
Meliper: Making News Personal

Arden Dertat
Department of Computer Science

Brown University
Providence, RI 02912

arden@cs.brown.edu

Abstract

Getting fresh and relevant news about our interest topics is a fundamental matter
in today’s fast-paced information era. But there is a lack of personal solutions
that treat each user individually. While following technology news via popular
websites, we are presented vast number of articles about any technology related
area. But if we are interested in just certain aspects of technology, we still have
to browse through all the articles and try to find the ones that we are actually
interested among many that are irrelevant. Meliper [2] gives users control about
what news they want to receive, and the users can filter the information based on
their interest. So users dont have to deal with irrelevant news. The system also
learns from user behavior and adjusts retrieval and ranking accordingly.

1 Introduction

Meliper is a personal news aggregation service. The system is based on lists and keywords. Users
create lists and associate keywords with those lists. Then for each list, only the news containing the
keywords in that list is presented to the user. For example, say a user is interested in technology news
about Microsoft, Google, Facebook; and economy news about unemployment, inflation rate, and tax
cuts. Then the user can create a list called technology containing the keywords Microsoft, Google,
Facebook. And a separate list named economy with keywords unemployment, inflation rate, and
tax cuts. Then in the technology list, only the news about Microsoft, Google, and Facebook will
presented to the user. And the economy list will contain news about its corresponding keywords.
The user can create many other lists and associate keywords with them, and she will receive news
about only those keywords, in their respective lists.

Section 2 explains how crawling is performed to fetch the news, Section 3 discusses parsing, and
Section 4 indexing. Section 5 gives more detail about lists and keywords. Section 6 describes how
news is retrieved and ranked. Finally Section 7 presents recommendation algorithms that make the
system clever.

2 Crawling

Articles are extracted from RSS feeds of popular news websites based on their category. Feeds of
a website contain the most recent articles published at that site, so in order to obtain a continuous
stream of all articles, feeds should be crawled on regular intervals. In Meliper architecture, a uniform
crawling rate of 1 hour is used for every website. RSS requests are made every hour and data about
the latest 100 articles are crawled.

After crawling we have 100 article structures with various data fields. The following fields are
particularly important:

• Summary: contains the summary of the article



• Title: title of the article
• Date: publish date of the article
• Author: author of the article
• Link: URL of the article
• Tags: tags of the article given by the author

2.1 2 options for parsing

There are two options to obtain the actual content of the article. Either to use the summary as
content, or to get article link and parse the original article web page.

2.1.1 Summary as Content

The summary of the article in an RSS feed is the first few sentences of the content. The scope of
the summary differs among different websites, for example TechCrunch includes almost all article
content in the summary but New York Times only contains the first paragraph. We can assume that
the summary of the article is a good approximation of the actual content. Because the first few
sentences generally describe the main intent.

The advantage of this approach is speed and simplicity of implementation. We only make 1 HTTP
request to get the content of 100 articles, which is the request for the RSS feed. And then we simply
extract the summary from the feed.

2.1.2 Parsing article page

As another option, we can parse the original web page of the article to get the whole content. This
way we can obtain the complete content but with the price of efficiency. Because for each article
we have to perform an HTTP request to the original URL. Which is expensive because of network
latency. In order to get the content of 100 articles we now have to make 101 HTTP requests, 1 to
get RSS feed and 100 to get each individual article. Compared with only 1 request in the summary
approach, this is drastically slower. But the benefit is that we now have access to the complete article
content, instead of the first few sentences.

Another major drawback of this approach is that it requires different parsers for every news website.
Because in an articles web page, there’s many other text than article content. For example, there
are user comments, advertisements, links to other articles, website’s header and footer etc. Extract-
ing only the content from the page is problematic because every website puts the content within
different html elements. In some news sources the content appears in paragraphs between <p>
and </p> tags, others use divisions such as the <div> tag. Even the websites using div tag differ
about where they put the content, because there are many divivions at the same page with different
names and a specific one contains the content. And the name of the specific div containing the ar-
ticle text is different between websites, there isnt a universally accepted convention. Some name it
”articleBody”, others use ”newsDetail” or ”text” etc. Without a standard representation, extracting
the actual content of the article becomes troublesome and requires customized parsers for each news
source.

Considering the inefficiency and complexity of this approach, the summary solution is used to obtain
the article content.

3 Parsing

Our main purpose is to create an inverted index mapping each term (word) to a list of documents
that term appears in (postings list). The inverted index is a dictionary type data structure where each
vocabulary term is a key with its postings list being the value [3]. The goal of parsing is to extract a
list of terms from a given article.

Once the RSS feed of a news website is crawled, the content of each article is obtained from the
summary field as explained in Section 2.1. In order to make this content suitable for indexing, we
parse it to get individual terms using the following set of operations in the following order:



1. Convert Unicode string to its ASCII counterpart. Since Meliper is a global news service
providing news in multiple languages, non-English characters are converted to standard
ASCII for better search results.

2. Clean HTML elements/tags such as <div> and &nbsp; (represents space). Also remove
non-alphanumeric characters such as punctuation, and lowercase all letters.

3. Split on whitespace to get individual words. These are the terms in our inverted index.

4. Filter out stop words, which are very common terms that dont give much information about
the content, such as a, an, the etc. Very common verbs and nouns are also included in stop
words. There are around 3,000 words in the stop words file and it currently covers the
English language only.

5. Stem each word using Porters Stemmer [4] if the language of the article is English (lan-
guage information obtained from the news source).

By performing these operations on the article content we get a list of terms representing the article.
And they are added to the inverted index.

3.1 Named Entity Extraction

Users are generally interested in news about named entities and proper nouns, such as names of per-
sons, organizations, locations etc. So they’re more likely to add named entities to their keyword lists
such as Federer or San Francisco, instead of regular verbs or nouns. Named entities are generally
capitalized, and thats how we are going to extract them.

While parsing the article content to obtain a list of terms, we lowercase all the letters and remove
non-alphanumeric characters. So we lose capitalization information that helps us to discover named
entities. Punctuation is also needed to identify sentence boundaries. Therefore, a separate parsing
routine is created to specifically address named entity extraction. The input is the same article
content given to parsing, and the following operations are performed:

1. Convert Unicode string to ASCII, and clean HTML elements. Dont perform any other
normalization such as lowercasing or filtering out punctuation.

2. Get all the sentences from normalized content and process each sentence individually. Sen-
tence delimiters are dot, colon, question mark and exclamation point.

3. Extract named entities from sentences. A word is considered named entity if it contains a
capital letter or a number. Continuous words that qualify to be named entities (n-grams)
are combined together to form a single named entity. For example, New York City contains
3 capitalized words so it results in one named entity New York City. Also iPad 2 is formed
of a capitalized word and a number so its combined as well.

As a result, we have a list of named entities for every article. Then we add these named entities to
their inverted index, which is different from the word index described in Section 3. Further details
about the inverted index is given in the next section.

4 Indexing

Every time we crawl the RSS feed of a news website, we get the most recently published 100 articles.
Some of these articles are fresh stories that we havent seen before, but others are older articles that
we have already indexed. So deduplication is performed to filter out the redundant articles, and only
the new articles (if any) are added to the index after being parsed. Figure 1 demonstrates the system
architecture and information flow.

For each crawled article, we check whether it has been indexed before. Some news websites assign
unique IDs to their articles. If the article contains an ID, we check whether we already indexed an
article with the given ID of that news website before. If the article was indexed we skip it and avoid
parsing. Otherwise, we parse and index the article as discussed in Section 3. If the article doesnt
contain an ID in the first place, then we use the title-date pair to check whether it exists in the index.



Figure 1: System Architecture

Inverted index is the main data structure in the system for news retrieval. It maps each term to the
list of documents it appears in. Search for articles is performed using this index. There are thre
types of indexes: term index, named entity index and tag index. Term and named entity indexes
are constructed by parsing the articles as explained in Section 3 and 3.1 respectively. We refer the
reader to [3] for a comprehensive discussion of inverted indexes.

Some news sources associate tags with their articles, and make them accessible through their RSS
feeds. Tags basically summarize the article with various individual keywords. This is a valuable
information since tags are selected by the author of the website, and considered to be relevant. We
index tags corresponding to every article in a separate index and make use of this information at
recommendation systems.

5 Lists and Keywords

Lists and keywords are the main building blocks of Meliper. Users create lists and associate key-
words with them. Lists represent interest areas of the user and the keywords concretize those inter-
ests. Users create lists and associate keywords with them as discussed in Section 1. This section
elaborates the concept of list and keywords.

5.1 List and Keyword Details

Users aggregate keywords about a particular interest topic into a list. They can have as many lists as
they want, with as many keywords as they wish. List and keyword names are strings. The list name
doesn’t influence news retrieval, articles are selected based on keywords. A list just aggregates the
articles retrieved using its keywords (news retrieval explained in Section 6).

There are only two constraints about list and keyword names. The list name should be unique for a
user, so a user cant have two lists with the same name. And a keyword should be unique in a list,
but the same keyword can appear in different lists

Users have the option of making their lists can public or private. Public lists of a user are visible to
everyone in the system, and can also be ”followed” by other users (explained in Section 5.2). Private
lists are only visible to their creators. A user can switch the privacy setting of her list anytime.

Figure 2 shows the user interface for creating list, adding/removing keywords, and changing privacy
settings. The system is tried to be kept intuitive and easy to use. Figure 3 demonstrates an example



Figure 2: User interface for editing lists and keywords.

Figure 3: An example user list.

list with its associated keywords and retrieved news results. Bold yellow ”Fav” to the left of an
article means that it’s bookmarked by the user (explained in Section 6).

5.2 Following Lists

Each list is associated with its creator. But a useful feature in the system is that users can follow
other users’ public lists. For example, say we have a friend that has a deep knowledge in technology,
and he constructed a detailed public list with many keywords spanning various areas. We trust
our friend’s technology knowledge and we’re also interested in that area. So instead of spending
time creating our own list from scratch, we can just follow our friend’s list and start receiving the
same news as him. Other users can also follow his list and his list’s ”popularity” will increase,
encouraging him to create high qualiy lists. The system is similar to Twitter’s follow interface. It is
non-symmetric and there’s no concept of ”being friends”. A user can follow any public list created
by other users.

When the owner of the list updates it by adding or removing keywords, all the followers of that list
automatically see the changes. And only the owner of a list can modify the keywords of the list.



Figure 4: An example followed list.

Figure 5: Database Architecture

Followers just have read permission. Additionally, if the owner changes the list’s privacy setting
from public to private, or if he deletes the it, then followers of the list won’t be able to access it.

Figure 4 shows an example followed list, with its keywords and retrieved articles. It’s very similar
Figure 3, but now the owner of the followed list is emphasized in red.

5.3 Implementation

Figure 5 shows the Entity-Relationship Diagram of database tables corresponding to lists, keywords,
follow lists and user profile. Some fields are ommitted for brevity.

Each user has a unique user profile, containing detailed information about the user such as username,
email, languages etc. List table contains the field isPublic which can take a boolean value of True
or False, indicating the list is public or private respectively. Foreign keys establish one-to-many
relationships between tables (denoted by arrows). As we can see from the figure user profile is
a foreign key in list, meaning each list belongs to a single user but a user can have many lists.
Similarly, list is a foreign key in keyword, stating each keyword belongs to a list and a list can have
multiple keywords associated with it.

Follow lists are also similar, containing foreign keys for user profile and list. User profile field is
bounded to the current user, and the list field is associated with the list the current user is following



(which belongs to a different user). Note that we don’t have to keep a reference to the followed user,
who is the owner of the followed list, because the list already keeps that information. Foreign keys
are configured as on-delete cascade, which means when a list is deleted, all its associated keywords
and followers are also deleted. The database is Mysql.

6 News Retrieval

News results in each list are aggregated and presented to the user together. The user can first browse
news about technology, then politics, and sports. This way the users are able filter and localize the
information as they wish. So news stories are not presented as a blended mixture of various topics,
the system clusters them based on user’s own choice of lists and keywords. This section elaborates
news retrieval and ranking process, which is the most fundamental part of the system.

6.1 Ranking News

The articles within a users keyword list are ranked based on that users activity on the site. Personal-
ized ranking is performed by analyzing user logs, and creating a model to represent the user and the
news articles. This model is then used to retrieve ranked news results for each list of the user.

6.1.1 User Logs

Two types of actions of a user are logged: article and bookmarks (also called favorites). While a user
is browsing news at Meliper, she clicks on articles that she finds interesting. These clicks provide
valuable information about a users interest, since they’re a sign of relevance. Therefore, clicks on
articles are logged as user-article pairs. Every time a user clicks on an article, the articles ID is added
to her click log. Multiple clicks to the same article constitute as one entry.

Apart from clicks, a user can also bookmark (favorite) an article, similar to bookmarking a web page
in a browser. This could mean that the user has read (clicked) and appreciated the article, so she
wants to bookmark it. Or maybe she thinks that its interesting but doesnt have the time to read it
now, and she saves it for later. Either way, this is a strong signal of relevance, possibly even more
than clicks. The number of articles a user bookmarks is considerably less then the number she clicks.
And we generally see that bookmarked articles are also clicked, supporting our first intuition about
bookmarking implying user appreciation. Therefore, in the system bookmarks are considered more
important than clicks (we will quantify it later). Similar to clicks, bookmarked articles are added to
the users favorite logs.

6.1.2 Article Representation

Content of parsed articles are added two separate inverted indexes, term index and named entity
index (tag index doesn’t include article content). Therefore an article is indexed by both the terms
and named entities it contains. During ranking we only focus on named entity index, ignoring the
regular term index. Because named entities provide more specific information about an article. We
try to capture what exactly the article is talking about from the named entities it contains. For
example the existence of the proper nouns Microsoft, Bing, and Search API gives a clear context
about the article. Verbs or regular nouns provide broader information, not as specific and focused
as named entities. Therefore only named entities will be used to represent an article in ranking.
From now on, to conform standard information retrieval notations, we will refer named entities in
an article as terms, and articles will be called documents. But again note that terms we refer to are
actually the named entities in the article, not the word tokens.

Documents (articles) are represented using tf-idf in vector-space model [5]. Term frequency of a
term t in document d is the number of occurrences:

tft,d = nt,d (1)

where nt,d is the number of times term t appears in document d. Td is the set of all terms in d, so
the document frequency of a term in corpus is:



dft = 1 + |d ∈ D : t ∈ Td| (2)

where D is the set of all documents (indexed news articles). Actual document frequency is incre-
mented by 1 to avoid divide-by-zero error in inverse document frequency, which is calculated as
follows:

idft =
|D|
dft

=
N

dft
(3)

whereN is the number of documents in the corpus. And the final tf-idf value of a term in a document
is the product of term and inverse document frequencies:

tf -idft,d = tft,d × idft (4)

Therefore, each document is represented by a vector of tf-idf values of terms it contains. Document
vectors are normalized to have unit length.

6.1.3 User Representation

The users are also represented as normalized tf-idf vectors in the same vector-space as documents.
We define Cu and Bu as the set documents (articles) the user clicked and bookmarked respectively.
Note that a document can appear in both sets. Then we define the ”user document” Du as the
collection of all documents the user clicked or bookmarked:

Du = Cu ∪Bu (5)

The user vector is then represented by the terms (named entities) in Du. Term frequency of a term t
in clicked and bookmarked documents is:

ct,u = |d ∈ Cu : t ∈ Td| (6)

bt,u = |d ∈ Bu : t ∈ Td| (7)

Using these frequencies, we define the term frequency of a term in user document as follows:

tft,u = α× ct,u + β × bt,u (8)

where the parameters α and β are the weights reflecting the importance of clicked and bookmarked
documents respectively. Occurrence counts of terms are boosted by these weights. As mentioned
before, terms that appear in bookmarked documents are considered more relevant than clicked ones,
so bookmark weight β is higher than click weight α. Current values are α = 1 and β = 1.5. An
article in Du can be in one of 3 states for the user: only clicked, only bookmarked, or both clicked
and bookmarked. Term frequencies are boosted by 1, 1.5, and 2.5 in each case respectively. Which
follows our intuition that if an article is both clicked and bookmarked, it’s strongly relevant to user’s
interests. Finally, the tf-idf weight of a term for a user is defined as:

tf -idft,u = tft,u × idft (9)

So a user is represented similar to a document, with a normalized tf-idf vector in the same vector
space. This enables us to use cosine similarity in ranking articles for a specific user (described in
the next section).



Category Website No Articles

Technology TechCrunch 10,000
ReadWriteWeb 10,000

Economy

New York Times 10,000
Washington Post 10,000

Wall Street Journal 10,000
CNN 10,000

Politics

New York Times 10,000
Washington Post 10,000

Wall Street Journal 10,000
CNN 10,000

Table 1: News sources for categories.

6.1.4 Ranking

Ranking of news articles in a user’s list is performed based on his interests. Personalized ranking is
applied and as a result the ranking of news results are decided. Therefore the ordering of articles may
not be the same for different users, even if they have the exact same keywords in their lists. Because
user behavior such as clicking or bookmarking an article is logged, and these logs are used to create
a specific vector representation for each user. Documents are similarly represented as vectors in the
same vector space. Thus given a user vector ~u and a document vector ~d, the similarity between these
two vectors are calculated via cosine similarity. Since ~u and ~d are normalized tf-idf vectors (section
6.1.2 and 6.1.3), cosine similarity reduces to simple dot product of vectors:

sim(u, d) = ~u · ~d (10)

The cosine similarity value of two vectors ranges between 0 and 1, with 1 being perfectly similar
and 0 implying strong dissimilarity. Meliper is at its core, search and ranking on news corpus. Given
a list and its keywords, the system returns a ranked array of corresponding articles as follows:

1. For each keyword in the list, get the articles that keyword appears in from the inverted
index. Filter out the articles that are more than a week old to present only fresh news to the
user.

2. Now we have an array of articles for each keyword. Merge them together via conjunction.
The result is a single article array where each article contains at least one of the keywords.

3. Get the vector representation of the articles in the array as described in Section 6.1.2.

4. Form the user vector as explained in Section 6.1.3.

5. Calculate the cosine similarity between every article and the current user vector. Sort the
articles by decreasing similarity and return the result.

We perform the above operations for each list of the user one by one. And we get a ranked collection
of articles for every list. These articles are then presented to the user within their corresponding list
as shown in Figure 3.

7 Recommendation Systems

To make the system more clever and user-friendly, several recommendation systems are imple-
mented using Machine Learning techniques. Such as keyword, user, and list recommendations, as
well as mining Twitter data. In this section, we explain each recommendation system in detail.

The models described below are trained on a corpus of 100,000 news articles parsed from 3 cate-
gories: technology, business, and politics. The websites used for each category is in Table 1.



7.1 Keyword Recommendation

We want the system to recommend new keywords to the users, based on the current keywords they
have in their lists. This way, Meliper becomes more user-friendly, because now the users don’t have
to manually input all the keywords that belong to an interest area. The system automatically under-
stands users intent and suggests new similar keywords. The user can either follow the suggestions
or ignore them. If they choose to aggree with suggested similar keywords, then they’re added to
the corresponding lists. As an example, if a user has the keyword android in a list, then it would be
logical to recommend him similar keywords like iphone, ipad, ios to add that list.

7.1.1 Co-occurrence Count

The first method to find similar words of a given word is using co-occurrence counts. For each
word, its co-occurrence counts with other words are computed. Then the most similar words to a
given word is the ones with largest co-occurrence counts. Co-occurrence counts of words pairs are
computed as follows. For each news article in the corpus, the following steps are performed:

1. Get the named entities from the article (Section 3.1). The article is represented by an array
of named entities.

2. Get all pairs of named entities from the array. For an article with n named entities, this will
result in

(
n
2

)
pairs.

3. Increment the co-occurrence count of each pair.

After this procedure, we obtain a data structure (cooc-count) that contains co-occurrence counts of
every named entity pair. Cooc-count is a nested hashtable of hastables, with keys being the named
entities. First level keys are all the named entities in the corpus. Second level keys indexed by a
first level key (named entity) are all the named entities that co-occur with that first level key. The
value of combined first and second level key pair is the co-occurrence count of that named entity
pair. Therefore given a word and cooc-count data structure, we obtain the most similar k words as
follows:

1. Get all the words that co-occurred with the given word from cooc-count. These are all
candidate similar words.

2. To get top k most similar words, sort the candidate words by decreasing co-occurrence
counts, and return top k (or possibly less) most co-occurring words.

Now that we have a procedure to find most similar words to a given word, the main goal of recom-
mending k new keywords to a user can be done using these procedures. Keywords are recommended
to the user on a per-list basis. So for each list of the user, the following steps are performed:

1. Get the keywords in the given list of the user.

2. Get the most similar k keywords for each keyword in the list, together with their co-
occurrence counts. Therefore, for each keyword in the list we have an array of similar
keywords with counts.

3. Merge all similar keyword arrays. If a similar keyword has more than one co-occurrence
count because it is associated with more than one keyword, get the largest count value.

4. Sort the similar keywords by decreasing co-occurrence counts, and return the top k most
similar keywords.

We run the above algorithm on every list of the user, and we get an array of k new similar keywords
for each list. These new keywords are then suggested to the user, and the is given the choice of
following the recommendation or not. He can either add all recommended keywords, or he can
selectively add some of them he finds relevant. The system tries to optimize precision rather than
recall, so the k value is chosen to be a relatively small number such as 5. Table 2 shows some words
together with their corresponding similar words.



apple iphone, ipad, android, mac, google, steve jobs, ios
obama white house, congress, caucus, democrats, republicans
romney republican, gop, massachusetts, santorum, gingrich
stocks wall street, europe, greece, bonds, federal reserve
fed federal reserve, ben bernanke, stocks, banks, economy
unemployment labor department, benefits, americans, obama, job

Table 2: Example of some words and similar words.

7.1.2 Pointwise Mutual Information

An alternative to Co-occurrence Counts appraoch is Pointwise Mutual Information (PMI). PMI be-
tween two words is calculated using co-occurrence counts as follows [1]

PMI(u,w) = log
cuw

N∑n

i=1
ciw

N ×
∑n

j=1
cuj

N

(11)

Where n is the number of unique words (named entities) in the corpus and N is the total count of
words. PMI can take positive or negative values, where large positive and negative values asserting
strong similarity and dissimilarity respectively. But if it’s zero, then two words are independent.

New keywords are recommended using PMI very similar to co-occurrence counts. Instead of counts
we now use PMI as similarity metric, so there’s only one extra step performed.

7.2 List Recommendation

In addition to recommending new keywords to a user’s lists, we also recommend user new lists to
follow, based on his current lists and keywords. Recommended lists are public lists of other users,
and they are more detailed than the current list of the user. It’s the user’s choice to follow the
recommended lists.

For each list of the user, we recommend him n = 3 new lists to follow. Recommended lists are the
ones that are most similar. The following operations are performed for every list of the user:

1. Get the keywords of the current list.
2. Get k = 5 most similar keywords to each keyword in the list (Sections 7.1.1 and 7.1.2),

and merge them to form a vector of keywords.
3. Set the value of keywords in the list vector as their corresponding idf value. Normalize the

list vector to have unit length.
4. Find all public lists of other users which contain at least one keyword from the list vector.

These are the candidate similar lists.
5. Construct vectors of candidate lists as in step 3 to form candidate list vectors.
6. Find cosine similarity between the list vector and every candidate vector. Sort candidate

vectors by decreasing cosine similarity values and return the top 3 most similar vectors.

The procedure is similar to ranking news articles in Section 6.1.4. Lists are represented as unit
length vectors in the same vector space, and cosine similarity value is used as degree of similarity.
These operations are performed on every list of the user, and for each list 3 similar public lists of
other users are recommended. The parameters n and k can be modified. Increasing n results in more
recommendations to the user, and k value effects how specific or general the recommendations are,
where increasing k produces more general lists.

7.3 User Recommendation

The system can also recommend other a user other users who are similar. This way user a user can
discover users with similar interests, and potentially follow their lists. This feature improves the
social factor in the system and can lead to networks of users.



As we have seen in Section 6.1.3, the users are represented as tf-idf vectors in vector-space model.
This leads to natural use of cosine similarity to calculate similarity between users. Therefore, simi-
larity between two users u and v is defined as:

sim(u, v) = tf -idfu · tf -idfv (12)

This representation of the user is based on the articles he clicked and bookmarked. If he neither
clicked nor bookmarked any articles, then this approach won’t work.

We can represent the user in an alternative way based on all his keywords. Instead of using the named
entities in the articles he clicked or bookmarked as features, his keywords become the features in
the vector-space. We get all keywords from every list he creates or follows, and create a tf-idf vector
from it. The process is very similar to Section 6.1.2. Now documents are lists (instead of articles)
and terms keywords in the lists (rather than named entities in articles). Let L be all the lists in the
system, Lu be the lists that the user u owns or follows. Term frequency of a term t for user u is
defined as:

tft,u = |l ∈ Lu : t ∈ l| (13)

Which is the number of lists the term appears in. The document frequency of a term t is defined as
the number of lists it appears in + 1 (to avoid divide-by-zero error):

dft = 1 + |l ∈ L : t ∈ l| (14)

Then inverse document frequency of a term becomes:

idft =
|L|
dft

(15)

Finally, the weight of a term t in tf-idf representation of the user u is calculated as:

tf -idft,u = tft,u × idft (16)

The user is then represented as tf-idf values of the keywords in all lists he owns or follows, in
the vector-space of keywords in the system. User vector is normalized to enable to use of cosine
similarity. As we can notice, the formulas are almost the same as Equations 1-4. Because only the
source of the information has changed, the methodology is the same.

After denoting each user as normalized keyword vectors, the similarity of two users is the same as
Equation 12. In both representations, we calculate the similarity of current user with every other
user. And the most similar 5 users are recommended.

8 Future Work

Meliper project is open to further improvements in many areas. More machine learning techniques
can be added to make the system more intelligent. One particular example that we’re working
on right now is that instead of making users create lists by adding keywords manually, we try to
mine user’s interests from his Twitter account, if he grants us permission. The system then crawles
and parses user’s tweets, and tries to automatically extract keywords. Then similar keywords are
clustered together to form lists, and these lists are then recommended to the user. If the user likes
the list he imports it and becomes the owner of the list. Several clustering techniques are being
experimented, and we get promising results. This feature is expected to be completed very soon.

Another improvement is increasing the number of news sources, and covering various categories
from multiple perspectives. Adding more websites to the system also diversifies the content, and
increases user engagement. This is relatively simple to accomplish since crawling and parsing rou-
tines are generic and website-independent. As long as the website is has an RSS feeds, it can easily



be indexed. The feature is delayed on purpose to keep the system simple and easy to test. Also
multiple language support would engage more users spanning different countries.

Websites that have a social side improve as the user base increases. Especially recommendation
systems work better with more data. Meliper will advance further as users register and actively
provide data.

Acknowledgments

We would like to thank Melina Sabunci for valuable suggestions and useful feedbacks. Also ”Meli”
part of Meliper is inspired from her name.

References

[1] Yejin Choi, Marcus Fontoura, Evgeniy Gabrilovich, Vanja Josifovski, Mauricio Mediano, and
Bo Pang. Using landing pages for sponsored search ad selection. In Proceedings of the 19th
international conference on World wide web, WWW ’10, pages 251–260, New York, NY, USA,
2010. ACM.

[2] Arden Dertat. Meliper, 2012. http://meliper.com.
[3] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to informa-

tion retrieval. Cambridge University Press, 2008.
[4] Martin F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137, 1980.
[5] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic text retrieval. Inf.

Process. Manage., 24(5):513–523, 1988.


