
KVMSandbox: Application-Level Sandboxing with x86 Hardware
Virtualization and KVM

Andrew Ayer

1 Introduction

Security is one of the most important concerns in computing today. Despite this, the most common operating
system security model has remained relatively unchanged over the last several decades. Unix-style file
permissions, which are essentially a limited form of ACL-based authorization, are still the most pervasive
model today and are used by modern operating systems like Linux and Mac OS X. More general ACL-
based authorization, which allows permissions to be applied to any arbitrary user (instead of just classes like
“owner,” “group,” and “other”) is used on Windows.

However, this security model leaves much to be desired. For example, Unix permissions control access
only to files, neglecting other resources like network access. Furthermore, Unix-style permissions dictate
what a particularusercan access, rather than what aprocesscan access. This is often insufficient, especially
when a user may be running programs that are either untrustworthy or insecure. Although an application
may need access only to a subset of resources, it runs with thefull privileges of the user executing the
program. This is especially pertinent in the Internet era, when users regularly download and run potentially
untrustworthy programs. Even trustworthy applications like web browsers and PDF readers constantly come
into contact with untrusted data, and a single coding error can open the user to attack.

Various extensions to the model have been proposed over the years. SELinux [7] is probably the most
featureful and well-known. SELinux adds hooks to resource-related functions in the kernel to enforce addi-
tional access control. It allows an administrator to set a centrally-controlled mandatory access control policy
for all resources in the system. Unlike Unix permissions, SELinux policies can apply to individual processes
as well as individual users. AppArmor [1] is an emerging alternative to SELinux. Like SELinux, it enforces
centrally-administered mandatory access control via hooks added to the kernel.

Another approach is application-level sandboxing, in which a sandbox interposes a process’ resource
accesses, and applies alternative access control mechanisms. Application-level sandboxing is appealing
because it doesn’t require cumbersome central management like SELinux or AppArmor. Past attempts at
sandboxing have adopted various approaches. Systrace [2] uses syscall tracing facilities, such as Linux’s
ptrace, to interpose system calls. Peng [9] modified Linux toadd a “restricted exec” syscall and modified
system calls likeopen to enforce security checks when called from a restricted process. Myers [8] devel-
oped a system in which sandboxed applications run under an operating system in VMWare and access files
over NFS. A modified userspace NFS server on the host enforcesfilesystem security policy. Vx32 [6] uses
application-level software virtualization to execute guests in a virtualized sandbox.

None of these solutions are completely satisfactory. Pure userspace solutions like Systrace and vx32
are appealing because they can be developed and deployed more quickly and easily than in-kernel systems
like SELinux. However, Systrace is limited by the capabilities of ptrace and is vulnerable to a variety of
race condition-based attacks. Meanwhile, vx32 uses software virtualization with dynamic code translation,
which is complex, imposes overhead, and relies on legacy x86features like segmentation.

An emerging alternative to software virtualization on x86 is hardware virtualization. While CPU support
for trap-and-emulate virtualization was common in the pre-x86 era, it was absent in x86 until Intel released

1



the first CPU with “VT-x” in 2005. AMD followed suit in 2006 with “AMD-V.” [5] Since then, increasingly
more models of x86 CPUs have shipped with hardware virtualization support, and Intel and AMD have
continued to improve the technology. Software has begun to take advantage of hardware virtualization. For
example, Windows 7’s XP compatibility mode requires hardware virtualization, as does VMWare to host
64-bit guests.

KVM is Linux’s hardware-neutral interface to hardware virtualization. A userspace process with access
to the KVM device/dev/kvm can open the device, and get and set the virtual processor state via various
ioctl calls. Once the program begins executing the guest, the kernel does not return control to the process
until there is an exit event, such as I/O, that requires emulation. KVM is most commonly used for full-
system virtualization, in which a BIOS, boot loader, kernel, and userspace all run inside the virtual machine.
The most notable example is the qemu emulator[3]. A system like qemu makes full use of CPU features
in the guest, such as multiple rings and interrupts. However, KVM can also be used to virtualize a single
process running in ring 3.

KVMSandbox uses KVM to offer the best-of-all-worlds for application sandboxing on Linux. KVM-
Sandbox uses KVM to efficiently virtualize a single process running in ring 3. The process has its own
virtual memory space and is completely isolated from the rest of the system. System calls are intercepted
by KVMSandbox, security audited, and forwarded to the host kernel.

2 Sandbox Model

A process running inside KVMSandbox should run with the standard Unix permissions of the user running
the sandbox, further constrained by a security policy specified by the user. The security policy should be able
to provide fine-grained control over specific operations (like reading or writing) on individual file paths and
network addresses. Any resource access made inside the sandbox, whether to a file or to a socket, should be
checked against the security policy before being passed to the host kernel, where standard Unix permissions
would apply. With this security model, the sandbox should beable to protect against an application that
attempts to access files or make network connections that arenot necessary for its desired functionality.

The sandboxed application should not be aware that it is running inside a sandbox. Apart from some
operations returning access denied errors contrary to the standard semantics of Unix permissions, all other
operations should perform identically as they would outside the sandbox. Any Linux program should be
able to run inside the sandbox unmodified.

There should be no way for a process to escape out of the sandbox or gain access to resources which are
denied by the security policy. Besides proper checking of syscall arguments, KVMSandbox must protect its
virtual memory and file descriptors from tampering by the guest. The sandbox must also be resilient against
shared memory attacks, where one guest thread manipulates the memory which KVMSandbox is auditing
in another thread.

3 Implementation

3.1 Overview

KVMSandbox is implemented as a userspace command-line program written in C++11. On the command-
line to KVMSandbox, the user specifies the path to the security policy file, the path to the program to execute,
and the arguments to be passed to the program. The program to execute must be a 32-bit ELF executable.
The program does not need to be specially compiled for KVMSandbox, and can be either statically or
dynamically linked (though if it is dynamically linked, thesecurity policy must allow the application to read
the shared libraries).

2



KVMSandbox Stack

KVMSandbox Text

Host

Virtual Memory

Guest

Physical Memory

{1.5GB

Stack

Guest

Virtual Memory

KVMSandbox Data/BSS

KVMSandbox Heap

Text

Data/BSS

Heap

Guest

Memory

Mappings

Guest

Page

Table

3GB

Brk

GDT, IDT, TSS, Interrupt

Handlers, Interrupt Stack

0

1.5GB

0

Figure 1: Memory layout in KVMSandbox.

After KVMSandbox has initialized the sandbox environment and loaded the guest program into the guest
virtual address space, it instructs KVM to enter the guest. The program executes inside the KVM virtual
machine, returning control to KVMSandbox only when a syscall is executed. The guest program has access
to the file descriptors passed to KVMSandbox, allowing it to interact with the user over stdin and stdout,
just like a natively-running program.

3.2 Virtual Memory

Address space is one of the most important resources to sandbox. Since the guest runs in the same host
process as KVMSandbox, a breach of the sandbox would enable the guest program to access the host’s
address space, where it could alter the sandbox’s internal state or inject arbitrary code that would be executed
outside the sandbox. In addition, in order for guest programs to run unmodified, it is necessary to present to
the guest what appears to be its own, complete 32-bit virtualaddress space.

KVM is used to give the guest program its own, isolated, address space. Since KVM is tailored for
full-system x86 virtualization, there are in fact two address spaces within the guest: the arbitrarily-sized
guest physical address space, and the 32-bit guest virtual address space. Translation between guest virtual
addresses and guest physical addresses is handled by the CPUlike a real x86 system: by using the page
table pointed to by the guest’s CR3 register. The guest physical memory resides in a contiguous region of
KVMSandbox’s virtual address space (hereinafter referredto as the host virtual address space). Translation
between guest physical addresses and host virtual addresses can be accomplished by adding or subtracting
the base address of the contiguous region. See Figure 1 for a pictorial representation of the various address
spaces.

KVM provides an interface for mapping a contiguous region ofguest physical addresses (at any length
and offset) to a contiguous region of host virtual addresses. Upon initialization, KVMSandboxmmaps a
writable, anonymous, and private region of roughly 1.5GB inthe host virtual address space, and sets this as

3



the guest’s physical address space, starting at guest physical address 0.
When the guest requests a virtual memory mapping, such as viathemmap system call, a region of the

same size as the requested mapping is allocated from the guest physical memory. The allocation is done
with a free list and a simple first-fit allocation strategy. The address of the allocated guest physical memory
is converted to a host virtual address, and KVMSandbox executes a hostmmap call to request that a fixed
mapping of the requested resource be placed at this host virtual address.

At this point, the requested resource is visible in the guest’s physical address space. To make it visible
to the guest process, in its virtual address space, KVMSandbox adds appropriate entries to the guest’s page
table. Like a real operating system, if the guest program requests a fixed mapping, KVMSandbox places
the mapping at the provided guest virtual address. Otherwise it finds an available region of the guest virtual
address space and places the mapping there.

Page tables and page directories also must reside in the guest’s physical memory. These are allocated as
necessary by KVMSandbox using the physical memory free list.

When the guest asks to unmap a region of its virtual address space, KVMSandbox translates the guest
virtual addresses to their corresponding guest physical addresses via the guest page table. It then translates
the guest physical addresses to host virtual addresses and issues hostmmap calls to map writable, anony-
mous, and private regions over the area. By the semantics ofmmap, the host kernel will unmap the mappings
that were previously occupying the region.

Care must be taken to ensure that KVMSandbox does not violateKVM’s requirement that guest physical
memory be backed by a writable and mapped region of host virtual address space. This poses a problem
if the guest requests a read-only mapping. In this case, KVMSandbox asks the host to create a writable
and private mapping, but unsets the write bit for the pages inthe guest’s page table to prevent the guest
from actually writing to the region. The host mapping is madeprivate in addition to writable since it is not
possible to make a shared, writable mapping on a file descriptor not open for writing. Although the mapping
is private, thanks to Linux’s copy-on-write semantics, theregion will behave exactly like a shared mapping
until a write is made. Since the region is protected against writes by the guest, it will never be written absent
a serious bug in KVMSandbox.

3.2.1 Internal Structures

KVMSandbox creates several internal structures in the guest’s virtual address space, such as the GDT, IDT,
TSS, and several interrupt handlers. Space for this data is allocated from the guest’s physical memory, and
mapped to high virtual addresses (above 3GB, the highest valid userspace address in 32-bit Linux) via the
guest page table. To protect against modification by the guest program, the page table entries do not have
the user flag set.

3.2.2 Guest Physical Memory Size

The size of the guest’s physical memory, which defaults to 1.5GB, is configurable, but since it must reside
in a contiguous region of host virtual memory, it must not be too large for the host’s virtual address space,
which also contains the stack, heap, text, and data of the KVMSandbox process. Since pages are always
resident in the guest, the total size of the guest’s virtual memory mappings is limited by the size of the guest’s
physical memory. Therefore, a sandboxed application will never be able to use as much virtual memory as
a non-sandboxed application. However, in practice, few 32-bit applications need to use that much virtual
memory. And on a 64-bit system (see Section 6.3), the virtualmemory space would be vast enough that a
large enough physical address space could be allocated for the guest.

Note that while guest pages are always resident in guest physical memory, since guest physical memory
resides in host virtual memory, they may be paged in and out ofhost physical memory by the host kernel.

4



Also, thanks to demand paging, the large amount of anonymousmemory that is mapped for the guest
physical memory does not actually occupy host physical memory until it is used.

3.3 System Calls

Since system calls cannot be handled inside the sandbox, when a guest makes a syscall, it must exit to the
host, where the arguments can be validated and forwarded to the real host syscall.

One method of executing system calls under Linux is for the userspace to generate software interrupt
0x80, which is handled by an interrupt handler in kernel land.1 The syscall number is passed in register
%rax, and up to six arguments are passed in registers. To force theguest to exit to the host, KVMSandbox
writes a short interrupt handler for interrupt 0x80 into theguest address space and installs it in the guest’s
interrupt descriptor table. The two instruction, three byte interrupt handler executes a port I/O instruction
and then returns from the interrupt. When executed, the portI/O instruction forces a VM exit, returning
control to the host, where the syscall is handled by examining the register state of the guest.

Most system calls can be handled by calling the corresponding syscall in the host, with some minor pre-
and post-processing which is described in detail below. Other system calls, such asmmap, alter primarily
the state of the sandbox and thus are handled specially by KVMSandbox.mmap in particular is described in
Section 3.2 above.

3.3.1 Argument Translation

The greatest challenge in executing system calls is validating and translating pointer arguments from guest
virtual addresses to host virtual addresses before forwarding the arguments to the host syscall. For efficiency,
copying of large buffers must be avoided. Furthermore, the sandbox must be robust and secure against
another thread remapping the guest virtual address space orchanging the contents of a string or data structure
after it has been audited but before it has been used.

Any pointer argument whose contents need to be security audited is copied from guest virtual memory to
temporary memory in host virtual memory. This is unavoidable if KVMSandbox is to be safe against time-
of-check-time-of-use vulnerabilities. Fortunately, thearguments that require auditing are usually relatively
small in size, such as null-terminated strings representing file paths.

Pointer arguments that do not need their contents audited (such as thestruct timeval* timeout
argument toselect, or the buffer passed towrite) still need to be checked to ensure that the entire range
of guest virtual addresses is valid. For non-arrays, the size of the argument type is used to determine
the address range. For arrays, the length of the array is usually specified by some other argument to the
syscall. Null-terminated arrays are always copied out of guest virtual memory, as this is the only way to
prevent accessing unchecked addresses if a guest thread removes the null terminator after the range has been
checked but before it is used. The vast majority of null-terminated array arguments are file path strings,
which need to be copied for auditing anyways.

Once the guest virtual address range is checked, the addressmust be translated to a host virtual address
for passing to the host syscall. If the range does not cross a page boundary, the translation is accomplished
by looking up the page in the guest page table and converting the resulting guest physical address to a host
virtual address. However, if the range crosses a page boundary, it is possible that some guest virtual pages
may map to non-contiguous guest physical pages (and by extension, non-contiguous host virtual pages). In
this case, it is necessary to make a copy of the guest virtual memory in a contiguous range of temporary
host virtual memory. This is potentially quite costly, especially for buffers. However, this would happen

1Newer versions of Linux use the new SYSENTER and SYSEXIT x86 instructions, if available, to avoid the overhead of a
software interrupt. The current implementation of KVMSandbox uses the interrupt 0x80 method because it’s simpler, though the
design could be adapted to work with SYSENTER and SYSEXIT.

5



only if the memory crosses different virtual memory mappings in the guest, since KVMSandbox allocates
contiguous guest physical memory for each mapping. This is probably unlikely in most programs, since,
for example, the stack is a single mapping. If copying is necessary, KVMSandbox considers whether the
argument is for input, output, or both, and only copies in thenecessary direction(s).

3.3.2 Syscall Argument Metalanguage

Linux, as of version 3.3, has over 300 syscalls. Writing codeby hand for each and every syscall, even if brief,
would be extraordinarily cumbersome and hamper maintainability. Thus, KVMSandbox makes extensive
use of C++ template metaprogramming to automatically generate syscall forwarders based on annotations
of argument types.

For example, the code to create the syscall forwarder for theread system call is:

syscalls[3] = new Auto_syscall<fd_arg, out_arg<array_arg<char, 2>>, size_t>(3);

This line installs an automatically-generated system callforwarder with number 3 (read). The syscall takes
three arguments: a file descriptor, achar array used for output whose length is specified by the syscall’s
2nd argument (counting from 0), and asize t. At compile-time, templates generate the appropriate code
for checking the arguments, translating them, and calling the host syscall.

Each template parameter of theAuto syscall class represents an argument to the syscall and can
be any type. Additionally, the type can be wrapped in one or more of the following annotations to specify
various properties of the argument:

• array arg<Type, index> — the argument is an array of the given type whose length is speci-
fied by the integer argument with the given index

• fixed array arg<Type, length>— the argument is an array of the given type and length

• nullterm array arg<Type>— the argument is a null-terminated array of the given type

• null ok arg<Type>— the argument may beNULL, in which caseNULL is forwarded to the host
kernel instead of being considered an invalid guest virtualaddress

• in arg<Type>— the argument is used for input to the syscall (this is the default)

• out arg<Type>— the argument is used for output from the syscall

• inout arg<Type>— the argument is used for both input and output

These annotations alter the generated code accordingly. For instance, the guest virtual address passed
to anout arg or inout arg argument is checked for writability in the guest page table,whereas an
in arg argument is not.

Types requiring special processing can have their handlingoverridden specifically. For example, the
struct iovec* arguments used with thereadv andwritev family of syscalls require deep translation
of addresses.

Furthermore, there are several pseudo-types which indicate that special handling is required. For exam-
ple, the typefd arg indicates that the argument is anint representing a file descriptor that needs to be
security audited. Likewise,path arg indicates that the argument is achar* pointing to a filesystem path
that needs to be audited. There is a standard interface for implementing pseudo-types, making it easy to add
additional types.

This framework makes it easy to implement new syscalls. Oncea common set of pseudo-type and type
handlers have been implemented, adding a syscall forwarderis as simple as writing a single line of code
describing the syscall’s arguments.

6



3.3.3 File Descriptors

KVMSandbox opens several file descriptors for communicating with KVM in the kernel. It is important to
prevent the guest from manipulating these file descriptors.On startup, KVMSandbox queries the kernel for
the maximum file descriptor, and usesdup2 to give its internal file descriptors high numbers near the top
of the space. File descriptor arguments to system calls are checked to ensure they are not one of the internal
descriptors. If so, the system call returns with errnoEBADF, as if the file descriptor were simply not open.
Furthermore, KVMSandbox interceptsgetrlimit system calls and returns an artificially smaller value
for the maximum file descriptor, so the guest should not expect to be able to use these file descriptors.

3.3.4 Processes

Theexecve andfork system calls require special handling.2 fork is mostly straightforward: it calls the
hostfork, creating a copy of the KVMSandbox process and hence the entire state of the virtual machine,
including guest memory. However, due to limitations in Linux, in-kernel KVM state is not duplicated by a
fork. Thus, KVMSandbox saves the state of the virtual CPU (registers, etc.) before the fork, and once in
the child process, closes, re-opens, and re-initializes KVM using the saved state, before returning from the
syscall and resuming guest execution.

execve executes a program either in the sandbox or out of the sandboxaccording to the security policy,
as detailed in Section 3.4. If the program is to be executed outside of the sandbox, KVMSandbox simply
forwards the arguments to the hostexecve, and the new program completely replaces the KVMSandbox
process. If the program is to be executed within the sandbox,KVMSandbox callsexecve on the path to
the KVMSandbox binary. The arguments toexecve are passed as arguments to KVMSandbox, so the new
KVMSandbox process executes the program with the given arguments inside a new sandbox.

3.4 Security Policy

3.4.1 Specifying the Security Policy

KVMSandbox controls access to the filesystem and network viaa security policy file. This file, whose path
is specified on the command line when launching the sandbox, contains a list of objects (file system paths or
socket addresses) and, for each object, a list of capabilities either granted to, or revoked from, the sandboxed
process.

Filesystem paths are specified in the framework as extended regular expressions, allowing rules to
easily match multiple paths. Paths are used (as opposed to inode numbers) for ease-of-use and ease-of-
implementation. The capabilities which apply to file paths are:

• READ — the file can be opened for reading

• WRITE — the file can be opened for writing, or truncated withtruncate

• CREATE — (directories only) new files and directories can be createdwithin this directory

• REMOVE — the file or directory can be removed

• CHATTR — attributes of the file or directory, such as times, ownership, and mode, can be changed

• RENAME — the file or directory can be renamed

2Note that modern Linux systems do not use thefork syscall. Rather, the library functionfork calls the more generalclone
syscall with arguments that specify the behavior offork. Thus, KVMSandbox actually handles theclone syscall. In this section,
fork is used to meanclone with the appropriate arguments.

7



• LINK — a hard link can be created to this file

• SYMLINK — a symbolic link can be created to this path

Network access is controlled by specifying socket addresses and associated capabilities. Addresses can
be remote addresses to which the process connects or sends data, or local addresses to which the process
binds. In the current implementation, only INET family (i.e. IPv4) addresses are supported (attempts to
access other types of sockets are denied), though support for additional socket families would be easy to
add. INET addresses are specified as an address, netmask, andport number. A port number of 0 matches
any port number, and a short netmask can be used to match ranges of addresses.

Capabilities which apply to socket addresses are:

• BIND — the process can bind to this address (with thebind syscall)

• SEND — the process can send to this address (withsendto)

• CONNECT — the process can connect to this address (withconnect)

Any capability (for either files or socket addresses) can be prepended with a “-” character in the policy
file to explicitly revoke the capability from the object. Thespecial capabilityALL represents all applicable
capabilities.

Since it is possible that a file path or socket address could match multiple rules in the policy file, each
rule is tried in the order specified until a rule is found that both matches the path/address and has either
allowed or denied the capability needed to complete the operation. This way, it is easy to have broad, catch-
all rules near the end of the policy, but grant or revoke specific capabilities on specific objects as needed
with earlier rules.

If no rule matches, the default action is to deny.
An example security policy is presented in Section 4.3.

3.4.2 execve Permissions

In addition to specifying file and network capabilities, thepolicy can specify the behavior when the process
executes another program withexecve. Executable paths are specified with extended regular expressions,
and can be given one of the following behaviors:

• DENY — the process is not allowed to execute the file

• ALLOW — the process is allowed to execute the file, and the file will beexecuted natively, outside of
the sandbox

• SANDBOX— the process is allowed to execute the file, and the file will beexecuted within a sandbox
using the same security policy as the current sandbox

• SANDBOX policypath— the process is allowed to execute the file, and the file will beexecuted within
a sandbox using the specified security policy

See Section 3.3.4 for details on howexecve is implemented.

8



3.4.3 Implementation Details

When executing a syscall, any argument of typepath arg is converted by KVMSandbox to an absolute,
canonicalized path with no redundant slashes and no. or .. components. This is the path name used to
query the security policy, and is also the path name passed tothe host system call. The type of syscall being
invoked determines the capability which is sought. For example,open looks forREAD,WRITE, or both de-
pending on the flags argument, whereasunlink looks for theREMOVE capability. For some syscalls, such
ascreat, the parent directory path is also matched against the security policy for theCREATE capability.

Socket address arguments that need to be audited have typesockaddr arg, and are checked in a sim-
ilar fashion. Not all syscalls need their socket address arguments checked; for examplegetsockname’s
struct sockaddr* argument is used for output, not input, and thus does not needto be checked.

3.4.4 Limitations

Since hard links essentially allow an existing file to be accessed with a different name, care must be taken
when granting theLINK capability on a file. An attacker could hard link a file to a pathfor which the
sandbox has additional capabilities, and access the file with these unintended capabilities. Similar care must
be taken withRENAME.

Symbolic links pose particular hazards, since, although the path to the symbolic link itself is audited by
KVMSandbox, when the path is opened, the kernel follows the symbolic link and opens the target, bypass-
ing the KVMSandbox security policy. In the current implementation, it is not possible for KVMSandbox to
securely audit the target of the symbolic link: it would needto check every single path component. This can-
not be done without introducing a race condition in which an attacker swaps out a directory with a symbolic
link after it has been audited but before the path is used. (But see Section 6.5 for possible solutions.)

Instead, the user of the sandbox must be aware of symlinks when granting capabilities. The user should
avoid granting capabilities on symlinks with relative targets, as their actual destinations can change if the
symlink, or one of its ascendant directories, is moved. Finally, the guest’s ability to create symlinks must
be severely restricted. For this reason, the target of the symlink is checked in the security policy for the
SYMLINK capability. In addition, relative symlink targets are converted to absolute paths to ensure symlinks
can’t change meaning if moved. Strictly speaking, these arenot correct semantics and could break a guest
whose functionality depends on relative symlink targets.

There is no way, in the current implementation, to check the file descriptor argument to thefchmod
andfchown syscalls to determine if the process has theCHATTR capability on the file referenced by the
file descriptor. These syscalls are likechmod andchown except they operate on an open file descriptor
rather than a path. Since the ability to obtain a file descriptor to a file is governed by theREAD andWRITE
capabilities, the guest can effectively chmod or chown any path to which it has aREAD orWRITE capability.
One possible solution would be for KVMSandbox to record the path used to open all file descriptors, and
keep track of this information for the lifetime of the file descriptor. This is explored in depth in Section 6.4.

For similar reasons, the current implementation cannot securely support the*at family of syscalls
(openat, mkdirat, etc.). These syscalls function like their non-at equivalents, except they also take an
open file descriptor to a directory from which the file path is relative. Since KVMSandbox does not know
the path which a file descriptor represents, it cannot construct an absolute, canonicalized path to look up in
the security policy. For this reason, KVMSandbox does not support any of these syscalls. Since they are
relatively new and Linux-specific, very few applications use them.

9



4 Evaluation

KVMSandbox has been tested with a variety of single-threaded programs on Linux. It works with the stan-
dard suite of command line programs, like grep, cat, and sed,as well as the gcc compiler and several graph-
ical X programs, like xpdf (a PDF viewer), xv (an image viewer), and Dillo (a bare bones web browser).
There is no noticeable performance degradation in any of these X programs, even as xpdf is used to browse
complex PDFs, or xv is used to view large directories of high-resolution photos. xpdf is a compelling use
case since PDFs are a common attack vector, and PDF interpreters are constantly found to contain security
flaws. Similarly, web browsers are often the target of security exploits.

4.1 Benchmarks

KVMSandbox’s performance has been evaluated with several benchmarks. Each benchmark was run both
natively and within KVMSandbox to measure the slowdown caused by KVMSandbox. The benchmarks
were run on a machine with a 2.66GHz Intel Core 2 Duo E6700 CPU and 4GB of RAM, running Linux
kernel 2.6.33 and glibc 2.11.

The benchmarks are:

• primes — Calculates the first 300,000 primes. Does not make syscalls. Is heavily CPU- and memory-
bound.

• factor — Factors the product of two large prime numbers. Doesnot make syscalls. Is heavily CPU-
bound.

• bzip2 — Compresses a 1.7GB XML file with bzip2. Combines a CPU-intensive operation with many
read and write system calls, which tests the efficiency of KVMSandbox’s syscall forwarding mecha-
nism.

• grep — Recursively greps for a string in the Linux 2.6 kernel source tree (approximately 39,000 files).
Makes many filesystem syscalls as directories are scanned and files opened, which tests the efficiency
of KVMSandbox’s security policy code.

• mmapgrep — Recursively greps for a string in the Linux 2.6 kernel source tree, with the--mmap
option to use mmap instead of read. Like the grep benchmark but makes many mmap syscalls. This
tests the performance of KVMSandbox’s VM system.

• syscall — Runs the close syscall in a loop 1,000,000 times. Tests performance of syscall handling and
nothing else.

These benchmarks were chosen because they exercise a wide variety of different scenarios. For example,
primes and factors are purely computational, whereas syscall makes only syscalls, and bzip2 and grep are
in-between.

Results for the first five benchmarks are displayed in Figure 2. The overhead for the purely computa-
tional benchmarks (primes and factor) are negligible at less than 1%. This is expected, as purely computa-
tional code runs directly on the CPU in guest mode and never needs to exit to the host. The tiny overhead is
likely due to the increased initialization cost of setting up the sandbox.

Overhead for the more I/O-intensive benchmarks (bzip2, grep, and mmapgrep) is modest at under 5%.
Some overhead is to be expected due to the guest exit and the argument validation and translation that
must occur upon every syscall. To help understand the runtime, the bzip2 benchmark was run again with
some statistics collection to count the number of pointer arguments that were translated and copied. In

10



Figure 2: Normalized runtimes for benchmarks running underKVMSandbox. Each bar plots the runtime
under KVMSandbox divided by the runtime for the same benchmark running natively (shorter bars mean
faster KVMSandbox runs).

total, 548,950 pointer arguments passed through KVMSandbox. Of those, 3.7% needed to be copied via a
temporary buffer because the guest virtual memory translated to non-contiguous host memory.

The syscall benchmark had vastly different results. Under KVMSandbox, it ran nearly 22 times slower
than native speed. This indicates that there is significant overhead involved in handling syscalls. However,
this benchmark represents an extraordinarily unlikely usecase. A real program is comprised of far more
than just syscalls, and the more realistic bzip2 and grep benchmarks show much lower overhead.

4.2 Comparison with Ptrace-based Sandboxes

KVMSandbox should be substantially more secure than ptrace-based sandboxes like Systrace. Ptrace is
a Linux-specific mechanism that allows one process to intercept the system calls made by another. The
monitor program can examine the syscall arguments and prevent the syscall or rewrite the arguments. Ptrace-
based sandboxes use this technique to apply alternative security policies. However, ptrace-based sandboxes
suffer from one crucial limitation: the host syscall must ultimately be made from the sandboxed process,
meaning the arguments to the syscall point to addresses in a potentially malicious process’ address space.
This opens the door to race conditions in a threaded program:a thread could modify a syscall argument
after it has been validated but before the syscall is made, bypassing the security checks. While not easy to
exploit such a race condition, several practical techniques are described in [10].

KVMSandbox is immune to the problem because, when necessaryto preserve security, it copies syscall
arguments from guest virtual memory to host virtual memory,where they are safe from guest tampering. It
is the copy that is audited and passed to the host syscall. Ptrace sandboxes cannot adopt a similar approach
because a host syscall made from the monitor process would affect the state of the monitor process, not of
the sandboxed process which made the syscall in the first place. KVMSandbox’s key difference is that the

11



1 file /etc/resolv.conf READ
2 file /etc/services READ
3 file /etc/hosts READ
4 file /etc/host.conf READ
5 file /etc/nsswitch.conf READ
6 file /etc/fonts/fonts.conf READ
7 file /var/cache/fontconfig.* READ
8 file /lib/.* READ
9 file /usr/.* READ

10
11 file /home/andrew/.dillo/.* ALL
12 file /home/andrew/.Xdefaults READ
13 file /home/andrew/.Xauthority READ
14
15 file / READ
16 file /home READ
17 file /home/andrew READ
18 file /home/andrew/Downloads READ
19 file /home/andrew/Downloads/.* CREATE WRITE
20
21 socket inet 0.0.0.0 0.0.0.0 53 CONNECT SEND
22 socket inet 127.0.0.1 255.255.255.255 6023 CONNECT
23 socket inet 127.0.0.0 255.0.0.0 0 -ALL
24 socket inet 10.0.0.0 255.0.0.0 0 -ALL
25 socket inet 192.168.0.0 255.255.0.0 0 -ALL
26 socket inet 0.0.0.0 0.0.0.0 80 CONNECT
27 socket inet 0.0.0.0 0.0.0.0 443 CONNECT

Figure 3: Example Security Policy for the Dillo Web Browser

monitor and the guest run in the same process, but there are parts of the address space that are isolated from
the guest.

4.3 Security Policies

The utility of security policies was evaluated by writing a usable security policy for the Dillo web browser
[4]. Dillo was used because it’s single-threaded, unlike most other modern web browsers, and thus can run
in the current implementation of KVMSandbox. Although it ismuch more minimalistic than browsers like
Firefox, it should have similar resource access needs. For example, it uses sockets to connect to web servers,
stores its preferences and data in a hidden directory in the user’s home directory, and can download files to
the filesystem. Thus, it is an adequate stand-in for studyingbrowser security policies.

The final version of the security policy is shown in Figure 3. Lines 1–9 grant read access to various
system locations containing configuration files, data directories, and libraries. Lines 11–13 grant access to
configuration files in the user’s home directory. Line 11 grants full access to a Dillo-specific directory, where
cookies, cache, and configuration is stored. Lines 15–19 grant access to a Downloads directory, where Dillo
can write (but not read) files. Lines 15–18 are not strictly necessary, but they allow the user to browse
through the filesystem to the Downloads directory via Dillo’s save file dialog box.

Lines 21–27 set the network policy. Line 21 allows Dillo to contact port 53 on any host so it can perform
DNS queries. Line 22 allows Dillo to connect to the local X server. Lines 23–25 block access to localhost
and systems with private IP addresses. Finally, lines 26–27allow Dillo to connect to ports 80 and 443, the
HTTP and HTTPS ports.

12



The policy was designed to minimize the damage if a security vulnerability in Dillo led to the execution
of arbitrary code served by a malicious website. Such arbitrary code might attempt to read sensitive data
and upload it to the attacker’s server for nefarious purposes like identity theft. The security policy provides
protection by only allowing reads to a few select locations,like system directories that contain no sensitive
data. For convenience, the policy allows blanket access to/lib and/usr. On a modern Linux system,
these directories should contain only files from software packages, and no user data.

Arbitrary code might also attempt to infect other parts of the system by writing to the user’s configuration
files or startup scripts. The security policy guards againstthis attack by allowing writes only to the user’s
.dillo andDownloads directories. By allowing writes to.dillo, an attacker could tamper with Dillo,
but since Dillo runs within the sandbox, the attack still could not affect the rest of the system. The attacker
could write arbitrary files to theDownloads directory, so a user must treat any file insideDownloads
with suspicion, but this is already good practice when handling downloads from the Web.

An attacker might also use the host’s network access as a backdoor into a firewalled network, or to turn
the machine into a zombie in a botnet. The security policy protects against the former exploit by blocking
access to IP address ranges that need protection. Of course,this comes with a trade-off, as it prevents
the user from accessing web servers on the internal network.To protect against the botnet scenario, the
security policy allows access to only the most common web server ports (80 and 443). This would prevent
malicious code from sending spam or attacking non-web services. This also has a downside, as it blocks
access to web servers running on alternative ports. A less paranoid security policy would block access only
to frequently-attacked ports, like 25 (SMTP).

The one limitation of this security scheme is that while it does a good job protecting the system, it does
nothing to protect Dillo itself. For example, by allowing blanket access to the.dillo directory, it enables
malicious code to steal the user’s browser history and cookies. This could be solved by running multiple
instances of Dillo, each with its own configuration directory. (Or, for other browsers, by running multiple
profiles; Firefox, for example, stores each profile in a distinct directory.)

A better solution would require changes to the web browser itself to ensure different websites are ade-
quately segregated. This is beyond the scope of this work, but it is worth mentioning that a browser could
use KVMSandbox internally to provide segregation. Google Chrome may be particularly adaptable to this,
since it already runs each tab in a separate process. Runningeach tab’s process inside KVMSandbox would
provide added protection.

5 Conclusion

KVMSandbox is a userspace sandbox program that allows Linuxbinaries to run unmodified in a restricted
environment. System calls are interposed by KVMSandbox andaudited to ensure the guest is only allowed
to access resources in accordance with a user-specified security policy. To provide isolation with minimal
overhead, KVMSandbox uses hardware virtualization found in most new x86 processors via Linux’s KVM
interface.

KVMSandbox provides many advantages over existing solutions. It runs entirely in userspace with no
need for elevated privileges or kernel modifications, allowing for easier development and deployment. While
traditional userspace solutions have employed complicated and high-overhead dynamic code translation,
KVMSandbox takes advantage of hardware virtualization, allowing for essentially zero overhead on pure
computation. Though handling syscalls is expensive, KVMSandbox adds no more than 5% overhead in
practical benchmarks.

13



6 Future Work

6.1 Trace and Interactive Modes

A simple but user-friendly enhancement would be to prompt the user interactively to allow or deny actions
by the guest program that aren’t covered by the security policy. This would save the user from having to
anticipate every desired permission in advance. One advantage of KVMSandbox being implemented in
userspace and not the kernel is that it is easy to implement features that interact with the user.

Another user-friendly feature would be a mode that allows all actions by the application but records a
trace of them to a file. This file could be used as the basis for a security policy for the application.

6.2 Thread Support

6.2.1 Safety

The current implementation supports only single-threadedprograms. Nevertheless, great care has been taken
to make the design of KVMSandbox suitable for multi-threaded programs. Providing security in a multi-
threaded environment is challenging because while one thread is executing a syscall whose arguments are
being audited, another thread can modify the memory being audited. This is a race condition, and if exploited
at the right time, can allow the application to bypass the sandbox’s permissions checks. KVMSandbox is
already invulnerable to this because it always copies arguments that need auditing to host-only address
space. The copy, which is safe from guest meddling, is audited and passed to the host syscall.

For efficiency, KVMSandbox avoids copying syscall arguments whose contents need not be security-
audited. Instead it passes to the host syscall an address that points directly into guest memory. During the
execution of the host syscall, another thread could unmap the virtual guest page containing the argument. In
turn, the guest physical page which backed the virtual page would be freed, and possibly re-allocated for a
different purpose, such as to hold a guest page table. The host syscall would either read from or write to this
re-purposed guest physical page. To prevent this, KVMSandbox needs a way to lock down guest physical
pages being used during syscalls, to prevent those guest physical pages from being reused.

There are other edge cases to consider. For example, a guest could remap the virtual pages holding a
syscall argument while another thread is in the host syscall. Since the address translation is done before
executing the host syscall, the host syscall will read from or write to the old mapping. This cannot be used
to compromise the sandbox (after all, the syscall might havetaken place before the remapping occurred),
though it might lead to unexpected results. However, this scenario represents undefined behavior, and no
properly-written program would ever attempt it.

6.2.2 Implementation

First, any internal data structure in KVMSandbox that is accessed via syscalls would need to be protected
with mutexes to prevent concurrent access from multiple threads.

Due to limitations in KVM, it is only possible to have one instance of KVM per address space. However,
it is possible to have one virtual CPU per thread. Thus, KVMSandbox could support multi-threaded pro-
grams by creating one host thread for every guest thread, andrunning a virtual CPU in each. Unfortunately,
KVM supports at most 256 virtual CPUs, limiting the number ofthreads per program to 256. In practice,
this is likely sufficient for most programs.

6.3 64-bit Support

Although KVMSandbox has been implemented only for 32-bit x86 hosts and guests, a port to the x86-64
architecture should be straightforward. KVM supports x86-64, and no part of KVMSandbox’s design or

14



approach wouldn’t work in x86-64. Of course, x86-64 uses larger addresses and has a different page table
structure, so KVMSandbox’s virtual memory code would need to be modified accordingly. In addition,
Linux uses a different set of syscalls on x86-64. These syscalls would need to be implemented for x86-
64. This effort would be greatly facilitated by KVMSandbox’s syscall framework (Section 3.3.2). The few
syscalls that need manual implementations (likemmap andexecve) would likely share much code with
their 32-bit counterparts.

The possibility for 64-bit support gives KVMSandbox a huge advantage over software virtualization
solutions like vx32, whose design depends heavily on segmentation, which does not exist in x86-64[6].

6.4 Virtual File Descriptors

Currently, KVMSandbox does not track guest file descriptors. Apart from the few KVM file descriptors that
are isolated from the guest at the top of the file descriptor space, the guest and host share the same set of file
descriptors. While simple, this has several disadvantages. First, once the guest has launched, KVMSandbox
can no longer open file descriptors for internal use, as thesefile descriptors would become visible inside the
guest. Second, in several places KVMSandbox would benefit from knowing additional details about a file
descriptor, such as the type of object the file descriptor represents (a file, socket, terminal device, etc.).

KVMSandbox should virtualize the space of guest file descriptors and maintain a table of open file de-
scriptors in the guest. In the table, KVMSandbox would storerelevant information such as the corresponding
host file descriptor. File descriptor syscall arguments andreturn values would need to be translated via the
table, and any syscall that creates file descriptors would need to be specially handled in order to keep the
table up-to-date.

Two features that would be enabled by such a system are described below.

6.5 Symbolic Link Security

As described in Section 3.4.4, symlinks pose a problem for security because KVMSandbox cannot safely
check that no component of a file path is a symlink. If KVMSandbox could open file descriptors for internal
use, it could validate paths by opening each component one-by-one using theopenat syscall to avoid race
conditions.

6.6 ioctl Support

ioctl is very difficult to handle because the type of its third argument depends not only on the ioctl
number but also on the type of object represented by the file descriptor, since different drivers in Linux
have overlapping ioctl numbers. Without information aboutthe file descriptor, KVMSandbox doesn’t know
whether the third argument should be treated as a pointer or as an integer. If KVMSandbox tracked the types
of file descriptors, it could use this information to properly handleioctl.

References

[1] http://wiki.apparmor.net/index.php/Main Page.

[2] http://www.citi.umich.edu/u/provos/systrace/.

[3] http://www.qemu.org/.

[4] http://www.dillo.org.

15



[5] Ole Agesen, Alex Garthwaite, Jeffrey Sheldon, and Pratap Subrahmanyam. The evolution of an x86
virtual machine monitor.SIGOPS Oper. Syst. Rev., 44(4):3–18, December 2010.

[6] Bryan Ford and Russ Cox. Vx32: lightweight user-level sandboxing on the x86. InUSENIX 2008
Annual Technical Conference on Annual Technical Conference, ATC’08, pages 293–306, Berkeley,
CA, USA, 2008. USENIX Association.

[7] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies into the linux
operating system. InProceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference,
pages 29–42, Berkeley, CA, USA, 2001. USENIX Association.

[8] Aaron Myers. Operating system protection domains, a newapproach. Master’s thesis, Brown Univer-
sity, 2008.

[9] Luke Peng. The sandbox: Improving file access security inthe internet age. Master’s thesis, Brown
University, 2006.

[10] Robert N. M. Watson. Exploiting concurrency vulnerabilities in system call wrappers. InProceedings
of the first USENIX workshop on Offensive Technologies, WOOT ’07, pages 2:1–2:8, Berkeley, CA,
USA, 2007. USENIX Association.

16


