
Aspect-Specific Ranking of Product Reviews Using
Topic Modeling

Aaron Shen
Brown University Department of Computer Science

Providence, RI 02912
awshen@cs.brown.edu

Advisor: Professor Eugene Charniak

Abstract

We examine the problem of ranking different aspects of a product through ex-
amination of its customer reviews. For instance, a restaurant review may contain
distinct and possibly differing opinions on the food, decor, service, and price.
We present a ranking system that uses Latent Dirichlet Allocation (LDA) and a
database of opinion-oriented words to predict the aspect-specific sentiment of in-
dividual reviews. We evaluate the ranker on a set of test reviews and compare our
results to previous work in this area.

1 Introduction

As the Internet continues to affect the way we do business, customer-generated reviews are becoming
an increasingly important part of e-commerce. Collecting and presenting such information in a
useful way to consumers is a core part of the business of companies such as Amazon, Yelp and
Tripadvisor. The online shopping community has come to place a great deal of reliance on customer
reviews.

Reviews are typically written by consumers who have previously purchased a product or used a ser-
vice and describe the user’s experience with that product or service. Web sites which collect reviews
often make them widely accessible so potential customers can read them and use the information for
their own purchasing decisions. A standard review format is a block of text consisting of anywhere
from a few sentences to a few paragraphs, and a numeric rating (often from 1 to 5 “stars“) that is
meant to summarize in a single number the reviewer’s sentiment toward the product.

Many popular commercial websites only allow reviews to have a single numeric rating. This num-
ber is meant to correspond with how the customer would rate the product overall. However, such a
ranking scheme is of limited use to the consumer. Consumers are interested not only in the overall
quality of a product, but also its quality in certain specific aspect areas. For example, someone look-
ing at reviews of a new restaurant will probably be interested in distinct aspects such as the quality
of the food, the appeal of the decor, the quality of the service provided, and the perceived value
with respect to price. These factors can be weighted differently for each person. Differing consumer
preferences for certain features may contribute to the observation that ratings in one ”overall” aspect
are typically bimodal [7].

This suggests that one overall rating may be less meaningful than a set of ratings specific to each
aspect of interest. On websites that lack aspect-specific rankings, practically the only way for the
customer to obtain aspect-specific information is by reading the actual text of the reviews (see ex-
ample in Figure 1). This can be time consuming, and the result may be potentially skewed since a
product may have potentially hundreds of reviews and the customer most likely desires to read only
a small subset of them, which may not representative of the whole corpus.

Figure 1: Example by-aspect parsing of a restaurant review. Review taken from Yelp.com.

In this paper, we introduce a ranker that, given s predefined aspects of interest, takes in the text of a
review for a product and outputs a s-length vector of rankings in a set range (i.e. between 1 and 5
stars). Our model relies heavily on Latent Dirichet Allocation (LDA) [3], a popular topic model in
computational linguistics. Research presented in [2] and [9] also provided some of the mechanisms
behind the ranker.

The ranker first parses the reviews by using LDA to assign one or more aspects to each sentence of
a review. This aspect information is then combined with aspect-neutral words in the text that appear
in a lexicon of sentiment words (such a list was compiled in [6]) to define a list of r features and an
r-length feature vector x for each review. For each aspect, a real-valued score is then calculated as
x · w, where w is an aspect-specific vector of weights learned from a set of training reviews. The
scores are then mapped to rankings in discrete space based on thresholds learned during the training
process.

The rest of this paper will describe and analyze the ranker in more detail. In Section 2 we go through
some theory underlying the ranker and discuss related work. In Sections 3 and 4 we describe our
experimental setup and assess the performance of the ranker on a real-world dataset. Performance
is compared to a baseline and algorithms used in related studies. We conclude in Section 5 with an
overall assessment and suggestions for further work.

2 Methodology

2.1 Aspect Definition

Hu and Liu [6] conducted early research in sentiment analysis of reviews by using a part-of-speech
tagging approach to extract commonly occurring nouns as aspects and opinion-oriented words pro-
vide sentiment information. A later implementation of this model [8] showed that this approach
yields aspects that are meaningful when evaluated by a test group of consumers. In these studies,
using commonly occurring nouns as features sometimes yielded aspects that are very specific to
each product (for example, in one example in [8], parsing reviews for video games produced the
aspects ”flight simulator” and ”strategy game”).

Our approach is slightly different. We assume that for each class of products, there is a set of
very general categorical aspects that are shared by all products in that class. The idea behind this
is that since these aspects are common to all products, it will be easier for consumers to cross-
compare between items. Using the aforementioned restaurant example, we could define the aspects,
“food”,“decor”,“service”, and “price.” For other categories of products, aspects could be determined
either through a survey of consumers, or by first using the approach in the two studies above then
hand-picking aspects that are shared by all products in that genre.

The goal of the algorithm is to examine a the text of a review and determine a ranking for each
predefined aspect that accurately reflects the sentiment in the text.

2.2 LDA

Because different sentences in the review may express opinions on different aspects, the first step
in the algorithm is to use LDA to determine how much information each sentence in the review
contains about the different aspects.

We apply a couple of modifications to the original LDA model as proposed in [3]. First, LDA has
been shown to work poorly when the documents are individual sentences so we use the approach of
sliding windows suggested by [9]. A sliding window is a group of consecutive sentences that share
the same topic distribution and takes the place of the ”document” concept in classic LDA. This
helps to alleviate the (weak) assumption that sentence boundaries also represent topic transition
boundaries.

This leads to the following generative model. First, for each of the topics in the model:

• Choose a distribution over words φtopic ∼ Dir(α).

For each sentence s in a review doc:

• Choose a distribution over possible sliding windows Ψdoc,s ∼ Dir(β)

For each sliding window in the review:

• Choose a distribution over topics θdoc,sw ∼ Dir(γ)

For each word i in sentence s of review doc:

• Choose window vdoc,i ∼ Cat(Ψdoc,s)

• Choose topic zdoc,i ∼ Cat(θdoc,v)

• Choose word wdoc,i ∼ Cat(φz)

In order to sample from this distribution, we would like to obtain the marginalized distribution

P (w, z, v) = P (w | z)P (z | v)P (v) (1)

[3] showed that a marginal distribution of this form cannot be computed directly, so we use Gibbs
sampling as originally suggested by Griffiths and Steyvers [5]. The conditional distribution used to
perform the Gibbs sampling for LDA without seeding is:

P (zi = j, vi = k | w−i, z−i, v) ∝
(
nj→wi,−i + α

nj,−i +Wα

)(
nk→j,−i + γ

nk,−i + Tγ

)(
ndoc,s→k,−i + β

ndoc,s,−i + V β

)
(2)

Here nj→wi,−i, refers to the number of times topic j generates word wi, nj,−i refers to the total
count of words assigned to topic j, nk→j,−i, refers to the number of times window k generates
topic j, nk,−i refers to the total count of words in window k, ndoc,s→k−i, refers to the number of
words in sentence s of review doc that are assigned to window k, and ndoc,s,−i refers to the total
words in sentence s. The −i notation indicates that these quantities are to be calculated minus
the topic/window assignment of the current word under consideration. Since the release of the
Griffiths and Steyvers paper, the Gibbs sampler has become a popular method for doing LDA and
the derivation of the basic formula is well-documented in the literature. Thus for brevity we do not
include the derivation in the body of this paper. However, it is included as an appendix for reference
purposes.

We also experimented with using predefined seed words in the LDA clustering process. This method
is also referred to as topic-in-set knowledge and is well-summarized in [1]. It is reasonable to think
that some words are more likely to be affiliated with certain aspects than others. Continuing with
our restaurant example, we might theorize that the word “delicious” is more likely to be affiliated
with the “food” aspect than the ”decor,” ”service,” or ”value” aspects. Then if we choose topic j
to be our ”food” topic, we implement a rule that assigns the word ”delicious” to topic j with high

Seed Words Aspect
food menu delicious tasted food

ambience decor clean setting decor
service waiter waitress helpful service

money paid cost expensive value

Table 1: Seed words for restaurant example

probability. See Table 1 for an example. We theorized seeding might allow the topics to better
match the aspects of interest, leading to a lower ranking loss. Seeding also limits the number of
topics overall, which speeds up Gibbs sampling and also reduces the complexity of the feature set,
leading to faster training (see Section 4).

To use seed words, we apply the mechanism in [1] of adding an adjustment term η1{wi ∈ Cj}+1−η
so that the distribution becomes

P (zi = j, vi = k | w−i, z−i, v) ∝(
nj→wi,−i + α

nj,−i +Wα

)(
nk→j,−i + γ

nk,−i + Tγ

)(
ndoc,s→k,−i + β

ndoc,s,−i + V β

)
(η1{wi ∈ Cv}+ 1− η) (3)

The condition wi ∈ Cj evaluates to true if and only if wi is in our seed words for topic j. We vary
η between 0 and 1 to specify the strength of the constraint. η = 0 is equivalent to unconstrained
sampling while η = 1 is equivalent to a hard constraint.

We use this model to gain inference into sentences being about certain aspects. We run the Gibbs
sampler for enough iterations to allow it to converge, then sample each sentence a fixed number of
times and keep track of the topic assignments of each word in the sentence. We assume a sentence
is x percent about a certain topic, if x percent of the samples from that sentence are assigned to that
topic. Across all topics these percentages sum to one for each sentence. The percentages are stored
for each individual sentence.

2.3 Feature Representation

Modeling reviews as vectors of lexical features is a common approach in sentiment classification.
We create our set of features by bucketing the percentages from the previous step and concatenating
the buckets with opinion words from the 6,789-word lexicon from provided by [6] (Table 2). These
words, all unigrams, are various English parts of speech which are opinion-oriented but neutral
with regard to subject. Therefore, they can be viewed as providing sentiment information but not
topic information. The original lexicon is divided into positive sentiment and negative sentiment
categories, however for our experiment we simply used the whole lexicon and did not make any
distinction between the two categories.

Positive Negative
a+ abnormal

abundant abominable
accurate abort

... ...
wow wrong
yay yawn

zenith zealous

Table 2: Example words from opinion lexicon in [6]

We also considered the important problem of negation, that is, distinguishing between ”great” in
the context of ”this was great” versus ”this was not great.” We addressed this by checking for the
presence of negation words (such as not, wasn’t, didn’t) in the sentence and concatenating a binary
flag (negated, not negated) as part of the feature. Opinion words that came 5 words or less after a
negation word were considered to be negated. Other similar studies have negated all the words after
a negation word, however more recent work has suggested 5 as a good ”neighborhood” to use. [6]

Then, an example feature for the aspect ”decor” would be:

review contains word ”nice” and not negated
in sentence about ”decor” with percentage 0.1-0.5

Features are turned on or off in a review depending on whether the underlying combination of words
and context is present or absent in the review.

Assuming r is the number of features in the model, s is the number of aspects we wish to rank, and
t is the number of possible ratings (stars) for each aspect, we represent each review by a r-length
0-1 vector x. A training set of reviews where the aspect-specific rankings are known is used to learn
the r-length weight vectors w1 . . .ws and a s sets of t− 1 thresholds (one for each aspect).

In unseeded LDA, we store the weight vectors as an r × s matrix W. xW gives us a vector of
aspect-specific scores and the thresholds are used to convert the real-valued scores to a ranking on
a multi-point scale (i.e. 1 to 5 stars). A score translates to a rank of i if it is less than or equal to
the ith threshold value for that aspect. The learned matrix W and thresholds can then be applied to
novel review data for testing and classification.

In seeded LDA, rather than having one feature vector with all the topics, we store s separate feature
vectors x1 . . . xs, each containing information about a specific topic, Then x1 · w1 . . . xs · ws gives
us the scores for each of the aspects and we proceed normally.

For the learning step we use the Good Grief algorithm, a perceptron-style algorithm presented in
[2], which in turn relies on work done by [4].

2.4 Related Work

The procedure to go from LDA probabilities to rankings was suggested by Titov [9], who also used
LDA in conjunction with the Good Grief algorithm in [2] to determine review rankings.

Our methodology differs from theirs in several aspects. Whereas [9] and [2] used commonly occur-
ring unigrams, bigrams, and trigrams as features, we restrict our features to only those adjectives
appearing in the lexicon from Hu and Liu’s experiment described in section 2.1 [6]. The motivation
for this is that some commonly occurring text in reviews may by itself provide topic-specific infor-
mation (For example the phrase “tasted terrible” is highly likely to be associated with the “food“
aspect in a restaurant review), and in these cases the additional gains to be had from topic modeling
may be small. Our experimentation with pre-seeding of the LDA is another novel feature.

3 Implementation

To test our ranker we obtained a dataset consisting of archived hotel reviews from the website Tri-
padvisor.com [10] and ranked a selection of reviews for the aspects of ”value,” ”room,” ”location,”
and ”service.” We selected this dataset because Tripadvisor is one of the few websites that allows
users to rate specific categories, so the dataset contains actual rankings from users for these aspects.
This allows us to compare our predicted rankings to ground truth. Tripadvisor reviews were also
used in [9] which provides a further basis for comparison.

The seed words we chose for each aspect are in Table 3. We chose these by examining a list of most
frequent words in the corpus, and subjectively choosing those that might be affiliated with a certain
topic but not with others. Future experiments might use an objective criterion such as a TF-IDF
calculation or the LARA model. [10]

price money value rate value
room bathroom bed beds room

location located area nearby location
staff service friendly helpful service

Table 3: Seed words used in 5 topic experiment

From the full dataset we selected 30,000 reviews randomly so that hotels of various qualities and
locations would be represented. From this collection we randomly selected ten orderings of 22,000
reviews, using 20,000 reviews for training and 2,000 reviews for testing (with a separately selected
parcel of reviews used for development).

We removed some common stopwords from each parcel of reviews and then then ran our Gibbs
sampler separately on each parcel for 250 iterations, using five topics. We tested both seeded and
unseeded LDA implementations. For the seeded LDA, we associated four topics with the seed
words in Table 3 for plus an unseeded fifth topic to add flexibility to the model. The number and
choice of seed words was done during development on a dataset separate from the training set.
For the unseeded LDA, we used 11 topics using the the distribution of Equation Training and test
reviews were sampled together during Gibbs sampling so the topics learned would be consistent. The
resulting topic percentages for each sentence were turned into features as described in the previous
section. We used three probability buckets corresponding to percentages of below 10%, 10-50%,
and 50+%.

For each review, we then predicted rankings for the categories of value, room, location, service on a
scale between 1 and 5 stars, and compare these with the actual rankings given by the user.

4 Results and Analysis

4.1 Results

Table 4 shows our results, which are given in ranking loss [4], which is calculated as
N∑
i=0

|actual rating(i)− predicted rating(i)|
N

where N is the total number of rankings in the test set. We compare the ranking loss from our
classifier to a baseline where the ranks for every review are predicted to be 5 stars. This ranking is
the most common ranking in our dataset and has been used as the typical baseline for other studies in
this area. For reference we also ran the dataset through our own implementation of the Good Grief
classifier in [2] and include the results here. The numbers shown are averages across all ten test sets,
and the ”overall” aspect is simply the average of the four aspects. Lower ranking loss represents
greater accuracy.

Value Room Location Staff Overall
Baseline 1.1443 1.1392 0.7905 1.0113 1.0213
LDA + Opinion Words (seeded) 0.8056 0.8657 0.8606 0.8612 0.8483
LDA + Opinion Words (unseeded) 0.7775 0.8295 0.8088 0.7897 0.8013
PRank 0.7422 0.7419 0.7621 0.7514 0.7494

Table 4: Ranking loss for baseline and tested models.

Each of the tested models performed better overall than the baseline, and in all the individual aspects
except for location. (Baseline location ranking loss lower than that of other aspects is consistent with
the result in [9]. This leads us to conclude high location scores outweigh low location scores by a
margin greater than for any other aspect.) Our results show clear gains relative to the baseline from
using topic modeling, even when the feature words provide no additional aspect-specific informa-
tion.

Performance using our LDA-opinion word models is comparable to that using PRank, which was
about 0.05 stars better than the seeded LDA model. Performance using unseeded LDA was about
0.05 stars worse than the model using seeded LDA. We examined the topics that were created by
seeded and unseeded LDA to see why this might be the case (Tables 5 and 6).

By a qualitative analysis, we see that the topics for seeded LDA did not necessarily correspond
better to our aspects than the unseeded LDA. On the contrary, the unseeded LDA seemed to ”learn”
topics corresponding to the aspects on its own, without need for seeding. Unseeded LDA also
exhibited cohesive themes for several other topics. Some of these auxiliary topics corresponded to

Representative words Theme
town, center, road, stop, far, blocks, centre, 15, convenient, square, cen-
tral, metro, train, short, it’s, main, 5, shopping, bus, minute, distance,
near, easy, 10, just, airport, area, located, restaurants, minutes, walking,
station, street, city, close, right, location, away, hotel

location

poor, helped, attentive, gave, courteous, professional, warm, spoke,
people, wonderful, customer, speak, rude, polite, welcome, kind, nice,
needs, feel, special, efficient, happy, make, especially, really, guests,
help, concierge, way, pleasant, reception, english, extremely, excellent,
desk, hotel, helpful, friendly, service

service

kitchen, fridge, new, screen, pillows, quiet, flat, tub, decorated, single,
amenities, 2, decor, bathrooms, king, bedroom, bath, quite, space, huge,
towels, standard, double, suite, spacious, size, big, modern, tv, beds,
shower, large, nice, comfortable, bed, bathroom, small, clean, rooms

room (amenities)

heard, closed, inside, conditioning, quiet, loud, smell, walls, doors,
smoking, wall, looked, dirty, non, quite, elevator, bit, light, didn’t, hear,
windows, work, outside, window, noisy, street, problem, sleep, view,
old, building, air, open, rooms, did, noise, night, door, floor

room (cleanliness/noise)

reasonable, book, park, prices, better, valet, need, cheap, hour, hotels,
plus, wireless, deal, business, lot, 1, high, euros, cost, used, charge, 2,
got, expensive, available, paid, extra, car, lobby, worth, pay, rate, access,
price, parking, use, day, internet, night

value

places, expensive, cafe, try, continental, eggs, order, local, lunch, se-
lection, served, plenty, lounge, choice, complimentary, ate, restaurants,
quality, drink, fruit, wine, day, cold, evening, tea, included, fresh, morn-
ing, drinks, hot, eat, dinner, water, buffet, coffee, bar, restaurant, food,
good

food

Table 5: Representative words for sample unsupervised topics.

Representative words Aspect
family, week, say, 5, rate, service, excellent, 2, days, money, wonder-
ful, new, staying, star, loved, reviews, business, better, definitely, value,
overall, 4, 3, experience, best, booked, trip, just, night, time, recom-
mend, good, nights, price, hotels, place, great, stayed, stay

value

looked, standard, quiet, open, window, building, night, space, sleep,
huge, towels, double, 2, air, old, suite, door, little, spacious, quite, size,
bit, modern, big, tv, noise, like, beds, shower, large, view, floor, com-
fortable, bathroom, bed, nice, small, clean, rooms

room

want, park, metro, convenient, train, far, quiet, nice, short, center, cen-
tral, main, shopping, bus, minute, distance, near, 5, excellent, easy,
10, located, walking, airport, station, minutes, restaurants, close, away,
right, area, good, ”its”, street, city, just, walk, great, location

location

hours, late, concierge, going, ask, checked, help, came, called, morning,
early, english, took, don’t, know, problem, parking, left, sure, said, way,
asked, reception, told, arrived, didn’t, went, make, service, got, night,
people, check, time, day, did, desk, helpful, friendly

service

Table 6: Representative words for seeded topics.

our core aspects; for example, several adjectives in the ”food” category below had high weights for
the ”value” aspect. These extra topics are most likely the reason unseeded LDA did better.

We examined the distribution of features in the reviews between the PRank model and our ranker,
to examine why PRank outperformed our model. Sparsity of features appears to have been a con-
tributing factor. Table 7 shows that PRank performed similarly to the LDA model for reviews which
had less than 10 features turned on in its respective model. Because PRank uses commonly-used
words as features, it had less reviews fall into this category: 1,840 reviews versus 3,078 reviews for

the LDA model using opinion words. This suggests we could improve the usefulness of this type of
ranker by simply refusing to output aspect scores for a review unless a certain threshold of features
is met or exceeded.

Value Room Location Staff Overall
LDA + Opinion Words (unseeded) 0.8898 0.9594 0.8148 0.9012 0.8913
PRank 0.8918 0.9288 0.7908 0.8668 0.8696

Table 7: Ranking loss for baseline and LDA models for reviews < 10 features.

We then examined general ways our ranker might be improved relative to the baseline. Figure 2
shows the distribution of rating error for each aspect, for the unseeded LDA and PRank models.
The rating error is calculated as (predicted rank − true rank) so a rating error above zero indicates
overprediction (i.e. predicting a ranking higher than the true ranking), while a rating error below
zero indicates underprediction.

Figure 2: Distribution of rating error by aspect.

We note that in both models, and for all aspects, the distribution is roughly bell-shaped, with a
substantial bias towards underprediction. Given that the most common rating consists of all 5s, we
would expect the the natural distribution of ratings to be higher, with underprediction occurring as a
result. This suggests that the ranker might be improved if it factored in some prior distribution on the

rankings, regardless of the text data, when making its prediction. This prior distribution could given
in the aggregate for the entire corpus or even for the reviews specific to each individual product.
Keeping a distribution on each individual product would allow for the ranker to better differentiate
between products of varying quality. We note that our baseline has access to such prior knowledge,
which explains much of its relatively good performance compared to our models.

Another source of error in both PRank and our ranker is the fact that they do not consider different
people are likely to use the same opinion words corresponding to different ratings. For example, one
reviewer might use the word ”good” and give a hotel all 5’s, while another might use ”good” in a
context of all 3’s. A possible direction for future research might be to consider actual authorship of
reviews in the ranker, or assign some latent variable to the reviewer’s ”standards” based on the word
choices they use, and their ranking.

4.2 Speed Differences Between Models

We note that the seeded LDA, while performing at a lower level than unseeded LDA, achieved
several times speedup from that model. Since the unseeded version only performs about 0.05 stars
better, in some cases where speed is paramount, it may be better to use the seeded model.

The first speedup occurs during Gibbs sampling, which has a time complexity proportional to the
number of topics used. As Gibbs sampling is usually run for hundreds of iterations, this alone can
provide a substantial speedup.

Speedup also occurs during Good Grief training which can be explained by the length of the feature
vector for each model. The number of features in the seeded model is 2 |L| b, where |L| is the
number of words in the lexicon and b is the number of buckets probabilities are assigned to. We
multiply by 2 to account for negated versus non-negated features.

For comparison, the number of features in the unseeded model, which is 2 |L| b ∗ T , where T is the
number of topics used in the LDA. This means the seeded model improves speed and complexity by
a factor of T , at the cost of some ranking loss.

The number of features in the seeded model (40,752 for a 6,792-word lexicon using 3 probability
buckets) compares similarly to the number of features used in the base PRank algorithm (about
30,000 for a dataset of about 3,000 reviews in [2]) and compares favorably to the number of features
used in [9], which used |L′|Tb features, where T is the number of topics in used in the LDA and
L′ is the number of base bigrams, trigrams, and unigrams used for classification. PRank, however,
does not have the overhead of a Gibbs sampling run.

5 Conclusion

We have presented a method of providing aspect-specific rankings for text reviews. We have dis-
cussed previous research in this field on which our ranker is based and tested some modifications to
existing models, and also made some suggestions for future research.

Our results show that topic modeling can provide increased accuracy for aspect-specific rankings
even when aspect-neutral words are used are features. Using seed words in the topic model can
decrease the size of the feature set and lead to faster training times for the classification algorithm,
with the tradeoff of slightly lower accuracy.

6 Acknowledgments

I would like to thank my advisor, Dr. Eugene Charniak, for all his help on this project. His avail-
ability, advice, and insight were essential to its completion.

References

[1] D. Andrezejewski and X. Zhu. Latent Dirichlet allocation with topic-in-set knowledge. 2009.
Proc. of the NAACL HLT 2009 Workshop on Semi-Supervised Learning for Natural Language
Processing

[2] B. Snyder and R. Barzilay. Multiple aspect ranking using the Good Grief Algorithm. 2007.
Proc. of the Joint Conference of the North American Chapter of the Association for Computa-
tion Linguistics and Human Language Technologies.

[3] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. 2003. Journal of Machine Learning
Research.

[4] K. Crammer and Y. Singer. Pranking with ranking. 2001. Advances in Neural Information
Processing Systems 14.

[5] T.L. Griffiths and M. Steyvers. Finding scientific topics. 2004. Proc. of the Natural Academy
of Sciences.

[6] M. Hu and B. Liu. Mining and summarizing customer reviews. 2004. Proc. of the 10th KDD

[7] N. Hu, Pavlou, P., Zhang, J. Can Online Reviews Reveal a Product’s True Quality? Empirical
Findings and Analytical Modeling of Online Word-of-Mouth Communication. 2006. Proc. 7th
ACM Conf. on Electronic Commerce

[8] Scaffidi, Bierhoff, et al. Red Opal: Product-feature scoring from reviews. 2007. EC’07.

[9] I. Titov and R. McDonald. Modeling online reviews with multi-grain topic models, WWW
2008.

[10] H. Wang, Y. Lu, and C.X. Zhai. Latent aspect rating analysis without aspect keyword supervi-
sion 2001 KDD’2011

A Appendix 1

The marginalized distribution P (w, z, v) is made up of three symmetric marginalized distributions.

P (w, z, v) = P (w | z)P (z | v)P (v) (4)

Thus we can approach the marginalization one term at a time. Using the formula for the Dirichlet
prior and integrating out β from P (v, β) gives

P (v) =

(
Γ(V β)

Γ(β)V

)Ns Ns∏
s=1

∏V
v=1 Γ(ndoc,s→v + β)

Γ(ndoc,s + V β)
(5)

where V is the number of sliding windows available to sentence s, Ns is the number of sentences
in the corpus, ndoc,s→v is the count of words in sentences s assigned to window v, and ndoc,s is the
total count of words in the sentence.

Similarly, the equations for the second and first terms are

P (z | v) =

(
Γ(Tγ)

Γ(γ)T

)Nv Nv∏
v=1

∏T
z=1 Γ(nv→doc,z + γ)

Γ(ndoc,v + Tγ)
(6)

P (w | z) =

(
Γ(Wα)

Γ(α)W

)T T∏
z=1

∏W
w=1 Γ(nz→w + α)

Γ(nz +Wα)
(7)

In (3), Nv is the number of sliding windows in the corpus, ndoc,v→z is the count of times window
v generates topic z, and ndoc,v is the total count of words in window v. In (4), T is the number of
topics in the model, nz→w is the count of times topic z generates word w, and nz is the total count
of words assigned to topic z.

The conditional distribution P (zi, vi | w−i, z−i, v) can then be derived through cancellation of terms
(2)-(4).

P (zi = j, vi = k | w−i, z−i, v) ∝
(
nj→wi,−i + α

nj,−i +Wα

)(
nk→j,−i + γ

nk,−i + Tγ

)(
ndoc,s→k,−i + β

ndoc,s,−i + V β

)
(8)

In this equation nj→wi,−i, nj,−i, nk→j,−i, nk,−i, ndoc,s→k−i, and ndoc,s,−i refer to their counter-
parts in equations (5)-(7), without regard to the topic and window assignments of the current word
being considered.

