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Preface
Since the identification of DNA/RNA as genetic material, deciphering the code of life

has been a major goal put forward by biologists. One approach particularly successful in
studying DNA sequences is to compare related sequences from different organisms. Se-
quence alignment, specifically pairwise alignment, is among the earliest tool developed in
bioinformatics. However, the generalization of pairwise alignment to multiple sequence
alignment is not straightforward. The comparison of multiple sequences is expressed in
two different but related problems: multiple sequence alignment finding shared homologous
regions among input sequences, and phylogeny inference finding the order by which each
sequence diverges from a common parent. These two problems have been under intensive
research in the last three decades.

However, multiple sequence alignment and phylogeny inference are not completely solved
problems, in the sense that there is no single best algorithm that stands out practically and
theoretically for each of these problems.

My first encounter of the phylogeny inference problem was in 2010, when Prof. Ken
Sung at the National University of Singapore gave us an assignment to infer the phylogeny
of dengue viruses across the world. By then I noticed that not all regions in the sequences
can be aligned reliably, due to heavy mutations and high degree of divergence. This problem
is more serious with long input sequences.

Prof. Franco P. Preparata introduced the problem to me again in 2011, this time
at Brown University. He was looking into how ancestor sequences can be constructed
to help build the phylogeny. By the end of 2011, we had some idea of how to generate
putative ancestor sequences for the internal nodes of the phylogeny, assuming there is no
insertion/deletion.

In Spring 2012, I found a way to reliably identify insertion/deletion events. This is then
used to extend our previous algorithm to handle insertion/deletion. The final algorithm is
a novel tool that suggests a complete evolution hypothesis of input sequences, consisting of
a phylogeny and of the placement of mutations on the edges of the resulting tree.

As described above, this thesis started with the initial insights from Prof. Franco. The
discussions with him provided me with new insights, as well as support to my ideas. I can
not thank him enough for these discussions, for the courses he recommended, and for his
time proofreading and editing this thesis. He has been a great mentor to me.

Special thanks to previous teachers who nurtured my interest in genomics and bioinfor-
matics: Prof. Ken Sung (NUS), Dr. José Dinneny (NUS), and Prof. Sorin Israil (Brown
University).

This thesis would not have been possible without the financial support from the Singa-
pore Government and SAS Institute, Singapore.
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a constant source of love and support. I am forever indebted to them.
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Chapter 1

Introduction

A persistent focus of biological research has been the detection of similarities and dis-

similarities among living species. As the study of nature continues, human knowledge

of similarities and dissimilarities among species has grown gradually both in depth

and in breadth.

Our knowledge of similarities and dissimilarities is used to give names to species

we see. The science of identifying, naming, and organizing species into groups, called

Taxonomy, until 2010 has identified millions of species [Report, 2010], which demon-

strates the breadth of our knowledge about species.

One may go further to ponder about the cause of the observed similarities and

dissimilarities. Charles Darwin’s seminal work ”On the origin of species” and many

other contributions have suggested that all living things share a universal ancestor,

and the differences among species are partly caused by mutations accumulated over

generations. Phylogenetics is the study of the evolutionary relatedness among species.

Researchers have established the links among seemingly different life forms, from

bacteria, fungi, to animals and plants [Maddison, 2007]. Deciphering such a distant

past of species evolution requires a deep understanding of morphology, molecular
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biology, and genomics of species.

Until the 19th century, much of the data available to taxonomy and phylogenetics

referred to the geological distribution and morphology of wildlife and fossils. As a

result, classical methodologies of taxonomy and phylogenetics have been developed

to work on morphological features, e.g. birds are vertebrate animals with feathers

and wings.

After the identification of DNA/RNA as the genetic material of living organ-

isms, genome sequences become a new input to old sciences. Similar to the way

morphological traits are compared in traditional phylogenetics, computational phy-

logenetics starts with comparing genomic sequences. Such comparison provides an

unprecedented granularity in our ability to compare living organisms, such that the

dissimilarity between parents and children can be detected and quantified. A notable

example is the reconstruction of the history of human migration from Africa based

on mitochondrial DNA, which contributes important evidence in addition to older

evidence derived from archaeology and linguistics.

However, this new advantage is a serious scientific challenge. As single bases

mutate at higher frequencies than morphological mutations are observed, traditional

approaches in taxonomy and phylogenetics cannot be directly applied on genome

sequences. For example, it is harder to find one or two bases at certain positions to

define a group of species the way birds are classified by having feathers and wings.

As the result, phylogeny inference algorithms become increasingly complicated. They

make use of sophisticated mathematical models to combine the information obtained

from the whole sequences to determine the phylogeny, in contrast to the traditional

approach that only makes use of important macroscopic morphological features.

The gap between phylogeny inference algorithm and classical phylogenetics has

practical implications:
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1. Current phylogeny inference algorithms do not allow for independent verifi-

cations of phylogenies. Given two conflicting phylogenetic trees (phylogenies)

obtained by two different algorithms, we cannot tell which part of which phy-

logeny is more biologically plausible. This is why current algorithms return

different phylogenies for different portion of the genome, and cannot combine

the phylogenies nor explain why different phylogenies can be arrived at.

2. The way many algorithms infer phylogenies is also disconnected from the intu-

ition of an evolutionary process. We have no idea of where a mutation happens

in the phylogeny (the phylogenetic tree). While selecting morphological features

to study has been a common practice in classical taxonomy and phylogenetics,

most current multiple sequence alignment do not take into account the specific

volatility of different regions. They try to impose an alignment even in sequence

regions with higher mutation rate and unclear alignments. A phylogeny infer-

ence algorithm that takes in such an alignment would have to proceed with that

unreliable imposition.

By addressing the aforementioned problems, this thesis works toward a more re-

liable approach to study the evolution of sequences.

1.1 Objectives

Our goal is to develop a unifying algorithm that takes as its input genomic sequences

that are assumed to share a common ancestor, and output a hypothesis of their

evolution, consisting of a phylogeny and of the placement of mutation on the edges

of the resulting tree. While there are different types of mutations such as reversals

and duplications, this thesis will focus on point substitution, insertions and deletions

- mutations relevant to input sequences of several hundred base pairs in length. This
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is different from many current algorithms that only give either the phylogeny from

a set sequences, or the multiple alignment among sequences, but not an analysis of

the actual mutations to explain the dissimilarity among sequences originated from a

common ancestor. An algorithm that satisfies our goal would offer various benefits:

• The output is open to user validation, so that phylogenies from different algo-

rithms and different genomic regions can be compared and combined.

• The algorithm generates putative ancestor sequences for the internal nodes of

the phylogeny. This may be useful to evolutionary studies.

• The algorithm depends on more realistic assumptions, allowing more biological

knowledge to be incorporated.

To achieve this goal, we use the following approach. We first use simulated data

and aligned data to generate aligned input sequences with no insertion/deletion (in-

del). Simulated data with no indel is generated with a simplistic model of evolution:

we start with a single sequence which represents the common ancestor; at each gener-

ation the available sequences will be duplicated with random substitutions to generate

their offspring, similar to binary fission in bacteria. Aligned data is given in matrix

form, where each row of the matrix corresponds to a sequence with gaps inserted in

between. Gap-free sequences are generated from the matrix form by taking a sample

of rows, and by removing columns with gaps (chapter 3).

By generating input sequences with no insertion/deletion, we can study phylogeny

inference independently from multiple sequence alignment.

We first develop algorithms that suggest sequences at the internal nodes of the

phylogeny (Section 5.4). The common parent of a pair of sequences is given as the

consensus sequence, with possible ambiguity at positions where two children differ.
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The ambiguity is later resolved using the principle of parsimony. Once all the ambi-

guities are resolved, each internal node of the inferred phylogeny is substantiated with

a sequence. This is different from the usual approach of Neighbor-Joining that makes

use of pseudo-distances. Our new approach is capable of locating point substitutions

in the phylogeny.

We then develop an algorithm that detects gaps that represent insertions/deletions

while doing multiple sequence alignment (Section 4.5). We looked for available mul-

tiple sequence alignment algorithms that suit our needs, but none was found. We

transformed the problem of tracking gaps into the problem of tracking gap-free local

alignments surrounding gaps. With this approach, we can reliably detect gaps re-

sulting from the same insertion/deletion event. Existing algorithms have difficulties

detecting insertion/deletion events because they represent gaps as single characters,

in contrast to our representation of gaps as a whole.

Finally, we construct the final algorithm that infers the phylogeny, while simul-

taneously keeping track of point substitutions, insertions, and deletions (chapter 6).

This algorithm makes use of the developed technique to detect insertion/deletion

events. The maximum parsimony approach developed earlier can then be applied to

find a plausible evolutionary hypothesis that takes the number of insertion/deletion

events into account.

1.2 Organization

Section 1.3 sets up the terminology and notations used in the thesis. Chapter 2

discusses how different phylogenies and alignments are currently compared, and the

assumptions upon which those comparisons are based. Scoring scheme and algorithms

affect each other: failure to develop an algorithm that uses more realistic assumptions
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would prevent strict scoring models to be used, while over-simplistic scoring models

would lead to algorithms that optimize the wrong objective. In the problem of mul-

tiple sequence alignment and phylogeny inference, the currently used scoring models

have problem keeping track of individual insertion/deletion events, even though such

model exists for pairwise alignments (affine gap penalty, for example).

Chapter 3 describes how we obtain the data for our study with various useful

statistics (for 16S RNA dataset) and default parameters (for simulated dataset).

Chapter 4 starts with a survey of current approaches to multiple sequence align-

ments, including progressive alignment and consistency approaches. The chapter con-

cludes with our novel algorithm to detect insertion/deletion events, which borrows

ideas from the consistency approach.

Chapter 5 starts with a survey of available phylogeny inference method, including

maximum parsimony, maximum likelihood, and clustering methods. It then develops

variants of Neighbor-Joining algorithm that construct putative sequences at internal

nodes of the phylogenies. These novel algorithms borrow ideas from the maximum

parsimony approach, Neighbor-Joining algorithm, and progressive alignment. The

chapter concludes by comparing the accuracy of developed phylogeny inference algo-

rithms using modifications of the Robinson-Foulds distance.

Chapter 6 introduces our main contribution, an algorithm that reconstructs the

whole evolution process from input sequences. This chapter draws a lot of concepts

and algorithmic ingredients from previous chapters. In details, it extends a Neighbor-

Joining variant from chapter 5 to keep track of insertion/deletion events by operating

on the output of the insertion/deletion detection algorithm from Chapter 4. The

result algorithm completes the framework by solving the problems pointed out in

Chapter 2.
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Chapter 7 finally summarizes the conclusion and suggests interesting directions

for further study.

1.3 Definitions

In this Section we introduce mathematical formulations of biological concepts. While

these are all commonly used concepts, different assumptions with varying strength

are still needed to justify the mathematical formulations.

Sequences are sequences of letters A, G, T or C. This is an abstraction of DNA

sequences. We are interested in sequences of several hundreds bases.

Two sequences are called homologous if they have a shared ancestor sequence.

We are interested in homologous pairs with similar function, hence undergoing the

same evolutionary stress. In higher organisms such as animals and plants, these

homologous pairs originate from one sequence that went on to evolve independently

after speciation in two reproductively isolated species (orthologs).

Two sequences may have regions that are homologous to each other. A pairwise

alignment arranges the regions to match them base by base. Given two sequences

S1, S2 with some homologous regions, a pairwise alignment of (S1, S2) is a two rows

matrix with entries of either A, G, T, C or single gaps, such that if gaps are removed,

the first row is the same as S1 and the second row is the same as S2. We want

the aligned positions of S1 and S2 to be homologous of each other. Note that this

construction cannot reveal mutations such as reversals, duplications, translocations...

The common practice to detect homology is to search for similar sequences using

sequence alignment algorithms, sometimes with biological function validation. Since

the history of most sequences is unknown, we would fail to detect homology if too
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many mutations have happened between the two sequences.

A species is a group of individuals that can interbreed, and reproductively isolated

from other such groups. We assume that the set of ancestors of a species can be listed

as one chain, e.g. there is an inheritance relationship between any two ancestors of

a given species. The assumption fails in occasions when individuals from different

species can still interbreed. This situation is more common in bacteria and viruses.

While the genomes of individuals in a species contain differences, we take the

sequence of a species to be a consensus sequence over those variants. This assumption

suffices for most phylogeny analysis, as the intra-species variation is negligible when

we are working on inter-species variation. Such an assumption would need to be

relaxed if we want to model the continuous change of allele frequencies in the course

of evolution (affected by natural selection, genetic drift and gene flow).

Suppose we know that a set of sequences S are homologous and want to obtain

their evolution history. We denote their latest common ancestor R(S), or R if the

reference to

S

is implicit, to be the latest sequence that each sequence Si in S can trace back to.

For each sequence Si there is a single chain of ancestors that trace back to R(S)

(assumption above), where each node represents an ancestor species. The union of all

those chains is a tree T0(S). For simplicity and practical reasons, we contract edges

when there are internal vertices with a single child. The tree t(S) obtained after

contraction is called the phylogeny relating S. Chromosomal crossover and other

types of genetic recombination cannot be described by a phylogenetic tree.

In genetics, mutation rate is the probability that mutation occurs in a cell division.

The concept also works in the context of a single gene or a single base. Mutation
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frequency is the generalization of mutation rate in a time unit. While mutation

frequency is easier to measure, there are more determining factors that come into the

picture, for example selection forces.

There are different kinds of mutations. Nucleotide substitution is the most fre-

quent mutation, as well as the easiest one to detect and quantify. Substitution rate

and substitution frequency are defined likewise.

Once we start to quantify the relationship between sequences, different metrics

come into the picture. Suppose we are comparing two sequences Sx and Sy. The

edit distance is the smallest number of mutational events (insert/delete/substitution)

that converts Sx into Sy (or vice versa). If we assume no insertions and deletions, the

edit distance becomes the Hamming distance. There are also other distance metrics

that look at insertions, deletions, GC contents...

With a chosen metric, we can then add weights to edges in T0(S) and t(S): for

an edge e, w(e) is the distance between the sequences at its two end points. Ideally,

the distance between the same pairs of nodes in T0(S) and t(S) should not differ too

much.

Because every mutation has a mutation that reverses it, the root R can be placed

anywhere in t(S) unless we have some reference to time. In particular, if the mutation

frequency is similar among all sequences in the course of evolution, the edit distances

between R and each of the leaves would be roughly the same, reflecting comparable

evolution time from R. This property helps us guess the position of R in an unrooted

tree.

Note that this constant molecular clock hypothesis rarely holds due to different

factors: life span variation, function changes, environment variation... Therefore,

the position of R in t(S) is often undetermined, and can only be resolved with the
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existence of an outgroup - a sequence not belonging to S but still sharing a traceable

common ancestor. Such a sequence would be connected to t(S) at R.

Given S, we want to reconstruct a tree t(S) that approximates t(S). The main

aim is to maximize topological similarity. This problem is called phylogeny inference.

Depending on the application of t(S), we may be required to obtain more informa-

tion that accompanies the phylogeny. For example, evolutionary studies may involve

estimating edge weights, root node, and/or sequences filled in the internal nodes, in

addition to the tree topology.

Some phylogeny inference method for n species refers to a distance matrix dn×n

where dx,y is a distance between Sx and Sy in a chosen metric. We would also want

to apply the same metric used in constructing d to weight the edges in t(S). Intu-

itively, the divergence between Sx and Sy can be seen as the accumulation of multiple

intermediate steps. Mathematically, if t(S) contains a path (Sx, u1, u2, ..., un−1, Sy),

it is ideal to have

dx,y = w(Sx, u1) + w(u1, u2) + ...+ w(un−1, Sy) (1.1)

where w’s are the weights of edges in t(S). If a metric satisfies 1.1 it is called

tree additive. Note that the absolute equality rarely happens in biological data, so

we usually accept small differences when we call a metric ’tree additive’. Under tree

additive metrics, tree distances are also preserved between T0(S) and t(S).

When the substitution rate is high or the branches are long, some mutation is

reversed. A letter A is mutated to G, and then mutated back to A again. This

is called homoplasy. In general, a series of point mutation happening in the same

position would appear as a single mutation. With high degree of homoplasy, or

generally overlapping, the Hamming distance increasingly deviates from being tree
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additive.

Multiple sequence alignment (MSA) is a straightforward generalization of pairwise

alignment. Assuming no change in the order of homologous regions, we want to add

gaps so that those regions align base by base. However, the objective function used

for pairwise alignments cannot be generalized easily, and it is NP-hard to optimize

for most objective functions.

MSA is useful for phylogeny inference because it helps detect homologous regions

in a set of sequences. On the other hand, many MSA algorithms need a guiding tree

to define their objective function or reduce the problem to pairwise alignments. The

knowledge of sequence history would require both MSA and phylogeny inference to

be solved.
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Chapter 2

Scoring model

The relationship between sequences is a description of how regions of different se-

quences evolved from some common ancestor. Suppose two different algorithms give

two different results, the user then needs a method to pick out the better result. Qual-

itatively, the result that provides a clearer picture on how mutational events happen

would be the better result. Quantitatively, we need a scoring model to compare

results.

We first look into scoring models with two sequences, and then move on to scoring

models of multiple sequence alignment.

2.1 Scoring of Pairwise Alignment

2.1.1 Hamming distance

We first motivate with a simple scoring model, Hamming distance. Given two se-

quences S1, S2, where S1[i] is the i-th character of sequence S1 and so on, their
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Hamming distance is the number of positions where they differ.

d(s1, s2) = |{i : s1[i] 6= s2[i]}|

This model does not account for insertions/deletions, as well as higher order muta-

tions such as duplications, reversals... However, the model accounts for substitution,

beside the caveat that multiple substitutions occurring at the same position cannot

be detected.

As different nucleotides have different chance of being mutated into another nu-

cleotide, different scores can be assigned to different matches/mismatches. Time may

also be added as a parameter in the model. Models generalized in this direction has

been studied extensively [Jukes, 1969], and are incorporated into several phylogeny

inference algorithms, despite the fact that insertions/deletions are neglected.

2.1.2 Levenshtein distance

Without modelling insertions/deletions, it is impossible to explain the evolution be-

tween two sequences with different lengths. Levenshtein distance, often called edit

distance, is the minimum number of edits needed to transform one sequence to an-

other, with only insertion/deletion, and substitution of single characters taken into

account. For example, the distance between ”abcde” and ”bbce” is 2 (subtitute ”a”

to ”b”, and delete ”d”).

By assigning different cost for different edit actions (insertion and deletion are less

frequent events, so they are assigned higher cost), this model becomes useful enough

that it has been incorporated into Smith-Waterman algorithm [Smith and Waterman, 1981],

which is still commonly used.
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Both Hamming distance and Levenshtein distance were originally defined in the

context of pairwise distances. When we have multiple sequences, they become the

basic building blocks of the new model.

2.1.3 General gap penalty

Levenshtein distance cannot model insertions/deletions of multiple characters. They

approximate this cost by the number of characters being deleted/inserted. In the real

situation, a gap of length 10 is much more likely than 10 separate single gaps. This

suggests that we find a better model for insertions/deletions. One way to do this is

to assign a penalty score for each single insertion/deletion event that is detected.

The penalty score should reflect the distribution of insertion/deletion length. An

ideal model would even take the local information into account: whether it is in the

loop region of a protein/RNA sequences, its exon encoding frame, etc. However, it is

hard to model all these factors in a general scoring model.

To build a gap penalty that works reasonably with different kinds of sequences, we

have to rely on some general observation. The gap penalty should be monotonic: a

short gap happens more often than a longer gap. The gap penalty is also conveniently

modelled as being convex: the penalty per base of a long gap is smaller than that

of a short gap. The event of an insertion/deletion itself is more important than

the length of the insertion/deletion. With all these observations in mind, affine gap

penalty tries to approximate a reasonable general gap penalty by assigning a penalty

for opening a gap, and a smaller penalty for every character a gap extends. This is

an algorithmically convenient model, and has found its way into the most popular

search algorithm, BLAST.
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2.2 Multiple Sequence Alignment

2.2.1 Star graph approximation and sum-of-pairs

Suppose the underlying phylogeny is a star graph (reference to figure). The total

weight of all edges is then proportional to the sum of all pairwise distances among

leaves. This sum is a commonly used score over multiple sequence alignments, called

sum-of-pairs score [Lipman et al., 1989].

Since most phylogenies are not star graphs, the sum-of-pair is not a good scoring

model. It introduces biases if a large portion of input sequences cluster together.

Some realized this problem, but they introduced ad-hoc fix instead of changing the

scoring model itself [Thompson et al., 1994].

Other scoring models such as maximum parsimony and maximum likelihood takes

the phylogeny into account when computing the score. However, finding the phy-

logeny that maximizes such a score is NP-complete even for Hamming distance

[Felsenstein, 2003], not to mention more complicated models.

2.2.2 Affine gap in multiple sequence alignment

If affine gap penalty can be applied in multiple sequence alignment, it would offer

the same benefit that made it useful for pairwise alignment: insertions and deletions

can be detected as events rather than artificial gap characters. However, few multiple

alignment algorithms use affine gap penalty, because it is harder to generalize the con-

cept. Most alignment algorithms assume some independence between how subsequent

characters from different sequences match, so that the algorithm can rely on dynamic

programming to reduce the space of alignments to be checked. The alignment of two

affine gaps cannot be fit into this framework.
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For one to write algorithms that operate on insertions/deletions as single events,

one has to obtain a holistic view of sequence regions and the gaps in between. Such

algorithms will have to deal with major as well as minor insertions/deletions; and the

pathological cases where those events overlap. Clearly, this is much more complicated

than the conventional approach that takes in one character at a time, but it is also

more informative.
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Chapter 3

Datasets

We use two datasets to independently evaluate computational methods. The first

dataset is a collection of aligned 16S rRNA with phylogeny estimated by the All-

species Living Tree project (LTP) [Munoz et al., 2011]. The dataset consists of more

than 8000 SSU (small subunit) ribosomal sequences about 1500bp each. The se-

quences are aligned and organized into a phylogeny. To obtain the ancestor sequences,

we run Fitch’s algorithm [Fitch, 1971] to find a maximum parsimony solution. A more

involved approach would be to maximize the likelihood with branch lengths taken into

account.

The second dataset is generated by simulation. Our simulation takes in 6 param-

eters: n, the approximated length of all the sequences; maxp, the maximum substi-

tution rate in each site of the sequence; pIns, the probability of insertion/deletion

in each generation; insertSize, the maximum size of each insertion/deletion; nSeq,

the approximated number of leaves in the generated phylogeny; and pSurvive, the

probability that a leaf is chosen from a full binary tree as described below.

1. Generate the common ancestor R as a sequence of n i.i.d. character, each
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drawn uniformly from {A,C, T,G}, and is assigned a substitution probability

uniformly drawn from the range [0,maxp].

2. For each leaf, mutate it twice to generate two new children connected to it. The

mutation process is described below.

• For each position, mutate it according to the assigned substitution prob-

ability. Given that a substitution event happens, the new base is chosen

uniformly with probability 1/3.

• With probability pIns, the mutation includes a single insertion or a single

deletion (each with conditional probability of 1/2). The position of the

indel is picked uniformly across the whole sequence, and the length of the

insertion is also picked uniformly from [1, insertSize]. If new bases are

introduced to the sequence, they also have their substitution probability

assigned as described above.

3. Repat (2) until pSurvive times the number of current leaves is greater than

nSeq.

4. Each leaf of the current full binary tree is chosen for the final phylogeny with

probability pSurvive. The returned phylogeny is the current full binary tree

restricted on the survived leaves.

With this simulation scheme, we can keep track of the true phylogeny relating the

observed leaves, as well as the whole mutation process. Each internal node of the

model phylogeny is an ancestor sequence obtained during the simulation. We also

know the alignment of sequences, since the history of each single base is kept.

This simulation protocol implicitly assumes constant molecular clock. When we

want to remove that assumption, instead of generating two branches for each leaf, we

may only take one random leaf and expand each iteration.

Page 22 of 93



We can reduce the size of the datasets. For the LTP dataset, we can pick a random

subtree of a roughly fixed size. For the simulation dataset, we can vary the number

of iterations to adjust the number of selected leaves. During the first stage of studies,

a small input size is crucial to the development speed.

We can also create a dataset that only have point substitution as mutation. This

is done with simulated data by fixing pIns = 0. For real biological data, since

the sequences are aligned, we can remove the columns with gaps. The remaining

sequences would be gap-free, and we take them to be aligned without having to make

any deletion or insertion. By ignoring sequence alignment, we can study phylogeny

inference independently from multiple sequence alignment.

Unless otherwise noted, we pick maxp = 0.1, pSurvive = 0.5, insertSize = 3. If

the study assumes no gap, pIns = 0. Otherwise pIns = 0.03. n and nSeq are two

key parameters, and vary during our study. A realistic default would be nSeq = 50,

n = 200.
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Chapter 4

Multiple Sequence Alignment

approaches

Given m sequences S1, S2,... Sm with some homologous regions, a multiple alignment

of (S1, S2, ...Sm) is a m-row matrix with entries of either A, G, T, C or single gaps,

such that if gaps are removed, the first row is the same as S1 and the second row is

the same as S2, and so on. A good multiple alignment suggests that positions aligned

in the same column are homologous to each other.

Multiple sequence alignment methods do not separate into disjoint classes. Each

method is built on previous methods, coupled with a few observations and improve-

ments. The following Chapter describes some common themes and how they evolved

through time.
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. A C G T gap
A 1 -1 -1 -1 -3
C -1 1 -1 -1 -3
G -1 -1 1 -1 -3
T -1 -1 -1 1 -3

gap -3 -3 -3 -3 −∞

Table 4.1: Similarity matrix with each mismatch penalty -1, gap penalty -3 and each
match score 1

4.1 Dynamic Programming Approach

When the number of sequences is 2, the commonly used algorithm for pairwise align-

ment is the Needleman-Wunsch algorithm or its variants. It defines an objective

function as follows.

Given a pairwise alignment as a 2-row matrix, each column can be scored ac-

cording to a similarity matrix. The similarity between two identical bases should be

higher than the similarity between two different bases (usually negative, perceived as

a penalty). As there are 4 possible bases in addition to the single-position gap, the

similarity matrix is a 5× 5 matrix (Table 4.1).

The score of the whole alignment is the sum of individual scores of each column.

This objective function assumes columns can be scored independently. Therefore a

Dynamic Programming algorithm can be used to find an alignment that optimizes the

objective function. The Needleman-Wunsch algorithm follows a dynamic program-

ming framework that defines a state dij to be the best score that can be obtained by

aligning substrings S1[0, i] to S2[0, j] (Table 4.2).

For Needleman-Wunsch algorithm to extend to the alignment of m sequences, we

need to somehow generalize the scoring of a column of 2 bases into the scoring of a

column of m bases. Sum-of-pairs is one such generalization, defined as follows.
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. A C C T G
A 1 -2 -5 -8 -11
C -2 2 -1 -4 -7
T -5 -1 1 0 -3
G -6 -4 -2 0 1

Table 4.2: Dynamic Programming table for aligning ACCTG to ACTG, using simi-
larity matrix in Table 4.1. The corresponding alignment is (ACCTG/AC-TG)

The sum-of-pairs score (SP score) of a column is the sum of scores from each pair

of characters in the column.

The generalization of the algorithm then follows naturally [Lipman et al., 1989].

However, the naive algorithm is impractical because the number of dynamic program-

ming (DP) states is now exponential with respect to m (Figure 4.1 for m = 3).

dimension(d) = (|S1|, |S2|, ..., |Sm|)

Figure 4.1: Alignment path for 3 sequences [Lee et al., 2002]

Initially, most effort was spent on decreasing the number of DP states to be

computed to improve the speed of the algorithm [Lipman et al., 1989]. However,

another drawback lies in the sum-of-pair scoring function. How gaps are introduced

into a sequence depends on all other sequences equally, while it should have given

more weights to similar sequences than distant sequences [Feng and Doolittle, 1987].

Feng and Doolittle proposed that similar sequences should be aligned first, then more
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distant sequences are incorporated into the alignment. This idea gives rise to the main

body of practical algorithms for multiple sequence alignment, progressive alignment.

4.2 Progressive Approach

Progressive alignment is an approach to construct the multiple alignment from a series

of pairwise alignment steps, each tries to align the results of previous alignment steps.

For example, we want to construct the multiple alignment of three sequences

CAAAGGGT, CAAAT, and CGGGT.

First, we align CAAAGGGT with CAAAT to get

CAAAGGGT

CAAA---T

Then, we align CGGGT with the previous result to get

CAAAGGGT

CAAA---T

C---GGGT

Note how gaps are introduced to sequences so that they align with each other.

Since only gaps are introduced in each alignment step, the approach is labeled ”once

a gap, always a gap”.

We now make two observations that suggest how we should formalize the previous

process.

First, the order of alignment steps matters. For example, if we align CAAAT and

CGGGT first, we will have a different alignment:
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CAAAT

CGGGT

This alignment would then be aligned with CAAAGGGT.

CAAA---T

CGGG---T

CAAAGGGT

The multiple alignment obtained in this order is less (biologically) plausible than the

previous multiple alignment, since ”GGG” had a perfect match that it is not aligned

to.

Since each step combines two previous results, the alignment order corresponds

to a binary tree, with initial sequences at its leaves. As the tree is used to guide the

pairwise alignment steps, it is labeled a guide tree. (figure references for the example

here)

Second, our pairwise alignment should be able to take in the output of previous

alignment steps. For example, to be able to align (CAAA—T/CAAAGGGT) with

CGGGT. Clearly the inputs are not DNA sequences anymore. They are more com-

plicated to be able to describe the alignments that have been made in previous steps.

We call these structures profiles, defined as follows.

Given a set of sequences S, a profile of S is a structure that summarizes the

multiple alignment of sequences in S. The representation of the profile is designed to

support its use in multiple alignment:

• A profile can be generated from an individual sequence. Here we call profiles

generated from individual sequence singleton profiles.
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• Any two profiles A and B can be aligned to yield another profile, such that the

new profile keeps track of which part of A is aligned with which part of B, and

which part of A and B cannot be aligned.

Different profile representations are described in Section 4.2.1.

Having defined guide trees and profiles, we can formalize the progressive alignment

approach as follows.

Input: a set of sequences S.

1. Calculate the guide tree from S

2. Replace each sequence Si in S by its singleton profile Pi

3. While there are more than one profile in S:

(a) Select two profiles Px,Py from S according to the computed guide tree

(b) Align Px and Py to obtain Pz

(c) Remove Px and Py and add Pz to S

Now we have formalized what the progressive alignment approach is, we can go

back and address the two observations we made before.

The first observation was about the importance of guide trees. Similar sequences

can be aligned with confidence, while distant sequences cannot. The relationship

between sequences is captured in phylogenetic trees, therefore it is natural that phy-

logenetic inference algorithms such as Neighbor Joining [Thompson et al., 1994] and

UPGMA [Edgar, 2004] be used to produce guide trees.

The second observation was about the role of profiles. We will discuss different

representations of profiles in Section 4.2.1.
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However, the way profiles are use also poses additional problems. Because each

alignment only uses the information from two profiles, it ignores the information

from other sequences. How do we utilize other sequences at the same time to prevent

mistakes in initial alignments? (Section 4.3). Suppose we have made mistakes during

the first few alignment steps, and they are propagated to later steps, how do we fix

those mistakes? (Section 4.4).

4.2.1 Profile representation

A profile should summarize the information of sequences in its subtree, and allow for

alignment with another profile.

The simplest and most commonly used representation of a profile is the frac-

tional count, albeit often only briefly mentioned as averaging over the whole column

[Notredame et al., 2000] [Do et al., 2005].

As sequences under one single profile have been aligned, we can write them down

as an m-row matrix, where m is the number of sequences. Let the number of columns

be N , then the profile P is then a sequence of length N , with the i-th element Pi

keeping track of the A-C-G-T content in column i.

Pi,c =
counti,c
m

, c ∈ {A,C, T,G, gap}

counti,c is the number of occurrences of c in column i. Note that

∑
c

counti,c = m ∀i = 1, ..., N

When two columns Ai and Bj of two profiles A and B are aligned, the score is
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given as the weighted average of base-base similarity score δ.

score =
∑
c1,c2

Ai,c1 ∗Bj,c2 ∗ δ(c1, c2)

For example, if we use the similarity matrix from Table 4.1 as δ, and the columns

to be aligned are ...

Ai = A Bj = A

A A

A G

G G

... then the similarity of these two columns is

Ai,ABj,Aδ(A,A) + Ai,ABj,Gδ(A,G) + Ai,GBj,Aδ(G,A) + Ai,GBj,Gδ(G,G)

=
3

4
.
2

4
.1 +

3

4
.
2

4
.(−1) +

1

4
.
2

4
.(−1) +

1

4
.
2

4
.1 = 0

While this representation is simple, how do we know if the alignments it gives are

biologically plausible?

We can use Occam’s razor as a criterion to guide our alignment selection. A

biologically plausible hypothesis is one that requires fewest assumptions to explain

the observed sequences.

Each multiple alignment is a hypothesis: it hypothesize that some positions are

homologous to each other, while others are not. The gaps introduced and the mis-

matches are assumptions: we assume that those are the real mutations to explain

how a common ancestor evolved into observed sequences.

The number of assumptions (or likelihood) can be measured if all ancestor se-
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quences are known. However, it is more involved to infer those ancestor sequences,

and the fractional count profile representation is a reasonable approximation. At a

position i, the ancestor sequence is fixed if all characters in the corresponding column

are the same, that is, ∃c : Pi,c = 1. Otherwise, our uncertainty scales with the number

of other characters that we observed.

However, this approximation does not come without caveats.

One problem is that a biased sampling of sequences would lead to biased col-

umn representation. For example, if instead of an alignment of 10 sequences, we

have another 10000 extra copies of one sequence to have 10010 sequences in total,

then any pair of profiles would be very similar to each other, biasing any similarity

scoring. The actual situation is not so extreme, but the way people collect DNA

sequences from species do introduce some biases into the databases. One way to

reduce the effect of duplicated information is to give each sequence a different weight

[Thompson et al., 1994]. Similar sequences would be down-weighted, because they

are over-represented in the sampling pool.

Another problem is that fractional count tends to penalize insertion more than

deletion. An insertion introduces an extra column with the same penalty calculated

over and over again, while a deletion is just a gap in an existing column. To overcome

this problem, one can keep track of existing gaps, and avoid penalizing them again

[Löytynoja and Goldman, 2005].

Representing a profile as a sequence also poses another problem, demonstrated by

the following example.

Consider 5 domains S, T, X, Y, Z and the following 3 sequences: XYT, XZT, and

XST. If the profile for the first 2 sequences is (XY-T/X-ZT), S would be aligned to

YZ. The situation would be completely different if by chance we produced a different
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Figure 4.2: The insertion ”TT” is counted twice when profiles x and y are compared.
It introduces two additional columns when compared with a similar deletion of size
2. The algorithm uses the arrow to skip the gaps that have already been penalized
[Löytynoja and Goldman, 2005]

profile (X-YT/XZ-T). Then S would be aligned to ZY. The difference here is merely

an artifact of the forced order of unaligned domains.

In general, when there are two domains that have never appeared in the same

sequence, a greedy algorithm will have to impose an order on two unrelated domains

in the multiple sequence alignment, with no reason why one order is preferred over

another.

The Partial Order Graph (POA) algorithm [Lee et al., 2002] seeks to remedy this

problem by representing a profile as a Directed Acyclic Graph. The alignment of

XYT and XZT would then produce the following DAG.

Using Directed Acyclic Graph as a profile representation adds some complexity.

The authors could not align two profiles, so they incorporated sequences into a grow-

ing profile, one by one. This in turn makes the algorithm sensitive to the order of

incorporated sequences. Another difficulty is to detect domains in a sequence. The

authors chose to incorporate only the best local alignment into the growing profile,

ignoring other domains disjoint from that local alignment.
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Figure 4.3: DAG resulted from aligning XYT and XZT. The actual graph is on the
right, as we transform each domain into its corresponding sequence.

However, this approach reveals some interesting ideas. First, the fractional count

representation is not the only possible way, and other alternatives are worth exploring.

Second, when many sequences are aligned (up to thousands of sequences), distant

pairs of sequences appear, and in many cases their differences cannot be explained

by substitution and short indels. For pairwise alignments there are global and local

alignments, so similarly it might be interesting to examine the idea of local alignment

in the multiple sequence setting.

4.3 Consistency Approach

Sequence alignment can be seen as a signal detection problem: we need more than

one signal to obtain information from data with confidence. Given two sequences a

and b, if ai = bj, ai+1 = bj+1, ... ai+l−1 = bj+l−1 with large enough l, then we are more

confident to say that a[i, i+ l− 1] matches b[j, j + l− 1]. The fact that the indices of

the matches are consecutive makes it possible to combine the signals and report the

match confidently. If we look at an m×N alignment matrix, then this combination

of signals is a string of columns in the alignment matrix. Is there another way to

combine signals in the alignment matrix?

One of the advantages that multiple alignment has over pairwise alignment is

that we have more support for the alignment: if substring X is aligned to Y, and
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Y to Z, then this supports that X aligns to Z. We call this combination of signals

consistency. Consistency has been a very important tool to incorporate information

from all sequences, even in pairwise alignment steps of progressive alignment.

DALIGN is among the first multiple sequence aligner to implement consistency

[Morgenstern et al., 1998]. Given m sequences, they perform all m(m−1)
2

possible pair-

wise alignments. For each pairwise alignment between sequences a and b, a pair (i, j)

such that ai is aligned with bj is called a diagonal (which is different from the con-

ventional diagonals in alignment matrices). All those diagonals are collected, sorted

according to their own weights and how much they overlap with other diagonals, and

then added to the multiple alignment one by one.

T-Coffee is a widely used aligner that follows a similar approach

[Notredame et al., 2000]. It generates a library of alignments consisting of pairwise

global and local alignments from input sequences. Each alignment is assigned a

score, which is the fraction of matches over the length of the alignment. This is also

called the identity of the alignment. Each pair of aligned bases is then assigned an

initial weight: the identity of the alignment those aligned bases come from. Sup-

pose A, B, C are the different positions in three different sequences, and W (A,B),

W (A,C), W (B,C) are the assigned weights to the aligned pairs. We then itera-

tively update the weight according to how other sequences confirm the alignment:

W ′(A,B) = W (A,B) + min(W (A,C),W (C,B)) in a process called the library ex-

tension.

Figure 4.4: The initial weights, Example from [Notredame et al., 2000]
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Figure 4.5: The updated weights, example from [Notredame et al., 2000]

For example, in figure 4.4, the alignment of SeqA and SeqB has 9/11 matches, so

each aligned pair is assigned an initial weight of 88%. Similar weights are calculated

for the alignment between SeqA and SeqC to give 77%, and between SeqB and SeqC

to give 100%. When the library extension process uses seqC to update the weights of

diagonals between seqA and seqB, the additional weight is min(77, 100) = 77. The

final updated weights are represented by the thickness of the lines in the extended

library.

The larger the number of sequences confirming a pair of positions, the higher

weight the pair receives . Those weights are then used for the pairwise alignment

steps in progressive alignment. During the pairwise alignment steps, gap penalties

are set to zero. The consistency scores are strong enough to make them insensitive

to gap penalties.

PROBCONS also implement a similar strategy, but the proposed formulas are

designed with more probabilistic justification [Do et al., 2005]. The weight W (A,B)

in T-Coffee is now calculated as the posterior probability that A and B aligns. Then

instead of updating weights by adding other weights, they perform a more sophisti-

cated probabilistic consistency transformation that updates the probability of A and
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B being aligned by the product of the probability of A and C being aligned and the

probability of C and B being aligned:

Figure 4.6: Probabilistic consistency transformation [Do et al., 2005]. S is the set of
input sequences, with x, y, z ∈ S. xi yj ∈ a∗ is the event that position i of sequence
x is aligned with position j of sequence y in the unknown MSA a∗; xi corresponds to
A, yj corresponds to B, and zk corresponds to C in the previous paragraph

The probabilistic consistency transformation can be done multiple times. The

obtained weights can be used for pairwise alignment in a way similarly to T-Coffee.

4.4 Iterative refinement

Iterative refinement works as follows. We start with a guide tree and a multiple

alignment. In each iteration, we can pick some subtrees and realign sequences in

each of those subtrees independently. The updated subtrees can then be merged to

update the whole multiple alignment. At the same time, we may also try to make

local changes on how subtrees are connected to each other. If the new alignment

scores better than the old alignment, we start the next iteration with the new one.

Otherwise, we continue with the old alignment.

While the idea is generally the same, different algorithms have different imple-

mentation of iterative refinement. A multiple sequence alignment method can ignore

iterative refinement altogether because they do not define a scoring scheme for an

alignment [Thompson et al., 1994]. They may define a simple criterion for the align-

ment such as the sum-of-pair score, and use that score to search for a better alignment

while keeping the guide tree intact [Edgar, 2004] [Do et al., 2005]. They can also go

to the other extreme where there is a likelihood measure for a guide tree together
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with its associated multiple alignment, and the iterations are used to optimize the

guide tree and the multiple alignment at the same time to maximize the likelihood

[Liu et al., 2012].

4.5 Anchor based alignment

As described above, multiple sequence alignment is a hard problem with many ap-

proaches, which are usually computationally intensive. However, when we focus on a

single conserved region across sequences, multiple sequence alignment becomes much

easier.

For example, we are interested in the region of 16S rRNA of length 312 given

below

TGGGCTACACACGTGCTACAATGGATGGAACAAAGGGCAGCGAAGCCGTGAGGCCAAGCAAATCCCACAAAA

CCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGATCAGC

ATGCCGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCACGAGAGTTGGTAACACCCGAA

GTCGGTGAGGTAACCGTAAGGAGCCAGCCGCCGAAGGTGGGACCAATGATTGGGGTGAAGTCGTAACAAGGT

ACCGTATCGGAA

Let’s name this region the anchor string, for reasons we will explain later. We

can now take the anchor string and search for it in our set of sequences, which are

sampled randomly from the database of 16S rNAs: AM980986, AY859682, DQ442546,

AY613990, AB184869, Y17234. The following example is obtained by searching each

of the input sequence for the anchor string using BLAST. The anchor string is labeled

Sbjct. The identities (Section 4.3) of an alignment is the percentage of matches over

the number of aligned positions.

AM980986 Actinocatenispora_rupis
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Identities = 176/217 (81%), Gaps = 1/217 (0%)

Query 1153 GGGCTTCACGCATGCTACAATGGCCGGTACAGAGGGCTGCGATACCGCAAGGTGGAGCGA 1212

||||| ||| | ||||||||||| || ||| ||||| |||| ||| ||| ||| |

Sbjct 2 GGGCTACACACGTGCTACAATGGATGGAACAAAGGGCAGCGAAGCCGTGAGGCCAAGCAA 61

Query 1213 ATCCCTAAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGA 1272

||||| ||| || ||||||||||||| | | |||||||||| | | ||||| ||||

Sbjct 62 ATCCCACAAAACCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGGA 121

Query 1273 GTCGCTAGTAATCGCAGATCAGCAACGGTGCGGTGAATACGTTCCCGGGCCTTGTACACA 1332

|||||||||||||| ||||||| | | |||||||||||||||||||| ||||||||||

Sbjct 122 ATCGCTAGTAATCGCGGATCAGC-ATGCCGCGGTGAATACGTTCCCGGGTCTTGTACACA 180

Query 1333 CCGCCCGTCACGTCACGAAAGTCGGTAACACCCGAAG 1369

||||||||||| ||||| ||| ||||||||||||||

Sbjct 181 CCGCCCGTCACACCACGAGAGTTGGTAACACCCGAAG 217

AY859682 Mycobacterium_phocaicum

Identities = 242/297 (81%), Gaps = 4/297 (1%)

Query 1186 GGGCTTCACACATGCTACAATGGCCGGTACAAAGGGCTGCGATGCCGTGAGGTGGAGCGA 1245

||||| ||||| ||||||||||| || ||||||||| |||| ||||||||| ||| |

Sbjct 2 GGGCTACACACGTGCTACAATGGATGGAACAAAGGGCAGCGAAGCCGTGAGGCCAAGCAA 61

Query 1246 ATCCTTTCAAAGCCGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGG 1305

|||| |||| || ||||||||||||| | | |||||||||| | | ||||| |||

Sbjct 62 ATCCCA-CAAAACCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGG 120

Query 1306 AGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTACAC 1365

| |||||||||||||| |||||||| || |||||||||||||||||||| |||||||||

Sbjct 121 AATCGCTAGTAATCGCGGATCAGCAT-GCCGCGGTGAATACGTTCCCGGGTCTTGTACAC 179

Query 1366 ACCGCCCGTCACGTCATGAAAGTCGGTAACACCCGAAGCCGGTGGCCTAACCCTTGTGGA 1425

|||||||||||| || || ||| |||||||||||||| ||||| ||| || | |||

Sbjct 180 ACCGCCCGTCACACCACGAGAGTTGGTAACACCCGAAGTCGGTGAGGTAA-CCGTAAGGA 238

Query 1426 GGGAGCCGTCGAAGGTGGGATCGGCGATTGGGACGAAGTCGTAACAAGGTAGCCGTA 1482

| ||||| ||||||||||| | ||||||| ||||||||||||||||| |||||

Sbjct 239 GCCAGCCGCCGAAGGTGGGACCAATGATTGGGGTGAAGTCGTAACAAGGTA-CCGTA 294

DQ442546 Streptomyces_sulphureus

Identities = 191/231 (83%), Gaps = 1/231 (0%)
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Query 1181 TGGGCTGCACACGTGCTACAATGGCCGGTACAATGAGAGGCGAGGCCGTGAGGTGGAGCG 1240

|||||| ||||||||||||||||| || |||| | | |||| ||||||||| |||

Sbjct 1 TGGGCTACACACGTGCTACAATGGATGGAACAAAGGGCAGCGAAGCCGTGAGGCCAAGCA 60

Query 1241 AATCTCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGG 1300

|||| || ||| || ||||||||||||||| | |||||||||| | ||||||| |||

Sbjct 61 AATCCCACAAAACCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGG 120

Query 1301 AGTCGCTAGTAATCGCAGATCAGCATTGCTCGGTGAATACGTTCCCGGGCCTTGTACACA 1360

| |||||||||||||| ||||||||| | ||||||||||||||||||| ||||||||||

Sbjct 121 AATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGTCTTGTACACA 180

Query 1361 CCGCCCGTCACGTCACGAAAGTCGGTAACACCC-AAGCCGGTGGCCTAACC 1410

||||||||||| ||||| ||| |||||||||| ||| ||||| |||||

Sbjct 181 CCGCCCGTCACACCACGAGAGTTGGTAACACCCGAAGTCGGTGAGGTAACC 231

AY613990 Kitasatospora_viridis

Identities = 229/278 (82%), Gaps = 3/278 (1%)

Query 1144 TGGGCTGCACACGTGCTACAATGGCCGGTACAAAGGGCTGCGATACCGTGAGGTGGAGCG 1203

|||||| ||||||||||||||||| || ||||||||| |||| |||||||| |||

Sbjct 1 TGGGCTACACACGTGCTACAATGGATGGAACAAAGGGCAGCGAAGCCGTGAGGCCAAGCA 60

Query 1204 AATCCCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTTGG 1263

||||||| ||| || ||||||||||||||| | |||||||||| | ||||||| ||

Sbjct 61 AATCCCACAAAACCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGG 120

Query 1264 AGTTGCTAGTAATCGCAGATCAGCATG-TGCGG-GAATA-GTTCCCGGGCCTTGTACACA 1320

| | |||||||||||| |||||||||| |||| ||||| ||||||||| ||||||||||

Sbjct 121 AATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGTCTTGTACACA 180

Query 1321 CCGCCCGTCACGTCACGAAAGTCGGTAACACCCGAAGCCGGTGGCCTAACCCTTGGGAGG 1380

||||||||||| ||||| ||| |||||||||||||| ||||| ||||| | ||||

Sbjct 181 CCGCCCGTCACACCACGAGAGTTGGTAACACCCGAAGTCGGTGAGGTAACCGTAAGGAGC 240

Query 1381 GAGCCGTCGAAGGTGGGACCAGCGATTGGGACGAAGTC 1418

||||| |||||||||||||| ||||||| ||||||

Sbjct 241 CAGCCGCCGAAGGTGGGACCAATGATTGGGGTGAAGTC 278

AB184869 Streptomyces_bambergiensis

Identities = 237/295 (80%), Gaps = 6/295 (2%)

Query 1166 TGGGCTGCACACGTGCTACAATGGCCGGTACAATGAGCTGCGATACCGCGAGGTGGAGCG 1225
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|||||| ||||||||||||||||| || |||| | || |||| ||| |||| |||

Sbjct 1 TGGGCTACACACGTGCTACAATGGATGGAACAAAGGGCAGCGAAGCCGTGAGGCCAAGCA 60

Query 1226 AATCTCAAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGG 1285

|||| || ||| || ||||||||||||||| | |||||||||| | ||||||| |||

Sbjct 61 AATCCCACAAAACCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGG 120

Query 1286 AGTTGCTAGTAATCGCAGATCAGCATTGCTGCGGTGAATACGTTCCCGGGCCTTGTACAC 1345

| | |||||||||||| |||||||| ||| |||||||||||||||||||| |||||||||

Sbjct 121 AATCGCTAGTAATCGCGGATCAGCA-TGCCGCGGTGAATACGTTCCCGGGTCTTGTACAC 179

Query 1346 ACCGCCCGTCACGTCACGAAAGTCGGTAACACCCGAAGCCGGTGGCCCAACCCCCTTGCG 1405

|||||||||||| ||||| ||| |||||||||||||| ||||| |||| |

Sbjct 180 ACCGCCCGTCACACCACGAGAGTTGGTAACACCCGAAGTCGGTGAGGTAACC-----GTA 234

Query 1406 GGGAGGGAGCCGTCGAAGGTGGGACTGGCGATTGGGACGAAGTCGTAACAAGGTA 1460

|||| ||||| |||||||||||| ||||||| |||||||||||||||||

Sbjct 235 AGGAGCCAGCCGCCGAAGGTGGGACCAATGATTGGGGTGAAGTCGTAACAAGGTA 289

Y17234 Microbacterium_laevaniformans

Identities = 233/291 (80%), Gaps = 2/291 (1%)

Query 1128 TGGGCTTCACGCATGCTACAATGGCCGGTACAAAGGGCTGCAATACCGTGAGGTGGAGCG 1187

|||||| ||| | ||||||||||| || ||||||||| || | |||||||| |||

Sbjct 1 TGGGCTACACACGTGCTACAATGGATGGAACAAAGGGCAGCGAAGCCGTGAGGCCAAGCA 60

Query 1188 AATCCCAAAAAGCCGGTCCCAGTTCGGATTGAGGTCTGCAACTCGACCTCATGAAGTCGG 1247

||||||| ||| || || |||||||||||| | |||||||||| | ||||||| |||

Sbjct 61 AATCCCACAAAACCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGCCGG 120

Query 1248 AGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAATACGTTCCCGGGTCTTGTACAC 1307

| |||||||||||||| ||||||| | || ||||||||||||||||||||||||||||||

Sbjct 121 AATCGCTAGTAATCGCGGATCAGC-ATGCCGCGGTGAATACGTTCCCGGGTCTTGTACAC 179

Query 1308 ACCGCCCGTCAAGTCATGAAAGTCGGTAACACCTGAAGCCGGTGGCCCAACCCTTGTGGA 1367

||||||||||| || || ||| ||||||||| |||| ||||| || || | |||

Sbjct 180 ACCGCCCGTCACACCACGAGAGTTGGTAACACCCGAAGTCGGTGAGGTAA-CCGTAAGGA 238

Query 1368 GGGAGCCGTCGAAGGTGGGATCGGTAATTAGGACTAAGTCGTAACAAGGTA 1418

| ||||| ||||||||||| | | ||| || ||||||||||||||||

Sbjct 239 GCCAGCCGCCGAAGGTGGGACCAATGATTGGGGTGAAGTCGTAACAAGGTA 289

Given these alignments, we roughly know how input sequences should align: two
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sites from two different sequences should be aligned if they are aligned to the same

site in our anchor string. In the example above, position 1128 of Microbacterium lae-

vaniformans sequence should align with position 1166 of the sequence of Streptomyces

bambergiensis because they both align to the first position of our anchor string. The

motivation behind the chosen terminology, anchor string, follows from the fact that

it helped us align sites from different sequences.

By introducing the concept of anchor string, objects from two different sequences

can be directly compared. Given an anchor string S0:

• The anchor of a position Si of a sequence S is the position in the anchor string

that Si is aligned to when we align S against S0. Two positions ai, bj of two

different sequences a and b should be aligned if they have the same anchor, i.e.

they are aligned to the same position in the anchor string.

• The anchor of a region/interval (x, y) in a sequence S is a pair (x′, y′) of posi-

tions in the anchor string such that x′ is the anchor of S[x], y′ is the anchor of

S[y], and the region S[x, y] is aligned to the region S0[x
′, y′].

Ideally, each position in a sequence S has at most one anchor; that is, it is only

aligned with one position in the anchor string. There are scenarios where this fails to

happen: the anchor string contains a repetitive element, or the alignment near a gap

is unreliable. We can avoid having repetitive elements by removing such elements

from our anchor string. The unreliability of the alignments near a gap is a more

prevalent problem.

For example, we have two equally likely single-gap alignments shown below, ob-

served when aligning Actinocatenispora rupis sequence against Virgibacillus proomii

sequence.
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GCAGATCAGCAACGGTG or GCAGATCAGCAACGGTG (Actinocatenispora rupis)

GCGGATCAGC-ATGCCG GCGGATCAGCA-TGCCG (Virgibacillus proomii)

Note that the letter ’A’ of the bottom sequence can be aligned to two possible

anchors in the top sequence. This problem arises because the position of a gap is not

clear. We know that it must be in some region of the anchor string, but the particular

position in this case is ambiguous. While the region of ambiguity can be as short as 2

bases, it can also be as long as a dozen bases in the following example obtained from

aligning Virgibacillus proomii sequence against Staphylococcus sciuri sequence.

ATAGGGAGTTCCCTTCGGGGA--CAGAGTGAC (Staphylococcus sciuri)

ATAGAGTCTTCCCCTTCGGGGGACAAAGTGAC (Virgibacillus proomii)

or

ATAGGGAGTT--CCCTTCGGGGACAGAGTGAC (Staphylococcus sciuri)

ATAGAGTCTTCCCCTTCGGGGGACAAAGTGAC (Virgibacillus proomii)

Such ambiguity in pairwise alignment leads to more ambiguity in multiple align-

ment. In the first example, note that there is often a gap near position 145 in our

anchor string. We extract the alignments around that gap in different sequences as

follows.

AGC-ATG

AGCAT-G

AGCATG-

AGCA-TG

AGC-ATG

DQ442546 no gap

AY613990 gap on the opposite strand
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Given that the gaps occur in close proximity, and that indels happen much less

frequently than point substitution, it is plausible to hypothesize that the above gaps

all result from a single indel event. While in the above example, the position of the

indel event is not clear, from the given data, its length is clearly 1.

4.5.1 Finding Insertion/Deletion events

Sections 5 and 5.4 describe many phylogeny inference methods that require their

input to be aligned sequences. Those methods aim to find an evolutionary hypothesis

that explains how individual homologous regions evolved from a common ancestor.

Therefore the identification of those individual homologous regions becomes very

useful.

As gap boundaries are often unclear as discussed above (Section 4.5), how do

they affect the traditional approaches of multiple sequence alignment and phylogeny

inference?

A multiple sequence alignment algorithm will be forced to return a single an-

swer. A phylogeny inference method then has two choices. It can either assume that

the alignment is correct, and proceed with possible errors that might have been in-

troduced; otherwise it can truncate near the boundaries of gaps, and proceed with

alignments sufficiently removed from gaps.

Let us suppose we took the second choice, that is, we cannot reliably align the

boundaries of gaps for use in phylogeny inference. We saw above that while gap

boundaries are often not clear, their length is more easily obtained with confidence

(Section 4.5). If two gaps share the same length, and are aligned to the same region,

it is likely that they correspond to the same insertion/deletion event.

Using gap lengths in inferring phylogenies offer another advantage. When se-
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quences are further apart, homoplasy happens more frequently: a base A can be mu-

tated to G, and then to A again. This confuses character-based methods (maximum

parsimony and maximum likelihood), as well as distance based method (Neighbor

Joining). This is a problem because we only have 4 possible characters. However,

the problem is less severe with gaps. It is very unlikely for a deletion to follow an

insertion and completely neutralize it, for example AC → ATC → AC. It is even

less likely for an insertion to follow a deletion an completely neutralize it, for example

AGTGC → AC → AGTGC.

4.5.2 Gap detection algorithm

Consider this toy example, where two alignments of ”AGCAG” with ”AGCCAG” are

shown:

AGC_AG or AG_CAG ?

AGCCAG AGCCAG

In this setting it is not important whether the mutation was a deletion or an insertion.

Either way, it is represented by a single gap (” ”) character. Notice that the interval

between strings ”AG” and ”AG” in the upper sequence has length 1, and in the lower

sequence has length 2. We can therefore conclude that there must be a gap of length

1 in the upper sequence, even when the position of the gap is unclear.

With this example in mind, we design an algorithm that takes a sequence as an an-

chor, finds gaps in other sequences when aligned to the anchor, and identifies common

gaps that appear in several sequences. Such gaps are evidence of insertion/deletion

events, and sequences that share a common piece of evidence are expected to be close

in the phylogeny. A maximum parsimony, maximum likelihood, or even Neighbor

Joining algorithm can make use of such information.
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Given a set of sequences S = {S1, S2, ..., Sn}, there are several ways to pick an

anchor sequence. It may be a random sequence in S, or some homologous sequence

not belonging to S. The anchor sequence can also be an artifact that we create by

concatenating substrings from S. A good anchor sequence S0 possesses the following

qualities.

• S0 contains no approximate repetitive substring.

• When any sequence Si in S is aligned against S0, most positions of Si can be

aligned to exactly one position in S0 with confidence.

• If a region A precedes another region B in Si, its alignment A′ should also

precede B’s alignment B′ in S0 (order preservation).

Given the selected anchor sequence S0, for each Si ∈ S we can find its homologous

regions and gaps in-between as follows.

• Find all significant gap-free local alignments (matches) between S0 and Si. We

can sort them by their positions in S0. We number the matches in their sorted

order to be Mj, j = 1, ..,m. Each match Mj is a vector with 4 components

M0
j,L, M0

j,R, M i
j,L, M i

j,R with [M i
j,L,M

i
j,R] being an interval/region in Si and

[M0
j,L,M

0
j,R] being the anchor of this interval.

Because the matches are gap-free, we have M0
j,R −M0

j,R = M i
j,R −M i

j,R for any

Mj.

• For each pair of subsequent matches (Mj,Mj+1), the gap between them is an-

chored at interval [M0
j,R,M

0
j+1,L], with their length calculated as (M i

j+1,L −

M0
j+1,L)− (M i

j,L −M0
j,L)

Here we introduce the notion anchor of a gap, which is determined by its adjacent

matches. Once gaps from different sequences are detected, they can be grouped into
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collections of gaps with the same length and proximal positions. Such a collection of

gaps is expected to result from a single insertion/deletion.

Here we will demonstrate how the algorithm works on a toy example consisting

of the following sequences

index 0123456

S0 AGTTAGT

S1 AGAG

S2 AGCGT

where the matches found between S0 and S1 is AG/AG, and between S0 and S2 is

GT/GT.

Anchoring

S0 AGTTAGT

S1 AG AG

S2 AG GT

Aligning s0-S1:

Match 0: anchor [0,1], interval [0,1]

Match 1: anchor [4,5], interval [2,3]

--> gap(1,4), length = (2 - 4) - (0 - 0) = -2

Aligning s0-S2:

Match 0: anchor [0,1], interval [0,1]

Match 1: anchor [5,6], interval [3,4]

--> gap(1,5), length = (3 - 5) - (0 - 0) = -2

The two gaps overlap and have equal length, so

we group them into the same collection.
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In the previous example, the letter ’C’ in S2 may also be aligned to either ’A’ or ’T’

without any preference. While gap anchors do not have to be correct, gap lengths

can usually be calculated with high accuracy.

We perform this gap detection algorithm on the LTP dataset (Chapter 3). We

extract 20 sequences and print out the raw result, which is the grouping of leaves

sharing some common gap. There are two examples, corresponding to two different

ways of sampling species: to take a random subtree with approximatly 20 leaves, or

to sample 20 leaves over all 8000 sequences.

In the first example, sequences are closer to each other. Their phylogeny from the

LTP project is shown in Figure 4.7. We replace the species names by IDs to make it

easy to follow.

Our algorithm has no access to the standard phylogeny, nor is it designed to do any

phylogeny inference. It detects gaps, and attempts to group them. A group of gaps

is hypothesized to correspond to one single insertion/deletion event. We expected to

see sequences co-occurring in the same group to be close to each other in the standard

phylogeny, and we actually observed that.

Gap collections found are listed below, with each line consisting of the IDs of

sequences belonging to the same collection. The way to read this result is to see each

line as a collection of sequences. Each collection is annotated with an interpretation

with respect to the tree in Figure 4.7. If many collections are found as subtrees in the

standard tree, the grouping of gaps would be a good signal for phylogeny inference.

0 1 : subtree at node 2

6 20: false positive

12 26: false positive

25 28: subtree at node 31
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34
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31
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Figure 4.7: LTP subtree consisting of roughly 20 sequences

0 1 3 4 5 6: complement of leaves in subtree at node 36

12 25 26 28: subtree at node 31

9 12 13 18 26: false positive

0 1 3 4 5 6 10 17 21: complement of leaves in subtree at node 35

9 10 13 14 17 18 20 21: subtree at node 35

...

In the second example, sequences are farther from each other. Their phylogeny

from the LTP project is shown in Figure 4.8.

Gap groups found are listed below, with each line consisting IDs of sequences

belonging to the same group.

5 6: subtree at node 7
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11 12 13 16 17 20 22 25 26 28 29 30210 1 2 3 5 6 8

4 7

9

10

14
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18

24

23 27 31

32

19

38
37
36

35

34

33

Figure 4.8: LTP restricted to a sample of 20 leaves

6 8: subtree at node 9

1 22: false positive

3 21: false positive

5 29: false positive

5 30: false positive

8 26: false positive

11 17: false positive

20 28: false positive

25 26: subtree at node 27

28 30: subtree at node 32

29 30: subtree at node 31

1 16 17: subtree at node 18

1 25 26: subtree at node 27

3 8 13 21: false positive
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2 21 29 30: false positive

3 5 8 13 21: false positive

3 5 20 25 28: false positive

3 5 8 13 21 22: false positive

3 5 20 25 26 28: false positive

2 12 16 25 26 28: false positive

1 11 12 16 17 20 28: subtree at node 35

The perfect phylogeny method (Chapter 5) finds a consensus tree from a given

set of splits. It never became practical, because we could not find good splits that

agree with the underlying phylogeny. The straightforward splits obtained from clus-

tering all sequences sharing the same base at a given column never worked, even for

well-conserved columns, because there are often substitutions happening in different

branches of the phylogeny that mutate into the same base.

Such problem is less severe with characters based on gap length: it is less likely

to have two insertions happening in different branches of the phylogeny that have the

same length. Given the clusters of gaps from our new algorithm, it is tempting to

find ways to use these clusters in a similar approach. When we compare the clusters

with the standard phylogeny from the LTP project, we see that they do not agree

100%. However, with the first dataset of nearby sequences, we can often find a split

that agrees with a gap collection, off by a few nodes. This suggests that the signals

obtained from gaps are stronger than those obtained from single base comparison.

What is left is to find a way to utilize these signals to improve the current phylogeny

inference methods.
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Chapter 5

Phylogeny inference methods

5.1 Maximum Parsimony

Given a set of sequences S, this method finds a phylogeny t(S) as a binary tree whose

leaf nodes correspond to the members of S. As a general criterion for the selection

of t(S), each edge is assigned a weight based on some metric, and t(S) is selected

as a tree minimizing the total weights of edges. See Fig.5.1 for an example with the

Hamming distance as edge weights.

AG

AA AG

AG GG

1 0

0 1

Figure 5.1: S = AA,AG,GG, t(S) has a total weight of 2

The weights assigned to phylogeny edges found by maximum parsimony are fre-

quently Hamming distances. They reflect the number of mutation events required

to explain the evolution along an edge in t(S). A maximum parsimony tree t(S)
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minimizes the number of hypotheses (mutation events) required to explain the given

observations (sequences).

A perfect phylogeny is a phylogeny that explains the observed sequences S with

at most one mutation event per position in the whole tree. It is a special case of

maximum parsimony, where each site mutates at most once in the whole history.

There is a fast and provably correct algorithm to find the tree and its internal nodes

([Saitou and Nei, 1987]).

Perfect phylogeny rarely works with real datasets, because

• The same base can appear in two or more disjoint set of leaves.

• Sites are treated equally, regardless of their possibly different mutation rates.

5.2 Maximum likelihood

The maximum parsimony method aims to find the smallest number of mutations

that explains the evolution of observed sequences. By relying on the mere count

of mutations, the maximum parsimony method implicitly assumes that all mutation

events are independent and equally significant.

However, this assumption is not realistic. If we have inferred the possible mu-

tations in a set of homologous sequences, we can make predictions about another

homologous sequence.

• We expect to find mutations in the less conserved regions than in the more

conserved ones.

• If two regions A and B have similar variability, and A shows high similarity
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to a known sequence, then B should not diverge too much. The reason is that

realistically each region is exposed to the same interval of evolution.

• Different mutations have different chances of happening. Insertions/deletions

happen much less frequently than substitutions. Different substitutions also

have different chance of happening: we would not necessarily expect that it is

equally likely for A to be substituted by C, G or T.

Once we want to model these properties, we need a more sophisticated method

than merely counting the number of mutations. Maximum likelihood is a framework

that embodies this idea naturally.

Maximum likelihood assumes an evolutionary model that assigns a probability to

each mutation, and finds a tree that maximizes the probability conditioned on the

sequences. Most maximum likelihood variants assume independent mutations among

sites, so that the probability of a tree of sequences can be written as the product of

the probabilities of trees of characters, and are also called character based method

sometimes.

Given a set of sequences S and a phylogeny t(S) over these sequences, we want

to measure the likelihood that the phylogeny reflects the true underlying evolution

process that generated S. For simplicity, we usually work on aligned sequences, and

therefore assume a fixed length l for all sequences. For an index i, we can replace

each sequence Su in t(S) by its i-th character. The resulting phylogeny t(Si) has the

same structure as the original phylogeny, but each node is only a single character.

Suppose we can calculate the likelihood L(t(Si)) of such a single-character phylogeny,

then the likelihood L(t(S)) of the original phylogeny can then be calculated as the

product of the likelihoods L(t(Si)) over all i = 1, ..., l.
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L(t(S)) =
l∏

i=1

L(t(Si))

The likelihood of a tree of characters is the sum of likelihoods with different bases at

the root.

L(t(Si)) =
∑

b∈{A,C,G,T}

πbL(t(Si)|R(t)i = b)

Here πb is the probability of having nucleotide b. R(t) is the common ancestor se-

quence of t(S), which we may call t for short. R(t)i is the i-th character of R(t).

In this formula we assumed the same nucleotide distribution along the sequence and

among species.

The quantity L(t|R(t)i = b) can be recursively computed from its subtrees ti and

tj as follows.

L(t|R(t)i = b) =
∏

x∈{i,j}

∑
c∈{A,C,G,T}

Pbc(δax)L(tx|R(tx)i = c)

Here δax is the estimated branch length at the root node to its subtree x, and Pbc(δax)

is the rate of mutation from character b to character c, given the estimated branch

length.

If we assume branch lengths to be constant and that the mutation rate is very

small, maximum likelihood becomes maximum parsimony.

5.3 Clustering methods

While maximum likelihood assumes a model and tries to find some result that best

explains the observations, it is not the only paradigm. Phylogeny inference can also
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be seen as a generalization of the clustering problem. Suppose we want to infer a

phylogeny t(S) over a set of sequences S, |S| = n. Each edge of T can be seen as a

partition of n sequences into two sets of leaves. We expect the sequences in the same

set to show a higher degree of similarity among themselves than with the sequences

in the other set. A natural implementation of this scheme is to recursively partition

the input sets to obtain a hierarchical clustering tree as the output.

This framework is well suited toward combining phylogenies. Each phylogeny will

define a set of partitioning (or splits). If we obtain different phylogenies from different

methods, one way to combine them is to find a subset of leaves that all the splits

from different phylogenies agree on. Another way is to find the most common splits

that agree on the original set of leaves.

A perfect phylogeny can also be seen as an instance of clustering methods. Suppose

the sequences are already aligned to obtain a matrix of n rows and l columns. If a

column contains only two bases, we can define a split based on this column: sequences

sharing the same base would be in the same partition. If the splits we obtain from

all the columns do not conflict with each other, we have a perfect phylogeny. It is

interesting to see how perfect phylogeny lies in the intersection between maximum

parsimony and clustering methods.

Neighbor-Joining ([Saitou and Nei, 1987], [Gascuel and Steel, 2006],

[Tamura et al., 2004]) is designed from the other extreme (bottom-up): it combines

all the columns to obtain one single distance measure. Usually, the distance used is

the edit distance or some of its variant. While for perfect phylogenies, any difference

in a single column results in a split, Neighbor Joining (NJ) does not take individual

columns into consideration.

NJ first finds a split (X, Y ) where |X| = 2. The criterion is similar to that of

clustering: minimize the distance within X, while maximizing the distance between

Page 57 of 93



X and Y . Once such a split is found, the common parent of the two leaves in X

replaces them, and the algorithm is iterated. To be clear, in the original formulation

of NJ, the common parent is not expressed as a sequence, but its distances to leaves

in Y are estimated.

It is extremely hard to come up with a stochastic model that captures all the

properties of evolution. Most of the time, we either use too few or too many param-

eters. Suppose the common ancestor R evolved into two sequences S1 and S2. We

would expect that the difference between R and S1 is comparable to that between R

and S2, since they are both exposed to the same amount of evolution time. However,

there are many other factors which are difficult to model: the mutation rate may

vary among sites, lineages, and period in history. The sites may not even mutate

independently.

With a limited number of columns, we try to estimate the different parameters

that describe the mentioned effects. By estimating fewer parameters, NJ tries to avoid

overfitting. This may be the reason why it works reasonably well across different

datasets. It has also been criticized as not utilizing all the information presented in

the sequence data. This is the unavoidable trade-off when we want to reduce the

number of parameters in the model. NJ works better when we have longer sequences

to obtain better estimates of sequence distances. As the length of input sequences is

decreased, the accuracy of NJ reduces substantially.

5.4 Neighbor Joining and its variants

Many multiple sequence alignment algorithms refer to some guide tree. Maximum

likelihood and maximum parsimony phylogeny inference methods also utilize some

initial tree to limit the searching space. Due to its speed and reasonable accuracy in
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different applications, Neighbor Joining [Saitou and Nei, 1987] is usually the method

of choice to create the initial guide tree.

Suppose we want to infer the phylogeny t(S) for some set of sequences S, |S| =

n, then Neighbor Joining (NJ) takes in as it input a matrix dn×n, referred to for

convenience as distance matrix. The entries of this matrix comply with the following

three conditions:

• di,i = 0,∀i

• di,j ≥ 0, ∀i, j

• di,j = dj, i, ∀i, j

Due to convention and convenience, we use the terminology ”distance matrix” even

though the distances do not necessarily satisfy the triangular inequality.

The Neighbor-Joining algorithm proceeds as follows:

1. Compute a matrix Qn×n where

Qi,j = di,j −
1

n− 2
(
∑
k 6=i

di,k +
∑
k 6=j

dj,k) (5.1)

2. Q-criterion - Select i,j with smallest Qi,j. Connect them to a common parent

u. Replace i and j by u in the set of leaves. For any other leaf x, the distance

to u is updated to

dx,u = du,x =
1

2
(dx,i + dx,j − di,j) (5.2)

3. Repeat from Step 1 until only three taxa are left.

A cherry is a pair of nodes with a common parent [Radu Mihaescu, 2007]. NJ

Page 59 of 93



algorithm iterates between finding a cherry with equation (5.1), merging them and

updating the new distances by equation (5.2).

NJ assumes the distance metric is tree-additive. It also works if we slightly perturb

additive distance metrics, as shown in the following implementation:

1. [Studier and Keppler, 1988] If d is tree-additive, (Si, Sj) is a cherry in the real

phylogeny t(S).

2. [Bryant, 2005] The NJ selection criterion (Q-value) is the only linear function

on distances that gives the correct result for tree additive metrics.

3. [Atteson, 1999] Let Dn×n where Di,j is the tree distance between Si and Sj in

t(S). If the l∞ distance between d and D is smaller than half the smallest

element in D, NJ returns the correct tree.

Interestingly, NJ branch length estimates are often non-additive. As di,j = du,i +

du,j, we can expand equation (5.2) as follows.

du,x =
1

2
(dx,i + dx,j − du,i − du,j) =

(dx,i − du,i) + (dx,j − du,j)
2

For real data, usually the metric is not exactly additive. In that case, dx,i−du,i 6=

dx,j − du,j. Since du,x is the average among these two terms, clearly it would not be

equal to any of them. Moreover, one of the inequalities will also break the triangle

inequality:

dx,i − du,i > du,x ⇒ dx,i > du,i + du,x

In short, while aiming at reproducing an additive metric, NJ output fails to be a

metric.
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To fix this, we can simply add a large constant to all dx,u without affecting the

subsequent NJ rounds. However, it would be interesting to look into the main cause

of this phenomenon.

NJ takes in a distance matrix d as its input. The distances are usually pairwise

edit distance or some corrected version. If we use the same distance metric to obtain a

weighted version of the real phylogeny t(S), we can define another matrix D|S|×|S| with

entries being the distance in t(S) defined by equation (1.1). As D is tree-additive,

NJ will run correctly if we have D as the input instead of d. The problem is that we

do not have D. In fact, d is often an underestimate of D.

di,j ≤ Di,j,∀(i, j)

In NJ, as new distances are calculated from old distances, any error in the initial

estimate is propagated further. If we know the sequence of the common parent, the

new distances can be calculated from pairwise edit distances, which more closely

approximate the tree distance D.

However, the sequence of the common parent is also unknown, so we try to find it

using different heuristics. The heuristics can be plugged into the original NJ algorithm

by the following framework.

1. Obtain d by edit distances

2. Find a cherry (x, y) to be merged using the NJ criterion (5.1)

3. Use a heuristic to obtain the sequence Su of the common parent u, and then

estimate the new distances d(u, x) for all other nodes x by comparing Su with

Sx.

4. Replace x and y by u in the set of leaves
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5. If there are more than 1 species left, jump back to (2)

Finding a good description of the internal nodes in the phylogeny is an interesting

problem in its own right. It provides a better estimate of phylogeny edge weights to

be used to estimate the evolutionary divergence between species. Here we present a

few heuristic methods to estimate the common parent. We assume that the input

sequences have been aligned by some multiple sequence alignment algorithm.

5.4.1 Centroid method

Suppose we want to merge the cherry (x, y). If at one aligned position, both sequences

have the same base, the common parent is assumed to have that base. However, if

the two bases are different, we need another sequence to resolve which base to be

assigned to the parent.

In this centroid method, we pick another sequence u that is sufficiently close to x

and y, using the minimum value of dx,u + dy,u. The common parent sequence would

be the result of majority voting at all positions.

Clearly, positions with three different bases still cannot be resolved. We expect

the number of such cases to be small, due to the proximity of x, y and u. In the few

cases where majority voting failed, in other words xi, yi and ui are pairwise distinct,

we greedily pick a random base among {xi, yi, ui}, expecting that minor errors might

be introduced to the estimation of distances.

An alternative to this greedy approach is described in the next subsection.
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5.4.2 Parsimony method

Positions where x and y are different would introduce ambiguity to the common

parent. One way to handle that is to leave them undecided, and use Fitch algorithm

[Fitch, 1971] to decide the base at ambiguous positions in order to minimize the

number of mutations required.

Fitch algorithm works as follows. For initialization, it replaces each sequence Si

by its singleton profile Pi (concept introduced in Section 4.2), a sequence of the same

length as Si with its entries defined as follows:

Pi[j] = {Si[j]}

Now each position of a sequence is represented by a set of possible characters. If the

size of the set is greater than 1, the position is an ambiguous position.

Upon a request to find the common parent of two sequences x and y, Fitch algo-

rithm assumes that they have the same length n = |x| = |y|. The resulting common

parent would be a sequence u of length n, with entries computed as follows:

∀i = 1, ..., n, u[i] =

 x[i] ∪ y[i] if x[i] ∩ x[i] = ∅

x[i] ∩ y[i] otherwise

Fitch algorithm requires the phylogeny to be known. Therefore, we use the Q-

criterion (eq. 5.1) to build the tree bottom-up, and resolve the ambiguity as soon

as possible. Each time a new common parent sequence is estimated, we have to

compute its distances with other profiles (completing the distance matrix d for use in

the Q-criterion).

Given two profiles x and y with ambiguous positions, the pairwise distances d(x, y)
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is the minimum possible distance among all pairs of sequences (x′, y′) given the ex-

isting ambiguity in x and y. For example, consider the following alignment:

A C G T T A vs. T T G A T A

G A T

T

The second and fourth position of the first sequence is an ambiguous base. Like-

wise, the sixth position of the second sequence is an ambiguous base. The alignment

between these two sequences would be assigned the same score as the following align-

ment

ATGATA vs. TTGATA

A nearby sequence v would not have d(u, v) affected much by this estimate, since

it would be the same as setting the common parent to be one found by majority

voting in Section 5.4.1. A far away sequence v would have d(u, v) estimation affected

heavily. However, such distances should not significantly affect the local structure of

the tree near x and y, and will be corrected in subsequent iterations of NJ when we

proceed to internal nodes closer to v.

5.4.3 Parsimony method on naive NJ tree

We can also use Fitch algorithm in a different way. First, create a draft phylogeny

that is correct near the leaves. Such a tree would be input to Fitch algorithm to find

the common parent. The common parent would be used for subsequent iterations of

NJ as usual. In one implementation, we pick the draft tree to be the naive NJ output

tree (Fig. 5.2), due to the substantial confidence in clustering neighboring sequences.
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S

NJ Fitch
S=S U {Sz}\{Sx,Sy}

Sx Sy Sx Sy

Sz

Figure 5.2: Parsimony method on naive NJ tree. First arrow: the first cherry (Sx, Sy)
and a draft tree is computed using NJ from pairwise distances. Second arrow: the
draft tree is used to estimate the common parent Sz using Fitch algorithm. Third
arrow: Sz replaces Sx and Sy in S, and the algorithm repeats from the first step.

5.4.4 Perfect NJ method

Since we tried different heuristics to obtain the parent sequence, it makes sense to ask

how far can we go with the best possible heuristics. In our simulation testing data,

the sequences of the internal nodes are known. Therefore, instead of trying to guess

the parent sequence, we can just replace them by the real sequence in the test data if

the chosen pair is also a pair in the original data (Fig. 5.3). While this is not really

a method to solve Phylogeny Estimation, it lets us gauge the accuracy of methods

that try to guess the parent sequence.

S

NJ Cherry S=S U {Sz}\{Sx,Sy}

Sx Sy
Sx Sy

Sz
leaf nodes

Standard phylogeny

Sx
Sy

Sx Sy

Sz

Figure 5.3: Perfect NJ method. First arrow: collect sequences at the leave nodes of
a standard phylogeny into S. Second arrow: use the Q-criterion (eq. 5.1) to pick
the first cherry (Sx, Sy). Third arrow: if (Sx, Sy) is also a cherry in the standard
phylogeny, let Sz be the corresponding parent sequence in the standard phylogeny;
otherwise, we obtain Sz using the parsimony method on naive NJ tree. Fourth arrow:
replace Sx and Sy by Sz, and repeats from the second step.
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5.5 Evaluation

Phylogenies inferred by different methods can be compared among themselves or to

some standard phylogeny by means of the Robinson-Foulds tree distance as follows.

A split is a partitioning of the set of leaves into two sets of leaves which remain

connected after an edge is removed from a tree. If two trees T1 and T2 are equivalent,

for each edge in T1 there is a corresponding edge in T2 that produces the same split.

The Robinson-Foulds tree distance between trees T1 and T2 counts the number of

splits in T1 that cannot be found in T2, and those in T2 that cannot be found in T1.

Two identical trees would have a distance 0.

We modify this measure to account for the number of sequences by calculating

the fraction of correctly inferred splits over the total number of splits in the original

phylogeny.

With this modified measure, referred to as modified RF-measure, a similarity score

ranges from 0 to 1, with a score of 1 indicating that two phylogenies are exactly the

same.

We compare different methods by generating different sets of sequences with an

accepted or known phylogeny. The sequences either come from either simulation or

are actual 16s RNAs. Figures 5.4 and 5.5 indicate that the performances of most NJ

variants we introduced are comparable, while the centroid method clearly lags behind.

PerfectNJ is not any better than Parsimony, which is a surprising observation. When

we compare the performance between simulated and real data, it is clear that the

accuracy with real data is much lower. This is due to the simplistic simulation model

we used (Chapter 3). When faced with the more complicated real sequence data, the

information introduced by ancestor sequences is more valuable, making perfectNJ

perform slightly better than the rest.
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Figure 5.4: Modified RF-measure plotted vs. sequence length with different NJ vari-
ants; simulated data of 50 sequences, default parameters. The lines corresponds to
methods described in previous sections: pure: naive NJ, parsimony: Section 5.4.2,
centroid : Section 5.4.1, NJNJ : Section 5.4.3, perfectNJ : Section 5.4.4.

Figure 5.5: Modified RF-measure plotted vs. sequence length with different NJ vari-
ants; real data with 50 sequences. The lines corresponds to methods described in
previous sections: pure: naive NJ, parsimony: Section 5.4.2, centroid : Section 5.4.1,
NJNJ : Section 5.4.3, perfectNJ : Section 5.4.4.

The Robinson-Foulds metric only uses binary counts on the splits: if split (X, Y )

is also found in the new phylogeny with one element off: (X \ {x}, Y ∪ {x}), the

accumulated score is still 0. We decided to try another measure, named proportional

RF-measure that accounts for such similarities. Denoting the original tree T1, and
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the inferred tree T2, the new accuracy measure works as follows.

1. C = [ ], W = [ ]

2. Pick the most balanced split (X, Y ) in T1, e.g. minimizing ||X| − |Y ||

3. Find the closest split (X2, Y2) in T2, e.g. maximizing |X2 ∩X|+ |Y2 ∩ Y |

4. Report the score for this split as c = |X2∩X|+|Y2∩Y |
|X|+|Y |

5. C ← c,W ← |X|+ |Y |

6. T1 and T2 are split into 2 subtrees each according to these splits, and step (2)

onwards is performed recursively

7. The overall score of the whole tree is the weighted average of scores in C ac-

cording to weights in W : ∑
i=1..|C|

Ci ∗Wi∑
i

Wi

Figure 5.6: Proportional RF-measure plotted vs. sequence length with different NJ
variants; simulated data with 50 sequences. The lines corresponds to methods de-
scribed in previous sections: pure: naive NJ, parsimony: Section 5.4.2, centroid :
Section 5.4.1, NJNJ : Section 5.4.3, perfectNJ : Section 5.4.4.
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Figure 5.6 suggests that the proportional RF-measure agrees well with the modified

RF-measure. The same conclusion is highlighted in this case: most NJ variants are

comparable, with parsimony performing slightly better, and centroid method still

lagging behind.

Given the testing results, we gain more confidence in the parsimony approach

(Section 5.4.2). It gives comparable results to the naive Neighbor-Joining that only

depends on pseudo-distances, both for simulated and real sequences. Besides, it

suggests sequences at the internal nodes of the phylogeny, which is of various benefits.

Without those sequences, it is impossible to determine where certain substitutions

occur in the phylogeny. Without being able to detect substitutions as events, we

cannot use a scoring model that closely resemble the underlying biology of sequences,

and have to resort to artificial scoring models such as sum-of-pairs scores instead

(Section 2.2.1).

Without the sequences at the internal nodes, the algorithm will remain a black

box to users. Even if users want to inspect the result of the naive Neighbor-Joining

algorithm, it is hard to see what went wrong. It is hard to relate the distance estimates

used in the naive Neighbor-Joining algorithm to the biological events that generated

the input sequences.

Lastly, while the parsimony method does not offer significant improvement in

previous test cases, there are other modifications to the algorithm that the parsimony

method can take advantage of. The parsimony principle is most reliable when the

likelihoods of events are low, such that a hypothesis that minimizes the number

of events is much more likely to be true. In the current algorithm, we treat all

positions in the same way regardless whether they are conserved or volatile. Moreover,

we ignore indel events, which have much lower probability than point substitutions.

An algorithm that takes into account both of these observations should allow the
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parsimony method to improve the accuracy significantly.
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Chapter 6

Combining multiple sequence

alignment with phylogeny inference

Frequently phylogeny inference requires that its input sequences be aligned. On the

other hand, multiple alignment algorithms frequently compute guide trees before

actually doing alignment. Computing guide trees in turn requires some pairwise

alignments to be computed. One may see that multiple alignment and phylogeny

inference are two closely related problem, and that the solution of one may relate to

the solution of the other. For example, the package MUSCLE [Edgar, 2004] solves

this problem by iterating between these two problems (Fig. 6.1).

In Section 5.4 we have discussed variants of the Neighbor Joining algorithm that

augment the phylogeny’s internal nodes with sequences, rather than being purely a

distance-based method. Such approach is strikingly similar to the Progressive Align-

ment approach in Section 4.2, where a profile is computed at each internal node

to summarize the alignment at its subtree. In this Chapter, we will combine the

two approaches to construct an algorithm that does multiple sequence alignment

and phylogeny inference simultaneously. One natural way to do this is the following
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Figure 6.1: MUSCLE [Edgar, 2004] finds distance matrix D1, then phylogeny TREE1,
then distance matrix D2 and phylogeny TREE2. TREE2 is used as a guide tree for
multiple alignment. The result is iteratively improved.

framework.

Input: a set of sequences S.

1. Replace each sequence Si in S by its singleton profile Pi (concept introduced in

Section 4.2)

2. While there are more than one profile in S:

(a) Let n = |S|, number elements of S arbitrarily as P1, ..., Pn.

(b) Compute a matrix dn×n where di,j is the pairwise distance of profiles Pi

and Pj.

(c) Compute a matrix Qn×n where

Qi,j = di,j −
1

n− 2
(
∑
k 6=i

di,k +
∑
k 6=j

dj,k) (6.1)

(d) Select Px, Py with smallest Qx,y and x 6= y.
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(e) Align Px and Py to obtain Pz

(f) Remove Px and Py and add Pz to S

A close look at this framework suggests that it is the fusion of the framework

described in Section 4.2 and the Neighbor-Joining algorithm in Section 5.4.

An implementation of this framework requires a profile representation that can

return meaningful scores (approximately tree-additive) for pairwise alignments which

are compatible with the Q-criterion of Neighbor Joining (eq. 5.1). In the following

sections we present two different profile representations, one more satisfactory than

the other.

6.1 Generalized Fitch algorithm

6.1.1 Singleton Profile

In this method, a profile P is a sequence, such that each element P [i] is the set of pos-

sible characters that can be found at position i of P . For example, the corresponding

profile for ”AGCTA” would be ({A}, {G}, {C}, {T}, {A}), and for ”GCCTA” would

be ({G}, {C}, {C}, {T}, {A}).

6.1.2 Profile alignment

Recall that the parsimony method (Section 5.4.2) repeats replacing a cherry by its

estimated common parent sequence. If two profiles P1, P2 of the cherry have equal

lengths, their alignment suggests a common parent profile specified by Fitch algo-

rithm:
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∀i = 1, ..., |P1|, P [i] =

 P1[i] ∪ P2[i] if P1[i] ∩ P2[i] = ∅

P1[i] ∩ P2[i] otherwise

Similarly, if P1 and P2 have different lengths, we can align them into P ′1 and

P ′2 with equal length, where P ′1 is obtained from P1 and P ′2 is obtained from P2 by

inserting gaps in between. We can now use the same construction of the common

parent.

For example, the following alignment between ”AGCTA” and ”GCCTA”:

AGC_TA

_GCCTA

would result in the following profile ({−, A}, {G}, {C}, {−, C}, {T}, {A}).

Two profiles can be aligned to compute their distance as before. The Needleman-

Wunsch algorithm can still be used as long as we can define the distance between

two positions of two profiles. Given two ambiguous characters represented by two

sets C1 and C2, the distance is 0 if they intersects, and 1 otherwise. The above

alignment is assigned a distance of 2, since we need two substitutions to change one

sequence into another. For more examples, we have distance({A,G}, {A,C}) = 0

and distance({T,−}, {A,C}) = 1.

The new algorithm is sensitive to alignment errors. In particular, if the gap penalty

is too high, gap blocks will be collapsed; if the gap penalty is too low, artificial gaps are

introduced to better match the sequences. When more gaps are introduced during the

simulation, the accuracy of alignment and subsequently phylogeny inference degrades

quickly. However, it works well as designed for highly similar input sequences with

few gaps (Fig. 6.2).
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In the following visualization, each row is an aligned input sequence. Gaps are

represented by gray cells. For each column, bases are colored by their counts, from

highest to lowest: red, orange, yellow, blue, black. Hence, a column with a blue cell

must contain at least 3 different bases. Sequences are generated by simulation with

few gaps (pIns = 0.03, insertSize = 3).

Figure 6.2: Top alignment: result from Generalized Fitch algorithm; bottom align-
ment: standard alignment from simulation. Note how gaps (gray blocks) are mis-
placed in the top alignment. Sequences are generated by simulation (Chapter 3) with
the following default parameters: pIns = 0.03, insertSize = 3, n = 200,maxp =
0.1, pSurvive = 0.5,maxp = 0.1

While the Generalized Fitch algorithm cannot be used for distant sequences with

many insertions/deletions, its failure offers one useful insight. The key problem where

the algorithm fails is to align characters near gaps. Since we do not implement

an affine gap penalty, and since it is not straightforward to extend the affine gap

penalty to multiple sequence alignment (Section 2.2.2), stretch of gap characters are

often broken into smaller stretches to make room for more base-base matches. This

motivates us to employ a more sophisticated approach in the following section.

6.2 Maximum parsimony with insertion/deletion

events

Most available multiple sequence alignment approaches return outputs in the matrix

form (Chapter 4). Such approaches have the following shortcomings:
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• Unclear boundaries of gaps may result in wrong alignments (Section 4.5).

• Since the building blocks of gaps are single gap characters, it is hard to track

how the same insertion/deletion event appears in different sequences (Section

2.2.2).

• The number of columns grows with the number of input sequences, making the

alignment unreadable when there are thousands of sequences being aligned.

To illustrate the third point, here we present a part of the 16S rRNA sequence of

Acanthopleuribacter pedis in a multiple alignment with other 2000 rRNA sequences.

The full alignment is around 6000bp long, even though each sequence is only 1500bp

long on average.

>Partial AB303221 rna Acanthopleuribacter pedis Acanthopleuribacteraceae

GG--GG--GA -A-A--C-C- -C-U-G-A-C -G-C-A-GC- A-A--C-GCC -G-C-G-UG- G-G-U-GA-- --U-G-A-A-

G-C-AU---- ---------- ---------- -----CU-UG --GU-G-U-G -UAAA-G-C- CC---UG-UC -G-U--U-AG

G-G-A-CU-- AA--GGA-C- --G-G-U--U -GA----U-- U------AA- ---------- --------G- A--G----UU

---A-AUC-G -UC-U-U-GA -A-G-G-UA- C-CU---G-A -A-G------ A-G----G-A AGC-C-CC-G G-C-UAA-C-

-U-C-C-G-U -G-CCA-G-C -A--G-C--C G-C--GG--U A-AU--AC-- -GG-AG-GGG --GCA-A-G- -C-G--UU-A

U-U-CGG-AA -UU-AC-U-- GG-GC--GU- -AAA-GG-GC -GC--G-UA- G-G-C-G-G- -C-CU-G-G- U-CA-G-U-G

-G--G-A-AG UG--AAA-GC -C-C-UC-GG ---------- ---------- ---------- ---------- ----------

---------- ---------- --CU-C-AA- C-C-G-A-G- G-A--A-U-- A-G--C-U-U --C-C-CA-U A-C-U-G-C-

CA--A-GC-U -A-GA-G-U- -A-U-GG--G A-G-AG-G-G -A--AG-U-- GG-A-AUA-- -U-C-C-G-G U--GU-A-G-

CG-GU--G-- AA-AUG-C-G U-AG--AG-A -UC-G-G-A- U-GG-AAC-A CC-AG--U-- G--GC-GAA- G-G-C--G-A

-C-U-U-C-C UG--G--AC- C-A-U-C-A- C-U--GA-CG --C-U-G-A- UG--C-G-CG -A-AA-G-C- ----------

---G-UGGG- G-AG-C-A-A A-CA--GG-A U-UA-GAUA- C-----C-C- U-G-GUA-G- UC-CA--C-G -CCC-U-AAA

--C-GA-UG- A--A------ CA-C---U-- --------U- U--G--U-G- G-U--A-C-G -G-G------ --UAUC-GAC

C--------C -C-U-G--U- -A-C-U-G-- C-A--GG--A --G-C-U-A- --AC-GC-A- U-UAA-G-U- --G--U-UCC

-GC-C-UG-G G-G-AG-UA- -CG-G----- U-C--G-C-A -A---G-G-- C-U-G-AA-- ---------- ----------

To overcome these shortcomings, we design an algorithm that keeps track of how

homologous regions evolve among input sequences. This algorithm is developed from
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the anchor based approach in Section 4.5.

We now first describe how singleton profiles are generated from single sequences.

We then move on to see how profiles are aligned to give distances for use in the

Q-criterion.

6.2.1 Singleton profile

Given an anchor sequence S0, a sequence S can be searched for homologous regions

it shares with S0. To detect indels, we divide homologous regions into gap-free ho-

mologous regions (matches).

Each match corresponds to an interval in S, and an anchor interval in S0 (Section

4.5). The singleton profile stores the anchor interval and the interval substring of S

for each such match.

For example, given the following match:

S 10 ACACGAC 16

S0 0 ACAAGAC 6

The singleton profile would store the substring S[10, 16] = ”ACACGAC” using the

format in Section 5.4.2, together with its anchor interval (0,6).

If there are k matches, there would be k − 1 gaps between them. The singleton

profile would store the lengths of those k − 1 gaps. More specifically, a profile stores

a set of possible lengths for each gap. In a singleton profile, all such sets have size 1,

because there is only exactly one possible length for each gap. When two conflicting

gap lengths are aligned in a profile alignment (details in Section 6.2.2), the resulting

set of gap lengths is the union of the conflicting sets. In other words, these sets of
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gap lengths are used by Fitch algorithm exactly the way sets of characters are used

in Section 5.4.2.

In short, a profile consists of three components: a list of strings, a list of indices

where those strings are anchored in S0, and a list of possible gap lengths between

consecutive matches.

6.2.2 Profile alignment

Each profile is best imagined as a set of disjoint intervals (Fig. 6.3) to help intuition.

gap 0 gap 1 gap 2
S0
S

Figure 6.3: The profile of sequence S with anchor sequence S0

The alignment of profiles P1 and P2 needs to take into account their positions in

the phylogeny, for reasons which will become apparent later. Let us suppose P1 and

P2 are at the root of subtrees T1 and T2, respectively. The alignment consists of the

following steps.

1. Find the intersection of the set of intervals of P1 with the set of intervals of P2.

2. For each interval in P1 or P2 that has no intersection with the intersection

found in Step 1, consider if we need to keep it in the alignment. Such an

interval corresponds to a homologous region in the anchor sequence S0. It is

kept in the common parent if and only if that homologous region can be found

outside of T1 and T2 (Fig. 6.4).

3. Sort the set of intervals M found in Step 1 and Step 2 ascending by their left

index. Note that the intervals are disjoint due to the way we generated them.
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0 1 3 5 0 1

3 5u = ?

Figure 6.4: Suppose we want to know which intervals exist in the node u. From its
two leaves, we know it contain interval [0,1], but are not sure if it contain interval
[3,5]. However, there is another clue: some other leaves outside this subtree contain
interval [3,5]. Because it is unlikely that a deleted sequence would be inserted back,
we can conclude that the internal node u should contain interval [3,5].

4. For every pair of consecutive intervals (Mi,Mi+1), find its set of gap lengths in

P1 and P2. For a profile Pi, its corresponding set can be empty, if either Mi or

Mi+1 is absent in Pi (Fig. 6.5). The resulting set of gap lengths is found by

applying Fitch algorithm over the set of gap lengths in P1 and the set of gap

lengths in P2. If those two sets are disjoint, we record that one insertion/deletion

event was found.

P1

P2

M
M0 M1 M2

Figure 6.5: When P1 and P2 are aligned, M is the set of intervals found in step 3,
which consists of 3 intervals M0, M1, M2. The gap between M0 and M1 does not
exist in P1, because M1 does not exist in P1. The set of possible gap lengths in P1

corresponding to the gap between M0 and M1 is thus ∅.

5. For each intervalMi, find its corresponding substring S1 in P1, and S2 in P2. The
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resulting substring is combined from S1 and S2 using Fitch algorithm (Section

5.4.2). At the same time, we record the number of substitutions one had to

make, which is the number of times we encounter two disjoint sets in Fitch

algorithm.

6. Report the profile consisting of the match set M , its corresponding strings,

and the list of gap lengths. Also report the number of substitutions and indels

recorded.

An example run of this alignment algorithm follows.

We have a set S of 20 input sequences 1, labeled S0 to S19 for convenience. The

anchor sequence A is randomly selected A = S13 (in this example we cannot use

the usual notation S0 for the anchor sequence because 0 is a legitimate index for a

sequence in S).

First, for each i, the sequence Si is converted into its corresponding singleton

profile Pi. For example:

P13 consists of one match/interval [0,1346], because it is the same as the anchor

sequence.

P0 consists of matches to these intervals in A: [7,37], [76,103] , [131,235], ... ,

[753,1007], and [1263,1339]. We calculated the lengths of the gaps, bracketed them

and put them in-between their two surrounding intervals in the following compact

representation:

7 37 [1] 76 103 [17] 131 235 [-1] 240 358 [2] 380 533 [0] 541 748 [1] 753 1007 [0]

1069 1261 [1] 1263 1339

1Accession numbers {AJ012667, AB233332, X59765, AM980986, AY995560, AY859682,
DQ442546, AY613990, AB184869, Y17234, DQ888330, DQ062743, AF433173, DQ666683,
EU407777, EU376963, AB094401, AJ833000, DQ280368, AY926460}
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This means that between interval [7,37] and [76,103] there is a gap of length 1,

and so on.

Similarly, P1 is computed to give rise to the following intervals and gap lengths:

16 37 [1] 76 101 [17] 131 358 [1] 366 533 [0] 541 748 [1] 753 928 [2] 944 1046 [2]

1069 1261 [1] 1263 1339

Analogously for P2:

13 50 [11] 163 358 [1] 364 748 [1] 753 1046 [2] 1068 1261 [1] 1264 1339

We calculate the singleton profile for the other 17 sequences. While not shown

here, the complete representation of each profile also consists of the characters at

each position of the intervals/matches. These bases are used to calculate the number

of substitutions among profiles, which is subsequently used to guide the Neighbor-

Joining framework.

Once the singleton profiles are calculated, the first few iterations of Neighbor

Joining happen as follows:

First, profile P0 and P1 are aligned into profile P20:

16 37 [1] 76 101 [17] 131 235 [0, -1] 240 358 [1, 2] 380 533 [0] 541 748 [1] 753 928 [0,

2] 944 1007 [0, 2] 1069 1261 [1] 1263 1339

The first interval of P0 [7,37] intersects with the first interval of P1 [16,37] to

give the first interval of P20, [16,37]. Because the next gap is of length 1 in both

profile, the corresponding gap in P20 is also of length 1. The second interval of P0

[76,103] intersects with the second interval of P1 [76,101] to give the second interval

of P20, [76,101]. The gap after the third interval of P0, [131,235], is not found in P1,

therefore the corresponding third gap in P20 has two possibilities [0,-1]: we cannot

decide yet whether P20 contains a gap at that position. Note how the third interval in
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P1, [131,358], is broken up into two intervals to align with the third and forth interval

in P0, [131,235] and [240,358].

The next iteration of Neighbor-Joining aligns P20 with P2 into the new profile P21.

16 37 [1] 76 101 [17] 163 235 [0] 240 358 [1] 380 533 [0] 541 748 [1] 753 928 [0] 944

1007 [2] 1069 1261 [1] 1264 1339

The similar procedure is used to obtain the intervals in P21. Note that the second

interval of P20, [76,101], was not found in P2. We have to consider whether this is

an insertion from P21 to P20, or a deletion from P21 to P2. In the former case, P21

does not contain [76,101], while it would contain the interval in the latter case. Since

other sequences outside of the subtree also contain the interval [76,101], such as P4,

P6 (data unshown), we know that P21 should contain [76,101]: it is very unlikely that

the interval was deleted from some ancestor of P21, and then inserted back in its child

P20.

Some of the gap lengths undetermined in P20 are now fixed. For example, the

third gap in P20 with two possible lengths 0 or -1 is now fixed as 0, because the

corresponding gap in P2 is of length 0. While we fixed the gap length according to

parsimony principle, the biological interpretation is that a deletion of length 1 has

happened from P20 to P0.

Here we present all 18 iterations of the Neighbor Joining framework, each in the

following format

First profile index, second profile index, resulted profile index

Indices of leaves in the corresponding subtree

Intervals and gaps in the alignment

The first few steps described in the previous section is bold-typed.

1 0 20

Page 82 of 93



(1, 0)

16 37 [1] 76 101 [17] 131 235 [0, -1] 240 358 [1, 2] 380 533 [0] 541 748 [1] 753 928 [0, 2] 944

1007 [0, 2] 1069 1261 [1] 1263 1339

20 2 21

(1, 0, 2)

16 37 [1] 76 101 [17] 163 235 [0] 240 358 [1] 380 533 [0] 541 748 [1] 753 928 [0] 944 1007 [2]

1069 1261 [1] 1264 1339

12 10 22

(12, 10)

13 53 [11, 12] 123 322 [-5, -4] 383 734 [0, -3] 743 749 [0, -5] 751 898 [-3, -2] 943 1036 [4] 1075 1184 [0, -1]

1193 1261 [0, 2] 1263 1266 [0, 2] 1271 1339

22 11 23

(12, 10, 11)

13 53 [11, 12] 123 322 [-4] 383 734 [-3] 745 749 [0] 751 898 [1, -3, -2] 949 1036 [3, 4] 1075 1184 [0] 1193 1261

[2] 1263 1266 [0] 1271 1339 18 17 24 (18, 17) 16 94 [8, 10] 130 324 [0, -1] 351 379 [0, 1] 381 475 [0, -1] 478

740 [0, -2] 753 903 [0] 928 1036 [3] 1069 1261 [1] 1268 1297 [0, -1] 1304 1335

24 19 25

(18, 17, 19)

16 94 [8, 10, 2] 130 324 [0] 351 361 [1] 381 475 [0] 478 527 [0] 544 740 [0] 753 903 [0, -1] 938 1036 [2, 3] 1069

1261 [1] 1268 1297 [0] 1304 1335

16 15 26

(16, 15)

9 111 [8] 145 317 [1] 383 740 [1, -1] 756 901 [0, 2] 947 1034 [4, -3] 1069 1261 [1, 2] 1267 1343

26 25 27

(16, 15, 18, 17, 19)

16 94 [8] 145 317 [1] 383 475 [0] 478 527 [0] 544 740 [0, 1, -1] 756 901 [0] 947 1034 [2, 3, 4, -3] 1069 1261 [1]

1268 1297 [0] 1304 1335

23 13 28

(12, 10, 11, 13)

13 53 [0, 11, 12] 123 322 [0, -4] 383 734 [0, -3] 745 749 [0] 751 898 [0, 1, -3, -2] 949 1036 [0, 3, 4] 1075 1184

[0] 1193 1261 [0, 2] 1263 1266 [0] 1271 1339

28 14 29

(12, 10, 11, 13, 14)

13 45 [0, 27, 11, 12] 123 322 [0, 1, -4] 383 527 [0] 542 734 [0] 745 749 [0] 751 898 [0, 1, -3, -2, 7] 949 1036 [0,

2, 3, 4] 1075 1184 [0] 1193 1261 [2] 1263 1266 [0] 1271 1339

29 27 30

(12, 10, 11, 13, 14, 16, 15, 18, 17, 19)

16 45 [0, 27, 11, 12, 8] 145 317 [1] 383 475 [0] 478 527 [0] 544 734 [0, 1, -1] 756 898 [0] 949 1034 [2, 3, 4] 1075

1184 [0] 1193 1261 [1] 1271 1297 [0] 1304 1335

30 21 31

(12, 10, 11, 13, 14, 16, 15, 18, 17, 19, 1, 0, 2)

16 37 [1] 76 101 [17] 163 235 [0] 240 317 [1] 383 475 [0] 478 527 [0] 544 734 [1] 756 898 [0] 949 1007 [2] 1075

1184 [0] 1193 1261 [1] 1271 1297 [0] 1304 1335

5 4 32

(5, 4)

11 37 [1] 43 94 [9] 130 357 [-19] 383 527 [0] 542 740 [1, 2] 753 903 [-2] 948 1036 [4] 1069 1178 [0, 1] 1184 1264
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[2] 1267 1339

32 3 33

(5, 4, 3)

16 37 [0, 1] 43 56 [9, 13] 130 357 [-19] 383 527 [0] 542 740 [2] 753 902 [-3, -2] 948 1036 [4] 1069 1178 [0] 1184

1264 [2] 1271 1336

31 9 34

(12, 10, 11, 13, 14, 16, 15, 18, 17, 19, 1, 0, 2, 9)

16 37 [1] 76 101 [17] 163 175 [0, -1] 181 235 [0] 240 317 [1, -19] 383 475 [0] 478 504 [0, -1] 520 527 [0] 544 734

[1, 2] 756 898 [0, -1] 949 1007 [2, 4] 1075 1184 [0] 1193 1261 [1, 2] 1271 1297 [0] 1304 1335

8 7 35

(8, 7)

8 37 [1] 44 95 [9] 123 367 [-19] 383 487 [0, -1] 489 748 [2] 752 901 [-2] 947 1036 [11, 4] 1069 1262 [0, 2] 1263

1271 [0, -2] 1278 1339

35 6 36

(8, 7, 6)

13 37 [1] 44 93 [9, 10] 129 367 [-15, -19] 383 487 [0] 489 748 [2] 752 901 [-2] 947 1036 [11, 4, 14] 1069 1262

[0, 1, 2] 1268 1271 [0] 1278 1339

36 34 37

(8, 7, 6, 12, 10, 11, 13, 14, 16, 15, 18, 17, 19, 1, 0, 2, 9)

16 37 [1] 76 93 [9, 10, 17] 163 175 [0] 181 235 [0] 240 317 [-19] 383 475 [0] 478 487 [0] 489 504 [0] 520 527 [0]

544 734 [2] 756 898 [0, -1, -2] 949 1007 [4] 1075 1184 [0] 1193 1261 [1, 2] 1271 1271 [0] 1278 1297 [0] 1304

1335

37 33 38

(8, 7, 6, 12, 10, 11, 13, 14, 16, 15, 18, 17, 19, 1, 0, 2, 9, 5, 4, 3)

16 37 [] 163 175 [0] 181 235 [0] 240 317 [-19] 383 475 [0] 478 487 [0] 489 504 [0] 520 527 [0] 544 734 [2] 756

898 [-2] 949 1007 [4] 1075 1178 [0] 1184 1184 [0] 1193 1261 [2] 1271 1271 [0] 1278 1297 [0] 1304 1335

The whole algorithm returns a phylogeny over input sequences, as done in naive

Neighbor-Joining algorithm. Besides, we have an important bi-product: we can in-

spect the result of the algorithm by seeing how gaps evolved. For example, we look

at two gaps found in the root node: one between intervals [949,1007] and [1075,1178],

and one between intervals [240,317] and [383,475] (Fig. 6.6).

First, let us consider the gap between intervals [949,1007] and [1075,1178] in the

root profile P38. The algorithm suggests that the gap is of length 4 originally. It is kept

intact as the root profile P38 evolved into its descendants P3, P4, P5. The algorithm

also suggests that the gap is still kept intact in its descendants P37, P36, P30. However,

Page 84 of 93



8  7  6  12 10  11 13 14  16 15 18 17 19 1   0   2  9  5  4  3

35
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26 24

25

27

30

31

34

37

38

32

33

20

21

1007-1075 11  4 14  4   4  3  0  2   -3  4  3  3  2 2   0   2  4  4  4  4
 317-383  -19 -19 -15 -4  -5 -4  0  1   1  1  -1 1  1  1   2   1 -19 -19 -19 -19  

Figure 6.6: Phylogeny found by our algorithm with gaps length found at the leaves.
Two gaps were displayed here.

there was a deletion of length 2 from P31 to P21, so that the corresponding gap at P21

is only of length 2 (instead of 4 as its ancestor). We can also tell that there are two

independent insertions from P36 to P6, and from P35 to P8, because they had different

gap lengths from each other and from their ancestors (11 and 14 versus 4).

A similar story can be learnt from the gap between intervals [240,317] and [383,475]

in the root. This time there are less indel events found. The algorithm suggests that
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the gap is of length -19 at the root profile P38. It was kept intact in its descendants

P3, P4, P5, P34 and P36. There was an insertion of length 4 from P36 to P6, so that

the corresponding gap length changed into -15.

One major event happened from P34 to P31: an insertion of length 20 changes the

original gap of length -19 into a gap of length 1. The new gap length is kept intact

in many of the descendants, P16, P15,...,P2, P1. This single event has caused our set

of input sequences to separate into two different groups: one with a gap length of

about -19 (P3, P4, P5, P6, P7, P8, P9), and one with gap length of about 1 (rest of

the leaves, highlighted in Figure 6.6). The detection of this major event suggests

that it corresponds to a split between the aforementioned groups of leaves. Suppose

an algorithm output a phylogeny that violates this split, it would be disputed by

the principle of parsimony, because we have succeeded in finding a hypothesis that

use only one event to explain an observation in 20 leaves, which is a more plausible

hypothesis.
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Chapter 7

Conclusions

Multiple sequence alignment and phylogeny inference are important problems

that have been studied since the 1980s [Fitch, 1971] [Saitou and Nei, 1987]

[Feng and Doolittle, 1987]. They provide indispensable tools for biologists to com-

pare several sequences at the same time. The problems are increasingly important,

as DNA sequencing becomes faster and cheaper and more genomes become available.

However, these two problems have not been completely solved, and researchers are

still investigating them [Liu et al., 2012].

In this thesis, we first surveyed different approaches to each problem:

For multiple alignment, progressive alignment is an approach that divides the

problem into steps of pairwise alignments. They rely on the observation that the

alignment between similar sequences are more reliable, therefore should be done first.

Consistency-based alignment is an approach that enhances pairwise alignments by

taking other sequences into account.

For phylogeny inference, there are three main approaches: maximum parsimony

methods, maximum likelihood methods, and clustering methods. Maximum parsi-
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mony methods and maximum likelihood methods bear significant resemblance, as

they both aim at building a tree that maximize some objective scoring. In a loose

sense, maximum parsimony approach is a simplified version of maximum likelihood

approach where the algorithm uses a simpler evolution model. Distinct from these

two, clustering methods instead greedily make use of splits to form partial solutions

and proceeds from there.

Our main contribution in this thesis is to combine these seemingly unrelated ideas

to provide a biologically relevant view of multiple sequence alignment and phylogeny

inference. Our algorithms are able to detect point substitutions/insertions/deletions,

and to suggest where these events happen in the phylogeny.

Substitutions: To be able to suggest where substitutions happen in the phylogeny,

we had to keep track of sequences at internal nodes of the phylogeny. This is guided

by the maximum parsimony principle, combined with the Q-criterion (eq. 5.1) to

guide the process of picking cherries to combine. The algorithm makes use of three

ideas: maximum parsimony, Neighbor-Joining algorithm, and progressive alignment.

Insertions/deletions: Keeping track of insertions/deletions is actually keeping

track of gaps in alignments, or equivalently, keeping track of matches surrounding

gaps. While our use of anchor sequence is novel, the idea of utilizing non-gapped lo-

cal alignments have been used before [Morgenstern et al., 1998]. We also rely heavily

on the maximum parsimony principle.

The end result of this thesis is a collection of algorithms, of which the most

important one (Section 6.2) does multiple sequence alignment, phylogeny inference,

and mutational event detection simultaneously. This algorithm offers various benefits.

• Sequences at internal nodes are estimated. This is useful for evolutionary stud-
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ies.

• Mutational events are detected and located at specific edges of the phylogeny.

This allows a more biologically relevant scoring model to be used, hence a

better way to compare different solutions for multiple sequence alignment and

phylogeny inference.

• Most importantly, the construction of the phylogeny from sequences is now

open for users to investigate. For example, by looking at how gap lengths are

distributed, a researcher can validate a given phylogeny (example in Section

6.2.2, figure 6.6). Without this feature, it is hard for biologists to curate results

given by algorithms that often operate on huge matrices of real numbers.

Further work

While in this thesis we chose a particular implementation, our ideas can extend many

current approaches. For example, one can implement a maximum likelihood objective

function that takes the substitutions/insertions/deletions detected into account. Al-

ternatively, one may instead use the insertions/deletions detected as candidate splits

for clustering methods.

In the scope of our current implementations, there are two important directions

for further studies:

• Estimation of the substitution/insertion/deletion rate at each position of the

sequence: It is important to distinguish conserved positions from volatile posi-

tions, so that the algorithms can treat them differently.

• Construction of good anchor sequences that work with diverse set of input se-

quences : Currently, we use a random sequence from the input set as the anchor
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sequence. Distant sequences will have fewer matches; this in turn leads to de-

grading accuracy in constructing phylogeny at distant sequences. One possible

fix to this problem is to concatenate substrings from different distant sequences

to obtain the anchor sequence. Such an anchor sequence should give higher

coverage when searched against most input sequences.
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