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Abstract

Data-driven methods have been proven very effective for the task
of scene parsing. A crucial step in these methods is to retrieve a set
of visually similar scenes from existing image collections for the query
image according to certain global scene representations. In this work,
we incorporate scene attributes into data-driven scene parsing systems
as global scene features. We show that when used as global features,
our compact attribute-based scene representation can compete with or
improve on traditional low-level scene representations for the task of
scene parsing and scene retrieval in general.

1 Introduction

Scene parsing is the task of segmenting all the objects in a natural image
and identifying their categories. Categorical labels can be given to either
each pixel or each region (e.g. superpixel) of the input image, giving a
thorough interpretation of the scene content. Most methods proposed for
this problem require a generative or discriminative model to be trained for
each category, and thus only work with a handful of pre-defined categories
[2, 3, 4, 5, 8, 11, 13, 14, 15]. The training process can be very time-consuming
and must be done in advance. Even worse, the entire training has to be
repeated whenever new training images or class labels are added to the
dataset. Recently, several nonparametric, data-driven approaches have been
proposed for the scene parsing problem [7, 16, 1]. These approaches require
no training in advance. They can easily scale to hundreds of categories
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Figure 1: Sample outputs of scene attribute detection. (from [10])

and have the potential to work with internet-scale, continuously growing
datasets like LabelMe [12].

There are low-level representations and high-level representations (e.g.
attributes or categories) of natural scenes. While much research has been
done on various low-level representations, such as the gist descriptor [9] or
spatial pyramid [6], less attention has been given to high-level scene rep-
resentations and their applications for data-driven vision tasks. Compared
with other high-level representations, scene attributes keep the benefit of be-
ing compact and carrying sementic meanings, while giving more flexible and
comprehensive interpretations to natural scenes. We adopt scene attributes
designed in [10], which have 102 discriminative attributes discovered and
learned from crowdsourcing. Figure 1 shows some sample outputs of the
attribute detector provided in [10].

In this paper we show how well we can improve nonparametric, data-
driven scene parsing by adopting scene attributes. Tighe and Lazebnik
investigate nonparametric, data-driven scene parsing and achieve state-of-
the-art performance [16]. We follow their system pipeline (section 2) and
show that by simply adding scene attributes as one of the features used for
global scene representation we can achieve significant performance improve-
ment (section 3).

2 System Pipeline

The following is a summary of the steps taken by the parsing system for
every query image (Figure 2).

Retrieval Set. The first step in parsing a query image is to find a re-
trieval set of images similar to the query image. The purpose of finding such
a subset of training images (there is actually no training process, though we
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Figure 2: System pipeline of scene parsing. (from [16])

still call the images from which we try to learn the ”training images”) is
to expedite the parsing process and at the same time throw away irrele-
vant information which otherwise can be confusing. In [16], three types of
global image features are used in this step: gist, spatial pyramid, and color
histogram. For each feature type, Tighe and Lazebnik sort all the training
images in increasing order of Euclidean distance from the query image. They
take the minimum rank accross all feature types for each training image and
then sort the minimum ranks in increasing order to get a ranking among the
training images for the query image. The top ranking K images are used as
the retrieval set.

Local Superpixel Labeling. After building the retrieval set, the query
image and the images in retrieval set are segmented into superpixels. Each
superpixel is then described using 20 different features. A detailed list of
these features can be found in Table 1 in [16]. For each superpixel in the
query image, nearest-neighbor superpixels in the retrieval set are found ac-
cording to the 20 features for that superpixel. A likelihood score is then
computed for each class based on the nearest-neighbor matches.

Classification. In the last step, we can simply assign the class with
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the highest likelihood score to each superpixel in the query image, or use
Markov Random Field (MRF) framework to further incorporate pairwise co-
occurrence information learned from training dataset. As in [1], we report
the performance without using the MRF layer in this paper so differences
in local classification performance can be observed more clearly.

3 Scene Attributes As Global Features

Our main goal in investigating scene parsing is to see how well our scene
attributes work as a scene representation. Thus, we keep most parts of the
system in [16] unchanged but use the scene attributes as the global feature
or one of the global features in addition to other low-level features for finding
retrieval sets.

The dataset we use for this experiment is the SIFT-Flow dataset [7]. It
is composed of 2,688 annotated images from LabelMe and has 33 semantic
labels. Since the class frequencies are highly unbalanced, we report both
per-pixel classification rate and per-class rate, which is the average of the
per-pixel rates over all classes. We also report the performance of an “op-
timal retrieval set”, which uses ground-truth class labels instead of global
features to find similar scenes for the query image. This retrieval set is
called Maximum Histogram Intersection. It is found by ranking training
images according to the class histogram intersections they have with the
query image:

∩(Target,Query) =

∑
33

j=1
min(HT [j], HQ[j])
∑

33

j=1
HQ[j]

where HT and HQ are the histograms of target image and query image
respectively.

This optimal retrieval set is meant to be a performance upper bound
and should provide an insight into how much room for improvement there
still is in the image retrieval step. In [16], Tighe and Lazebnik proposed a
different type of “optimal” retrieval set by ranking training images in terms
of the number of pixels their ground truth label maps share with the label
map of the query. Our experiment shows ours is uaually better in terms of
both per-pixel rates and per-class rates.

Figure 3 and Figure 4 show the performance comparison among dif-
ferent global features. As we can see from the result, using only scene
attributes as global features we get higher per-pixel rates than [16], which
uses three global features (G+SP+CH), while getting similar per-class rates.
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Figure 3: Evaluation of using our scene attributes as a global feature

for scene parsing on the SIFT-Flow dataset. x-axis represents mean per-
class classification rate, y-axis represents per-pixel classification rate. The best
performance sits on the top-right corner of the space. The plots also show the
impact of changing retrieval set size K. The blue plot shows the result of using gist
(G), spatial pyramid (SP), and color histogram (CH) together as scene descriptors
for finding retrieval sets [16]. Using scene attributes itself improves the per-pixel
rates while the per-class rates are close. Using scene attributes together with the
previous three features increases both the per-pixel rates and the per-class rates.
”Maximum Histogram Intersection” is the upper bound we get by finding retrieval
set using ground-truth labels of the query image.
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Figure 4: Comparision of using various global features for scene parsing.

The left figure shows per-pixel rates and the right one shows per-class rates. Both
the twelve features described in [17] and the three features used in [16] (G, SP, CH)
are tried seperatly, as well as our scene attributes. We also report the performance of
using all features together (G+SP+CH+SUN12+Attr) and using the three features
in [16] (G+SP+CH).

When combining our scene attributes with those three global features (At-
tributes+G+SP+CH), both the per-pixel rates and the per-class rates in-
crease significantly (73.4%, 29.8% (K = 200) vs. 76.2%, 33.0% (K = 100)).
Considering the compact size of our scene attributes, 102 dimensions com-
pared with the 5184-dimension G+SP+CH, this result demonstrates the
scene attributes’ strong ability for high-level scene representation. It is also
worth noting that adding more features beyond this point does not neces-
sarily improve the performance. For instance, by using all the 12 features
described in [17] together with the scene attributes, the per-pixel rate and
the per-class rate drop to 74.6% and 30.4% respectively (K = 100).

4 Conclusion

Scene parsing provides much deeper understanding of scenes than traditional
category-based recognition. We investigated the use of attribute-based rep-
resentation as global features for scene parsing. These experiments show
its capability as a compact yet rich representation, and suggest the possible
uses of scene attributes for future data-driven computer vision tasks.
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