
Time and Energy Pro�ling
in Production Sensor Networks with Quanto

Basil Crow

Department of Computer Science
Brown University

Abstract

We present improvements to Quanto, a network-wide time and energy pro�ler for
embedded network devices.We present an e�cient method for estimating the individual
energy consumption of concurrently operating hardware components when only their
aggregate energy is observable. We also present a method for causally connecting energy
usage to high-level, programmer-de�ned activities without recourse to bandwidth-
intensive logging. Our improvements drastically reduce the impact of Quanto’s time and
energy pro�ling on system behavior, enabling Quanto to scale from test environments
to production sensor networks alike.

1 Introduction
Energy is a scarce resource in battery-operated embedded devices, such as those used in
wireless sensor networks.�is scarcity has motivated a wide variety of research in such
areas as platform design, networking protocols, operating system abstractions, middleware
protocols, and data aggregations. Despite the abundance of research in these areas, however,
few of the claims made in the literature have been justi�ed using empirical metrics and
realistic workloads [7].�e lack of such evaluation in the literature is problematic not only
because it casts a cloud of uncertainty over the correctness and e�ciency of the work being
presented, but also because the energy consumption in production sensor networks o�en
inexplicably di�ers from expectations or what lab tests suggest [8]. To make matters worse,
the infrastructure for time and energy pro�ling in production sensor networks is generally
poor or nonexistent.
Addressing these problems requires a thorough understanding of how andwhy embedded

applications spend energy and has prompted numerous questions. For example, how much
energy do individual operations, such as sampling sensors or receiving packets, cost? What
is the energy breakdown of a node in terms of activity, hardware, and time? Network-wide,
how much energy do network services, such as routing or time synchronization, consume?

1



Several factors make these questions di�cult to answer. For example, nodes have limited
processing power and storage, with clock speeds on the order of tens of megahertz and storage
capacities on the order of kilobytes of ram. To be acceptable for use in production sensor
networks, pro�le collection must have a negligible impact on the operation of the system as a
whole. In addition, a pro�ling system must tie together separate operations across multiple
energy consumers, such as sampling sensors, sending packets, and cpu operations, in order
to highlight systemic trends.

�ese challenges motivated the development of Quanto [5], a network-wide time and
energy pro�ler for embedded devices. Quanto is implemented for TinyOS, a popular op-
erating system for sensor networks, and has two main features. First, Quanto answers the
question where have all the joules gone? by estimating the individual energy consumption of
concurrently operating hardware components when only their aggregate energy is observable,
leveraging an energy sensor based on a simple switching regulator [2] to take �ne-grained
measurements of energy usage as cheaply as reading a counter. Second, Quanto answers
the question why were those joules spent? by causally connecting energy usage to high-level,
programmer-de�ned activities.
Since its release in 2008, Quanto has been used in several case studies. For example,

Quanto was used to investigate the interference from an 802.11 b/g network on the operation
of low-power listening, a family of duty-cycle regimes for wireless radios, as well as to
uncover a previously undetected timer-related bug in TinyOS [5]. More recently, it was used
to characterize the power draw of a wireless sensor network running the Collection Tree
Protocol (ctp) as a function of low-power-listening interval [7]. On the one hand, these case
studies have demonstrated the valuable insights into device and network behavior provided
by Quanto through time and energy pro�ling. On the other hand, however, they have brought
to light the lack of scalability of the original Quanto prototype, both in terms of estimating
the energy breakdown of hardware components as well as tracking activities. Below, we
discuss these scalability problems, present our improvements, and evaluate their e�cacy in
production sensor networks.

2 Background

2.1 Energy tracking
An embedded device consists of a set of concurrently operating hardware components, such
as the cpu, radio, and leds. Each of these components consists of functional units, which we
call resources, and each resource has operating modes with di�erent power draws, which we
call power states. A power state consists of a set of power state bits, each of which is a binary
variable that tracks whether some speci�c component of the device is active or inactive. At
any given time, the aggregate power draw for a system is determined by the set of power
states of its resources. For more information about the hardware platform, resources, and
power states used by Quanto, see §§2.2–2.3 of [5].
Suppose that the total number of power state bits over all resources in the system is n. In

2



the original Quanto prototype, device drivers are modi�ed so that they intercep all events
that changed the power state of a resource. Any two such events form an interval i, and for
each interval the operating system tracks the aggregate energy consumed during the interval
(∆Ei), the length of the interval (∆ti), and the setting of each power state bit— active or
inactive—during the interval (αi ,1, . . . , αi ,n), logging this information to the serial port. Once
this information is received, we consolidate all intervals that have the same global power
state g (a particular setting of αi ,1, . . . , αi ,n) into a single interval whose length and aggregate
energy spend is the sum of the corresponding metrics of each of its constituent intervals. We
refer to the total number of intervals a�er consolidation by m, which is at most 2n.
Based on this information, Quanto’s o�ine processing tool generates one linear equation

of the following form for each interval:

∆Ei = ∆ti
n

∑

j=0
αi , jpi , j,

where pi , j is the (unknown) power draw of the j-th power state bit during the i-th interval.
�e average power over the interval Pi = ∆Ei/∆ti . In one interval, this equation is not solvable
(unless only one power state bit is active), but over time, an application generates a system of
equations, one for each interval. When the system of equations is su�ciently constrained, a
simple linear regression yields the individual power draws.

�e regression works as follows. First, we collect the observed power states αi , j in a matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α1,1 ⋯ α1,n
⋮ ⋱ ⋮

αm,1 ⋯ αm,n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

�ltering out columns in which the power state is always inactive (i.e., columns where αi , j is
always 0). Second, we determine the average aggregate power for each interval yi = ∆Ei/ti .
We collect the average aggregate power over all intervals in a column vector

b = [y1 . . . ym]
T .

�ird, we weight A and b as described in §2.5 of [5]. Finally, we estimate the unknown power
draws x by solving the following convex minimization problem: minimize

x
∣∣Ax − b∣∣2 subject

to x ≥ 0.

2.2 Activity tracking
Quanto borrows from earlier work the concept of an activity as its resource principal. An
activity is a set of operations whose resource consumption should be grouped together. We
assign the energy consumption to activities that are de�ned by the programmer at a high
level by following all operations related to an activity across hardware components on a single
node and across the network. For a detailed overview of activity tracking in Quanto, see §3.1
of [5].

3



�e mechanisms for tracking activities in Quanto are divided into three parts: an api
that allows the programmer to create meaningful activity labels, a set of mechanisms to
propagate these labels along with the operations that comprise the activity, and a mechanism
to account for the resources used by the activities. For details about the activity tracking api
and activity propagation, see §§3.2–3.3 of [5]. What is relevant is that in order to record the
usage of resources for accounting and charging purposes, the operating system tracks activity
changes of devices and logs these events to the serial port, and the rest of the accounting is
done o�ine. For further details about the accounting of resources, see §3.4 of [5].

3 Motivation
�e original Quanto prototype, as described above, relies on a log of two types of events:
changes in power state for resources, and changes in activity for devices. Unfortunately, keep-
ing such a log presents some scalability problems, especially in production sensor networks.
Logging large numbers of events to the serial port is unacceptable in production sensor

networks not only because it wastes valuable time and energy, but also because doing so may
have a noticeable impact on the operation of the system as a whole. In order to minimize
these factors, three optimizations have been implemented in the Quanto prototype since
its initial release. First, the standard TinyOS ActiveMessage headers were stripped down
to the bare minimum, which saved considerable logging bandwidth. Second, the logging
of events was relegated to a low-priority task, running only when the cpu was otherwise
idle (but nevertheless always running to completion, even if a new activity was posted in
the meantime).�ird, the messages were compressed using Elias gamma coding [4] and the
move-to-front (mtf) scheme of Bentley et al. [1]. Although this scheme saved considerable
logging bandwidth, it incurred the additional overhead of compressing the messages on the
node. Compression, like logging, was relegated to a low-priority task.
Unfortunately, these optimizations were not su�cient to allowQuanto to scale to intensive

applications with very large numbers of power state changes and activity changes, such as
the Collection Tree Protocol (ctp) [6]. To understand why, we examine the upper bounds
on number of power state changes and number of activity changes per unit of time:

• �e number of power state changes per unit of time depends on the application and is
therefore unbounded. To make matters worse, more intensive applications are likely
to generate more power state changes.�e rami�cations of this are that when smaller
amounts of energy and processing time are available for logging, greater amounts of
energy and processing time are required for logging. Hence this method does not scale.

• �e number of activity changes per unit of time also depends on the application and
is therefore unbounded. To make matters worse, Quanto statically assigns a �xed
proxy activity to each interrupt handler and paints the cpu with the corresponding
proxy activity every time an interrupt occurs. Since interrupts occur frequently, activity
changes are also generated frequently. Hence this method does not scale, either.

4



�ese problems stem from the fact that all power state changes and activity changes are
logged to the serial port and motivated us to develop a new logging module that accumulates
this information on the node itself and reports it periodically.
Furthermore, recall that Quanto’s o�ine processing tool groups all intervals from the

log that have the same power state g (a particular setting of α1, . . . , αn), adding the time and
energy spent at that power state. Even if Quanto were to do this grouping on the node itself
rather than o�ine, there can be up to 2n such groupings, where n is the total number of
power states over all resources in the system. In the Quanto prototype, where n = 22, this
upper bound is very high.�e fact that this upper bound usually exceeds the storage capacity
of embeded devices motivated us to also develop a more e�cient method of calculating the
power draw of each component.

4 Design
In order to address the challenges described above, we developed both (a) a new logging
module that accumulates and periodically reports the total time spent by each power state
bit on behalf of each activity and (b) a more e�cient method of estimating the power draw
of each component. We describe these changes in detail below.

4.1 Cumulative logging module
Our logging module accumulates and periodically (in our prototype, every second) reports
the total time spent by each power state bit on behalf of each activity, as well as the length of
the interval and the aggregate amount of energy spent during the interval. For each power
state bit, we (a) keep track of whether or not that bit is currently active; (b) maintain a list
of activities on behalf of which that power state bit, if active, is currently working; and (c)
maintain a timer that keeps track of how long that power state bit worked on behalf of its
current set of activities.�e main data structure in the module stores, for each reporting
interval, the total time spent by each power state bit on behalf of each activity.
When a power state bit becomes active, we start the timer for that bit; when it becomes

inactive, we stop its timer and charge the time that the bit was active to the activities on
behalf of which it was working while it was active. Suppose there is a change in the set of
activities on behalf of which a resource is working. For each power state bit corresponding
to that resource, we update the set of activities for which that power state bit is working
correspondingly. If the power state bit is currently active, we stop its timer, credit the time
that it was active to the old set of activities, and reset its timer under the new set of activities.
At the end of each reporting interval, we charge all active power state bits and reset their
timers for the new reporting interval. Note that the set of activities in Quanto includes the
unknown activity and the idle activity; therefore, as long as a power state bit is active, it must
be doing work on behalf of at least one activity.

5



�ere are two policy decisions to make when doing the above: how should we account for
time when a resource is working on behalf of multiple activities, and how should we aggregate
information about activities originating at other nodes? In the �rst case, our logging module
currently equally splits the time spent by each bit across all activities on behalf of which that
bit was working. For example, if two activities are using the red led, then each gets charged
for half of the time.�e second case is problematic because TinyOS does not feature dynamic
memory allocation. We may not know how many other nodes exist in order to statically
allocate a bu�er; even if we did, we would not want to allocate a table of size an, where a is
the total number of activities, and n is the number of nodes. Our logging module currently
groups all activities from other nodes together, though other options are certainly possible.
For example, we could aggregate activities from other nodes by activity, still keeping them
distinct from activities that occur on the node in question, which has an upper bound of the
total number of activities in terms of space. Another possibility is to aggregate activities from
other nodes by node, which has an upper bound of the total number of nodes in terms of
space. A �nal possibility is to aggregate activities from other nodes by both activity and node,
which has an upper bound of the total number of nodes multiplied by the total number of
activities in terms of space. Since the number of nodes is unbounded, the last two possibilities
would be more di�cult to implement for TinyOS.
Recall that when the activity associated with an interrupt or external event is not known,

Quanto employs a proxy activity and later binds the proxy activity to the real activity associated
with that interrupt or external event once the real activity becomes known. We account for
the binding of a proxy activity to a real activity as follows. For each power state bit, we transfer
the time that the bit spent on behalf of the proxy activity to the real activity. If we previously
reported the time spent on behalf of the proxy activity, we can’t do this transfer on the node
itself, so we annotate the next report with an instruction that tells the o�ine processing tools,
described below, to make an adjustment to the previous report.

4.2 Energy tracking
Suppose that the total number of intervals ism, and the total number of power state bits over all
resources in the system is n.�e input to the o�ine regression process in the original Quanto
prototype is a log that records, for each interval i for which the power states are the same, the
aggregate energy consumed during that interval (∆Ei), the length of the interval (∆ti), and
the setting of each power state bit— active or inactive—during the interval (αi ,1, . . . , αi ,n).
In contrast, our cumulative logging module records, for each reporting interval i (in our
prototype, every second), the total amount of time spent by each power state bit j during that
interval (ti , j), the length of the interval (∆ti), and the aggregate amount of energy spent during
the interval (∆Ei). Based on this information, Quanto’s o�ine processing tool generates one
linear equation of the following form for each interval:

∆Ei = ∆ti∆Ei +
n

∑

j=0
ti , jpi , j,

6



where pi , j is the (unknown) power draw of the j-th power state bit during the interval and the
�rst term of the addition is a constant representing an interval in which all power state bits
are active.�e average power over the interval Pi = ∆Ei/∆ti . In one interval, this equation is
not solvable (unless only one power state bit is active), but over time, an application generates
a system of equations, one for each interval. When the system of equations is su�ciently
constrained, a simple linear regression yields the individual power draws.

�e regression works as follows. First, we collect the observed times ti , j in a matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

t1,1 ⋯ t1,n
⋮ ⋱ ⋮

tm,1 ⋯ tm,n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

�ltering out columns for which the power state bit was never active or always active (in
which case those bits are grouped with the constant described above). Second, we collect the
aggregate energy consumed during each reporting interval in a column vector

b = [∆E1 . . . ∆Em]
T .

Finally, we estimate the unknown power draws x by solving the following convex minimiza-
tion problem: minimize

x
∣∣Ax − b∣∣2 subject to x ≥ 0.

4.3 Activity tracking
In the original Quanto prototype, each node merely logged all activity changes to the serial
port, and the rest of the processing was done o�ine. Our cumulative logging module reports
the total time spent by each power state bit on behalf of each activity for each interval, so the
only processing that remains to be done o�ine is to sum the total times for all intervals.
Reporting the total time spent by each power state bit on behalf of each activity for

each interval has the additional advantage of providing greater observability. To expose this
functionality to users, we developed a top-like tool that summarizes the time spent per activity
per power state bit for each reporting interval.

5 Implementation details
Recall that to be acceptable for use in production sensor networks, pro�le collection must
have a negligible impact on the operation of the system as a whole. Implementing such a
system is challenging due to the limited processing power and storage available on embedded
devices, with clock speeds on the order of tens of megahertz and storage capacities on the
order of kilobytes of ram. Our implementation consists of three components: First, we
implement a mechanism for handling deferred work from interrupts in TinyOS and utilize
it to perform our accounting with minimal impact to the rest of the system. Second, we
compress the data being sent at each interval in order to save bandwidth on the serial port
during logging. Finally, we log each report to the serial port. We describe this process in
detail below.

7



5.1 Accounting
Recall that we must account for time whenever there is a change in the set of activities on
behalf of which a particular resource is working. Due to Quanto’s use of proxy activities, such
a change occurs for the cpu with every interrupt. Unfortunately, doing this accounting at
every interrupt is prohibitively expensive. For each of the cpu’s power state bits, we must
split the time spent by the bit across all activities on behalf of which it was working. When
the proxy activity is bound at a later time, we must also transfer the time that each power
state bit spent on behalf of the proxy activity to the real activity.�ese calculations require
too many cpu cycles to be done in the context of an interrupt handler, which must return
quickly in order for the system as a whole to make progress.
To deal with this problem, we implemented amechanism for handling deferred work from

interrupts in TinyOS. Whenever an activity or power state change takes place (whether in the
context of an interrupt or not), we log the change to a deferred-work queue and quickly return.
A separate TinyOS task runs periodically to process events from the deferred-work queue.
Normally, this task is low-priority; that is, it runs only when the cpu would be otherwise idle.
However, if the number of unprocessed events in the deferred-work queue crosses a certain
threshold (in our prototype, half the size of the queue), this task is run at a higher priority in
order to prevent the queue from getting full and events from being dropped.

5.2 Compression
In order to save bandwidth on the serial port during logging, we compress all outgoing
reports with a low-priority task that runs only if the cpu is otherwise idle. Recall that the
main data structure in each report stores, for each reporting interval, the total time spent by
each power state bit on behalf of each activity.�is table can be very sparse for two reasons.
First, in many applications a large number of power state bits are never active. Second, there
are many activities that are only active for a subset of power state bits (for example, proxy
activities only ever do work on behalf of the cpu’s power state bits).

�e sparse nature of this table motivated us to develop a compression scheme based on
run-length encoding (rle). We �rst developed a bitwise scheme that employs Elias gamma
coding [4]. In our bitwise compression scheme, the �rst bit is the same as the �rst bit of the
uncompressed table in order to indicate the initial polarity for decoding. Following the �rst
bit are a series of Elias gamma coded run lengths of successive bit runs in the uncompressed
table, alternating polarities.
Although this scheme yielded great space savings, the number of cycles needed to perform

the compression on the node was too high for use in production sensor networks. As a result,
we settled on a less sophisticated bytewise compression scheme without the use of Elias
gamma coding. Our bytewise scheme consists of a series of two-byte pairs, the �rst of which
indicates the run length and the second of which is the data byte.
Figure 1 shows a comparison between the types of compression in one of our tests (a 48-

second run of an application that transmits data over thewireless radio).Without compression,
Quanto sent seven times as many messages over the serial port and was so ine�cient that

8



Uncompressed Elias gamma rle Simple rle

Total messages 1,106 153 155
Total number of bytes (encoded) - 4,399 5,796
Total number of bytes (decoded) 159,580 52,071 52,080
Compression factor - 11.84 8.98
Time spent compressing (sec) - 5.07 0.32
Time spent writing to serial port (sec) n/a 0.86 1.04
Overhead in terms of total time n/a 11.40% 2.58%

Figure 1: Comparison of run-length encoding (rle) compression schemes.�e Elias gamma coded
rle scheme yielded a high compression factor, but its overhead in processing time was unacceptably
high compared to that of the simpler rle scheme.

it was impossible to obtain reliable �gures regarding the time spent writing to the serial
port and the overhead in terms of total time.�e Elias gamma coded rle scheme achieved
a high compression factor (11.84) at the cost of a large amount of time spent compressing
(an overhead of 11.40% of the total time).�e simple rle scheme achieved a respectable
compression factor (8.98) but spent much less time compressing (an overhead of only 2.58%
of the total time).

5.3 Reporting
Once the outgoing report has been compressed, our prototype logs it to the serial port.
Logging, like accounting and compression, is implemented as a low-priority task in order
to minimize Quanto’s impact on the system as a whole. We employ a double bu�er so that
accounting for the next interval can begin even while the report for the current interval is
being compressed and sent out.

6 Evaluation
To test our implementation, we instrumented two simple applications provided with TinyOS:
Blink and RadioCountToLeds. Our test environment consisted of two nodes based on the Epic
platform [3], which incorporates iCount into a custom sensornet node.�is platform uses
the Texas Instruments 16-bit msp430 microcontroller with 48 kb of internal �ash memory
and 10 kb of ram and an 802.15.4-compliant cc2420 radio.�e platform also includes three
leds. Each node was connected to a Digi external serial server with a RealPort com port
redirector. We ran each of the two applications for 48 seconds.

9



Power state bit Pavg (mW) Iavg (mA)

led0 7.54 2.283
led1 6.06 1.837
led2 2.44 0.740
msp430 Active 11.71 3.549
msp430 lpm1 1.08 0.328
Const. 1.25 0.377

(a) Node A

Power state bit Pavg (mW) Iavg (mA)

led0 7.25 2.197
led1 6.87 2.083
led2 1.91 0.579
msp430 Active 8.85 2.683
msp430 lpm1 1.28 0.387
Const. 1.36 0.411

(b) Node B

Figure 2: Breakdown of energy usage by hardware component during a 48-second run of Blink

6.1 Blink
Blink is the simple hello world application in TinyOS. It starts three independent timers with
intervals of 1, 2, and 4 seconds. When these timers �re, the red, green, and blue leds are tog-
gled, such that in eight seconds Blink goes through eight steady states, with all combinations
of the three leds on and o�.
We ran the regression as described in §4.2 in order to estimate the power draw of each

component. Figure 2 shows the result in current and power. As expected, the �rst led draws
the most power, followed closely by the second led, followed distantly by the third led. As
expected, the cpu draws a large amount of power when it is active and a very small amount
of power when it is in low-power mode (lpm). Furthermore, these results match the results
obtained using the original Quanto prototype.
Figure 3 shows the amount of time spent by each power state bit on behalf of each activity.

As expected, each of the led power state bits spends almost all of its time on its corresponding
activity.�is �gure also shows that the nodes’ cpus spent about 90% of the total time of
the run in low-power mode (lpm) and were only active for about 10% of the total time. Of
the time the cpu was active, a signi�cant portion was spent accounting (the Log activity),
compressing the data (the Compress activity), and sending out the reports to the serial port
(theWriter activity). Altogether, the instrumentation overhead added by Quanto in terms
of cpu time is about 5% of the total time, all of which was spent when the cpu would have
otherwise been idle.

6.2 RadioCountToLeds
RadioCountToLeds is a simple application in TinyOS to test mote-to-mote radio communica-
tion and timers. A sendermaintains a 4Hz counter, broadcasting its value in anActiveMessage
packet every time it gets updated. A receiver node that hears a counter broadcast displays the
bottom three bits on its leds.
As before, we ran the regression as described in §4.2. Figure 4 shows the result in current

and power. As expected, the sender draws the most power when transmitting packets over the

10



Activity Time(s) % active % total

msp430 Active

Log 1.89 37.67 3.62
Writer 0.92 18.29 1.76
Other Node 0.84 16.63 1.60
Timer 0.59 11.65 1.12
Red 0.29 5.84 0.56
Compress 0.17 3.39 0.33
Green 0.15 2.97 0.28
Idle 0.10 2.08 0.20
Blue 0.07 1.46 0.14

msp430 lpm1

Idle 47.02 99.32 89.78
Timer 0.31 0.65 0.59

led0

Red 26.15 99.81 49.94

led1

Green 25.99 99.91 49.62

led2

Blue 26.15 99.95 49.93

(a) Node A

Activity Time(s) % active % total

msp430 Active

Log 1.91 37.79 3.63
Writer 0.92 18.27 1.75
Other Node 0.83 16.50 1.58
Timer 0.59 11.71 1.12
Red 0.30 5.85 0.56
Compress 0.17 3.38 0.32
Green 0.15 2.93 0.28
Idle 0.11 2.09 0.20
Blue 0.07 1.46 0.14

msp430 lpm1

Idle 47.17 99.32 89.79
Timer 0.31 0.66 0.59

led0

Red 26.12 99.81 49.72

led1

Green 26.15 99.91 49.76

led2

Blue 26.35 99.95 50.15

(b) Node B

Figure 3: Amount of time spent by each power state bit on behalf of each resource during a 48-second
run of Blink

11



Power state bit Pavg (mW) Iavg (mA)

cc2420 Listen 0.00 0.000
cc2420 Tx 31 458.37 138.901
cc2420 Tx fifo 79.80 24.182
msp430 Active 42.57 12.899
msp430 lpm1 0.00 0.000
Const. 0.00 0.000

(a) Sender

Power state bit Pavg (mW) Iavg (mA)

cc2420 Listen 0.00 0.000
cc2420 Rx 0.00 0.000
cc2420 Rx fifo 133.70 40.514
led0 6.50 1.969
led1 6.47 1.961
led2 1.57 0.475
msp430 Active 13.81 4.184
msp430 lpm1 1.30 0.394
Const. 5.40 1.637

(b) Receiver

Figure 4: Breakdown of energy usage by hardware component during a 48-second run of RadioCount-
ToLeds

radio and the receiver draws the most power listening for packets on the radio.�e receiver
also draws power in order to blink the leds when it receives a message; the draw for each
led is in the expected proportions. On both the sender and the receiver, the cpu draws more
power when it is active than when it is in low power mode (lpm).
Figure 5 shows the amount of time spent by each power state bit on behalf of each activity.

As expected, the led power state bits on the receiver spend all of their time on behalf of the
sender.�e sender was idle in low-power mode (lpm) for about 50% of the total time, while
the receiver was idle for about 60% of the total time.�e majority of active cpu time on
each node was spent working on behalf of the other node. Altogether, the instrumentation
overhead added by Quanto in terms of cpu time is about 10% of the total time on the sender
and about 4% of the total time on the receiver, all of which was spent when the cpu would
have otherwise been idle.

7 Future work
Our improvements have greatly increasedQuanto’s scalability for production sensor networks,
but they rely on individual nodes having enough cpu time to do accounting, compression,
and logging at regular time intervals. Sudden bursts in cpu activity can interfere with
the processing of events in our logger’s deferred-work queue. When this queue becomes
full, power state change events and activity changes may be dropped, leading to inaccurate
reports. We currently use a crude mechanism to prevent this from taking place. Normally, the
deferred-work queue is processed with low priority; that is, it is processed only when the cpu
would be otherwise idle. However, if the number of unprocessed events in the deferred-work
queue crosses a certain threshold (in our prototype, half the size of the queue), the queue
is processed with high priority.�ough few, if any, events are dropped with this method, it

12



Activity Time(s) % active % total

msp430 Active

Other Node 8.83 37.14 16.69
Proxy Port 1 7.71 32.41 14.56
Log 4.11 17.28 7.77
Timer 1.21 5.10 2.29
Writer 1.04 4.39 1.97
Count to LEDs 0.35 1.49 0.67
Compress 0.32 1.36 0.61
Idle 0.19 0.78 0.35

msp430 lpm1

Idle 27.59 98.13 52.13
Timer 0.33 1.18 0.63
Proxy Port 1 0.14 0.51 0.27
Log 0.05 0.17 0.09

cc2420 Listen

Idle 2.19 81.24 4.13
Proxy Port 1 0.46 17.26 0.88
Unknown 0.04 1.33 0.07

cc2420 Tx 31

Proxy Port 1 1.18 82.93 2.23
Idle 0.23 16.33 0.44

cc2420 Tx fifo

Proxy Port 1 0.40 99.06 0.75

(a) Sender

Activity Time(s) % active % total

msp430 Active

Other Node 8.65 42.19 16.20
Timer 3.85 18.81 7.22
Proxy cc2420 Rx 3.25 15.85 6.08
Proxy UART0 Rx 1.49 7.25 2.78
Proxy Port 1 1.41 6.86 2.63
Writer 1.11 5.42 2.08
Compress 0.32 1.55 0.60
Log 0.26 1.25 0.48
Idle 0.13 0.63 0.24
Count to LEDs 0.02 0.10 0.04

msp430 lpm1

Idle 32.54 98.99 60.98
Timer 0.33 1.01 0.62

cc2420 Rx

Proxy cc2420 Rx 0.19 100.00 0.36

cc2420 Listen

Idle 2.68 97.96 5.02
Unknown 0.04 1.36 0.07
Proxy cc2420 Rx 0.02 0.68 0.03

cc2420 Rx fifo

Proxy cc2420 Rx 2.52 96.08 4.71
Idle 0.10 3.92 0.19

led0

Other Node 27.45 100.00 51.45

led1

Other Node 22.82 100.00 42.77

led2

Other Node 25.78 100.00 48.31

(b) Receiver

Figure 5: Amount of time spent by each power state bit on behalf of each resource during a 48-second
run of RadioCountToLeds

13



can still be problematic. By the conventions of TinyOS, all tasks must run to completion.
Even if a high-priority processing task is scheduled, the operating system may be busy with
another high-priority task for a long period of time before running the processing task.
Furthermore, running the accounting task with high priority while leaving the compression
and reporting tasks at low priority can starve out the compression and reporting tasks, leading
to inaccurate reports. It would be useful to implement more sophisticated scheduling and
deferred processing mechanisms from conventional operating systems. For example, the
queue could be processed incrementally by a low-priority interrupt handler with a �xed
upper bound on time. Similarly, a hierarchy for low-priority tasks could be introduced to
prevent compression and reporting from being starved out by accounting.
With our improvements in place, we hope to see Quanto used to pro�le more production

sensor networks. Our preliminary tests with the Collection Tree Protocol (ctp) [6] show
that our new methods for online activity tracking and estimating energy scale much better
than the initial Quanto prototype. With the scheduling changes described above, we hope
that a full time and energy pro�le of ctp in a production sensor network is within reach.
From there, the accounting optimizations described in §4.1 can yield even further visibility
into network behavior.
Our improvements also bring Quanto closer to a point where we can do all energy

tracking on the node itself without the use of an o�ine regression tool. In our mechanism
for determining the energy breakdown by component, the number of equations that must
be solved is the same as the number of intervals for which data was collected. If a node is
particularly idle, this time could be used to perform the regression on the node itself, and
the results of a completed regression could be used to inform the next regression. Once a
regression has been completed, exposing the results to applications for use in, for example,
decisions about when to turn o� the wireless radio, would be merely a matter of semantics.

8 Conclusion
Pro�ling time and energy usage in production sensor networks is an area still in its infancy.
Developing an accurate pro�le in production sensor networks necessitates pushing the
hardware to its limits and carefully tuning the operating system’s scheduler, the logger’s
compression scheme, and the pro�ling algorithm itself in order to strike the ideal balance
between the consumption processing time and i/o bandwidth in order to minimize the
impact of pro�ling on the operation of the system as a whole. Our improvements to Quanto
have made it a more viable choice for performance analysis in production sensor networks,
where it provides much-needed visibility into network and device behavior.

9 Acknowledgments
We would like to thank Prof. Rodrigo Fonseca and Marcelo Martins for their valuable assis-
tance throughout the duration of this project.

14



References
[1] Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, and Victor K. Wei. A locally
adaptive data compression scheme. Communications of the ACM, 29:320–330, April 1986.

[2] Prabal Dutta, Mark Feldmeier, Joseph Paradiso, and David Culler. Energy metering for
free: Augmenting switching regulators for real-time monitoring. In Proceedings of the 7th
International Conference on Information Processing in Sensor Networks, IPSN ’08, pages
283–294, Washington, DC, April 2008. IEEE Computer Society.

[3] Prabal Dutta, Jay Taneja, Jaein Jeong, Xiaofan Jiang, and David Culler. A building block
approach to sensornet systems. In Proceedings of the 6th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’08, pages 267–280, New York, NY, November 2008.
ACM.

[4] Peter Elias. Universal codeword sets and representations of the integers. IEEE Transac-
tions on Information�eory, 21(2):194–203, March 1975.

[5] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: Tracking energy in
networked embedded systems. In Proceedings of the 8th USENIX Symposium onOperating
Systems Design and Implementation, OSDI ’08, pages 323–338, Berkeley, CA, December
2008. USENIX Association.

[6] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis.
Collection Tree Protocol. In Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, pages 1–14, New York, NY, November 2009. ACM.

[7] MarceloMartins, Rodrigo Fonseca,�omas Schmid, and Prabal Dutta. Network-wide en-
ergy pro�ling of CTP. In Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’10, pages 439–440, New York, NY, November 2010. ACM.

[8] Gilman Tolle and David Culler. Design of an application-cooperative management
system for wireless sensor networks. In Proceedings of the 2nd European Workshop on
Wireless Sensor Networks, EWSN ’05, pages 121–132, February 2005.

15


