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Abstract

Cryptographic protocol constructions based on hardware-assisted
tokens is one fairly new topic of research in recent years. Physically
Uncloneable Functions (PUFs) are hardware tokens having interest-
ing properties such as unpredictable and non-programmable. Previous
works have shown PUFs can be used to construct secure computation
protocols such as Oblivious Transfer and Commitment in the Univer-
sal Composable Framework. In this work, we propose a UC-secure
commitment scheme which has a uniqueness of not relying on Fuzzy
Extractors, which can be seen in every construction in previous liter-
ature.

1 Introduction

Designing cryptographic protocols that simultaneously achieve high efficiency
and strong security requirements has always been an important goal in the
crypto community. In recent years, a cluster of research suggest crypto-
graphic protocol designs based on various hardware components and have
achieved fruitful results.

Physically Uncloneable Functions (PUFs) are another type of hardware
component that have received much attention in the community. Roughly



speaking, a PUF is a hardward token that is derived through a complex
physical manufacturing process that makes its behavior being unpredictable
and hard to clone. By performing measurement based on physical stimuli,
a PUF provides unpredictable and noisy responses and can be treated as a
certain source of randomness.

The Universal Composable Security Framework (UC framework) was pro-
posed by Cannetti [2] which aims to capture cryptographic protocol exe-
cutions in complex environments such as in the real world, and provides
a framwork of analysis which supports the decomposition of cryptographic
tasks into basic building blocks. Roughly speaking, if a protocol 7% UC-
realizes an ideal functionality G in the hybrid model with access to another
ideal functionality F, and if there is a protocol p which UC-realizes F, then
the composed protocol n”, which replace the access to functionality F by
invoking protocol p, UC-realizes G.

One main contribution in [1] is that Brzuska et al. modeled PUFs in the
UC framwork by giving an ideal functionality Fpyr that captures the proper-
ties of PUFs. The ideal functionality Fpyr only allows the party in possession
of PUF to retrieve response, thus ensuring restricted access. PUFs can be
hand overed to other parties , and the adversary is allowed a temporary
access before the PUF is delivered. They also made assumptions regarding
PUFs as being temper-evidence as the temper of a PUF can be detected by
the receiver upon receiving it. Also in [1] Brzuska et al. present PUF-based
protocols for Oblivious Transfer, Commitments, and Key Exchange. All pro-
tocols are efficient as well as UC-secure, and the security of the protocols do
not rely on additional cryptographic assumptions other than those regarding
PUFs.

As mentioned previously, PUF has the property of produce noisy re-
sponses, which means if we query a PUF twice based on the same stimu-
lus, it may respond with distinct outputs. Nevertheless, the noise can be
bounded, so the two responses will be close in terms of distance. In order to
overcome such inconsistency in response as to make PUF as a mathemati-
cal function, Fuzzy Extractors [3] are used along with PUFs in to guarantee
response consistency, as to be part of the design of the protocols in [1] and
every subsequent literature.

In this work, we present a UC-secure PUF-based commitment scheme
without fuzzy extractors. This result is somewhat surprising since because
commitment scheme is equivalent to other secure computation schemes such
as oblivious transfer, zero-knowledge proof, and coin tossing, our result im-



plies the existence of secure computations in the UC-framework depending
only on a hardware token that produces inconsistent noisy output. Also, the
absence of a fuzzy extractor in the protocol design lessen the computation
cost and thus improves efficiency. Another characteristic of our proposed
scheme is its efficiency both in terms of communication bandwidth and in
terms of the number of rounds needed for a protocol execution. In this pa-
per we also do an investigation into the possibility of having an even more
efficient scheme.

2 Background: Physically Uncloneable Func-
tions

In this section we review the definitions of Physically Uncloneable Functions
in [1]. A Physically Uncloneable Function (PUF) is a type of hardware token
that is fabricated in a way that is uncontrollable even for the manufacturer
which can be used as a source of randomness. A PUF evaluation involves
querying the physical system with a stimulus, or a challenge, and in return
the PUF output a noisy response. We call a pair of stimulus and corre-
sponding output a challenge/response pair (CRP). It is worth noting that
the outputs of a PUF being noisy means a PUF does not implement a math-
ematical function where the same output is guaranteed when performing two
evaluations on the same input. However, the noise can be bounded so that
the two responses are still close in terms of Hamming distance.

2.1 Definition and Security of PUF's

A PUF-family P consists of two not necessarily efficient algorithms Sample
and Eval. The Sample algorithm does the index sampling by returning an
index id on input of a security parameter. The evaluation algorithm Eval takes
a challenge ¢ and reponds with output r corresponds to PUF evaluation.

Definition 1 (Physically Uncloneable Functions) Let rg be length of
the range of the PUF respnses, let dnoise be an upperbound on noise in the
number of bits of PUF responses. P = (Sample, Eval) is a family of (rg, dnoise )~
PUFs if it satisfies the following properties:

Index Sampling. Let Z, be an index set. The sampling algorithm Sample
takes input a security parameter 1%, outputs an index id € . Fach id € T,



corresponds to a set of distributions Dig. For each challenge ¢ € {0,1}?,
Dig(c) is a distribution on {0,1}79N in Diy. Neither do we require the index
sampling is efficient, nor do we require elements in Diy can be efficiently
sampled.

Evaluation. The evaluation algorithm Eval takes input (1*,id, c), where
c € {0,1}* is a challenge, outputs r € {0,1}9N)  according to the
distribution Diy(c), as a response. Eval need not to be efficient.

Bounded Noise. For all id € Iy, for all challenges ¢ € {0,1}*, we have
that when running Eval(1*,id, ¢) twice, then the Hamming distance of the
respective outputs r1, ro s bounded by dnoise(A).

The main security definition of PUFs is unpredictability. Namely, on
input a new challenge ¢, it should be hard to predict the corresponding
response. The notion can be captured by requiring the response to have
some significant amount of intrinsic entropy. More formally, when one has
measured a PUF on a challenges ¢y, ..., ¢;, as long as a new challenge ¢ is not
close to each measured challenges, the response corresponds to ¢ from the
PUF will have a certain average min-entropy.

Definition 2 (Unpredictability) We call a (rg, dnoise)-PUF family P =
(Sample, Eval) is (dmin()), m()\))-unpredictable if for any ¢ € {0,1}* and
any challenge list C = (c1,...,c), if dis(c,cx) > dmin(A) for all ¢, € C,
then the average min-entropy satisfies Hoo(PUF(c)|PUF(C)) > m(\), where
H_(PUF(c)|PUF(C)) is the average min-entropy of PUF(c) conditioned on the
measurements of challenge list C. Such a PUF-family is called a (1g, dnoises min, M) -

PUF family.

2.2 PUFs in UC framework

Same as the definition of PUFs, we do not alter the modeling of PUFs in
the UC framework in [1]. Basically, the ideal functionality Fpyr handles the
operations of (1) issuing PUF's, (2) evaluating a PUF on some specified input
only for the right holder, (3) the transfer of a PUF to another specified party,
and (4) allows the adversary to query the PUF during the transition. The
reader can refer to [1] for more detailed and formal definition of the Fpyr
functionality. We note that the definition requires that PUFs are temper-
evidence, so that the adversary cannot replace a PUF by a fake or malicious
one.



3 PUF-based Commitement Scheme

A commitment scheme is a two-party protocol between a sender (or commit-
ter) and a receiver which consists two phases. In the first phase, called the
commitment phase, the sender first sends (possibly through some interaction
with the receiver) a commitment of some value to the receiver. Subsequently,
in the second phase, called the decommitment (or opening) phase, the sender
reveals the committed value by sending to the receiver some opening. We
require that: 1. the commitment reveals nothing about the value, which
is called the property of hiding. 2. it is infeasible for the sender to come
up with another opening so that the commitment can be opened to another
value, which is also called the property of binding.

3.1 The Commitment Scheme Ideal Functionality

The ideal functionality Feom is defined as to emulate the aforementioned no-
tion of a commitment scheme: Feop, first receives input (commit, sid, ssid, msg)
from committer P; where msg is the value that it wishes to commit to. After
some verification of the validity of the identities and the session identifiers,
Feom records msg, sends to the receiver P; a delayed output (receipt, sid, ssid),
and thus completes the commitment phase.

In the decommitment phase, P; sends (open,sid,ssid) to Feom. Upon re-
ceiving the message from P;, Fcom first checks there indeed exists a value
msg, then sends a delayed output (open, sid, ssid, msg) to P;.

The adversary can corrupts the committer by sending
(corrupt — committer, sid, ssid) to Feom. Upon receiving the instruction, Feom
reveals the recorded value msg to the adversary S. Furthermore, Feon allows
the adversary to modify the committed value if the receipt message has not
yet delivered to P;.

The specific ideal functionality for commitment is given in Figure 1.

3.2 Commitment Scheme

Our commitment scheme depends on a PUF and an authentication channel
and does not depend on a fuzzy extractor. In the setup phase, the sender
evaluates the PUF for a set of randomly chosen challenges and stores every
CRPs in a list £. The sender then hand over the PUF to the receiver.



Feom 18 parameterized by an integer N as the maximum number of le-
gitimate commit executions, and runs with parties F;, P;, and adversary
S. Once it sets P; and P; be the corresponding sender and receiver by
receiving the first commit-input from P, it ignores any following input in
which P; and P; are not the corresponding sender and receiver.

e Upon receiving input (commit,sid, ssid, P;, P;, msg) from party P,
Feom records msg, sends a delayed output (receipt, sid, ssid) to party
P;.

e Upon receiving input (open, sid, ssid) from party P;, Feom checks if a
value msg has been recorded. If the answer is positive, it sends to P;
a delayed output (open,sid, ssid, msg). Otherwise it does nothing.

e Upon receiving the input (corrupt — committer, sid, ssid) from the
adversary S, Feom sends the recorded msg to S. Furthermore, if 1.
S provides a value msg’ and 2. the receipt output has not yet sent
to Pj, Feom Will change the recorded value to msg'.

Figure 1: The ideal functionality for commitment

The receiver initializes each of the protocol executions by sending two
randomly generated values xg, x; to the sender. The sender, upon receiving
xo and x4, arbitrarily picks from £ a challenge/response pair (¢, ), computes
v = c@®xy, based on the bit b the sender would like to commit to, then sends v
as a commitment of b to the receiver. It can be seen that, since ¢ is randomly
chosen, x; is statistically hidden and thus the sender’s bit b is protoected by
the hiding property of the protocol.

In an opening phase, the sender disclose the committed bit b, along with
the a PUF response r, are both sent to the receiver. The receiver verify the
validity of the decommitment by basically checking whether v & x;, recovers
c. This can be achieved by evaluating the PUF on challenge ¢ = v & xy, and
compare the response v’ with r from the sender. Although the fact that PUF
outputs are noisy implies r and " are unlikely to be equal, but fortunately
the noise can be bounded, and thus the receiver accepts the decommitment
if dis(r,7") < dnoise(A). The sender can break the binding property if he can
come up with a response 7 close enough to PUF(v @& zj). By the intuitive
idea of unpredictability, the only way that the sender can have 7 is to obtain



it through evaluation of the PUF, and the probability that the sender has
indeed measured v @ xj or close enough values can be argued to be negligible.

The specific scheme is given in Figure 2. Now we give a formal proof of
security of the proposed commitment scheme.

Sender P, session sid Receiver P;

(initpUF,sid,H,)\)
k=1,....N:c < {0,1}
T < (evaIpUF,sid,B-,ck)

L= (c1,71, .., ¢, 17)

C o= @ (handovelw—ﬁ>sid7Pi,Pj) Co— @
Repeat at most N times with new ssid
(commitment phase)
Input: b € {0,1},sid Input: sid
(9<30,_$1) Lo, L1 (i {O, 1}>\
Draw (c,r) dr
Vi=cPDay
dis(c,C) > dumin? = dis(v ® 20, C) > dmin?
dis(c ® xg @ 1,C) > dpmin? dis(v @ x1,C) > dmin?
Add ¢, c® o ®xq to C Add v @ xg, v D 21 to C
Delete (¢,r) in £ Output: receipt

(opening phase)
o d=vedua
r (evalpUF, Sid, f’j, C/)
dis(r,7") < dnoise(A)7
Ouput: b

Figure 2: Commitment scheme with PUFs

Theorem 1 Assuming PUF = (Sample, Eval) is a family of (rg, dnoise) —
PUF's, the proposed commitment scheme securely realizes the ideal function-
ality Feom 1 the Fpup-hybrid model.

Proof: We prove the theorem by giving simulations based on separate
cases involving different sets of corrupt parties. In general, for every real
world PPT adversary A, we have a simulator S, which runs a black-box



simulation of A, simulates the transcript of honest parties from only the
limited information provided by the functionality in the ideal world, so that
no PPT environment Z can distinguish whether it is a real world execution
or an ideal one. In essence, the simulator needs to come up with a legit
transcript of execution when both parties are honest. Furthermore, it needs
to be able to extract the committed value from a commitment when the
sender is corrupt, and it has to be able to equivocate when the receiver is
corrupt. We consider the same setting as in [1], where the simulator faithfully
initialize a PUF and allow the environment to access the PUF when the PUF
is in possession of the simulator.

Simulating the case in which both parties are honest. In this case
the simulator & needs to come up with the transcript of an execution. In
particular, it needs to come up with a real world commitment v before know-
ing the bit to be committed, and later comes up with a decommitment (b, r)
after knowing the committed bit . This is easy because actually & can
just pick random strings as v as well as r. The reason why it is okay to
just use random strings is simple: by the unclonability and unpredictability
of PUF, the only way to verify the validity of a commitment is through a
PUF measurement. However, since the environment has only limited access
to PUF in this case where both parties are honest, the environment can-
not, without the access of the PUF, distinguish random strings from a valid
commitment /decommitment pair with non-negligible advantage over 1/2.

When the sender is corrupt. In the case where the sender P, is corrupt
whereas the receiver P; is honest, The simulator S observes P;’s PUF querries
(made by A and Z) in the setup phase and stores all the challenge-respnse
pairs in a list £. In order to transform whatever happens in the real world
into the ideal world under current corruption setting, S should be able to
extract the commited bit b from the real world protocol execution. During
the simulation, S draws a pair of random values (xg,z;) from {0,1}* and
sends them to the P, (which is instructed by A) in the simulation. After
that, A will instruct P; to send v to the receiver. At this point, the simulator
looks for querries v @ xo and v @ x7 in the list L. If there exists a CRP pair
(e,r) € L such that dis(c,v @ xg) < dmin, the simulator sets b = 0, for the
case that it is dis(c,v ® x1) < dmin, S sets b = 1. If neither of them appear on
L, S just picks a random b. Afterwards S sends (commit,sid, ssid, P;, P;, b)



on behalf of P; to Feom. It is clear the simulation only fails when later it
turns out § had picked the wrong b. We argue that this only happens with
negligible probability, in the sense that in this case, the dishonest sender F;,
intructed by A and Z, has to be able to come up with a decommitment
without performing a corresponding PUF measurement, which is aginst the
assumption of PUF being unpredictable.

First we establish the fact that it can only happen with negligible prob-
ability that there exists a CRP pair (¢,r) € L such that dis(c,v @ ) < dmin
and dis(c,v @ x1) < dpmin, as it implies dis(v ® zg,v B 1) < 2dmin and
dis(xg, 1) < 2dmin, which can only happen negligibly with randomly cho-
sen ro and x;. Next we establish the fact that with only negligible prob-
ability, there exists two challenge-response pair (cg,79), (c1,71) such that
dis(co, v ® x9) < dmin and dis(c1,v & 1) < dmin. Because dis(c, v & x) <
dmin and dis(c1,v @ 1) < dpyin implies dis(co @ g @ 1,¢1) < 2dmin, Or
dis(xg ® x1,¢0 B ¢1) < 2dmin. Since zp and x; are randomly chosen after
the setup phase, it can be seen that, the probability of making a polynomial
number of querries and two of them happen to be related to a specific ran-
dom number is negligible, as C'(p()), 2) X 2dmin = (1/2)p(A)(p(A) — 1) X 2dmin
is a negligible fraction of 2* if dp, is in o(A/log \). Based these two facts,
it follows that the simulation fails when P;, instructed by Z and A, has the
ability to produce a PUF output without querried the corresponding input,
which only happens negligibly under the unpredictability of PUFs.

When the receiver is corrupt. The last case of the analysis is when
the sender P; is honest whereas the receiver P; is dishonest. In this case,
the simulator has to be able to produce an equivocal commiment that can
be later opened to either 0 or 1. As shown later, the simulator can achieve
equivocality by making use its permanent PUF access in the simulation.
There will be at some point in the ideal world such that 1. A in-
structs P; to send the challenge (z, z1) in the simulation and 2. F,n writes
(receipt, sid, ssid, P;, P;) on S’s communication tape. The simulator S then
draw a random string v from {0, 1}*, sends v to the simulated P;, and give
Feom the permission of sending the opening to P;. After learning the com-
mitted bit b, S computes v @ x;, and use the permanent PUF access to obtain
corresponding r, and sends the decommitment (b,7) to the simulated P;. It
is clear from the fact that v is uniformly random regardless of zy and xq,
that the simulation is perfect, and thus the environment cannot distinguish



a real world execution from an ideal one.

3.3 Possibility of Getting Fewer Rounds

Our commitment scheme consists one round for the setup phase, followed
by two rounds of challenge-and-response for the commitment phase. One
natural question is whether the number of rounds can be further reduced,
while the scheme itself still retains to be a UC-secure. In this section we
investigate this problem and our answer to this question tends to be a neg-
ative one: under a mild assumption that committer with PUF access while
generatiing the commitment can equivocate, there exists no UC-secure bit
commitment scheme with fewer rounds of communication. The observation
is that, once we reduce the number of rounds, there will always be one party,
be it either the sender or the receiver, can run a simulator S as a subroutine
and make use of S8’s power as either being able to extract a committed bit
from a commitment, or being able to produce an equivocal commitment, to
contradict the hiding or binding property of the scheme.

Theorem 2 Under the assumption based on the observation from protocol
design that if the committer has the PUF access upon generating the commyit-
ment, the committer can equivocate, there exists no PUF-based commiment
scheme securely realizes the Feom functionality with fewer rounds in commu-
nication.

Proof: First we recall that, for a commitment scheme being UC-secure,
it is required that there exist a simulator S able to extract a commitment
when the sender is corrupt, and another S that is able to equivocate when
the receiver is dishonest. Next we observe that any scheme with fewer rounds
than three-round design as ours, must be one of the two cases: 1. the receiver
doesn’t need to send “challenge” to the sender, or 2. the PUF transfer in
the setup phase can either be eliminated, or be included into one of the two
rounds in the commitment phase.

In each of the two cases above, we observe that one of the following
must be true: either 1. the sender has PUF access when performing the
computation of the commitment v, or 2. the receiver has PUF access all along
the protocol execution. In the first case, the sender can simply equivocate
by making use of the PUF access, thus breaks the binding property. In the
other case where the receiver has the PUF all along, it goes without question
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that he/she can run the simulator and use the PUF as the PUF initialized
by the simulator. By making use of S’s ability, the receiver can extract the
commitment from the sender, thus breaks the hiding property.

4 Conclusion

As mentioned earlier, by the modeling of PUF's in [1], Brzuska et al. made two
assumptions about physically uncloneable functions. The first one is temper-
evidence, that is, adversaries are assumed to be unable to produce fake or
malicious PUFs. The other assumption is that PUF's can only be accessed in
a prescribed way, which is implicitly suggested from the construction of sim-
ulators in the security proof. One immediate question would be whether the
two aforementioned assumptions can be relaxed. In [5] Ostrovsky et al. gave
a positive answer to the question through providing two protocol construc-
tions, each fulfills UC-security based on one of the two relaxed assumptions.
Subsequent research results such as [4] also aims to provide secure protocol
construction based on relaxed assumptions. One common characteristic that
shared among those protocols is that the constructions are somewhat tedious
and unsatisfactory regarding efficiency. In this work we adopt the definition
in [1] and provide a secure construction which is also highly efficient. Un-
doubtly, to design efficient PUF-based schemes in the malicious PUF model
would be fascinating problem to consider and a challenging goal to achieve.
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