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Introduction

A common study design for genetic mapping for a trait or disease is genome-wide as-

sociation studies (GWAS) that seeks to identify a number of individuals carrying a

trait or disease and compare those individuals with individuals whom are not known to

carry that disease or trait. These GWAS genotype a large number of single nucleotide

polymorphisms (SNP) from across the entirety of the genome and study the statistical

association between those SNPs and the trait or disease.

Due to the vast quantity of SNPs, up to 10 million in the genome and often 500 thousand

to 1 million in GWAS consisting of tens of thousand individuals, single association tests

must undergo power corrections to adjust for many possible hypothesis so only the

strongest of signals come through. However, though GWAS have been successful in

identifying hundreds of genetic variants associated with complex human disease and

traits most of these variants explain at best a small amount of risk and this leads to the

question of how the remaining missing heritability can be explained.

The concept of epistasis or gene-gene interaction has long been offered as an explana-

tion for deviations from Mendelian ratios. The nature of these disease suggest that such

interactions are ubiquitous. However traditional parametric statistical methods such as

linear and logistic regression that consider the interactions among multiple polymor-

phisms quickly devolve into extremely complex problems as they encounter the so called

curse of dimensionality. The aim of this project was to investigate the strength of penal-

ized regression techniques that may offer a relatively fast technique at identifying some

of these interactions.

Linear Regression Models

Ordinary Least Squares

β̂ = arg minβ
∑N

i=1(yi − β0 +
∑p

j=1 xijβj)
2

The most common linear regression model is to be given p predictors X and predict

a response Y given a linear combinations of coefficients β. The ordinary least squares

(OLS) estimates are obtained by a closed form solution that minimizes the residual

sum of squares at the cost of inverting the matrix. Interpretation of the coefficients

β from an OLS solution are difficult to interpret due to the p number of non-zero

terms. It is important to note that OLS produces coefficient estimates that have the

smallest variance among unbiased estimates and therefore in many cases does not do
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very well in prediction. A variety of penalization techniques have been proposed to

introduce bias and in some cases improve upon OLS prediction estimates. The two

goals of such penalizations are to increase prediction accuracy and offer a better chance of

interpretation by both removing and shrinking coefficients. In regards to interpretation,

finding a smaller subset that explains a big picture can reduce the complexity of large

problems and in regards to prediction, some of the bias is lost to increase the variance

of the predicted values and that may improve the overall prediction. Key methods to

be discussed in this paper are the following:

Ridge Regression

β̂ = arg minβ
∑N

i=1(yi − β0 +
∑p

j=1 xijβj)
2 s.t

∑p
j=1 β

2
j ≤ λ

Ridge regression was an early technique [1] that built upon OLS by enforcing a L2

quadratic penalty on the regression coefficients. Applying the L2 penalty leads to many

small coefficients that are selected continuously and has the benefit of cancellings out the

effect that colinear coefficients can exhibit with each other and producing many small

coefficients.

LASSO Regression

β̂ = arg minβ
∑N

i=1(yi − β0 +
∑p

j=1 xijβj)
2 s.t

∑p
j=1 |βj | ≤ λ

The LASSO technique was proposed by Tibshirani [2]. Lasso regression enforces an L1

absolute penalty on the regression coefficient. Due the nature of the L1 penalty, the

LASSO does variable selection automatically by penalizing many of the coefficients to

zero. The selection of the coefficients is continuous and the number of coefficients that

enter the model are controlled by a parameter that dictates the absolute weight of the

coefficients, and this parameter is set outside during model selection. It is important

to note that there is no closed form solution for LASSO coefficient solutions and the

best techniques for generating LASSO solutions are generally approximations and can

be very computationally expensive.
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Naive Elastic Net Regression

β̂ = arg minβ
∑N

i=1(yi − β0 +
∑p

j=1 xijβj)
2

s.t (1− α)
∑p

j=1 |βj |+ α
∑p

j=1 β
2
j ≤ λ for α ∈ [0, 1]

Naive Elastic Net[3] regression is a combination of the L1 and L2 penalties in the ob-

jective function. The L1 penalty performs variable selection and the L2 encourages a

grouping effect. Conceptually it can viewed as a combination of LASSO and Ridge re-

gression. The objective function can impose a shrinkage that will introduce additional

bias while not reducing variance.

Least Angle Regression

Least Angle Regression (LAR)[4] is a regression algorithm that is based on L1 norm

optimization suitable for high-dimensional data containing many irrelevant and many

correlated variables. All the coefficients are initialized at 0 and estimated coefficient

parameters are estimated one by one and increased in a direction equiangular to the

given parameters correlation with the residual. LAR has the benefit of solving the

system of equations for the number of predictors that has entered the model at any given

point while maintaining that path. The obvious advantage here is that the systems of

equations to be solved is only as large as coefficients that have entered the solution, so

LAR can produce models to explain a large amount of data in a relatively small set of

time. LASSO solutions can be obtained via a small modification of the LAR algorithm.

Tuning

Each model has one or more parameters that have to be tuned for fitting and prediction

represented in the given examples as λ. There are a variety of criterion that can be used

to tune the model. The most straightforward is cross-validation in which a partition is

made of the data is made into many subsets and a parameter is chosen based on how

well the prediction of the training data is made on the subset. The tuning parameters

are chosen to minimize an error such as the root mean squared error (RMSE). Other

measures work to minimize another measure of relative goodness of fit such as the

Akaike information criterion as well as the Bayesian information criterion. All of these

parameters seek to either regularize, in the context of controlling the amount attributed

to each coefficient, or to reduce the number of terms that enter each model.
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Software

Experiments and data exploration was done with the 0.9 implementation of SciKit-learn

[5]. SciKit learn exposes many machine learning algorithms and built upon the scientific

computing library of SciPy and the numerical library of NumPy[6]. SciKit learn has

many different linear models with a selection of criterion material to experiment with

including many discussed above.

Generated Data

To test the ability of regression methods to recover information such as highly correlated

and ”causal” SNPs a variety of simple models were generated that simulated two way

and three way epistatic interactions. If the associated SNPs are labeled SNP1, SNP2,

and SNP3 the alleles are represented by (A,a), (B,b) and (C,c), respectively. The models

are described as follows:

Two Way Generated models

Model1 = −3.198 + 1.23 [SNP1 = AA]− 0.5 [SNP2 = BB] + 2.12 [SNP1 = AA & SNP2 =Bb]

Model2 = −8.9 + 7.3 [SNP1 = Aa & SNP2 = BB]

+ 7.3 [SNP1 = AA & SNP2 = Bb] + 7.3 [SNP1 = AA & SNP2 = BB]

Model3 = −6.9 + 3.5 [SNP1 = AA] + 3.4 [SNP2 = BB]

Model4 = −2.197 + 0.88 [SNP1 = AA] + 0.88 [SNP2 = BB]

Three Way Generated models

Model1 = −9.1 + 3 [SNP1 = AA] + 3 [SNP2 = BB] + 3 [SNP3 = CC]

Model2 = −15 + 4 [SNP1 = AA] + 4 [SNP3 = CC]− 8 [SNP1 = AA & SNP2 = BB]

+ 5 [SNP1 = Aa & SNP2 = BB & SNP3 = CC]

+ 6 [SNP1 = AA & SNP2 = BB & SNP3 = CC]

Model3 = −10 + 3 [SNP1 = AA & SNP2 = BB]+

3 [SNP1 = AA & SNP3 = CC] + 3 [SNP2 = BB & SNP3 = CC]

Model4 = −5.8 + 3 [SNP2 = Bb] + 3 [SNP1 = AA] & SNP2 = BB & SNP3 = CC
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The models were generated arbitrarily to simulate a range of human disease along the

methods of similar studies with generated data [7]. For our purposes it is safe to say

that the chosen SNPs are causal since we know them a priori, in non-generated data the

best would be due be to call recovered SNPs correlated.

A seed population of 2,000 individuals from the HapMap[8] r.24 phased data Central

European (CEU) population containing SNP from the first 150,000 base pairs was gen-

erated using hapgen2 [9], a region that contained 120 SNPs. The 6th chromosome was

chosen because of its polymorphic nature and involvement with many autoimmune dis-

ease. For simplicity data was encoded with homozygous as 0 and 2, and the heterozygous

allele was encoded with 1.

From this population Binomial trials were run using the given model as p = eModelx

until 400 cases were selected and then 400 controls were then be chosen from the seed

population not affected by disease.

Three SNPs positions were chosen from the 120 SNPs generated with relative frequencies

as follows:

SNP 75 : 0.4115 and .1350 for the major and minor homozygous alleles. .4535 for the

heterozygous allele

SNP 22 : 0.6245 and .0405 for the major and minor homozygous alleles. .3350 for the

heterozygous allele

SNP 107 : 0.789 and 0.0135 for the major and minor homozygous alleles. 0.1975 for

the heterozygous allele.

SNPs 75 and 22 were used as SNP1 and SNP2 in the given two way models and SNPs

75, 22 and 107 were used as SNP1, SNP2 and SNP3 in the given three way models.

Generated Experimental Method

Some similar regression studies [10] have set a fixed number of SNPs to select via LARS

and then used the majority of SNPs selected from an extensive series of simulations to

produce features to build prediction models from. However selection of SNPs like this

is not robust as it may fully capture colinearity that exists among features and does not

account for the fact that features that enter the model can also leave. The generated

dataset was much smaller than previous studies and since the data was generated the

SNPs that we call causal were known a priori. For this purpose we ran 100 random

permutations of the data in each model through criterion selection to tune the model
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Two Way Results

Model1 Model2 Model3 Model4
SNP 75 0.74 SNP 75 0.74 SNP 75 0.83 SNP 75 0.75

SNP 22 0.61 SNP 22 0.66 SNP 22 0.79 SNP 15 0.68

SNP 76 0.37 SNP 101 0.32 SNP 2 0.45 SNP 22 0.61

SNP 2 0.37 SNP 39 0.31 SNP 85 0.44 SNP 87 0.54

SNP 20 0.29 SNP 93 0.13 SNP 68 0.39 SNP 101 0.49

SNP 63 0.25 SNP 85 0.11 SNP 111 0.38 SNP 107 0.42

Table 1: Top frequencies of SNP selection for 100 model runs

Three Way Results

Model1 Model2 Model3 Model4
SNP 75 0.66 SNP 22 0.66 SNP 75 0.72 SNP 107 0.54

SNP 22 0.65 SNP 107 0.55 SNP 22 0.69 SNP 75 0.51

SNP 107 0.50 SNP 75 0.52 SNP 15 0.51 SNP 22 0.46

SNP 2 0.28 SNP 108 0.17 SNP 107 0.49 SNP 53 0.27

SNP 85 0.24 SNP 100 0.01 SNP 66 0.33 SNP 46 0.27

SNP 5 0.24 SNP 85 0.01 SNP 2 0.30 SNP 82 0.25

Table 2: Top frequencies of SNP selection for 100 model runs

for feature selection. The coefficients selected from each random initialization were then

compared across all the runs.

Each model was run through various LAR models with a different model selection crite-

rion. The Lasso LAR algorithm was used in these experiments. The AIC and BIC were

not effective in effectively reducing the set of SNPs in our simulated data. 5-fold cross

validation minimizing the RMSE was relatively successful at picking smaller models with

decent parameters.

Generated Experimental Results

The results for all the runs are given but the trend is that the generated causal SNPs

were selected by a much higher majority than most other given SNPs. This hints at

LAR as being a meaningful technique to recover important information for correlated

loci for complex human diseases.
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Figure 1: Two Way Model Frequency Graphs for Generated Epistatic Data. Fre-
quency in blue. ’Causal’ SNP in red.
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Figure 2: Three Way Model Frequency Graphs for Generated Epistatic Data. Fre-
quency in blue. ’Causal’ SNP in red.
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Data Exploration

Two real world data sources were made available for this research. The International

Multiple Sclerosis Genetics Consortium data and multiple sclerosis data from the Well-

come Trust Case Control Consortium were available to run linear techniques on. In both

of these datasets the data was so large that running large scale runs containing multiple

permutations was infeasible on a desktop machine so a less computationally intensive

approach was used.

International Multiple Sclerosis Genetics Consortium

The data of the International Multiple Sclerosis Genetics Consortium (IMSGC) [11] is

931 trios consisting of 2 unaffected parents and 1 affected child. The data comprised

334,723 SNPs for the 2793 individuals and was an extensive GWAS study looking for

markers associated with multiple sclerosis. Associated SNPs were found via transmission

disequillibrium testing of the family trios and Cochran-Mantel-Haenszel testing of case

controls with significant p-values.

For our purposes the data was encoded as described previously, with homozygous alleles

encoded as 0 and 2 and the heterozygous allele encoded as a 1. The extent of the

data was too large to load into memory in the test machine (with 8GB of RAM). In the

published GWAS study from this data the 6th chromosome and, in particular, the major

histocompatability complex (MHC) was a region of where many loci in high association

with disease were located, so Lasso LAR was run on both the MHC and then the 6th

chromosome as a whole. In both instances Lasso LAR was trained on the entire data

set; the MHC with 5 fold cross validation and the 6th chromosome with 7-fold cross

validation. The features selected from this data are listed in Appendix A1. Lasso LAR

on the MHC was not able to recover any of the SNPs in high association from the

study but did identify one particular SNP, rs9270986, that was shown to have a highly

significant residual association when the data was controlled for HLA-DR locus; the

highest association found in their study. Lasso LAR on the 6th chromosome did not

replicate this or the study’s results.

Wellcome Trust Case Control Consortium

The data of the Wellcome Trust Case Control Consortium [12] comprised of 14,790 SNPs

in 1,476 control individuals and 994 case individuals. In these cases the tuning parameter

was selected via Cross Validation, AIC, and BIC on 2,070 case control individuals with

the remaining 400 individuals (200 case, 200 control) held out as test data with Lasso
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LAR and Naive Elastic Net Regression. SNPs with an unknown frequency greater

than 5% were removed from the dataset and then unknown SNPs were assigned to

the heterozygous encoding. The processing occured on a chromosome by chromosome

basis. Generally speaking the resulting models often are only accurate at predicting

true negatives. Still, for each chromosome we see that some models preform better than

others.

Conclusion

We have shown through generated data that LAR can be effective in recovering epistatic

SNP interactions. LAR and other linear methods are interesting techniques for possibly

capturing some of the information in epistatic interaction. Running these regressions

on commonly available consumer hardware implies the strength of their computational

power. Future work should investigate running such regressions in grid, cluster, or cloud

computing to fully take advantage of their power. The LAR path has been generalized

such that the LASSO and Elastic Net have built upon it and there may be other defini-

tions that would help to maintain its power while producing more meaningful epistatic

features.

Since in all of these cases the techniques were run on whole GWAS matrices they can

potentially handle as many interaction terms as there are in the matrix. It is impor-

tant to note for the generated data the interaction terms are not explicitly defined and

yet recovered. Further computational models of epistasis should be formalized and in-

vestigated with a these linear techniques in concert with standard corrected p-value

association tests.

Acknowledgements
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MHC Results

Chromosome Location SNPid

6 29782176 rs3116788

6 29812379 rs1736913

6 29841721 rs1737055

6 31528479 rs3131622

6 32308125 rs3134926

6 32419357 rs3129900

6 32682038 rs9270986

6 32712350 rs9272346

6 32766288 rs9469220

Table 3: 5-fold CV Lasso LAR results

Chromosome 6 Results

Chromosome Location SNPid

6 2620192 rs12205879

6 38792163 rs4714188

6 53703465 rs4639324

6 77988470 rs1342638

6 96853615 rs4839826

6 117489335 rs10484309

6 137774624 rs9484046

6 139452276 rs6570309

6 151706569 rs3900024

6 153333549 rs503366

Table 4: 7-fold CV Lasso LAR results
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Chromosome
Lasso LAR EN

7f C.V. AIC BIC 5f C.V.

1
Precision 0.956522 0.829787 0.950000 0.648649
Accuracy 0.552500 0.577500 0.545000 0.555000

2
Precision 0.532110 0.641026 0.888889 0.527778
Accuracy 0.517500 0.527500 0.517500 0.505000

3
Precision DIV0 1.000000 1.000000 DIV0
Accuracy 0.500000 0.540000 0.540000 0.500000

4
Precision DIV0 0.500000 1.000000 0.500000
Accuracy 0.500000 0.500000 0.619324 0.500000

5
Precision 0.591667 0.894737 0.894737 0.692308
Accuracy 0.555000 0.537500 0.537500 0.537500

6
Precision 0.777778 0.785047 0.781250 0.736000
Accuracy 0.650000 0.652500 0.590000 0.647500

7
Precision DIV0 1.000000 1.000000 0.555556
Accuracy 0.500000 0.530000 0.530000 0.502500

8
Precision 0.800000 0.625000 DIV0 DIV0
Accuracy 0.507500 0.505000 0.500000 0.500000

9
Precision DIV0 0.791667 0.782609 0.700000
Accuracy 0.500000 0.535000 0.532500 0.540000

10
Precision DIV0 0.000000 DIV0 DIV0
Accuracy 0.500000 0.497500 0.500000 0.500000

11
Precision DIV0 1.000000 1.000000 DIV0
Accuracy 0.500000 0.520000 0.520000 0.500000

12
Precision DIV0 0.863636 DIV0 DIV0
Accuracy 0.500000 0.540000 0.500000 0.500000

13
Precision 1.000000 1.000000 1.000000 DIV0
Accuracy 0.520000 0.522500 0.520000 0.500000

14
Precision 1.000000 0.933333 1.000000 DIV0
Accuracy 0.527500 0.532500 0.527500 0.500000

15
Precision 0.685714 0.588235 1.000000 0.533333
Accuracy 0.532500 0.530000 0.507500 0.510000

16
Precision 1.000000 1.000000 1.000000 0.723404
Accuracy 0.542500 0.542500 0.540000 0.552500

17
Precision DIV0 0.586207 1.000000 0.833333
Accuracy 0.500000 0.525000 0.525000 0.510000

18
Precision 0.888889 1.000000 DIV0 DIV0
Accuracy 0.517500 0.517500 0.500000 0.500000

19
Precision 0.896552 0.780488 0.916667 0.652174
Accuracy 0.557500 0.557500 0.550000 0.552500

20
Precision 0.670588 1.000000 1.000000 DIV0
Accuracy 0.572500 0.542500 0.537500 0.500000

21
Precision DIV0 DIV0 DIV0 DIV0
Accuracy 0.500000 0.500000 0.500000 0.500000

22
Precision 0.490446 0.785714 0.785714 DIV0
Accuracy 0.492500 0.520000 0.520000 0.500000

Table 5: Chromosome by Chromosome Accuracy and Precision
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Chromosome Size in SNPs
Lasso LAR EN

7f C.V. AIC BIC 5f C.V.

1 1320 10.658926 2.185073 2.061518 736.142465

2 765 6.346181 1.430657 1.065680 342.702147

3 740 6.048923 1.274461 1.041007 360.659427

4 564 4.308561 1.093926 0.898759 174.509831

5 665 6.146835 1.246230 1.054225 293.963403

6 1666 15.603409 3.496535 3.339984 1857.113945

7 498 4.318206 1.057292 0.946202 115.846669

8 361 3.849544 1.022752 0.933357 92.704458

9 499 4.328411 1.075688 0.953451 182.459633

10 556 4.689394 1.245128 1.015039 195.345757

11 795 6.719915 1.689862 1.467723 399.033024

12 582 4.626239 1.285364 0.993746 228.760478

13 291 2.912949 0.898435 0.869864 72.166622

14 465 4.222388 1.035889 0.909310 177.195516

15 456 4.077359 0.979585 0.888176 147.397505

16 505 4.439754 1.110380 0.815451 172.783174

17 608 5.085032 1.204284 1.096623 238.189752

18 232 1.772682 0.271745 0.229249 46.339692

19 889 7.154027 1.654671 1.619452 490.897624

20 391 3.721791 1.206640 1.142858 111.530976

21 148 0.777694 0.107960 0.122645 13.008152

22 329 4.216304 0.949633 0.850607 69.904153

Table 6: Chromosome by Chromosome Runtime in Seconds

Times generated on a quad-core 3.4 GHz AMD Phenom II X4 Processor with 8GB

of DDR2 1066Mhz RAM running Ubuntu 10.10. The Laso LARS with cross valida-

tion made use of all four cores via multiprocessing. All other tests were with a single

processor.
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