
Using computer simulation to predict performance of parallel

programs

Alexander Tarvo

Brown University

Providence, RI, USA

alexta@cs.brown.edu

Abstract — As computer programs are becoming more

complex, the number of their configuration options increases

as well. These options must be carefully configured to achieve

high performance of the system. We propose using computer

simulation to predict performance of the program and select its

configuration resulting in maximum performance.

This work presents our methodology and tools for building

models of multithreaded programs and underlying hardware.

We rely on a combination of static and dynamic analysis to

build the model. Parameters of the model include incoming

request flow, configuration options of the program, and

hardware parameters. The model predicts performance of the

program for each combination of parameters. As a result, the

configuration resulting in high performance is discovered

without expensive and time-consuming experiments with the

live program.

I. INTRODUCTION

As size and complexity of modern software grows,
programs are becoming increasingly hard not only to design
and develop, but also to deploy. Their real-world
performance depends not only on architecture of the program
itself or on the underlying hardware, but also on values of
numerous configuration options. Examples of these options
can be size of the internal cache for input-output (I/O)
operations or the number of working threads.

In order to achieve maximum performance configuration
options must be carefully tuned by a system administrator.
Currently system administrators rely on their professional
experience and on basic monitoring tools for analyzing
various program configurations. For example, they might
decide that upgrading a CPU is necessary if the CPU load
will exceed a given threshold, or that the number of working
threads might be increased if the CPU has multiple cores.
However, such approach is not accurate and requires a
thorough understanding of both hardware and software of the
system as well as details of its anticipated usage. Thus in
practice system administrators perform multiple experiments
(trial runs) to select an optimal configuration of the system.

During trial runs software is launched with different
configuration options. The configuration resulting in the
highest performance is selected for practical deployment.
Unfortunately, such experiments are time-consuming and put
a high workload on a system administrator. In addition to the
actual running time of the experiments, he has to set up trial
runs, collect data, and analyze results. Altogether, these
activities result in a high cost of trial runs. Moreover, trial

runs might require a special hardware or software not
available at the present moment, which will effectively
render this approach useless.

To reduce cost and time necessary for finding an optimal
program configuration we propose conducting trial runs
using the model of the program. The model will predict
performance of the program for the given set of parameters,
including incoming request flow, configuration options, and
characteristics of the hardware. A number of different
configurations will be tested; the configuration resulting in
the highest performance will be selected as an optimal one
for the actual program.

Performing trial runs using the model will have following
advantages over experimenting with the live program:

- Once the model is created, running it does not require
complicated and time-consuming operations for setting
up the experimental system;

- Model runs faster than the actual program, which results
in significant time savings;

- The model can find a good configuration automatically
by searching through the configuration space of the
program;

- The model can simulate execution of the program on the
different hardware and/or operating system (OS).

In this paper we present our methodology and
infrastructure for building models of computer programs. In
particular, we concentrate on simulating multithreaded
programs used for request processing, such as web servers.

We rely on a dynamic analysis to collect data for building
the model of the program. We instrument both the program
and the OS kernel, and then run the program in a certain
configuration. As a result, data necessary for building the
model are collected, including running time for individual
components of the program, number and properties of I/O
requests spawned by the program, and its probabilistic call
graph. Benchmarking is used to collect data for the model of
the underlying OS and hardware.

We use the OMNET simulation framework [2] to build
the model of the program. We employ a modular approach:
models are built from a number of small components; each
component performing a simple operation such as
computations, I/O activities, flow control etc. Components
responsible for simulation of hardware and OS are

independent from the model of the program. These
components are, in fact, separate models built using a
combination of a discrete event simulation and statistical
modeling. Modular architecture allows simulating execution
of the program on different computer systems without
changes in the structure of the model.

To verify our approach we have built the model of the
tinyhttpd web-server [5] running on the OS Linux. In our
experiments with different number of working threads and
different incoming request rate the relative prediction error
of the model varied in range of 3-85% with the average error
19.9%.

The rest of this paper is organized as following. Section 2
surveys the related work in the area. Section 3 outlines a
general approach towards building the model. Section 4
focuses on data collection. Section 5 describes the model
itself. Section 6 presents results obtained by simulating a
web server. Section 7 concludes and outlines directions for
future work.

II. RELATED WORK

Predicting performance of computer systems is a subject
of active research, and simulation and modeling are actively
used for this purpose. Existing performance models can be
divided into three classes according to the method they use:
analytical models, black-box models and simulation models.

Analytical models represent the system as a function
y=f(x), where x are metrics describing system‟s
configuration and workload, and the output y is some
measure of system‟s performance. Analytical models rely on
knowledge of the system to explicitly specify function f(x)
using a set of formulas.

Analytical models were popular in modeling performance
of both hardware [3] and software [14,15]. They are compact
and expressive; however, their development requires
considerable mathematical skills and deep understanding of
the system. Moreover, complex behavior can be hardly
described by analytical models.

Black-box models are called to alleviate these problems.
They utilize no information about internal structure of the
system and do not formulate the function y=f(x) explicitly.
Instead, a statistical [8] or table-based [17] method is used to
approximate the function f(x) and predict the performance of
the system based on its input parameters.

The black-box approach does not require an extensive
expert knowledge of the system, although it needs large
amount of data for training the model. Its main disadvantage
is lack of flexibility, as any change to the software or
hardware of the system requires re-training the whole model.
Nevertheless the black-box approach is frequently used to
simulate a part of the system, be it a software component
such as a DBMS query engine [9], or hardware component,
such as a hard drive [11-13]. The black-box approach can
also predict the performance of the whole program if a large
amount of data is available either through multiple runs [23]
or from a large user base [10].

Simulation models (also called queuing models) are
another popular approach towards performance modeling.
Structure of these models normally follows the structure of
the system, where components of the model directly
correspond to the components of the system. Usually these
models are built using a discrete-event principle. In such
models the simulation time is advanced by discrete steps; it
is assumed that the state of the system does not change
between time advances [16].

Developing simulation models require an expert
knowledge about the system, which can be considered as a
disadvantage. Nevertheless, simulation models are highly
popular tool for simulating large complex systems, largely
because their flexibility and extendibility. These models are
widely used to predict performance of computer systems at
different levels, ranging from communication networks
[1,25,26] and large distributed computer systems [18-22] to
individual components [24]. They can be also combined with
other types of the models, e.g. analytic models [20].

Simulation and modeling has a plenty of applications, but
in the context of our work we are especially interested in
simulation of parallel and distributed systems and underlying
hardware.

In particular, simulation has been successfully used to
predict performance of distributed programs. The PACE
framework [21,22] predicts running time of scientific
application on a grid, while Layered Queue Networks
[18,19] are used to predict performance of commercial multi-
tier systems. All these works assume that the system uses a
message passing framework for communication. This
simplifies the model, but reduces the set of programs that can
be modeled. Unfortunately, neither of these works provides
any quantitative measure of model‟s accuracy.

Works [14, 15] presents a concept of a self-predicting
program. The program is manually instrumented in the key
points, and its analytical model is built. Authors use this
approach to predict throughput of the DBMS depending on
the size of the buffer pool. Study [15] reports relative
prediction error within 10-68%. However, it is not clear if
the presented methodology can be easily applied for other
applications or if it can incorporate other parameters. E.
Thereska and G. Ganger [20] address this issue by
combining multiple types of the model, such as machine
learning, analytical and queuing models to simulate a
distributed storage system. The resulting model is used to
detect performance problems in the system as they occur.

An alternate approach towards performance prediction is
presented in [10]. The release copy of the program is
instrumented manually, so performance measurements are
collected directly from the user audience. Statistical
techniques are used to calculate performance metrics for a
given combination of workload, configuration options and
hardware. Obviously, this approach works only for programs
with a large user base (such as MS Office).

Modeling and simulation was also successfully used to
predict performance of hardware components, in particular –
hard drives.

DiskSim [24] was one of the first tools that rely on
simulation models to predict response time for individual I/O
requests. It simulates mechanical and electrical components
of the hard drive in detail and achieves a good accuracy.
However, DiskSim requires information that might not be
readily available, such as physical layout of files on the disk
or current position of the disk head.

Call for simplified storage system simulators resulted in
development of black-box models. These models do not
require any information on the internal structure of the
storage system, which is a major advantage. They describe
each individual request with metrics and then use some
statistical technique, such as regression trees [4, 13] or tables
[17] to predict service time for that request. These models
report relative prediction error in a range of 10-70%. Such
large errors are unavoidable because access times highly
depend on location of requested data and position of the disk
head. In absence of that information access times should be
treated as a distribution rather than scalar numbers.

To some extent, this problem is addressed in the work
[11] that uses Bayesian approach towards the disk
performance modeling. This work clearly identifies factors
affecting the request servicing time; it is used to classify
requests into “slow” and “fast”. The reported accuracy of
classification ranges from 54% to 96%. The model, however,
assumes that the requests processing time distributed
independently, which is not necessary true in the actual
system.

Unfortunately, all referenced storage system models
simulate only the hardware; they do not simulate behavior of
the system‟s cache and I/O scheduler – components that
largely determine I/O performance of the application.

Our work extends existing state of the art in the area of
performance modeling in several aspects:

- Our modeling framework is not restricted to simulation
of a single application or scenario and can be used to
simulate a wide range of programs;

- Our model pays strong attention to the proper simulation
of the thread-level parallelism in a multithreaded
application;

- We propose an innovative technique to model I/O
operations of the program, including simulation of both
hardware and software components of I/O subsystem;

- Our paper presents an elaborate description of technical
aspects of model building along with concrete metrics of
simulation accuracy.

III. GENERAL APPROACH TOWARDS BUILDING THE MODEL

Our approach towards simulation of computer programs
follows a conventional discrete-event principle. We rely on
discrete-event models because of their expressive power,
relative simplicity, ease of interpretation, and rich toolset for
building such models.

For the purpose of simulation we represent computations
performed by the program as request processing. We denote
a request as an external entity the program has to react to,
such as incoming user connection or data packet. The
program processes the request, which involves performing
certain operations. For example, the web-server can read a
web-page from the disk and send it to the user, and scientific
application can perform computations and send results to the
next component of the system. Overall delay between
request arrival and its completion constitutes a request
processing time – an important metric we use to measure
performance of the system. Predicting request processing
time is the main goal of our model.

Although this approach naturally allows simulating
request processing programs, it can be used to simulate other
programs, including user applications. For example, in the
context of a text editor a keystroke can be considered a
request, to which the program responds by updating its UI
and underlying data.

Our model explicitly simulates the flow of the request as
it is being processed by the program, from its arrival to

Figure 1. General structure of the model of the system

CPU model

Disk model

Request
source

Request queue

Working thread 1

Working thread N

Request
sink

…

completion. Here we assume that every request in the
program is represented by the corresponding data item such
as a socket ID or an object representing the request.
Correspondingly, processing the request implies
manipulation with this data item, such as placing it into a
queue, performing computations, or spawning subsequent
requests, e.g. requests to the I/O subsystems (disk, network).

All request processing activities occur in the context of a
thread. In our model we represent each thread as a separate
entity (see Figure 1). Inside, the thread is represented as a
probabilistic call graph whose nodes correspond to pieces of
program‟s code – code fragments, while edges correspond
to possible transitions between code fragments. In particular,
we distinguish two major types of code fragments that
perform CPU-intense computations and I/O operations
correspondingly.

Execution of each code fragment results in the delay in
the processing of the request by the program (we assume that
code performing synchronization operations does not result
in significant delays due to computational or I/O activities).
These delays altogether with time spent by the request in
various queues and buffers constitute the request processing
time. Thus building the model requires following knowledge
about code fragments:

- what code fragments constitute the program and in
which order they are executed;

- exact time required by each code fragment to execute.

Whereas the structure of the program does not generally
change, execution times depend on various factors, such as
the degree of parallelism of the program and characteristics
of the underlying hardware. For example, consider multiple
threads that perform CPU-intensive computations. If the
number of threads is bigger than the number of CPUs, the
amount of time required for each thread to finish
computations will be higher than if that thread was running
alone. The same logic applies to I/O operations: the amount
of time required for I/O operation to complete strongly
depends on the number of other I/O operations occurring at
the same time.

As a result, instead of specifying exact time required for
each code fragment to finish, we rather define parameters of
that code fragment. These parameters along with the actual
workload of the system determine execution time of the code
fragments. This time will be calculated using models of the
CPU and the disk I/O subsystem. The former model
simulates work of the CPU and the OS thread scheduler; it
computes the amount of time required for CPU-intensive
code fragments to execute. The latter one simulates the OS
I/O scheduler and the hard disk itself; it computes the
amount of time required for I/O-intense code fragments to
execute. The network I/O model is a subject of the future
work.

IV. DATA COLLECTION

Building models of the parallel program, CPU/scheduler,
and I/O subsystem requires collecting comprehensive

information on the program itself and also on the underlying
OS and the hardware. This includes:

- information on thread interaction in the program,
including synchronization mechanisms, request queues
etc;

- probabilistic call graphs for threads;

- properties of program‟s code, such as amount of
computational and I/O resources necessary for its
execution;

- performance characteristics of the underlying OS and
hardware.

To collect this data we analyze the program, instrument,
and run it in one specific configuration. The key assumption
is that main parameters of the system remain the same for all
other configurations.

We utilize a mixed approach towards program analysis.
We manually analyze the program at the high-level to
establish its structure and use automated solutions to obtain
rest of the data.

During manual analysis we determine the general
sequence of operations that happen during the request
processing. First we identify synchronization mechanisms
and working threads. Then we analyze threads‟ code to
detect code fragments and determine their types (CPU-
intense or I/O-intense).

Once overall program structure is established, we
instrument the program by inserting probes at the borders of
individual code fragments. Currently instrumentation is done
at the source level: the instrumentation library is statically
linked to the program under the study and then probes
(which are calls to the library‟s functions) are inserted into
the source code of that program. Each probe is indentified by
the unique ID. As a result, each code fragment can be
uniquely identified by the pair of IDs of surrounding probes.
The list of code fragments and corresponding probe IDs form
the program‟s schema, which is used for the automated
analysis of the program.

Program instrumentation and defining its schema
complete manual analysis of the program. Rest of data
collection is performed automatically by the tools we
developed for this purpose.

To collect information on code fragments we run the
instrumented program in some configuration. When the
probe is hit during the program‟s execution, it creates the
record that includes probe ID, the ID of currently executing
thread, and current CPU and wallclock times for the thread.
Our instrumentation is very lightweight: every probe slows
the execution of the program in average by 1-2
microseconds, depending on the amount of information
collected.

Once the program has finished, the instrumentation log is
analyzed and following information is retrieved:

Figure 2. Instrumentation of Linux I/O subsystem

Hard drive

User mode read()

sys_read()

generic_make_request() completion routine blk_start_request()

elevator_add_request_fn() elevator_dispatch_fn() elevator_completed_rq_fn()

Kernel mode

User program

System call

Generic block

layer

I/O scheduler

I/O request

queue

 1

 2 3 4

 5

 N - Instrumentation probe

- the amount of CPU time required to execute each code
fragment;

- the probabilistic call graph of the program;

- the total amount of time required to execute each code
fragment (wallclock time);

- request processing time for the program.

Last two metrics are used solely for analyzing simulation
results and model debugging.

Values of all these metrics can change over different
executions of the same block, thus we treat them as
distributions.

However, data obtained from the instrumented program
do not include information on I/O operations initiated by the
program. This information is essential for modeling the
program itself and the I/O subsystem. Building the model of
the program requires knowledge of the number and
properties of I/O requests initiated by the program. Building
the model of the I/O subsystem requires data on how quickly
these requests can be processed and probabilities of serving
requests from the cache.

Initially we tried to retrieve necessary data by monitoring
calls to user-mode libc I/O functions, such as read() and
write(). Unfortunately, this approach doesn‟t allow tracking
I/O operations initiated by functions such as stat() and
open(). These functions spawn multiple I/O operations of
different types that access filesystem metadata (inode and
directory entries). To reliably monitor these requests we
intercept I/O operations in the OS kernel.

Below we discuss processing of I/O requests by the OS
kernel in the context of monitoring I/O requests. In particular
we concentrate on the Linux kernel v. 2.6.32 that was our
testing platform.

When the user program calls a function such as read() or
stat(), the control is transferred to the corresponding system
call in the Linux kernel – sys_read() or sys_stat()

correspondingly. The kernel determines if the requested data
reside in the OS page cache. If they are, the kernel fetches
data from the cache and returns them to the user program
without accessing the hard drive.

However, if the cache does not contain the requested
data, the kernel must read data from the hard drive (this
situation is depicted at the Figure 2). To do this the system
call relies on the generic block layer – a kernel component
responsible for handling all the I/O operations on block
devices. This results to a call to the generic_make_request()
function that creates an I/O request of a given type. The
generic_make_request() function sets up the completion
routine that will be called once the data transfer is complete,
passes the I/O request to the I/O scheduler, and suspends the
calling thread.

The function of the I/O scheduler is to minimize the
processing time for I/O request and, at the same time,
increase total throughput of the disk. Although there are
various I/O schedulers in Linux, all of them follow roughly
the same principle.

The scheduler stores pending I/O requests in the queue
ordered by the index of the requested disk block. This allows
to minimize the disk seek time – the main parameter
affecting performance of the hard drive. When the scheduler
receives a new request, it first attempts to merge it with one
of existing requests. If the request cannot be merged,
scheduler inserts it into the appropriate position of the
request queue.

Once the hard drive becomes available, its driver fetches
the new request from the I/O request queue and sends it to
the device. At this time the I/O scheduler calls a
blk_start_request() function to notify the block I/O layer that
the request was sent to the hard drive. When the hard drive
finishes processing the request, the I/O scheduler calls the
completion routine for that request. It wakes up the calling
thread that completes the I/O operation.

To collect necessary data we use SystemTap framework
[7] to insert probes into following places:

Figure 3. The number of I/O requests issued by the system call as an implicit characteristic of the page cache

- start and end of the system call routine (probes 1 and 5
at the Figure 2). We instrument numerous system calls
that can initiate I/O request, including sys_read(),
sys_stat(), sys_stat64(), sys_statat() etc;

- generic_make_request() function (probe 2);

- blk_start_request() function (probe 3);

- end_bio_bh_io_sync() and mpage_end_io_read()
completion routines (probe 4).

This instrumentation yields various measurements, the
most important of those are:

- the number and properties of requests issued by the
system call. Calculated as the number of calls to
generic_make_request() made by the system call
without taking into account merged requests;

- time required to process the request by the hard drive
(disk processing time). Calculated as the time
difference between the call to the blk_start_request() and
completion routine.

- time required for I/O operation to complete (total
processing time). Calculated as the time difference
between the call to the generic_make_request() and the
completion routine.

Similarly to parameters of the code fragments,
parameters of I/O operations are treated as distributions.

Essentially, we employ benchmarking to collect
information on the I/O subsystem. We collect data on I/O
requests during the same program run when we collect data
on program‟s code fragments. Moreover, since in the case of
a cache hit no requests will be issued, the “number of
requests” metric also implicitly represents caching behavior
of the system. Our experiments with the web-server revealed
that values of this parameter do not depend on the
configuration of the program, but depends on the total
number of requests processed so far (see Figure 3). After
serving a large number of requests the system reaches some

“steady state” in which the number of requests issued by the
system call remains constant. We rely on this observation to
simulate the system‟s page cache. In order to reach the
“steady state” we issue a large number (typically – around
10

6
) of “burn-in” requests prior to taking actual

measurements of this metric.

V. MODEL BUILDING

We evaluated a number of tools for building discrete-
event simulations, including JavaSim, MATLAB SimEvents,
OMNET and other tools. Finally we have chosen OMNET
[2] because of its high flexibility.

According to OMNET principles, the model consists of
blocks connected to each other and communicating using
messages. Internally, blocks and messages are implemented
as C++ classes. Although OMNET provides general
framework for developing those entities, it is a responsibility
of the model developer to implement desired functionality in
blocks and messages.

In our model blocks represent elements of the program;
most of the types of model blocks have direct analogs in the
program itself (see Appendix 1 for a complete list of blocks).
Each block has a set of parameters that generally correspond
to properties of the corresponding program structures. Values
of the parameters are obtained during the data collection
stage. The vast majority of parameters are distributions, so
when the block intends to get a value of the parameter, the
value is sampled from a corresponding distribution.

Our model is built according to a hierarchical principle.
At the high level the model depicts general flow of the
request through the system (see Figure 4). High-level model
creates requests, queues them, sends them to threads for
processing and, when the processing is done, destroys
requests.

The request itself is represented as a message flowing
from one block to another. The request normally corresponds
to some data item in the real-life program, such as file or
socket ID, class instance, or handle.

Figure 5. The low-level model of the web-server thread Figure 4. The high-level model of the web-server

Threads are central elements of the model. They simulate
delays that occur during processing of the request. At the
high level threads appear as “black boxes” without any
notion of their internal structure. Each thread is represented
as a separate block, such that if the program has 8 working
threads, it has 8 such blocks.

Details of the thread are simulated by the lower-level
model (see Figure 5). On the lower level thread is
represented as a group of blocks forming the probabilistic
call graph of the thread. In this graph the caller block is
connected (through a special dispatch block) to all the
potential callees.

Execution flow in a thread is simulated by message
passing. When the thread receives the request for processing,
it creates a computation flow message and sends it to the first
computation block in the thread. This message passes
through the thread blocks until it reaches the last
computational block. At this point processing of the request
by the thread is considered complete and request is sent to
the next block in the high-level model.

High-level and low-level models contain different types
of blocks (see Appendix 1). High-level models contain
request sources, sinks, queues and threads, while low-level
(thread) models contain computation and I/O blocks and
flow control blocks.

Blocks representing code fragments communicate with
CPU/Scheduler and I/O models using messages. When the
computation block is called, it sends the message to the CPU
model. This message contains the amount of CPU time
required to execute the corresponding code fragment as a
parameter. Correspondingly, the I/O block sends one or more
messages representing I/O requests to the I/O model.
Parameters of the I/O request include the amount of data to
be transferred and the type of the operation (synchronous
read, metadata read or readahead). The corresponding model
calculates the amount of time required to finish the operation
and delays the request for that amount of time.

As a result, the model of the system consists of two major
independent components: the model of the program itself and
models of the OS/hardware. This architecture allows
simulating the same program running on different hardware
and vice versa.

In our work we employ various approaches to simulate
different types of hardware. We use traditional discrete-event
approach to simulate CPU and OS thread scheduler, while a
combination of discrete event simulation and statistical
modeling is used to simulate disk I/O. We put a number of
assumptions about the underlying system which we believe
are true for the most of server-side programs and scientific
computing applications:

- Except for the program we simulate, all other
computation and I/O activities in the system are
negligibly small;

- all the threads in the program have the same priority;

These assumptions greatly simplify simulation of the
hardware.

A. CPU and thread scheduler modeling

The CPU/Scheduler model simulates the round-robin
thread scheduler with equal priority of all the threads.

Once the CPU/Scheduler receives a message from the
computation block, it puts that message in the queue of
“ready” threads. When one of the computation cores of the
simulated CPU frees, CPU/Scheduler takes the first thread
out of the “ready” queue and simulates computations by

introducing a delay. The length of delay is equal to the
amount of CPU time required for the computation or to the
OS time quantum, whatever is smaller. After the delay is
expired, the CPU/Scheduler either sends the message back to
the origin block (in case if computations are complete) or
places it back into the “ready” queue, where it awaits for
another time quantum. The length of the time quantum is
sampled from the distribution that represents quantum length
of the actual Linux thread scheduler.

As it can be seen, the model closely follows the
functioning of the real thread scheduler. Our model of the
CPU scheduler doesn‟t have any provisions for tracking
threads suspended due to I/O or synchronization because
these activities are simulated differently by the model.

B. Disk modeling

Our model of the I/O subsystem consists of two parts.
The first part simulates the I/O scheduler using the discrete
event model. The second part simulates delays that occur
during the processing of the request by the hard drive (disk
processing time) using the statistical model.

When the I/O block sends a request for disk I/O, this
message is received by the I/O scheduler model. If the hard
drive model does not process any request at the moment, the
I/O scheduler model sends the request to the hard drive
model directly. Otherwise the I/O request is placed in the
queue that simulates the request queue of the actual I/O
scheduler. When the hard drive model frees, it fetches the
next request to be processed from that queue.

The model of the I/O scheduler employs FIFO queue,
where requests are ordered by the time of their arrival.
However, the real I/O scheduler orders requests according to
the index of the disk block they are accessing. Since this
information is not known to the model, the hard drive model
fetches requests from the random positions of the request
queue.

The model of the hard drive calculates the disk
processing time t for the request and delays the request for
that time. The model assumes that t follows the conditional
distribution P(t|x), where x are request parameters (metrics).
In particular, we use two metrics to describe the request:

- the number of other requests sent to the hard drive by
the I/O scheduler between enqueuing the given request
and sending it to the hard drive;

- the type of the request (synchronous read, metadata
read, readahead).

These parameters account for possible optimizations
done by the I/O scheduler. The first parameter implicitly
represents the queue size of the I/O scheduler. With the large
number of I/O requests waiting in the queue, the scheduler
can arrange them more efficiently, so the average disk

processing time for each individual request will decrease.
The second parameter accounts for the possibility that
different types of requests require different time to process.
In particular, we noticed that readahead requests are served
significantly faster than the synchronous read and metadata
requests.

Since both distribution parameters are integer numbers,
we implement the distribution P(t|x) as a table.

Our I/O model is very simple, but it represents behavior
of the deadline I/O scheduler fairly well. We are currently
working on simulation of other types of I/O schedulers, such
as anticipatory and CFQ schedulers.

VI. MODEL VERIFICATION

In order to be useful, the model must accurately predict
performance of the system. To estimate accuracy of the
model we run the program in different configurations and
record actual performance of the program for each
configuration. Afterwards we simulate the program in the
same configurations and record predicted performance. Then
we calculate relative error ε between measured and predicted

performance metrics as

. The higher is

the relative error the worse is the accuracy of prediction. For
the ideal model that predicts the program‟s performance
without any errors the relative error will be equal to 0.

In this work we have built the model of a tinyhttpd
multithreaded web server [5]. When the web-server receives
the incoming request, it puts it into the queue until one of its
working threads becomes available. The working thread then
picks the request from the queue, retrieves the local path to
the requested file, and verifies its existence using a stat()
function. If the requested file exists, the thread reads the file
in 1024-bytes chunks and sends them to the client. Once data
transfer is complete, the thread closes the connection and
picks up the next incoming request from the queue. This
web-server is simple and compact, which facilitates its
analysis, but at the same time it is representative for a large
class of server applications.

The web-server hosts 200000 static web pages from the
Wikipedia archive. It runs on a server PC equipped with an
Intel Q6600 quad-core 2.4 GHz CPU, 4 GB RAM and 160
GB hard drive. The server runs under Ubuntu Linux 10.04
OS. According to the common practice, atime functionality
was disabled to improve performance of the server.

We use the http_load software [6] to simulate client
connections to our web server. http_load reads a list of
URLs from the file and then connects to the web-server to
retrieve these pages. httpd_load is running on a client
computer (Gateway laptop with Intel 2.4 GHz dual-core
CPU, 4 GB RAM, 250 GB HDD) connected to the server
with a 100 MBit Ethernet LAN. The client runs under
Ubuntu Linux 9.10 OS.

Figure 6. Results for predicting the request processing time

The request processing time (RPT) is the main metric we
use to measure the web-server performance. We define RPT
as a time difference between accepting the incoming
connection and sending the response (more accurately –
closing the communication socket). In addition to the
response time, we also collect execution time for different
code fragments of the program. A particular interest present
execution times for I/O operations, as they often determine
performance of the program.

The configuration space of the web-server includes two
parameters: the incoming request rate (IRR) and the number
of working threads of the web-server. By varying the IRR we
simulate behavior of the web-server under the different load.
In our experiments we vary IRR from 10 requests per second
(rps) to 130 rps with the step of 10 rps. The number of
working threads is the only configuration parameter of the
web server itself that affects its performance. We run the web
server with 2, 4, 6 and 8 working threads.

As a result, the total number of different experimental
configurations is 13*4=52, which includes all the possible
combinations of the number of threads and incoming request
rates. For each configuration we run both the actual program
and its model and record average values of performance
metrics. During each run 10,000 requests are issued; this
experiment is repeated three times to get averaged results for
each configuration.

The behavior of the web-server varies greatly for
different IRR values (see Figure 6). The web-server has two

distinct states of operation. For low values of IRR (IRR<50
rps) the I/O subsystem is not fully utilized and the request
processing time is minimal (RPT varies within 10-20 ms).
High values of IRR (IRR≥60 rps) result in the overload of
the I/O subsystem. Processing the request takes longer time,
and incoming connections start accumulating in the web-
server queue. As a result, the web-server is brought to the
point of the saturation, where it exceeds the system-wide
limit of 1024 open connections and starts dropping incoming
requests. At this point the RPT reaches 14-17 sec. and
remains steady.

Our model predicts the request processing time for these
stationary states reasonably well (ε≤0.3), but its
performance decreases at the point where the web-server
goes to the saturation state (ε=0.6-0.85). However, the
model accurately predicts values of configuration parameters
where this transitional behavior occurs. This result is
important, since the ultimate goal of our research is not just
predicting performance of the program, but finding the point
in the configuration space that yields high performance.

One noteworthy finding of our experiments is that the
number of working threads has a relatively small influence
on the request processing time. This is explained by the fact
that the performance of the web-server is largely determined
by the performance of the I/O system, and the I/O system
(hard drive) can effectively carry out only a single I/O
operation at a time. As a result, the increase in the number of
parallel operations is negated by a proportional increase in

Figure 7. Results for predicting execution time for the read() I/O operation

Figure 8. Results for predicting execution time for the stat() I/O operation

the average execution time for the I/O operation (see Figures
7,8). Our I/O model correctly predicts this behavior. The
average error for predicting execution times ranges from 0.10
to 0.18 for read() and 0.11 to 0.15 for stat() operation. We
believe this example illustrates necessity for the proper
simulation of I/O operations, as they often becoming a
determining factor in the program‟s performance.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented our methodology and the
toolset for modeling performance of the multithreaded
computer programs. We developed an extensive end-to-end
simulation framework, which includes tools for data
collection and model building. We also developed
methodology and metrics for measuring the accuracy of our
performance models. Finally, we verified our approach by
building the model of the web-server.

Our model predicts the performance of the web-server
with a reasonable degree of accuracy: average relative error
varies from 0.164 to 0.256 for different configurations of the
web-server. Even more important, the model accurately

predicts those configurations of the program where its
behavior changes significantly. This allows finding
configurations resulting in high performance, which was the
main goal of our work. Furthermore, the model predicts
execution times for different parts of the program, which
allows identifying performance bottlenecks. One particular
interest is predicting execution times for I/O operations,
since they often determine the program‟s performance.

Although our experiments have shown good results, an
extensive experimentation is required to verify all the aspects
of our work. In particular, in our recent experiments with the
web-server I/O operations dominate over CPU computations.
As a result, the accuracy of the simulation is largely
determined by the accuracy of the I/O model. Thus to
validate our model of the CPU/Scheduler we are working on
the model of the computationally intensive program. In
particular, we are building the model of the program that
simulates gravitational interaction of celestial bodies.

Aside of conducting additional experiments we are
actively working on improving our methodology and tools
for model building. Main directions of our work are:

- improving framework for model building;

- ensuring model portability across different hardware;

- reducing the amount of human involvement;

A. Improving framework for model building

Improving framework for building simulations will
increase accuracy, simplicity and usability of models.

In particular we are investigating different approaches
towards I/O modeling. Our current model of the I/O
subsystem still requires substantial knowledge of the I/O
scheduler, which can be seen as disadvantage. Thus we plan
to employ a purely statistical model that will simulate the
total processing time of the request by the I/O subsystem. We
expect this model to require less sophisticated data collection

and allow simulating various types of the hardware, such as
RAID arrays. Similarly, we plan to develop a model for
network I/O since in certain scenarios network delays can
become determinant of the program‟s performance.

B. Ensuring model portability across different hardware

We rely on benchmarking to retrieve characteristics of
the hardware and integrate them into models. Currently we
employ this approach to simulate I/O system; in the future
we plan to use benchmarking for modeling computational
activities.

However, benchmarking is a time consuming activity that
requires access to the hardware we want to simulate. A
simple solution would be establishing a repository of
benchmarks. Model builders could use this repository to find
data on the hardware which is the most similar to one they
simulate. A more attractive alternative would be
incorporating widely used characteristics of the hardware as
parameters into the model. For example, disk model can
include disk rotation speed and the average seek time, while
CPU model can use publicly available results of industrial
benchmarks as model parameters. This approach would
eliminate necessity for time-consuming benchmarks, but
certain types of hardware, such as RAID arrays, would
require altering the structure of the model. Thus a combined
approach might be employed, where certain components of
the model, such as CPU, would be built using hardware
parameters, while other components such as disk or
networking will be built using benchmarking.

C. Reducing the amount of human involvement

Currently our models are built manually, which is a
major inconvenience. Our long-term goal is developing an
automated way of building models, or, at least, decreasing
the amount of human involvement in this process.

As a first step, we plan to automate building of
probabilistic graphs for working threads. We will intercept
calls to functions that correspond to I/O or to synchronization
routines. This would allow us to detect all potentially
blocking operations and represent them as either I/O or
synchronization code fragments in our model. Remaining
code will be represented as computational fragments. This
approach should automate building models of working
threads; however, it will not detect objects representing
requests. Thus there might be still a certain amount of human
involvement in the process of building models.

Another totally different approach toward simulation
would be representing the program as an automaton with the
corresponding set of states. One particular type of state will
be a starting state, which corresponds to the initial state of
the program when the incoming request is received. While
processing the request, the program will change its states
according to some random distribution, until it reaches one
of the final states, where request processing is completed or
request is dropped. Every state change will require a certain
amount of time, which will be also represented as a random
variable. State information can be relatively easily extracted
from the trace data generated by the instrumented program.
However, there remains an open question on what

information should be included into the state (e.g. name and
offset in the current function, variable values etc).

VIII. REFERENCES

1. B. Aslam, M. Akhlaq, S. A. Khan, IEEE 802.11 wireless
network simulator using Verilog, 11th WSEAS
International Conference on Communications, Greece,
2007.

2. http://www.omnetpp.org/

3. E. Lee , R. Katz, An analytic performance model of disk
arrays, Conference on Measurement and modeling of
computer systems, p.98-109, Santa Clara, CA, 1993

4. M. Wang, K. Au, A. Ailamaki, A. Brockwell, C.
Faloutsos, G. Ganger, Storage device performance
prediction with CART models, 12th International
Symposium on Modeling Analysis and Simulation of
Computer and Telecommunications Systems
(MASCOTS-2004), Volendam, The Netherlands, 2004

5. http://sourceforge.net/projects/tinyhttpd/

6. http://www.acme.com/software/http_load

7. http://sourceware.org/systemtap/

8. B. Lee et al, Methods of inference and learning for
performance modeling of parallel applications, 12th
ACM SIGPLAN symposium on Principles and practice
of parallel programming, San Jose, CA, 2007

9. C. Gupta , A. Mehta , U. Dayal, PQR: Predicting Query
Execution Times for Autonomous Workload
Management, International Conference on Autonomic
Computing, p.13-22, 2008

10. Eno Thereska, Bjoern Doebel, Alice X. Zheng, Peter
Nobel, Practical performance models for complex,
popular applications, International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS'10), New York, NY, 2010

11. T. Kelly, I. Cohen, M. Goldszmidt, and K. Keeton.
Inducing models of black-box storage arrays. Technical
Report HPL-2004-108, HP Labs, 2004.

12. S. Li, H. Huang, Black-Box Performance Modeling for
Solid-State Drives, 18th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems
(MASCOTS) , pp.391-393, 2010

13. L. Yin, S. Uttamchandani, R. Katz. An empirical
exploration of black-box performance models for
storage systems, 14th IEEE International Symposium on
Modeling, Analysis, and Simulation, pages 433-440,
Washington, DC, USA, 2006.

14. E. Thereska, D. Narayanan, and G. R. Ganger. Towards
self-predicting systems: What if you could ask „what-
if‟?, 3rd International Workshop on Self-adaptive and
Autonomic Computing Systems, August 2005.

15. D. Narayanan, E. Thereska, A. Ailamaki. Continuous
resource monitoring for self-predicting DBMS,

International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems (MASCOTS), Atlanta, GA, September 2005

16. J.B. Sinclair. “Simulation of Computer Systems and
Computer Networks: A Process-Oriented Approach”.
Feb.15, 2004

17. Eric Anderson. Simple table-based modeling of storage
devices. Technical Report HPL-SSP-2001-4, HP Labs,
2001

18. C. Hrischuk, J. Rolia, C. Woodside, Automatic
Generation of a Software Performance Model Using an
Object-Oriented Prototype, 3rd Int. Workshop on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS '95), Durham,
NC, 1995

19. T. Israr, D. Lau, G. Franks, M. Woodside, Automatic
Generation of Layered Queuing Software Performance
Models from Commonly Available Traces, 4th Int.
Workshop on software and Performance (WOSP 05),
2005.

20. E. Thereska, G.R. Ganger. IRONModel: robust
performance models in the wild, ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, Annapolis, MD, 2008

21. G. R. Nudd et al, “PACE- A Toolset for the performance
Prediction of Parallel and Distributed Systems”,
International Journal of High Performance Computing
Applications (JHPCA), Special Issues on Performance
Modelling- Part I, 14(3): 228-251, SAGE Publications
Inc., London, UK, 2000.

22. S. Jarvis, D. Spooner, H. Keung, G. Nudd, J. Cao, and S.
Saini, Performance prediction and its use in parallel and
distributed computing systems, International Parallel
and Distributed Processing Symposium, 2003.

23. K. Singh, E. _Ipek, S. A. McKee, B. R. de Supinski, M.
Schulz, and R. Caruana. Predicting parallel application
performance via machine learning approaches.
Concurrency And Computation: Practice and
Experience, 19(17):2219-2235, 2007.

24. http://www.pdl.cmu.edu/DiskSim/

25. http://www.nsnam.org/

26. http://tetcos.com/software.html

27.

http://www.omnetpp.org/
http://sourceforge.net/projects/tinyhttpd/
http://sourceware.org/systemtap/
http://www.pdl.cmu.edu/DiskSim/
http://www.nsnam.org/
http://tetcos.com/software.html

Appendix 1. Model blocks and their parameters

Model block Description Thread
block?

Model
icon

Analogy in
the program

Important parameters

Request
source

Generates requests
N

Socket for
incoming
connections

- request interarrival time

Queue Queues requests
N

Buffer that
queues
requests

- maximum queue size;

- queue type (FIFO/LIFO)

Sink Discards requests and collects
statistics about their processing, such
as request processing time.

N

N/A - N/A;

Computation
block

Code fragment that performs CPU-
intensive computations Y

Code
fragment

- CPU time required for
computations

Disk I/O
block

Code fragment that performs disk
I/O

Y

Code
fragment

- types of I/O requests (read,
metadata read, readhaead);

- number of I/O requests of
each type;

- amount of data for each type
of requests;

Dispatch
block

Routes the request to a different
block based on transition
probabilities

Y

IF statement,
loop

- probability of sending a
request to a particular block

Loop block Sends the request to a given block(s)
for a number of times Y

for() loop - Number of iterations

Delay Delays a processing of request for a
given time Y

sleep()
function

- delay time;

Thread gate Separates blocks that form a thread
from remaining blocks in the model.
This block does not have a direct
analog in the real program;

Y

N/A - thread ID;

I/O
subsystem

Calculates the amount of time
necessary for the I/O operation and
delays processing of the request for
that time

N

I/O scheduler
and the hard
drive

- parameters of P(t|x)
distribution

CPU/

Scheduler

Calculates the amount of time
necessary for the CPU-intense
computation and delays processing
of the request for that time

N

Thread
scheduler and
the CPU

- the number of CPUs (cores)

