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1 A Glance at Attribute-Centric Scene Representations

Take a look around you. How would you describe your surroogslio best give an idea of what
everything looks like to someone not there? Maybe you wilegh category to the scene, say,
‘bedroom’. You might try to list some of the objects aroundiytike ‘bed’, ‘lamp’, and ‘desk’. Or
perhaps you'll describe it with adjectives like ‘indoorgozy’, and ‘cluttered’. In computer vision,
(or more specifically, in scene understanding), the mostéife way to describe a visual scene is
also a major question.

Of the these three ways of describing a scene, (commonlyreeféo as categorization, scene pars-
ing, and attribute-based representation respectived§ggories have historically been the method of
choice. In categorization, an image (scene) is allowedlktinfa exactly one of an arbitrary number
of buckets. Attribute representations, however, are glpiccomposed of several sets of buckets
each of which will have a value associated with that scene.ifstance, a simple category-based
model would place an image in one of urban/rural/room, waeia binary attribute-based model
would have as attributes indoors and warm, each of which amied as either present or not. In
larger models, this leads to high dimensionality for atttéhbased models, which has been a large
disincentive for its use. In addition, classifying a sceraitire attribute set non-trivially falls un-
dermulti-label learning for which there exist very few learning algorithms in pagrulise. Lastly,
there is scene parsing[5], which involves using objectaets, possibly in conjunction, to build
distributions over objects to define scenes.

Despite all this, attribute-centric models are becomingexmmpular. As seen in Figure 1, attribute-
based representations give much more realistic partitbbrise space of visual scenes than cate-
gories. We not only explicitly receive a fuller descriptiofthe scene, but there is the added benefit
of a potential way to measure a distance between two sceaeddhs not require storing means of
other images in the same category.

The authors of [2] further define visual attributes, introithg a dichotomy ofliscriminativeand
semanticattributes. Discriminative attributes do not have any geéined meaning. Instead, they
are each built from trials where selected combinations afgeclasses (i.e. labels of categories and
semantic attributes) are used to accordingly place inetftom the dataset in two partitions. For a
given partition, classifiers are trained on different loweael (texture/color-based) features, and the
resulting models that confidently and accurately discratéramong the selected classes are kept as
the discriminative attributes.

Semantic attributes, on the other hand, have an interpectadaning (several examples of classes
are shown in Figure 1). Semantic attribute classes may thlgesbe categorized differently by
a general visual property relevant to modeling. As an examipt us consider spatial persistence.
An attribute such as “rusty” is local: it is clear that it ajgsl only to certain parts of a scene (the
rusty ones). Conversely, “open area” is a global attribiisgpresence (according to our perception)
can not be attributed to any specific part of a scene, and ltegpentirely. Or, an attribute may
be spatially ambiguous: either it can exist in both localigll forms or we might not consciously
know (“driving” and “competing” being two examples). Clgamodeling assumptions can affect
the understanding of local and global attributes diffeyent
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Figure 1: A comparison of scene understanding with atteib(left), and categories (right)[8].

For large-scale, data-driven computer vision systems,baipas factor in determining success is
the quality of the dataset used in training. We will focusrily on two datasets made specifically
for scene understanding. The SUN database[11] contains1d@@&000 images, each annotated
with one of 899 scene category labels, the first dataset te sawh fine definitions of their scene
categories. With this data, the authors achieve new bendsmascene classification. Of course,
we are interested in scene attributes, and for that we lodieaBUN Attributes dataset[8], a subset
of the SUN database containing over 14,000 images. Eacheinsagnnotated with a binary label
for each of 102 semantic scene attribute classes indictitatglass’s presence. The set of attribute
classes forms four groups: functional affordances, matgrsurface properties, and the spatial
envelope (eg. “praying”, “grass”, “glossy”, “no horizorrgspectively). Labels were collected via
crowd-sourcing.

The remainder of this paper is as follows: in section 2, warkveakly-supervised attribute detection
for semantic attributes is reviewed, and in section 3, a Ispraject on learning discriminative
attributes in a bayesian nonparametric framework.

2 Weakly-Supervised Attribute Detection

2.1 Background and Relevant Work

Now that we have a dataset of scenes annotated with attritage labels, it is appropriate to de-
termine the capabilities of that dataset in scene/imagenstahding. We first consider examples
from the two aforementioned dataset publications. In |8, authors experiment with image class
recognition, the task of predicting the class label of a ir@sige, given training images annotated
with a label for each class (in their case, the label cornedpdo attribute presence). In addition to
other potential applications, the labels learned fronikatte class recognition can be used to boost
the performance of a previously existing computer visiordelp(eg. an object detector), by pro-
viding contextual information from which scene correlag@an be established. In [11], the authors
introduceScene Detectignvhere scene categories are assigned to imegjens as opposed to just
entire images (the authors take an approach based on shdtidgws, common in object detection).
This prompts an interesting question: what about an imadendnat part(s) of it define a scene to a
computer?

What we would like to explore combines ideas from both of ¢hggblications. Extending the pre-
vious question to attributes, we wish to learn what pixelthimimage of a scene correspond to a
certain attribute. For instance, we want to know what arpaheé scene are “rusty”, or suggest
affordance of “sunbathing”. An ideal model for achievingstivould be able to learn not just basic



features (color, texture, etc.) of an attribute, but highel features that presumably humans also
perceive and use to distinguish attributes (continuitdlity, size, shape, location, relation to sur-
roundings, etc.). If successful, we could then construattoshary of visual definitions for an entire
set of attributes.

Such a dictionary of semantic attributes has several plesajtplications. For instance, it could
increase the range of output in artificial scene constroistems, by allowing users to apply at-
tributes to areas of a scene, modifying them according ttetiveed attribute definitions. Also, there
is the ability to query images by attribute, which would beseful feature forimage search engines.
If the dictionary is particularly dense, one could imaginerying combinations of attributes to
solve other vision tasks. As an example, a ‘potted plantctet could exhaustively search over
every attribute combination known to correspond to pottiedhts, (‘leaves’, ‘indoors’, and ‘soil’
being one example), and give a result based on the overl&e @ittribute detections.

We now consider how to build such a model, by first considettirgapproaches in the examples
that inspired our goal. In attribute recognition, we modgwlthe appearance of an attribute itself but
the appearance of images in which the attribute is presemtdblwe model attribute location, con-
tinuity, or size. For global scene attributes, it may be faiassume that ignoring these distinctions
has a negligible effect in recognition; for local or spacebiguous attributes, it is not. Following
Scene Detection and using a window-based approach is atkesinable. There is no attempt to
isolate the presence of an attribute, because it only cersatops of the original image. Thus, we
only achieve approximations of attribute size, locatiord aontinuity, and still do not model shape
at all.

Having ruled out other options, it would seem that in ordea¢ccommodate modeling all of the
desired attribute characteristics mentioned before, e etake an approach based on segmenting
the image. Most importantly, we would like for the segmentbé relatively homogenous in their
domains of description (a local attribute typically ceaseapply only where there is a pronounced
change in texture/color). Also, it is by using regions withany predefined structure that we can
hope to model the shape of an attribute. Lastly, we have thelikty of modeling size, location,
and continuity of an attribute by interacting neighboriegments.

2.2 Problem Description and Approach

The problem we wish to solve falls under a category of machéaening known asMVeakly-
Supervised Learning It is supervised, in that our training data comes with clagels (scene
attribute presence), but in a “weak” way, due to the fact thatlabels lack part of the informa-
tion we desire (per-pixel attribute detection). We will easuch of our experimental work on a
system proposed for object detection[6]. (For clarity, witk kgfer to our application of the model
in terms of attributes instead.)

In the paper, the authors propose a very elegant to approaeklyvsupervised learning in the
context of computer vision. They take a segment-based apprdor many of the same reasons
mentioned earlier. Each individual segment is described faatureF'. They classify the segment
to an attribute based on the probability that the attribsieresent in the containing image, which
they nameR. They define an image &3 if the attribute in question is present, a@df not, which
are the training labels that we are given. For a given segmiémfeaturef’;, they compute its score
as:

R(F)2 PO R) = L0
P(F;|0)+ P (F;|0)
whereP (F; | O) is the computed frequency & over the training data. In other words, they use

Bayes’ Rule to obtain a posterior distribution among theo$etegment feature values, setting the
prior probabilitiesP (O) andP (O) to be equal.

While this model is very clean and easy to understand, it ie@e some shortcomings. By con-
sidering each segment individually, it is unable to consatributes that are not bound by the seg-
ments. Namely, for any global attribute (eg. electric lgtite classifier would have to be convinced
strongly enough by each individual segment suggestingésamce (such as the area nearby a lamp
and the distinct soft shadows it creates). Ideally, a diassivould look around to piece together
similar nearby segments and use the greater collectivepcego boost its score. In addition to the



Table 1: A simple visualization of the pipeline. An image égmented (center), and each segment
is given a probability related to the presence of an atteilfright, rock/stone).

issues with spatial persistence and size, we are also uttabiedel shape and location with this
setup.

We now detail the pipeline used in our experiments, closeliping the one described in [6].
A visual description is provided in Table 1. The trainingalatas the SUN Attributes dataset,
which was broken into five equally-size ‘splits’ for the posge of analyzing variance. We begin by
segmenting the image as the authors with a mean-shift bagetesntation algorithm. The Edison[1]
system was chosen not just for its free availability, butarse: approval by the same authors in prior
work[7]. Parameters of the system were set to give largermaack robust segments. Nearest
neighbor smoothing was applied for the same reasons.

Region description was texture-based; a filter bank of tvadescand 16 orientations was used to
compute responses. A texton vocabulary (100 words) istoaith clustering a random sample from

the responses of a subset of the images in the SUN Attribataset. For every pixel in a segment,
its filter bank response is then matched to a word from thetexbcabulary, accumulating in a

histogram. The k-means clustering and k-nearest neightbatshing software was taken from the
VLFEAT[9] website.

In our experiments, we tried two different attribute cléiess. First, the posterior-based approach as
previously discussed. This is again accomplished by diungte¢he texton histograms of segments
into a feature vocabulary and matching to the words (vo@aiudizes of 50, 100, and 300 were
considered). The conditional frequencié$F; | O) of the training set are then computed, leading
to the posterior probabilities necessary for classificatid\nother approach is to use a Support
Vector Machine. The main benefit of using an SVM here is thathee the texton histograms are
used directly by the model, there is no loss of informatioa thuquantization, which occurs in the
posterior approach as a result of assigning the segmentiptess to feature words. On the other
hand, when using an SVM we no longer receive probabilitissalrlassification score that is only
able to make relative distinctions without setting an aalit threshold. (A linear SVM was used in
the experiments.)

2.3 Experiments
2.3.1 Results

Results from the posterior probability model were mixed] general results are shown in Table 5
(probabilities are displayed on a relative ‘jet’ colormaprfi blue to red). As previously hypoth-
esized, the classifier performed much better for localtattes such as materials than global and
ambiguously-spatially persistent attributes. A comparisf the size of the feature vocabulary is
shown in Table 3, and results are inconclusive, althougtethey be reason to believe that using
more feature words could be beneficial (see the discussitiose Results among the different
splits are shown in Table 2, and it can be seen that the datasseegive pretty consistent results
among them.

An SVM classifier was additionally built, primarily for reass of comparison discussed in the pre-
vious subsection. Table 6 shows visual results of the SVMsifier over multiple attributes and



Table 2: A comparison of the results for the rock/stone laite among each of the five splits.
Results are fairly consistent, as the same strips in theyadrieemapped to similar probabilities.

Table 3: A comparison of the posterior probability modehgsa vocabulary size of 50, 100, and
300 words, respectively.

images, and we can see that the results are perhaps slightse w Specifically, results tended
to be oversmoothed. Analysis of the model output suggestmdgat the classifier is almost in-
variably negative. The weights and bias variable variediB@antly among attributes, The SVM
slack parameter was varied in experiments to see possilglet®fit would have on the classifier
(A =0.1,1,10), and an example is shown in Table 4.

2.3.2 Discussion

Perhaps the biggest issue with the results is the lack oflalesdiscriminatory power. As stated
before, the colormaps of the result figures are all relativieich (at least in some cases) show
that the classifier does a good job of ordering segments imsteff their likelihood to indicate the
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Table 4: A comparison of the svm model with different valumsthe slack parameter. Clearly, there
is very little difference in this range.



Table 5: Relative colormaps of the posterior model (100 wpfar several images. Attributes from
left to right: clouds, rugged scene, praying, glossy.

attribute in question. However, for the vast majority ofuies, the posterior probabilities are all in a
very small range, meaning that the classifier is not learthiegttributes with enough confidence. A
hypothetical ROC curve of our classifier would have a shailfgedjpwards the top-left in one small
segment, but stick close to the lipe= = everywhere else, leading to an unsatisfactory area under
curve.

There is reason to believe that increasing the size of thereaocabulary would be necessary in
order to boost the classifier's discriminatory power. A ljkexplanation is that because of the large
number of segments assigned to the same image attribulg( 382500 in most cases), there are
not enough distinct descriptors to vary along with the nunadfénages in a given split, effectively

dividing the size of the training set by hundreds. While thiall well and good, due to the resultant
increase in dimensionality, we would then need even moigsitigaimages to accommodate the



Table 6: Relative colormaps of the svm classifier for sevienafges. Attributes from left to right:
clouds, rugged scene, praying, glossy.

learning. The belief that more images are needed is furtimrarted by evidence in Figure 2, which
shows the average texton distributions among each of timértgedata splits for the ‘sailing/boating’
attribute (with similar results for other attributes). Tistograms are nearly identical for each split,
so it is clear that this is not an issue of variance from théotex This would also seem to suggest
that there is not enough of a distinction being made amonigmegescriptors in assigning them to
attributes, and thus there needs to be more data to furtbenminate among them.

Additionally, the probabilities given by the classifier wesverwhelmingly negativep( < 0.5).
While this should be expected to a certain extent due to tttetiat most attributes are more likely
to be not present in an image, this result again suggestshia are not enough images to ‘break
through’ the natural variance of data. Oddly enough, this m@t an issue for the authors of [6], but
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Figure 2: +/- texton histogram for each split for attribuédiag/boating

judging from a glance of their data, it appears that they wenéing with incredibly positive-biased
training data, which may be an explanation.

At least one theoretical issue exists as well, that the piosterobabilities we compute are subtly
different from what we ideally want. Recall that we mode(O | F;), the probability that the
attribute is present in thenage given the featurd’;. Of course, we wish to model the probability
that the attribute is in the segment. For small, local aitsb it is difficult for the attribute-present
segments to collectively influence the whole image enowgtihg to problems with negative bias,
as discussed before. For global and ambiguously-persateibutes, the attribute-present segments
are quite varied in their feature description, which leadsdpious noise for the classifier.

2.4  Future Work

There are several additions we can make that would impraveality of our results, as well as
give a greater understanding of the effectiveness of thatiealto this problem. Firstly, we could
easily improve our segment description. There was no attemipclude color in our features, which
means that our model is obviously nowhere near a completegeptation of what we as humans
use to distinguish what we see. Using color histograms aideghe textons would help the system
to distinguish, say, a desert from an ocean (similar testurery different colors). The features are
also very simplistic, only using one texton bin to map to ayataility. Modeling a joint distribution



over the features would allow for the classifier to learn ancélationships among different feature
types for a given attribute.

Next, our model does not consider using information fronghboring segments to determine like-
lihoods of attribute presence in that segment. Using erbegped graphical models for weakly-
supervised tasks has been previously explored, and thid bewan important step in trying to learn
spatial persistence of attribute classes, as proposddredrastly, our experiments clearly lack a
guantitative analysis. Ideally, a labeling of each segmentid be available, but even this would be
seemingly too large a task to be crowd-sourced.

3 Learning Discriminative Attributes with Bayesian Nonparametrics

3.1 Introduction

We now turn our attention from semantic attributes to dieerative ones, as previously discussed.
An interesting aspect not yet covered in much depth is deiedpa system for learning such at-
tributes. Because we know so much less about discriminativibutes than the semantic ones, we
will need to use a much more flexible approach. For this, wetmbayesian nonparametrics. Using
a model known as the Indian Buffet Process[3], we considertarpially infinite number of visual
scene attributes to be learned in an unsupervised fashieffirstuse the infinite factorial model of
binary latent features with a linear-gaussian likelihosdlascribed by [4]. We then move on to a
fully generativeNoisy-ORmodel for the IBP[10].

3.2 The Indian Buffet Process and Nonparametric Latent Feaire Models

The Indian Buffet Proce48], defines a prior over binary matrices, which can in turnused for
models where objects are represented by multiple latetiries To sample from the Indian Buffet
Process, one imagines a buffet with an infinite number ofedislvhere customers enter one after
another so that previous samplings for each dish are knowadb one. The first customer samples
the first Poissony) dishes and all following customers sample each dish ingntam to how many
previous customers have already tried that dish, in addibdPoissonf) new dishes, whera is a
parameter which gives soft control over the number of dishigire 3 shows an example run of the
IBP. The resulting distribution over roW binary matrices is:
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3.2.1 Infinite Factorial Linear-Gaussian Model

[4] presents a model for statistical inference that uses@mean uncorrelated matrix Gaussian as
a likelihood onX such thatF [X] = Z A, whereA is also matrix Gaussian. In this modé{, is
an N x D matrix of observations? is a N x K binary matrix indicatingAd is a K x D matrix
representing the values of each hidden binary variable.dtitian to the Linear-Gaussian model
presented in [4], the authors also present a collapsed Giégpler for posterior inference. Starting
with the conditional likelihood,

— 1 1 T
, a collapsed likelihood can be derived by integrating oatvlue matrixA4,
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Figure 3: In the Indian Buffet Process, each customegrgamples dishes() sequentially in pro-
portion to how many previous customers have already trieti dish, with a fixed probability of
sampling a new dish.

whereZ, andK , respectively ar¢Z and K with zero-sum columns removed. This, paired with an
update for each elemeny, of Z is updated to be “on” with a probability equal to the propmmtof
other data points-i with featurek on, gives us a way to sample from the posterior distributan f
Z, given the hyperparameteisoy ando 4.

3.2.2 Noisy-OR IBP

In contrast to the discriminative model proposed abovd,pifpose a generative model for learning
causal structure with the IBP. The model is defined as folloysan N x T matrix of I" observations,
where eachiow represents a distinct binary random variatite.a K x T' binary matrix indicating
presence of latent causes for each observation. Lastlgnother binary matrix/{ x K) to relate
the hidden causes to observed variables.

An IBP prior is placed or¥Z, and hidden causes are assumed to follow an iid. Bernostlildution:
Py =TT (1)
k,t

Then, aNoisy-ORlikelihood is placed on observations:
P, =1|2Y)=1—(1-N*%(1—e¢)

, wherez; is thei™ row of Z, andy; is thet"" column of Y. Applying Bayes Rule gives a straight-
forward posterior distribution over the latent variabfeandY .

Clearly, the biggest difference to be considered in modealata with the Noisy-OR IBP model is the
binary nature of the observations. Under a words-base@septation, this would mean changing

10



Figure 4: (left) Graphical model for linear-Gaussian moalih binary features{4 andox are the
standard deviations fad and X, respectively, and. is the Poisson parameter for the basic IBP).
(right) Graphical model for Noisy-OR IBR.is the the baseline probability thaf, = 1, X is the

prior probability of any cause affecting the observatiord ais the Bernoulli parameter for the iid
distribution over all hidden causé$ .

ORO

data from a direct histogram of quantized words to insteagtbesimply the “presence” of a word in
an image, the implementation of which is non-trivial whensidering issues of bias from sampling
size, among other factors.

[10] gives a Gibbs Sampler as well, although it is uncollapSée algorithm iterates through every
latent variable { ... N), within which it iterates through every causk. (. K). First, each; i, is
sampled according to:

Zi k=a

Plin=al|X,Z 1Y) x 0 (1 - ?Z)(H) ﬁ (1 =N (1 e))

, Whered, is the proportion of other data pointsi with featurek “on”. Then, the number of new
latent features is sampled by

P (K" | X; 1.1, Zivkykrew,Y) o« P (Xt | Zivikrrew, Y, K[Y) P (K]")

T
P(Xinr | Zigikrgnew, Y, K) = HP (it | Zinigpgenew, Y, K])
t=1
P (xi,t =1 | Znew7ynew7Kinew) = 1- (1 _ 6) (1 _ /\)Zi,l:K'yl:K,t (1 _ /\p)Kfcw

, Where the prior probability of nev values is Poissc(r%), as given by the IBP. Then each latent
variableyy, ; is sampled from:

N
Plyei=a|2,X,Ype) oxp”(1—p)' "] (1 — (=N (1 - 6)) lyin=a

=1
3.3 Experiments

3.3.1 Data

To test the empirical validity of our model, we will run expaents on the SUN Attributes dataset,
with a set of 102 manually-labeled visual attributes. Theo$attributes is by no means visually
exclusive, and there are significantly correlated attabueg. foliage and leaves). It is also not
a ground truth, but instead a reasonable representatioiswdhscenes by human aesthetics, and
will be used as a means of assigning distances between imdgebe following experiments,
20 images which had been categorized as “park” and 20 categoas “indoor theater” in the
SUN database[11]. These categories were selected bechtrsgranherent difference in visual
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Figure 5: Example images used in experiments (top row: imadeparks, bottom: images of
theaters)

appearance, and we intend to show that our model should be@biscriminate between the two
while finding similarities in attributes within the sameegry. See Figure 5 for a few examples.

3.3.2 Results

The Linear-Gaussian Model had incredible difficulty mixiiog any vocabulary size larger than 20
(thousands of iterations were necessary). This is posslidyto the fact that integrating out the
factor loading matrixA is the source of too much variability and does not allow fegéaenough
steps to be made, limiting mixing from taking place. In aubait further tweaking of the M-H
scheme may be necessary to avoid “killing” thparameters. The issues of these traits are supported
in Table 7 which shows average Hamming distances for theésiaged for experimentation. When
compared to the aforementioned SUN Attributes databasd,ittear-Gaussian model does not do
as good of a job in discriminating between the two image categ, with a somewhat blurred
information for smaller vocabularies. For larger vocabeks the learned model seems to find a
larger difference on average among park images than it dbes womparing them to images of
theaters. Naturally, given the posterior meamofn interesting experiment with this model would
be to attempt scene reconstruction. However, due to the goeaplexity of a natural scene, this is
nearly impossible to do. In addition, a larger dataset, rikelty to the order of millions, would be
needed.

Also unlike the Linear-Gaussian model, the Noisy-OR IBP eiesemed to perform well at dis-
criminating between the two image categories. Figure 6lajspa colormap of similarity for each
possible pair of images. By measuring the average overealitibns of the mean equality among
hidden variablesY) for each image, it is easy to see that this learned modeigyalistinguishes
the first 20 (park) images from the latter 20 (theatre). Ttesoe thaty” is used instead of is
because of the changed meaning of data points under thisl fofdervations are considered to be
repeats of individual variables, as opposed to instancestsfof variables/features), ¥orepresents
the latent space for thE = 40 images. It is also interesting to point out that, (roughlgagng),
just as in the findings with the Linear-Gaussian model, tlieaatages were perceived as much closer
among each other than park images.

Hamming Distancd| SUN Attributes Learned Attributes (Linear-Gaussian)

10words| 20 50 100 | 200
park 0.118 0.271 | 0.237] 0.243]| 0.199] 0.101
theater 0.069 0.377 | 0.236] 0.149]| 0.104| 0.049
park-theater 0.155 0.383 | 0.272] 0.210] 0.166| 0.081

Table 7: Comparison of average Hamming distances using ¢ Atributes 102 attributes vs.
those learned by the Linear-Gaussian model with varyingabolary sizes of quantized visual
words. Each row represents distance among park imagesethemges, and cross-distances be-
tween the two categories.
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Figure 6: Average equality of hidden causgs§ & Y;|), over run of Gibbs Sampler for Noisy-OR
IBP. The first 20 data points are park images, the last 20 arelobr theaters.

3.3.3 Implementation Details

All code used to generate SIFT descriptors was provided bi#BAT[9], which provides excellent
interfaces and documentation for theaM.AB code used for this project. The visual words were
guantized using k-means, with a euclidean distance masiogither VLEAT nor built-ins provide

a more appropriate histogram distance metric option (ghased, intersection, etc.).

For the Noisy-OR IBP model, the aforementioned “presendea/isual words was determined by

placing a threshold equal to the inverse of the number of igethwords, and choosing words

that were above this threshold as positive examples forreasen data. This creates two flaws:

first, that there is a somewhat arbitrary threshold, althathis should not be an impactful issue,
as natural variance among frequency of the words shoulceaaast of the irrelevant words to be

washed out anyways, and choosing a large enough vocabuithgnsure this. Second, that this

introduces dependencies among the hidden variables, $®oéthe histogram representation of the
visual words. While this is certainly, true, one would hopattreduction to the simple binary case
and a small subset of quantized words helps mitigate this.

All code used to obtain these stated results are adapted Framk Wood’s academic website
The inference code, along with its excellent (conferendasssion-left-over) display code was
essentially unchanged itself. The collapsed sampler watemmented with few additional details
necessary from that derived in the original paper, follapnprescribed Metropolis-Hastings step
for resamplingy at each data point, or “customer”. In addition, Metropdliastings steps were also
provided for the matrix Gaussian standard deviation patarse, andox .

The algorithmic decisions made for the Noisy-OR IBP modsbavas clear and made logical sense,
but of course had more parameters to samplevas initialized with a Betd(1), and afterwards
resampled with a Betf(;, ; = 11,|Y%,; = 0|). @ was initialized with a Gani(1) distribution, and re-

http://www.stat.columbia.edu/ ~fwood/Code/index.html
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sampled from Gam(+ K+,ﬁ). Bothe and\ were initialized from a Uniform({(,1) distribution,
and resampled using Metropolis-Hastings accept-rejecgutures.
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