
An Investigation of Performance Bottlenecks in a Main-
Memory Database Management System

Xin Jia

xin@cs.brow.edu
Brown University

ABSTRACT
The rise of Internet-based applications means that database
management systems (DBMSs) need to support a large
number of concurrent clients issuing transaction requests.
But the speed in which traditional DBMS are able to access
data is insufficient because of the limited bandwidth of disk
storage devices. Main memory database management
systems (MMDBMS) [16] store data entirely in memory to
overcome the high latency of these storage devices.
Furthermore, a DBMS running on a single-core processor
system reaches the computation limitation to process
multiple requests efficiently because of the contention
overhead from many concurrent requests. The arrival of
multi-core processors makes parallel computing possible in
a single system. But although multi-core processors have
more computational power, executing transactions in the
correct order makes it difficult for a DBMS to take
advantage of them.
In this paper, we explore the different types of bottlenecks
found in MMDBMS when it is running on a multi-core
system. Particularly, we use the H-Store MMDBMS as our
test bed for this work. We identify three key issues,
namely, excessive allocated objects, lock contentions, and
recovery logging overhead as the main factors in
preventing H-Store from scalability. We describe how to
fix these issues, evaluate the performance of H-Store before
and after these fixes, and show that we are able to improve
throughput by 70%.

1. INTRODUCTION
The previous decade saw the emergence of separate,
dedicated DBMS for online transaction processing (OLTP).
OLTP applications focus on executing short-lived, small-
footprint transactions with high throughput and strong
consistency guarantees. Most of these transactions read or
write a few records at a time, execute low latency without
“user stalls”, and require lightweight concurrency control
mechanism. Most of the total size of OLTP databases is
small and growing slowly. [1]
Traditional DBMSs are predicated on the idea that
database’s primary storage location is on a disk. This is
because disks were more affordable than memory at that
time. The limited data access speed of disk-oriented

storage, however, is a bottleneck for many OLTP
applications. Accessing data from main memory is several
order of magnitude faster than from disk. Today, main
memory with several Gbytes has become common and
affordable. The increasing size of the memory at an
affordable price makes it possible for many OLTP
applications to store all of their data in main memory. A
system that is designed for running entirely on main
memory can eliminate the data access bottleneck[4].
As we enter the multi-core era, the future computational
abilities of single-core processors are limited. Thus, the
only way to improve throughput is to take advantage of
new multi-core processors. The increasing computational
power of multi-core processors provides one solution to
this problem. Ideally by dividing an application across
cores, the overall performance can improve in proportion to
the number of cores. But, in modern database applications,
this scalability depends on whether the workload can be
easily divided in this manner. [2,3]
Based on the two features mentioned above, DBMSs using
main memory architecture running on multi-core CPUs can
execute modern transaction processing workloads
efficiently. Applications developers expect DBMS to scale-
up as more hardware resources are provided to it. But
achieving this is difficult.
In this paper, we investigate why this is difficult. Our work
focuses on the H-Store OLTP DBMS. [13] H-Store makes
use of multi-core systems with abundant main memory to
get significantly high transaction processing throughput
than traditional DBMSs. For perfectly partitioned
workloads, H-Store should be able to improve its
throughput linearly as more CPU cores provided to it. As
we show in the paper, however, this is not the case for H-
Store running on system with more than eight cores.
We first begin in Section 2 by introducing H-Store’s design
architecture. In Section 3, we present an experiment that
demonstrates H-Store’s failure to scale up on processors
with many cores. Then, we design experiments to
investigate performance issue of H-Store. Following that,
in Section 4, we describe the three main performance
bottlenecks and our work to resolve them. At last, we
conclude with a discussion of future work to improve H-
Store.

2. H-STORE OVERVIEW
This section presents the overview of the H-Store
MMDBMS. It is a parallel main memory relational DBMS
that is designed to scale up on a cluster of shared-nothing
nodes and optimized for OLTP applications. We introduce
the design model of H-Store first and describe the system’s
architecture through its execution environment and internal
threads. Then, we describe why H-Store uses the
techniques including the Command Logging and group
commit.

2.1 Design Model
A node in H-Store is a single physical computer system that
hosts one or more execution sites. A site is the logical
operational entity in the system; it is a single-threaded
execution engine that manages some portion of the
database. It consists of partitions and they are responsible
for executing transactions. [13]
Every table for a database in H-Store is horizontally
divided into disjoined partitions based on column keys. It is
row-storage DBMS and the rows are separated across the
partitions. All transactions are executed as stored
procedures. A set of stored procedures consists of the
application logic in H-Store. Each stored procedure has a
unique name, several parameterized SQL commands and a
run method that contains user-written Java code.
Applications issue requests to an H-Store system to invoke
the stored procedures as transactions. All of the stored
procedures fetch data from partitions directly without
accessing a disk.
Each transaction in H-Store is categorized as either a
single-partition transaction or a multi-partition transaction
(i.e., distributed transaction). Single-partition transactions
only access data in one partition while distributed
transactions access data on multiple partitions. Previous
work [2,3] has shown how to choose the right partitioning
scheme designed to allow most transactions to be single-
partition transactions. And H-Store is optimized for single-
partition transactions. A heavyweight concurrency control
mechanism, however, is necessary for distributed
transactions to ensure correctness.

2.2 Architecture
H-Store is written in two programming languages: C++ and
Java. The Execution Engines (EEs) of H-Store are in
charge of the low-level data manipulation operations in the
database. Every query executing in H-Store has to invoke
the codes in EE to access or update the data. Each Partition
Execution (PE) thread is a single thread assigned to a
separate core. H-Store guarantees that a PE thread is pinned
to a single core and that no other thread is allowed to run
on that core. The EE is written in C++ as this allows for
fine-grained control of memory. The front end of the
system, that contains the core functional features, is written
in Java. In order to call the C++ code functions of the EE
from Java code level, it uses Java Native Interface (JNI).

Figure 1: Overview of system threads

Threads in H-Store are divided into two groups: (a) system-
networking threads, (b) transactions management threads.
These threads are illustrated in Figure 1.
When the application issues a transaction request to H-
Store, the incoming request is processed by a Client
Acceptor thread. This thread accepts connection from
applications and forward requests to internal network
threads. The transaction Queue Initiator thread will process
the request passed from networks threads and determine
which partition to invoke the stored procedure on and
which partitions the transaction will need to access. Then, it
initiates incoming transactions and passes them to different
PE threads. Each PE thread takes transaction requests from
its work queue, executes them, and sends results to a
logging thread that is assigned to it. After that, each logging
thread sends execution results to the Post Queue thread.
Later this Post Queue thread will send results back to
client.

2.3 Command Logging & Group Commit
To ensure transactions are durable, H-Store uses the
Command Logging [12] technique as its log manager.
Command logging keeps the invocations of transactions as
they are executed (i.e., the name of the stored procedure
and the transaction input parameters), not the consequences
of them. By recording only the invocations, the amount of
data that the system writes to disk per transaction is small,
limiting the impact the disk I/O will have on performance

Figure 2: Throughput of H-Store

of the system. Although Command log will require addition
processing to replay to the most recent state of the
database, it is fast and lightweight compared to Write-
Ahead log, which contains all the changed made to the
records. This is the reason why H-Store chooses to use the
Command Logging technique, rather than traditional Write-
Ahead Logging (WAL). [21]

Instead of flushing the buffered log entries to disk per
transaction, H-Store commits incoming transactions in a
batch whose invocations are buffered in the system. Group
commit technique removes the disk writing I/O bottleneck.
H-Store does a group commit when the buffer is full of
transaction invocations and flushes the buffer to disk
permanently. [20]

3. INVESTIGATION EXPERIMENTS
Since most transactions in H-Store are single partitioned,
the system should be able to scale-up easily as more cores
are added. This is because the PE threads will not block
each other. It is designed to execute single-partitioned
transactions efficiently. But as we now demonstrate, this is
not the case for H-Store running on a large number of
cores.
In this section, we describe how we investigate the
bottleneck shows the performance problem. We first
demonstrate its scalability issues by running experiments.
Then, we present the CPU utilization rate when H-Store is
running with different partition cores. Following that, we
make a new Client Imitator to validate our hypothesis,
introduce a profiling tool, and other debug methods to
diagnose the system. At last, we show the observation
results and point-out the performance problems.

3.1 Scalability Issues
The Voter benchmark models a talent-show voting
application. [22] It is based on the software system used for
the Japanese version of the American Idol television show.
Because the benchmark consists of short-lived, single-
partition transactions, it is the ideal application to use on a
MMDBMS.

Figure 3: Average CPU utilization for execution cores

We run the Voter benchmark on a single node with an
increasing number of partitions ranging from 1 to 16. For
each trial, we let the system “warm-up” for 90 seconds and
then the throughput is measured for 60 seconds. We
execute the benchmark three times in total per trial and
report the average throughput of these trials. The final
throughput measurement is the average number of
transactions completed in a trial run divided by the total
time (excluding the warm-up period).
Transaction requests are submitted from up to 16 simulated
client terminals running on the same nodes. Each client
submits transactions at a rate of 20,000 transactions/second
without blocking until the system has 500,000 transactions.
Using multiple clients at such a high transaction submission
rate ensures that the execution engines’ workload queues
are never empty.
The results in Figure 2 show that the system does not scale
linearly with more than 8 cores. In fact, the performance
actually gets worse. There are problems that prevent the
system throughput from linearly increasing with more
partition execution cores.

3.2 Utilization of multi-core CPU
When running the Voter benchmark on H-Store, we notice
that the CPU utilization rates for the PE cores decreases
with using more cores. H-Store should be able to fully use
the PE cores provided by the CPU and the utilization rate
of each execution core is expected to be up to 100%. This
is because no single-partitioned transaction will be blocked
because of anther single-partitioned transaction. All
transactions are single-partitioned and each PE core is
single-threaded. But, this is not the case when the Voter
benchmark is running on H-Store with more cores.
We collect the CPU utilization rate for each execution core
every five seconds during executing the Voter benchmark.
The result in Figure 3 shows that the average CPU
utilization rate of execution cores decreases with more
cores. H-Store ensures that a PE thread is running on a
single core without any others threads competing for it, so
each PE thread should fully use the core that it is pinned to.
Limited by the reduced utilization of the multi-core CPU,

H-Store does not take the advantage of all the
computational power of the multi-core processors, and
thus, the overall throughput is below the expected target
line in Figure 2.
Given these results, we need to investigate the causes of the
reduced CPU utilization. At first we suspect that the
overhead of the transmitting transaction requests over the
network is causing the execution engines to be idle because
of workload shortages. To explore this assumption, we add
more clients to issue transaction requests to the system and
improve the clients’ transactions issuing rate. The PE cores
are still not fully utilized, which leads us to another
hypothesis that the system is network I/O bound. This
bound can limit enough incoming transaction requests from
clients.

3.3 Embedded Clients
In order to inspect and verify our hypothesis, we create a
new special thread directly inside of the DBMS to generate
transaction requests continuously without involving the
network. This eliminates any possible overhead due to the
network. So, if our hypothesis is true, the Partition
Execution cores should be fully used with this new Client
Imitator.
We run the system with the Client Imitator again and the
trends of the new average CPU utilization for execution
cores are the same as in Figure 3. The PE cores fail to be
fully used no matter how many transactions are generated
to the system. Thus, networking I/O is not the bottleneck,
and the issue must be in the internal transaction
management portion of the system.

3.4 JVM Profiling & Debug Tools
An in-depth study of the performance bottleneck of a large
DBMS requires information about how the system is using
the hardware advantages. We use a variety of tools to
collection execution information of H-Store, including
JVM profiling tool, JVM debug options, and H-Store debug
options.
Since H-Store uses Java for its transaction management and
coordinal subsystem, we choose a JVM profiling tool to
analyze the execution details of H-Store. The Java profiling
tool we use is JProfiler [11], which provides the ability to
view the information about CPU utilization, memory usage,
threads status, and locking graph. This tool also records the
number of objects the system has allocated, the garbage
collection (GC) activity, and the hot spots of methods and
classes.
The JVM itself also provides debug options to help
application developers to understand its activity. In JVM,
there are daemon threads called Garbage Collectors that
attempt to arrange the heap to ensure that the subsequent
space requests are successful. Unreferenced objects in heap
are deleted in the GC’s work cycle and these cycles can
lead to unexpected pauses in the execution of application
code. The pause time of GC indicates how long it pauses
the system from running other applications on it. The GC

Figure 4: Summation of GC pause time

liberates Java programmers from the memory management
work and helps them focus more on useful logic instead.
But for a system with high performance goals,
programmers have to take garbage collection into
consideration to achieve the desired performance.
H-Store also provides additional debug options to output
status details for Partition Executors. The system collects
information about how much time it spends on execution
transactions, sitting idle waiting for new work or
processing utility work. Moreover, it reports the size of
each transaction work queue, the average execution time of
the transactions, and how the incoming transactions are
distributed to different Partition Executors. Ideally, we
want transactions to be evenly distributed among partitions.

3.5 Observation Results
Using JProfiler, we see that the total memory size of the
system grows quickly when we are running the Voter
benchmark. In order to check whether they are expected or
not, we create a stored procedure that does not execute any
query or perform any comprehensive work. Without any
updates to the tables in H-Store, its memory usage should
not increase. Now we run the Voter benchmark again with
the same settings. But in fact, the amount of memory that
the system uses arises and drops greatly as much as before.
The above observations lead us to focus on memory related
issues.
This time we invoke the new stored procedure at a low rate
to the system and record the allocated objects in the Java
Heap in H-Store using JProfiler. With fewer incoming
transactions that do not update the database, the quantity of
allocated objects in the system should be stable. We see
however that many objects inside of the single-partitioned
transaction object are increasing quickly when a transaction
comes into the system.
Meanwhile, we also find the other CPU cores, rather than
the PE cores, are doing work that H-Store does not specify
them to do. CPU utilization of non-PE cores is unexpected
high. As the JVM uses a garbage collector to perform most
of its work concurrently (i.e., while H-Store is running) to
reduce the pause time of GC, we realize that the activities
on the other cores are related to garbage collection. By
enabling the GC debug output, we are able to record the

pause time in the activity of the GC and present the
summation of pause times in Figure 4. The GC pause time
are recorded while executing the Voter benchmark for 150
seconds on H-Store. This figure shows that the GC pause
time increases as more cores are used.
Because each PE thread is a single thread that do not share
their allocated objects, H-Store will allocates more objects
with increasing the number of cores. This means that more
objects are created as more partitions are added to the
system.
In order to ensure correctness, the GC has to pause all the
threads in the system, even though these threads are all
single threads that do not need to be blocked, when it
reclaims memory. The overhead of GC is not significant for
a small number of objects in the heap, but it is serious with
more objects when the heap becomes corresponding larger.
This is the reason why the garbage collection pause time
increases with more partitions.
Moreover, if a thread is in the middle of a JNI call, it takes
longer for the GC to pause the whole application running
on the JVM. H-Store requires using JNI to call C++
functions to read, insert, or update the data in the database.
This is a key part of the system, and we cannot make
changes of this main architecture.

4. IMPROVEMENTS
In this section, we discuss our work to resolve the
performance scalability issues described above. We first
start from making changes related to reducing the number
of allocated objects, followed by the fixes of removing lock
contentions in the H-Store system. Then we examine the
recovery logging component and optimize it. For each kind
of these three fixes, we demonstrate the performance of H-
Store compared with the original H-Store by executing the
Voter benchmark.

4.1 Reducing Object Allocations
As shown in Section 3.5, we know that the GC has a
significant impact on H-Store’s overall performance. In
order to prevent the GC operation from invoked frequently,
we can limit the number of objects allocated in H-Store.
H-Store uses the object pools that maintain a set of reusable
objects to avoid needing to allocate and destroy them at run
time. The profiling tool, however, shows that there are still
a large number of objects continuously created and
destroyed while H-Store is running. In order to find the
reason, we use our Embedded Client thread to issue
transaction requests at a low rate without inserting tuples to
the database and observe the memory usage status of the
system. Based on this evaluation, we see that several kinds
of objects are unnecessarily allocated and they are
generally categorized into three parts:

(1) Distributed transaction-related data structures.
(2) Unnecessary object arrays.
(3) Internal per-partition transaction state objects.

Figure 5: Performance with reduced objects

For the first group, we find a lot of allocated objects that
are only needed by distributed transactions, like read and
write sets for tables. Because most transactions in OLTP
applications are single-partitioned, these objects allocated
for distributed transactions are not helpful. We moved
those objects into a special container that is allocated for
creating distributed transactions.
For the second group, we find some allocated array of
objects that can be replaced by a single variable. For
example, the cached query batch planner in H-Store is
guaranteed not shared across partitions, so there is no need
to create a new array for every SQL statement batch. This
change eliminates the number of total objects allocated in
the system.
For the last group, we fix it by allocating objects as late as
possible until the Partition Executing thread has to use
them. This optimization shortens the lifetime of allocated
objects in the system, and thus, it reduces the frequency in
which the GC is invoked.
After minimizing the number of allocated objects in H-
Store, we run the Voter benchmark again and show the new
performance compared with the original H-Store. In Figure
5, although the trends are same, the throughput of the fixed
version of H-Store is higher than the original version. The
performance of both versions of H-Store drops off at 13
partitions.

4.2 Reducing Lock Contentions
If the system is executing only single-partition transactions,
the PE threads should not conflict with each other. But
from the profiling tool, we see several PE threads that are
blocked on each other waiting for network resources. This
is because that different PE threads try to put client
response message to Post Queue thread at the same time.
Then, we use the logging threads to resolve the lock
contention between PE threads with the Post Queue thread.
Each PE thread passes client responses to its logging thread
directly, instead of competing with other execution threads
for the shared network I/O resource. This allows the PE
threads to go back and process more incoming transactions

Figure 6: Performance with reduced lock contentions

without blocking. Then the logging thread puts those client
responses to the Post Queue thread.

In H-Store, there are some locks that are needed (e.g., locks
that are useful to add transaction requests to queues in the
system). Thus, we cannot remove them entirely but we can
reduce the amount of time that the locks are held. By using
JProfiler, we gather information about how long each lock
lasts and what threads are waiting to acquire that lock. We
find several places where we can reduce the critical
sections between the PE threads and the transaction Queue
Initiator thread. We shorten the time that the locks are held
and remove the acquiring nested locks inside of the PE
threads. There are also some places that the transaction
queue in the PE threads try to acquire the lock it holds
already and we optimize this case.

With all these fixes of lock contention and objects pooling,
we run the Voter benchmark on the fixed H-Store, compare
it with the original H-Store, and demonstrate the results in
Figure 6. This time our fixed H-Store has a higher
throughput than the original version of H-Store, no matter
how many partitions are used. The critical sections appear
more times when there are a large number of PE threads.
This is why our fixed H-Store has a bigger throughput
increase with a large number of cores.

4.3 Recovery Logging
Using JProfiler again, we find a large number of objects in
memory that are related to Command Log entries. The
number of allocated objects for the buffer of the Command
Logger is too big. These objects introduce the JVM to
invoke GC many times in a short time interval. Then, the
GC pauses PE threads, reducing the overall system
throughput. But we find a mistake where the system
calculates the number of log entries to use per partition. H-
Store commits early before all the allocated Command Log
entries are used. We fix this problem by allocating fewer
log entries for each partition and let the system commits
them in a batch when the buffer of the Command Log
entries is fully used.

Figure 7: Final performance comparison

Instead of allocating and destroying the Command Log
entries objects at run time, we pre-allocate a number of
Command Log entries when starting the system and reuse
them after H-Store commits them to log in disk. We switch
the maximized number of log entries for each partition to a
small number. This is because that we want to keep fewer
objects in the heap. In order to get the best performance of
the system, future work may focus on how to determine the
number of log entries to be pre-allocated.

We run the Voter benchmark on H-Store again using these
three major fixes from 4.1, 4.2, and 4.3. Then, we
demonstrate the total performance improvement compared
with the original version of H-Store in Figure 7.

Our fixed version of H-Store improves throughput by 70%
over the original non-optimized version. Its performance
linearly increases with up to 13 execution cores. The
throughput of H-Store, however, is still not able to speed up
any more and it stays stable.

5. FUTURE WORK
Figure 7 shows that the H-Store system still has issues
preventing it from scaling up linearly when it is running on
more than 14 cores. The main bottleneck is still the same.
The GC is invoked more frequently with more cores.
Future investigations will focus on the tuning of the
garbage collector of the JVM. We will also explore using
different garbage collectors provided by JVM and tune
their parameters to achieve better performance. We will
investigate the effects of calling C++ codes through JNI to
garbage collection.
More optimization of the system will focus on its buffer
pool manager. For the worst case, if we find the next
bottleneck to be the garbage collector only, we will re-write
the front part of the system in C++ instead.

6. RELATED WORK
There has been an extensive amount of work on diagnosing
DBMSs’ performance bottleneck. The Shore-MT project
[6] studies the scalability of the database storage managers
for the multi-core machine. It removes the internal
bottlenecks of DBMS and has a higher absolute throughput

than its peers. DORA [17] is a system that decomposes a
transaction to smaller actions and assigns actions to threads
based on which data each action is about to access. But the
scenario changes if the DBMSs put all data in main
memory and many different issues come out.

7. CONCLUSIONS
Main memory database management systems can greatly
improve performance over traditional disk-oriented
DBMSs for OLTP applications. As multi-core processors
become more prevalent, architectures need to be re-
examined in order to fully utilize them. There are, however,
various issues preventing them from scaling up linearly. H-
Store is one such MMDBMS designed for multi-core
processors, but we find its performance degrades when it is
running on a large number of cores. After in-depth
investigation, we remove major internal bottlenecks related
to excessive allocated objects in memory, lock contentions,
and recovery logging. Our fixed version of H-Store
improves throughput by 70% from its original version. The
approach we attempt to find these performance issues in H-
Store can also be applied to future investigations.

8. REFERENCES
[1] M. Stonebraker, S. Madden, D. J. Abadi, S.

Harizopoulos, N. Hachem, and P. Helland. The end of
an architectural era: (it’s time for a complete rewrite).
In VLDB, pages 1150–1160, 2007.

[2] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware
automatic database partitioning in shared-nothing,
parallel OLTP systems. In SIGMOD ’12: Proceedings
of the 2012. international conference on Management
of Data, pages 61–72, 2012.

[3] Carlo Curino, Evan Jones, Yang Zhang, Sam Madden.
Schism: a Workload-Driven Approach to Database
Replication and Partitioning. In VLDB ’10.

[4] S. Harizopoulos, D. J. Abadi, S. Madden, and M.
Stonebraker, "OLTP through the looking glass, and
what we found there," in SIGMOD ’08.

[5] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi, "H-Store: a High-
Performance, Distributed Main Memory Transaction
Processing System," Proc. VLDB Endow., vol. 1, iss.
2, pp. 1496-1499, 2008.

[6] R. Johhson, I. Pandis, N. Hardavellas, A. Ailamaki and
B. Falsafi. In EDBT ’09: Shore-MT: A Scalable
Storage Manager for the Multicore Era.

[7] E. P. C. Jones, D. J. Abadi, and S. Madden, "Low
Overhead Concurrency Control for Partitioned Main
Memory Databases," in SIGMOD ’10.

[8] J. D. Davis, J. Laudon and K. Olukotun. “Maximizing
CMP Throughput with Mediocre Cores”. In Proc.
PACT, 2005.

[9] Virtual Machine Garbage Collection Tuning:
http://www.oracle.com/technetwork/java/javase/gc-
tuning-6-140523.html#generations.performance

[10] E. Bugnion, S. Devine, and M. Rosenblum. “Disco:
running commodity operating systems on scalable
multiprocessors.” In Proc. SOSP, 1997.

[11] JProfiler: http://www.ej-
technologies.com/products/jprofiler/

[12] Malviya, Nirmesh and Weisberg, Ariel and Madden,
Samuel and Stonebraker, Michael. “Recovery
Algorithms for In-memory OLTP Databases” In
Submission, 2013.

[13] H-Store: A Next Generation OLTP DBMS.
http://hstore.cs.brown.edu

[14] J. Gray. “Tape is Dead, Disk is Tape, Flash is Disk,
RAM Locality is King.” Gong Show Presentation at
CIDR, 2007.

[15] VoltDB. http://www.voltdb.com.
[16] DeWitt, David J and Katz, Randy H and Olken, Frank

and Shapiro, Leonard D and Stonebraker, Michael R
and Wood, David. In SIGMOD 1984: "Implementation
techniques for main memory database systems".

[17] Pandis, Ippokratis and Johnson, Ryan and Hardavellas,
Nikos and Ailamaki, Anastasia. In VLDB 10:"Data-
oriented transaction execution".

[18] Heytens, M. and Listgarten, S. and Neimat, M-A. and
Wilkinson, K. In heytens95: "Smallbase: A Main-
Memory DBMS for High-Performance Applications".

[19] Whitney, Arthur and Shasha, Dennis and Apter,
Stevan. In HPTS 1997: "High Volume Transaction
Processing Without Concurrency Control, Two Phase
Commit, SQL or C++".

[20] Helland, Pat and Sammer, Harald and Lyon, Jim and
Carr, Richard and Garrett, Phil and Reuter, Andreas. In
HPTS 1989: "Group Commit Timers and High
Volume Transaction Systems".

[21] C. Mohan, Don Haderle, Bruce Lindsay, Hamid
Pirahesh, Peter Schwarz. In TODS 1992: "ARIES: a
transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-
ahead logging".

[22] Voter benchmark:
https://github.com/VoltDB/voltdb/tree/master/example
s/voter

