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ABSTRACT 
The rise of Internet-based applications means that database 
management systems (DBMSs) need to support a large 
number of concurrent clients issuing transaction requests. 
But the speed in which traditional DBMS are able to access 
data is insufficient because of the limited bandwidth of disk 
storage devices. Main memory database management 
systems (MMDBMS) [16] store data entirely in memory to 
overcome the high latency of these storage devices. 
Furthermore, a DBMS running on a single-core processor 
system reaches the computation limitation to process 
multiple requests efficiently because of the contention 
overhead from many concurrent requests. The arrival of 
multi-core processors makes parallel computing possible in 
a single system. But although multi-core processors have 
more computational power, executing transactions in the 
correct order makes it difficult for a DBMS to take 
advantage of them.  
In this paper, we explore the different types of bottlenecks 
found in MMDBMS when it is running on a multi-core 
system. Particularly, we use the H-Store MMDBMS as our 
test bed for this work. We identify three key issues, 
namely, excessive allocated objects, lock contentions, and 
recovery logging overhead as the main factors in 
preventing H-Store from scalability. We describe how to 
fix these issues, evaluate the performance of H-Store before 
and after these fixes, and show that we are able to improve 
throughput by 70%.  

1. INTRODUCTION 
The previous decade saw the emergence of separate, 
dedicated DBMS for online transaction processing (OLTP). 
OLTP applications focus on executing short-lived, small-
footprint transactions with high throughput and strong 
consistency guarantees. Most of these transactions read or 
write a few records at a time, execute low latency without 
“user stalls”, and require lightweight concurrency control 
mechanism. Most of the total size of OLTP databases is 
small and growing slowly. [1]  
Traditional DBMSs are predicated on the idea that 
database’s primary storage location is on a disk. This is 
because disks were more affordable than memory at that 
time. The limited data access speed of disk-oriented 

storage, however, is a bottleneck for many OLTP 
applications. Accessing data from main memory is several 
order of magnitude faster than from disk. Today, main 
memory with several Gbytes has become common and 
affordable. The increasing size of the memory at an 
affordable price makes it possible for many OLTP 
applications to store all of their data in main memory. A 
system that is designed for running entirely on main 
memory can eliminate the data access bottleneck[4]. 
As we enter the multi-core era, the future computational 
abilities of single-core processors are limited. Thus, the 
only way to improve throughput is to take advantage of 
new multi-core processors. The increasing computational 
power of multi-core processors provides one solution to 
this problem. Ideally by dividing an application across 
cores, the overall performance can improve in proportion to 
the number of cores. But, in modern database applications, 
this scalability depends on whether the workload can be 
easily divided in this manner. [2,3] 
Based on the two features mentioned above, DBMSs using 
main memory architecture running on multi-core CPUs can 
execute modern transaction processing workloads 
efficiently. Applications developers expect DBMS to scale-
up as more hardware resources are provided to it. But 
achieving this is difficult. 
In this paper, we investigate why this is difficult. Our work 
focuses on the H-Store OLTP DBMS. [13] H-Store makes 
use of multi-core systems with abundant main memory to 
get significantly high transaction processing throughput 
than traditional DBMSs. For perfectly partitioned 
workloads, H-Store should be able to improve its 
throughput linearly as more CPU cores provided to it. As 
we show in the paper, however, this is not the case for H-
Store running on system with more than eight cores. 
We first begin in Section 2 by introducing H-Store’s design 
architecture. In Section 3, we present an experiment that 
demonstrates H-Store’s failure to scale up on processors 
with many cores. Then, we design experiments to 
investigate performance issue of H-Store. Following that, 
in Section 4, we describe the three main performance 
bottlenecks and our work to resolve them. At last, we 
conclude with a discussion of future work to improve H-
Store. 



2. H-STORE OVERVIEW 
This section presents the overview of the H-Store 
MMDBMS. It is a parallel main memory relational DBMS 
that is designed to scale up on a cluster of shared-nothing 
nodes and optimized for OLTP applications. We introduce 
the design model of H-Store first and describe the system’s 
architecture through its execution environment and internal 
threads. Then, we describe why H-Store uses the 
techniques including the Command Logging and group 
commit. 

2.1 Design Model 
A node in H-Store is a single physical computer system that 
hosts one or more execution sites. A site is the logical 
operational entity in the system; it is a single-threaded 
execution engine that manages some portion of the 
database. It consists of partitions and they are responsible 
for executing transactions. [13] 
Every table for a database in H-Store is horizontally 
divided into disjoined partitions based on column keys. It is 
row-storage DBMS and the rows are separated across the 
partitions. All transactions are executed as stored 
procedures. A set of stored procedures consists of the 
application logic in H-Store. Each stored procedure has a 
unique name, several parameterized SQL commands and a 
run method that contains user-written Java code. 
Applications issue requests to an H-Store system to invoke 
the stored procedures as transactions. All of the stored 
procedures fetch data from partitions directly without 
accessing a disk.  
Each transaction in H-Store is categorized as either a 
single-partition transaction or a multi-partition transaction 
(i.e., distributed transaction). Single-partition transactions 
only access data in one partition while distributed 
transactions access data on multiple partitions. Previous 
work [2,3] has shown how to choose the right partitioning 
scheme designed to allow most transactions to be single-
partition transactions. And H-Store is optimized for single-
partition transactions. A heavyweight concurrency control 
mechanism, however, is necessary for distributed 
transactions to ensure correctness.  

2.2 Architecture 
H-Store is written in two programming languages: C++ and 
Java. The Execution Engines (EEs) of H-Store are in 
charge of the low-level data manipulation operations in the 
database. Every query executing in H-Store has to invoke 
the codes in EE to access or update the data. Each Partition 
Execution (PE) thread is a single thread assigned to a 
separate core. H-Store guarantees that a PE thread is pinned 
to a single core and that no other thread is allowed to run 
on that core. The EE is written in C++ as this allows for 
fine-grained control of memory. The front end of the 
system, that contains the core functional features, is written 
in Java. In order to call the C++ code functions of the EE 
from Java code level, it uses Java Native Interface (JNI).  

 
Figure 1: Overview of system threads 

Threads in H-Store are divided into two groups: (a) system-
networking threads, (b) transactions management threads. 
These threads are illustrated in Figure 1. 
When the application issues a transaction request to H-
Store, the incoming request is processed by a Client 
Acceptor thread. This thread accepts connection from 
applications and forward requests to internal network 
threads. The transaction Queue Initiator thread will process 
the request passed from networks threads and determine 
which partition to invoke the stored procedure on and 
which partitions the transaction will need to access. Then, it 
initiates incoming transactions and passes them to different 
PE threads. Each PE thread takes transaction requests from 
its work queue, executes them, and sends results to a 
logging thread that is assigned to it. After that, each logging 
thread sends execution results to the Post Queue thread. 
Later this Post Queue thread will send results back to 
client. 

2.3 Command Logging & Group Commit 
To ensure transactions are durable, H-Store uses the 
Command Logging [12] technique as its log manager. 
Command logging keeps the invocations of transactions as 
they are executed (i.e., the name of the stored procedure 
and the transaction input parameters), not the consequences 
of them. By recording only the invocations, the amount of 
data that the system writes to disk per transaction is small, 
limiting the impact the disk I/O will have on performance  



 
Figure 2: Throughput of H-Store 

of the system. Although Command log will require addition 
processing to replay to the most recent state of the 
database, it is fast and lightweight compared to Write-
Ahead log, which contains all the changed made to the 
records. This is the reason why H-Store chooses to use the 
Command Logging technique, rather than traditional Write-
Ahead Logging (WAL). [21] 

Instead of flushing the buffered log entries to disk per 
transaction, H-Store commits incoming transactions in a 
batch whose invocations are buffered in the system. Group 
commit technique removes the disk writing I/O bottleneck. 
H-Store does a group commit when the buffer is full of 
transaction invocations and flushes the buffer to disk 
permanently. [20] 

3. INVESTIGATION EXPERIMENTS 
Since most transactions in H-Store are single partitioned, 
the system should be able to scale-up easily as more cores 
are added. This is because the PE threads will not block 
each other. It is designed to execute single-partitioned 
transactions efficiently. But as we now demonstrate, this is 
not the case for H-Store running on a large number of 
cores. 
In this section, we describe how we investigate the 
bottleneck shows the performance problem. We first 
demonstrate its scalability issues by running experiments. 
Then, we present the CPU utilization rate when H-Store is 
running with different partition cores. Following that, we 
make a new Client Imitator to validate our hypothesis, 
introduce a profiling tool, and other debug methods to 
diagnose the system. At last, we show the observation 
results and point-out the performance problems. 

3.1 Scalability Issues 
The Voter benchmark models a talent-show voting 
application. [22] It is based on the software system used for 
the Japanese version of the American Idol television show. 
Because the benchmark consists of short-lived, single-
partition transactions, it is the ideal application to use on a 
MMDBMS.  
 

 
Figure 3: Average CPU utilization for execution cores 

We run the Voter benchmark on a single node with an 
increasing number of partitions ranging from 1 to 16. For 
each trial, we let the system “warm-up” for 90 seconds and 
then the throughput is measured for 60 seconds. We 
execute the benchmark three times in total per trial and 
report the average throughput of these trials. The final 
throughput measurement is the average number of 
transactions completed in a trial run divided by the total 
time (excluding the warm-up period).  
Transaction requests are submitted from up to 16 simulated 
client terminals running on the same nodes. Each client 
submits transactions at a rate of 20,000 transactions/second 
without blocking until the system has 500,000 transactions. 
Using multiple clients at such a high transaction submission 
rate ensures that the execution engines’ workload queues 
are never empty.  
The results in Figure 2 show that the system does not scale 
linearly with more than 8 cores. In fact, the performance 
actually gets worse. There are problems that prevent the 
system throughput from linearly increasing with more 
partition execution cores.  

3.2 Utilization of multi-core CPU 
When running the Voter benchmark on H-Store, we notice 
that the CPU utilization rates for the PE cores decreases 
with using more cores. H-Store should be able to fully use 
the PE cores provided by the CPU and the utilization rate 
of each execution core is expected to be up to 100%. This 
is because no single-partitioned transaction will be blocked 
because of anther single-partitioned transaction. All 
transactions are single-partitioned and each PE core is 
single-threaded. But, this is not the case when the Voter 
benchmark is running on H-Store with more cores.  
We collect the CPU utilization rate for each execution core 
every five seconds during executing the Voter benchmark. 
The result in Figure 3 shows that the average CPU 
utilization rate of execution cores decreases with more 
cores. H-Store ensures that a PE thread is running on a 
single core without any others threads competing for it, so 
each PE thread should fully use the core that it is pinned to. 
Limited by the reduced utilization of the multi-core CPU, 



H-Store does not take the advantage of all the 
computational power of the multi-core processors, and 
thus, the overall throughput is below the expected target 
line in Figure 2.  
Given these results, we need to investigate the causes of the 
reduced CPU utilization. At first we suspect that the 
overhead of the transmitting transaction requests over the 
network is causing the execution engines to be idle because 
of workload shortages. To explore this assumption, we add 
more clients to issue transaction requests to the system and 
improve the clients’ transactions issuing rate. The PE cores 
are still not fully utilized, which leads us to another 
hypothesis that the system is network I/O bound. This 
bound can limit enough incoming transaction requests from 
clients.  

3.3 Embedded Clients 
In order to inspect and verify our hypothesis, we create a 
new special thread directly inside of the DBMS to generate 
transaction requests continuously without involving the 
network. This eliminates any possible overhead due to the 
network. So, if our hypothesis is true, the Partition 
Execution cores should be fully used with this new Client 
Imitator.  
We run the system with the Client Imitator again and the 
trends of the new average CPU utilization for execution 
cores are the same as in Figure 3. The PE cores fail to be 
fully used no matter how many transactions are generated 
to the system. Thus, networking I/O is not the bottleneck, 
and the issue must be in the internal transaction 
management portion of the system.  

3.4 JVM Profiling & Debug Tools 
An in-depth study of the performance bottleneck of a large 
DBMS requires information about how the system is using 
the hardware advantages. We use a variety of tools to 
collection execution information of H-Store, including 
JVM profiling tool, JVM debug options, and H-Store debug 
options. 
Since H-Store uses Java for its transaction management and 
coordinal subsystem, we choose a JVM profiling tool to 
analyze the execution details of H-Store. The Java profiling 
tool we use is JProfiler [11], which provides the ability to 
view the information about CPU utilization, memory usage, 
threads status, and locking graph. This tool also records the 
number of objects the system has allocated, the garbage 
collection (GC) activity, and the hot spots of methods and 
classes.  
The JVM itself also provides debug options to help 
application developers to understand its activity. In JVM, 
there are daemon threads called Garbage Collectors that 
attempt to arrange the heap to ensure that the subsequent 
space requests are successful. Unreferenced objects in heap 
are deleted in the GC’s work cycle and these cycles can 
lead to unexpected pauses in the execution of application 
code. The pause time of GC indicates how long it pauses 
the system from running other applications on it. The GC  

 
Figure 4: Summation of GC pause time  

liberates Java programmers from the memory management 
work and helps them focus more on useful logic instead. 
But for a system with high performance goals, 
programmers have to take garbage collection into 
consideration to achieve the desired performance.  
H-Store also provides additional debug options to output 
status details for Partition Executors. The system collects 
information about how much time it spends on execution 
transactions, sitting idle waiting for new work or 
processing utility work. Moreover, it reports the size of 
each transaction work queue, the average execution time of 
the transactions, and how the incoming transactions are 
distributed to different Partition Executors. Ideally, we 
want transactions to be evenly distributed among partitions.  

3.5 Observation Results 
Using JProfiler, we see that the total memory size of the 
system grows quickly when we are running the Voter 
benchmark. In order to check whether they are expected or 
not, we create a stored procedure that does not execute any 
query or perform any comprehensive work. Without any 
updates to the tables in H-Store, its memory usage should 
not increase. Now we run the Voter benchmark again with 
the same settings. But in fact, the amount of memory that 
the system uses arises and drops greatly as much as before. 
The above observations lead us to focus on memory related 
issues. 
This time we invoke the new stored procedure at a low rate 
to the system and record the allocated objects in the Java 
Heap in H-Store using JProfiler. With fewer incoming 
transactions that do not update the database, the quantity of 
allocated objects in the system should be stable. We see 
however that many objects inside of the single-partitioned 
transaction object are increasing quickly when a transaction 
comes into the system.  
Meanwhile, we also find the other CPU cores, rather than 
the PE cores, are doing work that H-Store does not specify 
them to do. CPU utilization of non-PE cores is unexpected 
high. As the JVM uses a garbage collector to perform most 
of its work concurrently (i.e., while H-Store is running) to 
reduce the pause time of GC, we realize that the activities 
on the other cores are related to garbage collection. By 
enabling the GC debug output, we are able to record the 



pause time in the activity of the GC and present the 
summation of pause times in Figure 4. The GC pause time 
are recorded while executing the Voter benchmark for 150 
seconds on H-Store. This figure shows that the GC pause 
time increases as more cores are used.  
Because each PE thread is a single thread that do not share 
their allocated objects, H-Store will allocates more objects 
with increasing the number of cores. This means that more 
objects are created as more partitions are added to the 
system.  
In order to ensure correctness, the GC has to pause all the 
threads in the system, even though these threads are all 
single threads that do not need to be blocked, when it 
reclaims memory. The overhead of GC is not significant for 
a small number of objects in the heap, but it is serious with 
more objects when the heap becomes corresponding larger. 
This is the reason why the garbage collection pause time 
increases with more partitions. 
Moreover, if a thread is in the middle of a JNI call, it takes 
longer for the GC to pause the whole application running 
on the JVM. H-Store requires using JNI to call C++ 
functions to read, insert, or update the data in the database. 
This is a key part of the system, and we cannot make 
changes of this main architecture.  

4. IMPROVEMENTS 
In this section, we discuss our work to resolve the 
performance scalability issues described above. We first 
start from making changes related to reducing the number 
of allocated objects, followed by the fixes of removing lock 
contentions in the H-Store system. Then we examine the 
recovery logging component and optimize it. For each kind 
of these three fixes, we demonstrate the performance of H-
Store compared with the original H-Store by executing the 
Voter benchmark. 

4.1 Reducing Object Allocations 
As shown in Section 3.5, we know that the GC has a 
significant impact on H-Store’s overall performance. In 
order to prevent the GC operation from invoked frequently, 
we can limit the number of objects allocated in H-Store.  
H-Store uses the object pools that maintain a set of reusable 
objects to avoid needing to allocate and destroy them at run 
time. The profiling tool, however, shows that there are still 
a large number of objects continuously created and 
destroyed while H-Store is running. In order to find the 
reason, we use our Embedded Client thread to issue 
transaction requests at a low rate without inserting tuples to 
the database and observe the memory usage status of the 
system. Based on this evaluation, we see that several kinds 
of objects are unnecessarily allocated and they are 
generally categorized into three parts:    

(1) Distributed transaction-related data structures. 
(2) Unnecessary object arrays.  
(3) Internal per-partition transaction state objects. 

 
Figure 5: Performance with reduced objects 

For the first group, we find a lot of allocated objects that 
are only needed by distributed transactions, like read and 
write sets for tables. Because most transactions in OLTP 
applications are single-partitioned, these objects allocated 
for distributed transactions are not helpful. We moved 
those objects into a special container that is allocated for 
creating distributed transactions.  
For the second group, we find some allocated array of 
objects that can be replaced by a single variable. For 
example, the cached query batch planner in H-Store is 
guaranteed not shared across partitions, so there is no need 
to create a new array for every SQL statement batch. This 
change eliminates the number of total objects allocated in 
the system.  
For the last group, we fix it by allocating objects as late as 
possible until the Partition Executing thread has to use 
them. This optimization shortens the lifetime of allocated 
objects in the system, and thus, it reduces the frequency in 
which the GC is invoked.  
After minimizing the number of allocated objects in H-
Store, we run the Voter benchmark again and show the new 
performance compared with the original H-Store. In Figure 
5, although the trends are same, the throughput of the fixed 
version of H-Store is higher than the original version. The 
performance of both versions of H-Store drops off at 13 
partitions.  

4.2 Reducing Lock Contentions 
If the system is executing only single-partition transactions, 
the PE threads should not conflict with each other. But 
from the profiling tool, we see several PE threads that are 
blocked on each other waiting for network resources. This 
is because that different PE threads try to put client 
response message to Post Queue thread at the same time. 
Then, we use the logging threads to resolve the lock 
contention between PE threads with the Post Queue thread. 
Each PE thread passes client responses to its logging thread 
directly, instead of competing with other execution threads 
for the shared network I/O resource. This allows the PE 
threads to go back and process more incoming transactions  



 
Figure 6: Performance with reduced lock contentions 

without blocking. Then the logging thread puts those client 
responses to the Post Queue thread. 

In H-Store, there are some locks that are needed (e.g., locks 
that are useful to add transaction requests to queues in the 
system). Thus, we cannot remove them entirely but we can 
reduce the amount of time that the locks are held. By using 
JProfiler, we gather information about how long each lock 
lasts and what threads are waiting to acquire that lock. We 
find several places where we can reduce the critical 
sections between the PE threads and the transaction Queue 
Initiator thread. We shorten the time that the locks are held 
and remove the acquiring nested locks inside of the PE 
threads. There are also some places that the transaction 
queue in the PE threads try to acquire the lock it holds 
already and we optimize this case.  

With all these fixes of lock contention and objects pooling, 
we run the Voter benchmark on the fixed H-Store, compare 
it with the original H-Store, and demonstrate the results in 
Figure 6. This time our fixed H-Store has a higher 
throughput than the original version of H-Store, no matter 
how many partitions are used. The critical sections appear 
more times when there are a large number of PE threads. 
This is why our fixed H-Store has a bigger throughput 
increase with a large number of cores. 

4.3 Recovery Logging 
Using JProfiler again, we find a large number of objects in 
memory that are related to Command Log entries. The 
number of allocated objects for the buffer of the Command 
Logger is too big. These objects introduce the JVM to 
invoke GC many times in a short time interval. Then, the 
GC pauses PE threads, reducing the overall system 
throughput. But we find a mistake where the system 
calculates the number of log entries to use per partition. H-
Store commits early before all the allocated Command Log 
entries are used. We fix this problem by allocating fewer 
log entries for each partition and let the system commits 
them in a batch when the buffer of the Command Log 
entries is fully used.  

 
Figure 7: Final performance comparison 

Instead of allocating and destroying the Command Log 
entries objects at run time, we pre-allocate a number of 
Command Log entries when starting the system and reuse 
them after H-Store commits them to log in disk. We switch 
the maximized number of log entries for each partition to a 
small number. This is because that we want to keep fewer 
objects in the heap. In order to get the best performance of 
the system, future work may focus on how to determine the 
number of log entries to be pre-allocated.  

We run the Voter benchmark on H-Store again using these 
three major fixes from 4.1, 4.2, and 4.3. Then, we 
demonstrate the total performance improvement compared 
with the original version of H-Store in Figure 7. 

Our fixed version of H-Store improves throughput by 70% 
over the original non-optimized version. Its performance 
linearly increases with up to 13 execution cores. The 
throughput of H-Store, however, is still not able to speed up 
any more and it stays stable. 

5. FUTURE WORK 
Figure 7 shows that the H-Store system still has issues 
preventing it from scaling up linearly when it is running on 
more than 14 cores. The main bottleneck is still the same. 
The GC is invoked more frequently with more cores. 
Future investigations will focus on the tuning of the 
garbage collector of the JVM. We will also explore using 
different garbage collectors provided by JVM and tune 
their parameters to achieve better performance. We will 
investigate the effects of calling C++ codes through JNI to 
garbage collection. 
More optimization of the system will focus on its buffer 
pool manager. For the worst case, if we find the next 
bottleneck to be the garbage collector only, we will re-write 
the front part of the system in C++ instead. 

6. RELATED WORK 
There has been an extensive amount of work on diagnosing 
DBMSs’ performance bottleneck. The Shore-MT project 
[6] studies the scalability of the database storage managers 
for the multi-core machine. It removes the internal 
bottlenecks of DBMS and has a higher absolute throughput 



than its peers. DORA [17] is a system that decomposes a 
transaction to smaller actions and assigns actions to threads 
based on which data each action is about to access. But the 
scenario changes if the DBMSs put all data in main 
memory and many different issues come out. 

7. CONCLUSIONS 
Main memory database management systems can greatly 
improve performance over traditional disk-oriented 
DBMSs for OLTP applications. As multi-core processors 
become more prevalent, architectures need to be re-
examined in order to fully utilize them. There are, however, 
various issues preventing them from scaling up linearly. H-
Store is one such MMDBMS designed for multi-core 
processors, but we find its performance degrades when it is 
running on a large number of cores. After in-depth 
investigation, we remove major internal bottlenecks related 
to excessive allocated objects in memory, lock contentions, 
and recovery logging. Our fixed version of H-Store 
improves throughput by 70% from its original version. The 
approach we attempt to find these performance issues in H-
Store can also be applied to future investigations. 
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