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Abstract

This paper considers the joint repair and restoration of the electrical power system

after significant disruptions caused by natural disasters. This problem is computa-

tionally challenging because, when the goal is to minimize the size of the blackout,

it combines a routing and a power restoration component, both of which are difficult

on their own. The joint repair/restoration problem has been successfully approached

with a 3-stage decomposition, whose last step is a multiple-vehicle, pickup-and-

delivery routing problem with precedence and capacity constraints whose goal is to

minimize the sum of the delivery times (PDRPPCCDT). Experimental results have

shown that the PDRPPCCDT is a bottleneck and this paper proposes a Randomized

Vehicle Decomposition (RVD) to scale to very large power outages. The RVD ap-

proach has been shown to produce significant computational benefits and provide

high-quality results for infrastructures with more than 1200 needed repairs.
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Chapter 1

Introduction

Every year, seasonal hurricanes threaten coastal areas. The severity of hurricane

damage varies from year to year, but hurricanes often cause power outages that

have considerable impacts on both quality of life (e.g., crippled medical services)

and economic welfare. Therefore considerable human and monetary resources are

always spent to prepare for, and recover from, threatening disasters. At this time,

policy makers work together with power system engineers to make the critical de-

cisions relating to how money and resources are allocated for preparation and re-

covery of the power system. Unfortunately, due to the complex nature of electrical

power networks, these preparation and recovery plans are limited by the expertise

and intuition of power engineers. Moreover, current preparation methods often do

not use valuable disaster-specific information.

This research reconsiders the last-mile disaster recovery for power restoration,

i.e., how to schedule and route a fleet of repair crews to restore the power network

as fast as possible after a disaster. This problem was considered for the first time in

[21] which proposed a decomposition approach to handle the significant computa-

tional complexity of this application. Indeed, last-mile power restoration combines

a combinatorial vehicle routing problem with a traditional power restoration pro-

cess. A direct approach, which jointly optimizes the vehicle schedules and the

power restoration process cannot meet the real-time constraints imposed in disaster

recovery. The decomposition approach was shown to improve the practice in the
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field, significantly reducing the size of the blackout over time. It is deployed in Los

Alamos National Laboratory tools and activated to advise the federal government,

each time a hurricane of category 3 or above threatens to hit the United States.

The last step of the decomposition approach is a multiple-vehicle, pickup-and-

delivery, vehicle routing problem with capacity and precedence constraints whose

goal is to minimize the sum of the delivery times. The precedence constraints are

introduced to obtain a good restoration plan from a power system perspective, while

the objective function is a proxy for minimizing the blackout size. Experimental

results indicated that this last routing step was the bottleneck of this approach.

The goal of this paper is to overcome this limitation. It proposes a random-

ized adaptive vehicle decomposition approach to scale to large-scale disasters, e.g.,

electrical networks containing more than 1200 damaged components. Randomized

adaptive decompositions were proposed for vehicle routing in [8, 9] and exploited

spatial and temporal locality. This paper uses a randomized adaptive vehicle decom-

position (RAVD) to account for the precedence constraints which are a fundamental

difficulty in this context. Experimental results show that the RAVD algorithm pro-

duces significant computational benefits over large neighborhood approaches and

provides high-quality results for infrastructures on scale with a state. These dam-

age scenarios correspond to vehicle routing problems with as many as 2500 visits.
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Chapter 2

Constraint Programming Model

This section presents a constraint-programming model for the multiple-vehicle,

pickup-and-delivery routing problem with precedence and capacity constraints whose

goal is to minimize the sum of the delivery times (PDRPPCCDT). Figure 1 depicts

the model, which is almost a direct translation of the problem specifications. The

model is defined in terms of locations, i.e., the pickups, the deliveries, and the

starting and ending locations of the vehicles. The decision variables associate with

every location l the next location in the visit order, the vehicle visiting l, the load of

the vehicle when it arrives at l, and the earliest delivery time for l. The successor

variables make up a large circuit by connecting the ending and starting locations of

vehicles together. The objective function minimizes the summation of the delivery

times of the dropoff locations. Constraint (2) eliminates subtours. Constraints (3)-

(7) initialize the initial load and delivery times of vehicles and their first visit has

the correct vehicle, load, and delivery time. Constraints (8)-(10) specify the con-

straints for successors, which have the same vehicle, a modified load, and a larger

delivery time than their predecessors. Constraint (11) makes sure that every pickup

and delivery pair is served by the same vehicle.
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Model 1 A Constraint-Programming Model for the PDRPPCCDT.
Let:

W− = {1 . . . d}
W+ = {d+ 1 . . . 2d}
J = W− ∪W+

H+ = 2d+ 1 . . . 2d+m
H− = 2d+m+ 1 . . . 2d+ 2m
L = W− ∪W+ ∪H+ ∪H−
Pair : W+ → W− – The pickup associated with a dropoff

Variables:
σ[L] ∈ L – successor of a location
vehicle[L] ∈ V – vehicle assignment of a location
load[L] ∈ {0, . . . , c} – Vehicle load at a location
EDT [L] ∈ {0, . . . ,∞} – delivery time of a location

Minimize:∑
i∈W+

EDT [i] (1)

Subject To:
circuit(σ) (2)
for l ∈ H+

vehicle[l] = vehicle[σ[l]] (3)
load[l] = 0 (4)
load[σ[l]] = 0 (5)
EDT [l] = 0 (6)
EDT [σ[l]] = T (l, σ[l]) +M(σ[l]) (7)

for l ∈ J
vehicle[l] = vehicle[σ[l]] (8)
load[σ[l]] = load[l] + d(l) (9)
EDT [σ[l]] ≥ s(σ[l]) + T (l, σ[l]) + EDT [l] (10)

for l ∈ W+

vehicle[l] = vehicle[Pair(l)] (11)
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Chapter 3

Large Neighborhood Search

As mentioned earlier, the PDRPPCCDT is solved using LNS and constraint pro-

gramming in [21]. More precisely, the large neighborhood search, LNS(R), selects

a random set of dropoff locations and relaxes the value of the successor and prede-

cessor of each location in the set and its corresponding pickup location. It then uses

CP to search for improving solutions in this neighborhood before repeating the pro-

cess. For this research, we also experimented with three additional neighborhoods.

1. Spatial Neighborhood (S): This neighborhood chooses a location l ran-

domly and then selects other locations with a probability inversely propor-

tional to the normalized distance to l.

2. Temporal Neighborhood (T): This neighborhood chooses a location l ran-

domly and then selects other locations with a probability inversely propor-

tional to the normalized time difference in delivery times with l.

3. Vehicle Neighborhood (V): This neighborhood selects a number of vehicles

(about a quarter of the total vehicles) and selects dropoff locations randomly

from these vehicles.

In the rest of the paper, we use LNS(R), LNS(S), LNS(T), and LNS(V) to denote

the LNS algorithms over the various neighborhoods, LNS(R) being the algorithm

in [21].
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Chapter 4

Randomized Adaptive
Decompositions

To scale to large PDRPPCCDT instances, we use the randomized adaptive decom-

position scheme proposed in [8]. Given a routing problem P , its key idea is to use

the current solution σ of P to find a decoupling (Po,Ps) with projected solution σo

and σs. The subproblem Po is then reoptimized and its solution is merged with σs

to obtain a new solution to P . More precisely, the Adaptive Decomposition Scheme

(ADS) does the following:

1. Starting from plan σ0, it produces a sequence of plans σ1, . . . , σj such that

f(σ0) ≥ f(σ1) ≥ . . . ≥ f(σj).

2. At step i, the scheme uses σi−1 to obtain a decoupling (Po,Ps) of P with

projected solutions σo and σs. It reoptimizes Po to obtain σ∗o and the new

plan σi = MERGE(σ∗o , σi−1)

One of the most challenging aspects of ADS is how to perform the merging

of the decoupled solutions, i.e, σi = MERGE(σ∗o , σi−1). In [8], this challenge is

addressed by choosing Po such that the customers of entire vehicles are removed.

The merging operation is then trivial, since the vehicles in (Po and Ps) are disjoint.

More sophisticated, temporal and spatial, decouplings were also explored in [9].
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Precedence constraints in the PDRPPCCDT complicate the more sophisticated

decompositions and may also make spatial decompositions much less effective.

As a result, this paper considers a Randomized Adaptive Vehicle Decomposition

(RAVD). At each step, a quarter of the vehicles are chosen randomly and then

LNS(R) is run on the subproblem consisting of all of those vehicles and all of their

jobs. In the subproblem, precedence constraints are imposed between the jobs in

the decomposition. Additionally, like in [18], the decomposition imposes temporal

constraints on the jobs to ensure that optimizing the subproblem does not degrade

the overall objective function. In particular, each job is given a lower and upper

bound on its earliest delivery time computed from the precedence constraints be-

tween it and the jobs not being considered in the decomposition.
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Chapter 5

Experimental Results

5.1 Benchmarks

The benchmarks were produced by the Los Alamos National Laboratory based on

the electrical infrastructure of the United States. The disaster scenarios were gener-

ated using state-of-the-art hurricane simulation tools used by the National Hurricane

Center [1, 19]. The damages in the scenarios vary significantly, from 50 to 1000

components to repair, inducing between 100 and 2000 routing visits. The scenarios

represent power restoration problems at the scale of US state (e.g., Florida) and are

thus of significant computational complexity. Instances with 100 damaged com-

ponents focus on the transmission network alone, while those with 500 and 1000

damaged items incorporate aspects of both the transmission and distribution net-

works. For this paper, we used a total of 15 representative disaster contingencies.

For each instance, the current “best practice” in the field serves as a baseline, where

the “best practice” implements an agent-based greedy routing algorithm that satis-

fies the restoration order. The experiments were run on quad-core Dell PowerEdge

1855 blade systems with Xeon 2.8 processors. The execution times vary from 1

to 20 hours depending on the instance size. The graphs show the average over 10

executions for each benchmark and configuration.
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Instance Repairs Hrs Greedy LNS(R) RAVD % Greedy % LNS
BM2-h15 67 1 134837 110860 107320 20.41 3.19
BM2-h09 86 1 184894 150780 148300 19.79 1.64
BM2-h03 100 1 286071 227390 220395 22.96 3.08
Average 21.05 2.64
BM3-h15 53 1 67012 57768 48248 28.00 16.48
BM3-h00 61 1 92512 81234 70079 24.25 13.73
Average 26.12 15.11
BM4-h16 54 2 84230 65741 54730 35.02 16.75
BM4-h15 97 2 261220 220140 163820 37.29 25.58
BM4-h09 106 2 307171 246990 182490 40.59 26.11
BM4-h03 121 2 437972 354570 264690 39.56 25.35
Average 38.12 23.45
BM5-h03 206 8 1307329 1033600 674320 48.42 34.76
BM5-h11 255 8 2248539 1779900 1133900 49.57 36.29
BM5-h17 432 8 6341765 5998400 5150500 18.78 14.14
BM5-h00 439 8 6782781 6189600 4609600 32.04 25.53
BM5-h05 504 8 9112107 8220600 6072100 33.36 26.14
Average 36.43 27.37
BM5-h05 504 20 9112107 7958400 5433300 40.37 31.73

Table 5.1: Quality of the Results: Summary on All Benchmarks.

5.2 Quality of the Results

Table 5.1 presents a summary of the quality of the results. For each benchmark,

the table gives the number of damaged components, the number of hours the opti-

mization algorithm was run and the average objective value for the greedy solution,

LNS from [21] , and the randomized adaptive decompostion. The table also gives

the percentage improvement of RAVD with respect to the greedy and the LNS so-

lutions. There is a line for each benchmark and an average for each benchmark

class (e.g., BM2) which corresponds to a specific network. The last line reports

the results of benchmark BM5-h05 when run for 20 hours. The results indicate that

RAVD brings substantial benefits over LNS(R) and that these benefits increase with

9
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Figure 5.1: Quality of the Results over Time: 53 and 97 Jobs.
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Figure 5.2: Quality of the Results over Time: 439 and 504 Jobs.

the size of the damages. On the BM5 benchmark class, the improvement is about

27% in average, which is substantial. The table only compares RAVD and LNS(R)

for reasons that will become clear shortly. Overall, RAVD brings tremendous bene-

fits in solution quality over large neighborhood search and significant improvements

over “best practices”.
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Figure 5.3: Size of the Blackouts: 97 and 504 Tasks.

5.3 LNS Versus RAVD

It is interesting to look at specific benchmarks to understand these results in more

detail. Figure 5.1 depicts the average solution quality over time for the BM3-h15

and BM4-h15 benchmarks which are relatively small. On BM3-h15, it is interest-

ing to observe that LNS(V) outperforms the other LNS procedures, although it is

dominated by RAVD. On BM4-h15, LNS(R) is the best LNS algorithm but it is sig-

nificantly dominated by RAVD. Figure 5.2 presents the same results for two large

benchmarks with 439 and 504 jobs. Once again, LNS(R) dominates the other LNS

algorithms and RAVD provides significant benefits over all LNS algorithms. Figure

5.3 shows the restored power over time resulting from single solutions from differ-

ent routing algorithms for networks with 97 and 504 damage components. The

figure also gives a very crude lower bound obtained by ignoring travel distances,

i.e., viewing the problem as a pure restoration without taking account the travel

times of repair crews. Both benchmarks show significant reductions in blackout

sizes. On the 97-damage network, RAVD almost cuts in half the gap between the

crude lower bound and the LNS(R) algorithm, giving some indirect evidence of its

quality.

11



0 200 400 600 800 1000 1200
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
x 10

6

Time (minutes)

R
ou

tin
g 

O
bj

ec
tiv

e
BM5−h05 (504 Tasks)

 

 
LNS(R)
LNS(T)
LNS(S)
LNS(V)
RAVD

0 200 400 600 800 1000 1200 1400
4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6
x 10

7

Time (minutes)

R
ou

tin
g 

O
bj

ec
tiv

e

BM10−h00 (1278 Tasks)

 

 
LNS(R)
LNS(T)
LNS(S)
LNS(V)
RAVD

Figure 5.4: Convergence of the Results over Time: 504 and 1278 Tasks.

5.4 Convergence of the Results

RAVD produces improved routings steadily over time, with the more significant

improvements coming early. However, the experimental results indicate that these

instances are computationally challenging and RAVD may continue to improve the

solutions for many hours. Figure 5.4 shows how the 504-damage benchmark and an

even larger 1278-damage problem behave when RAVD is given 20 hours of CPU

time. The 504-damage benchmark has typically reached its best solution at that

point: Several of the individual runs have in fact reached a plateau and the remain-

ing ones are close to reaching that solution. The largest benchmark with 2556 visits

is still improving after 8 hours but has produced significant improvements over

the LNS algorithms. Overall, the graphs all show that RAVD produces significant

improvements over the LNS algorithms early in the run and then continue with a

steeper rate of solution improvement before converging.

5.5 The Impact of the Precedence Constraints

It is not immediately clear why RAVD produces such significant improvements

over the LNS approaches. Past work has shown that focused neighborhoods such
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Figure 5.5: The Impact of Precedence Constraints: 439 and 504 Tasks.

as the ones studied here are normally able to overcome scaling issues. To better un-

derstand the behavior of the algorithms, we applied the algorithms to the instances

but with the precedence constraints removed. Figure 5.5 reports the results on two

large instances with 439 and 504 tasks, i.e., routing problems with 878 and 1008

visits. The results are quite interesting. They indicate that, without precedence

constraints, LNS(S) is the best algorithm, followed by RAVD and then the other

LNS algorithms. LNS(S) clearly dominates the other LNS algorithms significantly,

while RAVD is really in between LNS(S) and the other LNS approaches. The fig-

ure also shows that RAVD dominates LNS(V) which, in this context, is the worst

algorithm. The success of LNS(S) seems to indicate that LNS can normally scale

to very large instances. Our conjecture is that there are significant benefits to a

two-level optimization approach that

• Focuses on a well-isolated subproblem;

• Optimizes this subproblem with LNS.

Note that, on the PDRPPCCDT problem, RAVD exploits a vehicle decomposition

for the subproblems since precedence constraints make it difficult to obtain a natural

spatial or temporal decomposition. It then uses LNS(R), the best LNS algorithm,

for optimizing the subproblems.
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Chapter 6

Conclusion

This paper reconsidered the joint repair and restoration of the electrical power sys-

tem after significant disruptions caused by natural disasters. This problem is com-

putationally challenging when the goal is to minimize the size of the blackout be-

cause it combines a routing and a power restoration component, both of which are

difficult on their own. The joint repair/restoration problem has been successfully

approached with a 3-stage decomposition in [21], whose last step is a multiple-

vehicle, pickup-and-delivery routing problem with precedence and capacity con-

straints whose goal is to minimize the sum of the delivery times (PDRPPCCDT).

Experimental results have shown that this routing problem was the bottleneck of

the approach.

This paper remedied this limitation and proposed a Randomized Adaptive Ve-

hicle Decomposition (RAVD) that scales to very large power outages. The RAVD

algorithm was shown to produce significant computational benefits over various

LNS algorithms and provides high-quality results for infrastructures with more than

1200 damaged components.

The experimental results have also isolated the difficulties raised by precedence

constraints for spatial neighborhoods. Moreover, randomized adaptive decomposi-

tions seem to leverage LNS strengths to another level. In particular, the ability of

randomized adaptive decompositions to optimize subproblems with LNS seems to

produce significant benefits in solution quality and speed. Future work will attempt

14



to confirm this conjecture on other problems and neighborhoods.
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