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Abstract — As computer programs are becoming more 

complex, the number of their configuration options increases 

as well. These options must be carefully configured to achieve 

high performance of the system. We propose using computer 

simulation to predict performance of the program and select its 

configuration resulting in maximum performance. 

This work presents our methodology and tools for building 

models of multithreaded programs and underlying hardware. 

We rely on a combination of static and dynamic analysis to 

build the model. Parameters of the model include incoming 

request flow, configuration options of the program, and 

hardware parameters. The model predicts performance of the 

program for each combination of parameters. As a result, the 

configuration resulting in high performance is discovered 

without expensive and time-consuming experiments with the 

live program. 

I. INTRODUCTION 

As size and complexity of modern software grows, 
programs are becoming increasingly hard not only to design 
and develop, but also to deploy. Their real-world 
performance depends not only on architecture of the program 
itself or on the underlying hardware, but also on values of 
numerous configuration options. Examples of these options 
can be size of the internal cache for input-output (I/O) 
operations or the number of working threads.  

In order to achieve maximum performance configuration 
options must be carefully tuned by a system administrator. 
Currently system administrators rely on their professional 
experience and on basic monitoring tools for analyzing 
various program configurations. For example, they might 
decide that upgrading a CPU is necessary if the CPU load 
will exceed a given threshold, or that the number of working 
threads might be increased if the CPU has multiple cores. 
However, such approach is not accurate and requires a 
thorough understanding of both hardware and software of the 
system as well as details of its anticipated usage. Thus in 
practice system administrators perform multiple experiments 
(trial runs) to select an optimal configuration of the system. 

During trial runs software is launched with different 
configuration options. The configuration resulting in the 
highest performance is selected for practical deployment. 
Unfortunately, such experiments are time-consuming and put 
a high workload on a system administrator. In addition to the 
actual running time of the experiments, he has to set up trial 
runs, collect data, and analyze results. Altogether, these 
activities result in a high cost of trial runs. Moreover, trial 

runs might require a special hardware or software not 
available at the present moment, which will effectively 
render this approach useless. 

To reduce cost and time necessary for finding an optimal 
program configuration we propose conducting trial runs 
using the model of the program. The model will predict 
performance of the program for the given set of parameters, 
including incoming request flow, configuration options, and 
characteristics of the hardware. A number of different 
configurations will be tested; the configuration resulting in 
the highest performance will be selected as an optimal one 
for the actual program. 

Performing trial runs using the model will have following 
advantages over experimenting with the live program: 

- Once the model is created, running it does not require 
complicated and time-consuming operations for setting 
up the experimental system; 

- Model runs faster than the actual program, which results 
in significant time savings; 

- The model can find a good configuration automatically 
by searching through the configuration space of the 
program; 

- The model can simulate execution of the program on the 
different hardware and/or operating system (OS). 

In this paper we present our methodology and 
infrastructure for building models of computer programs. In 
particular, we concentrate on simulating multithreaded 
programs used for request processing, such as web servers. 

We rely on a dynamic analysis to collect data for building 
the model of the program. We instrument both the program 
and the OS kernel, and then run the program in a certain 
configuration. As a result, data necessary for building the 
model are collected, including running time for individual 
components of the program, number and properties of I/O 
requests spawned by the program, and its probabilistic call 
graph. Benchmarking is used to collect data for the model of 
the underlying OS and hardware. 

We use the OMNET simulation framework [2] to build 
the model of the program. We employ a modular approach: 
models are built from a number of small components; each 
component performing a simple operation such as 
computations, I/O activities, flow control etc. Components 
responsible for simulation of hardware and OS are 



independent from the model of the program. These 
components are, in fact, separate models built using a 
combination of a discrete event simulation and statistical 
modeling. Modular architecture allows simulating execution 
of the program on different computer systems without 
changes in the structure of the model. 

To verify our approach we have built the model of the 
tinyhttpd web-server [5] running on the OS Linux. In our 
experiments with different number of working threads and 
different incoming request rate the relative prediction error 
of the model varied in range of 3-85% with the average error 
19.9%. 

The rest of this paper is organized as following. Section 2 
surveys the related work in the area. Section 3 outlines a 
general approach towards building the model. Section 4 
focuses on data collection. Section 5 describes the model 
itself. Section 6 presents results obtained by simulating a 
web server. Section 7 concludes and outlines directions for 
future work. 

II. RELATED WORK 

Predicting performance of computer systems is a subject 
of active research, and simulation and modeling are actively 
used for this purpose. Existing performance models can be 
divided into three classes according to the method they use: 
analytical models, black-box models and simulation models. 

Analytical models represent the system as a function 
y=f(x), where x are metrics describing system‟s 
configuration and workload, and the output y is some 
measure of system‟s performance. Analytical models rely on 
knowledge of the system to explicitly specify function f(x) 
using a set of formulas. 

Analytical models were popular in modeling performance 
of both hardware [3] and software [14,15]. They are compact 
and expressive; however, their development requires 
considerable mathematical skills and deep understanding of 
the system. Moreover, complex behavior can be hardly 
described by analytical models. 

Black-box models are called to alleviate these problems. 
They utilize no information about internal structure of the 
system and do not formulate the function y=f(x) explicitly. 
Instead, a statistical [8] or table-based [17] method is used to 
approximate the function f(x) and predict the performance of 
the system based on its input parameters.  

The black-box approach does not require an extensive 
expert knowledge of the system, although it needs large 
amount of data for training the model. Its main disadvantage 
is lack of flexibility, as any change to the software or 
hardware of the system requires re-training the whole model. 
Nevertheless the black-box approach is frequently used to 
simulate a part of the system, be it a software component 
such as a DBMS query engine [9], or hardware component, 
such as a hard drive [11-13]. The black-box approach can 
also predict the performance of the whole program if a large 
amount of data is available either through multiple runs [23] 
or from a large user base [10]. 

Simulation models (also called queuing models) are 
another popular approach towards performance modeling. 
Structure of these models normally follows the structure of 
the system, where components of the model directly 
correspond to the components of the system. Usually these 
models are built using a discrete-event principle. In such 
models the simulation time is advanced by discrete steps; it 
is assumed that the state of the system does not change 
between time advances [16]. 

Developing simulation models require an expert 
knowledge about the system, which can be considered as a 
disadvantage. Nevertheless, simulation models are highly 
popular tool for simulating large complex systems, largely 
because their flexibility and extendibility. These models are 
widely used to predict performance of computer systems at 
different levels, ranging from communication networks 
[1,25,26] and large distributed computer systems [18-22] to 
individual components [24]. They can be also combined with 
other types of the models, e.g. analytic models [20]. 

Simulation and modeling has a plenty of applications, but 
in the context of our work we are especially interested in 
simulation of parallel and distributed systems and underlying 
hardware. 

In particular, simulation has been successfully used to 
predict performance of distributed programs. The PACE 
framework [21,22] predicts running time of scientific 
application on a grid, while Layered Queue Networks 
[18,19] are used to predict performance of commercial multi-
tier systems. All these works assume that the system uses a 
message passing framework for communication. This 
simplifies the model, but reduces the set of programs that can 
be modeled. Unfortunately, neither of these works provides 
any quantitative measure of model‟s accuracy.  

Works [14, 15] presents a concept of a self-predicting 
program. The program is manually instrumented in the key 
points, and its analytical model is built. Authors use this 
approach to predict throughput of the DBMS depending on 
the size of the buffer pool. Study [15] reports relative 
prediction error within 10-68%. However, it is not clear if 
the presented methodology can be easily applied for other 
applications or if it can incorporate other parameters. E. 
Thereska and G. Ganger [20] address this issue by 
combining multiple types of the model, such as machine 
learning, analytical and queuing models to simulate a 
distributed storage system. The resulting model is used to 
detect performance problems in the system as they occur. 

An alternate approach towards performance prediction is 
presented in [10]. The release copy of the program is 
instrumented manually, so performance measurements are 
collected directly from the user audience. Statistical 
techniques are used to calculate performance metrics for a 
given combination of workload, configuration options and 
hardware. Obviously, this approach works only for programs 
with a large user base (such as MS Office).  

Modeling and simulation was also successfully used to 
predict performance of hardware components, in particular – 
hard drives. 



DiskSim [24] was one of the first tools that rely on 
simulation models to predict response time for individual I/O 
requests. It simulates mechanical and electrical components 
of the hard drive in detail and achieves a good accuracy. 
However, DiskSim requires information that might not be 
readily available, such as physical layout of files on the disk 
or current position of the disk head. 

Call for simplified storage system simulators resulted in 
development of black-box models. These models do not 
require any information on the internal structure of the 
storage system, which is a major advantage. They describe 
each individual request with metrics and then use some 
statistical technique, such as regression trees [4, 13] or tables 
[17] to predict service time for that request. These models 
report relative prediction error in a range of 10-70%. Such 
large errors are unavoidable because access times highly 
depend on location of requested data and position of the disk 
head. In absence of that information access times should be 
treated as a distribution rather than scalar numbers. 

To some extent, this problem is addressed in the work 
[11] that uses Bayesian approach towards the disk 
performance modeling. This work clearly identifies factors 
affecting the request servicing time; it is used to classify 
requests into “slow” and “fast”. The reported accuracy of 
classification ranges from 54% to 96%. The model, however, 
assumes that the requests processing time distributed 
independently, which is not necessary true in the actual 
system. 

Unfortunately, all referenced storage system models 
simulate only the hardware; they do not simulate behavior of 
the system‟s cache and I/O scheduler – components that 
largely determine I/O performance of the application. 

Our work extends existing state of the art in the area of 
performance modeling in several aspects: 

- Our modeling framework is not restricted to simulation 
of a single application or scenario and can be used to 
simulate a wide range of programs; 

- Our model pays strong attention to the proper simulation 
of the thread-level parallelism in a multithreaded 
application; 

- We propose an innovative technique to model I/O 
operations of the program, including simulation of both 
hardware and software components of I/O subsystem; 

- Our paper presents an elaborate description of technical 
aspects of model building along with concrete metrics of 
simulation accuracy. 

III. GENERAL APPROACH TOWARDS BUILDING THE MODEL 

Our approach towards simulation of computer programs 
follows a conventional discrete-event principle. We rely on 
discrete-event models because of their expressive power, 
relative simplicity, ease of interpretation, and rich toolset for 
building such models.  

For the purpose of simulation we represent computations 
performed by the program as request processing. We denote 
a request as an external entity the program has to react to, 
such as incoming user connection or data packet. The 
program processes the request, which involves performing 
certain operations. For example, the web-server can read a 
web-page from the disk and send it to the user, and scientific 
application can perform computations and send results to the 
next component of the system. Overall delay between 
request arrival and its completion constitutes a request 
processing time – an important metric we use to measure 
performance of the system. Predicting request processing 
time is the main goal of our model. 

Although this approach naturally allows simulating 
request processing programs, it can be used to simulate other 
programs, including user applications. For example, in the 
context of a text editor a keystroke can be considered a 
request, to which the program responds by updating its UI 
and underlying data. 

Our model explicitly simulates the flow of the request as 
it is being processed by the program, from its arrival to 

 

Figure 1. General structure of the model of the system 
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completion. Here we assume that every request in the 
program is represented by the corresponding data item such 
as a socket ID or an object representing the request. 
Correspondingly, processing the request implies 
manipulation with this data item, such as placing it into a 
queue, performing computations, or spawning subsequent 
requests, e.g. requests to the I/O subsystems (disk, network).  

All request processing activities occur in the context of a 
thread. In our model we represent each thread as a separate 
entity (see Figure 1). Inside, the thread is represented as a 
probabilistic call graph whose nodes correspond to pieces of 
program‟s code – code fragments, while edges correspond 
to possible transitions between code fragments. In particular, 
we distinguish two major types of code fragments that 
perform CPU-intense computations and I/O operations 
correspondingly.  

Execution of each code fragment results in the delay in 
the processing of the request by the program (we assume that 
code performing synchronization operations does not result 
in significant delays due to computational or I/O activities). 
These delays altogether with time spent by the request in 
various queues and buffers constitute the request processing 
time. Thus building the model requires following knowledge 
about code fragments: 

- what code fragments constitute the program and in 
which order they are executed; 

- exact time required by each code fragment to execute. 

Whereas the structure of the program does not generally 
change, execution times depend on various factors, such as 
the degree of parallelism of the program and characteristics 
of the underlying hardware. For example, consider multiple 
threads that perform CPU-intensive computations. If the 
number of threads is bigger than the number of CPUs, the 
amount of time required for each thread to finish 
computations will be higher than if that thread was running 
alone. The same logic applies to I/O operations: the amount 
of time required for I/O operation to complete strongly 
depends on the number of other I/O operations occurring at 
the same time. 

As a result, instead of specifying exact time required for 
each code fragment to finish, we rather define parameters of 
that code fragment. These parameters along with the actual 
workload of the system determine execution time of the code 
fragments. This time will be calculated using models of the 
CPU and the disk I/O subsystem. The former model 
simulates work of the CPU and the OS thread scheduler; it 
computes the amount of time required for CPU-intensive 
code fragments to execute. The latter one simulates the OS 
I/O scheduler and the hard disk itself; it computes the 
amount of time required for I/O-intense code fragments to 
execute. The network I/O model is a subject of the future 
work. 

IV. DATA COLLECTION 

Building models of the parallel program, CPU/scheduler, 
and I/O subsystem requires collecting comprehensive 

information on the program itself and also on the underlying 
OS and the hardware. This includes: 

- information on thread interaction in the program, 
including synchronization mechanisms, request queues 
etc; 

- probabilistic call graphs for threads; 

- properties of program‟s code, such as amount of 
computational and I/O resources necessary for its 
execution; 

- performance characteristics of the underlying OS and 
hardware. 

To collect this data we analyze the program, instrument, 
and run it in one specific configuration. The key assumption 
is that main parameters of the system remain the same for all 
other configurations.  

We utilize a mixed approach towards program analysis. 
We manually analyze the program at the high-level to 
establish its structure and use automated solutions to obtain 
rest of the data. 

During manual analysis we determine the general 
sequence of operations that happen during the request 
processing. First we identify synchronization mechanisms 
and working threads. Then we analyze threads‟ code to 
detect code fragments and determine their types (CPU-
intense or I/O-intense). 

Once overall program structure is established, we 
instrument the program by inserting probes at the borders of 
individual code fragments. Currently instrumentation is done 
at the source level: the instrumentation library is statically 
linked to the program under the study and then probes 
(which are calls to the library‟s functions) are inserted into 
the source code of that program. Each probe is indentified by 
the unique ID. As a result, each code fragment can be 
uniquely identified by the pair of IDs of surrounding probes. 
The list of code fragments and corresponding probe IDs form 
the program‟s schema, which is used for the automated 
analysis of the program.  

Program instrumentation and defining its schema 
complete manual analysis of the program. Rest of data 
collection is performed automatically by the tools we 
developed for this purpose. 

To collect information on code fragments we run the 
instrumented program in some configuration. When the 
probe is hit during the program‟s execution, it creates the 
record that includes probe ID, the ID of currently executing 
thread, and current CPU and wallclock times for the thread. 
Our instrumentation is very lightweight: every probe slows 
the execution of the program in average by 1-2 
microseconds, depending on the amount of information 
collected. 

Once the program has finished, the instrumentation log is 
analyzed and following information is retrieved: 



 

Figure 2. Instrumentation of Linux I/O subsystem  
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- the amount of CPU time required to execute each code 
fragment; 

- the probabilistic call graph of the program; 

- the total amount of time required to execute each code 
fragment (wallclock time); 

- request processing time for the program. 

Last two metrics are used solely for analyzing simulation 
results and model debugging. 

Values of all these metrics can change over different 
executions of the same block, thus we treat them as 
distributions.  

However, data obtained from the instrumented program 
do not include information on I/O operations initiated by the 
program. This information is essential for modeling the 
program itself and the I/O subsystem. Building the model of 
the program requires knowledge of the number and 
properties of I/O requests initiated by the program. Building 
the model of the I/O subsystem requires data on how quickly 
these requests can be processed and probabilities of serving 
requests from the cache. 

Initially we tried to retrieve necessary data by monitoring 
calls to user-mode libc I/O functions, such as read() and 
write(). Unfortunately, this approach doesn‟t allow tracking 
I/O operations initiated by functions such as stat() and 
open(). These functions spawn multiple I/O operations of 
different types that access filesystem metadata (inode and 
directory entries). To reliably monitor these requests we 
intercept I/O operations in the OS kernel.  

Below we discuss processing of I/O requests by the OS 
kernel in the context of monitoring I/O requests. In particular 
we concentrate on the Linux kernel v. 2.6.32 that was our 
testing platform. 

When the user program calls a function such as read() or 
stat(), the control is transferred to the corresponding system 
call in the Linux kernel – sys_read() or sys_stat() 

correspondingly. The kernel determines if the requested data 
reside in the OS page cache. If they are, the kernel fetches 
data from the cache and returns them to the user program 
without accessing the hard drive.  

However, if the cache does not contain the requested 
data, the kernel must read data from the hard drive (this 
situation is depicted at the Figure 2). To do this the system 
call relies on the generic block layer – a kernel component 
responsible for handling all the I/O operations on block 
devices. This results to a call to the generic_make_request() 
function that creates an I/O request of a given type. The 
generic_make_request() function sets up the completion 
routine that will be called once the data transfer is complete, 
passes the I/O request to the I/O scheduler, and suspends the 
calling thread. 

The function of the I/O scheduler is to minimize the 
processing time for I/O request and, at the same time, 
increase total throughput of the disk. Although there are 
various I/O schedulers in Linux, all of them follow roughly 
the same principle.  

The scheduler stores pending I/O requests in the queue 
ordered by the index of the requested disk block. This allows 
to minimize the disk seek time – the main parameter 
affecting performance of the hard drive. When the scheduler 
receives a new request, it first attempts to merge it with one 
of existing requests. If the request cannot be merged, 
scheduler inserts it into the appropriate position of the 
request queue. 

Once the hard drive becomes available, its driver fetches 
the new request from the I/O request queue and sends it to 
the device. At this time the I/O scheduler calls a 
blk_start_request() function to notify the block I/O layer that 
the request was sent to the hard drive. When the hard drive 
finishes processing the request, the I/O scheduler calls the 
completion routine for that request. It wakes up the calling 
thread that completes the I/O operation. 

To collect necessary data we use SystemTap framework 
[7] to insert probes into following places: 



Figure 3. The number of I/O requests issued by the system call as an implicit characteristic of the page cache 

- start and end of the system call routine (probes 1 and 5 
at the Figure 2). We instrument numerous system calls 
that can initiate I/O request, including sys_read(), 
sys_stat(), sys_stat64(), sys_statat() etc; 

- generic_make_request() function (probe 2); 

- blk_start_request() function (probe 3); 

- end_bio_bh_io_sync() and mpage_end_io_read() 
completion routines (probe 4). 

This instrumentation yields various measurements, the 
most important of those are: 

- the number and properties of requests issued by the 
system call. Calculated as the number of calls to 
generic_make_request() made by the system call 
without taking into account merged requests; 

- time required to process the request by the hard drive 
(disk processing time). Calculated as the time 
difference between the call to the blk_start_request() and 
completion routine. 

- time required for I/O operation to complete (total 
processing time). Calculated as the time difference 
between the call to the generic_make_request() and the 
completion routine. 

Similarly to parameters of the code fragments, 
parameters of I/O operations are treated as distributions. 

Essentially, we employ benchmarking to collect 
information on the I/O subsystem. We collect data on I/O 
requests during the same program run when we collect data 
on program‟s code fragments. Moreover, since in the case of 
a cache hit no requests will be issued, the “number of 
requests” metric also implicitly represents caching behavior 
of the system. Our experiments with the web-server revealed 
that values of this parameter do not depend on the 
configuration of the program, but depends on the total 
number of requests processed so far (see Figure 3). After 
serving a large number of requests the system reaches some 

“steady state” in which the number of requests issued by the 
system call remains constant. We rely on this observation to 
simulate the system‟s page cache. In order to reach the 
“steady state” we issue a large number (typically – around 
10

6
) of “burn-in” requests prior to taking actual 

measurements of this metric. 

V. MODEL BUILDING 

We evaluated a number of tools for building discrete-
event simulations, including JavaSim, MATLAB SimEvents, 
OMNET and other tools. Finally we have chosen OMNET 
[2] because of its high flexibility.  

According to OMNET principles, the model consists of 
blocks connected to each other and communicating using 
messages. Internally, blocks and messages are implemented 
as C++ classes. Although OMNET provides general 
framework for developing those entities, it is a responsibility 
of the model developer to implement desired functionality in 
blocks and messages. 

In our model blocks represent elements of the program; 
most of the types of model blocks have direct analogs in the 
program itself (see Appendix 1 for a complete list of blocks). 
Each block has a set of parameters that generally correspond 
to properties of the corresponding program structures. Values 
of the parameters are obtained during the data collection 
stage. The vast majority of parameters are distributions, so 
when the block intends to get a value of the parameter, the 
value is sampled from a corresponding distribution.  

Our model is built according to a hierarchical principle. 
At the high level the model depicts general flow of the 
request through the system (see Figure 4). High-level model 
creates requests, queues them, sends them to threads for 
processing and, when the processing is done, destroys 
requests.  

The request itself is represented as a message flowing 
from one block to another. The request normally corresponds 
to some data item in the real-life program, such as file or 
socket ID, class instance, or handle. 



  
Figure 5. The low-level model of the web-server thread Figure 4. The high-level model of the web-server 

Threads are central elements of the model. They simulate 
delays that occur during processing of the request. At the 
high level threads appear as “black boxes” without any 
notion of their internal structure. Each thread is represented 
as a separate block, such that if the program has 8 working 
threads, it has 8 such blocks. 

Details of the thread are simulated by the lower-level 
model (see Figure 5). On the lower level thread is 
represented as a group of blocks forming the probabilistic 
call graph of the thread. In this graph the caller block is 
connected (through a special dispatch block) to all the 
potential callees.  

Execution flow in a thread is simulated by message 
passing. When the thread receives the request for processing, 
it creates a computation flow message and sends it to the first 
computation block in the thread. This message passes 
through the thread blocks until it reaches the last 
computational block. At this point processing of the request 
by the thread is considered complete and request is sent to 
the next block in the high-level model. 

High-level and low-level models contain different types 
of blocks (see Appendix 1). High-level models contain 
request sources, sinks, queues and threads, while low-level 
(thread) models contain computation and I/O blocks and 
flow control blocks.  

Blocks representing code fragments communicate with 
CPU/Scheduler and I/O models using messages. When the 
computation block is called, it sends the message to the CPU 
model. This message contains the amount of CPU time 
required to execute the corresponding code fragment as a 
parameter. Correspondingly, the I/O block sends one or more 
messages representing I/O requests to the I/O model. 
Parameters of the I/O request include the amount of data to 
be transferred and the type of the operation (synchronous 
read, metadata read or readahead). The corresponding model 
calculates the amount of time required to finish the operation 
and delays the request for that amount of time. 

As a result, the model of the system consists of two major 
independent components: the model of the program itself and 
models of the OS/hardware. This architecture allows 
simulating the same program running on different hardware 
and vice versa. 

In our work we employ various approaches to simulate 
different types of hardware. We use traditional discrete-event 
approach to simulate CPU and OS thread scheduler, while a 
combination of discrete event simulation and statistical 
modeling is used to simulate disk I/O. We put a number of 
assumptions about the underlying system which we believe 
are true for the most of server-side programs and scientific 
computing applications: 

- Except for the program we simulate, all other 
computation and I/O activities in the system are 
negligibly small; 

- all the threads in the program have the same priority; 

These assumptions greatly simplify simulation of the 
hardware. 

A. CPU and thread scheduler modeling 

The CPU/Scheduler model simulates the round-robin 
thread scheduler with equal priority of all the threads.  

Once the CPU/Scheduler receives a message from the 
computation block, it puts that message in the queue of 
“ready” threads. When one of the computation cores of the 
simulated CPU frees, CPU/Scheduler takes the first thread 
out of the “ready” queue and simulates computations by 



introducing a delay. The length of delay is equal to the 
amount of CPU time required for the computation or to the 
OS time quantum, whatever is smaller. After the delay is 
expired, the CPU/Scheduler either sends the message back to 
the origin block (in case if computations are complete) or 
places it back into the “ready” queue, where it awaits for 
another time quantum. The length of the time quantum is 
sampled from the distribution that represents quantum length 
of the actual Linux thread scheduler. 

As it can be seen, the model closely follows the 
functioning of the real thread scheduler. Our model of the 
CPU scheduler doesn‟t have any provisions for tracking 
threads suspended due to I/O or synchronization because 
these activities are simulated differently by the model. 

B. Disk modeling 

Our model of the I/O subsystem consists of two parts. 
The first part simulates the I/O scheduler using the discrete 
event model. The second part simulates delays that occur 
during the processing of the request by the hard drive (disk 
processing time) using the statistical model.  

When the I/O block sends a request for disk I/O, this 
message is received by the I/O scheduler model. If the hard 
drive model does not process any request at the moment, the 
I/O scheduler model sends the request to the hard drive 
model directly. Otherwise the I/O request is placed in the 
queue that simulates the request queue of the actual I/O 
scheduler. When the hard drive model frees, it fetches the 
next request to be processed from that queue.  

The model of the I/O scheduler employs FIFO queue, 
where requests are ordered by the time of their arrival. 
However, the real I/O scheduler orders requests according to 
the index of the disk block they are accessing. Since this 
information is not known to the model, the hard drive model 
fetches requests from the random positions of the request 
queue. 

The model of the hard drive calculates the disk 
processing time t for the request and delays the request for 
that time. The model assumes that t follows the conditional 
distribution P(t|x), where x are request parameters (metrics). 
In particular, we use two metrics to describe the request: 

- the number of other requests sent to the hard drive by 
the I/O scheduler between enqueuing the given request 
and sending it to the hard drive; 

- the type of the request (synchronous read, metadata 
read, readahead). 

These parameters account for possible optimizations 
done by the I/O scheduler. The first parameter implicitly 
represents the queue size of the I/O scheduler. With the large 
number of I/O requests waiting in the queue, the scheduler 
can arrange them more efficiently, so the average disk 

processing time for each individual request will decrease. 
The second parameter accounts for the possibility that 
different types of requests require different time to process. 
In particular, we noticed that readahead requests are served 
significantly faster than the synchronous read and metadata 
requests.  

Since both distribution parameters are integer numbers, 
we implement the distribution P(t|x) as a table.  

Our I/O model is very simple, but it represents behavior 
of the deadline I/O scheduler fairly well. We are currently 
working on simulation of other types of I/O schedulers, such 
as anticipatory and CFQ schedulers. 

VI. MODEL VERIFICATION 

In order to be useful, the model must accurately predict 
performance of the system. To estimate accuracy of the 
model we run the program in different configurations and 
record actual performance of the program for each 
configuration. Afterwards we simulate the program in the 
same configurations and record predicted performance. Then 
we calculate relative error ε between measured and predicted 

performance metrics as   
                  

      
. The higher is 

the relative error the worse is the accuracy of prediction. For 
the ideal model that predicts the program‟s performance 
without any errors the relative error will be equal to 0. 

In this work we have built the model of a tinyhttpd 
multithreaded web server [5]. When the web-server receives 
the incoming request, it puts it into the queue until one of its 
working threads becomes available. The working thread then 
picks the request from the queue, retrieves the local path to 
the requested file, and verifies its existence using a stat() 
function. If the requested file exists, the thread reads the file 
in 1024-bytes chunks and sends them to the client. Once data 
transfer is complete, the thread closes the connection and 
picks up the next incoming request from the queue. This 
web-server is simple and compact, which facilitates its 
analysis, but at the same time it is representative for a large 
class of server applications.  

The web-server hosts 200000 static web pages from the 
Wikipedia archive. It runs on a server PC equipped with an 
Intel Q6600 quad-core 2.4 GHz CPU, 4 GB RAM and 160 
GB hard drive. The server runs under Ubuntu Linux 10.04 
OS. According to the common practice, atime functionality 
was disabled to improve performance of the server.  

We use the http_load software [6] to simulate client 
connections to our web server.  http_load reads a list of 
URLs from the file and then connects to the web-server to 
retrieve these pages. httpd_load is running on a client 
computer (Gateway laptop with Intel 2.4 GHz dual-core 
CPU, 4 GB RAM, 250 GB HDD) connected to the server 
with a 100 MBit Ethernet LAN. The client runs under 
Ubuntu Linux 9.10 OS. 



 

Figure 6. Results for predicting the request processing time 

The request processing time (RPT) is the main metric we 
use to measure the web-server performance. We define RPT 
as a time difference between accepting the incoming 
connection and sending the response (more accurately – 
closing the communication socket).  In addition to the 
response time, we also collect execution time for different 
code fragments of the program. A particular interest present 
execution times for I/O operations, as they often determine 
performance of the program. 

The configuration space of the web-server includes two 
parameters: the incoming request rate (IRR) and the number 
of working threads of the web-server. By varying the IRR we 
simulate behavior of the web-server under the different load. 
In our experiments we vary IRR from 10 requests per second 
(rps) to 130 rps with the step of 10 rps. The number of 
working threads is the only configuration parameter of the 
web server itself that affects its performance. We run the web 
server with 2, 4, 6 and 8 working threads. 

As a result, the total number of different experimental 
configurations is 13*4=52, which includes all the possible 
combinations of the number of threads and incoming request 
rates. For each configuration we run both the actual program 
and its model and record average values of performance 
metrics. During each run 10,000 requests are issued; this 
experiment is repeated three times to get averaged results for 
each configuration.  

The behavior of the web-server varies greatly for 
different IRR values (see Figure 6). The web-server has two 

distinct states of operation. For low values of IRR (IRR<50 
rps) the I/O subsystem is not fully utilized and the request 
processing time is minimal (RPT varies within 10-20 ms). 
High values of IRR (IRR≥60 rps) result in the overload of 
the I/O subsystem. Processing the request takes longer time, 
and incoming connections start accumulating in the web-
server queue. As a result, the web-server is brought to the 
point of the saturation, where it exceeds the system-wide 
limit of 1024 open connections and starts dropping incoming 
requests. At this point the RPT reaches 14-17 sec. and 
remains steady. 

Our model predicts the request processing time for these 
stationary states reasonably well (ε≤0.3), but its 
performance decreases at the point where the web-server 
goes to the saturation state (ε=0.6-0.85). However, the 
model accurately predicts values of configuration parameters 
where this transitional behavior occurs. This result is 
important, since the ultimate goal of our research is not just 
predicting performance of the program, but finding the point 
in the configuration space that yields high performance.  

One noteworthy finding of our experiments is that the 
number of working threads has a relatively small influence 
on the request processing time. This is explained by the fact 
that the performance of the web-server is largely determined 
by the performance of the I/O system, and the I/O system 
(hard drive) can effectively carry out only a single I/O 
operation at a time. As a result, the increase in the number of 
parallel operations is negated by a proportional increase in  



 

 

Figure 7. Results for predicting execution time for the read() I/O operation 

 

 

Figure 8. Results for predicting execution time for the stat() I/O operation 

 

 

 



the average execution time for the I/O operation (see Figures 
7,8). Our I/O model correctly predicts this behavior. The 
average error for predicting execution times ranges from 0.10 
to 0.18 for read() and 0.11 to 0.15 for stat() operation. We 
believe this example illustrates necessity for the proper 
simulation of I/O operations, as they often becoming a 
determining factor in the program‟s performance. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we presented our methodology and the 
toolset for modeling performance of the multithreaded 
computer programs. We developed an extensive end-to-end 
simulation framework, which includes tools for data 
collection and model building. We also developed 
methodology and metrics for measuring the accuracy of our 
performance models. Finally, we verified our approach by 
building the model of the web-server. 

Our model predicts the performance of the web-server 
with a reasonable degree of accuracy: average relative error 
varies from 0.164 to 0.256 for different configurations of the 
web-server. Even more important, the model accurately 

predicts those configurations of the program where its 
behavior changes significantly. This allows finding 
configurations resulting in high performance, which was the 
main goal of our work. Furthermore, the model predicts 
execution times for different parts of the program, which 
allows identifying performance bottlenecks. One particular 
interest is predicting execution times for I/O operations, 
since they often determine the program‟s performance.  

Although our experiments have shown good results, an 
extensive experimentation is required to verify all the aspects 
of our work. In particular, in our recent experiments with the 
web-server I/O operations dominate over CPU computations. 
As a result, the accuracy of the simulation is largely 
determined by the accuracy of the I/O model. Thus to 
validate our model of the CPU/Scheduler we are working on 
the model of the computationally intensive program. In 
particular, we are building the model of the program that 
simulates gravitational interaction of celestial bodies. 

Aside of conducting additional experiments we are 
actively working on improving our methodology and tools 
for model building. Main directions of our work are: 

- improving framework for model building; 

- ensuring model portability across different hardware; 

- reducing the amount of human involvement; 

A. Improving framework for model building 

Improving framework for building simulations will 
increase accuracy, simplicity and usability of models. 

In particular we are investigating different approaches 
towards I/O modeling. Our current model of the I/O 
subsystem still requires substantial knowledge of the I/O 
scheduler, which can be seen as disadvantage. Thus we plan 
to employ a purely statistical model that will simulate the 
total processing time of the request by the I/O subsystem. We 
expect this model to require less sophisticated data collection 

and allow simulating various types of the hardware, such as 
RAID arrays. Similarly, we plan to develop a model for 
network I/O since in certain scenarios network delays can 
become determinant of the program‟s performance.  

B. Ensuring model portability across different hardware 

We rely on benchmarking to retrieve characteristics of 
the hardware and integrate them into models. Currently we 
employ this approach to simulate I/O system; in the future 
we plan to use benchmarking for modeling computational 
activities. 

However, benchmarking is a time consuming activity that 
requires access to the hardware we want to simulate. A 
simple solution would be establishing a repository of 
benchmarks. Model builders could use this repository to find 
data on the hardware which is the most similar to one they 
simulate. A more attractive alternative would be 
incorporating widely used characteristics of the hardware as 
parameters into the model. For example, disk model can 
include disk rotation speed and the average seek time, while 
CPU model can use publicly available results of industrial 
benchmarks as model parameters. This approach would 
eliminate necessity for time-consuming benchmarks, but 
certain types of hardware, such as RAID arrays, would 
require altering the structure of the model. Thus a combined 
approach might be employed, where certain components of 
the model, such as CPU, would be built using hardware 
parameters, while other components such as disk or 
networking will be built using benchmarking. 

C. Reducing the amount of human involvement 

Currently our models are built manually, which is a 
major inconvenience. Our long-term goal is developing an 
automated way of building models, or, at least, decreasing 
the amount of human involvement in this process.  

As a first step, we plan to automate building of 
probabilistic graphs for working threads. We will intercept 
calls to functions that correspond to I/O or to synchronization 
routines. This would allow us to detect all potentially 
blocking operations and represent them as either I/O or 
synchronization code fragments in our model. Remaining 
code will be represented as computational fragments. This 
approach should automate building models of working 
threads; however, it will not detect objects representing 
requests. Thus there might be still a certain amount of human 
involvement in the process of building models. 

Another totally different approach toward simulation 
would be representing the program as an automaton with the 
corresponding set of states. One particular type of state will 
be a starting state, which corresponds to the initial state of 
the program when the incoming request is received. While 
processing the request, the program will change its states 
according to some random distribution, until it reaches one 
of the final states, where request processing is completed or 
request is dropped. Every state change will require a certain 
amount of time, which will be also represented as a random 
variable. State information can be relatively easily extracted 
from the trace data generated by the instrumented program. 
However, there remains an open question on what 



information should be included into the state (e.g. name and 
offset in the current function, variable values etc). 
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Appendix 1. Model blocks and their parameters 

Model block  Description Thread 
block? 

Model 
icon 

Analogy in 
the program 

Important parameters 

Request 
source 

Generates requests 
N 

 

Socket for 
incoming 
connections 

- request interarrival time 

Queue Queues requests 
N 

 

Buffer that 
queues 
requests 

- maximum queue size; 

- queue type (FIFO/LIFO) 

Sink Discards requests and collects 
statistics about their processing, such 
as request processing time. 

N 

 

N/A - N/A; 

Computation 
block 

Code fragment that performs CPU-
intensive computations Y 

 

Code 
fragment 

- CPU time required for 
computations 

Disk I/O 
block 

Code fragment that performs disk 
I/O 

Y 
 

Code 
fragment 

- types of I/O requests (read, 
metadata read, readhaead); 

- number of I/O requests of 
each type; 

- amount of data for each type 
of requests; 

Dispatch 
block 

Routes the request to a different 
block based on transition 
probabilities  

Y 

 

IF statement, 
loop 

- probability of sending a 
request to a particular block 

Loop block Sends the request to a given block(s) 
for a number of times Y 

 

for() loop - Number of iterations 

Delay Delays a processing of request for a 
given time Y 

 

sleep() 
function 

- delay time; 

Thread gate Separates blocks that form a thread 
from remaining blocks in the model. 
This block does not have a direct 
analog in the real program;  

Y 

 

N/A - thread ID; 

I/O 
subsystem 

Calculates the amount of time 
necessary for the I/O operation and 
delays processing of the request for 
that time 

N 
 

I/O scheduler 
and the hard 
drive 

- parameters of P(t|x) 
distribution 

CPU/ 

Scheduler 

Calculates the amount of time 
necessary for the CPU-intense 
computation and delays processing 
of the request for that time 

N 
 

Thread 
scheduler and  
the CPU 

- the number of CPUs (cores) 

 

 


