
Web Interfaces for Human Bidding Agents and

General Auction Scheduling with the

Java Auction Configuration Kit (JACK)

Andrew Loomis
Department of Computer Science

Brown University

May 14, 2013

1 Introduction

The simulation of real-world economic markets is a crucial capability for the experimental economists who
are trying to understand them. In particular, the ability to perform user studies can lead to important
insights into the behavior of humans in these domains [1, 2, 3, 4]. In many of these markets, auctions
are a significant mechanism used to distribute goods and services. The goal of this work is to extend the
functionality of the Java Auction Configuration Kit (JACK) [1], a general purpose auction simulator, to more
easily support large user studies in a variety of auction domains and configurations. To that end, this work
is divided into improving JACK in two key areas: the first area is the addition of a web interface for human
bidders, and the second area is the implementation of a robust mechanism for general auction scheduling.

The current JACK implementation does not provide an extensible solution for running auction simulations
with large numbers of human participants. It requires that all participants download and install a client
application capable of interfacing with the JACK server running the simulation. The addition of a web
interface for human participants has many advantages over the current design. Such an interface would make
running large scale experiments much easier. Tightly integrating this interface with Amazon Mechanical
Turk (Mturk) and other online crowdsourcing facilities could create near on-demand auction simulations
with human participants. Such a setup would be extremely valuable to the researchers and educators trying
to better understand human behavior in complex games [5]. Section 2 covers the implementation of such an
interface in more detail.

In addition to providing convenient and easy to use interfaces for auction simulations, flexible configura-
tion is a key feature for any simulator. In particular, the scheduling of multiple auctions distinguishes many
types of real-world markets from one another. Sequential and simultaneous schedules are common, but more
complicated schedules also exist such as those that can be found on eBay, or in the Dutch flower auctions.
JACK does not have a convenient way to express these diverse schedules. In fact, the only way they can
currently be expressed is by implementing them manually in code. Section 3 will cover an implementation
of general auction scheduling through configuration that attempts to solve this problem for many different
types of auction schedules.

1



Jack Server

Super Auction

Auction Auction

User InterfaceServer Side
(Java)

Valuation Generator

Jack Client

Client Side
(Java, Python, C++)

TCP/IPAuction Auction

Jack ClientTCP/IP

Jack (Web) Client
Web Interface

Web Interface

Web ServerTCP/IP
HTTP

HTTP

Autonomous
Agent

Command 
Line Interface

Database

stdout
stdin

Figure 1: Client-server architecture of JACK.

2 Web Interface

The architecture of the JACK framework follows the client server model. At a high level, the server is
responsible for executing auction simulations, while the clients are responsible for participating in them.
The communication protocol between the server and clients is well defined for each auction type, and so
clients can be written in any language that support TCP/IP. These clients generally fall into one of two
categories. They are either autonomous agents or interfaces for human participants. The current JACK

library comes with an implementation of a command line interface for human participants, however it is not
particularly convenient or efficient for conducting human experiments. We can still use this implementation
as a model for implementing a much more powerful web interface for humans that requires almost no changes
to the JACK server backend. An overview of new architecture with such an interface is shown in Figure 1.

The JACK web client is implemented using Python’s Django framework and uses a sqlite database as its
backend. Like other clients, the web client communicates with the server using TCP/IP. When a typical
client receives a message from the server it either passes that information to an autonomous agent or presents
that information directly to a user. In contrast, the web client stores this information in a database. The
web interface, which is implemented in HTML and Javascript, constantly polls this database through HTTP
requests looking for new information from the JACK server. When new information is detected, it is forwarded
to the web interface where it is presented to the user. Messages from the user to the JACK server, which
predominantly consist of bids, are returned in much the same way. When a user places a bid in the web
interface an HTTP post is sent to the web server. The web server updates the database, and when the web
client detects that a new bid has been placed it forwards that bid to the JACK server.

2.1 Fantasy football auction draft

To demonstrate the capabilities of this design, this work includes an implementation of a web interface for
the fantasy football auction draft. The popularity of fantasy sports has continued to increase in recent years,
and many large media corporations such as CBS, ESPN, FOX, and Yahoo! offer their services to run online
leagues. In this game, as in all fantasy sports, players acting as virtual General Managers (GMs) run teams
composed of real athletes that compete against each other in predetermined statistical categories. At the
beginning of a season, players are distributed among the teams by means of one of several types of drafts. In
the auction draft, GMs take turns nominating players to go up for bid in an ascending auction. The bidding
is constrained by a fixed salary cap or budget that is used to pay for a manager’s entire team.

At its core the fantasy football auction draft consists of a set of sequential ascending common-value

2



Figure 2: Fantasy football auction draft web interface. Here, bidders compete in sequential ascending
auctions. The current player up for auction is in the center of the screen, the schedule of players going up
for auction is shown in the left pane, and the bidder’s current team is shown in the right pane.

auctions. The goods sold in these auctions are players, whose true value is unknown (as the season has not
yet been played) but can be estimated based on their past performance. The managers attempt to assemble
the best virtual football team as determined by their players’ combined statistical performances. They are
constrained not only by their budgets but also by a quota, which determines the number of players at each
position that they can draft. A given draft generally consists of ten managers that compete in over one
hundred consecutive auctions. The size of the auction and the complexity of the valuation functions for
each manager make this an interesting problem to study. A screenshot of the web interface for the fantasy
football auction draft is show in Figure 2.

3 General Auction Scheduling

Many of the games that JACK is used to simulate consist of multiple auctions executed according to some
predetermined schedule. Some common types of auction scheduling include sequential, simultaneous, and
sequential-simultaneous. In a sequential schedule, auctions are executed one after the other. Conversely,
in a simultaneous schedule, auctions are executed at the same time. This often means that they not only
start at the same time, but also that they end at the same time. In a sequential-simultaneous schedule
sets of simultaneous auctions are executed sequentially. While these schedules are relatively simple, more
complicated schedules can be found in the real world. For example, the Dutch Flower Auctions (DFAs)
consist of several sequential schedules that are executed asynchronously.

Previously, the implementation of any auction schedule within JACK was the responsibility of the game
designer. This resulted in inflexible simulations, whereby making small changes to the schedule required

3



(a) Sequential

(b) Simultaneous

(c) Simultaneous-sequential (d) Sequential-simultaneous

Figure 3: Example dependency graphs for some common auction schedules. The nodes in each graph
represent an auction, the red edges represent starting dependencies, and the blue edges represent ending
dependencies.

making changes to the code itself. In addition, more complicated schedules, such as those where auctions
are not executed synchronously, were nearly impossible to implement in the supporting framework. To
solve these issues, this project generalizes the auction scheduling problem by representing all schedules as
dependency graphs. This representation is flexible enough to describe many different types of complicated
schedules. In addition, we have integrated an implementation of this scheduling mechanism into JACK that
has many advantages such as simple configuration and multi-threaded execution.

3.1 Dependency Graph Representation

In our representation, an auction schedule is described by a directed graph with two different types of edges or
dependencies. Each node of the graph represents a single auction. This could be a single sealed bid auction,
ascending auction, descending auction, or even a multi-unit auction. The first type of dependency that can
exist between two auctions is a starting dependency. An auction which has a starting dependency on another
auction cannot be started before that auction has been completed. Sequential auctions can be described
entirely by their starting dependencies as shown in Figure 3a. The second type of dependency that can exist
between two auctions is an ending dependency. An auction which has an ending dependency on another
auction cannot end until that auction has also ended. Two auctions which have ending dependencies on each
other must then end at the same time. These types of dependencies are necessary to represent simultaneous
auctions. In addition, simultaneous auctions must also have the same starting dependencies. An example
of the dependency graph for simultaneous auctions is shown in Figure 3b. By combining both types of
dependencies into a single graph we can obtain more complication schedules. Example of simultaneous-
sequential and sequential-simultaneous auctions are shown in Figures 3c and 3d respectively.

4



3.2 Implementation

The implementation of general auction scheduling in JACK consists of two parts: dependency graph con-
struction and dependency graph execution. Dependency graph construction takes an XML configuration file
as input and outputs an adjacency list representation of the graph. Dependency graph execution takes this
representation and executes each auction in a separate thread according to the constraints specified by the
schedule.

The XML schema used to specify an auction execution schedule is designed to be simple and flexible.
At the outermost level is the schedule element. This element contains one or more task elements, which
are each associated with a specific auction. The auctions to which each task is referring are specified in a
different location. This makes it easy to swap out different schedules with the same auctions at configuration
time without the need to recompile code. Additionally, task elements can optionally contain one or more
dependency elements. The startDepend elements explicitly specify the starting dependencies of an auction,
and likewise the endDepend elements explicitly specify its ending dependencies. In this format the XML
configuration almost exactly mirrors the adjacency list representation used to execute the schedule.

However, explicitly specifying dependencies for many simple auction schedules can be cumbersome. Our
implementation provides an alternative to this approach by introducing the sequential and simultaneous
XML elements. These two additional tags are used to implicitly imply dependencies on the tasks that they
contain. Tasks encompassed in a sequential block are executed sequentially by adding a starting dependency
from each task in the block to the task before it. Tasks encompassed by a simultaneous block are executed
simultaneously by ensuring that they have identical starting and ending dependencies. The sequential
and simultaneous elements can also be arbitrarily nested to form sequential-simultaneous, simultaneous-
sequential, and other complex schedules. When both explicit and implicit dependencies are used in the
schedule configuration, the explicit dependencies are applied first, and the implicit dependencies are applied
second. Some example configurations that use both explicit and implicit dependencies are given in Figure 4.

Given the fully specified dependency graph of the auction schedule the JACK framework must now execute
it. Our implementation takes a simple approach. At each iteration of the main execution loop, it searches
for all of the auctions that have met their starting dependencies, and it starts them in their own thread.
Then it searches for all auctions that have been started and met their ending dependencies, and it ends
them. It repeats this process until either all auctions have finished or there are no auctions still running and
no others that can be started. This approach has the advantage that every auction that has met its starting
dependencies is started as soon as possible. It also guarantees to execute the schedule successfully as long
as that schedule is not logically invalid.

4 Conclusion

This project extended the JACK auction simulator in several key areas. First, it outlined a design for
integrating web interfaces for human bidders into the existing framework. Second, it introduced the concept
of general auction scheduling using dependency graphs. And finally, it provided an implementation of
both of these improvements in the form of the fantasy football auction draft and a flexible and easy to
configure scheduler. These additions have made JACK a more powerful and flexible tool for the researchers
and educators interested in learning more about human behaviors in complex markets. However, this work
is far from complete. The creation of simple to use interfaces for human bidders is only one step in the
direction of performing large scale user studies in these domains. Future work in this area should continue
to focus on these interfaces as well as the actual execution of user studies with them. In the area of auction
scheduling, there is still a lot of work to be done. More efficient algorithms for executing schedules based
on dependency graphs can certainly be achieved by topologically sorting these graphs. Simple problems
such as how to validate the dependency graphs and how to integrate these schedules with addition types of
dependencies (such as time) have not yet been implemented and are left as future work.

5



<schedu le>
<task auct ionId=”A”/>
<task auct ionId=”B”>

<endDepend auct ionId=”A”/>
</ task>
<task auct ionId=”C”>

<startDepend auct ionId=”A”/>
<startDepend auct ionId=”B”/>

</ task>
</ schedu le>

(a) Explicit dependencies

<schedu le>
<s e q u e n t i a l>

<task auct ionId=”A”/>
<task auct ionId=”B”/>
<task auct ionId=”C”/>

</ s e q u e n t i a l>
</ schedu le>

(b) Implicit dependencies

<schedu le>
<task auct ionId=”A”/>
<s imultaneous>

<task auct ionId=”B”>
<startDepend auct ionId=”A”/>

</ task>
<task auct ionId=”C”/>

</ s imultaneous>
</ schedu le>

(c) Explicit and implicit dependencies

Figure 4: This figure depicts several XML schedule configurations and their corresponding dependency
graphs. When building the graph from the configuration in 4c, the explicit starting dependency of auction
B on A is added first. Next the implicit dependencies are added to enforce the constraint that auction B
and auction C are simultaneous. This includes adding an additional starting dependency to C, as well as
making B and C ending dependencies of each other.

6



References

[1] T. Goff, A. Greenwald, E. Hilliard, W. Ketter, and E. Sodomka. Jack: A java auction configuration kit.
AAMAS-12 Workshop on Agent-Mediated Electronic Commerce (AMEC) and Trading Agent Design and
Analysis (TADA), June 2012.

[2] Robert Dorsey and Laura Razzolini. Explaining overbidding in first price auctions using controlled
lotteries. Experimental Economics, 6(2):123–140, 2003.

[3] R Mark Isaac. Just who are you calling risk averse? Jornal of Risk and Uncertainty, 20(2):177–187,
2000.

[4] John H Kagel, Dan Levin, and Arps Hall. Auctions: A survey of experimental research, 1995-2008.
Handbook of Experimental Economics, 2, 2008.

[5] Winter Mason and Siddharth Suri. Conducting behavioral research on Amazons Mechanical Turk. Be-
havior research methods, 44(1):1–23, 2011.

7


