
Visualization of Semantic Windows with SciDB

Integration

Hasan Tuna Icingir
Department of Computer Science

Brown University
Providence, RI 02912
hti@cs.brown.edu

February 6, 2013

Abstract

Interactive Data Exploration Using Semantic Windows[1] offers a so-
lution to finding interesting patterns and objects from a big set of data
where the users do not need to wait for the whole query to finish and have
the ability to see intermediate results or receive progress updates. This
project includes the visualization component of Interactive Data Explo-
ration Using Semantic Windows. Since the Interactive Data Exploration
Using Semantic Windows requires that the database should be able to
execute range queries efficiently, another aspect of this project is its inte-
gration to SciDB[2] which is especially optimized for the management of
big data.

1 Introduction

Most database management systems lack interactivity. When a user runs a
query, he has to wait for the whole query to finish to get an actual result and
this might take a very long time. Interactive Data Exploration Using Semantic
Windows can display intermediate results in queries and the addition of a visual
component to this system will make it even more user-friendly. The visualization
component of this project enables the users to observe the results of a query via
live graphs.

Interactive Data Exploration Using Semantic Windows uses PostgreSQL as
its back-end database management system and the other aspect of this project
was to integrate it to SciDB. SciDB is specifically designed to solve data-
intensive problems, so it’s a good choice for the back-end database system.
Since the data files are huge and most queries take a long time to execute,
SciDB integration was significant and actually improved the overall running
times of queries.

1



Figure 1: System Architecture

2



2 System Architecture

The system that was built for this project integrates each of the following list
of components and technologies:

• Back-end DB : SciDB

• Web server : Flask Python Framework[3]

• Visualization Framework : D3[4]

• Scripting language : Python[5]

• Front-end : HTML/Javascript

• Query representation : XML

3 An Example Query and Its Visualization

The windows that we are referring to in Interactive Data Exploration Using
Semantic Windows are the regions where the user is querying for. So, the
regions will be displayed as they are found without waiting for the whole query
to finish. While creating the visualization part of this system, we worked on
two data sets: SDSS[6] and synthetic data. Sloan Digital Sky Survey (SDSS)
data is formed after the observation of sky and both data-sets are huge, so they
are of good use for the problem that we are trying to solve.

An example query that one can run on this data set would be finding regions
where the sky’s average brightness is more than x. For this query, the visual-
ization component displays the output on an XY-plot as the regions are found.
So, the coordinates that fulfill the query are displayed on a live graph and the
user does not have to wait for the whole query to finish. The details and the
characteristics of the visualization tool will be explained in further detail.

4 SciDB Integration

In order to use SciDB as the back-end database, we had to convert all the data
sets to the format that SciDB uses. SciDB utilizes arrays to hold the data and
we had to convert our data to this special format. The queries were being run
on two big data sets named SDSS and synthetic data and both of these data
sets were previously in the CSV format. SciDB has a command to convert .csv
files to .scidb named csv2scidb.

After converting the data to the file type that SciDB supports, we created
the arrays and loaded all the data to them. Mind that the arrays we used are
two dimensional and they contain gigabytes of data about the sky. So, the
example in the previous section about finding specific regions from the sky can
be queried on SciDB after we processed the data and loaded it to SciDB arrays.
The sample SDSS array that we formed is represented like this:

3



Figure 2: Building the Queries Online

create array sdss_sample_2d

<raerr:double,

decerr:double,

objid:int64,

skyversion:int16,

run:int16,

rerun:int16,

mode:int16,

type:int16,

rowv:double,

colv:double,

rowverr:double,

colverr:double>

[ra=0:*,500,0,

dec=0:*,500,0];

The Semantic Windows framework executes the SciDB queries and outputs
all the intermediate results. The results are then parsed by the web server and
displayed on the browser on a live graph which is built with D3.

4



5 The Web Server

We wanted the users to access the results online via their favorite browsers;
therefore, a web server was necessary to build this system. I used the Flask
framework to create this server since it’s very convenient and since it’s run as
a Python application. The web pages are built with HTML/Javascript and the
graphs are plotted with the D3 framework, which can all easily be rendered by
Flask.

The web server runs on a department machine which has access to SciDB
and the Semantic Windows framework; therefore, the queries can be passed on
to Semantic Windows which uses SciDB as it’s back-end database. The first
thing we want from the user is the query, which is represented in an XML
format. There are two options for the user to supply the query to us from the
main web page. She can either upload the XML file from her hard disk or use
the HTML form on the web page. Uploading the query files is straightforward
but the user might not have any experience with our query style; so, we parse
the inputs from the web page and create an XML file using the lxml[7] library
of Python.

After we receive the query from the user, either from an uploaded file or from
a form, we pass it to the Semantic Windows application which will send us the
results as they are found. These results need to be visualized in a user-friendly
way and that’s where D3 is used.

6 Visualization of the Output via D3

As explained in the example query part of the report, one can use Semantic
Windows to find specific regions of the sky. When this query is run and we
start getting the output, the output is parsed in the Python application of the
web server and is then sent to the visualization web page which uses D3 to
display the graphics. We know that we need to plot the areas on an XY-graph,
so after extracting the grid sizes and the domain from the query’s XML file, we
first plot the empty graph and then wait for the coordinates to come from the
server.

As the coordinates arrive from Semantic Windows, they are plotted on the
graph as shown in figure 3. This is a live graph, meaning that it displays the
data as they arrive and gives the user the chance for interaction. The query that
is being run is displayed at the bottom of the page and when the user hovers
her mouse on the plotted shape, the shape that is being observed changes its
color and information about that shape is displayed below.

D3’s graphing tools are used during the depiction of these data. The rect-
angles are represented with the coordinates that are received from Semantic
Windows and the XY-graph is built with the grid and domain values from the
query file.

5



Figure 3: Visualization of the Output

Figure 4: Information is Displayed With Mouse Hovering

6



7 User’s Manual

In order to use this visualization component with Semantic Windows on SciDB,
you need to:

• Install and configure SciDB on your machine,

• Install Semantic Windows framework,

• Install the Flask framework,

• Run the Python application that starts the web server (has to be in the
same folder as Semantic Windows),

• Locate visualization.html which uses D3 and index.html under a folder
named templates,

• Query files in XML (optional),

• Connect to local host while the web server is running and run the queries
from your favorite browser,

• Click Visualize and observe the results you get from the live graph by
hovering your mouse on the shapes.

8 Future Work

This project is open to further improvements according to the needs of the users
and the ways of interactivity they wish to have with their query results.

• The query building page can be improved by asking for more input and the
user’s can set their own goals instead of filling out the template queries.

• The shapes can be more informative and they can display the queries in
SQL, AQL and AFL during user interactions.

• Other types of graphs can be supported and the shapes can be displayed
in a more informative way (lighter or darker).

Acknowledgments

I would like to thank Alex Kalinin, the main author of Interactive Data Ex-
ploration Using Semantic Windows, and Ugur Cetintemel who gave me lots of
significant suggestions throughout the advancement of my project.

7



Figure 5: Zoomed View of a Cluster

8



References

[1] Alex Kalinin, Ugur Cetintemel, Stan Zdonik. Interactive Data Exploration
Using Semantic Windows. (not published yet)

[2] SciDB http://www.scidb.org/.

[3] Flask Microframework for Python http://flask.pocoo.org/.

[4] Data-Driven Documents. http://d3js.org/.

[5] Python Programming Language http://www.python.org/.

[6] The Sloan Digital Sky Survey http://www.sdss.org/.

[7] lxml - HTML and XML for Python http://lxml.de/.

9


