KVMSandbox: Application-Level Sandboxing with x86 Hardwa
Virtualization and KVM

Andrew Ayer

1 Introduction

Security is one of the most important concerns in computidgy. Despite this, the most common operating
system security model has remained relatively unchanged the last several decades. Unix-style file
permissions, which are essentially a limited form of ACLséd authorization, are still the most pervasive
model today and are used by modern operating systems likexland Mac OS X. More general ACL-
based authorization, which allows permissions to be agpli@ny arbitrary user (instead of just classes like
“owner,” “group,” and “other”) is used on Windows.

However, this security model leaves much to be desired. ¥amnple, Unix permissions control access
only to files, neglecting other resources like network ascéaurthermore, Unix-style permissions dictate
what a particulausercan access, rather than whairacesscan access. This is often insufficient, especially
when a user may be running programs that are either untrustyvor insecure. Although an application
may need access only to a subset of resources, it runs witfultherivileges of the user executing the
program. This is especially pertinent in the Internet efaemvusers regularly download and run potentially
untrustworthy programs. Even trustworthy applicatioke lveb browsers and PDF readers constantly come
into contact with untrusted data, and a single coding emarapen the user to attack.

Various extensions to the model have been proposed overetrs.ySELinux [7] is probably the most
featureful and well-known. SELinux adds hooks to resoustated functions in the kernel to enforce addi-
tional access control. It allows an administrator to setrdra#ly-controlled mandatory access control policy
for all resources in the system. Unlike Unix permissions,.i&ix policies can apply to individual processes
as well as individual users. AppArmor [1] is an emergingralétive to SELinux. Like SELinux, it enforces
centrally-administered mandatory access control via f@alded to the kernel.

Another approach is application-level sandboxing, in Whacsandbox interposes a process’ resource
accesses, and applies alternative access control megtzani&pplication-level sandboxing is appealing
because it doesn’t require cumbersome central manageiker8ELinux or AppArmor. Past attempts at
sandboxing have adopted various approaches. Systraced2]syscall tracing facilities, such as Linux’s
ptrace, to interpose system calls. Peng [9] modified Linuadd a “restricted exec” syscall and modified
system calls likeopen to enforce security checks when called from a restrictedgs®. Myers [8] devel-
oped a system in which sandboxed applications run under eaiipg system in VMWare and access files
over NFS. A modified userspace NFS server on the host enfoleggstem security policy. Vx32 [6] uses
application-level software virtualization to execute gigdan a virtualized sandbox.

None of these solutions are completely satisfactory. Peegspace solutions like Systrace and vx32
are appealing because they can be developed and deployedjmokly and easily than in-kernel systems
like SELinux. However, Systrace is limited by the capaigi$itof ptrace and is vulnerable to a variety of
race condition-based attacks. Meanwhile, vx32 uses sdtwigtualization with dynamic code translation,
which is complex, imposes overhead, and relies on legacyed@res like segmentation.

An emerging alternative to software virtualization on x8&ardware virtualization. While CPU support
for trap-and-emulate virtualization was common in the x86-era, it was absent in x86 until Intel released

the first CPU with “VT-x" in 2005. AMD followed suit in 2006 wit “AMD-V.” [5] Since then, increasingly
more models of x86 CPUs have shipped with hardware virtatidim support, and Intel and AMD have
continued to improve the technology. Software has beguak® advantage of hardware virtualization. For
example, Windows 7’'s XP compatibility mode requires hanswartualization, as does VMWare to host
64-bit guests.

KVM is Linux’s hardware-neutral interface to hardware wvalization. A userspace process with access
to the KVM device/ dev/ kvmcan open the device, and get and set the virtual processenstavarious
i oct | calls. Once the program begins executing the guest, thekaoes not return control to the process
until there is an exit event, such as I/O, that requires etioma KVM is most commonly used for full-
system virtualization, in which a BIOS, boot loader, kermaeld userspace all run inside the virtual machine.
The most notable example is the gemu emulator[3]. A systkendemu makes full use of CPU features
in the guest, such as multiple rings and interrupts. Howe<&M can also be used to virtualize a single
process running in ring 3.

KVMSandbox uses KVM to offer the best-of-all-worlds for dipption sandboxing on Linux. KVM-
Sandbox uses KVM to efficiently virtualize a single processning in ring 3. The process has its own
virtual memory space and is completely isolated from thé oethe system. System calls are intercepted
by KVMSandbox, security audited, and forwarded to the heshél.

2 Sandbox M odel

A process running inside KVMSandbox should run with the déaid Unix permissions of the user running
the sandbox, further constrained by a security policy igechy the user. The security policy should be able
to provide fine-grained control over specific operatiorige(lieading or writing) on individual file paths and
network addresses. Any resource access made inside theosamchether to a file or to a socket, should be
checked against the security policy before being passdektbdst kernel, where standard Unix permissions
would apply. With this security model, the sandbox shouldabke to protect against an application that
attempts to access files or make network connections thaareecessary for its desired functionality.

The sandboxed application should not be aware that it isimngninside a sandbox. Apart from some
operations returning access denied errors contrary tatdimelard semantics of Unix permissions, all other
operations should perform identically as they would owdite sandbox. Any Linux program should be
able to run inside the sandbox unmodified.

There should be no way for a process to escape out of the sandigain access to resources which are
denied by the security policy. Besides proper checking staly arguments, KVMSandbox must protect its
virtual memory and file descriptors from tampering by thegju&he sandbox must also be resilient against
shared memory attacks, where one guest thread maniputatesemory which KVMSandbox is auditing
in another thread.

3 Implementation

3.1 Oveview

KVMSandbox is implemented as a userspace command-lineggrogritten in C++11. On the command-
line to KYMSandbox, the user specifies the path to the sgqoiicy file, the path to the program to execute,
and the arguments to be passed to the program. The prograxadote must be a 32-bit ELF executable.
The program does not need to be specially compiled for KVMiBar, and can be either statically or
dynamically linked (though if it is dynamically linked, ttsecurity policy must allow the application to read
the shared libraries).

GDT, IDT, TSS, Interrupt
Handlers, Interrupt Stack
/ 3GB
KVMSandbox Stack / Stack
---15GB
Guest
Guest Memory
1.5GB Page Mappings
Table
. Brk
------- 0 -
Guest . Heap
KVMSandbox Heap Physical Memory Data/BSS
KVMSandbox Data/BSS
KVMSandbox Text Text
0
Host Guest
Virtual Memory Virtual Memory

Figure 1: Memory layout in KVMSandbox.

After KVMSandbox has initialized the sandbox environmerd bbaded the guest program into the guest
virtual address space, it instructs KVM to enter the gueste program executes inside the KVM virtual
machine, returning control to KVMSandbox only when a sylssaxecuted. The guest program has access
to the file descriptors passed to KVMSandbox, allowing itrtteiact with the user over stdin and stdout,
just like a natively-running program.

3.2 Virtual Memory

Address space is one of the most important resources to aand@ince the guest runs in the same host
process as KVMSandbox, a breach of the sandbox would enablguest program to access the host's
address space, where it could alter the sandbox’s intaatal ar inject arbitrary code that would be executed
outside the sandbox. In addition, in order for guest progriomrun unmodified, it is necessary to present to
the guest what appears to be its own, complete 32-bit vigddiess space.

KVM is used to give the guest program its own, isolated, asklspace. Since KVM is tailored for
full-system x86 virtualization, there are in fact two adeiespaces within the guest: the arbitrarily-sized
guest physical address space, and the 32-bit guest vidda¢ss space. Translation between guest virtual
addresses and guest physical addresses is handled by thékéRltreal x86 system: by using the page
table pointed to by the guest's CR3 register. The guest palysiemory resides in a contiguous region of
KVMSandbox’s virtual address space (hereinafter refetoes the host virtual address space). Translation
between guest physical addresses and host virtual addressde accomplished by adding or subtracting
the base address of the contiguous region. See Figure 1 forosigl representation of the various address
spaces.

KVM provides an interface for mapping a contiguous regioguést physical addresses (at any length
and offset) to a contiguous region of host virtual addressison initialization, KVMSandboxmraps a
writable, anonymous, and private region of roughly 1.5GEhmhost virtual address space, and sets this as

the guest’s physical address space, starting at guestcphgsidress 0.

When the guest requests a virtual memory mapping, such deesiarap system call, a region of the
same size as the requested mapping is allocated from thé guescal memory. The allocation is done
with a free list and a simple first-fit allocation strategy.eTdddress of the allocated guest physical memory
is converted to a host virtual address, and KVMSandbox dgsc hostimmap call to request that a fixed
mapping of the requested resource be placed at this hasahatidress.

At this point, the requested resource is visible in the deig@étysical address space. To make it visible
to the guest process, in its virtual address space, KVMSandtds appropriate entries to the guest’s page
table. Like a real operating system, if the guest programests a fixed mapping, KVMSandbox places
the mapping at the provided guest virtual address. Otherivisads an available region of the guest virtual
address space and places the mapping there.

Page tables and page directories also must reside in thésguiggsical memory. These are allocated as
necessary by KVMSandbox using the physical memory free list

When the guest asks to unmap a region of its virtual addressesiKVMSandbox translates the guest
virtual addresses to their corresponding guest physiaiieades via the guest page table. It then translates
the guest physical addresses to host virtual addressessukihostmap calls to map writable, anony-
mous, and private regions over the area. By the semantiosegh, the host kernel will unmap the mappings
that were previously occupying the region.

Care must be taken to ensure that KVMSandbox does not vidlid's requirement that guest physical
memory be backed by a writable and mapped region of hostaligddress space. This poses a problem
if the guest requests a read-only mapping. In this case, KadBox asks the host to create a writable
and private mapping, but unsets the write bit for the pageabeénguest’'s page table to prevent the guest
from actually writing to the region. The host mapping is madegate in addition to writable since it is not
possible to make a shared, writable mapping on a file descmgtt open for writing. Although the mapping
is private, thanks to Linux’s copy-on-write semantics, tgion will behave exactly like a shared mapping
until a write is made. Since the region is protected agaimgesvby the guest, it will never be written absent
a serious bug in KVMSandbox.

3.2.1 Internal Structures

KVMSandbox creates several internal structures in thetguasual address space, such as the GDT, IDT,
TSS, and several interrupt handlers. Space for this datbbsated from the guest’s physical memory, and
mapped to high virtual addresses (above 3GB, the highest waérspace address in 32-bit Linux) via the
guest page table. To protect against modification by thetguegram, the page table entries do not have
the user flag set.

3.2.2 Guest Physical Memory Size

The size of the guest’s physical memory, which defaults 5B, is configurable, but since it must reside
in a contiguous region of host virtual memory, it must not @e large for the host’s virtual address space,
which also contains the stack, heap, text, and data of the B&idibox process. Since pages are always
resident in the guest, the total size of the guest’s virtuaimory mappings is limited by the size of the guest’s
physical memory. Therefore, a sandboxed application veden be able to use as much virtual memory as
a non-sandboxed application. However, in practice, fevbiB2pplications need to use that much virtual
memory. And on a 64-bit system (see Section 6.3), the virnghory space would be vast enough that a
large enough physical address space could be allocateldefguest.

Note that while guest pages are always resident in guestgathysemory, since guest physical memory
resides in host virtual memory, they may be paged in and ohosf physical memory by the host kernel.

Also, thanks to demand paging, the large amount of anonymmersory that is mapped for the guest
physical memory does not actually occupy host physical nmgmatil it is used.

3.3 System Calls

Since system calls cannot be handled inside the sandbox avjaest makes a syscall, it must exit to the
host, where the arguments can be validated and forwardée teal host syscall.

One method of executing system calls under Linux is for trergmace to generate software interrupt
0x80, which is handled by an interrupt handler in kernel larithe syscall number is passed in register
% ax, and up to six arguments are passed in registers. To foraguitst to exit to the host, KVMSandbox
writes a short interrupt handler for interrupt 0x80 into theest address space and installs it in the guest’s
interrupt descriptor table. The two instruction, threeebiytterrupt handler executes a port 1/O instruction
and then returns from the interrupt. When executed, the |f@rinstruction forces a VM exit, returning
control to the host, where the syscall is handled by examithie register state of the guest.

Most system calls can be handled by calling the correspgrgliacall in the host, with some minor pre-
and post-processing which is described in detail below.eQslgstem calls, such asrap, alter primarily
the state of the sandbox and thus are handled specially by 8Afdboxnmrap in particular is described in
Section 3.2 above.

3.3.1 Argument Trandation

The greatest challenge in executing system calls is vaigland translating pointer arguments from guest
virtual addresses to host virtual addresses before fom@tte arguments to the host syscall. For efficiency,
copying of large buffers must be avoided. Furthermore, Hralsox must be robust and secure against
another thread remapping the guest virtual address spabanging the contents of a string or data structure
after it has been audited but before it has been used.

Any pointer argument whose contents need to be securityealidi copied from guest virtual memory to
temporary memory in host virtual memory. This is unavoigabKVMSandbox is to be safe against time-
of-check-time-of-use vulnerabilities. Fortunately, Hrguments that require auditing are usually relatively
small in size, such as null-terminated strings represgiitia paths.

Pointer arguments that do not need their contents audibeth @&s thest ruct ti nmeval * ti meout
argument tsel ect , or the buffer passed tor i t e) still need to be checked to ensure that the entire range
of guest virtual addresses is valid. For non-arrays, the efzthe argument type is used to determine
the address range. For arrays, the length of the array idlyspecified by some other argument to the
syscall. Null-terminated arrays are always copied out @stjwirtual memory, as this is the only way to
prevent accessing unchecked addresses if a guest threada®the null terminator after the range has been
checked but before it is used. The vast majority of null-ieated array arguments are file path strings,
which need to be copied for auditing anyways.

Once the guest virtual address range is checked, the addtestde translated to a host virtual address
for passing to the host syscall. If the range does not crosgea poundary, the translation is accomplished
by looking up the page in the guest page table and convetimgesulting guest physical address to a host
virtual address. However, if the range crosses a page boyntis possible that some guest virtual pages
may map to non-contiguous guest physical pages (and bysatemon-contiguous host virtual pages). In
this case, it is necessary to make a copy of the guest virteahorny in a contiguous range of temporary
host virtual memory. This is potentially quite costly, esiply for buffers. However, this would happen

INewer versions of Linux use the new SYSENTER and SYSEXIT x@&8riictions, if available, to avoid the overhead of a
software interrupt. The current implementation of KVMShoxl uses the interrupt 0x80 method because it's simpleagihdhe
design could be adapted to work with SYSENTER and SYSEXIT.

only if the memory crosses different virtual memory mappingthe guest, since KVMSandbox allocates
contiguous guest physical memory for each mapping. Thisdbably unlikely in most programs, since,

for example, the stack is a single mapping. If copying is seary, KVMSandbox considers whether the
argument is for input, output, or both, and only copies inrtheessary direction(s).

3.3.2 Syscall Argument M etalanguage

Linux, as of version 3.3, has over 300 syscalls. Writing deglband for each and every syscall, even if brief,
would be extraordinarily cumbersome and hamper maintdityabThus, KVMSandbox makes extensive
use of C++ template metaprogramming to automatically geaesyscall forwarders based on annotations

of argument types.
For example, the code to create the syscall forwarder for ¢zl system call is:

syscal | s[3] = new Auto_syscal |l <fd_arg, out_arg<array_arg<char, 2>> size t>(3);

This line installs an automatically-generated systemfoallarder with number 3r(ead). The syscall takes
three arguments: a file descriptorchar array used for output whose length is specified by the syscall
2nd argument (counting from 0), andsaze_t . At compile-time, templates generate the appropriate code
for checking the arguments, translating them, and callieghost syscall.

Each template parameter of tAeit o syscal | class represents an argument to the syscall and can
be any type. Additionally, the type can be wrapped in one orenad the following annotations to specify
various properties of the argument:

e array_arg<Type, i ndex>—the argumentis an array of the given type whose length isispe
fied by the integer argument with the given index

e fixed_array._arg<Type, | ength>—the argumentis an array of the given type and length
e nul | t ermar ray_ar g<Type>— the argument is a null-terminated array of the given type

e nul | _.ok_ar g<Type>— the argument may bEULL, in which caseNULL is forwarded to the host
kernel instead of being considered an invalid guest virdidaress

e i n_ar g<Type>— the argument is used for input to the syscall (this is theua&f

e out _ar g<Type>— the argument is used for output from the syscall

i nout _ar g<Type>— the argument is used for both input and output

These annotations alter the generated code accordinghjin§tance, the guest virtual address passed
to anout _ar g or i nout _ar g argument is checked for writability in the guest page tallbereas an
i n_ar g argument is not.

Types requiring special processing can have their handiirggridden specifically. For example, the
struct i ovec* arguments used with theeadv andwr i t ev family of syscalls require deep translation
of addresses.

Furthermore, there are several pseudo-types which imdibat special handling is required. For exam-
ple, the typef d_ar g indicates that the argument is ant representing a file descriptor that needs to be
security audited. Likewisggat h_ar g indicates that the argument ic@ar * pointing to a filesystem path
that needs to be audited. There is a standard interface fdeimenting pseudo-types, making it easy to add
additional types.

This framework makes it easy to implement new syscalls. @Qnoammon set of pseudo-type and type
handlers have been implemented, adding a syscall forw@des simple as writing a single line of code
describing the syscall's arguments.

3.3.3 FileDescriptors

KVMSandbox opens several file descriptors for communicatiith KVM in the kernel. It is important to
prevent the guest from manipulating these file descriptOrsstartup, KVMSandbox queries the kernel for
the maximum file descriptor, and usggp?2 to give its internal file descriptors high numbers near thge to
of the space. File descriptor arguments to system callstereked to ensure they are not one of the internal
descriptors. If so, the system call returns with erBRADF, as if the file descriptor were simply not open.
Furthermore, KVMSandbox intercepget r | i mi t system calls and returns an artificially smaller value
for the maximum file descriptor, so the guest should not exjoeloe able to use these file descriptors.

3.3.4 Processes

Theexecve andf or k system calls require special handlifi§.or k is mostly straightforward: it calls the
hostf or k, creating a copy of the KVMSandbox process and hence theeesitite of the virtual machine,
including guest memory. However, due to limitations in Linin-kernel KVM state is not duplicated by a
fork. Thus, KVYMSandbox saves the state of the virtual CPUifters, etc.) before the fork, and once in
the child process, closes, re-opens, and re-initialize®MKMing the saved state, before returning from the
syscall and resuming guest execution.

execve executes a program either in the sandbox or out of the sarattmmtding to the security policy,
as detailed in Section 3.4. If the program is to be executésidriof the sandbox, KVMSandbox simply
forwards the arguments to the hastecve, and the new program completely replaces the KVMSandbox
process. If the program is to be executed within the sandig®Sandbox callsexecve on the path to
the KVMSandbox binary. The argumentsawecve are passed as arguments to KYMSandbox, so the new
KVMSandbox process executes the program with the givemaegts inside a new sandbox.

3.4 Security Policy
3.4.1 Specifying the Security Policy

KVMSandbox controls access to the filesystem and network s@curity policy file. This file, whose path
is specified on the command line when launching the sandlootains a list of objects (file system paths or
socket addresses) and, for each object, a list of capabikither granted to, or revoked from, the sandboxed
process.

Filesystem paths are specified in the framework as extenglgalar expressions, allowing rules to
easily match multiple paths. Paths are used (as opposedde imumbers) for ease-of-use and ease-of-
implementation. The capabilities which apply to file pathes a

e READ— the file can be opened for reading

WRI TE — the file can be opened for writing, or truncated withuncat e

CREATE — (directories only) new files and directories can be creatigioin this directory
¢ REMOVE — the file or directory can be removed
e CHATTR— attributes of the file or directory, such as times, owngrsand mode, can be changed

¢ RENAME — the file or directory can be renamed

2Note that modern Linux systems do not useftioe k syscall. Rather, the library functidror k calls the more general one
syscall with arguments that specify the behaviok of k. Thus, KVMSandbox actually handles tbeone syscall. In this section,
f or k is used to meanl one with the appropriate arguments.

e LI NK— a hard link can be created to this file
e SYM.I NK— a symbolic link can be created to this path

Network access is controlled by specifying socket addeeansd associated capabilities. Addresses can
be remote addresses to which the process connects or sdadermdacal addresses to which the process
binds. In the current implementation, only INET family (i.tPv4) addresses are supported (attempts to
access other types of sockets are denied), though suppatditional socket families would be easy to
add. INET addresses are specified as an address, netmagioramdmber. A port number of O matches
any port number, and a short netmask can be used to matchsrahgeédresses.

Capabilities which apply to socket addresses are:

e Bl ND— the process can bind to this address (withlihed syscall)
e SEND— the process can send to this address (&&hdt 0)

e CONNECT — the process can connect to this address (ethnect)

131

Any capability (for either files or socket addresses) canrepgnded with a-*” character in the policy
file to explicitly revoke the capability from the object. Thpecial capabilityALL represents all applicable
capabilities.

Since it is possible that a file path or socket address coutdhmaultiple rules in the policy file, each
rule is tried in the order specified until a rule is found thattbmatches the path/address and has either
allowed or denied the capability needed to complete theatiper. This way, it is easy to have broad, catch-
all rules near the end of the policy, but grant or revoke djmecapabilities on specific objects as needed
with earlier rules.

If no rule matches, the default action is to deny.

An example security policy is presented in Section 4.3.

3.4.2 execve Permissions

In addition to specifying file and network capabilities, fi@icy can specify the behavior when the process
executes another program witlxecve. Executable paths are specified with extended regular ssipres,
and can be given one of the following behaviors:

e DENY — the process is not allowed to execute the file

e ALLOW— the process is allowed to execute the file, and the file wikxecuted natively, outside of
the sandbox

e SANDBOX — the process is allowed to execute the file, and the file wikkecuted within a sandbox
using the same security policy as the current sandbox

e SANDBOX policypath— the process is allowed to execute the file, and the file withkecuted within
a sandbox using the specified security policy

See Section 3.3.4 for details on hexecve is implemented.

3.4.3 Implementation Details

When executing a syscall, any argument of tyae¢ h_ar g is converted by KVMSandbox to an absolute,
canonicalized path with no redundant slashes and mo. . components. This is the path name used to
query the security policy, and is also the path name passie twost system call. The type of syscall being
invoked determines the capability which is sought. For eplanopen looks forREAD, WRI TE, or both de-
pending on the flags argument, whereas i nk looks for theREMOVE capability. For some syscalls, such
ascr eat , the parent directory path is also matched against theisgpaticy for the CREATE capability.
Socket address arguments that need to be audited havedgpeaddr _ar g, and are checked in a sim-
ilar fashion. Not all syscalls need their socket addresaraemts checked; for exampdet socknane’s
struct sockaddr* argument is used for output, not input, and thus does not toeleel checked.

3.4.4 Limitations

Since hard links essentially allow an existing file to be ased with a different name, care must be taken
when granting the_l NK capability on a file. An attacker could hard link a file to a p&th which the
sandbox has additional capabilities, and access the fitethvgise unintended capabilities. Similar care must
be taken withRENAME.

Symbolic links pose particular hazards, since, althoughptith to the symbolic link itself is audited by
KVMSandbox, when the path is opened, the kernel follows ymelmlic link and opens the target, bypass-
ing the KVMSandbox security policy. In the current implertation, it is not possible for KVMSandbox to
securely audit the target of the symbolic link: it would néedheck every single path component. This can-
not be done without introducing a race condition in which tiacker swaps out a directory with a symbolic
link after it has been audited but before the path is usedt $B& Section 6.5 for possible solutions.)

Instead, the user of the sandbox must be aware of symlinka gtamting capabilities. The user should
avoid granting capabilities on symlinks with relative &g as their actual destinations can change if the
symlink, or one of its ascendant directories, is moved. Ikinthe guest’s ability to create symlinks must
be severely restricted. For this reason, the target of thdisly is checked in the security policy for the
SYM.I NK capability. In addition, relative symlink targets are certed to absolute paths to ensure symlinks
can’t change meaning if moved. Strictly speaking, thesenateorrect semantics and could break a guest
whose functionality depends on relative symlink targets.

There is no way, in the current implementation, to check tleediéscriptor argument to tHfechnod
andf chown syscalls to determine if the process has @#TTR capability on the file referenced by the
file descriptor. These syscalls are likbnmod andchown except they operate on an open file descriptor
rather than a path. Since the ability to obtain a file desorifu a file is governed by thREAD andWRI TE
capabilities, the guest can effectively chmod or chown aatia fo which it has &EAD or WRI TE capability.
One possible solution would be for KYMSandbox to record ththpused to open all file descriptors, and
keep track of this information for the lifetime of the file deiptor. This is explored in depth in Section 6.4.

For similar reasons, the current implementation cannaiirec support the-at family of syscalls
(openat , nkdi r at , etc.). These syscalls function like their non-at equivalgexcept they also take an
open file descriptor to a directory from which the file pathaktive. Since KVMSandbox does not know
the path which a file descriptor represents, it cannot cocisém absolute, canonicalized path to look up in
the security policy. For this reason, KVMSandbox does nppsut any of these syscalls. Since they are
relatively new and Linux-specific, very few applicationg usem.

4 Evaluation

KVMSandbox has been tested with a variety of single-thrdga@tegrams on Linux. It works with the stan-
dard suite of command line programs, like grep, cat, andaedell as the gcc compiler and several graph-
ical X programs, like xpdf (a PDF viewer), xv (an image viejyemd Dillo (a bare bones web browser).
There is no noticeable performance degradation in any seteprograms, even as xpdf is used to browse
complex PDFs, or xv is used to view large directories of higéslution photos. xpdf is a compelling use
case since PDFs are a common attack vector, and PDF inengpeet constantly found to contain security
flaws. Similarly, web browsers are often the target of ség@apiploits.

41 Benchmarks

KVMSandbox’s performance has been evaluated with severattbmarks. Each benchmark was run both
natively and within KVMSandbox to measure the slowdown edusy KVMSandbox. The benchmarks
were run on a machine with a 2.66GHz Intel Core 2 Duo E6700 CRU4&B of RAM, running Linux
kernel 2.6.33 and glibc 2.11.

The benchmarks are:

e primes — Calculates the first 300,000 primes. Does not madeadlg. Is heavily CPU- and memory-
bound.

e factor — Factors the product of two large prime numbers. Dmgsnake syscalls. Is heavily CPU-
bound.

e bzip2 — Compresses a 1.7GB XML file with bzip2. Combines a GRtgnsive operation with many
read and write system calls, which tests the efficiency of K3&idbox’s syscall forwarding mecha-
nism.

e grep — Recursively greps for a string in the Linux 2.6 kerrmelrse tree (approximately 39,000 files).
Makes many filesystem syscalls as directories are scanmkfilemopened, which tests the efficiency
of KVMSandbox’s security policy code.

e mmapgrep — Recursively greps for a string in the Linux 2.6hkésource tree, with the- mmap
option to use mmap instead of read. Like the grep benchmarinbkkes many mmap syscalls. This
tests the performance of KYMSandbox’s VM system.

e syscall — Runs the close syscall in a loop 1,000,000 timestsTeerformance of syscall handling and
nothing else.

These benchmarks were chosen because they exercise a watg vhdifferent scenarios. For example,
primes and factors are purely computational, whereas byae&es only syscalls, and bzip2 and grep are
in-between.

Results for the first five benchmarks are displayed in Figur&t overhead for the purely computa-
tional benchmarks (primes and factor) are negligible a tkan 1%. This is expected, as purely computa-
tional code runs directly on the CPU in guest mode and nevets® exit to the host. The tiny overhead is
likely due to the increased initialization cost of settiqgthe sandbox.

Overhead for the more 1/O-intensive benchmarks (bzip2y,caad mmapgrep) is modest at under 5%.
Some overhead is to be expected due to the guest exit andghmemt validation and translation that
must occur upon every syscall. To help understand the rentihe bzip2 benchmark was run again with
some statistics collection to count the number of pointguarents that were translated and copied. In

10

1.06
1.05

1.04

1.03
1.02
1.01
) I I
0.98

primes factor bzip2 grep mmapgrep

[any

©

Figure 2. Normalized runtimes for benchmarks running ucdMSandbox. Each bar plots the runtime
under KVMSandbox divided by the runtime for the same benchmanning natively (shorter bars mean
faster KYMSandbox runs).

total, 548,950 pointer arguments passed through KVMSandBé those, 3.7% needed to be copied via a
temporary buffer because the guest virtual memory tragglet non-contiguous host memory.

The syscall benchmark had vastly different results. UndéMiSandbox, it ran nearly 22 times slower
than native speed. This indicates that there is significesthe@ad involved in handling syscalls. However,
this benchmark represents an extraordinarily unlikely ecsse. A real program is comprised of far more
than just syscalls, and the more realistic bzip2 and greptbaarks show much lower overhead.

4.2 Comparison with Ptrace-based Sandboxes

KVMSandbox should be substantially more secure than pivased sandboxes like Systrace. Ptrace is
a Linux-specific mechanism that allows one process to iafgrthe system calls made by another. The
monitor program can examine the syscall arguments andmirtheesyscall or rewrite the arguments. Ptrace-
based sandboxes use this technique to apply alternativetygmolicies. However, ptrace-based sandboxes
suffer from one crucial limitation: the host syscall mudimbtely be made from the sandboxed process,
meaning the arguments to the syscall point to addressesoteatlly malicious process’ address space.
This opens the door to race conditions in a threaded progeathread could modify a syscall argument
after it has been validated but before the syscall is madeadsing the security checks. While not easy to
exploit such a race condition, several practical techrécqure described in [10].

KVMSandbox is immune to the problem because, when necessargserve security, it copies syscall
arguments from guest virtual memory to host virtual mematyere they are safe from guest tampering. It
is the copy that is audited and passed to the host syscakcd’$andboxes cannot adopt a similar approach
because a host syscall made from the monitor process wdeltt #ie state of the monitor process, not of
the sandboxed process which made the syscall in the first.pl&¢MSandbox’s key difference is that the

11

1 file /etc/resolv.conf READ

2 file /etc/services READ

3 file /etc/hosts READ

4 file [etc/host.conf READ

5 file /etc/nsswitch. conf READ

6 file /etc/fonts/fonts. conf READ

7 file /var/cache/fontconfig.* READ

8 file/lib/.* READ

9 file [usr/.» READ

10

11 file /honme/andrew .dillo/.* ALL

12 file /hone/andrew . Xdefaul ts READ

13 file /home/andrew . Xauthority READ

14

15 file / READ

16 file /hone READ

17 file /hone/andrew READ

18 file /hone/andr ew Downl oads READ

19 file /hone/andrew Downl oads/ . * CREATE WRI TE
20

21 socket inet 0.0.0.0 0.0.0.0 53 CONNECT SEND
22 socket inet 127.0.0.1 255.255.255. 255 6023 CONNECT
23 socket inet 127.0.0.0 255.0.0.0 0 -ALL

24 socket inet 10.0.0.0 255.0.0.0 0 -ALL

25 socket inet 192.168.0.0 255.255.0.0 0 -ALL

26 socket inet 0.0.0.0 0.0.0.0 80 CONNECT
27 socket inet 0.0.0.0 0.0.0.0 443 CONNECT

Figure 3: Example Security Policy for the Dillo Web Browser

monitor and the guest run in the same process, but there dsegpthe address space that are isolated from
the guest.

4.3 Security Policies

The utility of security policies was evaluated by writing sable security policy for the Dillo web browser
[4]. Dillo was used because it’s single-threaded, unlikestmdher modern web browsers, and thus can run
in the current implementation of KVMSandbox. Although insich more minimalistic than browsers like
Firefox, it should have similar resource access needs.Xamngle, it uses sockets to connect to web servers,
stores its preferences and data in a hidden directory ingaesthome directory, and can download files to
the filesystem. Thus, it is an adequate stand-in for studying/ser security policies.

The final version of the security policy is shown in Figure 3nds 1-9 grant read access to various
system locations containing configuration files, data timées, and libraries. Lines 11-13 grant access to
configuration files in the user's home directory. Line 11 ¢gdull access to a Dillo-specific directory, where
cookies, cache, and configuration is stored. Lines 15-1% gess to a Downloads directory, where Dillo
can write (but not read) files. Lines 15-18 are not strictlgassary, but they allow the user to browse
through the filesystem to the Downloads directory via Dillsave file dialog box.

Lines 21-27 set the network policy. Line 21 allows Dillo towact port 53 on any host so it can perform
DNS queries. Line 22 allows Dillo to connect to the local Xw&er Lines 23-25 block access to localhost
and systems with private IP addresses. Finally, lines 2@&Haw Dillo to connect to ports 80 and 443, the
HTTP and HTTPS ports.

12

The policy was designed to minimize the damage if a secuudlyerability in Dillo led to the execution
of arbitrary code served by a malicious website. Such ayitcode might attempt to read sensitive data
and upload it to the attacker’s server for nefarious purpdike identity theft. The security policy provides
protection by only allowing reads to a few select locatidik® system directories that contain no sensitive
data. For convenience, the policy allows blanket acce$d td and/ usr. On a modern Linux system,
these directories should contain only files from softwarekpges, and no user data.

Arbitrary code might also attempt to infect other parts efslgstem by writing to the user’s configuration
files or startup scripts. The security policy guards agaimstattack by allowing writes only to the user’s
. di | I oandDownl oads directories. By allowing writes todi | | 0, an attacker could tamper with Dillo,
but since Dillo runs within the sandbox, the attack still Iconiot affect the rest of the system. The attacker
could write arbitrary files to th®ownl oads directory, so a user must treat any file insidewnl oads
with suspicion, but this is already good practice when hagdiownloads from the Web.

An attacker might also use the host’s network access as abackto a firewalled network, or to turn
the machine into a zombie in a botnet. The security policygmts against the former exploit by blocking
access to IP address ranges that need protection. Of cdhiseomes with a trade-off, as it prevents
the user from accessing web servers on the internal netwlwkprotect against the botnet scenario, the
security policy allows access to only the most common webesgrorts (80 and 443). This would prevent
malicious code from sending spam or attacking non-web eesvi This also has a downside, as it blocks
access to web servers running on alternative ports. A lessipia security policy would block access only
to frequently-attacked ports, like 25 (SMTP).

The one limitation of this security scheme is that while ied@ good job protecting the system, it does
nothing to protect Dillo itself. For example, by allowingabket access to thedi | | o directory, it enables
malicious code to steal the user’s browser history and @soki his could be solved by running multiple
instances of Dillo, each with its own configuration diregtofOr, for other browsers, by running multiple
profiles; Firefox, for example, stores each profile in a dettdirectory.)

A better solution would require changes to the web browseifito ensure different websites are ade-
guately segregated. This is beyond the scope of this wotkit Buworth mentioning that a browser could
use KVMSandbox internally to provide segregation. Googheothe may be particularly adaptable to this,
since it already runs each tab in a separate process. Rueadigtab’s process inside KYMSandbox would
provide added protection.

5 Conclusion

KVMSandbox is a userspace sandbox program that allows Lhimaries to run unmodified in a restricted
environment. System calls are interposed by KVMSandboxaandited to ensure the guest is only allowed
to access resources in accordance with a user-specifiedtggumlicy. To provide isolation with minimal
overhead, KVMSandbox uses hardware virtualization founehdst new x86 processors via Linux's KVM
interface.

KVMSandbox provides many advantages over existing saistidt runs entirely in userspace with no
need for elevated privileges or kernel modifications, allhgifor easier development and deployment. While
traditional userspace solutions have employed compticatel high-overhead dynamic code translation,
KVMSandbox takes advantage of hardware virtualizatiolowahg for essentially zero overhead on pure
computation. Though handling syscalls is expensive, KViMB@x adds no more than 5% overhead in
practical benchmarks.

13

6 Future Work

6.1 Traceand Interactive Modes

A simple but user-friendly enhancement would be to prometuber interactively to allow or deny actions
by the guest program that aren’t covered by the securitycyolThis would save the user from having to
anticipate every desired permission in advance. One aayartf KVMSandbox being implemented in
userspace and not the kernel is that it is easy to implemetirtes that interact with the user.

Another user-friendly feature would be a mode that allowsetions by the application but records a
trace of them to a file. This file could be used as the basis fecarity policy for the application.

6.2 Thread Support
6.2.1 Safety

The current implementation supports only single-thregatedrams. Nevertheless, great care has been taken
to make the design of KYMSandbox suitable for multi-thresageograms. Providing security in a multi-
threaded environment is challenging because while onadhiseexecuting a syscall whose arguments are
being audited, another thread can modify the memory beidijeai This is a race condition, and if exploited
at the right time, can allow the application to bypass thalbar’'s permissions checks. KVMSandbox is
already invulnerable to this because it always copies aggisnthat need auditing to host-only address
space. The copy, which is safe from guest meddling, is adiditel passed to the host syscall.

For efficiency, KVMSandbox avoids copying syscall argursenhose contents need not be security-
audited. Instead it passes to the host syscall an addragsaihgs directly into guest memory. During the
execution of the host syscall, another thread could unmapittual guest page containing the argument. In
turn, the guest physical page which backed the virtual pamddibe freed, and possibly re-allocated for a
different purpose, such as to hold a guest page table. Thayssall would either read from or write to this
re-purposed guest physical page. To prevent this, KVMSaxdieeds a way to lock down guest physical
pages being used during syscalls, to prevent those guesicphgages from being reused.

There are other edge cases to consider. For example, a guddtremap the virtual pages holding a
syscall argument while another thread is in the host sys@&ilice the address translation is done before
executing the host syscall, the host syscall will read fromvigte to the old mapping. This cannot be used
to compromise the sandbox (after all, the syscall might haken place before the remapping occurred),
though it might lead to unexpected results. However, themado represents undefined behavior, and no
properly-written program would ever attempt it.

6.2.2 Implementation

First, any internal data structure in KVMSandbox that isessed via syscalls would need to be protected
with mutexes to prevent concurrent access from multipleatis.

Due to limitations in KVM, it is only possible to have one iaste of KVM per address space. However,
it is possible to have one virtual CPU per thread. Thus, KVRt#ex could support multi-threaded pro-
grams by creating one host thread for every guest threaduamihg a virtual CPU in each. Unfortunately,
KVM supports at most 256 virtual CPUs, limiting the numberttaeads per program to 256. In practice,
this is likely sufficient for most programs.

6.3 64-bit Support

Although KVMSandbox has been implemented only for 32-bis X®sts and guests, a port to the x86-64
architecture should be straightforward. KVM supports $86-and no part of KVMSandbox’s design or

14

approach wouldn’t work in x86-64. Of course, x86-64 usegdarddresses and has a different page table
structure, so KVYMSandbox’s virtual memory code would needbé modified accordingly. In addition,
Linux uses a different set of syscalls on x86-64. These #igsemuld need to be implemented for x86-
64. This effort would be greatly facilitated by KVMSandbsxsyscall framework (Section 3.3.2). The few
syscalls that need manual implementations (likeap andexecve) would likely share much code with
their 32-bit counterparts.

The possibility for 64-bit support gives KVMSandbox a huglvantage over software virtualization
solutions like vx32, whose design depends heavily on setatien, which does not exist in x86-64[6].

6.4 Virtual File Descriptors

Currently, KYMSandbox does not track guest file descriptéygart from the few KVM file descriptors that
are isolated from the guest at the top of the file descriptacspthe guest and host share the same set of file
descriptors. While simple, this has several disadvantdgjest, once the guest has launched, KVMSandbox
can no longer open file descriptors for internal use, as tfilesgescriptors would become visible inside the
guest. Second, in several places KVMSandbox would benefit kinowing additional details about a file
descriptor, such as the type of object the file descriptaressmts (a file, socket, terminal device, etc.).

KVMSandbox should virtualize the space of guest file desorgpand maintain a table of open file de-
scriptors in the guest. In the table, KVMSandbox would stetevant information such as the corresponding
host file descriptor. File descriptor syscall argumentsratain values would need to be translated via the
table, and any syscall that creates file descriptors woudd ne be specially handled in order to keep the
table up-to-date.

Two features that would be enabled by such a system are deddrelow.

6.5 Symbolic Link Security

As described in Section 3.4.4, symlinks pose a problem foursty because KVMSandbox cannot safely
check that no component of a file path is a symlink. If KVMSamxibould open file descriptors for internal
use, it could validate paths by opening each component gr@mi using th@penat syscall to avoid race
conditions.

6.6 ioctl Support

i oct| is very difficult to handle because the type of its third argaindepends not only on the ioctl
number but also on the type of object represented by the fiderigor, since different drivers in Linux

have overlapping ioctl numbers. Without information abibwt file descriptor, KVMSandbox doesn’'t know
whether the third argument should be treated as a pointexam ateger. If KVMSandbox tracked the types
of file descriptors, it could use this information to progenandlei oct | .

References

[1] http://w ki .apparnor.net/index. php/ Mai n_Page.
[2] http://waww. citi.um ch. edu/u/provos/systrace/.
[3] http://ww. genu. org/.

[4] http://ww. dillo.org.

15

[5]

[6]

[7]

Ole Agesen, Alex Garthwaite, Jeffrey Sheldon, and Rr&abrahmanyam. The evolution of an x86
virtual machine monitorSIGOPS Oper. Syst. Red#4(4):3-18, December 2010.

Bryan Ford and Russ Cox. Vx32: lightweight user-levehdiaoxing on the x86. IfJSENIX 2008
Annual Technical Conference on Annual Technical ConfeeATC’08, pages 293-306, Berkeley,
CA, USA, 2008. USENIX Association.

Peter Loscocco and Stephen Smalley. Integrating flexshipport for security policies into the linux
operating system. IRroceedings of the FREENIX Track: 2001 USENIX Annual Teeth@onference
pages 29-42, Berkeley, CA, USA, 2001. USENIX Association.

[8] Aaron Myers. Operating system protection domains, a approach. Master’s thesis, Brown Univer-

[9]

[10]

sity, 2008.

Luke Peng. The sandbox: Improving file access securithéninternet age. Master’s thesis, Brown
University, 2006.

Robert N. M. Watson. Exploiting concurrency vulnetlgs in system call wrappers. Rroceedings
of the first USENIX workshop on Offensive TechnolqQdgé®OT '07, pages 2:1-2:8, Berkeley, CA,
USA, 2007. USENIX Association.

16

