
Modeling and Reasoning About Effective User Permissions
in Social-Sharing Systems

This project lays a foundation upon which to build formal analysis for usable security on web. Building
off the work of Ka-Ping Yee, we developed a set of design principles for on-line sharing applications,
particularly social sharing networks. Social sharing is distinct from professional or business sharing,
and consequently requires different models of privacy and permissions. This necessitates investigation
into the shape and design of social sharing systems.

Security and privacy policies in social networks depend on a number of factors. The policy embedded
in the program takes users' personal settings as input. Because users must manipulate these settings
through the user interface, the design of the interface also plays a significant role. Therefore, in order to
study the privacy of a user interface, we must carefully consider of two things. First, we have to
consider the design of the user interface, in particular how it presents security policy choices to the
user. Second, we have to evaluate the interaction between the user's actions in the interface and the
privacy policy that exists on the server.

Building systems for social sharing presents a number of unique design challenges. The system must
manage such issues as aggregation data at a large scale, interactions between multiple users' policies,
and the intrinsically open nature of data on these social networks. These issues make much of the prior
work on security through UI design difficult to apply to social applications. Two undergraduates and I
redesigned Yee's principles to address these concerns. Our principles address the effect of these system
quality on the design of the interface of the systems.

To address the effect of user actions on the privacy policy of the program, it would be useful to have a
model of the systems that can capture this interplay. The undergraduates and I created a general model
of sharing systems capable of describing how user decisions define the actual effective policy of a
system. We were able to use this model to instantiate specific applications, giving us confidence that
the model cleaves to the actual systems we are interested in.

In analyzing user interfaces, we suspect that human design input is indispensable and cannot be
completely eliminated by formal analysis. Thus, we envision this model as a basis for tools intended to
assist the system designer. For each of our principles, we have identified aspects of the principles that
are amenable to static analysis, and aspects the require user experience design expertise. By identifying
tasks suited to static analyses, we reduce the need for expensive and error-prone human analyses.
Furthermore, by clarifying the human-factors components of each principle, we provide specific
guidance to user interface engineers on how to evaluate those parts of the interface that need manual
examination.

This work was done along with two undergraduate students. Much of the work was done jointly,
including determining defining qualities of social systems that effect user interface design, such as the
scale of the number of users and connections between them in the system. However, because each
undergraduate had very different strengths, I partitioned the project to better utilize their expertise. The
student with a stronger sense of systems and software worked more on instantiating systems in the
model, while the student with a strong mathematical logic background focused more on the design of
logical properties to correspond to the design principles. I worked with both students, which ensured
that the disparate aspects of the project are consistent with one another (for example, the logical
properties made sense with respect to the system model.)

Modeling and Reasoning About Effective User
Permissions in Social-Sharing Systems

Hannah Quay-de la

Vallee
Brown University Dept of

Computer Science

Providence, RI 02906

hannahqd@cs.brown.edu

James M. Walsh
Brown University Dept of

Computer Science

Providence, RI 02906

William Zimrin
Brown University Dept of

Computer Science

Providence, RI 02906

Kathi Fisler
WPI Dept of Computer

Science

Worcester, MA 01609

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University Dept of

Computer Science

Providence, RI 02906

sk@cs.brown.edu

ABSTRACT
Most modern Web sites—ranging from Facebook to GitHub
and beyond—have a strong sharing, and hence access con-
trol, component. Multiple factors determine whether shar-
ing occurs: the access-control policy, the program, the user-
interface, and the choices made by users. Indeed, the actual
permitted accesses depend on decisions made not only by
the owner of the data but also by third parties. Due to
these complex interactions, it is difficult for developers to
reason about the extent of control that users do and do not
have over their data.

This paper presents a model of sites with social sharing
and discusses how to analyze end-user data-access properties
against that model. Our model encompasses all the factors
identified earlier, enabling comprehensive description of a
site’s effective access policy. We show that the model is rich
enough to capture several useful properties about end-users’
control over their data. Several nuances arise when formaliz-
ing these properties under realistic assumptions about scale
and available user operations. We illustrate these nuances
and their consequences in the context of several mainstream
websites.

1. INTRODUCTION
Many modern web applications support data-sharing among

users. Some sites, such as social networks and photo repos-
itories, are designed specifically to help users share data;
others, such as version-control systems and conference man-
agers, share data as part of the overall workflow that they
support. Regardless of whether data sharing is a primary or
secondary goal, applications must provide appropriate pro-

tections on data. In general, data creators should retain a
certain degree of control over when sharing happens.

In a web application, a user typically accesses data through
links or text on pages presented to the user. Many factors de-
termine which information is presented to a user: an access-
control policy affects which pages or links a user is able to
access; the user-interface determines which of the available
information is actually displayed; the access-control policy
may depend on conditions or attributes that get set as var-
ious users take actions through a site. Thus, the effective
data-sharing policy that a site follows results from combining
information about policies, programs, user-interfaces, and
user actions. The complex interactions among these sources
in a real system suggests that errors are likely. Developers
would thus benefit from tools that explore systems’ actual
data-sharing consequences. This in turn demands the mod-
els and analyses that underlie such tools.

Consider the widely-publicized incident in which Face-
book revealed the sexual orientation of two students who had
taken strong measures to conceal this information [?]. The
students friended the owner of a Facebook group for a homo-
sexual chorus to which they belonged. The owner added the
students to the group (an action which did not require the
students’ permission because of the existing friends relation-
ship). The owner had configured the group to make mem-
bership public, so Facebook announced the students’ group
membership to their friends (including their parents). The
question here is not whether Facebook’s policy is reasonable;
rather, it is whether analysis tools could have helped devel-
opers determine whether the system had a way to leak this
information that the student users sought to keep private,
or, alternatively, whether the system provided the students
sufficient controls to prevent the leak from occurring.

This paper presents a model, formal properties, and pro-
posals for tools to help developers reason about end-users’
control of data. Our work embraces the complexity of mod-
ern web applications, using several mainstream sites to guide
our results. We show why reasoning about end-user data ac-
cess demands modeling far more than access-control policies,
or even just the interactions of access-policies and the pro-
grams that use them. We argue that developers need tools
that help reason about issues traditionally left to HCI and

usability analyses. Leveraging existing work in usable secu-
rity, we show how formal analyses of access-control policies
and their programmatic contexts can provide considerable
support to usability analysis. Overall, our goal is to set the
foundations for tools that enable developers to assess end-
user access-controls over data in real-world systems.

2. REPRESENTATIVE WEBSITES
In developing our model and data-access properties, we

calibrated our work against four specific web-based sharing
applications. Each of the four is an example of a modern
data-sharing system, but collectively they represent systems
with different broad sharing goals and different authority-
granting features. We will refer to these examples through-
out the paper to illustrate aspects of our models and prop-
erty formalizations.

GitHub, a version-control system: GitHub manages
repositories of files. Each repository has an owner who can
grant other users authority to take from (“pull”) or add to
(“push”) the repository. The owner can also transfer her
ownership to another user. GitHub represents systems with
simple sharing models: an owner of a datum grants or re-
vokes access to others through a single action.

Facebook, a social network: Facebook users share per-
sonal details, photos, and comments with other users. Users
share individual data either publicly or with select groups
of other users. Groups include Facebook’s built-in options
for “Friends” and“Friends-of-friends”, as well as user-defined
groups (such as “Co-workers” or “My Football Team”).

Facebook’s information-sharing model is interesting be-
cause it involves roles (through groups), delegation (through
friends-of-friends), tags, and many different types of content
on which a user might want different sharing policies. The
friends relation also induces a two-step authorization pro-
cess, since certain authority is only granted after one user
issues a friend request and another user accepts it.

Google Drive, a service for collaborative editing

and file sharing: Drive users create, edit, and share files
(such as spreadsheets, presentations, and documents) with
self-defined groups of other users. Drive represents sys-
tems designed for fine-grained access-controls (separate poli-
cies are often defined per document), as well as systems in
which many users may configure access to the same con-
tent. File-sharing systems are a common case study in for
capability-based access-control [?], a finer-grained mecha-
nism than typical of access-control policies.

Resumé, a job-application manager: Resumé (a pri-
vate system developed by one of the authors) manages sub-
mission and review of applications for faculty positions. Ap-
plicants and reference-letter writers upload materials to Re-
sumé. An applicant can create an account and add materials
to it before formally submitting her application. Following
submission, members of the department can see the materi-
als but neither the applicant nor the reference letter writers
can edit them further. Department members may submit
comments on applications. The applicant never has access
to the comments or the reference letters. Applicants and
letter writers may email materials to a staff member who
has authority to upload materials on behalf of others.

Resumé is typical of systems with rich access-control poli-
cies whose rules take effect at different points in a broader
workflow. The richness in the policy arises from rules that
consult several attributes beyond the typical subject, action

and resource. The delegation of tasks to support staff also
raises questions about least authority and the trust bound-
aries within which software systems get deployed.

2.1 Relevant System Traits
These four systems raise several traits of modern social-

sharing systems that models and analyses must support:

Massive Scale in Users and Data.

Github, Drive, and Facebook manage massive numbers
of users and amounts of data; in Facebook, users and data
are richly connected. At these scales, users cannot manage
authorities at the level of individuals. All three systems sup-
port user-defined groups and multiple classes of data; users
configure access at the level of groups, as in an rbac policy.
Simply seeing these systems as instances of rbac, however,
misses the more critical point that rbac can be as much a
problem as a solution in these systems. In an effort to con-
trol sharing, users might create more groups than they can
manage at a cognitive (or time) level. To mitigate that, users
often choose to violate least-privilege; they share with a su-
perset of their desired audience to save the hassle of creating
and managing yet another group. Attempts to reason about
end-user sharing must account for the over-approximation
of groups and other forms of tagging.

Delegation and Privacy.

All four systems support some form of delegation (friends-
of-friends in Facebook, granting administrative privilege in
Github, etc). By design, users who have delegated author-
ity will no longer have sole control of others’ data access.
Lacking control though, questions arise as to whether own-
ers should have knowledge of how their data is accessed and
managed. This rapidly gets into privacy considerations: in
Facebook, for example, knowledge of how data propagates
might effectively expose a user’s list of friends. This suggests
that analyses will need tunable parameters about which sit-
uations constitute or violate privacy.

Privacy Across Organizational Boundaries.

Resumé raises privacy and confidentiality concerns. Job
applicants should not know which specific people are on the
hiring committee; typically, they do not know which groups
of users (e.g., faculty versus graduate students) are repre-
sented on the committee. In general, some details of how
an organization performs a task should be withheld from
users who have provided information, which in turn lim-
its users’ access to information about who sees their data.
Health-care policies, however, are subject to transparency
regulations that require releasing some of this information
to users. Thus, models and properties must account for
varying privacy and confidentiality concerns.

Workflow-Based Systems.

In systems (such as Resumé) that support complex work-
flows, authority can vary with the phase of a workflow (e.g.,
conference papers may not be submitted once reviewing has
begun), or change as the result of user actions (e.g., Resumé
applicants lose the ability to revoke the department’s access
upon submitting their completed application). This raises
questions about what access, control, or information users
should retain once they lose effective control of data such as
job applications. These questions affect how we model own-

ership of resources: does an owner retain rights to a resource
even when the system no longer provides control over access,
or should ownership somehow imply a degree of access?

Ascribing Ownership.

Interpretations of “a user’s resources” must account for
tagging, a social network feature in which one user (or an al-
gorithm within Facebook itself!) associates a resource with
another user. In the name of privacy, tagged users should
have revocation access and be notified of tagging. This sug-
gests that ownership is not a sufficient concept for modeling
or reasoning about social-sharing systems.

3. ANALYZING DATA-SHARING,
INFORMALLY

Before we design a model for reasoning about end-user
control of data, we should explore the information that such
a model demands. Consider the following simple data-sharing
property that one might expect of a system. It checks whether
data owners control other users’ access to their data:

Access to a user-owned datum is granted or re-
voked only with permission of the owner.

The challenge in formalizing this statement lies in defining
“permission of the owner”. In many systems, users do not
grant permission through a single action with that express
purpose. Assume that a Facebook user configures a photo
album to be shared with her friends. If she issues a new
friend request that is later accepted, the new friend will
see the album. The album owner did not directly edit a
configuration such as an access-control policy; in fact, the
access-control policy didn’t even change in order to grant
the new friend access to the album. This indicates that our
model must encompass more than just the policy.

Three aspects of this example are particularly interest-
ing when we consider how to reason about users granting
authority to one another:

• Multiple actions from multiple users were required to
grant the new friend access to the album: issuing the
friend invitation (by the album owner), and accepting
the invitation (by the new friend). Thus, enabling

new permissions is a multi-step process. In the
model, this will manifest in access-control rules with
conditions beyond simple role/action/resource triples.

• The action that corresponds to the owner granting per-
mission (here, issuing the invitation) is not necessarily
the last user action that occurs before the new per-
mission is active on the website. Thus, permission-

granting actions may be temporally separated

from activation of permissions. Thus, our model
needs to capture the sequences of actions taken in the
program, as well as information on how users’ actions
update the conditions referenced in access-control rules.

• User actions may have implicit data-sharing conse-
quences. The link or button to invite a friend says
nothing about sharing the album: sharing is an im-
plicit consequence of adding a friend. Users are respon-
sible for understanding what information new friends
will be able to access. Thus, some aspect of the

model and analyses must connect user actions

with data-sharing consequences. The model will
need to capture the consequences of actions and per-
haps information about how the interface presents these
to users; analyses will need to consider whether users
understand actions’ consequences.

This last point suggests that reasoning about end-user
data access ultimately involves questions about usability and
human-factors concerns. Ka-ping Yee connected data access
with usable security back in 2004 [?]. He proposed ten prin-
ciples of usable security, many of which focused on whether
an application gives end-users sufficient information to make
informed decisions about data access and sharing. This pa-
per adapts several of Yee’s principles to reasoning about
modern social-sharing sites. When Yee developed his princi-
ples, massive-scale, cloud-based web-based applications such
as our benchmark systems were nascent or non-existent; his
principles thus implicitly codify the expectations of closed,
corporate systems, and many of the assumptions no longer
directly apply to social sharing-based applications. We dis-
cuss these issues and their impact as we discuss property
formalization in Section 5.

4. A FORMAL SYSTEM MODEL
Our focus on web-based systems demands a model of client/

server systems in which users access shared data stored on
the server, and initiate operations through elements on (web)
pages. Most of our model is straightforward: a website man-
ages data and relations on that data, providing users with
actions to create, modify, and view data and relations. We
capture conditions for authority over resources through an
explicit access-control policy. For simplicity, we assume that
the “resources” under access control are application data
(documents, passwords, etc), rather than references to sys-
tem state, processes, or other artifacts that some security
work also treats as resources.

Handling client pages raises two interesting issues: mod-
eling elements of user interfaces, and handling elements that
become stale relative to the viewer’s authority. On the inter-
face side, we model which data and information about au-
thority a user can access; this helps us write properties about
whether users have enough information to make informed
data-sharing decisions (Section 4.3). On the authority side,
we explicitly account for toctou violations by checking that
users are still eligible to execute actions through webpage
links (Section 4.4). We describe our handling of both issues
in more detail within the cited sections.

4.1 Data Schemas and Access Policies
Every website manages certain relations over certain data,

governed in part by an access-control policy. We use the
term “application” for this core structure of a website.

Definition 1. An Application contains:

• A set D of Domains, representing system-specific in-
formation of relevance to the application.

• A distinguished element Users ∈ D, representing po-
tential users of the system.

• A set R1, . . . , Rn of Relations maintained by the ap-
plication. Each relation has a type D1, . . . , Dk where
each Di ∈ D.

• A set Data = D1 ∪ . . . ∪Dj where each Di ∈ D. This
distinguishes domains corresponding to securable data.

• A set Act of Actions. Each action act has a type
D0, . . . , Dn where each Di ∈ D and n ≥ 0.

• A list of Access-Control Rules of the form

Permit(u, d0, act(d1, . . . , dn)) if ∃v : φ

where act is an action of type D0, . . . , Dn and φ is
a conjunction of terms over u, d0, . . . , dn, v, and the
domains and relations in A.

Our definition of actions and the form of access rules are
closely linked. Permissions typically capture actions of a
single user on a single resource, but actions may require
multiple inputs. Our action model assumes that the primary
resource is the first argument to the action; the access rules
separate this argument from the others. Rules may need to
reference data stored on the server that are not parameters
to the action; the existentially-quantified variables capture
these. We illustrate actions and rules using two examples
from conference managers. A rule that allows a user to read
a review during the reviewing phase if the user is assigned
the paper and has already submitted a review would be:

Permit(u, r, readRev()) if
∃r2, forp : r �= r2 ∧Review(r) ∧ Paper(forp) ∧

Assigned(u, forp) ∧
SubmittedReview(u, r2, forp)

In the following rule that allows a program chair to upload
a review on behalf of a reviewer, the main resource (the
review) is related to other other data: the reviewer, and the
paper being reviewed. Our rules capture this by making the
review r the primary resource for the permission, while the
auziliary data about the reviewer and paper being reviewed
are arguments to the submitRevFor action.

Permit(u, r, submitRevFor(pc, forp)) if
Chair(u) ∧ reviewer(pc) ∧ Paper(forp) ∧
Assigned(pc, forp)

The rest of the paper abbreviates permissions as �u, d, act�,
suppressing the arguments to the action unless they are rel-
evant in context.

4.2 Server
Servers instantiate the Data, Users, and Relations sets in

an application with concrete data values, users, and rela-
tional tuples. Whereas the Application for GitHub would
have domains such as Files and Folders and a relation such
as Owns (on Files × Users), a Server for GitHub would
populate Files with specific documents, Users with specific
users, and the Owns relation with tuples indicating which
user owns which files.

Definition 2. A Server for Application A consists of:

• A set KnownUsers ⊆ Users

• A distinguished element UnknownUser ∈ Users that is
not in KnownUsers

• A set KnownData ⊆ Data

• For each domain Di in A, a set DEi of elements of
Di

• For each relation R ∈ D0 × . . . × Dn in A, a set of
tuples over DE0 × . . .×DEn

The KnownUser and KnownData sets help distinguish ele-
ments of Users and Data that are currently active on the
server. As a website runs, new users become known as peo-
ple create accounts; new data arises as people upload files;
similarly, users may leave a site and files can be deleted.
Since we may need to reason about new or former users,
we distinguish the currently known Users and Data from all
those that may exist in the application. The UnknownUser
provides a way to talk about someone who views pages with-
out having an account or being recognized on a site.

Servers contain sufficient information to evaluate access-
control rules. Intuitively, a user has the authority to perform
an action if the body of some rule evaluates to true under
the domain and relation contents in the server.

Definition 3. Given a server S, user u, action act, and
concrete data d0, . . . , dn from S that respect the type signa-
ture of act, S permits �u, d0, act(d1, . . . , dn)� if there exists
an access-control rule such that Permit(u, d, act(d0, . . . , dn))
returns true when the rule’s formula φ is interpreted under
the domain and relation contents of S.

4.3 Clients and Pages
Clients correspond to website users (which could be either

a KnownUser or the UnknownUser); each user has a set of
active pages, which intuitively correspond to different tabs
or windows in a web-browser. In a real website, pages con-
tain descriptive text, information stored in the server, and
ways to execute actions. Our model of pages abstracts away
descriptive text, leaving only bits of server data and current
permission information that would otherwise be embedded
within free-form text. Our model also uses a generic concept
of links to cover links, buttons, and other forms of executing
actions against the server.

Many users can have pages open on the same site at the
same time. Users’ actions can affect each others’ permis-
sions, as this paper has already discussed. Thus, when mod-
eling client web pages, one must assume that links and data
on a page may have become stale relative to the server state.
In particular, a user may have a link to execute an action for
which she is no longer authorized (typical toctou—”time of
check to time of use”—problems). Even modern web systems
that automatically refresh displays may have brief periods
of stale page content. Our model thus assumes that links
and data may be stale, and checks users’ authority at both
time of display and time of execution.

Definition 4. Let S be a server for an Application A. A
page for S contains

• A set of Links, each corresponding to an action

act(d0, . . . , dk)

and supplying a concrete value for each di from the
corresponding domain Di as given in the type for act.

• A set Contents ⊆ S.Data

• A set of Permissions of the form �u, d, act� for u ∈
Users, d in some DEi in S, and act in Act

Returning to the conference manager, a link to submit a
review might look like submitRevFor(review2, Bob, paper1),
where review2 is a specific review and paper1 is a specific pa-
per. Note that in this form, the primary resource (review2)
is included as an argument to the submitRevFor action; in
contrast, when we used submitRevFor in the access-control
rule, we moved review2 out to the level of the permission.

The distinctions among Links, Contents, and Permissions
are key to our model. Links represent actions that the user
viewing the page is permitted to take (or was, at the time
the page was generated). Permissions, in contrast, purely
convey information about the state of authority in the sys-
tem. In the context of Facebook, the ability to invite a friend
would be a Link; that another user, Susie, is allowed to view
the page-viewer’s vacation album would be a permission. If
a page chose to embed Alice’s photo in the user’s page, that
photo would lie in Contents. In the context of GitHub, a
repository might be available to a user as Contents; indica-
tions of what kinds of access the user has to that repository,
in contrast, would appear as Permissions.

4.4 Transition Function and Page Generation
Intuitively, applications generate pages dynamically in re-

sponse to users’ requests to execute actions. Executing an
action yields both a new page to display to the client and an
updated server. The generated page, however, must reflect
the authority of the user who took the action (and hence
receives that page). Authority is determined by the rules of
the access-control policy.

Definition 5. Page P is valid for user u and server S iff
P.Contents ⊆ S.KnownData, and for every act(d0, . . . , dk) ∈
P.Links, S permits �u, d0, act(d1, . . . , dk)�.

The model captures the effects of actions in two functions:
Actpg maps each user u, action invocation, and server S to
a valid page for u and S. Actop maps each user, action
invocation, and server to a new server, reflecting how actions
change the server state (e.g., adding friends or documents).

Given Actpg and Actop, we can define the transition sys-
tem for a website. The website state reflects the contents or
pages and the server state. Intuitively, a transition occurs
when a user takes a permitted action by clicking a link on
a page. The resulting next state replaces the old page with
a new one and updates the server state according to Actop.
The check in Definition 7 that linked actions be authorized
in the server state accounts for potential toctou violations.

Definition 6. Let S be a server, P be a page on client
C for user u, and act(d0, . . . , dk) be in P.Links. act is au-
thorized for C in S iff S permits �u, d0, act(d1, . . . , dk)�.

Definition 7. An Application State consists of a server
and a set of clients. Let �S, {C1, . . . , Cj}� be an Application
State and act be an action linked to some page P in some Ci.
If act is authorized for Ci in S, then the next Application
State is �Actop(act, S), {C1, . . . , Cj , C

�
i} − Ci� where C�

i is
identical to Ci except P has been replaced with Actpg(act, S).
If act is not authorized for Ci in S, then the next Application
State is the same as the given Application State.

Preserving the Application State on unauthorized links makes
sense for the server; how to handle stale links on the page
is more subtle. Some websites do have links that are stale

briefly (e.g., waiting for a transaction to finish); some sites
regenerate pages. This choice is irrelevant to our work. Our
model thus takes the safe default of retaining stale links;
modelers of sites may refine this decision as appropriate.

5. PROPERTIES AND ANALYSIS FOR END-
USER DATA SHARING

With a model in hand, we now propose and formalize sev-
eral end-user data-sharing properties over the model. Our
proposed properties are variants of ones proposed by Yee [?].
We find these properties interesting because they empha-
size different ways that a website might help end-users make
data-access decisions. As we will demonstrate between this
section and Section 6, these properties also illustrate the
interplay between reasoning about information content and
reasoning about human-factors concerns. Both kinds of rea-
soning are important for assessing whether a website pro-
vides users with good data-sharing facilities.

Several of our properties reference user actions that con-
tribute to the granting or revocation of data-access author-
ity. Thus, we begin by defining how actions in the model can
affect authority. First, we define what it means for authority
to change on a single transition, and on a path:

Definition 8. A transition from state s to s� grants per-
mission p if s does not permit p but s� permits p. Similarly,
a transition revokes permission p if s permits p but s� does
not permit p. Action act is authority editing from state s
if a transition from s on act grants or revokes some per-
mission. A path of transitions is authority-preserving if no
permissions are granted or revoked along the path.

Next, we define what it means for a transition to make
progress towards granting permission. The computation
underlying this definition is local to the access-control pol-
icy within the model; had our model captured access con-
trols without explicit policy rules, this definition would have
been more complicated. Once we identify actions that make
progress towards permissions, we can examine paths to states
that eventually grant permissions to determine whether an
action effectively constitutes a user’s consent. Some of the
properties in this section will address whether the effective
consent is intentional or sufficiently informed.

Definition 9. Let S be a server, p be a permission that
does not hold in S, act be a valid action for user u in S, and
S� be the server that would result if u took act from S.

• act advances p in S if for some access rule r for p,
more conjuncts of r are satisfied in S� than in S.

• act is consent-granting for u and p in S if act advances
p in S and there exists a path from s� on which p is
granted without further actions from u.

We now discuss candidate properties and their formaliza-
tions against our model. Each of the following subsections
starts with an informal description of a property, then for-
malizes its concepts. Within each formalization, underlined
terms represent parameters that must be instantiated rel-
ative to data and relations in a particular website, while
boldface terms represent human-factors components to the
property. Section 6 will discuss how we could analyze han-
dles the human-factors components.

5.1 Change Authority Only with Consent

Grant or revoke authority to others in accordance
with user actions indicating consent.

The key concepts to formalize here are “who can consent”
and “what constitutes consent”. Our definition of consent-
granting actions (Definition 9) captures the latter. For the
former, we assume that each site has a notion of which users
administer or manage each datum: Github tracks repository
owners, Google Drive tracks document owners, Facebook
users own data that they uploaded. To use this property,
a developer would instantiate the administers term in the
formalization with references to whichever relations in the
data schema reflect this concept. For simplicity, we formal-
ize the property in terms of granting authority; the version
handling revocation is similar.

Formalization: For every state s, every permission p =
�u, d, act� that does not hold in s, and every path Π from
s to a state s2 in which p first holds, then Π contains a
transition t by a user ua such that ua administers d and
either (1) the action on t is consent-granting for p by ua, or
(2) the action on t gave administrative privilege for d to a
user ud, who subsequently took a consent-granting action for
p within Π. In either case, ua understood that the action
on t would grant consent or delegate authority, respectively.

This first formalization illustrates our notions of prop-
erty parameters and human-factors components. Parame-
ters should be instantiated in terms of data and relations in
the model. Whenever a formalization raises a human-factors
component, that component could be ignored (by omitting
a clause of the property) during a traditional static analysis,
then handled as discussed in Section 6.

5.2 Allow Reduction of Authority

Offer the user ways to revoke others’ authority to
access the user’s resources unless the user previ-
ously took an action he understood would (even-
tually) relinquish that authority.

The previous property checked that revocation of access
only happens with the consent of an appropriate user; it did
not mandate that users have access to actions that revoke
permissions over their data. This property requires the lat-
ter. Exceptions to this property can arise in workflow-based
systems, as users take actions that are expected to relin-
quish authority. In Resumé, for example, once a candidate
submits a job application, the candidate no longer controls
its propagation (though the candidate may retain rights to
withdraw the application). Our formalization therefore re-
quires users to maintain access to actions that revoke au-
thority unless they took actions specifically intended to re-
linquish their administrative control.

One other subtlety arises in this property: users should
have final say as to whether access to their data is revoked.
With multi-step permissions, users may consent to an per-
mission, but actions of other users are required to realize the
permission. With revocation, an action by an administering
user should suffice to revoke another’s permission (other-
wise, a user might be in a position to consent to having
his authority revoked). When access-policy rules all specify
permits (rather than permit/deny/not-applicable) and have

only conjunctions in their rule-bodies, this requirement sim-
ply needs a revoking action to falsify a conjunct in the pol-
icy rules. Our formalization, however, uses a more general
statement that applies to a wider range of policies.

Formalization: In every state s, if user ua administers da-
tum d and s has permission p = �u, d, act�, then there exists
an authority-preserving path from s on which ua can revoke
p unless ua previously took an action that he understood

would eventually revoke p and that revoking action has oc-
curred. Furthermore, on all paths from s, ua can reach an
action to revoke p, ua stops administering d, or the action
that revokes p occurs.

5.3 Summarize Others’ Authority

Maintain accurate awareness of others’ authority
at a granularity relevant to user decisions, with-
out violating others’ privacy.

Imagine that a Google Drive user has several folders, each
of which is shared with a different group of other users. She
needs to share a somewhat sensitive document with some
other users. In order to decide whether to upload the new
document to an existing folder or to a new one, she needs
to review who can access each of her shared folders. This
property checks that the user can view this information. For-
mally, we capture ability to view as having access to a web
page that contains the information (through the Permissions
component of a page from Definition 4); the path to such a
page should not be guarded by the actions of other users.

In systems with massive numbers of users and data, direct
presentation of others’ permissions could be overwhelming.
Furthermore, relevant information might infringe on another
user’s privacy (such as if a Facebook user wants to know who
her friend’s friends are before using the “friends-of-friends”
setting). Our formalization must account for these nuances.

The key challenge in formalizing this property lies in defin-
ing when an existing permission is “relevant to a user’s de-
cision”. We restrict “user decisions” as “choosing to take a
consent-granting action”. A narrow interpretation of “rel-
evance” to a consent-granting action for a specific permis-
sion would look at the conditions on that permission in the
access-control policy: information that affects those condi-
tions would be deemed relevant. Such a definition would
not, however, capture concerns about higher-level connec-
tions between system data. For example, a user might be
willing to share anonymized medical data in a corporate file-
sharing system (a private version of Google Drive), as long
as the viewers didn’t also have access to the file with the
mapping from anonymous tags to names. Given the chal-
lenge of a suitable general definition, we leave “relevance” as
a parameter for developers to tailor relative to the data and
relations in a particular website.

Formalization: In every state s, if user uc can take a
consent-granting action for permission p = �u, d, act� in s,
then for every related permission p, there exists an authority-
preserving path to a page for uc that summarizes p, unless
doing so would violate u’s privacy. Furthermore, on all
paths from s, either uc can reach a page that summarizes p
or some action revokes p.

Yee’s original principles also stated that users should have
access to information about their own current permissions.

This reduces to a formal property about paths to pages dis-
playing a user’s own permissions. As such a property does
not add insight above the formalization for others’ permis-
sions, we do not discuss it further in this paper.

5.4 Explain Consequences

Indicate clearly the consequences of decisions that
the user is expected to make, without violating
others’ privacy.

As with the principle on others’ authority, we focus on
users’ decisions to execute actions within the website. User
actions can have one of three kinds of consequences rela-
tive to data access: an action can change a permission, an
action can consent to changing a permission, or an action
can advance a permission. In each case, the affected permis-
sion could be either to the user executing the action or to
some other user. Under even moderate numbers of users and
data, the set of all potentially-affected permissions for an ac-
tion could be overwhelming. As a result, our formalization
focuses on changed permissions and consent. The formal-
ization is easily adapted, however, to include advances of
particular permissions.

As when summarizing others’ authority, näıvely showing
permissions has the potential to violate other’s privacy. Our
formalization leaves privacy violation as a parameter, as in
the case for others’ authority.

Formalization: For every state s and action act available
to user u, u has an authority-preserving path to a page dis-
playing all of the permissions that will change between s and
the next state s� of s on act and that do not violate another

user’s privacy. If act is consent-granting for u and per-
mission p, then u has an authority-preserving path to a page
displaying p.

5.5 Encourage Least-Privilege

Match the most comfortable way to do security-
oriented tasks with the least granting of authority.
Match comfortable ways to do sharing-oriented
tasks with acceptable granting of authority.

A “task” corresponds to a user’s goal, such as creating a
new document or sharing specific photos with certain friends.
While some tasks correspond to atomic actions in a sys-
tem (such as “create a document”), others correspond to
sequences of actions (“upload photos and share them”). We
therefore view tasks as paths to goal states within a system.
Accordingly, we interpret this principle as asking whether
paths that grant the least authority are also sufficiently easy
that users will take them (a site that made it difficult to
share with individuals instead of everyone would, for exam-
ple, violate this property).

This principle is interesting for two reasons: first, the
human-factors issues are harder to separate out from a core
information-based principle; second, massive scale of users
and data often makes least-privilege an impractical stan-
dard. One could certainly approximate this principle by
weighing the number of permissions granted along a path
against the number of actions required of a user along that
path. In practice, we expect developers will need more nu-
anced interpretations of “comfort”.

Finer-grained formalizations of comfort would also require
finer-grained models of pages. Our page model (Definition 4)
could be expanded to include link styling information (bold
fonts, colors, general position on the page, etc). Given that
modern web systems codify many of their design choices in
css stylesheets, models that at least partly draw on UI deci-
sions seem feasible, and worthy of additional investigation.

Definition 10. A path’s authority-weight is the total num-
ber of permissions granted along its transitions.

Formalization: The low-difficulty-weight paths to a
goal state for a task should be a subset of the least-authority-
weight paths to a goal state for that task. Furthermore, every
comfortable path to a goal state for a task yields accept-
able authority for that task.

6. BUILDING TOOLS ON THIS WORK
This work strives to provide foundations for useful analysis

tools for developers. We want to see our models and proper-
ties used to create tools that help developers identify subtle
bugs in the complex interactions that underlie modern web-
based data-sharing systems. The combination of our model
(Section 4) and preliminary properties (Section 5) suggest
three broad categories of tools.

First, one might build a verification tool that could verify
properties (ours or others’) against instances of our model.
We have begun building such a tool ourselves within the Al-
loy analyzer [?]. To date, we have a model of GitHub with
repositories as data, basic push and pull operations as al-
lowed accesses, and various actions that affect users’ author-
ity to act on repositories. The model differs a bit from that
in Section 4, most notably in embedding the access-control
policy in specifications of actions (rather than model a stan-
dalone policy); this simplifies the state space, though we can-
not yet quantify the impact of this modification. Against the
embedded access-control model, we have been able to check
the “authority with consent” property against this model on
traces up to five states in length, with each check requiring
a few minutes in real time. Work on this tool is ongoing.

Second, one could build tools that compute data-sharing
consequences of model instances without performing veri-
fication. For example, one could compute all sequences of
user-level actions under which a (kind of) datum gets shared
with a (kind of) user. Such an computation could start from
the access-control rules, compute the various requirements
for permitting an access under those rules, then compute
the program and user actions required to satisfy those re-
quirements. Using such an approach against a model of
Facebook, for example, one might determine that “A user u
will be able to see a photo owned by user o if o sends a friend
request to u, u accepts the request, o uploads the photo, and
o sets the sharing permissions on the photo to her friends”.
(Some of these steps could also have been permuted, and the
analysis would report these alternatives as well.) Present-
ing these data-sharing scenarios to a developer might help
her identify cases in which data-sharing is not guarded by
anticipated user actions, without burdening the developer
with stating formal properties. This is in the same spirit of
property-free analysis provided in policy-analysis tools such
as Margrave [?].

Third, one might use our model and formalizations to
build tools to help developers assess human-factors aspects

of web-based systems. Many of the human-factors concerns
around data-sharing are about the accessibility of informa-
tion, or whether end-users understand the consequences of
system actions. One could use our model to compute conse-
quences or information content, leaving developers with con-
crete guidance about what to assess on the human-factors
end. Example tools in this style might include:

• Compute the consent-granting actions for each per-
mission, leaving the developer to assess whether users
understand these actions will grant consent.

• Report paths that a user can take to reduce authority,
as well as permissions for which no such paths exist.

• Show instances of permissions related to consent-granting
actions, to help a developer decide which should be
conveyed to users.

• Compute the permissions that change by virtue of tak-
ing each consent-granting action, to help the developer
identify unintended consequences between actions and
permissions.

• Given a task, present the developer with alternate paths
to the task, summarizing their authorities and high-
lighting those with the least authority.

In general, assessing a system’s support for end-user data
sharing cannot overlook human-factor considerations. We
believe our work has something to offer in this regard: con-
cretely, the properties presented in this paper can profitably
be decomposed into parts that can be discharged entirely
through computational means, and residual portions that
require user intervention (such as through a user-interface
designer or analyst). We are therefore especially intrigued
by the prospect of this kind of decomposition in future work.

7. RELATED WORK
Several projects have formalized access-control within so-

cial networks. Fong et al. present a formal model of Face-
book that is easily generalized to other social networks [?].
Carminati et al. [?] and Mika [?] use ontologies in the
semantic web to design such a formalization. Those works
represents user actions as well as user data and relationships
between users. However, while they model which actions are
available to each user, they do not investigate the effects of
those actions. Besmer et al. formalize access-control policies
of social networks with a specific eye towards the permissions
of third party applications on those networks [?]. They fo-
cus on limiting the permissions of applications so that those
permissions align more closely with users’ privacy settings.

On the end-user side, several social-network researchers
have developed tools to help users manage access to their
resources. Cheek and Shehab’s tool leverages users’ exist-
ing social-network contacts to inform policies for other con-
tacts [?]. Wang et al. also incorporate user relationships
in order to suggest appropriate privacy settings, as well as
offering users fine-grained controls [?]; Fang and LeFevre
use limited user input to craft potential privacy settings [?].
These tools are designed to help users navigate the exist-
ing privacy controls of social networks. Our work focuses
on helping developers and designers ensure that the access-
control policy and privacy controls interact as expected.

Wang and Jin propose a system for minimizing the leak-
age caused by user error in cloud collaboration [?]. Their
work relies heavily on the ability to instate company-wide
mandatory access controls and to require company employ-
ees to adhere to file tagging standards. These restrictions
would be infeasible in the context of a social network, where
the data is owned and administrated by arbitrary users.

Targeting end-users’ control of data-access seems remi-
niscent of arbac [?], a formalism for administrative access
control. Including an arbac policy in our model would not
address the core problem in this paper, which is the con-
nection between user-facing actions and actual permission
changes. arbac also says nothing about the human-factors
issues discussed in this paper.

Much research has been done on the interplay between us-
ability and security in computer systems. Several researchers
have shown that user actions can unwittingly circumvent
seemingly sensible security policies and mechanisms. Whit-
ten and Tygar’s classic case study [?], as well as other usable-
security projects [?, ?, ?], illustrate the challenge to design-
ing security features that people use properly.

Yee’s work was one of the early, but not the only, efforts
to propose design guidelines for usable security or privacy.
Lederer, et al. [?] present five design pitfalls when design-
ing interactive systems with privacy implications. Many of
their principles resonate with Yee’s, and could be similarly
supported with static-analysis tools that target residuals.
One of their pitfalls explicitly raises the need for security
solutions to integrate into, rather than compete with, es-
tablished workflows. At Microsoft, Reeder, Kowalczyk and
Shostack [?] have developed guidelines for developers on
how to present decisions to users in a way that encourages
them to make secure choices. These guidelines contain more
human-factors advice than Lederer’s or Yee’s, but also hint
at avenues for formal tool support.

Yee’s original principles [?] lacked the nuances of gran-
ularity, delegation, groups of users, privacy, and workflows
that appear in our informal property statements. An inter-
ested reader should have no problem identifying which of
Yee’s principles corresponds to each of our informal proper-
ties. Our updating of Yee’s statements to modern systems
is a minor contribution of this work.

Usable security was one design goal in the Polaris [?],
ScoopFS [?], and CapDesk [?] projects that inspired Yee’s
principles. All of these systems employed capability-based
security, in which a user’s access is embodied in objects or
references, rather than access-control policies. Our system
model, in contrast, assumes an explicit access-control policy.
Based on existing research into reasoning about policies [?]
and their interactions with programs [?], we believe an ex-
plicit access policy is an essential artifact for formal anal-
ysis: many interesting analysis questions can be answered
(at least in part) on the policy alone, leaving lighter-weight
analyses for the full system model. One can reconcile these
perspectives by viewing capabilities as a way to implement
a separately-declared policy (at the modeling level).

Cognitive walkthroughs enable usability evaluation with-
out expensive and time-consuming user studies. Walkthrough
frameworks propose questions that developers should ask
about their systems’ expectations of users’ mental models
and goals. Rieman et al. [?] and Blackmon et al. [?] propose
automated tools to support walkthroughs, but their tools au-
tomate only the process of conducting a walkthrough. They

do not automate any of the artifact analysis within the walk-
through, which is the promise and purview of static analysis.

Automated formal analysis tools have been applied to spe-
cific usability concerns. Both Leveson et al. [?] and But-
ler et al. [?] proposed design metrics and tool support for
detecting mode confusion in interfaces. Curzon and Bland-
ford [?] analyzed usability design criteria themselves against
a formal model of human cognitive processes. Other tools
formalize user task models for systems [?] or log all user
interactions with the system and check whether these corre-
spond to expected usability patterns. Ivory and Hearst [?]
provide a detailed summary of projects on the latter.

These earlier techniques focus mainly on the users’ inter-
actions with the interface, not the users’ interactions with
the underlying system model via the interface. Our work
tackles the latter. A system model is essential for reason-
ing about usable security: the system controls how permis-
sions are used, while the user ideally controls how they are
granted and revoked. Our formalization of Yee’s principles
can be used to check (a) that users have the expected control
over how permissions are granted and revoked, and (b) that
the system applies those permissions in ways that the user
expects. Formal modeling and analysis of interface compo-
nents alone is likely a useful complement, but not a substi-
tute, for our work.

Garg, et al. [?] analyze audit logs for compliance with se-
curity and privacy policies. Their work uses formal analysis
to discharge objective components of the compliance checks,
leaving a subjective residual for manual analysis. Our resid-
ual tools are in the same spirit, but with a focus on residuals
about human-factors decisions.

8. DISCUSSION AND FUTURE WORK
As this paper has shown, a proper evaluation of social

sharing systems demands an analysis of both systems and
interfaces. Thus, it ultimately puts the problem in the realm
of usable security. This is a fascinating and difficult problem
because the two goals can sometimes seem at odds, though
as authors like Yee point out [?], sometimes this is an arti-
fact of our interface designs and methods for designating au-
thority. When these two are brought closer together, seem-
ingly conflicting requirements can actually become harmo-
nious ones.
Our paper has presented a formal model that is readily

amenable to tool support. We also identify how properties
decompose into formal and non-formal parts, where the for-
mer can in principle be discharged by automated tools, leav-
ing the latter as residual tasks to be evaluated by humans.
This ensures that the critical element of human judgement is
not eliminated, but the parts that can be handled automat-
ically by a compiler are nevertheless treated in that way. In
principle, for instance, the tools can be run frequently but
the expensive human evaluation might happen more rarely.
Reasoning effectively about usable security demands sys-

tem models that readily reveal the connections between user
actions and authority. This paper argues for a separate
access-control policy as part of the system model: the pol-
icy rules provide a clear starting point for computing in-
formation about authority within a system. Policies for
mainstream web applications, however, consult information
stored in the system state as well as in the request for access.
Accordingly, we propose a fairly rich system model, in which
individual states are effectively first-order relational mod-

els. We believe such models are essential in order to capture
multi-step permissions and other complexities of authority
in web applications.

Our discussions hint at several areas for ongoing work:

• Security versus privacy: Security and privacy are widely
accepted as different concerns with different norms,
but the line between them can be blurry. Principles
about“accurate awareness”clearly raise privacy issues.
Our current formalizations of the principles leave de-
velopers to flag privacy violations. Extending the sys-
tem model with a privacy policy could better support
this task. Such a policy would affect our definition
of valid pages (Definition 5) to not leak private infor-
mation. This requires care, however, as it implicitly
expects that users are capable of both crafting and
maintaining such policies.

• Administrative Permissions: The notion of adminis-
trative control is our model is coarse: it does not
distinguish between different operations on a datum.
In practice, administrative controls are finer-grained:
someone may have control over who edits, but not who
deletes a file. Administrative access-control policies [?]
capture these nuances in separate policies from the ac-
cess controls. We consciously chose to interpret ad-
ministrative control coarsely in this paper, to allow us
to focus on a coherent set of principles. A more real-
istic model, however, might include an administrative
access policy (which would in turn affect the formal-
izations of the presented principles).

• Usability Over Time: Time introduces subtle compli-
cations in the management of information. It is tempt-
ing to look primarily at the availability and impact
of actions that change authority in individual system
states. Optimizing for temporally local usable secu-
rity, however, can make the system less usable over
time. In a system for small-scale collaboration within
a large set of users, creating many groups (to main-
tain local security) increases the effort needed later
(as users have to search for the right group for their
task). Furthermore, there exist studies showing how
too many security choices lead users to use systems in-
securely [?]. We are, however, not aware of proposed
principles that balance immediate and long-term us-
able security.

• Accounting for Human Processes and Behavior: Soft-
ware tools are often used within rich systems of inter-
actions between people and software. In social sharing
systems, many aspects of security lie in the human pro-
cesses rather than in the software: operating policies,
incentives, and trust relationships are good examples.
The principles we’ve discussed focus on usable secu-
rity within the software. How would the residuals or
our proposed tools change if we extended our model
with process models of surrounding workflows, or task
models of users with different security expertise? If
these additional models proved effective, where would
we get them to use in analysis of real systems?

• Formalizing Presentation: Web-based applications con-
tain layout and formatting specifications through css
stylesheets. If our model of pages included css-like

styling tags on individual data, automated analyses
might be able to flag certain formatting concerns, such
as a more secure action being presented in smaller,
lower-contrast, text than a less secure one. Given the
plethora of usability design rules in the literature, it
is worth exploring which affect security and which, if
any, could be analyzed against the tools and languages
used to actually build production web applications.

