each elementary tree e ∈ e, all of which are necessarily rooted at
a node labeled s. This insertion traverses e top down, updating the COD
for each node in e.

9

5.1.2 COD Lookup

The purpose of the COD data structure is to allow efficient determination
of overlays for a query tree t. This is done by a postorder traversal of the
COD tree over nodes which are consistent with t. This defines a subgraph of
the COD tree over which the lookup algorithm progresses. For the example
shown in Figure 1, this includes all nodes except the one containing the
terminal symbol bites.

The COD lookup algorithm outputs a set of elementary trees along with
the overlay sites of their non-terminal leaves. For clarity we limit our descrip-
tion to the computation of the returned elementary trees. The determination
of leaf overlay points is demonstrated by Figure 2.

Assume a set query tree t, and a subgraph of the COD tree which is
consistent with t. There is a one to one mapping from nodes in the COD
subgraph to nodes in t. We use a prime notation to refer to the fact that a
COD node n maps to a node n′ in t.

An overlay set of a COD node n is the set of elementary trees which are
consistent with the subtree rooted at n′. Let P be the fourth tuple element
of n. Given the overlay sets Ci of this node’s k children, the complete list
of elementary trees which can overlay the subtree rooted at n′ is given as

O = P ∪ (

k⋂
i=0

Ci)

This captures the rule that to overlay consistently at n, an elementary
tree must either have a non-terminal leaf at n or be consistent with all of
the children of n.

6 Form Function Tagging

Form Function Tagging is the task of assigning class labels to nonterminal
nodes which indicate semantic characteristics of the text in that subtree. For
example, a prepositional phrase PP may be tagged as PP-LOC or PP-TMP
to signify locative or temporal semantics of its subtree. This information
is potentially useful in constructing a representation of the meaning of a
sentence, as shown in Figure 3.

The classifier is learned by simply running the PTSG induction algorithm
of Cohn et al on Form Function Tag (FFT) annotated trees. We will refer
to this model as the FFT-PTSG. To perform classification, we take as input
a sentence with its syntactic parse, and outputs a tag for each non-terminal

10

S

NP-SUBJ

VP

NNP

PP-LOC

IN DT

NP

NNVBZ
Ace is in the house

Figure 3: This FFT-PTSG derivation represents intuitively that Ace is the subject
of this sentence, and that the house is a location that something is in.

or tells us that no tag should be present.1 Following previous work [2] we
used the gold standard parse trees of the Penn Treebank, which come with
human annotated FFT labelings for evaluation.

S

NP

VP

NNP

PP

IN DT

NP

NNVBZ
Ace is in the house

S

NP-SUBJ

[VP]

[NNP]

VP
[PP-TMP]

VBZ
is

PP-LOC

IN

NP

[NN]
in the

DT NN
house

NNP
Ace

VP
[PP-LOC]

VBZ
is

Figure 4: An FFT-PTSG can decide a tagging by using evidence from multiple
elementary trees. While the VP trees give evidence for two differnt tags of the PP,
the PP tree knows that ”in the ” is most often locative and not temporal.

We use the input parse tree to define the set of derivations D in our
FFT-PTSG that if stripped of their tags would be identical to the input
tree. In Figure 4, several elementary trees are shown that could derive the
parse tree on the left. We say that an elementary tree can overlay the tree
at a node n if the elementary tree is consistent with the structure of the
subtree rooted at that node with the exception of tag suffixes. For example,
both VP elementary trees can overlay the tree in Figure 4 at the VP node,

1For clarity’s sake, in the following discussion when we refer to a node as tagged, we
are implicity including the possibility of a ”No Tag” option unless otherwise stated.

11

as both PP-TMP and PP-LOC are consistent with the PP tag.
Given an input tree T which we refer to as the reference tree, for each

node N and its set of possible tags SN for that symbol, we want to find

argmaxN ′∈SN
P (N = N ′|T)

where we use the equality operator to denote the event that N is tagged
as N ′. We have that

P (N = N ′|T) =
P (T,N = N ′)

P (T)
∝ P (T,N = N ′)

We use the PTSG to calculate this joint probability. Specifically, our
grammar defines the probability of all derivations, and we must compute
the portion of this probability provided by derivations for which N = N ′

P (T,N = N ′) =
∑
d∈D

P (d,N = N ′) =
∑
d∈D′

P (d)

where D′ is the set of derivations which have N = N ′. D′ can alternatively
be represented as a list of elementary trees paired with the sites where
the root node and nonterminal leaf nodes of that tree overlay the reference
parse tree. We rephrase the calculation above in terms of this list E′ =
List((e, r, L)) where e is an elementary tree, r is the node in the reference
tree where the root of e overlays, and L is a list of the nodes where the
nonterminal substitution sites of e overlay the reference tree.∑

d∈D′
P (d) =

∑
e∈E′

α(r)P (e)
∏
l∈L

β(l)

where α and β are the outside and inside probabilities respectively, and the
PTSG provides P (e) directly.

To perform tagging efficiently, we note that every elementary tree which
is used in a derivation will appear in several such sums, one for each of its
constituent nodes. We use the COD to calculate inside and outside probabil-
ities for each node in the reference tree, and then consider each elementary
tree in turn. We compute its contribution to the above sum and accumulate
this value in a vote for each tagging it defines. When all elementary trees
have been considered in this manner, we have the unnormalized values for
P (T,N = N ′) for all nodes and all tags and can easily find the maximum
probability tag.

12

7 Experiments

7.1 Document Dating

UNI-G BI-G CHAR-N PCFG PTSG HDP-PTSG

Acc 22.11 40.7 36.15 28.68 42.55 44.14

MSE 3.62 1.96 3.37 36.76 1.73 1.73

Figure 5: Experimental Results for document dating. The generative models em-
ployed, from left to right in the table, are a unigram model, a bigram model, a
character 8-gram model, a simple Probabilistic Context Free Grammar estimated
directly from the data with add alpha smoothing, a set of PTSGs trained for each
era independently, and the HDP-PTSG developed in this work. Each model trains a
era specific generative model and chooses the era whose model gives the highest like-
lihood to a test text. The exception is the bigram model which uses KL-Divergence,
as we found that this method outperformed language modeling for this task. We
report both classification accuracy (Acc) and mean squared error (MSE). MSE is
calculated with the error function defined in Section 5.

We apply the HDP-PTSG to the task of determining the date of publi-
cation of a piece of text, and frame the problem as a variant of authorship
attribution. We use a corpus of books downloaded from the Gutenberg
project which are tagged with their publication dates and place them into
bins of 25 year eras. Each era is equivalent to the traditional concept of
an author, and so the experimental task is to determine the correct era
assignment for a block of novel text.

7.1.1 Experimental Setup

Our corpus consists of 96 English books by 77 authors, using 71 texts for
training and 25 for test. The eras range from 1575 to 1900, with each 25
year era except 1625 represented in our data set. The mapping is performed
such that any book published between year X and year X + 24 inclusive is
included in the bin labeled X. We randomly sample 5000 sentences from
each era in the training set leading to approximately 60K training example
sentences. The full texts of the test set are chunked into continuous blocks
of 100 sentences.

To prepare the data we used MXTerminator to segment the sentences
and the self-trained Charniak parser to provide maximum probability parses.
Lexical items which appear less than five times in the training set were

13

deterministically mapped to unknown word categories using an algorithm
extracted from the open source split merge parser of [11]. Lexical items in
the test set which did not appear in this new training set were then mapped
to unknown word categories with the same algorithm.

We then performed Head Out Trinarization, which is a markovization
scheme. This tree transformation begins by using lexical head finding rules
to determine for each node n the child node that provides n’s head word.
This parent-child relationship is maintained, and the remaining child nodes
are expanded in a binary branching structure, as illustrated in Figure 3.
This process expands the number of grammar symbols by a fator of 3, and
gives the property that each PCFG rule has a maximum arity of 3.

We have found in several independent ongoing experimental applications
of PTSGs that Head Out Trinarization improves performance, as it mitigates
the negative effect of sparse data. The grammar induction procedure pro-
vides a complementary role of finding commonly occurring substructures
which often reintroduce the dependencies removed by the markovization,
but only when such dependencies are merited by the data.

For both the HDP-PTSG and PTSG we use unsegmented trees for ini-
tialization and run for 1000 training iterations with no smoothing using the
Gibbs sampling algorithm of [6]. We resample the concentration parameters
of all DPs at every 10th iteration using the technique in [9] which uses the
histogram of extant dishes to provide the posterior probabilty of α. We
propose α from a lognormal distribution and use Metropolis Hastings as
our sampling algorithm. The β parameters of the prior P0 described in [6]
are also resampled every 10 iterations, using a binomial distribution with a
uniform beta prior.

7.1.2 Discussion

We compare the HDP-PSTG to a PTSG trained independently for each era,
and also against several baseline language models. Accuracies are lower than
many published document classification experiments, which is partially due
to our binning approach; under our formulation, a book published in 1824
is as different from a book from 1825 as it is from one published in 1849. To
show classification ability more clearly we report not only era assignment
accuracy but also mean squared error (MSE) with a loss function equal to
the integer distance between the indexes of the correct and estimated eras.
For example, a book whose true era is 1800 and is classified into the 1850
bin is off by two eras and would incur a squared error of 4.

It is difficult to compare these results with previous authorship attribu-

14

Figure 6: Head Out Trinarization

tion tasks, as different corpora exhibit drastically different levels of difficulty
[8]. This disparity in difficulty arises from many factors such as topic sim-
ilarity and corpus size. In the task of document dating there is the added
problem that we are attempting to perform stylometric modeling of a set
of authors rather than one single author. We leave the discussion of the
facets of the document dating task to a separate publication, and use it here
only as a motivating example for the comparative ability of the HDP-PTSG
against other text classification models.

The HDP-PTSG outperforms a broad range of classifiers which have
been used in previous work for authorship attribution. Of these, the PCFG,
PTSG, and HDP-PTSG are syntactic models which use the parsed corpus,
while the remaining models use only the lexical items. The difficulty of
document dating yields low accuracies, but all models greatly outperform
a random assignment baseline which would yield an accuracy of 7.7%. As
mentioned above, the MSE criteria gives a better picture of the ability of
these models to perform document dating.

The highest performing models are the PTSG and HDP-PTSG, which
demonstrates the superiority of the richer Tree Substitution Grammar model
over the simple PCFG. However, the difference in accuracy is relatively small
and they give the same mean squared error.

To further motivate the advantage of the HDP-PTSG we investigated ex-
perimentally the benefits of the smoothing it provides. By taking snapshots
of the PSTG at intervals of 100 iterations, we observed that the accuracy of
the resultant classifier decreased over time. This is evidence of overfitting,

15

as the PTSG induction system for a single class is unaware of the gram-
mars learned for other classes. The HDP-PTSG, on the other hand, shows
steady improvement in accuracy over the same sequence of snapshots, which
illustrates the smoothing effect of hierarchical models discussed in [16].

Figure 7: Dating Accuracy vs Sampling Iterations

Another benefit of the HDP-PTSG is that it constrains the class specific
PTSGs to share the same vocabulary of elementary trees. When the PTSGs
are trained separately they often find different subsets of the exponentially
large space of possible PTSG rules to use in derivations, as the rich-get-
richer sampling scheme can easily become trapped in local optima. While
our experiments show that these optima are roughly equivalent in terms of
classification performance, it makes it difficult to perform automatic sty-
lometric comparisons of different eras. This can be easily observed by ex-
amining the induced PTSG grammars for the symbol S, where we observe
that different classes find similar but distinct representations of high-level
sentence patterns.

7.2 Form Function Tagging

We evaluated our Form Function Tagging algorithm on section 23 of the
Penn Treebank. All words which occured less than five times were mapped
deterministically to unknown word categories. We experimented with head
out trinarization as well, and found it to improve performance by a small
amount. Accuracy is calculated by only considering nodes which have tags
in the gold data; including all nodes and giving credit for a correct choice

16

PTSG PTSG-TRI BLAHETA GABBARD

Acc 85.86 86.38 88.28 90.78

Figure 8: Experimental accuracies for Form Function Tagging. This work com-
prises the PTSG and PTSG-TRI models.

of no tag would give much higher results. This is done to compare with
previous work, and is a more illuminating metric overall. We were unable
to outperform previous work, but our scores provide clear evidence that our
algorithm is capable at this supervised node tagging problem.

There are linguistically motivated categories into which the different
form function tags may be classified. When our system is compared with
other models, the category with the most room for improvement is the se-
mantic category. To understand why this class is troublesome for a TSG,
consider the case of a prepositional phrase (PP) whose preposition is “in”.
In order the decide between the TMP and LOC tags, the disambiguating
information comes from the semantics of the noun phrase following the word
“in”. If the phrase is “in the house” then the locative tag (LOC) is correct,
while “in an hour” would indicate that the prepositional phrase is temporal
(TMP). A PTSG must model this information by learning specialized rules
which include the lexical items “house” and “hour”. This is unlikely given
that each of these specific words will not be common enough to seed the rich
get richer process of the induction algorithm. We have investigated several
methods for incorporating this information into the grammar, but have not
been able to effect a performance increase.

8 Conclusion

In this paper we present the HDP-PTSG, a hierarchical extension of the
PTSG. We outline the modifications to the probabilistic model of grammar
induction and the additional implementation considerations. The HDP-
PTSG and a non-hierarchical PTSG are evaluated on the authorship attri-
bution variant of document dating, and compared against several common
authorship attribution models.

The use of Tree Substitution Grammar based models for document clas-
sification is novel, and outperforms models employed in previous work. This
has added significance in that previous work has shown that an ensemble of
models capturing different stylometric features is important for author iden-

17

tification, and syntactic models such as ours are relatively under-represented
in existing published research.

Additionally, we describe a novel data structure called the Compact
Overlay Dictionary which eliminates redundant computation in the inside-
outside algorithm using Tree Substitution Grammars. This data structure
is widely applicable as the inside-outside algorithm is a core technique of
syntactic modeling.

We apply the PTSG to Form Function Tagging and demonstrate its
capability for this task. While we do not read state of the art, we demon-
strate that our algorithm is competative and identify a promising avenue for
improvement.

References

[1] Mohit Bansal and Dan Klein. Simple, accurate parsing with an all-
fragments grammar. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, ACL ’10, pages 1098–1107,
Morristown, NJ, USA, 2010. Association for Computational Linguistics.

[2] Don Blaheta and Eugene Charniak. Assigning function tags to parsed
text. In Proceedings of the First Conference of the North American
chapter of the Association for Computational Linguistics (NAACL ’00),
pages 234–240, 2000.

[3] Phil Blunsom, Trevor Cohn, Sharon Goldwater, and Mark Johnson.
A note on the implementation of hierarchical dirichlet processes. In
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages
337–340, Suntec, Singapore, August 2009. Association for Computa-
tional Linguistics.

[4] Jordan Boyd-Graber and David M. Blei. Syntactic topic models. In
Neural Information Processing Systems, 2008.

[5] Trevor Cohn and Phil Blunsom. Blocked inference in bayesian tree
substitution grammars. In Proceedings of the ACL 2010 Conference
Short Papers, ACLShort ’10, pages 225–230, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

[6] Trevor Cohn, Sharon Goldwater, and Phil Blunsom. Inducing compact
but accurate tree-substitution grammars. In Proc. NAACL, 2009.

18

[7] Sangkyum Kim, Hyungsul Kim, Tim Weninger, and Jiawei Han. Au-
thorship classification: a syntactic tree mining approach. In Proceedings
of the ACM SIGKDD Workshop on Useful Patterns, UP ’10, pages 65–
73, New York, NY, USA, 2010. ACM.

[8] Kim Luyckx and Walter Daelemans. Authorship attribution and ver-
ification with many authors and limited data. In Proceedings of the
22nd International Conference on Computational Linguistics - Volume
1, COLING ’08, pages 513–520, Stroudsburg, PA, USA, 2008. Associa-
tion for Computational Linguistics.

[9] Steven N. Maceachern and Peter Müller. Estimating Mixture of Dirich-
let Process Models. Journal of Computational and Graphical Statistics,
7(2):223–238, 1998.

[10] Ryan Gabbard Mitchell Marcus and Seth Kulick. Fully parsing the
penn treebank. In In Proceedings of HLT/NAACL 2006, pages 184–
191, 2006.

[11] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning
accurate, compact, and interpretable tree annotation. In Proceedings
of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics,
pages 433–440, Sydney, Australia, July 2006. Association for Compu-
tational Linguistics.

[12] Matt Post and Daniel Gildea. Bayesian learning of a tree substitution
grammar. In Proceedings of the ACL-IJCNLP 2009 Conference Short
Papers, pages 45–48, Suntec, Singapore, August 2009. Association for
Computational Linguistics.

[13] Sindhu Raghavan, Adriana Kovashka, and Raymond Mooney. Author-
ship attribution using probabilistic context-free grammars. In Proceed-
ings of the ACL 2010 Conference Short Papers, ACL ’10, pages 38–42,
Morristown, NJ, USA, 2010. Association for Computational Linguistics.

[14] Efstathios Stamatatos. A survey of modern authorship attribution
methods. J. Am. Soc. Inf. Sci. Technol., 60:538–556, March 2009.

[15] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical
Dirichlet processes. Journal of the American Statistical Association,
101(476):1566–1581, 2006.

19

[16] Yee Whye Teh. A hierarchical bayesian language model based on
pitman-yor processes. In Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th annual meeting of
the Association for Computational Linguistics, ACL-44, pages 985–992,
Stroudsburg, PA, USA, 2006. Association for Computational Linguis-
tics.

20

