
GradRanking: Online Personalized University
Recommendation System

Georgy Megrelishvili
Brown University

Department of Computer Science
Providence, RI

georgy_megrelishvili@brown.edu

ABSTRACT
Ranking systems are applied in many ways nowadays and

have become a commodity to use when it comes to making
decisions. Education is one of the most important parts of
human life. Choosing a right place is crucial from many per-
spectives: quality of life, knowledge gained, post-graduation
prospects. Making a right choice what institution to attend
is based on many factors and is hard to make in a limited
amount of time. In our masters project we address this issue
and present an online personalized university recommenda-
tion system GradRanking.com. We collected information
on 1250 universities in the U.S. and over 118,000 student
profiles who applied to those institutions. We also use so-
cial networks like LinkedIn and GlassDoor as a source of
information to understand where students tend to go after
graduation: academia or professional career, and depending
on the chosen path, help decide which universities provide
better opportunities.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval — Information Search and Retrieval

General Terms
Theory, algorithms, web applications

Keywords
Information retrieval, machine learning, data mining, regres-
sion, ranking

1. INTRODUCTION
The hypothesis of this project is that a personalized user

oriented system can be built on a prior knowledge about
the universities and the learning data from student profiles.
Matched against each other to build a model for each institu-
tion to estimate the chances of being accepted and rejected,
and how useful it is for a particular person to attend it. The
project is subdivided in several integral parts: data collec-
tion, data parsing and ranking based on several widely used
machine learning methods.

First we go in description of data collection. Several main
data sources were used for this project: we started with
collecting the publicly available data provided by universi-
ties and aggregated by the yearly US News Report. The
ranking provided by company was totally neglected in our
ranking schemes. Secondly we collected a large block of data

from two major student run sites Edulix.com and TheGrad-
Cafe.com. Both provide similar functionality and allow stu-
dents to report their progress with standardized tests and
university applications. The third data source was a pro-
fessional social network LinkedIn. It provides information
on employment and professional growth of graduates. The
fourth source of data is a crowdsourced employment infor-
mation site GlassDoor.com which contains data on salaries
and overall happiness of employees in a large number of com-
panies world wide, a majority of which are located in the
U.S.

Having all that information in a structured way we are
able to build a system to provide a personalized rating of
universities based on academic vs. professional preference of
a candidate. As an input (query) from a user we collect all
possible information asked in an optional input based man-
ner: does she see herself in academia, what are the scores on
required tests, location preference, tuition costs depending
on location (in-state, out-of-state), scholarship, fellowship
probabilities, future salary approximation.

Not all of 1250 U.S. schools are offered in the final ranking,
but only those within the user’s field of study and that fit in
terms of provided query from both bottom and top border of
acceptance expectations. After getting the rating user can
request detailed information on every school offered in a list.
Only some of the data associated with every school is used
in ranking algorithms. We keep exuberant data to provide
it to the user on demand in order for her to make most
informative decisions on finalizing choices which schools to
apply to.

2. RELATED WORK
Our problem is best solved using regression methods. But

since we are looking not for one closest solution but also
for a ranking scheme, different approaches were offered in
information retrieval and machine learning literature.

The mainstream approach to learning to rank is often
called the pairwise approach. There is a variety of other
methods [3, 5, 2]. The pairwise method is more widely
used and can be described as classification of object pairs to
be correctly or incorrectly ranked. Early research describes
use of SVM to produce a classification model, like Ranking
SVM. Other approaches included Boosting, RankNet. The
later used cross entropy as loss function and gradient descent
to train a neural network. At the same time learning to rank
methods are mostly used in information retrieval problems
such as document retrieval using Ranking SVM, document

search on a large web size scale.

Other influential work includes attempts to switch from
pairwise to listwise approach in ranking [1, 6] where lists of
objects are used as instances in learning. In general that
employs a probabilistic approach to ranking. Two proba-
bility models are involved: one is permutation probability,
another is top k probability, which together define a loss
function for learning. Gradient descent and neural network
are then used as algorithm and model for ranking.

Work of D. Sculley from Google Research [4] directly
touches upon effective combination of regression and rank-
ing, which is in a modified way used in this work. Author
establishes two types of metrics and develops a model that
is required to achieve best possible results on both of them.
First comes from regression part of the problem, second from
the ranking. First metrics are such as Mean Square Error;
the model is rewarded if y′ is predicted well for a given ex-
ample. The other metrics are such as Area under the ROC
curve; the model is rewarded if y′

1 > y′
2 is a correctly pre-

dicted ranking for a pair of given examples.

3. METHODOLOGY
Data collection is an important step in success of an infor-

mation retrieval or data mining project. In our research we
collected different types of data for different purposes. The
first one is universities data used in regression to build rank-
ing for the user query. It is obtained from the open sources,
partially from the US News Report site, which provides its
own universities rating. No rating from any external site
was ever used as a reference while own ranking algorithm
was developed. The major difference between our site and
US News Report as long as many other similar resources is
that they provide a static recommendation of best places
to study in with no respect to user requirements or abili-
ties. They have a concept of ideal student and ideal study
place that satisfies all the needs of a prospective colleger.
On the contrary we believe that this scheme does not work
for majority of students and needs to be evolved.

In previous steps we collected static data to be matched
against while ranking is built, next we collect the learning
data. It never shows up in user observed results, but is used
to generate a statistical model to understand whether a can-
didate is likely to be accepted to a university considering his
scores in standardized tests, degrees and honors. This data
is not used in ranking, but rather in classification problem
if particular university should be offered to candidate in the
final result table.

Next step brings us to collection of social network data.
This block of information leverages the vast data available
on the internet in structured form. Concretely we aggregate
information on places where graduates of the U.S. universi-
ties tend to go immediately after graduation or as a first job
afterwards. Having that large list of employers we want to
understand which are more privileged and so we collect data
regarding salaries in those companies for the positions typ-
ically occupied by entry level employees as fresh graduates,
and general level of satisfaction of working for a particular
employer. This information is used on the last stage when
the final ranking is prepared.

The last source of information in our system to date is a
large study performed by Business Week that shows percent

of students who manage to successfully graduate, get a grant
while at school and what is the return of investment estima-
tion from education in each institution. In other words how
fast if at all possible student can get back the money invested
in the education. All these pieces of data let us proceed to
the next step which is ranking.

The ranking part part contains three major steps: build-
ing rating of employers from social network data, building
a classification model for every university based on learning
data, produce rating based on user input and result received
from first two stages. Steps one and two are “one time com-
pute”and do not need to be repeated every time a user sends
a query.

Developed system uses supervised classification methods
and unsupervised learning on stage of data preparation. Due
to a noisiness of collected data immediate usage of it would
be impossible, final stage uses regression for final ranking
output and presents results to a user. Presented results
mean that it is likely with high probability to be accepted to
all of the observed schools in the list. Schools are not rated
which are better or worse, but instead are ranked which are
more preferable for the user considering her needs and abil-
ities.

4. DATA COLLECTION
In order to collect data we used Python scripting lan-

guage, Linux scripts, regular expressions and cron jobs to
distribute and schedule tasks. Collecting data on large scale
is not a trivial task. Sites Edulix.com and TheGradCafe.com
on the moment of crawling contained more than 150,000
user profiles. First we developed a crawler and parser to
collect user data from the site. The data contains several en-
tries: scores on standardized tests (GRE, GMAT, TOEFL),
schools that candidate applied to, schools that he was ac-
cepted to and rejected from and what school has he finally
chosen to attend. It also contains a text field that contains
a list of honors, special degrees and achievements, that user
believes are important for schools to make decision on his
case. Collected data turned out to be very noisy, some of
the form’s fields were missing or filled out incorrectly. Af-
ter leaving only fully filled profiles we remained with about
43,000 user forms with sufficient data suitable for learning.
We store data as hashmaps in Python allowing us to get in
O(1) time all learning data for any university that we are
building model for. We used several widely used Python
libraries and extensions in the course of crawling such as
UrlLib2 for sending HTTP requests; HTMLParser for get-
ting the payload in HTML text retrieved; htmlentitydefs for
getting only the needed parts of HTML payload in partic-
ular subsections; pickle for storing a binary representation
of dictionaries and quick save and load operations to disk
in order for the data to be usable across different processes
and machines.

Professional social network LinkedIn contains around 150
million professional profiles with education and employment
information available to date. We used an Executive payed
plan to have access to as much information as possible at
a time. This type of subscription allows to get up to 700
results per search query at a time, grants access to search fil-
ters like company size, years of experience, interests, Fortune
1000 and others. This type of subscription also provides full
name information, but we would like to make a statement

Figure 1: Data scheme of the GradRanking project. Arrows show the flow of information. The table on the
right is the resulting data that is used in ranking

about privacy of collected information from this and other
sites mentioned above and later. Whenever we parsed we
immediately removed names and stored information anony-
mously and mostly in aggregated way. LinkedIn provides
two basic ways of getting information not by parsing site’s
HTML pages, but by using inhouse developed API. First
one is REST based second is JavaScript. We used second
and during the course of two weeks we were able to collect
around 40,000 user profiles having universities from our list
as their education place. Amount of data was skewed to-
wards bigger and more popular schools. Some got as few
as 40 results in total, while some 1217. On average every
school had 354 user profiles, 217 in the median. For ev-
ery employment entry we collected a tuple information of
position within the company.

For every university we extracted a list of employers that
were listed on the profiles to be first after graduation from
a school we were interested in. We neglected information
whether employment happened immediately or few years
later, although we understand that in some cases that may
be also a signal that we would like to take into consideration.
We ended up with a list of 5715 employers, some of them
were ranked in Forbes 1000 list which gave an additional
boost in understanding a demand for graduates of a partic-
ular school, some employers we not discoverable by search
engines. This brought us to the need to rank the employers
not by use of another rating provided by third party but by
ourselves. Thus we came to GlassDoor.

GlassDoor is an insider information company. Users are
offered to provide a piece of information about their com-
pany anonymously in return of free registration and access to
all the site’s data on all other companies. Information pro-
vided can vary from the number of employees in a company
to a salary and position, individual ranking, and such. Data
gathered from a source like this can never be considered re-
liable. In order to make GlassDoor information trustworthy
and useful for our cause we removed outliers from the col-
lected data and retained only positions and salaries within
[−2σ; 2σ] distribution as shown on Figure 4. The site does
not have an API so we had to parse it by writing Python
scripts. There is no limitation on number of requests coming

from one profile, but there is a time limit for the frequency
of those requests. Robots.txt in the root of the site allows
only Google’s bot to crawl the site, while all other are dis-
allowed to enter listed sections. For every employer we col-
lected the following information: “positions - salary“ chart,
aggregated company rating based on employee reviews. We
parsed the “position - salary“ chart for every company and
left only those salary entries that matched positions listed
on LinkedIn profiles of school graduates. We also tried an-
other approach to search for ”company name position name“
iteratively and parse that data, but it turned out that the
the recall is higher with just company name and parsing of
all the entries that match our positions list. On average
we collected 114 entries for 5715 employers. The data is
very skewed and while some companies have around 10,000
entries, others have none.

5. APPROACH
In order to be able to use all collected features of the data

we need to remove the noise in it and primarily that is true
for the gaps. Of 87 collected features for 1250 universities 24
did not have full data. Universities less popular among stu-
dents are not making information about themselves publicly
available and it makes it hard to find all the needed data,
e.g. endowment size or expenses per faculty member. We
had this data features for the majority of school and didn’t
want to discard them. Figure 2 shows the representation of
this situation.

Our approach is to approximate values for missing features
having all the rest of fully available data. Average value for
the feature calculated with all data in corpus would be not
representative since if we look at all features we notice that
some schools are far way up in the ranking while the majority
is decreasing gradually. If we were to take just an average
value we would let the top tier schools contribute to higher
ranking of the the bottom once. To avoid this situation we
first cluster the universities based on the feature columns
that fully available. Then to be minimally biased we take the
median value within a cluster for each gap for a particular
school.

We use unsupervised learning K-means clustering algo-

Figure 2: Gaps in the noisy data as they appear
when it is collected. If not removed, data is unusable
for regression purposes.

rithm for partitioning N data points into K disjoint subsets
Sj containing Nj data points so as to minimize the sum-of-
squares criterion.

Algorithm aims at minimizing an objective function J:

J =
K∑

j=1

∑
n∈Sj

‖xn − µj‖2 (1)

where xn is a vector representing the n data point and µj is
the geometric centroid of the data points in Sj .

Before we move on to ranking part we would like to de-
scribe the social network integration in the dataset. We
should note that we build two separate databases of po-
sitions. First describes academia jobs, keywords include:
”research”, ”professor”, ”postdoctoral” and a few other. Pro-
fessional positions are considered all the rest that we en-
counter. Previously we collected information on employ-
ers, how happy their employees are judging by reviews and
what is the salary for positions that fresh graduates qualify
for. Having that information for each of the databases sep-
arately we put a prior that those are equally important and
contribute proportionally to the rating of a company. We
rank companies based on information from each column sep-
arately. Than we combine those ratings. Company’s final
place is a mean of places in two separate ratings as shown
in Figure 3. One company can appear in both academia
and professional datasets. But since later we use only one
of those datasets, depending on user query, it does not add
any confusion or rating boost.

Once we have the data to match with our query, we need
to scale the features using data normalization. All of the
features are on a different scale. From fractions and val-
ues less than 1 to billions. We use feature scaling as data
normalization technique.

We aims to scale the range in [-1, 1] using the following
formula:

x′ =
x− x̄

max−min
(2)

where x is an original value and x′ is the normalized value

Now when all this preliminary work is done (should be

Figure 3: Data is clustered over the features avail-
able for all data point. Missing features are approx-
imated by taking the median within a cluster.

repeated from time to time to update ratings), we come to
a user query and personalized recommendations. The inter-
face asks user if he is interested in professional or academic
career path. Depending on choice made the appropriate
dataset is selected. Next we ask if user had classes in his
undergraduate education being taught in English. Thus we
decide if we also need to take English language exams like
TOEFL / IELTS into consideration. To this point we have
decided on the features that we are going to use in our rec-
ommendation system.

Now we have three steps remaining before user gets her
personalized school recommendations:

1. Scale user query.

2. Classify universities based on probability for user to
be accepted.

3. Rank those that were classified as positives.

User query is nothing else but a list of features. We set
minimal requirement for a query to contain the field of study
and GRE / GMAT score (TOEFL if applicable). Although
we understand that some schools including Brown Univer-
sity and MIT do not require those, we need some basic input
in order to estimate probabilities of being accepted by a par-
ticular school (the more input features, the better). Other
optional user input features are tuition cost, future salary,
ease of employment, location (region).

In order to normalize a query we use the same Formula 2
that was given for the dataset.

Next we classify the universities in two classes. Being
likely to accept user or not. We use logistic regression for
classification purposes:

Logistic regression works well for binary classification
problems where we have labeled training data and exam-
ples have l features with values equal to zero or one. We
denote concrete example is ~x and the value of the k feature
as xk. An additional feature, x0 ≡ 1 is the “bias” feature.
The probability of an example to belong to a positive class
is

Figure 4: Salary distribution. Only entries within
[-2σ; 2σ] were considered. Outliers were descarded
from learning data.

p(y = +1|~x) = g

(
l∑

k=0

wkxk

)
(3)

where g(z) = 1
1+e−z is a sigmoid function having values in

range [0; 1] which is required for classification purposes.

Logistic regression allows to learn the weight of the fea-
tures to maximize the likelihood of the data. Having training
data (~x1, ..., ~xn) and corresponding labels (y1, ..., yn) logistic
regression maximizes the log likelihood of the data

L(~w) =

n∑
i=1

log g(yizi) (4)

where wk, k ∈ {0, ..., l} are weights of features and

zi =
∑
k

wkxik

and since we are having probabilities 1− g(z) = g(−z).

We can learn the weights using two approaches which are
used depending on the size of the training set and number
of features in data. It is either gradient descent method or
solving linear equations. We used the gradient descent for
scalability. In order to get the kth weight we calculate

∂L

∂wk
=

n∑
i=1

yixikg(−yizi) (5)

Once this stage is complete we can leave in our final list
only universities that are likely to accept the user according
to a query.

Next step in our pipeline is the ranking. We intend to rank
the schools based on several criteria. Since user is providing
us with his preferences for post-graduate expectations and
his current academic and financial standing, we can use a
regression approach to estimate which universities are more
useful and appealing for the user to attend.

There is a not obvious part in this problem, having the
normalized data and user input we have dozens of features
that have to be also used in regression model but there is no
user query criteria to match them against.

We use logistic regression to learn weights of data features.
Depending on the career path that user chooses, academia or
professional we pick relevant data features and use them in
prediction model. Regularization gives an additional boost
in precision.

Formula for logistic regression was given in Equation 4.
We add regularization term to it to minimize bias from the
features. We use a new cost function

L = −
n∑

i=1

log g(yizi) +
C

2

l∑
k=1

w2
k (6)

We end up with having a ranking that we show to the
user. The chart may contain a large list of entries so we
show them by groups of ten with a Next button.

6. RESULTS
Here are the results that we had with our dataset on classi-

fication problem. We had manually selected user profiles for
a test set where we knew the expected data label. The whole
dataset is 43,127 user profiles. We split it in three parts: 80%
learning set, 10%, cross-validation set and another 10% test
set. During the learning and validation parts we rerun the
classifier on randomly shuffled data with datasets preserved
in the same proportions.

Misclassification error on test set was within 5%. Re-
sults of a sample run are presented in Table 1. In this
case user query had a tuition payment possibility of $50,000
(which exceeds most non-business school expectations), top
1% GRE and TOEFL exams scores and showed interest in
professional career after graduation rather than academic.
Considering the data that we have on return of investment
per school and the teaching and research quality in listed in-
stitutions, without details it can be said that the developed
ranking system produces plausible results.

Project that we have been working on does not have com-
petitors to compare results with. Also there is no ground
truth that may be unbiased to be used as a reference. The
results on a test set and general rationale in sections above
is our way to justify the decisions that have made while
working on this project.

7. CONCLUSION AND FUTURE WORK
Ranking systems are applied in many ways nowadays and

have become a commodity to use when it comes to making
decisions. Education is one of the most important parts of
human life and in this work we started a project that makes
it easier to come to a right choice what university to attend.
Decisions made by the system are personalized. Recommen-
dations are offered upon considering over 80 creterias.

This project will be hosted on domain GradRanking.com.
We collected information on 1250 universities in the U.S.
and over 118,000 student profiles who applied to those in-
stitutions. We also use social networks like LinkedIn and
GlassDoor as a source of information to understand where

Table 1: Results for a query {possibility to pay high tuition expenses; top procentile GRE, TOEFL exams
scores}. The lower the proximity score, the better.

Ranking University Name City State Proximity
1 Massachusetts Institute of Technology Cambridge MA 0.0
2 University of California Berkeley Berkeley CA 0.004
3 University of Wisconsin Madison Madison WI 0.012
4 Brown University Providence RI 0.012
5 Harvard University Cambridge MA 0.016
6 University of Pennsylvania Philadelphia PA 0.016
7 Stanford University Stanford CA 0.0194883078787
8 University of Michigan Ann Arbor Ann Arbor MI 0.02
9 Princeton University Princeton NJ 0.02
10 Carnegie Mellon University Pittsburgh PA 0.024
11 University of California San Diego La Jolla CA 0.032
12 University of California Santa Barbara Santa Barbara CA 0.032
13 University of Illinois Urbana-Champaign Urbana IL 0.036
14 University of Texas Austin Austin TX 0.036
15 Cornell University Ithaca NY 0.036
16 Duke University Durham NC 0.036
17 Rice University Houston TX 0.036
18 Johns Hopkins University Baltimore MD 0.040704264472
19 Northwestern University Evanston IL 0.044
20 University of Minnesota Twin Cities Minneapolis MN 0.044
21 Washington University St. Louis MO 0.044
22 Georgia Institute of Technology Atlanta GA 0.048
23 University of California Los Angeles Los Angeles CA 0.048
24 Vanderbilt University Nashville TN 0.048
25 University of Maryland College Park College Park MD 0.064

students tend to move after graduation: academia or pro-
fessional career.

We see potential in this project and will continue its de-
velopment. First step that we plan to make is reinforcing
our decision by collecting larger amounts of data. Users vis-
iting our site will be encouriged to take a survey and provide
us with additional learning information to make predictions
more accurate.

We plan to add more features to the data and experi-
ment with diffeent classification and regression algorithms
to achieve maximum performance for this task. It is our
goal to make this site useful for people like ourselves, be a
source of reliable personalized information on postgraduate
and potentially undergraduate education.

8. REFERENCES
[1] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to

rank: From pairwise approach to listwise approach.
Proceedings of ICML, 2007.

[2] K. Crammer and Y. Singer. Pranking with ranking.
Proceedings of NIPS, 2001.

[3] G. Lebanon and J. Lafferty. Cranking: Combining
rankings using conditional probability models on
permutations. Proceedings of ICML, pages 363–370,
2002.

[4] D. Sculley. Combined regression and ranking. 2010.

[5] A. Shashua and A. Levin. Taxonomy of large margin
principle algorithms for ordinal regression problems.

Proceedings of NIPS, 2002.

[6] F. Xia, T. Liu, J. Wang, and H. Li. Listwise approach
to learning to rank - theory and algorithm. Proceedings
of ICML, 2008.

