
Auto-colorization Exploiting Annotated Dataset

Sungmin Lee
Department of Computer Science

Brown University
sungmin@cs.brown.edu

Abstract

Colorization is a very challenging task for computers
which requires very high performance of segmentation, ob-
ject recognition, color understanding, etc., and even for hu-
mans, it’s very demanding and arduous work to fully ac-
complish. To achieve this task, there traditionally has been
three approaches: example based model, scribble based
model, and data-driven based model which introduced rel-
atively recently, but none of those algorithms are human-
intervention free, nor generically work for any arbitrary im-
ages.

In this paper, I introduce a data-driven based auto-
colorization algorithm which is applicable for an arbitrary
query image without extra human labors. I set a hypothesis
that if you have many similar images to a query image, a
query image is highly likely to have the same objects as in
the similar images. To prove this, I exploited the biggest an-
notated dataset in the world, LabelMe [12], and built a sta-
tistical model estimating likelihood of objects in the query
image. Once I have a probabilistic map, I simply transfer
the colors to each map by using filling algorithm introduced
by Levin et al. [4]

1. Introduction

Colorization is a task mapping plausible colors on re-
gions of a grayscale image and this technique has been used
in many areas for various purposes. In contradiction to its
relatively simple concept per se, automatic colorization re-
quires very high level performances on image segmentation,
object detection, and even perceptual color understanding to
lead a good result, and it is obvious that better algorithms of
these fields you use yield more convincing results you will
get.

Since colorization is a very challenging and sensitive
task to be automated, a dominant number of researches
have focused on ”minimizing” human labors rather than
fully automatized color generation. Due to this trend
derived by the difficulty of colorization, there has been
two mainstreams on colorization, which are example-based
[14, 6] and scribble-based [4, 9] approaches, and thanks
to rapidly growing the enormous number of web image
data, researchers have recently started to utilize large image
datasets such as Flickr, Google Image Search and investi-
gate those previous models on them to yield better results
with less efforts [1, 7]. I will, from now on, address this
approach as a data-driven model in this paper.

Unfortunately, Each of these models has their own draw-
backs respectively. For instance, Example-based models re-
quire a very similar scene to a query image so that the query
image can leverage the color maps [14] or textures [6] of
the similar image. Although this algorithms are beneficial
when you want to apply one source image to many query
images, i.e., sequential movie frames in grayscale, finding a
similar scene can be a arduous work for users and also the
results from example-based models are generally less con-
vincing than scribble-based models. Scribble-based model
proposed by Levin et al. [4] shows surprisingly good re-
sults in comparison to example-based models, but these al-
gorithms require a lot of human labors since users should
choose colors and stroke the regions they want by them-
selves. There has been researches to simplify this task such
as in [9], selecting a right color for a right object is still not
a trivial work which requires users good senses of painting.
As you can see, building a fully annotated colorization al-
gorithm is non-trivial work at all.

In this paper, I propose a statistical approach for a fully
automated colorization algorithm for an arbitrary image,
The key idea of my method is to exploit a fully-annotated

1

Figure 1. Given grayscale image, the algorithm retrieves top-n similar images(middle-top), and from these images it collects the statistics
of all the objects(right-top), meanwhile grayscale image is segmented using mean-shift algorithm(left bottom) and from these segments
and statistical data, it estimates each likely region(middle-bottom), and finally it transfers colors of objects to corresponding regions(right-
bottom)

dataset to induce the colors of objects in a query image.
LabelMe by Russel et al. [12] is still growing anno-
tated dataset currently contains more than 50k images and
their annotations, and the main advantage of exploiting this
dataset for colorization is that you can build a statistical
model for your query image by exploring similar scenes.
From all the object annotations from similar scenes, I em-
ploy a maximum-likelihood algorithm to predict objects
from a query image based on a position, width, height and
size of each segment. A user will retrieve top-n colorized
results in descending order of their confidences in the end.

2. Overview

My algorithm can be divided into three phases. 1) Image
collection and build statistical data: Download and clean
LabelMe dataset, retrieve similar images to a query image,
and collect the features(label, width, height, position and
size) of all the objects. 2) Segment the query image and
predict a label of each segment: Apply mean-shift segmen-
tation algorithm to get super pixels of regions, and calculate
the maximum-likelihood of each region corresponding to
object statistics from step 1. 3) Colorization: colorize each
region using flood-filling algorithm proposed by Levin et

al.[4] and retrieve the results to the user. Figure 1 briefly
demonstrates a system flow of this algorithm.

3. Image collection and statistics
3.1. Collecting annotated images

If you imagine a car in your mind, what color would you
expect for that? Or if you imagine a t-shirt in your mind,
what color would you expect for the shirt? These kinds of
objects are generally less sensitive to their colors since they
have a lot of variations. Even if you see some unlike colors,
say green or pink, you would think it is, at least, possible but
not “unreal”. What about skies, roads, bushes, or even stop
signs? You would think that the colors are very awkward if
they are not in the colors what they are supposed to be in.
This is why object detection is essential for an automatic
colorization task.

Exploiting an annotated dataset possibly brings a lot of
advantages as long as the annotations are reliably correct
and one of those advantages is an object detection itself.
LabelMe dataset is a large and growing annotated dataset
proposed by Russel et al. [12]. Even though it may not be
large enough to cover all the kinds of arbitrary query images
for auto-colorization, it is still obvious that it is currently the

2

Figure 2. Retrieved similar images to a query image. Images in red
boxes are falsely retrieved images, but this images do not critically
harm the final results since a lot of objects from similar scenes are
penalizing outliers.

biggest and most reliable annotated dataset in the world.
I downloaded the full LabelMe dataset from the inter-

net, and manually cleaned the data by getting rid of redun-
dant images which are sequential images, grayscale images,
panorama images, too small images, and unrecognizable
images by human. After this task, I finally had 34,408 clean
images of both indoor and outdoor scenes.

3.2. Object statistics from similar scenes

Hypothetically, similar images likely share similar ob-
jects in their scenes. For example, if you have a set of
street scenes, you would probably have buildings, cars, peo-
ple, roads, etc. in common, and if you have a set of beach
scenes, there would be oceans, sands, big portion of skies,
etc. Thus, we can assume that the more similar pictures
you have, the more likely you will have the same objects
in the query image statistically. In this purpose, I retrieve
n-similar images (n = 100 in this paper) to estimate the
maximum likelihood of segments from the query image.

From many researches, it has been proved that you can
find similar images to an input image even without using
sophisticated image descriptors [5, 13]. Since I focus espe-
cially more on outdoor scenes than indoors or specific ob-
ject images, I employ gist scene descriptor [10] which per-
forms exceptionally well at scene recognition. I downsam-
pled images to 128x128 and set the orientations and num-
ber of blocks to 8 and 4 respectively. Once I have all the
gist values from training set, I calculate simple Euclidean
distances from a query image and retrieved top-100 closest
images in ascending order and those images are considered
as similar scenes to the query image.

Figure 2 shows an example of similar images to a query
images and their label statistics. There are some falsely re-
trieved images(in red boxes) but these do not harm the fi-
nal result since the objects from the wrong images are sta-

tistically outliers. Due to different annotation styles from
various users, I concatenate the possible synonyms or hy-
ponyms (i.e., person = {walking pedestrian, man, woman,
...}, car = {sedan, SUV, van, occluded car, ...}, etc.) for
the final results. For each label, I assigned four features:
widths, heights, sizes and positions. For position feature,
I only consider three vertical positions: top, middle and
bottom. This actually improves the precision significantly
since vertical position represents a rough depth map of ob-
jects. For example, if “sky” is predicted from dataset, it
would be never located at anywhere but the top, and in this
case, even if you see a person-like segment at the top of a
query image, it is highly unlikely to be a actual segment of
a person.

4. Image segmentation and estimation

4.1. Image segmentation

Different from the training set from LabelMe, a query
image doesn’t contain any annotation information in it. The
optimal way to generate partial objects in an arbitrary im-
age without any human intervention is to apply image seg-
mentation algorithm. If we suppose that we have perfect
segmentations in an image, it means each segment will rep-
resent one object. Since we have a statistical object in-
formation of similar scenes from previous section, we are
presumably able to predict each segment. Current state-of-
art image segmentation algorithms are somewhat still far
from perfection and considered as one of the hardest tasks
in computer vision field, however there has been vigorous
researches on this topic, and there are a few techniques I can
migrate for the colorization task.

Boykov et al.[2] and Rother et al.[11] proposed graph-
cut models which are the state-of-art object segmentation
algorithm, but these algorithms require some human inter-
action to select a right region for an object, and this aspect
discourages to be employed for an automatized algorithm
despite the extraordinary performances themselves.

Comnicu and Meer [3] introduced Mean-shift algorithm
and this algorithm converges neighboring pixels which have
similar intensity to the base pixel without any human in-
tervention. By applying region fusions to these converged
regions iteratively, you can obtain the fully segmented re-
sult in the end. There are some advantages using this al-
gorithm: 1) Mean-shift algorithm uses L*u*v color space
which consists of one luminance channel and two chromatic
channels, so this algorithm is not affected by color channels
to make a good segmentation. 2) Since mean-shift segmen-
tation yields converged regions only based on luminance, it
is very convenient to directly transfer the colors one to an-
other. 3) This algorithm is relatively fast. Figure 3 shows an
original image(left), segmented image(right) respectively.

3

Figure 3. Mean-shift segmentation example: An input image(left)
is segmented by mean-shift algorithm(right) similar pixels are con-
verged into superpixels and make segmented regions

4.2. Statistical object estimation

Given the hypotheses that segmentation result from pre-
vious section is tolerably reliable and that there are gener-
ally the same objects(labels) in a query image as in similar
images, it is possible to predict what each segment would
be using some statistical/machine learning methods.

Maximum-likelihood is somewhat old and primitive al-
gorithm among those techniques but still vigorously used
for a variety of statistical problems in computer science
such as natural language processing thanks to its simple and
straight-forward concept.

From machine learning perspective, Maximum-
likelihood algorithm is considered as a supervised
algorithm, which maximizes a set of combination of each
probability fields, generally defined as,

α̂ = argmax
α

Ll(α) (1)

where Ll(α) is a likelihood function and this term in
this algorithm indicates that “Find a combination of prob-
abilities of features, and what is the label of segment when
this combination is the maximum?” I set four different fea-
tures to define a likelihood function for label, and likelihood
function Ll(α) will be a multiplication of each feature. In
this paper I define function Ll(α) as,

Ll(α) =
∏

(P (xlabel |xpos)

∗ P (xsize |xlabel, xpos)
∗ P (xwidth |xlabel, xpos)
∗ P (xheight |xlabel, xpos)) (2)

, where P (xlabel |xpos) is a probability that a label will
appear in specific location at specific pos, and this distribu-
tion is defined as, where n(labelx) denotes the number of
total labelx, k denotes the number of positions (k = 3 in
this paper since there are only three positions: top, middle
and bottom), and α denotes a small jitter to prevent from
zero probability (α = 0.01 in this paper).

For the rest of equations for size, width and height,
I use a different approach since all of those features are
continuous, not discrete. As a typical method, I lever-
age Gaussian distribution. I first calculate the mean and
deviation of {size, width, height} of each label, such as
labelx ∈ {car, person, building, road, . . . } in each posi-
tion pos ∈ {top,middle, bottom} and I assign a probabil-
ity as,

p(feat | pos) =


0.6 if − 1σ < µ < 1σ

0.3 if − 2σ < µ < 2σ

0.1 else
(3)

Thus, the maximum-likelihood of the total equation
Ll(α) is a task to find the most probable object for a given
segment from its position, size, width and height. This
yields an estimation map of the query image and we are
just ready to transfer the color information.

5. Colorize the regions

Figure 4. An example of color distributions of car and sky in u ∗ v
colorspace. car (left) has more sparse distribution than sky (right)
For this reason, if you take ±1σ deviation you will possibly obtain
general color variations

Now, I have an estimation map of the query image from
the previous section, and I can basically transfer the accord-
ing colors to the regions. Of course it is possible to simply
fill the color in the region, but there are a few possible prob-
lem. 1) Mean-shift is not a perfect segmentation algorithm:
Mean-shift algorithm sometimes over-segment regions (i.e.,
parts of buildings are merged to sky, bushes merge a back-
ground, ...), and sometimes under-segment regions (i.e., one
car is deformed in to many parts,...), thus simple color trans-
fer can lead bad results. 2) Deviations of colors for objects
are significantly different: If we take only one color from
one specific object, we would, for instance, see only black
cars, but, on the other hand, if we randomly pick a color
from an object set, we might loose a consistency of col-
orization (i.e., Some part of sky is blue and some part of
sky is dark or red)

4

For this reason, I calculate the deviation of color distri-
bution for each object, and take µ± 1σ of color distribution
for an object. Figure 4 shows a different color distribution
between “sky” and “car” objects.

To also tackle the first problem, I employ a variation of
“flood-filling” algorithm which is proposed by Levin et al.
[4]. This algorithm basically compares a pixels p(x, y) to its
neighboring pixels and transfer the color of p to its neigh-
bors as long as the intensity doesn’t change significantly.
This algorithm is based on the hypothesis that the intensity
changes significantly generally when different objects are
neighboring.

Levin’s algorithm [4] has some advantages on my
project. 1) The one big disadvantage of this algorithm is that
it needs a lot of human scribbles especially when a scene is
complicated. But my algorithm provides all the segment
information and extracting some color points from the re-
lated objects is a trivial task. 2) As the second disadvantage
of the algorithm, choosing a right color for a right region
is not a easy task for non-artistic people. By applying my
algorithm to Levin’s it automatically creates a palette from
real scenes. 3) This algorithm blends colors very naturally
at the edge of different regions. It yields more convincing
results than just transferring a color to a segmented region.

6. Results
I build five different categories for a test set to evalu-

ate the results, which are coastal scene, urban street, in-
door scene, person oriented, and object oriented. Figure
5 shows colorization results. As you can see from these
results, this algorithm performs well on general outdoor
scenes, but shows very poor results at indoor or object ori-
ented scenes. This drawback possibly comes from 1) lack
of data, 2) characteristic of gist descriptor, 3) or complexity
of indoor scenes. Especially, based on the object statistics,
we can easily assume that my algorithm tends to consider
all the scenes as outdoor scenes. The possible resolutions
of these weakness will be discussed in following discussion
section.

7. Discussion
I this paper, I introduced a fully automated colorization

algorithm using annotated dataset. The main contributions
of this paper are 1) that this is the first paper which pro-
vides fully automated colorization algorithm for an arbi-
trary query image, 2) that this paper shows a probabilistic
approach for a colorization, and 3) that this paper shows
a practical and successful application of LabelMe dataset
suppressing poor-annotation-noises with statistics

The result shows relatively convincing results but there
are still a lot of rooms to improve this algorithm as well.
Above all, this paper doesn’t give an evaluation data. This

happened because there’s no absolute ground-truth for col-
orization. Also, since there’s no automatic colorization al-
gorithm, it can be somewhat unfair to compare the results to
others. The only possible evaluation is using human anno-
tation such as Amazon Mechanical Turk, asking the people
to evaluate how much convincing these results are.

To improve indoor, or object colorization, I could sug-
gest a couple of possible solutions. One of them is a size
of dataset. As it is proved in [5, 13], the results will sig-
nificantly improve as the dataset grows. Second solution is
using other image descriptors such as SIFT [8] which per-
forms superbly well at feature comparisons. Since gist is
designed to outdoor scene rather than limited scenes, us-
ing other descriptors or combining multiple descriptors will
help improve the results.

As an initial model of arbitrary image colorization, I be-
lieve auto-colorization task is somewhat related/similar to
statistical AI model such as natural language processing in
terms of a fact that there are no absolute ground-truth but
statistically plausible results. I expect tons of annotated
data which are built up and well trained statistical model
will help reach human-level of colorization task in the near
future.

References
[1]
[2] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in
vision. IEEE transactions on Pattern Analysis and Machine
Intelligence, 26(9):1124–1137, September 2004.

[3] D. Comaniciu, P. Meer, and S. Member. Mean shift: A robust
approach toward feature space analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24:603–619,
2002.

[4] A. L. Dani, D. Lischinski, and Y. Weiss. Colorization using
optimization. ACM Transactions on Graphics, 23:689–694,
2004.

[5] J. Hays and A. A. Efros. Scene completion using millions of
photographs. ACM Transactions on Graphics (SIGGRAPH
2007), 26(3), 2007.

[6] R. Ironi, D. Cohen-Or, and D. Lischinski. Colorization by
example. In O. Deussen, A. Keller, K. Bala, P. Dutr, D. W.
Fellner, and S. N. Spencer, editors, Proceedings of the Eu-
rographics Symposium on Rendering Techniques, Konstanz,
Germany, June 29 - July 1, 2005, pages 201–210. Eurograph-
ics Association, 2005.

[7] X. Liu, L. Wan, Y. Qu, T.-T. Wong, S. Lin, C.-S. Leung,
and P.-A. Heng. Intrinsic colorization. ACM Trans. Graph.,
27(5):152:1–152:9, Dec. 2008.

[8] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[9] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and
H.-Y. Shum. Natural image colorization. In J. Kautz and

5

Figure 5. This shows the results of algorithm. from the left, query image, segmented image, object statistics(before merge), my results,
and ground-truth. The last three rows in a red box indicates are awfully colorized results. As you see, this algorithm shows a significant
weakness at indoor, object oriented scenes.

6

S. Pattanaik, editors, Rendering Techniques 2007 (Proceed-
ings Eurographics Symposium on Rendering). Eurographics,
June 2007.

[10] A. Oliva and A. Torralba. Building the gist of a scene: the
role of global image features in recognition. In Progress in
Brain Research, page 2006, 2006.

[11] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: inter-
active foreground extraction using iterated graph cuts. ACM
Trans. Graph., 23(3):309–314, Aug. 2004.

[12] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman.
Labelme: A database and web-based tool for image annota-
tion. Int. J. Comput. Vision, 77(1-3):157–173, May 2008.

[13] A. Torralba, R. Fergus, and W. T. Freeman. 80 million
tiny images: A large data set for nonparametric object and
scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
30(11):1958–1970, Nov. 2008.

[14] T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color
to greyscale images. ACM Trans. Graph., 21(3):277–280,
July 2002.

7

