
Lock Elision for Memcached: Power and
Performance analysis on an Embedded Platform

Aditya G. Holla
Computer Science Department

Brown University
aditya holla@brown.edu

Maurice Herlihy
Computer Science Department

Brown University
maurice herlihy@brown.edu

Abstract
Multicore embedded systems have gained a significant impor-
tance in recent years due to the advent of complex applications
which demand increased computational performance in an energy-
constrained system. In order to address this, speculation-based
techniques are widely under investigation. In this work, we evaluate
how speculative techniques like Speculative Lock Elision(SLE) and
conflict resolution schemes like Tranactional Lock Removal(TLR)
can be applied to multi-core high-end embedded systems in a trans-
parent way. In particular, our evaluation is done against a real-world
application Memcached and present a detailed analysis of perfor-
mance and energy consumption. We found that speculation was
sometimes but not always advantageous for Memcached, and that
the benefits of speculation are sensitive to critical section size, de-
gree of lock contention, the retry policy, and the underlying hard-
ware transactional memory’s contention management policy.

1. Introduction
Speculative lock elision [22] (SLE) and transactional lock re-
moval [23] (TLR) are techniques in which selected critical sections
are executed speculatively by an underlying hardware transactional
memory (HTM). For brevity, we refer to these schemes and their
variants simply as “lock elision”. Lock elision technique elides the
locks dynamically and it provide better performance when there
is high lock conflicts but low data conflicts inside critical section.
Lock elision is a timely subject, as it is supported by Intel’s new
Haswell processor [14].

In this work, we evaluate how these techniques affect the energy
consumption and performance of Memcached [11, 17] a general-
purpose distributed memory caching system currently used by
Youtube, Reddit, Zynga, Facebook, and others. Memcached uses an
in-memory hash table that stores key-value pairs. When the cache
is full, pairs are replaced in least recently used order. We chose
Memcached because it is an example of a “real-world” concurrent
application that must be retrofitted to support speculation. Recent
work by Pohlack and Diestelhorst [21] shows that lock elision en-
hances performance for Memcached in the context of AMD’s ad-
vanced synchronization facility. Our evaluation particularly focus
on power consumption on embedded platforms.

[Copyright notice will appear here once ’preprint’ option is removed.]

We ported Memcached (version 1.2.5) to run on an embedded,
shared-memory, multiprocessor-system-on-chip (MPSoC), replac-
ing socket-based communication with shared-memory communica-
tion. Because our platform is embedded, we consider both energy
consumption and performance as figures of merit.

We found that lock elision was sometimes but not always advan-
tageous for Memcached. The benefits of speculation are sensitive to
the following issues.

• Critical section size: the set operation (long critical section)
often benefits from speculation, while the get operation (short
critical section) does not. Thus, a composition having good
amount of set operations will get benefit from speculation.
• False conflicts: the benefits of speculation are sometimes lim-

ited by contention for the data structures that track statistics,
causing otherwise unrelated critical sections to conflict.
• Failover policy: TLR, a policy that relies entirely on the un-

derlying HTM, provides better benefits than SLE, a policy that
switches between locking and speculation.
• Contention management in the underlying HTM: a timestamp-

based conflict resolution scheme performed better than a retry-
count scheme.

These results suggest that retrofitting lock elision to a non-trivial
application like Memcached can provide benefits, for both power
and performance, but that realizing these benefits may require some
care.

2. Platform
While most transactional memory research has focused on general-
purpose platforms, ours is primarily concerned with high-end
embedded systems such as smart phones, game consoles, GPS-
enabled automotive systems, and home entertainment centers. In
the same way that smart phones and tablets are gradually usurping
many of the functions of laptops, specialized high-end embedded
systems will eventually displace many general-purpose systems.
Unlike traditional embedded systems, however, high-end embed-
ded systems are subject to dynamic and unpredictable loads, and
they are increasingly called upon to manage substantial resources
in the form of memory, connectivity, and access to devices. Never-
theless, they will continue to be power-constrained, either because
they run on batteries, or simply because energy consumption is
increasingly a concern for systems at all levels.

Like their general-purpose counterparts, and for many of the
same energy-related reasons, embedded systems are turning to mul-
ticore architectures. Currently, two most prominent synchroniza-
tion models for shared memory are lock-based and speculation-
based.
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Our implementation is inspired by a previous work [22], which
proposed a speculation-based, hardware technique called Specula-
tive Lock Elision(SLE), which elides conservative locks in a trans-
parent way. Thus, this solution achieves lock-free execution, in the
absence of data conflicts and can be implemented entirely in mi-
croarchitecture, without instruction set support or modification to
existing cache coherence protocol. In this work, our contribution
lies in proposing similar technique in high-end embedded systems,
keeping energy consumption as an important design requirement in
addition to high-performance. Also, our integrated HW/SW imple-
mentation focuses on hardware simplicity which in turn contributes
to energy efficiency.

While SLE, offers lock-free and concurrent execution when
threads operate on disjoint set of data, but, in the presence of
data conflicts, it relies on conservative lock-based synchroniza-
tion. This in turn exposes the limitations of the locks. In order
to overcome this, different conflict resolution schemes have been
proposed. These schemes achieve lock-free execution, even in the
presence of data conflicts, as long as there is enough resource to
buffer the speculative data. Prior work [23], has proposed Transac-
tional Lock Removal(TLR), which uses SLE for lock-elision, and
provides time-stamp based conflict resolution scheme. In this work,
we show how inclusion of such conflict resolution schemes benefit
performance and energy.

We are not the first to look into speculation-based techniques
in embedded systems. Ferri et al. [8–10] have investigated various
energy-efficient, low-complexity transactional memory designs for
embedded systems. These systems were evaluated using standard
benchmarks such as ones from the STAMP [18], MiBench [12],
and EEMBC [6] benchmark suites.

In this work, we turn our attention from standard benchmarks
to a widely-used application, Memcached. Memcached is of inter-
est because applying lock elision requires nested transactions, short
transactions with both high and low contention, and complex func-
tion calls inside atomic blocks. Our preliminary analysis showed
that some Memcached operations spend nearly 40% of their time in
critical sections. Multiple data structures were protected by a single
lock, suggesting the possibility of high lock conflicts but low data
conflicts, promising territory for speculation.

This work makes the following contributions. We take a first
step toward understanding how well speculative lock elision (and
its variants) work on a real applications. Second, by focusing on an
embedded platform, and evaluating power consumption as well as
performance, we take a first step toward understanding how well
these speculative techniques are suited to platforms where energy
is as important as conventional notions of performance.

3. Background
Techniques for increasing the efficiency of locks in real-time em-
bedded systems include Tumeo et al. [24], and Lee and Park [15].
Researchers that have investigated the energy implications of locks
include Loghi et al. [16], Monchiero et al. [19], and Yu and
Petrov [26]. Lock-free synchronization in embedded systems has
been investigated by Cho et al. [3], and Yang and Orailoglu [25].
These papers look at non-transactional, non-speculative synchro-
nization.

Speculative lock elision (SLE) was introduced by Ravi Rajwar
et. al [22]. In SLE, processor speculates that a block delimited
by an atomic read-modify-write operation (such as a test-and-set)
and a subsequent store to the same location is a critical section
protected by a lock. The processor then executes that block spec-
ulatively and predicts store operation on same memory location,
which releases the lock. If no conflict is observed, then it success-
fully elides both store operation to lock and commits the transac-
tion. Otherwise, it rollback the transaction and re-execute the block,

possibly non-speculatively. Key advantage of SLE is, it can be im-
plemented entirely in the microarchitecture, in a transparent way.
Our implementation of speculative lock elision, is focused on both
performance and energy improvement in the embedded space.

Transactional Lock Removal(TLR) was introduced by Ravi Ra-
jwar et. al [23]. It is a hardware mechanism, to convert the lock-
based critical sections transparently and optimistically into lock-
free transactions. It uses SLE as enabling mechanism, and in pres-
ence of data-conflicts, instead of falling back to conservative locks,
uses time-stamp-based conflict resolution scheme. We have imple-
mented similar conflict resolution scheme keeping hardware sim-
plicity and energy efficiency as a major concern.

Prior work [8, 10] describes the design of SOC-TM, an inte-
grated hardware and software platform for transactional program-
ming on embedded multicore systems. The work described here is
based on SOC-TM, with additional modifications to support lock
elision.

4. Architecture
This section describes the architecture of our underlying embedded
platform and the ways it was modified to support lock elision.

4.1 SOC-TM: Baseline Architecture
This section gives an overview of the baseline hardware transac-
tional memory (HTM) system, called SOC-TM, used for our ex-
periments.

SOC-TM was developed on the MPARM simulation frame-
work [1, 16], a cycle-accurate, multi-processor simulator written
in SystemC. MPARM can be configured to model complex mem-
ory hierarchies, and includes a cycle-accurate power model. One
important way in which this embedded architecture differs from
conventional general-purpose architectures is that it does not sup-
port atomic read-modify-write instructions. Instead, the architec-
ture provides an array of hardware locks, indexed by small inte-
gers, which can be used either as semaphores or as spin locks. The
hardware locks provide the only means of locking. This restriction
actually makes lock elision easier, since it is unambiguous when a
core is acquiring or releasing a lock.

HTM in SOC-TM is provided by the following mechanisms.

• Each cache line is tagged with bits that indicate whether the
line is transactional, and whether the data in the cache is the
working copy or the backup copy.
• The CPUs share a Bloom module that

monitors transactional accesses and tracks them using per-
core signatures, and

detects conflicts, and selects which transaction to roll back.
• The cache controller logic monitors transactional accesses and

notifies the Bloom module when a transaction accesses cached
data. It also detects cache overflow.
• Unlike best-effort HTMs, SOC-TM guarantees that every trans-

action eventually commits. As in TCC [13], if a transaction
repeatedly fails to make progress (or if exceeds hardware re-
sources) the transaction continues in serial mode: all other cores
are suspended, and the privileged transaction runs in isolation.
It uses the entire memory hierarchy, and runs non-speculatively
to completion. Such events are rare.

4.2 EMBEDDED-SPEC

The SOC-TM design requires some modification to support SLE.
These modifications, which we call EMBEDDED-SPEC, along with
a design rationale and benchmarking results, are described in detail
in a companion paper [2].

2 2013/2/11



Because SLE requires coordination between locks and specu-
lative computation, we extended the Bloom module to track lock
use as well as transaction read and write set signatures. We also
extended the Bloom module’s contention management functions,
adding policies to govern which transaction to roll back when data
conflicts occur. On the software side, as described below, we modi-
fied the standard locking operations to switch to speculative execu-
tion as dictated by various policies.

In this work, we consider two distinct configurations of EMBEDDED-
SPEC. The first, called EMBEDDED-LE (for lock elision), switches
adaptively between speculative and non-speculative execution of
critical sections. It corresponds roughly to Rajwar’s SLE de-
sign [22]. The other, called EMBEDDED-LR (for lock removal),
does not switch from speculative to non-speculative, relying on the
underlying HTM to guarantee progress. It corresponds roughly to
Rajwar’s TLR design [23].

4.2.1 The Enhanced Bloom Module
As in SOC-TM, the Bloom module in EMBEDDED-LE is in charge
of conflict detection and resolution. It snoops the bus to monitor
the states of the hardware locks, so that conflicting speculative
executions can be detected and rolled back when a core acquires
one of these locks.

To keep track of which locks have been acquired or elided, it is
not enough for the Bloom module to snoop on locking operation
calls. In addition, it must also snoop on the responses to certain
calls, and it must match up calls and responses. To this end, the
Bloom module uses a state machine to track hardware lock state.
The state machine is activated when an operation such as Test()
or TestAndSet(), whose return value depends on the lock state, is
detected on the bus. The state machine records which kind of call
it observed, and when the hardware lock memory slave places the
return value on the bus, the state machine acquires this value and
decides the calling core’s new state (either waiting, speculative, or
locking mode). If the Bloom module deduces that a TestAndSet()
call succeeded, then that lock’s index is recorded in a register
associated with that core.

In addition to extending the Bloom module to be aware of which
core has which locks, we extended the Bloom module control logic
to encompass different contention management policies, determin-
ing which transactions are rolled back when a conflict is detected.

• Requester-abort: Aborts the transaction that requested the ad-
dress for which a conflict was detected.
• All-abort: Aborts all the transactions working speculatively on

the same lock.

In either case, an aborted transaction, following the lock elision
algorithm described in the next section, may then execute non-
speculatively, and try to acquire the lock by calling TestAndSet().
If the snooping Bloom module detects that the acquisition suc-
ceeds, it rolls back the transactions for cores that elided that lock.
If two or more cores try to acquire the lock, then one will succeed,
and the others will spin.

4.2.2 Lock Elision Schemes
The next step is the software interface to the hardware-supported
conflict detection and resolution. We focus on the Wait() and
Signal() methods provided by locks.

• Wait(LockID) is called to acquire a lock. If the lock is free,
then it sets the lock state and returns. If the lock is busy, then
the caller either sleeps for a fixed duration or spins, depending
on whether the lock is treated as a semaphore or a spin-lock.
• Signal(LockID): is called to release a lock. It clears the lock

state and wakes up cores waiting to get this lock.

Function: wait sle Input: LockID
while 1 do

while Test(LockID) do
/* lock not free, keep spinning */

end
if check abort() then

/* previous attempt aborted */
end transaction();
if TestAndSet(LockID) then

/* lock acquired, begin
non-speculatively */
return

else
/* lock is not free, continue
loop */

end
else

/* begin speculation */
begin transaction();
return

end
end
Function: signal sle Input: LockID
if check in transaction() then

/* end speculation */
end transaction;

else
/* end non-speculation */
Release(LockID);

end
Algorithm 1: wait sle() and signal sle ()

Function: wait Input: LockID
if !check in transaction() then

/* either this is first time execution
of critical section or speculative
mode in progress */
wait sle(LockID);
/*wait_sle, either ends up
speculatively or non-speculatively.
Increment only if it is speculative
mode */
if check in transaction() then

perProcessorCount++;
end

else
/*this must be a nested transaction*/
if check in transaction() then

perProcessorCount++;
end

end
Function: signal Input: LockID
if !check in transaction() then

/*non-speculative mode in progress*/
signal sle(LockID);

else
/*decrement the nested level*/
perProcessorCount–;
if 0 == perProcessorCount then

signal sle(LockID);
end

end
Algorithm 2: Wait() and Signal()
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We modified Wait() and Signal() to accommodate two lock
elision schemes.

base : As shown in Algorithm 1, a core calls wait sle() to enter
a critical section. It tests the lock status, and if it is not free, another
core is executing non-speculatively, so the caller spins while the
lock is busy. When the lock becomes free, the caller elides the
lock and executes the critical section speculatively. As mentioned
earlier, the enhanced Bloom module is responsible for detecting
conflicts between speculative executions, and between speculative
and non-speculative executions. The core calls signal sle () at the
end of the critical section. If the transaction fails to commit, control
jumps to the line after the test. If a call to check abort() reveals
that the previous speculation failed, the caller calls TestAndSet()
once, acquiring the lock if is free. Otherwise, it again tries to elide
the lock. If the execution is non-speculative, then signal sle ()
releases the lock. To avoid starvation, if a speculative execution
encounters more than a threshold number of conflicts, execution
reverts to serial mode.

nretries : We extend the prior scheme by keeping track of the
number of times the core has encountered conflicts. If this number
exceeds a threshold, the core will try to acquire the lock and execute
non-speculatively.

4.2.3 Nested Transactions
Because Memcached uses nested critical sections, lock elision must
support nested transactions. The literature [7, 20] includes three
kinds of nesting: flat, closed, and open. Flat nesting is the simplest:
all operations are executed in the outermost enclosing transaction.
Aborting an inner transaction aborts higher level transactions as
well. Closed nesting allows inner transactions to abort without nec-
essarily aborting any enclosing transactions. Open nesting allows
inner transactions to release side-effects, relying on compensating
actions to roll back changes as necessary.

Although closed nesting provides the most useful semantics, it
is too expensive to implement with limited hardware resources,
so our implementation uses flat nesting. Calls to wait sle() and
signal sle () are executed only at the top level; the rest are elided
as shown in Algorithm 2.

4.3 EMBEDDED-SLEEP

In the EMBEDDED-SLEEP variation of EMBEDDED-LE, instead of
spinning on a busy lock, wait sle() switches the core to a low-
power, idle mode until the lock becomes free. This scheme trades
energy for latency: switching from an idle state to a standard state
takes 2ms.

4.4 EMBEDDED-LR
In the EMBEDDED-LR variation, the Bloom module assigns a
priority to each running transaction. When a conflict occurs, the
Bloom module directs the core with the lower priority to roll back
and wait until the other commits. Ties are broken by aborting the
requester. This change affects only hardware, and is transparent to
software.

We considered two ways to assign priorities.

• conflict-based: Each new transaction starts with the same prior-
ity. Each time a core loses a conflict, its priority increases by a
fixed amount.
• timestamp-based: Each new transaction’s priority is its starting

time, so the longest-running transaction will have the highest
priority.

5. Experimental Results
This section describes the results of applying various forms of lock
elision to Memcached.

5.1 Memcached
Memcached is a distributed in-memory software cache, where mul-
tiple clients place key-value pairs on multiple servers. It provides
operations such as get(), replace(), delete(), and compare−and−swap()
on these keys. Clients can also request the current cache status, the
number of keys in the cache, and related statistics. Each server
dedicates a fixed amount of memory to its part of the cache, and
the ensemble is viewed as a single logical cache. Clients choose a
server based on key hash value. When the cache is full, pairs are
replaced in least recently-used order.

Memcached creates multiple threads to handle client requests.
Among these threads, one dedicated thread is responsible for dis-
tributing newly arriving TCP/UDP connections to the other threads
in round-robin order. These threads listen on these client connec-
tions and respond to requests. Memcached has its own slab memory
allocation scheme. Initially, a small number of slabs is allocated,
and additional slabs are allocated as needed.

Threads within a Memcached server synchronize via Pthread
locks. Hash table and slab memory updates are protected by the
cache lock and slabs lock respectively. Memcached maintains
cache statistics, such as the number of cache misses and hits.
Updates to statistics are protected through the stats lock . Other
locks are used while opening and closing the connections. Our tests
indicates that cache lock and stats lock have high contention.

5.2 Experimental Setup
In SOC-TM, as in many embedded platforms, applications run
directly on the hardware, without an operating system. Adapting
to this environment required substantial modifications to remove
dependencies on external libraries without changing the overall
design, and without changing any critical sections.

We ported Memcached to our embedded platform, in a way
that preserves the operations and critical sections of the standard
Memcached server. We replaced the original network message-
passing communication scheme with a scheme employing shared
memory, allowing some cores to act as clients while others act
as server threads. We used Memcached version 1.2.5. In the new
design, a few cores generate client requests like get() and set(),
and place them in shared memory. The remaining cores act like
Memcached servers. As in the original, one core takes the role
of distributing connections to the others, each of which accepts
requests, acting like a Memcached thread. The original critical
section structure remains unchanged.

Memcached settings have been given values appropriate for the
EMBEDDED-SPEC platform. The minimum chunk size is 48 bytes,
the chunk factor is set to 1.25, and the maximum size of the cache
is set to 60MB. Our workload generator continuously generates
new connections, new key-value pairs, and requests, placing them
in memory locations shared with cores executing as servers.

5.3 Memcached Critical Sections
We first compare EMBEDDED-LE, EMBEDDED-LR, as well as
lock-based and HTM-based implementations. The EMBEDDED-
LE configuration uses the requester-abort policy and base lock
elision scheme, while the EMBEDDED-LR configuration uses the
conflict-based policy. The HTM implementation uses “eager” con-
flict resolution.

The get() and set() requests are the most common, so we focus
on them. We first evaluate set() in isolation. The set() operation
acquires cache lock several times to manipulate the hash table and
slab memory data structures. It acquires the stats lock to update
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Figure 1. Execution cycles and energy consumption of Memcached set commands.
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Figure 2. Execution cycles and energy consumption of Memcached get commands.
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Number of set requests per core Cores TM(retry=1) EMBEDDED-LE(base) Lock EMBEDDED-LR(base)

500
2 156% 100% 100% 83%
4 129% 249% 100% 55%
6 103% 303% 100% 80%

3000
2 165% 99% 100% 87%
4 129% 219% 100% 57%
6 106% 336% 100% 77%

Table 1. Energy-delay product of Memcached set commands. Values are relative to standard locking. Gray cells are better.

Number of get requests per core Cores TM(retry=1) EMBEDDED-LE(base) Lock EMBEDDED-LR(base)

500
2 170% 164% 100% 145%
4 177% 187% 100% 160%
6 187% 179% 100% 164%

3000
2 166% 164% 100% 153%
4 172% 188% 100% 171%
6 199% 183% 100% 168%

Table 2. Energy-delay product of Memcached get commands. Values are relative to standard locking.

the statistics, and slabs lock to update the metadata related to slab
memory. While processing a single set() call, a core spends nearly
40% of its time in critical sections.

Figure 1 and Table 1 show the execution cycles, energy con-
sumption and energy-delay product (EDP) of various speculation
schemes executed with different numbers of set() requests and dif-
ferent numbers of cores. Graphs are normalized to the performance
of standard locks.

For EMBEDDED-LE (base), both performance and energy de-
teriorates as the number of cores increases. This decline is mainly
because aborted cores makes many speculative attempts, and most
of these retries fail. This trend increases along with the number of
cores.

To establish a baseline for understanding the impact of con-
tention management, we started by replacing each critical section
with a transaction executed by an eager HTM [10]. In this context,
“eager” means that if transaction A accesses data held by transac-
tion B, then B is always rolled back. As expected, the eager HTM
implementation did poorly, about three times worse than locking .
This poor performance is largely due to repeated conflicts on con-
tended data. Restricting the number of retries and executing in se-
rial (low power) mode, improves both performance and energy con-
sumption. Table 1 shows that as the number of requests and cores
increases, both performance and energy consumption approach that
of standard locking. However, increasing the number of retries be-
fore entering serial mode decreases performance.

EMBEDDED-LR (base) performed better than locking. Both
performance and energy consumption improved by about 15%, and
at 6 cores the EDP improved by about 25%. This improvement is
mainly due to spending more time in critical sections, and in the
larger proportion of successful transactions (about 80%). Unlike
the eager HTM, EMBEDDED-LR ensures that at least one contend-
ing core will go on to commit.

These observations suggest that executing critical sections of
the set() command speculatively via EMBEDDED-LR can pro-
vide both performance and energy benefits. Comparing HTM and
EMBEDDED-LE, repeated retrying of failed speculation is not
a good idea in the presence of highly-contended locks like the
stats lock .

Lock elision did not benefit the get() command, which acquires
the cache lock and stats lock , spending only 16% of the time in
the critical section. As shown in in Figure 2 and Table 2, the EDP

for EMBEDDED-LE (base) and TM (retry=1) was 80% worse, and
for EMBEDDED-LR (base) 60% worse.

5.4 Evaluating Lock vs. EMBEDDED-LR
Having examined the behavior of individual get() and set() calls,
we turn our attention to mixtures of these calls. Since EMBEDDED-
LR (base) yielded the highest benefit for individual calls, we focus
on that configuration for now. Figure 3 shows the execution cycles,
energy consumption, and EDP for different ratios of get() and
set() calls. The figure shows that at 60:40 ratio, EMBEDDED-
LR (base) achieves about 4% improvement in execution time, and
about 8% improvement in EDP. As the number of set() calls
increases, both execution time and energy consumption improve.
Figure 4 shows that the abort rate stays almost constant across all
mixtures. Also the system spends more time executing successful
transaction as the number of set() calls increases. For ratios of at
least 40% set() commands, EMBEDDED-LR (base) is beneficial
both in terms of performance and energy.

5.5 Other Policies
In this section, we examine other contention management policies
and lock-elision schemes. We compare alternatives to EMBEDDED-
LR (base), since that scheme yielded the highest benefits so far.
Table 3 shows the performance and energy breakdown, as well as
EDP, when tested on 6 cores with a ratio of 60:40 get() to set()
calls.

Earlier we observed that EMBEDDED-LE (base), which retries
speculative executions many times, does not perform well. We re-
stricted the number of retries by using nretries lock-elision scheme.
For a single retry, results closely match EMBEDDED-LR (base),
similar to the behavior of the eager HTM with serial mode failover.

In both cases, we observed that most of the conflicts occur
in the critical section protected by stats lock , which are short
but have a high conflict rate. On few occasions, slab memory
metadata updates protected by slabs lock results in data conflicts.
These locks are accessed by acquiring the central cache lock, the
outermost nested lock shared by other transactions. In case of data
conflicts, retrying the outer cache lock causes false conflicts on
unrelated transactions. With EMBEDDED-LE (base), we observed
60% false conflicts due to acquisition of cache lock. Here, retrying
speculation only increases the conflict rate.
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Figure 3. Execution cycles, energy, and energy-delay product of EMBEDDED-LR (base) drawn relative to locks(100%). Configuration: 6
cores, 18K requests
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Figure 4. Abort rate, execution time of successful and aborted transactions. Configuration: 6 cores, 18K requests

Using EMBEDDED-LE with the requester-abort policy, when-
ever a core A abandons speculative execution and acquires a lock,
it will cause the other cores working speculatively on that lock’s
critical section to abort. As a result, work may be wasted in the in-
terval between when A aborts and when it acquires the lock. The
abort-all policy is intended to reduce this waste by pre-emptively
aborting the cores running in a critical section whose lock is about
to be acquired. However, Figure 3 shows that this approach is not
effective for Memcached.

EMBEDDED-SLEEP differs from EMBEDDED-LE (base) as fol-
lows: instead of spinning on a bus lock, it enters a low-power sleep
mode. This approach improves both performance and energy con-
sumption, yielding a EDP equivalent to that of EMBEDDED-LR
(base).

The EMBEDDED-LR (timestamp) policy yields a 4% better
EDP than EMBEDDED-LR (base), which is better than the other
schemes, although it does require slightly more complex hardware
support.

6. Conclusions
We examined the power and performance benefits of applying lock
elision to Memcached on an embedded platform. We found that
lock elision can provide non-trivial benefits to both power and per-
formance, although not all hardware configurations were benefi-
cial. The existence of false conflicts, especially around statistics-
tracking data structures, seems to present an obstruction to further
improvement.

Damron et al. [5] and Click [4] also report that false conflicts
caused by shared performance counters and statistical data struc-
tures limited the performance benefits of replacing locks with spec-
ulative transactions. In our study, we were careful to preserve the
locks and critical sections of the original Memcached when we
ported it to our embedded platform. Future work have to investigate
the degree to which simple refactoring of known hot-spots such as
the statistics data structures can enhance the benefits of lock eli-
sion.
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Total requests

EMBEDDED-
LE
requester-abort
retry=1

EMBEDDED-
LE
requester-abort
retry=2

EMBEDDED-
LE
all-abort

EMBEDDED-
LE-sleep
requester-abort

EMBEDDED-
LR
abort-based

EMBEDDED-
LR
timestamp

Cycles

1.5K 101% 100% 105% 100% 100% 98%
3K 94% 95% 102% 97% 100% 97%
6K 94% 95% 104% 96% 100% 97%

10K 96% 97% 101% 95% 100% 97%
12K 98% 98% 101% 95% 100% 97%
14K 96% 97% 100% 94% 100% 97%
18K 97% 97% 104% 96% 100% 97%

Energy

1.5K 108% 110% 120% 108% 100% 98%
3K 108% 108% 119% 106% 100% 97%
6K 108% 108% 121% 105% 100% 98%

10K 108% 109% 128% 104% 100% 98%
12K 109% 109% 115% 106% 100% 97%
14K 109% 109% 114% 106% 100% 98%
18K 109% 109% 110% 105% 100% 98%

EDP

1.5K 111% 111% 126% 109% 100% 96%
3K 102% 103% 122% 100% 100% 94%
6K 102% 103% 127% 101% 100% 95%

10K 105% 106% 129% 100% 100% 96%
12K 107% 107% 117% 101% 100% 94%
14K 104% 106% 115% 101% 100% 96%
18K 107% 107% 116% 101% 100% 96%

Table 3. Execution cycles, energy, and energy-delay product for EMBEDDED-LE and EMBEDDED-LR contention management policies
expressed as percentage of EMBEDDED-LR (abort-based). Experiments done with 6 cores, 60:40 ratio get():set().
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