
Parallel VLSI Synthesis

by

Markus G. Wloka

Vordiplom, CHRISTIAN-ALBRECHTS-UNIVERSITÄT, Kiel, 1984

Sc. M., Brown University, 1988

Thesis

Submitted in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy in the Department of Computer Science

at Brown University

May 1991

c© Copyright 1991

by

Markus G. Wloka

Vita iii

Vita

I was born on April 7, 1962 in Heidelberg, FR Germany. My parents are Brigitte and

Prof. Josef Wloka, and I have two younger siblings, Eva and Matthias. I attended

the German public school system, which provided me with an excellent background in

mathematics and physics and other things which I cannot recall right now. I learned

English from books during stays in the US and Canada, where my father taught summer

school and always took his whole family along so he would not be lonely.

I received my baccalaureate in 1981 from the Ricarda-Huch-Gymnasium in Kiel,

FRG. After that, I spent 15 months (456 days) as a radio operator in the German Navy.

There, I learned to drink beer. In 1982 I entered the Christian-Albrechts-Universität

in Kiel, where I studied mathematics and informatics and received my Vordiplom in

1984. In 1985 I came to the US and entered the Ph.D. program in computer science at

Brown. I received my M.S. in computer science at Brown University in 1988.

Markus G. Wloka

Providence, 1991

Abstract v

Abstract

We investigate the parallel complexity of VLSI (very large scale integration) CAD

(computer aided design) synthesis problems. Parallel algorithms are very appropriate

in VLSI CAD because computationally intensive optimization methods are needed to

derive “good” chip layouts.

We find that for many problems with polynomial-time serial complexity, it is pos-

sible to find an efficient parallel algorithm that runs in polylogarithmic time. We

illustrate this by parallelizing the “left-edge” channel routing algorithm and the one-

dimensional constraint-graph compaction algorithm.

Curiously enough, we find P-hard, or inherently-difficult-to-parallelize algorithms

when certain key heuristics are used to get approximate solutions to NP-complete prob-

lems. In particular, we show that many local search heuristics for problems related to

VLSI placement are P-hard or P-complete. These include the Kernighan-Lin heuristic

and the simulated annealing heuristic for graph partitioning. We show that local search

heuristics for grid embeddings and hypercube embeddings based on vertex swaps are

P-hard, as are any local search heuristics that minimize the number of column conflicts

in a channel routing by accepting cost-improving swaps of tracks or subtracks. We

believe that the P-hardness reductions we provide in this thesis can be extended to

include many other important applications of local search heuristics.

Local search heuristics have been established as the method of choice for many

optimization problems whenever very good solutions are desired. Local search heuristics

are also among the most time-consuming bottlenecks in VLSI CAD systems, and would

benefit greatly from parallel speedup. Our P-hardness results make it unlikely, however,

that the exact parallel equivalent of a local search heuristic will be found that can find

even a local minimum-cost solution in polylogarithmic time. The P-hardness results

also put into perspective experimental results reported in the literature: attempts to

construct the exact parallel equivalent of serial simulated-annealing-based heuristics

for graph embedding have yielded disappointing parallel speedups.

We introduce the massively parallel Mob heuristic and report on experiments on

the CM-2 Connection Machine. The design of the Mob heuristic was influenced by the

P-hardness results. Mob can execute many moves of a local search heuristic in parallel.

We applied our heuristic to the graph-partitioning, grid and hypercube-embedding

problems, and report on an extensive series of experiments on the 32K-processor CM-2

vi Abstract

Connection Machine that shows impressive reductions in edge costs. To obtain solutions

that are within 5% of the best ever found, the Mob graph-partitioning heuristic needed

less than nine minutes of computation time on random graphs of two million edges,

and the Mob grid and hypercube embedding heuristics needed less than 30 minutes on

random graphs of one million edges. Due to excessive run times, heuristics reported

previously in the literature have been able to construct graph partitions and grid and

hypergraph embeddings only for graphs that were 100 to 1000 times smaller than

those used in our experiments. On small graphs, where simulated annealing and other

heuristics have been extensively tested, our heuristic was able to find solutions of quality

at least as good as these heuristics.

Acknowledgments vii

Acknowledgments

Many thanks to John E. Savage, my thesis advisor, for his patience and advice. I would

like to thank my thesis readers Roberto Tamassia and Lennart Johnsson, and also Dan

Lopresti, Philip Klein, Ernst Mayr, Otfried Schwarzkopf, David Durfee, and Matthias

Wloka for their helpful suggestions. Katrina Avery debugged style and spelling of my

research papers and this thesis.

The Mob heuristic was run on the Internet CM-2 facility supported by DARPA.

Many thanks to the staff of Thinking Machines Corporation and especially to Denny

Dahl, David Ray and Jim Reardon for their fast and knowledgeable help. I would like

to thank David Johnson, Woei-Kae Chen and Matthias Stallmann for supplying graphs

against which the performance of the heuristic was compared.

For supplying me with an education in the sciences and for instructive and enter-

taining lectures, I would like to acknowledge my high-school mathematics teachers at

the Ricarda-Huch-Gymnasium in Kiel, Mr. Hoppe, Mr. Brust, and Dr. Johannsen, and

my informatics and mathematics professors at the Christian-Albrechts-Universität in

Kiel, Prof. Dr. Hackbusch, Prof. Dr. König, Prof. Dr. Hähl, the late Prof. Dr. Schlender,

Dr. Schmeck, and Dr. Schröder.

Many people made life at Brown an enjoyable experience and provided assistance

and moral support: Dina and Stuart Karon, Dan Winkler, Ariel, Yael, and Ohad Aloni,

Kaddi Schrödter, Sallie Murphy, Arnd Kilian, my landlords-extraordinaire Sue, Bill,

(and Morgan!) Smith, Jennet Kirschenbaum, Susan Grützmacher, Dirk Weber, Greg

Lupinski, and Anke Brenner. Extra credit belongs to my roommate Paul Anderson.

And finally, most of the credit for this thesis goes to my parents Brigitte and Josef

Wloka, who gave me unfailing encouragement and came to visit their kids at Brown

once a year to clean out the refrigerator.

Contents ix

Contents

Vita iii

Abstract v

Acknowledgments vii

1 An Introduction to Parallel VLSI Synthesis 1

1.1 VLSI CAD Tools on Parallel Machines 1

1.2 Summary . 2

2 Massively Parallel Computation 5

2.1 Parallel Complexity . 5

2.2 The PRAM Model . 8

2.3 Computing Networks . 8

2.4 SIMD versus MIMD . 10

2.5 The Connection Machine . 12

2.6 Parallel Programming Primitives . 13

3 Constructive Heuristics 17

3.1 The Parallel Left-edge Channel Router 18

3.2 Parallel Circuit Compaction . 30

4 Local Search Heuristics for VLSI Placement 49

4.1 Local Search Heuristics . 49

4.2 Parallel Local Search . 52

4.3 Graph Partitioning . 54

4.4 Graph Embedding . 57

4.5 Channel Routing with Column Conflicts 65

5 The Parallel Complexity of Local Search 69

5.1 P-hard Graph-Partitioning Heuristics . 69

5.2 P-hard Graph-Embedding Heuristics . 79

5.3 P-hard Channel-Routing Heuristics . 89

x Contents

6 The Mob Heuristic 103

6.1 The General Mob Heuristic . 103

6.2 The Mob Graph-Partitioning Heuristic 104

6.3 The Mob Graph-Embedding Heuristic 116

7 Conclusions and Open Problems 141

Bibliography 145

List of Tables xi

List of Tables

3.1 Compaction results on the CM-2. TGen is the time to construct the

visibility graph, TPath is the time to compute the lengths of the longest

paths. TGen and TPath were measured on a 8K-processor and a 16K-

processor CM-2. 46

5.1 The states of AND/OR gates and their COLUMNS cost. 99

6.1 r500 , m1000 are small random graphs of degree 5. The bisection widths

obtained from the KL, SA, and Mob graph-partitioning algorithms are

compared to a graph partition chosen at random. 108

6.2 Results for r500 , m1000 . (a) Convergence is measured by expressing

Mob’s bisection width after a number of iterations as a percentage over

the best solution obtained. The bisection widths computed by Mob after

100 iterations are smaller than those of KL. (b) CM-2 execution times

for KL and Mob. 108

6.3 Large random graphs of small degree. 110

6.4 Graph-partitioning results for large random graphs. The bisection widths

of the KL and Mob graph-partitioning algorithms are compared to a

graph partition chosen at random. Convergence is measured by express-

ing Mob’s bisection width after a number of iterations as a percentage

over the best solution obtained. The bisection widths computed by Mob

after 100 iterations are smaller than those of KL. 112

6.5 Timing results (sec.) for graph partitioning for large random graphs:

execution times were measured for KL on an 8K CM-2 and for 1 and

2000 Mob iterations on an 8K, 16K, and 32K CM-2. 114

6.6 Hypercube-embedding results for large random graphs. The costs of the

Mob hypercube-embedding algorithm, expressed as average edge length,

are compared to a hypercube embedding chosen at random. Convergence

is measured by expressing Mob’s cost after a number of iterations as a

percentage over the best solution obtained. 121

xii List of Tables

6.7 Grid-embedding results for large random graphs. The costs of the Mob

grid-embedding algorithm, expressed as average edge length, are com-

pared to a grid embedding chosen at random. Convergence is measured

by expressing Mob’s cost after a number of iterations as a percentage

over the best solution obtained. 122

6.8 Timing results (sec.) for hypercube embedding for large random graphs.

Execution times were measured for 1 Mob iteration on an 8K, 16K, and

32K CM-2. 125

6.9 Timing results (sec.) for grid embedding for large random graphs. Exe-

cution times were measured for 1 Mob iteration on an 8K, 16K, and 32K

CM-2. 126

6.10 Graph partitions of random graphs generated by cutting the hypercube

and grid embeddings across a hyperplane. Bisection widths are expressed

as average edge lengths. The Mob hypercube and grid heuristic produce

bisection widths that are better than those of the KL heuristic. 128

6.11 Large random geometric graphs of small degree. 133

6.12 Hypercube-embedding results for large geometric graphs. The cost of the

Slice and Mob hypercube-embedding algorithms, expressed as average

edge length, are compared to a hypercube embedding chosen at random.

Convergence is measured by expressing Mob’s cost after a number of

iterations as a percentage over the best solution obtained. 135

6.13 Grid-embedding results for large geometric graphs. The costs of the Slice

and Mob grid-embedding algorithms, expressed as average edge length,

are compared to a grid embedding chosen at random. Convergence is

measured by expressing Mob’s cost after a number of iterations as a

percentage over the best solution obtained. 136

6.14 Graph partitions of geometric graphs generated by cutting the hyper-

cube and grid embeddings across a hyperplane. Bisection widths are

expressed as average edge lengths. The Mob hypercube and grid heuris-

tic produce bisection widths comparable to those of the Mob graph-

partitioning heuristic and better than those of the KL heuristic. 138

6.15 Hypercube embeddings of 128-vertex, degree-7 geometric graphs. Com-

parison of Mob to SA. 138

List of Figures xiii

List of Figures

3.1 The connection graph G represents terminals to be connected by wires. 19

3.2 A channel routing of the connection graph G with minimum channel

width. 20

3.3 Interval representation of the channel routing in Figure 3.2. 21

3.4 Assignments to Xi after initialization. 23

3.5 Assignments to Si after align prefix operation. 24

3.6 A mismatch in an assignment of half intervals: b3 should have been

assigned to a2. 25

3.7 (a) Incorrect inefficient routing. (b) The nets are shortened. (c) The

column conflicts are removed. 29

3.8 (a) Uncompacted layout; minimum-distance constraints prevent rectan-

gle overlap. (b) Compacted layout. 30

3.9 (a) Tiling of the layout: every constraint is replaced by a tile. (b) Tran-

sitive reduction of the constraint graph. 32

3.10 Building the visibility graph. Edges are placed along the trench whenever

a new rectangle appears in either the red shadow to the left of the trench

or the green shadow to the right of the trench. 35

3.11 (a) Two red shadows. (b) The red shadow data structures are updated

by inserting new event points. 36

3.12 The combined red shadow. 37

3.13 Reducing edges in the visibility graph by pattern matching. Only the

edge with the pattern (DOWN, UP) remains in the reduction; all others

are removed. 39

3.14 Mergesort in reverse: (a) Four rectangles 00, 01, 10, 11, indexed by their

x-coordinate. (b) The rectangles are sorted by their y-coordinate, equiv-

alent to the final iteration of a mergesort on the y-coordinate. (c) The

rectangles after 0-1 sorting by the 2nd index bit. A left and a right

set are obtained, equivalent to the first iteration of a mergesort on the

y-coordinate. (d) The rectangles after 0-1 sorting the previous sets by

the 2nd index bit. The sets are again divided into left and right sets,

equivalent to the initial state before mergesort on the y-coordinate. . . 42

xiv List of Figures

3.15 Three uncompacted layouts with O(
√

n) critical paths: (a) diamond

lattice, (b) irregular diamond lattice, (c) irregular mesh. 45

3.16 Irregular diamond lattice. (a) Before compaction. (b) After compaction. 45

4.1 The simulated annealing (SA) heuristic. 50

4.2 Graph partitioning of a random graph. The two vertex sets of the par-

tition were placed on the upper and lower half-circle. (a) A randomly

generated solution. (b) A solution generated by the Mob heuristic. . . . 54

4.3 The Kernighan-Lin (KL) heuristic. 56

4.4 16-to-1 grid embedding of a random graph: (a) A randomly generated

solution. (b) A solution generated by the Mob heuristic. 58

4.5 1-to-1 grid embedding of a random graph: (a) A randomly generated

solution. (b) A solution generated by the Mob heuristic. 58

4.6 Transforming a channel-routing solution A into a solution B by subtrack

swaps. The set PB contains intervals in which the current track assign-

ment T (i) is equal to the desired track assignment TB(i) in solution B.

Track 2 contains the interval with the smallest end point RI2 and Ij is

the interval immediately to the right of RI2. Ik is the leftmost interval

in track TB(j). Since Ij is not in its target track (T (j) 6= TB(j)), the

subtracks containing Ij and Ik are swapped. No horizontal overlaps can

occur. 67

5.1 Subgraphs equivalent to AND and OR gates. 70

5.2 A monotone circuit and its equivalent subgraph. 71

5.3 Schematic representation of G. 72

5.4 Tree-like balancing subgraphs. 72

5.5 Operation of AND and OR gate subgraphs. 75

5.6 Reduction from graph partitioning to grid embedding: the graph G from

the proof of Theorem 9 in Section 5.1.2 is placed on the grid so that

positive-gain swaps on the grid correspond to positive-gain swaps in the

graph-partitioning problem. 81

5.7 (a) Vertex vi in its initial position, before swap. (b) Regular positive-gain

swap of vi with a solitary vertex. 83

5.8 (a) Irregular swap, ∆y 6= 0. (b) Irregular swap, ∆y = 0,∆x > 1. 84

5.9 The overall construction of a channel-routing problem from circuit OM(C).

Circuit inputs, AND/OR gates, and connecting wires each have a pair

of center subtracks (horizontal segments). The anchor nets placed to the

left and right of the circuit subtracks prohibit swaps except between cen-

ter subtracks. The vertical segments of the circuit elements that cause

column conflicts are not shown. 91

5.10 Circuit input Ia. (a) Ia = 0. (b) Ia = 1. 92

5.11 (a) OR gate Gr. (b) AND gate Gr. 93

List of Figures xv

5.12 Connecting wire Wk. 94

5.13 The state-transition graph of the circuit input Ia. (a) Ia = 0. (b) Ia = 1. 96

5.14 The state-transition graph of the wire Wk. 98

5.15 The state-transition graph of the OR gate. 100

6.1 The Mob heuristic . 104

6.2 Ratios of best Mob bisection width to random bisection width for random

graphs plotted as a function of graph degree. 113

6.3 Mob convergence behavior, measured by expressing Mob’s bisection width

after a number of iterations as a percentage over the best solution obtained.113

6.4 Ratios of best Mob embedding cost to random embedding cost for ran-

dom graphs plotted as a function of graph degree. 120

6.5 Mob convergence behavior, measured by expressing Mob’s bisection width

after a number of iterations as a percentage over the best solution obtained.124

6.6 (a) A random geometric graph on the unit plane. (b) Grid embedding

of the geometric graph. 130

1

Chapter 1

An Introduction to Parallel VLSI

Synthesis

1.1 VLSI CAD Tools on Parallel Machines

We investigate the parallel complexity of VLSI (very large scale integration) CAD

(computer aided design) synthesis problems. Parallel algorithms are very appropriate

in VLSI CAD because computationally intensive optimization methods are needed to

derive “good” chip layouts. This thesis concentrates on problems related to parallel

layout synthesis. We believe that eventually the entire suite of CAD tools used to design

VLSI chips, from high-level specification to the generation of masks for fabrication, will

run on a massively parallel machine.

We find that for certain problems with polynomial-time serial complexity, it is

possible to find an efficient parallel algorithm that runs in polylogarithmic time. We

illustrate this by parallelizing the “left-edge” channel routing algorithm and the one-

dimensional constraint-graph compaction algorithm.

Curiously enough, we find P-hard, or inherently-difficult-to-parallelize algorithms

when certain key heuristics are used to get approximate solutions to NP-complete prob-

lems. In particular, we show that many local search heuristics for problems related to

VLSI placement are P-hard or P-complete. These include the Kernighan-Lin heuristic

and the simulated annealing heuristic for graph partitioning. We show that local search

heuristics for grid embeddings and hypercube embeddings based on vertex swaps are

P-hard, as are any local search heuristics that minimize the number of column conflicts

in a channel routing by accepting cost-improving swaps of tracks or subtracks. We

believe that the P-hardness reductions we provide in this thesis can be extended to

include many other important applications of local search heuristics.

We introduce the massively parallel Mob heuristic and report on experiments on the

CM-2 Connection Machine. The design of the Mob heuristic was influenced by the P-

hardness results. Mob can execute many moves of a local search heuristic in parallel. We

2 Chapter 1. An Introduction to Parallel VLSI Synthesis

applied our heuristic to the graph-partitioning, grid and hypercube-embedding prob-

lems, and report on an extensive series of experiments with our heuristic on the 32K-

processor CM-2 Connection Machine that show impressive reductions in edge costs.

We expect that parallel algorithms will supersede serial ones in all areas of VLSI

CAD, and believe that the Mob heuristic and P-hardness reductions given here can be

extended to include many other important applications of local search heuristics.

1.2 Summary

In Chapter 2 we give an introduction to parallel complexity classes, logspace reductions,

and to the boolean circuit-value problem, which is the canonical P-complete problem.

We introduce the PRAM model and discuss real-world implementation issues for paral-

lel machines. We discuss real-world implementation issues for parallel machines, where

the communication costs and area of interconnection networks must be taken into ac-

count. We also give a brief but impassioned discussion of the advantages of the SIMD

model over the MIMD model. We describe one successful massively parallel machine,

the CM-2 Connection Machine. The SIMD model constitutes a powerful and elegant

parallel programming methodology. Our parallel algorithms are designed to use local

operations plus simple parallel primitives such as sort, merge and parallel prefix.

In Chapter 3 we give constructive parallel heuristics for channel routing and com-

paction. In Section 3.1 we give an algorithm for two-layer channel routing of VLSI de-

signs. We have developed an optimal NC1(n) EREW PRAM algorithm that achieves

channel density[123]. This is a parallel version of the widely used “left-edge” algorithm

of Hashimoto and Stevens[58]. Our algorithm is also an optimal solution for the maxi-

mum clique and the minimum coloring problems for interval graphs and the maximum

independent set problem for co-interval graphs. Since the basic left-edge algorithm

does not deal with column conflicts, many variations and extensions of the left-edge

algorithm have been proposed, and our parallel algorithm can serve as a kernel to par-

allelize these extensions. Most of the more general two-layer channel routing problems

in which column conflicts and other quantities are to be minimized, are NP-complete,

so the more general two-layer channel routers are heuristics that produce routings of

very good quality but are not guaranteed to achieve minimum channel width or channel

density. Interestingly enough, we shall see in Section 5.3 that at least one such routing

heuristic is P-hard and thus unlikely to be parallelizable.

In Section 3.2 we give our results[124] for circuit compaction: a parallel algorithm

for computing the transitive reduction of an interval DAG. This is equivalent to a

parallel algorithm for computing a minimum-distance constraint DAG from a VLSI

layout. It is substantially simpler than a previously published serial algorithm. An

intermediate result during the execution of the above algorithm is a parallel algorithm

to construct a tiling or corner stitching, a geometrical data structure used in the Magic

VLSI layout system. All these computations take time O(log2 n) using O(n/log n)

1.2. Summary 3

processors on an EREW PRAM, so their processor-time product is optimal.

In Chapter 4 we introduce local search heuristics, of which KernighanLin, simulated

annealing, and steepest descent, are well-known examples. Such local search heuristics

have been established as the heuristics of choice for general graph-embedding problems.

The recent availability of general-purpose parallel processing hardware and the need to

solve very large problem instances have led to increasing interest in parallelizing local

search heuristics.

In Chapter 5 we show that certain local search heuristics in the area of parallel

placement algorithms and channel routing are P-complete or P-hard, or inherently

difficult to parallelize. Thus it is unlikely that a parallel algorithm exists that can

find even a local minimum solution in polylogarithmic time in the worst case. This

result puts into perspective experimental results reported in the literature: attempts

to construct the exact parallel equivalent of serial simulated-annealing-based heuristics

for graph embedding have yielded disappointing parallel speedups.

Section 5.1 deals with graph partitioning, the problem of partitioning the vertices

of a graph into two equal-sized sets so that the number of edges joining the sets is

minimum. We show that the Kernighan-Lin heuristic for graph partitioning is P-

complete and that the simulated annealing heuristic for graph partitioning is P-hard.

Section 5.2 deals with graph embedding on the grid and hypercube. Graph embed-

ding is the NP-complete problem of mapping one graph into another while minimizing

a cost function on the embedded edges of the graph. It finds application in VLSI

placement and also in minimizing of data movement in parallel computers. We show

that local search heuristics for grid embeddings and hypercube embeddings are P-hard

when the neighbors in the solution space are generated by swapping the embeddings

of two vertices.

In Section 5.3 we address the parallel complexity of a parallel channel routing

algorithm using simulated annealing as proposed by Brouwer and Banerjee[19]. We

show that any local search heuristic that minimizes the number of column conflicts in

a channel routing by accepting cost-improving swaps of tracks or subtracks is P-hard.

In Chapter 6 we introduce the massively parallel Mob heuristic and report on ex-

periments on the CM-2 Connection Machine. The design of the Mob heuristic was

influenced by the P-hardness results. Mob can execute many moves of a local search

heuristic in parallel. Due to excessive run times, heuristics previously reported in the

literature have been able to construct graph partitions and grid and hypercube em-

beddings only for graphs that were 100 to 1000 times smaller than those used in our

experiments. On small graphs, where simulated annealing and other heuristics have

been extensively tested, our heuristic was able to find solutions of quality at least as

good as simulated annealing.

In Section 6.2 we describe the Mob heuristic for graph partitioning, which swaps

large sets (mobs) of vertices across planes of a grid or hypercube. We report on an ex-

tensive series of experiments with our heuristic on the 32K-processor CM-2 Connection

Machine that show impressive reductions in the number of edges crossing the graph

4 Chapter 1. An Introduction to Parallel VLSI Synthesis

partition and run in less than nine minutes on random graphs of two million edges.

In Section 6.3 we describe the Mob heuristic for grid and hypercube embedding,

which swaps large sets (mobs) of vertices across planes of a grid or hypercube. Ex-

periments with our heuristic on the 32K-processor CM-2 Connection Machine show

impressive reductions in edge costs and run in less than 30 minutes on random graphs

of one million edges.

In Chapter 7 we present our conclusions and give an overview of open problems

and future work.

5

Chapter 2

Massively Parallel Computation

Many problems in VLSI design admit parallel solution. However, discovering such

solutions is often a considerable intellectual challenge, one that cannot be met today

through the use of a parallelizing compiler or speedup measurements. It is often con-

venient to develop parallel algorithms for the PRAM model described below. The

advantages of working with the PRAM model are that algorithms for it often are sim-

pler and faster than serial algorithms and can also give fundamental insight into the

nature of parallelism that can be applied to map these algorithms onto more realistic

parallel architectures.

We give an introduction to parallel complexity classes, logspace reductions, and

the boolean circuit-value problem, which is the canonical P-complete problem. We

introduce the PRAM model and discuss real-world implementation issues for parallel

machines. Interconnection networks and their communication costs must be taken into

account. We also give a brief but impassioned discussion of the advantages of the

SIMD model over the MIMD model. The SIMD model constitutes a powerful and

elegant parallel programming methodology. Our parallel algorithms are be designed

to use local operations plus simple parallel primitives such as sort, merge and parallel

prefix.

2.1 Parallel Complexity

We begin by defining P-complete and P-hard problems, the randomized decision class

BPP, and the boolean circuit-value problem CVP, which is the canonical P-complete

problem.

2.1.1 Classes and Completeness

Definition 1 A decision problem is a subset of {0, 1}∗. A decision problem A is in

P , the class of polynomial-time problems, if there is a a deterministic polynomial-time

Turing machine T such that, if x ∈ A, then T accepts x and if x 6∈ A then T rejects x.

6 Chapter 2. Massively Parallel Computation

Definition 2 A decision problem A is logspace-reducible to a problem B if there is a

function g : {0, 1}∗ → {0, 1}∗ computable in logarithmic space (logspace) by a deter-

ministic Turing machine such that x ∈ A if and only if g(x) ∈ B.

Definition 3 A decision problem is P-complete if it is in P and every problem in

P is logspace-reducible to it. A decision problem is P-hard if every problem in P is

logspace-reducible to it.

Definition 4 A decision problem is in NC if it is solvable by a uniform class of circuits

with polynomial size and polylogarithmic depth. A class of circuits is uniform if there

is a Turing machine that for each integer n generates the nth circuit in polynomial

time.

The class NC was introduced by Pippenger[97]. If a P-complete problem is in NC,

then P is contained in NC[75], a highly unlikely result. Problems in NC can be solved

on a parallel machine with polynomially many processors in polylogarithmic time.

Since logspace-reducibility is transitive, if a problem A is P-complete and we can find

a logspace reduction of it to another problem B in P, then B is also P-complete. The

definition of P-hardness does not require that the decision problem be in P. A P-hard

problem is at least as hard to solve as a P-complete problem.

A “randomized Turing machine” RT[51] is a machine with an input tape and a

read-once, one-way binary “guess tape.” If a transition for a given state and input-

tape symbol is probabilistic, RT reads a string of k binary symbols from the guess tape,

treats it as an approximation to a real number in the interval (0,1) and uses it to select

a transition. The probability that a string x of length n is accepted (rejected) by a

randomized Turing machine making f(n) transitions is the number of strings of length

f(n) on the guess tape that causes x to be accepted (rejected), divided by the total

number of strings of length f(n). PP and BPP are classes of languages defined below

recognized by polynomial-time RTs.

Definition 5 A decision problem A ∈ PP if there is a a randomized polynomial-time

Turing machine RT such that if x ∈ A then Pr(RT accepts x) > 1/2 and if x 6∈ A

then Pr(RT rejects x) > 1/2.

The class PP is not very useful for our purposes. It can be shown that NP ⊆ PP [51].

We are interested in a higher degree of confidence in the outcome of the RT, that

characterized by the class BPP of polynomial-time RTs with bounded error probability,

as defined below.

Definition 6 A decision problem A ∈ BPP if there is a a randomized polynomial-time

Turing machine RT and an ǫ > 0 such that if x ∈ A then Pr(RT accepts x) > (1/2+ǫ)

and if x 6∈ A then Pr(RT rejects x) > (1/2 + ǫ).

2.1. Parallel Complexity 7

It is known that P ⊆ BPP

NP
⊆ PP [51]. Every language in BPP can be recognized by

a polynomial-time randomized Turing machine RT with probability arbitrarily close to

1 by repeating the computation and taking the majority of the outcomes as the result.

It can be seen that with this construction the error probability decreases exponentially

with the number of repetitions. It is unknown whether there are problems logspace-

complete for BPP.

2.1.2 Circuits

A Boolean circuit is described by a straight-line program over a set of Boolean opera-

tions[113]. One output generated by the circuit is identified as significant and is called

the “value” of the circuit. The free variables are called “inputs” and are assigned val-

ues. A circuit corresponds to a directed acyclic graph (DAG) with Boolean function

labels on internal vertices.

Definition 7 The circuit-value problem (CVP) is the problem of computing the value

of a Boolean circuit from a description of the circuit and values for its inputs.

Theorem 1 CVP is P-complete.

The proof of Theorem 1 is due to Ladner[75], and is similar to the proof of Cook’s

seminal theorem that SAT is NP-complete[32]. The method of proof is to take the

description of a TM that on an input of length n runs in polynomial time p(n), and

transform this description into a boolean circuit.

We say a circuit element k depends on a circuit element i when it is connected to

an output of circuit element i, or when it is connected to an output of circuit element

j that depends on circuit element i.

Definition 8 The ordered circuit-value problem (OMCVP) is the problem of comput-

ing the value of a Boolean circuit OM(C) from a description of the circuit and values

for its inputs. The circuit elements in OM(C) are indexed so that when circuit element

k depends on gate i, then k > i.

We note that the circuit generated in the proof of Theorem 1 is ordered. This gives us

the following corollary:

Corollary 1 The ordered circuit-value problem OMCVP is P-complete.

Restricted versions of CVP are also P-complete. A monotone circuit uses only

the operations AND and OR, and the monotone circuit-value problem (MCVP) is P-

complete[52]. The planar circuit-value problem is also P-complete [52], but the planar

monotone circuit-value problem is in NC[53]. The fan-in/fan-out 2 circuit-value prob-

lem is P-complete, since any circuit can be translated in logspace into a circuit in which

both fan-in and fan-out of internal vertices are at most 2.

8 Chapter 2. Massively Parallel Computation

The dual-rail circuit DR(C) of a monotone circuit C consists of two subcircuits, C

and C, containing only ANDs and ORs. The subcircuit C is obtained by replacing each

AND in C with an OR and vice versa, and complementing the inputs. A very convenient

feature of the dual-rail circuit DR(C) is that exactly half of the inputs and half of the

circuit elements in DR(C) have value 1. It follows from the above construction that

the dual-rail monotone circuit-value problem (DRMCVP) is P-complete.

Local search heuristics, such as simulated annealing (SA)[69] and Kernighan-Lin

(KL)[68], evaluate functions that map solutions to neighboring solutions. To convert

these functions to decision problems, it is sufficient to mark one node in the graph and

to accept partitions in which the marked node changes sets under the heuristic mapping.

When we speak of the P-completeness or P-hardness of a local search heuristic, we refer

to the decision-based versions of these problems.

2.2 The PRAM Model

The PRAM (parallel random-access machine) is a very general model of computation

based upon an idealized multiprocessor machine with shared memory. Processors alter-

nate between reading from shared or local memory, doing an internal computation and

writing to shared or local memory. The cost of accessing a memory location by each

processor is constant, and communication costs are therefore ignored in this model.

The PRAM model is further refined by dealing with concurrent reads and writes. An

EREW PRAM admits exclusive read and write operations to the shared memory. A

CREW PRAM admits concurrent reads but exclusive write operations. The ERCW

and CRCW PRAMs are defined analogously. Unless otherwise specified, parallel time

complexities refer to the EREW model. Classes of problems that can be solved quickly

in parallel on the PRAM with a small number of processors have been identified. The

most important such class is NC, which was defined in Section 2.1. For conciseness,

we sometimes use the notation NCk(p) for an algorithm that runs in time O(logk n)

with O(p) processors on a problem of size n.

For a more detailed introduction to the PRAM model and a survey of existing work

see Cook[33], Karp and Ramachandran[67], the MIT class notes by Leighton et al.[81,

82], Leighton[78] Reif[103], Shmoys and Tardos[129], and Suaya and Birtwistle[132].

2.3 Computing Networks

In this section we give a brief overview of results in the areas of PRAM simulations on

computing networks, message routing and VLSI space-time tradeoffs, and how these

results apply to massively parallel computation. For detailed surveys of results in these

areas, and for further references, see Leighton[78], Leighton et al.[81,82], Leiserson[83],

Savage[114,118] and Suaya and Birtwistle[132].

The PRAM model introduced in Section 2.2 has been established as a very useful

2.3. Computing Networks 9

abstract tool for the development and analysis of parallel algorithms. However, the

designer of a practical parallel machine faces certain limitations that are ignored in

the PRAM model. A realistic machine will have non-trivial communication costs, and

must be packed onto a two-dimensional chip, or at least into three-dimensional volume.

Universal Networks The PRAM model assumes implicitly that the shared memory

can be accessed in O(1) time, an assumption that ignores communication costs. A more

realistic model is that of the computing network, which consists of a set of processors

with local memory connected to k other processors by wires along which messages are

passed. A universal network is a network that can efficiently simulate any network.

The hypercube is a universal computing network. Valiant and Brebner[17] have

shown that an n-processor hypercube can simulate an n-processor CRCW PRAM with

only O(log n) overhead, by giving a randomized routing algorithm that runs in O(log n)

time and uses queues of average length O(log n). Ranade[101] has shown that the

butterfly network is also universal, by giving a randomized routing algorithm that runs

in O(log n) time and uses queues of average length O(1). Other universal networks

include the cube-connected-cycles graph, the shuffle-exchange graph, and the DeBruijn

graph.

Lower Bounds In current technology, parallel computers and most other electronic

hardware are built out of two-dimensional chips. Switches and wires are formed out of

a few conductive or semiconductive layers on top of a semiconductor substrate, which

is typically silicon. We can place bounds on the minimum area required to implement

a given network. The following theorem is due to Thompson [135]:

Theorem 2 The area A required for the layout of a graph with bisection width w is at

least Ω(w2).

Using a three-dimensional medium to build the network does not help much. Thomp-

son’s result was extended to the layout of graphs in three-dimensions by Rosenberg[106].

Corollary 2 The volume V for the layout of a graph with bisection width w is Ω(w3/2).

By applying these lower bounds, Vuillemin[138] has shown that the layout area

of transitive functions with n inputs is Ω(n2). Transitive functions include binary

multiplication, cyclic shift, and convolution, for which efficient NC algorithms exist

on the PRAM. Therefore, any universal network requires a minimum layout area of

Ω(n2). A parallel computer that uses a hypercube or any other universal network

will consist mainly of wires. For instance, the n-processor hypercube has a bisection

width w = n/2. The degree of each processor is k = log n, the layout area A = Θ(n2)

and the volume V = Θ(n3/2). The n log n-processor cube-connected-cycles network

has bisection width w = n/2; the degree of each processor is k = 3 and layout area

10 Chapter 2. Massively Parallel Computation

A = Ω(n2); the n log n-processor butterfly has a bisection width w = n. The degree of

each processor is k = 4 and the layout area A = Ω(n2).

It would seem from the previous discussion that it is impossible to implement a

universal network in the real world. We note, however, that the above bounds are

asymptotic. Since the general-purpose parallel computing power of a universal network

is highly desirable, there is a strong incentive to “cheat” the asymptotic bounds by

allocating to the communication links more and more resources, such as money, area

and faster technology. The nervous system is an example of a successful architecture

in which this tradeoff between asymptotic behavior and functionality is evident: as

Mahowald and Mead[88] point out, the ratio of synapses (processors) to axons (wire)

in neural systems is about 1 to 100.

Area-Universal Networks An area-universal network is a network that can effi-

ciently simulate any network of comparable area. Area-universal networks include the

n-processor fat-tree[84] and the mesh-of-trees graph[82]. Both graphs have layouts with

area A = Ω(n log2 n).

The Speed of Light We note the implicit assumption for universal and area-universal

networks that the time to send a message between two processors is O(1) and inde-

pendent of wire length. We can alter the communication model by making the time

to send a message proportional to the length of the path along which it is sent. Let

f be a function computed by a circuit in which every output depends on n inputs. f

can be computed in time t = Ω(3
√

n). For example, in this model computing a sum

across all processors to find out whether all processors are switched on is impossible

in polylogarithmic time. The communication-time restrictions favor applications with

strong locality, such as physical simulations on a grid. We predict that this will change

the methods used in designing and analyzing algorithms.

2.4 SIMD versus MIMD

Architectures of parallel machines are often categorized in the literature by distin-

guishing SIMD and MIMD architectures. The processors of a SIMD (single instruction

multiple data) parallel machine share the same instruction stream, which is usually

distributed via broadcast by a control unit. The broadcast mechanism is separate from

and much simpler than the communications network. By necessity instructions are ex-

ecuted in lockstep. All current SIMD architectures associate processors with their own

local memories, but a shared-memory SIMD machine, in which each processor has its

own index pointer into the shared memory, is conceivable although not very practical.

A SIMD processor has the capability to switch itself off in response to the outcome of

a logical instruction; in this way IF..THEN..ELSE program constructs can be imple-

mented. Note that this results in idle processors. The processors of a MIMD (multiple

2.4. SIMD versus MIMD 11

instruction multiple data) parallel machine are fully independent: each processor has

its own program memory and as a rule executes asynchronously.

Both shared-memory and network MIMD machines have been built. The shared-

memory machines, among which are the Encore Multimax, the Sequent, and the Cray

machines, tend to have few processors. MIMD machines with communication networks

include the BBN Butterfly, the Intel iPSC, and various implementations using the

Inmos Transputer processor.

At first sight the MIMD approach seems to be vastly more powerful. The two ar-

guments most often put forth in its favor are: (a) the ability to program each processor

independently gives the designer access to a richer and more clever set of algorithms.

(b) MIMD is more efficient; when a processor has finished its task, it can request a new

task to work on instead of sitting idle. However, both arguments in favor of MIMD are

illusory. The asynchronous nature of the MIMD machine makes it difficult to debug

and to measure execution times. We shall illustrate that in theory SIMD machines are

as powerful as MIMD machines.

It is straightforward to prove the following theorem:

Theorem 3 A MIMD program of time complexity T (n) can be simulated by a SIMD

program in time < cT (n), where c is a small constant.

Proof We use Mehlhorn‘s argument given in[89] to show that RAMs (random-access

machines) with separate read-only program storage are equivalent to RAMs in which

the program is stored in memory as data. We simulate the MIMD program on a

SIMD machine by storing the individual programs of each MIMD processor in the data

memory of each SIMD processor. The control unit issues the following instruction

stream:

Load instruction

Load operands

Execute instruction

Save operands

The program counter of each MIMD processors is now simply replaced by an index

register on the SIMD processor. Loading and saving data are simply implemented by

using index registers on the SIMD machine. If the SIMD processors are so simple that

no index registers are available, we can use the global communication mechanism of

the SIMD machine though this may add a polylogarithmic overhead to the simulation.

The instruction set of the MIMD processor is assumed to be constant and given

the current preference for RISC (reduced-instruction-set computer) architecture, quite

small: the SIMD machine simply loops through the whole instruction set; all processors

whose loaded instruction matches the broadcast instruction execute that instruction,

all other processors are turned off.

12 Chapter 2. Massively Parallel Computation

Note that all SIMD processors are still running the same program, but the program

simulates simple processors. 2

In practice, MIMD machines have so far failed to deliver performance equal to SIMD

machines such as the CM-2 or the MasPar machine. Furthermore, the discrepancy will

probably become larger in the future: it is very likely that in a few years general

purpose SIMD machines will be able to execute 1012 OPS (operations per second). As

mentioned in Section 2.3, the cost of communication will be dominant past the 1012

OPS threshold, and will bring a reevaluation of architecture model and algorithms.

2.5 The Connection Machine

The Connection Machine 2 (CM-2) is a massively parallel computer consisting of up

to 64K moderately slow one-bit processors[1,61]. It is organized as a 12-dimensional

hypercube with sixteen nodes at each corner of the hypercube. The CM-2 supports

virtual processors, which are simulated very efficiently in microcode. A user allocates

virtual processors that are then bound to physical processors for execution. The CM-2

usually obtains its peak performance when the ratio of virtual to real processors is

more than one. Additionally, 2K pipelined floating-point processors are available for

numerical computations.

Each one-bit processor has an associated memory of up to 1M bits, which is shared

by passing messages among processors. The CM-2 supports message combining on the

hardware level to avoid network congestion. In contrast to shared-memory machines,

concurrent writes are much faster than concurrent reads. The CM-2 also permits

communication along hypercube and multidimensional grid axes, which is substantially

faster than the general router.

The CM-2 is a SIMD machine: each processor executes the same instruction at the

same time unless it has been disabled. In practice, the SIMD approach simplifies de-

bugging, permits an elegant programming style, and does not limit the expressiveness

of algorithms. The processors have unique IDs and can switch themselves on or off

depending on the outcome of boolean tests. The CM-2 is programmed using parallel

variables (pvars) with the same name in each processor. System software supports em-

beddings of multidimensional pvars onto the hypercube. The CM-2 has local arithmetic

and boolean operations to act on pvars as well as operations to send and receive mes-

sages to grid neighbors or arbitrary locations. Some of these operations set condition

bits which determine whether or not a processor is involved in subsequent operations.

Higher-level primitives are provided on the Connection Machine, including sorting,

reduction operations that combine values from each active processor, such as a global

OR operation, and the powerful scan operations. Scans are prefix operations introduced

by Iverson as part of the APL programming language[64]. Blelloch[12,13] shows how

the scan operation can be used as a powerful atomic programming primitive. (See

Section 2.6.)

2.6. Parallel Programming Primitives 13

The CM-2 supports numerous scan and also segmented scan operations in which a

series of scans is performed on contiguous regions of a linear array. The scan operation

runs in time logarithmic in the number of virtual processors on the CM-2.

Our Mob heuristic was implemented in the C language with calls to Paris (Release

5.1), the high-level assembly language of the CM-2.

2.6 Parallel Programming Primitives

Most parallel algorithms can be specified in a procedural form by using as parallel

programming primitives a number of simple operations, such as vector arithmetic,

parallel prefix and sorting. These operations greatly facilitate the mapping of parallel

algorithms development for the PRAM model onto realistic machines, such as the

Encore, a bus-based shared-memory machine, the Alliant, a pipelined multiprocessor,

and the CM-2 Connection Machine, a SIMD machine with a hypercube network.

2.6.1 Parallel Prefix

A prefix or scan operation applies an associative operator ∗ to a linear array and

produces a second linear array. If the first array has xi as its ith element and the

second has Si as its ith element, then a scan of the array x produces the array S of

partial products with Si = x1 ∗ . . . ∗ xi. With addition as the associative operator, it

computes a running sum, whereas with the copy operation it spreads a value into an

array of locations.

Prefix operations can be computed in time O(log n) with O(n/log n) processors

on an EREW PRAM and the constants hidden in the asymptotic notation are very

small. Minimum, addition, multiplication and boolean operations such as AND, OR,

EXOR, and bitwise addition are all associative operations. Fast and efficient parallel

algorithms can be developed through the use of more complex associative operators.

Ladner and Fischer[76] gave a circuit of depth ⌈log n⌉ and size 4n to compute the

parallel prefix, and showed how prefix computations could be applied to derive elegant

solutions to problems like binary addition. Fich[46] and Snir[130] have given precise

upper and lower bounds for prefix circuits.

Segmented Scan Occasionally it is necessary to compute the prefix sums of several

groups of elements. If these groups are stored in adjacent memory locations, one prefix

computation suffices if the operator ∗ is replaced by the following modified operator +:

(a + b).x := if (a.group == b.group) then a.x * b.x

else b.x

(a + b).group := b.group

where each element a is replaced by a value field a.x and a group field a.group. Each

group must have a unique index. It is easy to show that if ∗ is associative then +

14 Chapter 2. Massively Parallel Computation

is associative. This modification is called segmented prefix or segmented scan in the

literature. In the CM-2 implementation of the segmented scan, a segment vector is

used instead of a group field to save memory space[12,13]; the segment vector is 1 for

the first element of a group, and 0 otherwise. The group field can be reconstructed by

simply computing the addition prefix of the segment vector.

Copy The COPY prefix, which spreads a value to adjacent elements, is used to

distribute information in an array. It is usually used in conjunction with segment

fields.

a COPY b := a

0-1 Sorting Given an n-element array, let m < n of the elements be marked. We

want to reorder the array so that the marked elements are at the head of the array. This

can be achieved by assigning a 1 to marked elements and a 0 to unmarked elements and

then computing prefix sums of the addition operator to find new consecutive locations

for the marked elements. A similar computation can be done to move the unmarked

elements to the end of the array. The bounds of 0-1 sorting are those of parallel prefix.

2.6.2 List Ranking

List ranking is a generalization of the prefix sum problem on linked lists. The same

asymptotic bounds hold, but the algorithm is more complicated than parallel prefix.

See Karp and Ramachandran[67] for a detailed description and further references.

2.6.3 Merging and Sorting

Valiant[137] has shown that two ordered sets of size m and n, m ≤ n, can be merged in

time O(log log n) on a m + n processor CREW PRAM. Borodin and Hopcroft[16] have

shown that the time bound is tight. Also, Shiloach and Vishkin[128] have shown that

two sets can be merged in time O(log n) on a O(n/log n) processor CREW PRAM, a

processor-time bound that is optimal. Bilardi and Nicolau[11] give a merge algorithm

with the same bounds on the EREW PRAM.

For sorting, the AKS-network by Ajtai, Komlós, and Szemerédi[3] achieved optimal

O(log n) asymptotic time complexity, and can be implemented on the PRAM with

O(n) processors, as shown by Leighton [80]. It should be noted that these theoretically

optimal sorting algorithms have unrealistically large coefficients.

Cole[31] gives an algorithm based on mergesort that works in optimal O(log n)

time on an O(n)-processor CREW PRAM, and can be modified to work on the EREW

model. Bilardi and Nicolau[11] have given an optimal EREW PRAM algorithm based

on bitonic mergesort that runs in O(log n) time and O(n) processors with smaller

constants than[31]. In practical applications, however, Batcher’s bitonic sorting algo-

rithm[7] running in O(log2 n) time on an n-processor EREW PRAM is still preferable.

2.6. Parallel Programming Primitives 15

2.6.4 Connected Components

Hirschberg et al.[62] have shown that the connected components of a n-vertex, m-edge

graph can be found in O(log2 n) time on an O(n + m) processor EREW PRAM. The

set of vertices forming a connected component is represented by a canonical element,

the vertex with the smallest index.

17

Chapter 3

Constructive Heuristics

One goal of VLSI synthesis is to derive “good” chip layouts. We assume here that it is

possible to formulate what constitutes a good chip layout. We can specify that a design

should optimize area, power consumption, clock speed, or any other parameter. Given a

precise definition of an optimization problem, finding optimal solutions to this problem

is in most cases NP-hard, and we must use heuristics to get approximate solutions.

The process of defining “perfection” by selecting which parameter or parameters to

optimize may involve trial and error and is in itself a heuristic.

We can distinguish between constructive and iterative heuristics, a classification

introduced by Preas and Karger[98] for placement problems but used here for any

type of heuristic. A constructive heuristic computes one solution to a problem without

trying to improve on that solution. Iterative heuristics which we also call local search

heuristics, take a solution to a problem obtained by a constructive heuristic and make

changes to this solution in the hope of improving upon it. A constructive heuristic

exploits structure and regularity present in a problem instance to construct approximate

solutions. Constructive heuristics work well in restricted cases and lend themselves to

the derivation of bounds on the running time and the quality of the approximate

solution.

In this chapter we demonstrate how some constructive heuristics can be efficiently

parallelized to run in NC. We give constructive parallel heuristics for channel routing

and compaction. In Section 3.1 we give an algorithm for two-layer channel routing

of VLSI designs. In Section 3.2 we present a parallel algorithm for computing the

transitive reduction of an interval DAG, which is used for circuit compaction. We give

a survey of constructive heuristics for graph embedding in Section 4.4.8.

Chapters 4, 5, and 6 deal with parallel iterative heuristics. We define local search

heuristics, introduce some placement-related problems to which local search has been

applied, and give an overview of the vast volume of previous work in the field. We

show that certain local search heuristics are hard to parallelize and give experimental

results for our parallel Mob heuristic.

18 Chapter 3. Constructive Heuristics

3.1 The Parallel Left-edge Channel Router

The channel-routing problem P in VLSI design consists of terminals located above and

below a rectangular integer grid called a channel. Sets of terminals, called nets, are to

be connected electrically by wire segments that are placed on the integer grid.

In two-layer channel routing, a net is implemented by one horizontal segment in

one layer and vertical segments linking the horizontal segment to the terminals in the

other layer. Vias connect segments on different layers. A conflict occurs when vias or

segments belonging to different nets overlap in the same layer. A column conflict occurs

if two terminals on opposite sides of a channel have overlapping vertical segments. The

channel width is the number of tracks needed to route all nets. The maximum number

of nets intersecting any column is called channel density, with channel density ≤
channel width. The goal of channel routing is to produce a routing without conflicts

while minimizing the number of tracks.

In this section we present an optimal O(log n) time, O(n) processor EREW PRAM

algorithm that achieves channel density[123]. The algorithm is a parallel version of the

“left-edge” algorithm developed by Hashimoto and Stevens[58] for PCB routing. The

parallel channel-routing algorithm was implemented on the CM-2 Connection Machine,

where it runs in time O(log2 n) with O(n) processors.

The basic left-edge algorithm does not deal with column conflicts, and thus many

variations and extensions have been proposed: Deutsch’s dogleg channel router[39],

Dolev et al.’s channel router[43], Fiduccia and Rivest’s greedy channel router[105],

Yoshimura and Kuh’s channel router[73], and YACR2 by Reed et al.[102]. The above

algorithms are all serial.

These heuristics for two-layer channel routing with column conflicts produce rout-

ings of very good quality but are not guaranteed to achieve minimum channel width

or channel density. Most of the more general two-layer channel routing problems are

NP-complete, as shown by LaPaugh[74], Szymanski[133], and Sarrafzadeh[110].

Brouwer and Banerjee[19] have applied parallel simulated annealing to the channel-

routing problem and have demonstrated that this approach yields routings of high

quality. We describe their approach in Section 4.5. In Section 5.3 we address the

question of how much speedup can be expected from a such a heuristic in the worst

case. We show that any local search heuristic that minimizes the number of column

conflicts in a channel routing by accepting cost-improving swaps of tracks or subtracks

is P-hard. Thus it is unlikely that a parallel algorithm exists that can find even a local

minimum solution in polylogarithmic time in the worst case, since that would imply

that every polynomial-time problem would have a similar solution.

In Section 3.1.1 we define two-layer routing in a rectilinear channel and we show how

to represent wires by horizontal intervals, which will be the input format of our parallel

algorithm. Section 3.1.2 deals with the conversion of the input connection graph into

an interval representation. All preprocessing is also in NC. In Section 3.1.3 we give the

routing algorithm, in Section 3.1.4 the proof of correctness and in Section 3.1.5 upper

3.1. The Parallel Left-edge Channel Router 19

w w w w w w w w w w w w w w w

w w w w w w w w w w w

�
�

�
�

�
�

�
�

�

\
\

\
\

\
\

\
\

\

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

bbbbbbbbbbbbbbb

l
l

l
l

l
l

l
l

l
l

,
,

,
,

,
,

,
,

,
,

b
b

b
bb

b
b

b
b

b
bb

b
b

,
,

,
,

,
,

,
,

,
,

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

bbbbbbbbbbbbbbb

Figure 3.1: The connection graph G represents terminals to be connected by wires.

and lower bounds on the running time, space and the number of processors required. In

Section 3.1.6 we show that our routing problem is equivalent to interval graph coloring.

Our algorithm can be used to find the minimum coloring, maximum clique for these

graphs and to find the maximum independent set of their complements. Section 3.1.7

shows how to extend the algorithm to find an optimal routing for cell-based VLSI

layout systems.

3.1.1 The Channel Model

We now describe the underlying model and assumptions for our routing algorithm. The

two sets of horizontally adjacent modules face each other across a channel. Each module

in one of the sets has terminals on its upper boundary, the other set has terminals on

the lower boundary. Wires in the channel area connect the two sets of terminals.

We use an undirected graph G = (V,E) to abstract the connection information

given by the terminals and wires; Figure 3.1 shows an example of a graph G. Vertices

are represented by a terminal. Let A contain all the vertices of the lower set of modules,

let B contain all the vertices of the upper set of modules, and let V = A
⋃

B. A wire

connecting two terminals is represented by an edge, and E ⊆ V × V is the set of all

edges.

In some applications G is a bipartite graph with E ⊆ A × B. We do not impose

this limitation and allow edges from A×A and B×B because it makes our algorithms

more general without increasing their complexity. If G has edges (a, b) and (b, c), the

terminals a, b, c are all electrically connected. A net (a, . . . , z) is the set of all vertices

reachable from a by traversing zero or more edges.

The nets of G are to be mapped onto a two-dimensional VLSI circuit. When wires

cross, they must be in different layers. Two layers can be connected by a contact,

which must have a fixed minimum size. Wires must have a minimum width to comply

with design rules. Wires in the same layer must have a minimum separation to avoid

shorts. In our examples we make wires and wire separation as wide as a contact.

We assume that a wire connecting two terminals consists of alternating horizontal and

vertical segments joined by contacts. This assumption is realistic, since most VLSI CAD

20 Chapter 3. Constructive Heuristics

Figure 3.2: A channel routing of the connection graph G with minimum channel width.

tools, data interchange formats and mask-making facilities do not allow rectangles with

arbitrary orientations.

When wires run on top of each other for a long stretch, there is the possibility of

electrical interference, called crosstalk. To avoid crosstalk and to simplify the routing

problem further, horizontal segments are placed on one layer and vertical segments are

placed on another layer.

Channel routing is a mapping of G onto an integer grid. The mapping of the vertex

sets A and B onto the grid is determined in part by the fixed x-coordinates of the

terminals. The channel is the portion of the grid between the two sets of vertices. A

track is a horizontal grid line. We assume a rectangular channel, meaning that the

vertices in each set are collinear, both sets are parallel and the channel contains no

obstacles. Each vertex v can be represented by its x-coordinate on the grid and its

set membership. The y-coordinate of all v ∈ A is 0. The y-coordinate of all v ∈ B is

w+1, where the channel width w is defined as the number of tracks needed to route G.

The channel length can either be infinite, as required by Fiduccia and Rivest’s greedy

channel router [105], or can be bounded by the minimum and maximum x-coordinates

of the vertices. The goal of our routing algorithm is to minimize channel width. The

layout of G in Figure 3.2 has minimum channel width.

Once the x-coordinates of the vertices are fixed we can compute the channel density,

which is a lower bound on the channel width. Count the number of nets crossing each

vertical grid line. Independently of how these nets are mapped on the grid, they must

cross that column at least once and will take up at least one grid point on that vertical

column. We will prove that our parallel algorithm always achieves this lower bound

when we impose the restriction that all terminals must have unique x-coordinates.

(This is done to avoid column conflicts.)

Interval Representation A net Ni = (a, . . . , z) is a set of vertices that are in the

same connected component of G. Our routing algorithm operates on nets of G, not

edges. The reason is that the operation of routing a net on a grid is as simple as routing

3.1. The Parallel Left-edge Channel Router 21

Figure 3.3: Interval representation of the channel routing in Figure 3.2.

one edge. If one net has n vertices, it is connected by at least n − 1 edges, so an edge-

based algorithm is computationally more expensive. A net Ni = (a, . . . , z) can be built

by placing a vertical segment from each vertex in Ni to a yet-to-be-determined track

t, placing contacts on each end of that vertical segment, and by placing a horizontal

wire segment between the minimum and maximum contact on that track. There is no

overlap of horizontal segments if the router works correctly. No vertical overlaps can

occur if we disallow column conflicts or use a preprocessing step to remove them.

We can represent and store the net Ni = (a, . . . , z) by Ii = (ai, bi, ti), the horizontal

interval (ai, bi), ai < bi on track ti. All vertices of a net must be able to determine

which net they belong to so they can connect to the right track. This can be done by

attaching an index field to every vertex. Computing a channel routing of G in the above

model is therefore the problem of assigning tracks to the set of intervals {I1, . . . , Ik} so

that

∀Ii,Ij
((ti = tj) ∧ (ai < aj)) → (bi < aj)

since horizontal wire segments on the same track cannot overlap. Figure 3.3 shows

the minimal solution for the interval assignment problem associated with the routing

problem of Figure 3.2.

A grid point (x, t) is in an interval Ik if (ak < x < bk) ∧ (t = tk). We will call a

channel dense below a grid vertex (x, t) if each grid vertex (x, 1), (x, 2), . . . , (x, t) is in

some interval. We will call a channel dense above a grid vertex (x, t) if each grid vertex

(x, t), (x, t + 1), . . . , (x,w) is in some interval. A channel is dense at location x if it is

dense above (x, 1). A channel router achieves channel density if it produces a routing

that is dense at one or more locations. Given an interval I = (a, b, t), we will call a

the start point, b the end point and t the track of that interval. The start point of a

track is the minimum of all start points in that track. The end point of a track is the

maximum of all end points in that track.

22 Chapter 3. Constructive Heuristics

3.1.2 Conversion of Nets to Intervals

Our channel-routing algorithm will operate on the interval description of a channel-

routing problem. Therefore, we provide an efficient mechanism to convert the nets of

G to intervals. The router is run on intervals after which the vertices in the associated

nets are informed of the tracks to which they are connected. Usually the connection

graph G is given by a net list, the set of all connected components or nets of G. It is

implemented by storing the vertices of a net in adjacent locations and attaching to every

vertex an index field that stores its net. Programs that synthesize VLSI layouts from

a high-level description, such as DeCo[36], [37] or Slap[104], [115],[116],[117], produce

net lists as input for placement and routing packages.

From the net list, we have to find for every net the vertex with the minimum

(maximum) x-coordinate, which is the start (end) point of the associated interval.

We assume that all vertices of a net are stored in adjacent locations and generate a

segment vector that has value 1 at the beginning of each net and value 0 otherwise.

Start points (end points) are computed with a minimum (maximum) segmented scan

operation. One minimum (maximum) computation is sufficient to compute all start

points, if a operator is used. We use 0-1 sorting to store the intervals in contiguous

memory locations and add link pointers to communicate the track to the net vertices

after the router assigns tracks to intervals.

Lemma 1 Nets can be converted to intervals in O(log n) time with O(n/log n) proces-

sors on an EREW PRAM.

3.1.3 The Parallel Routing Algorithm

A simple optimal sequential algorithm to assign intervals to tracks takes intervals in

ascending order and places an interval either into the track with the smallest endpoint

where it will fit or into a new track if there is no such track. The heart of this algorithm

is an assignment of interval start points to smaller interval end points. We use this

observation as a basis for developing a parallel version of the sequential algorithm. Our

algorithm makes assignments of individual interval end points to smaller interval start

points in parallel and then uses the align prefix operation to ensure that at most one

end point is assigned to each start point.

We first present the algorithm and then prove that certain properties hold for the

assignments, from which we can deduce that the resulting channel routing has minimum

width or is dense. The parallel algorithm has three phases, an initial assignment phase,

an alignment phase, and a link phase that places chains of assignments into tracks.

Initialization Phase Every interval (a, b) is converted into the two half intervals

(−∞, b) and (a,∞) on which our algorithm operates. We call these half intervals red

and green intervals, respectively, and refer to them by their non-infinite coordinate.

The non-infinite coordinate imposes an order relation on the half intervals. To get an

3.1. The Parallel Left-edge Channel Router 23

-

-
@
@R

(ai|bi) = 8 10 11 12 15 16

Xi = 1 1 2 2 2 3

Figure 3.4: Assignments to Xi after initialization.

initial assignment of red to green intervals, all half intervals are sorted into ascending

order by their non-infinite coordinates.

Note that the assumption of unique x-coordinates is necessary only for obtaining a

correct layout. We can generalize our interval assignment algorithm by defining a red

half interval to be larger (closed intervals) or smaller (half-open or open intervals) than

a green interval if their non-infinite x-coordinates are equal. This ensures the correct

operation of our algorithm when used for interval graph coloring in Section 3.1.6.

The following prefix computation is done after the sorting to initialize the assign-

ment of red intervals to green intervals:

1. If a half interval Ii is a green interval it is given the value vi, otherwise it is given

the value 0.

2. The prefix sum Xi = v1+ . . .+vi is computed, where the + operator is arithmetic

addition.

3. If a half interval Ii is a red interval, the value 1 is added to the prefix sum Xi.

The initialization has the following effect: every red interval bi has an associated

track Xi that is the index of the minimum green interval aXi
, so that bi < aXi

. Every

green interval ai is associated with the track Xi of a grid. The tracks are consecutive.

Figure 3.4 shows the initial assignment of three red tracks to three green tracks. The

notions dense, dense below and dense above are thus defined exactly as for the channel.

Align We now have to deal with the fact that several red intervals may be assigned

to the same green interval aXi
. Since we have sorted the half intervals, we know that

ai < aj , i < j and bi < bj, i < j. Therefore, if the assignment of bi to aXi
is a non-

overlapping assignment, the assignment of bi to aXi+k
, k > 0 is also a non-overlapping

assignment. In other words, red intervals can be shifted up, that is, assigned to green

intervals with a larger start point, without causing overlap.

Our parallel alignment algorithm performs a prefix computation on the red intervals

using the alignment operator ∗ defined below. This operator is defined on the set of

24 Chapter 3. Constructive Heuristics

-

-

-

Si = 1 2 3

Figure 3.5: Assignments to Si after align prefix operation.

pairs (top, size) where top contains the track to which the topmost red interval has

been assigned and size is the number of red intervals encountered.

(a ∗ b).size := a.size + b.size

(a ∗ b).top := MAX(b.top, b.size + a.top)

Here + is arithmetic addition. It is straightforward to show that ∗ is an associative

operation.

The variables are initialized as follows: all Xi associated with green intervals are

removed by 0-1 sorting. X ′
i.top is set to Xi and X ′

i.size is set to 1. The size field is

needed to make ∗ associative. When the prefix sum Si = X ′
1 ∗ . . . ∗ X ′

i is computed,

we obtain an assignment of the red interval bi to the green interval aSi.top. Figure 3.5

shows the aligned assignments of Figure 3.4.

Link Link converts align’s assignments of red half intervals (interval end points) to

green half intervals (interval start points) into a placement of intervals into tracks. We

add pointers that link an interval’s green half interval to its red half interval and obtain

lists of intervals that must be placed in one track. We update these pointers after the

sorting step in the initialization phase. The start point of a track is an unassigned green

interval that forms the head of such a list. Tracks are assigned as follows: a value 1 is

written to all green intervals, and then a value 0 is written into every green interval bSi
.

Every unassigned green interval will contain a 1, and a prefix computation on all half

intervals with addition as the operator yields unique contiguous track numbers for the

list heads. The list-ranking function, with the associative operator defined as a∗b := a,

is then used to distribute the track number to all half intervals. Link pointers are used

to communicate the track number of each red half interval to its interval.

3.1.4 Proof of Correctness

We examine the assignments given by our interval assignment algorithm. Let LUG be

the largest unassigned green half interval in a set of interval assignments. A mismatch

in an assignment occurs, as shown in Figure 3.6, if there exists an unassigned green half

interval aj and a red half interval bi with bi < aj and j < Si. We show that one-to-one

3.1. The Parallel Left-edge Channel Router 25

-

-

(ai|bi) = 8 10 12 15 16

Si = 1 3

Figure 3.6: A mismatch in an assignment of half intervals: b3 should have been assigned
to a2.

assignments and the absence of mismatches hold at every step of the align algorithm.

These invariants give us a concise description of the behavior of this algorithm. From

these invariants we deduce that align’s assignments are dense at the LUG. Then we

show that the associated channel routing is also dense at that location.

Lemma 2 The align algorithm does not assign two red half intervals to one green half

interval.

Proof The values {Si.top} computed by align are strictly monotone. 2

Lemma 3 The align algorithm does not produce a mismatch.

Proof We proceed by induction on n, the number of red intervals assigned.

Assume there is one red interval b1. The green interval aX′

1
.top assigned to it does

not create a mismatch because there is no smaller green interval that could be assigned

to it, as can be seen by consulting the initialization algorithm.

Assume there are n red intervals and that there is no mismatch for the first n −
1 assigned red intervals. We must show that the assignment of the nth interval to

the green interval Sn produces no mismatch. The assignment Sn.top is equal to the

maximum of X ′
n.top and X ′

n.size + Sn−1.top. We assume that the nth assignment

produces a mismatch and show that a contradiction results.

Case (a) Sn.top = X ′
n.top. The nth red interval remains assigned to its initial value

X ′
n.top. If there is a mismatch, either the red interval was initialized incorrectly or

the mismatch occurs among the first n − 1 red intervals, both of which produce a

contradiction.

Case (b) Sn.top = X ′
n.size + Sn−1.top = 1 + Sn−1.top. The nth red interval is

assigned to the green interval one above the green interval assigned to the n − 1st

red interval. If a mismatch occurs, it is between the nth red interval and some green

26 Chapter 3. Constructive Heuristics

interval below the one assigned to the n − 1st interval. But then there is a mismatch

between the n − 1st red interval and this green interval. 2

Lemma 4 The align algorithm leaves a LUG after all red half intervals are assigned.

Proof Consider the green half interval (a1,∞). As a1 < ai, i ∈ 2, . . . , n and therefore

a1 < bi, i ∈ 1 . . . n, this green interval intersects with all red intervals. Thus there is at

least one unassigned green half interval. 2

Lemma 5 The assignments done by the align algorithm are dense at LUG.

Proof Assume the assignments are not dense at LUG. The green intervals are sorted

into ascending order. Therefore, the assignment is dense below the LUG. Thus, there

must be a hole above the LUG or a track with no interval that intersects the x-

coordinate of the LUG. A hole can be formed by the align algorithm in two ways:

Case (a) A hole is formed by an unassigned green interval. But that green inter-

val has a larger x-coordinate than the LUG, the largest unassigned green interval, a

contradiction.

Case (b) A hole is formed by a red interval with a smaller x-coordinate and (possibly)

a green interval with a x-coordinate larger than the LUG. But this implies that the

align algorithm has produced a mismatch, a contradiction. 2

Lemma 6 When the assignments are translated into a channel routing by the link

algorithm, the channel is dense at the LUG.

Proof Assume the channel is not dense at LUG. A hole in the channel routing can

occur in two ways:

Case (a) A hole occurs in a track that contains at least one interval to the right of

the hole and none to the left. The first such interval must have been an unassigned

green half interval produced by the align algorithm. But that green interval has a larger

x-coordinate than the LUG, a contradiction.

Case (b) A hole occurs in a track that contains at least one interval to left of the

hole. Before the link algorithm is applied there is a red half interval to the left of the

hole. This creates a hole above the LUG produced the align algorithm, which is a

contradiction. 2

3.1. The Parallel Left-edge Channel Router 27

3.1.5 Analysis of the Routing Algorithm

Let there be n intervals.

1. The cost of making the initial assignment to half intervals is the cost of sorting

2n integers plus a parallel prefix with addition as the associative operator. Time:

O(log n), Processors: O(n) on an EREW PRAM.

2. Align is a parallel prefix operation. Time: O(log n), Processors: O(n/log n) on

an EREW PRAM.

3. Link uses list ranking. Time: O(log n), Processors: O(n/log n) on an EREW

PRAM.

Our interval assignment algorithm is dominated by sorting during the initialization

phase.

Theorem 4 Channel routing of n nets can be done in time O(log n) with O(n) pro-

cessors on an EREW PRAM.

To achieve the bounds of this theorem we have assumed that the sorting algorithm

of[31] has been used. More practical algorithms add a factor of log n to the time.

Lower Bounds With our channel routing algorithm we can solve the interval overlap

problem, which is to determine whether n intervals on the line are disjoint. One track is

sufficient to route all nets if and only if there are no overlapping intervals. It has been

shown that every comparison-based algorithm for the interval overlap problem requires

Ω(n log n) comparisons (See Dobkin and Lipton[41], Ben-Or [8], and Preparata and

Shamos[100].) The processor-time product of our channel-routing algorithm is optimal.

3.1.6 Interval Graph Coloring

We now show how our routing algorithm can find the minimum coloring of an interval

graph. An undirected graph G is an interval graph if there exists a one-to-one mapping

from each vertex to an interval on the real line, and two intervals intersect if and only

if there is an edge between their two vertices. Interval graphs are a subset of perfect

graphs, which have the property that χ(G), the minimum coloring number of G, is equal

to ω(G), the size of the maximum clique of G. The complement graphs Ḡ = (V, Ē),

with (v,w) ∈ E ⇔ (v,w) 6∈ Ē, of interval graphs form a subset of comparability

graphs, which are also a subset of perfect graphs. A maximum clique in any graph

is a maximum independent set in the complement graph. Perfect graphs, interval

graphs, comparability graphs and their subsets have been studied extensively [54].

They are interesting because some of their properties can be computed efficiently while

the corresponding properties of general graphs are NP -hard. Mayr and Helmbold[60]

have found NC algorithms for maximum clique, minimum coloring in comparability

28 Chapter 3. Constructive Heuristics

graphs and maximum independent set and maximum matchings in interval and co-

comparability graphs.

A minimum coloring of an interval graph is an assignment of vertices to a minimum

number of colors such that two vertices of the same color have no edge between them.

This corresponds to an assignment of intervals to a minimum number of tracks such

that two intervals in the same track do not intersect. Our channel-routing algorithm is

therefore a minimum-coloring algorithm. Note that an actual coloring is constructed

here instead of just computing the coloring number χ(G).

Corollary 3 The minimum coloring and maximum clique of an n-node interval graph

and the maximum independent set of a co-interval graph can be computed from the

interval representation in time O(log n) with O(n) processors on an EREW.

The interval representation of an interval graph can be constructed in time O(log3 n)

with O(n4) processors on a CREW, as shown by Mayr and Helmbold[60]. Klein[70]

has given efficient parallel algorithms for recognizing and finding a maximum clique,

maximum independent set and optimal coloring of chordal graphs, of which interval

graphs are a subset. His algorithm for finding an optimal coloring takes O(log2 n) time

using a O(n + m) processor CRCW , where m is the number of edges.

3.1.7 Routing Library Modules

We presented a channel-routing algorithm that is in NC but works only in restricted

cases. We now give an NC extension that circumvents these restrictions in cell-based

silicon compilers such as DeCo or Slap. This allows our channel router to produce

significantly better layouts while using less computational resources than a general

channel-routing algorithm. When a circuit is built from standard library cells, there

is usually some freedom in choosing the exact position of the terminals. Designers

in the industrial world trade off slightly larger cell sizes to minimize area wasted in

routing. For example, the terminals in the 3-micron CMOS cell library[59] are far

apart. A system that uses such cells can avoid column conflicts by moving terminals to

unique locations. We now describe a procedure that places terminals so that no column

conflicts occur. The procedure also minimizes the horizontal length of each net, which

results in shorter intervals and therefore decreases channel density.

Lemma 7 Resolving column conflicts and minimizing channel density by allowing ter-

minals to occupy one of several adjacent locations can be done in O(log n) time on a

O(n)-processor EREW PRAM.

Proof Let us assume that a module can have any number of terminals, that the

position of each module is fixed and that modules cannot overlap. Each terminal

can be placed in at least two adjacent positions (x, x + 1). We assume that a net

3.1. The Parallel Left-edge Channel Router 29

A1 A2 A3

B1 B2 B3

A1 A2 A3

B1 B2 B3

A1 A2 A3

B1 B2 B3

Figure 3.7: (a) Incorrect inefficient routing. (b) The nets are shortened. (c) The column
conflicts are removed.

is implemented by exactly one horizontal segment. Our procedure column removes

conflicts by moving terminals to adjacent positions.

The preprocessing to remove column conflicts starts by assigning to each terminal

the position x + 1 and then sort terminals by their position. The sorting step is the

most expensive part of the preprocessing. Terminals with the same position are now

stored in adjacent positions. If two terminals have the same position, we first check if

they belong to the same net and thus cause no column conflict. If the two terminals

belong to different nets, we move one terminal out of the way to position x. There can

be no terminals at position x. To reduce channel density, we move the upper terminal if

it has the minimum x-coordinate of a net; otherwise we move the lower terminal. Our

algorithm then proceeds by converting nets to intervals, computes an optimal routing

that achieves channel density, and produces a layout as before. 2

Example: Consider the routing in Figure 3.7. Each of the six modules A1, . . . , B3, has

one terminal that can be placed in three adjacent positions. For the sake of legibility

we assign tracks so that the channel routings in Figure 3.7(a) and Figure 3.7(b) are

legal. Our router could produce an illegal routing by interchanging track 1 and track 2.

There exist cases where any track assignment would result in an illegal routing[73]. In

Figure 3.7(a) each terminal was arbitrarily assigned to the first position. The resulting

routing uses three tracks and has a conflict in column 1. In Figure 3.7(b) the number

of tracks was reduced by shortening the horizontal segment of each net, so that the

router could pack more intervals into a track. There is now a conflict in column 3.

The routing in Figure 3.7(c) is legal; the column conflict was removed by shifting one

terminal.

30 Chapter 3. Constructive Heuristics

A B

C

D

E F A B

C

D

E F

Figure 3.8: (a) Uncompacted layout; minimum-distance constraints prevent rectangle
overlap. (b) Compacted layout.

3.2 Parallel Circuit Compaction

Compaction is a VLSI design technique to reduce the area of layouts by packing circuit

elements so that they are as close together as possible without violating physical design

rules that specify minimum distances between components. The Magic VLSI CAD

package[96] uses compaction as an interactive design tool. In the SPARCS tool[24], a

compaction algorithm is used to transform, by packing and spacing, a symbolic layout

into the mask layout required for fabrication. Compaction has also been used by

Deutsch[40] as a postprocessing operation in channel routing.

Most compaction algorithms work only along one dimension. In order to get a

compacted layout, the compaction algorithm is alternately applied along the x and y-

dimensions. Sastry and Parker[111] have shown that the general problem of compacting

a layout simultaneously in both dimensions is NP-complete. Since two-dimensional

compaction has great practical utility, heuristics have been investigated by Mosteller

et al.[93] and Wolf et al.[141]. For a detailed historical overview of compaction, see the

surveys by Wolf and Dunlop[140], by Lengauer [85], and by Cho[30].

3.2.1 Introduction to Constraint Graph Compaction

The most general form of one-dimensional compaction is constraint-graph compaction.

In this section we extend the results of Doenhardt and Lengauer [42] by describing how

to generate a constraint graph with a parallel algorithm[124].

Let us make the following simplifying assumptions: we are given a set of n non-

intersecting rectilinear rectangles on the plane, and we want to compact in the x-

dimension. We use minimum-distance design-rule constraints of the form xi +aij ≤ xj ,

aij > 0 where xi is the lower left-hand x-coordinate of rectangle i and aij is the width

of rectangle i. Constraints are necessary only for rectangles with overlapping y-ranges.

The constraint prevents the two rectangles from intersecting and encodes the fact that

3.2. Parallel Circuit Compaction 31

rectangle i is always to the left of rectangle j. The compaction problem is NP-complete

if we allow pairs of rectangles to be interchanged[42]. Figure 3.8(a) shows a layout with

minimum-distance constraints and Figure 3.8(b) shows the layout after compaction.

Additionally, constraints of the form xi + bij = xj, bij > 0, to glue two rectangles

together, and xi + cij ≥ xj , cij > 0, to encode maximum allowed distances, can be

added, usually interactively by the designer. Solving the set of constraints to obtain a

legal layout is more complicated if the latter two constraint types are allowed, and we

concern ourselves only with the generation of minimum-distance constraints. Note that

we have abstracted the problem considerably to deal with the underlying algorithmic

issues. See[42] for extensions to make this approach usable in a practical system; here

we merely mention the fact that such a system must also incorporate a mechanism for

stretching and jogging wires.

A directed graph is built from the set of minimum-spacing constraints by repre-

senting each rectangle as a vertex vi and each constraint xi + aij ≤ xj as a directed

edge (vi, vj) with weight aij . It is easy to see that the graph is a directed acyclic graph

(dag).

To obtain a compacted set of rectangles we add on the left side of the layout a plow

rectangle, which moves horizontally and pushes the other rectangles together. We want

to assign new values to all x-coordinates, xi, 0 ≤ i ≤ n, so that no constraint is violated,

the ordering of all rectangles from left to right remains the same and each rectangle is

at its minimum distance from the source rectangle. This is equivalent to finding the

longest path, also called the critical path, from the plow vertex to each rectangle vertex.

The critical path in Figure 3.8 is < A,C,E, F >.

Section 3.2.2 discusses parallel complexity issues for compaction and gives an over-

view of work in the field. Section 3.2.3 describes the algorithm, Section 3.2.4 discusses

modifications for tiling, Section 3.2.5 contains a proof of correctness for the part of the

algorithm that computes the transitive closure, and Section 3.2.6 gives an analysis of

its complexity. Section 3.2.7 describes how the compaction algorithm was implemented

on the CM-2 and Section 3.2.8 gives experimental results.

3.2.2 Complexity Issues

We now address the complexity tradeoffs involved in constraint-graph-based com-

paction.

Generating the Constraint Graph We can generate the constraint graph by cre-

ating a constraint for every pair of rectangles in the layout. If the y-ranges of these

rectangles do not overlap, we can delete the constraint. This leads to a simple, constant-

time (n2/2)-processor parallel algorithm that is impractical for large n ≥ 105 layouts.

We observe that an edge in the compaction dag is required only if a rectangle is

visible or in the shadow of another rectangle, i.e. if a straight horizontal line can be

drawn between the two rectangles without intersecting other rectangles. It is easy to

32 Chapter 3. Constructive Heuristics

A B

C

D

E F A B

C

D

E F

Figure 3.9: (a) Tiling of the layout: every constraint is replaced by a tile. (b) Transitive
reduction of the constraint graph.

see that the other constraints would never belong to any critical path. As we can now

“draw” the constraints onto the layout so that no two constraints cross, the associated

visibility graph is planar. The constraint graph in Figure 3.8(a) is planar.

It is possible to generate multiple copies of the same constraint. Note that a con-

straint can be replaced by a space tile that intersects no rectangle and no other space

tile. Figure 3.9(a) shows a tiling of the layout in Figure 3.8(a). A complete tiling of the

plane with n solid tiles can be completed with at most 3n+1 space tiles[96]. Therefore

the number of edges generated in a visibility graph is at most 3n − 3. (There are at

least four space tiles outside the layout.)

Doenhardt and Lengauer[42] observed that the number of edges in the graph can

be further reduced by computing the transitive reduction of the above graph: if two

vertices are connected by an edge and by a path of two or more edges, the edge can be

removed because any critical path includes the path and not the edge. A triangle-free

planar graph with at most 2n−4 edges is obtained in this way[56]. Figure 3.9(b) shows

the reduced constraint graph for the graph in Figure 3.8(a).

The algorithm computes what is also called the transitive reduction of an interval

dag. An undirected graph G is an interval graph if there exists a one-to-one mapping

from each vertex to an interval on the real line, and two intervals intersect if and only

if there is an edge between their two vertices. An interval dag is an interval graph in

which the edges are oriented so that no cycles are formed.

Relation to Other Work Doenhard and Lengauer[42] use a vertical plane-sweep

technique in conjunction with a leaf-linked tree data structure to obtain an O(n log n)-

time serial algorithm. Schlag et al.[127] investigate the serial complexity to compute

the visibility graph for rectilinear line segments. VLSI-specific assumptions such as

previously sorted coordinates and coordinates with a small range are addressed. It is

an open question whether the lower bound of O(n log n) time (or P ∗T) still holds when

3.2. Parallel Circuit Compaction 33

the input is already sorted by both x- and y-coordinates. Lodi and Pagli[86] have given

a parallel algorithm for the mesh-of-trees network that computes all visibility pairs. The

algorithm runs in time O(log n) but always uses n2 processors, and thus is not efficient.

Atallah et al.[5] give a more general O(log n)-time, O(n)-processor CREW PRAM

algorithm to compute the trapezoidal decomposition of the plane, which is equivalent to

a tiling. A plane-sweep tree requiring O(n log n) space is shared between all processors.

It is unclear whether their techniques can be modified to work on a hypercube or mesh-

of-tree machine with small run-time constants. Edelsbrunner and Overmars[45] give a

serial algorithm to compute polygons visible to an outside observer, and introduce the

notion of “flatland graphics”, which are equivalent to our “skylines”.

We give a parallel algorithm to compute the reduction of an interval dag by first

generating the planar visibility graph and then removing unnecessary edges. It runs in

O(log2 n) time and has the same processor-time product as the serial algorithm with

one processor. Our parallel algorithm requires only linear arrays as data structures, so

we expect the constants hidden in the O() notation to be small for current hardware.

Solving the Constraint Graph The critical paths in the compaction constraint

graph can be computed with a single-source longest-path algorithm.

Serial Longest-Path As our graph is a dag and has O(n) edges, we can use a serial

O(n)-time algorithm based on a topological sorting of the edges[134]. In undirected

or cyclic graphs the longest-path problem can be reduced to the hamiltonian-cycles

problem and is thus NP-complete [49]. Code length and run-time constants of the serial

algorithm are extremely small. No DFS (depth-first-search) of the dag is required, and

the topological sorting can be obtained from the initial placement of the rectangles by

sorting the edges by their tail vertices.

Parallel Longest-Path A parallel algorithm is called efficient if its processor-time

product is within a polylog factor of optimal. Unfortunately, it is unknown whether

there exists an efficient parallel algorithm running in polylog time for the longest-

path problem for general, planar or even VLSI-specific graphs such as the transitive

reduction of an interval dag.

Savage[112] gives a simple all-sources shortest-path algorithm that is based on re-

peated boolean matrix multiplication. Unfortunately, it runs in O(log2 n) time on an

O(n3/log n) processor EREW PRAM. Apostolico et al.[4] have recently given an effi-

cient parallel shortest-path algorithm for a lattice dag. Both of these algorithms can

be modified for longest-path problems in dags. So far the fastest practical method is a

modification of the above serial algorithm, the implementation of which is described in

detail in Section 3.2.7. Both code and constants are very small, but the running time

is proportional to the maximum number of edges on any path in the dag, O(n) in the

worst case and O(
√

n) for most VLSI layouts.

34 Chapter 3. Constructive Heuristics

3.2.3 Algorithm Description

Our algorithm to compute the transitive reduction of an interval dag has two parts.

First we use a divide-and-conquer strategy to compute the planar visibility graph of

n non-intersecting rectangles. We then give a pattern-matching procedure and prove

that it computes the transitive reduction of our planar graph.

Data Representation A rectangle is described by a tuple (x, y, h,w) where x, y are

the coordinates of the lower left-hand corner and h and w are the height and width

of the rectangle. The n rectangles are sorted by their x-coordinates and given unique

integer identifiers in the set {0, . . . , n − 1} on the basis of this ordering. The event

points of a rectangle are the smallest and largest y-coordinate of the rectangle. With

each of these event points we associate a record. One of the record fields contains the

identifier of the event points’ rectangle, or the rectangle itself, to ensure exclusive-read

memory access when generating edges or tiles. The other fields are defined later.

The Visibility Graph Recall that each rectangle is represented by a vertex in the

visibility graph. A visibility graph has a directed edge (a, b) if we can draw a hori-

zontal line from rectangle a to rectangle b without intersecting another rectangle and

if rectangle a is to the left of rectangle b. We use a divide-and-conquer algorithm to

construct the visibility graph: the rectangles are sorted by their left-hand x-coordinate

and divided into two equal-size sets that we call the left and right set. We recursively

build the visibility graphs for both sets. The visibility graph is then completed by

adding the visibility edges going from the left to the right set.

Shadows The process of adding edges can be described by imagining an observer

walking up the trench between the two sets. He sees the red shadow of the left set and

the green shadow of the right set, as illustrated in Figure 3.10. The observer puts down

an edge whenever a new rectangle appears on either side.

Another descriptive term for a shadow is a “skyline.” The red shadow of a set

encodes which rectangles are visible when an observer is to the right of the set, looking

left along horizontal grid lines. The green shadow is what is visible to an observer

looking right from the left of the set. Rectangles not in the shadow are obstructed by

other rectangles and have no effect on the visibility graph at this stage of the algorithm.

The shadows also encode gaps where a horizontal line intersects no rectangle.

Combining two shadows is equivalent to obtaining information about both shadows

at every event point. All event points in either shadow appear in the combined shadow

even if a rectangle is hidden. Event points with identical y-coordinates contain the same

information. Note that we have removed event points with identical y-coordinates from

Figures 3.11 and 3.12 below.

We show how to construct the red shadow; the construction of the green shadow

follows by symmetry. Assume that we have computed the red shadows of the left and

3.2. Parallel Circuit Compaction 35

Trench

Right SetLeft Set

Green ShadowRed Shadow

Figure 3.10: Building the visibility graph. Edges are placed along the trench whenever
a new rectangle appears in either the red shadow to the left of the trench or the green
shadow to the right of the trench.

36 Chapter 3. Constructive Heuristics

B

C

E

D
?

?

B

?

GAP

C

?

GAP

D

GAP

?

E

?

?

GAP

?

D

GAP

E

GAP

B

GAP

C

GAP

GAP

GAP

B

C

GAP

E

E

GAP

Left Set Right Set Update Update

(a) (b)

Figure 3.11: (a) Two red shadows. (b) The red shadow data structures are updated
by inserting new event points.

right sets, each of size n/2. The red shadow of the whole set is equal to the red shadow

of the right set (the set “closer” to the observer) in addition to the red shadow of the

left set that is visible through the gaps of the right set. Figure 3.11(a) shows the left

red shadow, the associated left data field, the right red shadow and the associated right

data field. To each shadow we have added entries for event points in the other shadow.

These unspecified fields are indicated by a special data value UNKNOWN, shown as

? in Figure 3.11. Figure 3.12 show the new combined red shadow of a layout, with

updated UNKNOWN fields.

A shadow is stored in memory as a linear array of records, in which one record is

associated with each event point. Each record has three fields, one containing the event

point and two data fields called left and right. A data field records the rectangle (or

gap) that is visible just above the event point in the shadow. The left field is used with

the leftmost of the two red shadows and the right field is used with the rightmost of

the two red shadows.

Updating Event Points We merge the red shadows of the left and right sets by

their event points. We show in Section 3.2.6 how to do an optimal parallel merge for

our problem. So far every event point only has information about one set. We need to

determine what of both sets is visible from the right at every event point. This is done

by replacing the UNKNOWN values. Figure 3.11(b) shows how these values should be

updated.

The updates of both the left and right data fields can be done independently using

the same procedure. An UNKNOWN value means that the corresponding event point

was introduced by the merge and does not correspond to any change in the left shadow.

Therefore, we can scan our array upward, passing to consecutive UNKNOWN values

3.2. Parallel Circuit Compaction 37

B

C

E

D
D

GAP

E

B

GAP

GAP

C

E

E

GAP

Combined Shadow

C

E

E

E

B

D

Combined Set

Figure 3.12: The combined red shadow.

the last known value. The update can be done in parallel with the prefix computation

Si = x1 ∗ . . . ∗xi, where x1 is the bottom-most element in a shadow and ∗ is defined as:

c := a * b if (a == data and b == UNKNOWN) then c = a

else c = b

xi is the data value for the ith event point and Si is the updated data value that

replaces it. It is easy to see that ∗ is an associative operator. Sets of event points

that have identical y-coordinates are handled by a similar prefix operation that scans

downwards, instead of upwards, and works only on groups of event points with identical

y-coordinates. The first data fields may still contain the UNKNOWN value after the

update operation. For example, consider the lowest two event points in the left set in

Figure 3.11(a): these fields are changed to contain the gap value, because they always

represent a gap.

Computing Shadows Now that we know what is visible of both the left and right

red shadows at every event point, we can apply the local rule VISIBLE:

VISIBLE(gap, gap) := gap

VISIBLE(left_rectangle, gap) := left_rectangle

VISIBLE(gap, right_rectangle) := right_rectangle

VISIBLE(left_rectangle, right_rectangle) := right_rectangle

which says that in the combined red shadow a rectangle from the left set is visible

only if the right set contains a gap. Figure 3.12 shows the combined red shadow.

Computing Edges We have shown how to compute the shadows of a set of size n

from shadows of the same color of two sets of size n/2. To compute all edges in a set

of size n, we need the red shadow of the left set of size n/2 and the green shadow of

38 Chapter 3. Constructive Heuristics

the right set of size n/2. Assume we have merged both sets and updated UNKNOWN

data values. We have exact knowledge about all rectangles visible to the left and right

of the trench shown in Figure 3.13. We then generate an edge for every event point.

3.2.4 Tiling

The edge-generating stage of our algorithm can be modified to produce space tiles

instead. All the important information about the bounding solid rectangles is available

locally in the shadow data structure and in the array containing the ordered rectangles.

A tiling is used for the corner-stitching data-structure in the Magic layout system[96].

Figure 3.9(a) shows a tiling of our layout. Note that each space tile corresponds to

an edge in the planar layout of Figure 3.8(a). Link pointers are added to the corners

of a tile. This creates a search structure to other tiles: point location, area searches,

connectivity testing and neighbor-finding queries can be executed. The worst-case

query time can be O(n) for the tiling, but since VLSI layouts are usually very regular,

the average query time is constant. The advantage of corner stitching, or indeed of

having no search structure at all, is a cn space requirement, where c is a small constant.

Memory is still an expensive resource for VLSI CAD. The Magic system is interactive

and constructs the tiling with an iterative algorithm. This does not decrease the value

of a parallel algorithm, however, as large designs must be processed at the start of an

editing session.

3.2.5 Reducing Edges

At each iteration, after we have merged the sets, updated the event points and generated

one edge per event point but before we compute the new shadows, we add a procedure

to remove unnecessary edges. Several adjacent event points storing the same data

generate identical edges, and all but one of them must be deleted to ensure a total of

at most 3n − 3 edges. Also, we want to compute the transitive reduction of our graph:

if two vertices are connected by an edge and by a path P of two or more edges, the

connecting edge can be removed because any critical path includes the path P and not

the edge.

By convention, event point p+1 is above event point p. At event point p, let rred
left(p)

be the rectangle seen in the red shadow of the left set and let rgreen
right (p) be the rectangle

seen in the green shadow of the right set. Two contiguity fields Cred
left(p) and Cgreen

right (p),

for the red shadow of the left set and the green shadow of the right set, are added to

the record associated with each event point p. Let (s, x) ∈ {(left, red), (right, green)}.
The contiguity field Cx

s (p) is set to:

1. NOEDGE, if rx
s (p) is a GAP.

2. EDGE, if rx
s (p) is not a GAP and rx

s (p + 1) is a GAP.

3. SAME, if rx
s (p), rx

s (p + 1) are identical rectangles.

3.2. Parallel Circuit Compaction 39

Trench

UP DOWN

SAME SAME

SAME SAME

SAME SAME

SAME SAME

DOWN UP

SAME

EDGE

NOEDGE

SAME SAME

EDGE

NOEDGE

NOEDGE

Figure 3.13: Reducing edges in the visibility graph by pattern matching. Only the edge
with the pattern (DOWN, UP) remains in the reduction; all others are removed.

40 Chapter 3. Constructive Heuristics

4. UP, if rx
s (p), rx

s (p + 1) are different rectangles and there is a path from rx
s (p) to

rx
s (p + 1).

5. DOWN, if rx
s (p), rx

s (p+1) are different rectangles and there is a path from rx
s (p+1)

to rx
s (p).

Note that it can be determined in constant time whether there is a directed path from

rx
s (p) to rx

s (p + 1): the y-ranges of the two rectangles overlap, and the x-coordinate of

rx
s (p) is less than the x-coordinate of rx

s (p+1). If the rectangles do not overlap, another

rectangle or GAP is visible in the shadow. A similar argument applies for finding paths

from rx
s (p + 1) to rx

s (p).

We compute the contiguity value pairs (Cred
left(p), Cgreen

right (p)) at every event point p

and apply to the resulting patterns a procedure to remove edges not in the transitive

reduction.

To illustrate the pattern-matching procedure, consider the examples in Figure 3.13.

Only the edge with the pattern (DOWN, UP) remains in the reduction; all others are

removed.

Ex. 1 The pattern (UP, DOWN) implies that there is a path from rectangle rred
left(p) to

rred
left(p+1), an edge crosses the “trench” at the edge at p+1, and there is a path

from rgreen
right (p + 1) to rgreen

right (p). Therefore the pattern (UP, DOWN) indicates

that the edge at p can be removed.

Ex. 2 All edges with the pattern (SAME, SAME) can be removed.

Ex. 3 The two edges with a pattern that contains NOEDGE can be removed.

Ex. 4 The pattern (DOWN, UP) implies that there is a path from rectangle rred
left(p+1)

to rred
left(p), an edge crosses the “trench” at the edge at p, and there is a path

from rgreen
right (p) to rgreen

right (p + 1). Therefore the set of two edges with the pattern

(SAME, SAME) followed by (EDGE, SAME) can be removed.

From each of the 25 resulting patterns we can deduce locally whether to delete the

edge at p or the edge p + 1:

(a) Patterns on which no action is taken are: (UP, UP), (DOWN, DOWN), and any

pattern containing EDGE but not NOEDGE.

(b) Patterns removing the edge at p are: (SAME, SAME), (SAME, DOWN), (UP,

SAME), (UP, DOWN), and any pattern containing NOEDGE.

(c) Patterns removing the edge at p + 1 are: (DOWN, SAME), (SAME, UP) and

(DOWN, UP).

3.2. Parallel Circuit Compaction 41

The patterns that remove the edge at p + 1 need special attention. A sequence of

(SAME, SAME) patterns at pi and higher event points followed by any other pattern

at pj generates a set of equivalent edges at pi through pj, as can be seen in Figure 3.13.

If the pattern at pi−1 deletes the edge at pi, the whole set including the edge at pj must

be deleted. This is done by another prefix computation that copies a “delete-edge” flag

from the lowest event point pi in the sequence of (SAME, SAME) patterns to all other

event points pi, . . . , pj in the sequence.

Lemma 8 The above pattern-matching procedure computes the transitive reduction of

an interval dag.

Proof We show that when an edge is in the transitive reduction, the pattern-matching

procedure does not remove it, and that when an edge is not in the transitive reduction,

the pattern-matching procedure removes it.

Case (a) Only edges not in the transitive reduction are removed. As explained

above, this is shown by checking all 25 patterns. The patterns remove an edge between

rectangles rred
left(p), rgreen

right (p) only when there is also a path from rectangle rred
left(p) to

rgreen
right (p).

Case (b) Only edges in the transitive reduction remain. Assume that after the

application of the above pattern-matching procedure there is an edge at p between

rectangles rred
left(p), rgreen

right (p) that is not in the transitive reduction. Therefore there is

a path P from rred
left(p) to rgreen

right (p). Without loss of generality, assume the path P runs

in the planar graph above the edge at p. Consider the iteration when the edge at p was

created. Because there is a path P from rred
left(p) to rgreen

right (p) crossing the trench above

p, the possible patterns at event point p are: (UP, DOWN), (SAME, DOWN), (UP,

SAME), (SAME, SAME), but all these patterns remove edge p, a contradiction. 2

The above pattern-matching procedure completes our algorithm for computing the

transitive reduction of an interval dag.

3.2.6 Complexity Analysis

The preprocessing consists of sorting the rectangles by their x-coordinates, which can

be done in time O(log2 n) time on a O(n/log n) EREW PRAM[10]. As our algorithm

is recursive, it takes log n iterations, so each iteration must work in time O(log n)

with O(n/log n) processors. The local and parallel prefix algorithms run within these

bounds, and the recursion imposes no scheduling overhead.

Theorem 5 A compaction constraint graph that corresponds to the transitive reduction

of an interval dag can be computed from the rectangle representation in O(log2 n) time

on a O(n/log n) EREW PRAM.

42 Chapter 3. Constructive Heuristics

6

7

8

9 9 01

8 11

7 00

6 10

00 01 10 11

9 01

8 11

7 00

6 10

9 01

8 11

7 00

6 10

(a) (b) (c) (d)

Figure 3.14: Mergesort in reverse: (a) Four rectangles 00, 01, 10, 11, indexed by their
x-coordinate. (b) The rectangles are sorted by their y-coordinate, equivalent to the
final iteration of a mergesort on the y-coordinate. (c) The rectangles after 0-1 sorting
by the 2nd index bit. A left and a right set are obtained, equivalent to the first iteration
of a mergesort on the y-coordinate. (d) The rectangles after 0-1 sorting the previous
sets by the 2nd index bit. The sets are again divided into left and right sets, equivalent
to the initial state before mergesort on the y-coordinate.

A Different Merge On practical machines, a radix-sorting algorithm outperforms

both sorting and merging comparison-based algorithms. It is therefore inconvenient and

expensive to use a merge routine. We present the following general recursive technique

which applies to divide-and-conquer problems and to machines on which radix sorting

is faster than merging. In our experiments on the CM-2, a considerable savings in

running time was achieved with this technique.

We observe that in our problem we can do preprocessing equal to the sort com-

plexity, which permits us to “reverse-engineer” all intermediate stages of a mergesort

algorithm. Every event point is assigned an index i based on the order of the left x-

coordinate of its associated rectangle. These indices are used to partition the rectangles

into left and right sets. We sort all the event points by their y-coordinate. The result

is equivalent to what mergesort on the y-coordinate would have produced at the last

k = ⌈log n⌉ iteration of our recursive algorithm. We then sort the event points by the

highest (k−1st) bit of the x-coordinate i with a stable 0-1 sorting algorithm and obtain

the result of merge at iteration k − 1; this produces separate left and right sets sorted

by their y-coordinates. Left and right sets are assigned different group identifiers, and

the 0-1 sorting operation is repeated on these groups with decreasing bits of i. By

induction, the event points are sorted by their x-coordinate after k iterations. This is

the correct input for the first iteration. After an iteration completes, the event points

are moved back to the correct position for the next iteration.

Figure 3.14(a) shows four rectangles 00, 01, 10, 11, indexed by their x-coordinate.

In Figure 3.14(b), the rectangles are sorted by their y-coordinate. This is equivalent

to the final iteration of a mergesort on the y-coordinate. Figure 3.14(c) shows the

3.2. Parallel Circuit Compaction 43

rectangles after 0-1 sorting by the 2nd index bit. A left and a right set are obtained,

equivalent to the first iteration of a mergesort on the y-coordinate. Figure 3.14(d)

shows the rectangles after 0-1 sorting the previous sets by the 2nd index bit. The sets

are again divided into left and right sets, equivalent to the initial state before mergesort

on the y-coordinate.

The time complexity of the recursive merge algorithm on an EREW PRAM with

O(n/log n) processors is O(log n) time per iteration and a total time of O(log2 n). The

permutations transforming the event point sets must be stored, so the space complexity

is O(n log n). If this is undesirable, we can trade off time for space by using a standard

merge function or a radix sort on all bits at each iteration.

Lower Bounds A compaction constraint algorithm can be used to sort n numbers

by transforming each number x into a rectangle (x, 1, 1, 1). The resulting graph is a

linked list with the numbers in correct order. The processor-time product of O(n log n)

on an EREW PRAM is therefore optimal. It is an open question whether the lower

bound of O(n log n) time (or P ∗ T) still holds when the input is available sorted by

both x- and y-coordinates [127]. It would also be interesting to know whether the logn

divide-and-conquer stages can be removed in this case, thereby improving the speed of

the algorithm in practical applications.

3.2.7 CM-2 Implementation of Compaction

While the procedures described in the previous sections are given for the PRAM model,

special care was taken to ensure that the compaction algorithm would be implemented

on the CM-2. The code consists of procedure calls to local operations, nearest-neighbor

communication, scans, and segmented scans. We also used global communication prim-

itives to merge the event-point sets.

Building the Visibility Graph The algorithm to build the visibility graph was

directly implemented as described in Section 3.2.3. As predicted by the complexity

analysis in Section 3.2.6, the ordering of the event points when the shadows were

merged dominated the computation time.

The CM-2 PARIS instruction set does not include a merge routine, so we had to

use a radix-sorting routine to merge two shadows. We found that the recursive method

given in Section 3.2.6 to simulate the intermediate steps of a mergesort algorithm was

able to save computation time. This “mergesort-in-reverse” routine requires only a

one-bit radix sort at each of the ⌈log n⌉ iterations of the visibility-graph algorithm.

Computing the Transitive Reduction The pattern-matching procedure to re-

move superfluous edges was implemented as described in Section 3.2.5. The code

required only local operations and nearest-neighbor communication procedures.

44 Chapter 3. Constructive Heuristics

Computing the transitive reduction of the visibility graph reduces the total number

of edges from at most 3n − 3 to at most 2n − 4. Since the longest-path algorithm

described in the following paragraph uses two virtual processors per visibility edge,

removing all unnecessary edges reduces the number of virtual processors that one real

processor must simulate, and so makes the longest-path algorithm run faster.

Edge Data Structure Edges are generated at each iteration of the visibility-graph

algorithm. We generate an edge for every event point, but then remove unnecessary

edges with the reduction operation described in Section 3.2.5. The generated edges

are associated with event points that are not in adjacent memory locations. We im-

plemented a simple load-balancing scheme to assemble the edges in a linear array in

adjacent positions. Every edge is enumerated with an index i. If k is the number of

edges generated in previous iterations, the newly generated edges are sent to location

k + i in the edge array.

From the edge array, we construct the edge data structure that is also used for the

Mob graph-partitioning heuristic described in Section 6.2.2. The data structure repeats

each edge twice, e.g. (a, b) and (b, a), and each edge stores the array address of the

other. The edges are sorted by their left vertex so that groups of vertices with the same

left vertex are formed that represent all edges going into one vertex. We let the first

edge processor in a group also serve as a vertex processor. In addition, since we are

dealing with a directed graph, we also store the direction of each edge.

Longest Path As mentioned in discussing complexity issues in Section 3.2.7, there is

no efficient parallel algorithm to find longest paths in an interval dag G(V,E) using only

O(|E|) processors and polylog time, so we implemented the modified serial algorithm.

(Should such an algorithm be found, we hope that it will have small constants and be

easy to implement on a SIMD machine.)

Every vertex processor a stores its current longest distance d from the source of

the graph. Initially d = 0, unless vertex a is the source of the graph. One iteration

of the longest-path algorithm consists of spreading d with a copy scan operation to all

forward-directed edges that go out from vertex a. Every edge processor that represents

an edge (a, b) adds its edge weight w to the distance d of vertex a. The value d + w is

then sent to the twin edge (b, a). We now perform a maximum scan operation on all

backward edges (b, a) going into vertex b. This operation computes the new maximum

distance of vertex b from the source of the graph. The algorithm halts when no vertex

changes its distance value. Note that no search algorithm is necessary to put the edges

in topological order, unlike the serial case.

3.2.8 Experimental Results

Figure 3.15 shows the three types of layouts we generated to test our compaction

algorithm. Figure 3.15(a) is a diamond lattice, Figure 3.15(b) is a diamond lattice

3.2. Parallel Circuit Compaction 45

Figure 3.15: Three uncompacted layouts with O(
√

n) critical paths: (a) diamond lat-
tice, (b) irregular diamond lattice, (c) irregular mesh.

Figure 3.16: Irregular diamond lattice. (a) Before compaction. (b) After compaction.

46 Chapter 3. Constructive Heuristics

Table 3.1: Compaction results on the CM-2. TGen is the time to construct the visibility
graph, TPath is the time to compute the lengths of the longest paths. TGen and TPath

were measured on a 8K-processor and a 16K-processor CM-2.

n |E| It 8K: TGen 16K: TGen |Path| 8K: TPath 16K: TPath

Diamond lattice

8100 16200 13 1.81 1.34 179 3.19 1.75
16384 32512 14 4.25 2.21 255 11.37 4.58
32761 65160 15 8.39 4.83 361 29.16 15.57
65536 130560 16 19.79 10.33 511 76.10 41.86

131044 261364 17 - 20.49 723 - 109.29

Irregular diamond lattice

4750 7459 13 3.38 1.27 157 1.50 0.93
9775 15557 14 4.26 2.25 221 4.04 2.03

19313 30596 15 9.47 4.81 301 11.83 5.19
38484 61320 16 18.33 10.74 427 30.21 17.04
77573 124021 17 - 20.60 619 - 45.05

Irregular mesh lattice

6371 6369 13 1.73 1.14 73 0.75 0.46
12982 12980 14 4.60 2.19 101 1.82 1.04
25890 25888 15 9.38 4.54 143 5.29 2.36
51732 51730 16 18.47 10.88 201 13.25 7.85

103393 103391 17 - 20.55 293 - 19.11

from which rectangles have been randomly removed, and Figure 3.15(c) is a mesh from

which rectangles have been randomly removed. Each layout type has O(
√

n) length

critical paths; they model the critical paths in VLSI layouts. The diamond lattices

were chosen to maximize critical-path effects, since moving the leftmost rectangle from

left to right causes the whole lattice to shift right. Figure 3.16(a) shows an irregular

diamond lattice with 320 rectangles, and Figure 3.16(b) shows its compaction with the

parallel algorithm.

The results of our experiments on an 8K CM-2 are given in Table 3.1. The first

column shows the number of rectangles in the layout. The second column gives the

number of edges in the transitive reduction of the horizontal visibility graph. The

third column gives the number of divide-and-conquer iterations needed to construct

the visibility graph. TGen is the time to construct the visibility graph and the column

labeled |Path| gives the length of the longest path in the visibility graph, which is equal

to the number of iterations of the longest-path algorithm used here. We can see that

|Path| ≈
√

(|n|) for the types of graph used in our experiments. TPath is the time to

compute the lengths of the longest paths. TGen and TPath were measured on both an

8K-processor and a 16K-processor CM-2.

We find that the complexity of the parallel algorithm to construct the visibility

3.2. Parallel Circuit Compaction 47

graph of n rectangles is O(log2 n) with O(n log n) processors, as predicted in Sec-

tion 3.2.6. Every time we double the number of rectangles in the layout, the compu-

tation time increases by slightly more than twice, since the number of iterations in

the divide-and-conquer algorithm increases by one. Doubling the number of processors

reduces the computation time by half. Depending on layout size, this holds for ratios

of virtual to real processors ranging from 1 to 32, so we can deduce that the algorithm

exhibits speedup linear in the number of processors.

We also found that the measured running times of the O(
√

n) longest-path al-

gorithm were within an order of magnitude of the running times for the O(log2 n)

visibility-graph algorithm. Only for the examples in which n < 105 does the fact that

its asymptotic behavior is not polylogarithmic finally catch up with the longest-path

algorithm.

49

Chapter 4

Local Search Heuristics for VLSI

Placement

4.1 Local Search Heuristics

Local search heuristics have been established as the method of choice in many opti-

mization problems whenever very good solutions are desired. In local search heuristics,

an initial solution S1 is constructed, usually by some random procedure, and a cost

function f is computed. Changes are made to the current solution and a new solution

S2, which we say is in the neighborhood of the current solution, replaces the current

solution. The improvement in the cost function f obtained from changing from solution

S1 to solution S2 is given by the gain function ∆f := f(S1) − f(S2). A positive gain

change is one that decreases cost. The termination rules differ for each heuristic.

The procedure that generates changes to the current solution defines a neighborhood

whose structure depends on the problem being solved. We define neighborhoods for

graph partitioning, graph embedding, and column-conflict minimization for channel

routing in Sections 4.3,4.4, and 4.5.

Classical local search heuristics for graph embedding are steepest descent, the Kernig-

han-Lin heuristic (KL)[68], Fiduccia-Mattheyses (FM)[47] heuristic, and simulated an-

nealing (SA)[69]. The Kernighan-Lin heuristic and the Fiduccia-Mattheyses heuristic

are mainly graph-partitioning heuristics and are introduced in Section 4.3.

4.1.1 Steepest Descent

The steepest-descent heuristic selects a neighboring solution that gives the largest de-

crease in cost if accepted. If this decrease is positive, the new solution is accepted;

otherwise the heuristic halts. This heuristic tends to become trapped in bad local

minima, and is not widely used since better local search heuristics are available.

50 Chapter 4. Local Search Heuristics for VLSI Placement

SimulatedAnnealing(S)

Let S be the initial solution;

Let RX[1..q(n)], RV[1..q(n)] be random reals in (0,1);

Let CS[1..q(n)]() be cooling schedule functions;

t = 1;

while(t <= q(n)) {

Q = NEIGHBORHOOD(S, RX[t]);

delta = COST(Q) - COST(S);

if(delta < 0 OR RV[t] < CS[t](delta))

S = Q;

t = t + 1;

}

return S ;

Figure 4.1: The simulated annealing (SA) heuristic.

4.1.2 Simulated Annealing

The simulated annealing (SA) algorithm, introduced by Kirkpatrick et al.[69], is based

on the work in statistical mechanics by Metropolis et al.[90]. The first applications of SA

were to variations of the grid-embedding problem occurring in VLSI design. Simulated

annealing has been established as the method of choice for many optimization problems

whenever very good solutions are desired.

SA selects at random a solution in the neighborhood of the current solution, com-

putes the gain ∆f and accepts that solution if it reduces the cost. If not, the solution

is accepted with a probability that decreases (usually exponentially) with the size of

the increase in the cost. This probability function also decreases with a “tempera-

ture” parameter of the annealing process that decreases with time. The high-quality

results given by this algorithm are explained by observing that it appears to find the

region containing a global minimum quickly and then homes in on the minimum as the

temperature decreases.

The behavior of SA is determined by a “cooling schedule.”

Definition 9 A cooling schedule CS of length L is a sequence [CS1, CS2, . . . , CSL] of

probability distribution functions where CSt : Z → (0, 1).

Many SA implementations use the cooling schedule defined by CSt(x) = k1e
−x/k2T (t)

where T (t) is the current “temperature” at which the heuristic operates and k1 and k2

are constants. In order to define SA properly, some restrictions must be imposed on the

cooling schedule functions CS. In general, CS must be computable by a uniform family

of circuits generated in logspace and the circuits must have polylogarithmic depth so

that no hidden serial bottlenecks are created.

4.1. Local Search Heuristics 51

We can now explicitly define the SA heuristic, outlined in pseudocode in Figure 4.1.

We assume that q(n), the number of steps it executes, is polynomial in the number n

of vertices. The probabilistic nature of SA is reflected in sets RX, RV of q(n) random

variables that are real numbers selected uniformly and independently from the interval

(0, 1). A random variable uniformly distributed over the interval (0, 1) is less than or

equal to p with probability p, assuming 0 ≤ p ≤ 1.

The functions NEIGHBORHOOD() and COST() are defined by the problem to be solved.

SA randomly selects a solution Q with the function NEIGHBORHOOD(S, RX[t]). The

change ∆ in the cost is computed and Q replaces the current working solution S if

the cost decreases or if the current probability distribution RVt < CSt(∆). The SA

heuristic keeps exploring the neighborhood of its working solution P until the time

limit q(n) is exceeded.

We show in Section 5.1.2 that a version of SA called the “zero-temperature” version,

ZT-SA, is P-hard for the graph-partitioning problem. We now define ZT-SA.

Definition 10 The zero-temperature version of SA (ZT-SA) uses a cooling schedule

CS for which RVt < CSt(∆) is always false.

In this version of SA, only improving solutions are accepted. When the standard

cooling schedule CSt(x) = k1e
−x/k2T (t) is used, this is equivalent to operating at zero

temperature. While there is no uniform distribution on infinite sets, namely the set

of integers Z, note that CSt has a finite domain because the difference in bisection

widths between any two partitions is bounded. ZT-SA is a form of probabilistic

steepest-descent algorithm. In practice, SA always enters a low-temperature phase,

which implies that if it enters this phase with a partition that is not locally optimal,

the problem is likely to be very hard to parallelize.

4.1.3 Convergence of Simulated Annealing

Geman and Geman[50], Lundy and Mees[87], and Mitra et al.[91] have shown by

Markov chain analysis that SA with a logarithmic cooling schedule converges to the

optimal solution in time O(an), a > 1. Worst-case examples can be constructed that

put a lower bound of Ω(an) on SA’s running time. SA can actually run more slowly

than the naive algorithm that simply searches the whole solution space.

The result by Geman and Geman was initially derived for an application of SA

to image processing, whereas the other two papers address the general case. For the

analysis of Lundy and Mees and Mitra et al. to hold, certain weak conditions must be

met:

(a) The initial solution can be generated in polynomial time.

(b) The transformation of one solution into a neighboring solution can be done in

polynomial time.

52 Chapter 4. Local Search Heuristics for VLSI Placement

(c) A polynomial number of transformations suffices to transform one solution into

any other solution.

(d) The cost function f and the gain function ∆f must be computable in polynomial

time.

There is overwhelming empirical evidence that SA provides excellent solutions for

most problem instances in polynomial time, but no theoretical work exists to back

up these results. Often the results cited above showing convergence in O(an) time

are invoked to justify convergence in polynomial time, although no proofs of this are

known. More research needs to be done to explain SA’s convergence behavior with fast

cooling schedules. An encouraging result is Sorkin’s showing that SA with a fast cooling

schedule converges on a fractal landscape[131]. He conjectures that the neighborhood

structure of VLSI placement problems may have fractal properties.

4.2 Parallel Local Search

Greening[55] gives a survey of parallel simulated-annealing techniques and classifies

parallel local search algorithms into two categories: perfect convergence algorithms

that emulate the execution of a serial algorithm, and altered convergence algorithms

that allow for errors when accepting moves.

The simplicity of the SA algorithm seems to make an implementation on a massively

parallel computer almost trivial. It is therefore surprising that the goal of parallelizing

SA by straightforward or elaborate means has eluded researchers, and is in fact (as

shown in Chapter 5) impossible for some problems in the worst case.

A parallel local search heuristic computes cost and gain functions once per iteration,

independently of how many elements are selected for moves or swaps. It is therefore

desirable for computational efficiency to move a set of elements on each iteration.

Every element can decide whether to move or not on the basis of the gain function ∆f .

However, for most problems in which local search is used, the sum of the gain functions

only approximates the quality of a resulting solution. The gains may not take fully

into account that other elements are moving at the same time. This is the reason that

local search is difficult to parallelize: parallel moves introduce errors in the cost and

gain functions, and thus can produce results not produced by the serial local search

heuristic.

4.2.1 Perfect Convergence Algorithms

Perfect convergence algorithms attempt to emulate the execution of a serial algorithm,

usually by trying to make exact the parallel computations of gain functions. A parallel

local search heuristic that behaves differently from its serial equivalent cannot rely on

experimental work showing good convergence in polynomial time with one processor.

The proofs of SA’s convergence (with the SWAP neighborhood) to an optimal solution

4.2. Parallel Local Search 53

in time O(an), a somewhat inconclusive result at best, do not hold either. Note that

randomness of serial algorithms is no inherent barrier to their exact parallelization

because the output of a random-number generator can be replaced by a collection of

random numbers accessed in parallel. We show below that several local search heuristics

for graph embedding are P-complete or P-hard (these terms are defined in Section 5.2)

and therefore unlikely to run in polylogarithmic time. Consequently, any attempt to

implement a perfect convergence algorithm introduces massive serial bottlenecks.

Kravitz and Rutenbar[71] propose a parallel SA algorithm for VLSI placement.

Among all parallel moves, only the serializable subset, i.e. all non-interacting moves,

are accepted. Unfortunately, the serializable sets tend to be rather small and do not

increase with the number of processors. Also, the method prefers to accept certain

moves and thus introduces artifacts which degrade convergence behavior.

Roussel-Ragout and Dreyfus[107] propose a parallel implementation of SA on a

MIMD multiprocessor. Every processor evaluates one move, and at most one of the

accepted moves is chosen at random by a master processor. All processors then update

their data structures to incorporate the executed move. This technique allows the

authors to show the equivalence to serial SA and thus convergence in time O(an),

but the degree of parallelism is very small. In addition, the technique yields a serial

bottleneck at high temperature, when a large fraction of proposed moves could be

accepted but the master processor can pick only one move and then must update all

data structures.

Chamberlain et al.[26] use a dynamically balanced tree to find the correct sequence

of moves accepted by simulated annealing. The authors obtain a logarithmic speedup

with this method, and state that an improved balancing algorithm will achieve linear

speedup. Neither proof nor experimental evidence is given to support this claim.

4.2.2 Altered Convergence Algorithms

Altered convergence algorithms propose and accept a change in the solution without

correcting for the influence of other changes occurring simultaneously. In some cases

the parallel local search heuristics perform better than their serial counterparts since

their criteria for accepting moves have been altered, and this has led to claims of

superlinear speedups in the literature. Since it is always possible to efficiently simulate

many parallel processors by one processor, these superlinear speedups vanish once the

alterations are incorporated in the serial algorithm.

The following Section 4.3 on graph partitioning, Section 4.4 on graph embedding,

and Section 4.5 on channel routing describe further areas in which parallel simulated

annealing has been applied.

54 Chapter 4. Local Search Heuristics for VLSI Placement

Figure 4.2: Graph partitioning of a random graph. The two vertex sets of the partition
were placed on the upper and lower half-circle. (a) A randomly generated solution.
(b) A solution generated by the Mob heuristic.

4.3 Graph Partitioning

The goal of the graph-partitioning problem is to partition the vertices of an undirected

graph G = (V,E) (|V | even) into two sets of equal size such that the number of edges

between them is minimum, as illustrated in Figure 4.2.

Definition 11 Consider a graph G = (V,E) with vertices V , |V | even, and edges E,

E ⊂ V × V , and a function, w : E → Z, that assigns integer weights to edges. The

graph-partitioning problem is to find a partition P = (X,Y) of V into two disjoint,

equal-size sets X and Y , so that the bisection width, bw(P), the sum of all weights of

edges joining the two sets, is minimum.

The number of edges linking two sets of a partition is called the bisection width

of the graph, and a partition yielding a minimum bisection width is called a min-cut

or a minimum bisection. Graph partitioning has been applied to VLSI placement and

routing problems by Breuer [18], Leighton[79], Fiduccia and Mattheyses[47], Krishna-

murthy[72], and Dunlop and Kernighan[44]. Graph partitioning has also been applied

by Kernighan and Lin[68] to memory segmentation problems and processor allocation,

among other areas.

4.3.1 Hypergraph Partitioning

The hypergraph-partitioning problem is a generalization of the graph-partitioning prob-

lem to sets of vertices[18]. Edges are replaced by sets of vertices, called hypergraph

4.3. Graph Partitioning 55

edges or “nets” in VLSI terminology. Nets denote pins on cells that must be connected

electrically in a physical layout. Since graph edges can be modeled as two-terminal

nets, the logspace completeness results extend to local search heuristics applied to hy-

pergraph partitioning, such as the Kernighan-Dunlop[44] and SA algorithms (at zero

temperature).

Definition 12 Consider a hypergraph G = (V,N) with vertices V , |V | even, and

hypergraph edges N ⊂ 2V which are subsets of V . The hypergraph-partitioning problem

is to find a partition P = (X,Y) of V into two disjoint, equal-size subsets X and Y , so

that the number of hypergraph edges in N intersecting both sets is minimum.

4.3.2 The SWAP Neighborhood For Graph Partitioning

Since graph partitioning is NP-complete[49], heuristics are needed to approximate

the minimum bisection width. Two widely used heuristics for this problem are the

Kernighan-Lin (KL) algorithm [68] and the simulated annealing (SA) algorithm intro-

duced by Kirkpatrick et al.[69].

The procedure that generates changes to the current solution defines the neighbor-

hood. The neighborhood commonly used by SA graph-partitioning heuristics is SWAP.

In the definitions we give here, the neighborhood does not determine the order in which

steps are taken; it is required only that an improving swap be made, not necessarily

the best improving swap.

Definition 13 The SWAP neighborhood SWAP(P0) of a partition P0 = (X0, Y0) is

the set of partitions {Pi = (Xi, Yi)} obtained by swapping one element from X0 with

one from Y0.

The number of partitions in the neighborhood SWAP-N(P) is (|V |/2)2 .

4.3.3 The Kernighan-Lin Neighborhood

The Kernighan-Lin neighborhood of a partition consists of the sequence of partitions ob-

tained by selecting one previously unselected vertex pair that gives the largest decrease

(or smallest increase if no decrease is possible) in cost if swapped. The Kernighan-Lin

heuristic[68] searches the neighborhood of a partition and, if it finds a sequence of

vertex swaps that gives a smaller cost, replaces the current partition by the new one

and continues. If not, it halts. The Kernighan-Lin neighborhood is larger than the

SWAP neighborhood obtained by simply swapping two vertices, and thus accounts for

the high quality of the results obtained with this heuristic.

Definition 14 The KL-neighborhood KL-N(P0) of a partition P0 = (X0, Y0) is a set

of partitions {Pi = (Xi, Yi)}, where Xi and Yi are each unions of two disjoint sets:

Xi = XFi ∪XRi, Yi = Y Fi ∪Y Ri. Let a ∈ XRi−1 and b ∈ Y Ri−1 be vertices which, if

56 Chapter 4. Local Search Heuristics for VLSI Placement

KernighanLin(P)

Let P be the initial partition;

Q = best_partition_in_KL-N(P);

while(bw(Q) < bw(P)) {

P = Q;

Q = best_partition_in_KL-N(P);

}

return P;

Figure 4.3: The Kernighan-Lin (KL) heuristic.

swapped, cause the largest reduction (or smallest increase, if no reduction is possible)

in the bisection width bw(Pi−1). Pi is produced by swapping and freezing a and b:

XF0 = ∅ Y F0 = ∅
XR0 = X0 Y R0 = Y0

XFi = XFi−1 ∪ {b} Y Fi = Y Fi−1 ∪ {a}
XRi = XRi−1 − {a} Y Ri = Y Ri−1 − {b}

The number of partitions in the neighborhood KL-N(P) is |V |/2. The KL heuristic

is outlined in pseudocode in Figure 4.3. The function best partition in KL-N(P)

returns the partition Q in the KL-N(P) neighborhood of a partition P that has the

smallest bisection width. It uses the new partition Q for another iteration step until

no improving partition Q can be found. We shall see that performing even one neigh-

borhood search in the KL heuristic is P-complete. Additionally, the above algorithm

remains P-complete if KL-N is replaced with a simpler neighborhood such as SWAP.

The Fiduccia-Mattheyses Heuristic Fiduccia and Mattheyses[47] have modified

the basic Kernighan-Lin algorithm to increase its flexibility and efficiency but keep

its essential structure. The FiducciaMattheyses (FM) heuristic for graph partitioning

is similar to the KL heuristic but differs in how vertices are moved and in the data

structures it uses. As a serial algorithm it runs faster in practice than KL. In FM a

balance parameter r is specified and the smaller of two sets in a partition must have

a size that is an approximate fraction r of the total number of vertices. The FM-

N(P) neighborhood of a partition P consists of partitions obtained by moving and

freezing individual vertices. A vertex is a candidate to be moved if it is not frozen

and if changing its set causes the greatest improvement (or least degradation) in the

bisection width without violating the balance condition. We show in Section 5.1.1 that

FM is P-complete.

4.4. Graph Embedding 57

4.3.4 The Complexity of Graph-Partitioning Algorithms

For the graph-partitioning problem, both Kernighan-Lin and simulated annealing give

excellent results on serial machines for random graphs of small degree and moderate

size[65,77]. The time for one run of KL from an initial partition is much smaller than

that for SA. However, KL generally gives bisection widths that are about 10% larger

than those provided by SA. When the running times of both are equalized by making

many more runs of KL with randomly chosen initial partitions and choosing the best

results of all runs, Johnson et al.[65] show that KL gives a best bisection width typically

within a few percent of SA’s best bisection width, although SA continues to provide

better results.

An important reason for introducing a new heuristic is that both KL and SA are

believed to be hard to parallelize. We have shown that KL is P-complete under logspace

reductions on graphs with unit-weight edges[120,121]. A randomized local search al-

gorithm, the zero-temperature version of SA, is shown in Section 5.1 to be P-hard

under logspace reductions. We also show in Section 5.1 that Mob is P-hard under some

restrictions, which occur only infrequently in practice.

In their study of local search, Johnson, Papadimitriou and Yannakakis [66] have

shown that a search of a single KL neighborhood is P-complete when graphs have

edge weights exponential in the size of a graph and the bisection size is defined to be

the sum of the weights of edges in a bisection. Our P-completeness result is obtained

for unit-weight edges. Schäffer and Yannakakis have independently shown that local

search on the SWAP neighborhood on unit-weight edge graphs is P-complete [126].

From this they deduce that an entire local search with KL of unit-weight edge graphs

is P-complete. Our result of completeness of KL for search of just one neighborhood

implies completeness of the entire search done by KL. Our proof of P-hardness of zero-

temperature SA implies P-completeness for deterministic local search heuristics using

the SWAP neighborhood.

Other heuristics for graph partitioning have been developed. Bui, Chaudhuri,

Leighton and Sipser[20,21] give a min-cut, max-flow-based algorithm to partition a

graph with unit edge weights. This algorithm works well with graphs of a particular

structure having small expected bisection widths, and it would be interesting to know

if it can be parallelized. Bui, Heigham, Jones and Leighton[22] use a maximum random

matching algorithm to coalesce nodes into pairs, thus forming a smaller graph of higher

average degree, and then run either KL or SA on this graph to obtain a partition. Ver-

tex pairs are then separated to create a partition for the original graph that is used as

an initial partition for either KL or SA.

4.4 Graph Embedding

In this section we give an overview of graph-embedding heuristics. Here the problem

is to embed a graph G = (V,E) into other graphs and structures. A cost function

58 Chapter 4. Local Search Heuristics for VLSI Placement

Figure 4.4: 16-to-1 grid embedding of a random graph: (a) A randomly generated
solution. (b) A solution generated by the Mob heuristic.

Figure 4.5: 1-to-1 grid embedding of a random graph: (a) A randomly generated
solution. (b) A solution generated by the Mob heuristic.

4.4. Graph Embedding 59

assigns a value to each embedding; the objective is to minimize that cost function, as

illustrated in Figures 4.4 and 4.5. We will call the target structure a network, and the

vertices of the target structure nodes.

Definition 15 Consider two graphs G1 = (V1, E1) and G2 = (V2, E2). An embedding

of G1 into G2 is a pair of mappings S = ν, ǫ where ν : V1 7→ V2 is a mapping of the

vertices V1 to the network nodes V2 and ǫ maps edges in G1 to paths in G2. Let S
be the set of all graph embeddings S of G1 in G2. Let the cost function f : S 7→ R
assign a cost to each embedding in S. The graph-embedding problem is to find a graph

embedding S with minimum cost f(S).

We show in Section 5.1 that for graph partitioning, local search under the SWAP

neighborhood is P-hard. Using this result, we show in Section 5.2 that local search

heuristics for grid and hypercube embeddings are P-hard (evidence of non-parallelizability)

when the neighbors in the solution space are generated by swapping the embeddings

of two vertices[119,122]. We give two logspace constructions that map the graph used

in the graph-partitioning completeness proof into initial embeddings in the grid and

hypercube.

4.4.1 VLSI Placement and Minimization of Data Movement

Graph embedding finds application in VLSI placement and the minimization of data

movement in parallel computers. The VLSI-placement problem can be modeled by a

grid embedding that is restricted to allow only one logic element location per grid node.

Hypercube embeddings and grid embeddings are used to embed a data-structure graph

on the topology of a parallel machine. An automatic graph-embedding tool optimizes

communication resources, enhances fault tolerance, and allows parallel programs to be

divorced to some extent from the structure of the underlying communication network.

SIMD-style parallel machines, such as the Connection Machine and the MasPar Ma-

chines, are characterized by small processors (one to four bits per processing element)

that operate in lockstep when activated and a communication network with a high

latency unless nearest neighbors are accessed. Good code that makes efficient use of

the processors can be written with traditional editors, compilers and debuggers. How-

ever, the cost of communication is so high on these machines that it must be severely

controlled in order to obtain peak performance. One way to do this is to place tasks

on nodes in such a way as to minimize the cost of communication between nodes. In-

stead of always using message-passing primitives for data access, data can be referenced

across an edge by direct addressing if the connected vertex resides on the same proces-

sor. The graph-embedding algorithms considered in this paper have the potential of

dramatically cutting down on communication costs.

60 Chapter 4. Local Search Heuristics for VLSI Placement

4.4.2 Bulk Parallelism

An important paradigm for programming parallel machines is the bulk parallelism model

introduced by Valiant[136]. In this model, n virtual processors are simulated on a

computing network with (roughly) n/ log n real processors. The Connection Machine

software provides support for virtual processors. The advantages of the bulk parallelism

model arise both from theoretical and practical observations.

There exist a number of important parallel algorithms used as atomic programming

primitives which for problems of size n run in optimal asymptotic time on n/logn

processors. Increasing the number of processors past the n/logn processor threshold

yields diminishing returns, since increasing the number of processors to n decreases

the running time of the algorithm by a factor of at most two. For example, this holds

true for the parallel prefix of n numbers, which can be computed in time 4 log n with

n/ log n processors and in time 2 log n with n processors. Other algorithms in which

more than n/ log n processors are not advantageous include merging, sorting, memory

access by hashing, and the simulation of FFT, hypercube, and Omega networks.

For software development, the bulk parallelism model permits the program to be

written independently of the actual number of available processors. The mechanism

of simulating virtual processors and balancing computing loads need not be visible to

the application program, and can be well matched to the underlying hardware; should

the hardware change, the mechanism of simulating virtual processors can be altered

without having to change the applications program.

Current state-of-the-art hardware technology also favors the bulk parallel model.

Floating-point processors make use of pipelining, a form of parallelism in which an

operation such as floating-point multiplication or instruction decode is subdivided into

several hardware stages. Pipeline lengths can range from 2 to 64 stages. Once a data

item has passed through a stage, the hardware is free to work on the next data item.

Pipeline processors make efficient use of silicon real estate and have been very successful

in conventional supercomputers. Since a processor in the bulk parallel model has to

simulate log v virtual processors, it can keep its pipeline filled and work at close to peak

speed.

4.4.3 Graph Embedding and Local Search

Using local search to produce an embedding of a problem into a parallel-computer

architecture is an attractive technique. It simplifies porting a program to a new machine

with a possibly esoteric network because one need only change the cost functions and

apply the same or a similar local search heuristic to produce a good embedding. Also,

concern for the quality of a heuristic is mitigated somewhat if it has an excellent track

record on other problems.

The recent availability of general-purpose parallel-processing hardware and the need

to solve very large problem instances have led to increasing interest in parallelizing local

search heuristics. Graph-embedding heuristics are known to require large amounts of

4.4. Graph Embedding 61

processor time. We can expect the communication graph of a parallel supercomputer to

be so large that it will not fit into the memory of a workstation. It is thus natural and

elegant to consider graph-embedding heuristics that run on the same parallel machine

whose communication patterns they are ultimately supposed to optimize.

4.4.4 Cost Functions for Grid Embeddings

We now define several cost functions on graph embeddings that are commonly used

to estimate VLSI placement costs and interprocessor communication costs in parallel

computers. These cost functions measure a quantity equivalent to the length of em-

bedded edges of G1 in G2, and can be computed very efficiently on a parallel machine.

We note, however, that none of the cost functions investigated in this paper measure

routing congestion.

We begin by extending the concept of graph partitioning from a pair of sets to

multiple sets. The CROSS cost function counts the number of edges (v,w) whose

vertices are in different sets of a partition.

Definition 16 Let S : V 7→ {0..k − 1} be a partition of V into k sets. The cost of the

partition under the CROSS cost function is defined as
∑

(v,w)∈E CROSS(S(v), S(w)),

where

CROSS(a, b) :=

{

0 a = b

1 a 6= b

The PERIMETER cost function is used to estimate the wire costs in a VLSI layout

and communication costs in a grid of parallel processors.

Definition 17 Let S : V 7→ {0..k − 1} × {0..l − 1} be an embedding of G into a

k× l-node grid. The cost of the embedded edges under the PERIMETER cost function

is defined to be
∑

(v,w)∈E PERIMETER(S(v), S(w)), where PERIMETER(a, b) :=

|ax − bx| + |ay − by| is the half-perimeter of a box enclosing two grid nodes a and b

whose x and y coordinates are ax, ay and bx, by, respectively.

4.4.5 Cost Functions for Hypercube Embeddings

The HCUBE cost function is used to estimate communication costs in a hypercube

network.

Definition 18 Let S : V 7→ {0..2k − 1} be an embedding of G into a 2k-node hyper-

cube. The cost of the embedded edges under the HCUBE cost function is defined as
∑

(v,w)∈E HCUBE(S(v), S(w)), where HCUBE(a, b) is the Hamming distance of two

nodes in the hypercube, when the integers a and b are represented as binary k-tuples.

62 Chapter 4. Local Search Heuristics for VLSI Placement

4.4.6 Hypergraph Embeddings

The hypergraph-embedding problem is a generalization of the graph-embedding prob-

lem[18,44]. Edges are replaced by sets of vertices, called hypergraph edges or nets in

VLSI terminology. Nets denote pins on cells that must be connected electrically in a

physical layout.

The CROSS and PERIMETER cost functions have natural extensions to hyper-

graph edges. For the problem of partitioning a graph into k sets, we define the func-

tion CROSS((a, b, . . . , z)) for an embedded net (a, b, . . . , z) as the number of different

sets intersected by the net (a, b, . . . , z). The PERIMETER cost of an embedded net

(a, b, . . . , z) is the perimeter of the bounding rectangle of the net:

perimeter((a, b, . . . , z)) := |max((ax, bx, . . . , zx)) − min((ax, bx, . . . , zx))| +
|max((ay, by, . . . , zy)) − min((ay, by, . . . , zy))|

Since graph edges can be modeled as two-terminal nets, the completeness results pre-

sented in Section 5.2 extend to local search heuristics applied to hypergraph embed-

dings.

4.4.7 The Complexity of Graph-Embedding Algorithms

The graph-embedding problem is so difficult to solve even in restricted cases as to jus-

tify the study of heuristics or approximation algorithms. It can be shown by simple

reductions that the problem of finding a minimum-cost graph embedding is at least

as hard as the graph-isomorphism , subgraph-isomorphism, hamiltonian circuit, and

clique problems. Graph-isomorphism is in NP but is not known to be NP-complete[34,

49]. The subgraph-isomorphism, hamiltonian circuit, and clique problems are NP-

complete[49]. Restricted cases of the graph-embedding problem remain hard to solve:

Wagner and Corneil[139] have shown that determining whether an arbitrary tree is a

subgraph of a hypercube is NP-complete, and Afrati et al.[2] have shown that determin-

ing whether a graph is a subgraph of a hypercube is NP-complete. Graph partitioning

is NP-complete[49].

4.4.8 Constructive Heuristics

A constructive heuristic for graph embedding exploits structure and regularity present

in a graph G1 and a network G2 to construct a good embedding of G1 into G2. Con-

structive heuristics work well in restricted cases and lend themselves to the derivation

of bounds on the running time and the quality of the approximate solution.

Algorithms for constructing a tree embedding into a hypercube have been studied

by Afrati et al.[2], Monien and Sudborough [92], and Wu[143]. Chan[27], Bettayeb et

al.[9], and Ho and Johnsson[63] show that grids can be embedded into a hypercube

with maximum edge length 2. Sadayappan and Ercal[108] and Sadayappan et al.[109]

4.4. Graph Embedding 63

embed grid subgraphs obtained from finite-element modeling (FEM) into a processor

grid by strip partitioning, a method that cuts G1 into narrow strips and preserves

locality. Sadayappan and Ercal[109] use the same technique to embed the FEM graphs

into hypercubes, since a hypercube contains a grid as a subgraph; they also give a

clustering algorithm for embedding arbitrary graphs into hypercubes. Fukunaga et

al.[48] use a force-directed-relaxation approach for the FEM problem.

4.4.9 Local Search Heuristics For Graph Embedding

The procedure that generates changes to the current solution defines the neighborhood.

Two neighborhoods commonly used in graph-embedding heuristics are SWAP and 1-

MOVE. In the definitions here, neither neighborhoods determines the order in which

steps are taken; they only require that an improving swap be made, not necessarily the

best improving swap.

Definition 19 The SWAP neighborhood SWAP(S0) of an embedding S0 is the set of

embeddings Si obtained by swapping the embedding of two vertices.

Definition 20 The 1-MOVE neighborhood 1-MOVE(S0) of an embedding S0 is the

set of embeddings Si obtained by changing the embedding of exactly one vertex.

A local search heuristic based on the 1-MOVE neighborhood operates similarly

to algorithms based on the SWAP neighborhood, except that a balance condition is

added so that the sets created become neither too large nor too small. In practice,

vertex moves in the 1-MOVE neighborhood can be simulated by vertex swaps in the

SWAP neighborhood. This is done by adding “solitary vertices”, vertices with no

edges attached to them, to the embedded graph. Moving a vertex v is then equivalent

to swapping v and a solitary vertex w. These solitary vertices can serve to balance

the graph embedding so that every node contains the same number of embedded ver-

tices. Classical local search heuristics for graph embedding are steepest descent, the

Kernighan-Lin heuristic, and simulated annealing.

Application of Local Search to Graph Embedding Bokari[14] gave a local

search heuristic to embed grid subgraphs obtained from finite-element modeling into a

processor grid augmented by communication links to diagonal processors that tries to

minimize the number of graph edges not mapped to network edges. The algorithm is

based on steepest descent with random perturbations; it exchanges the best of n × n

vertex pairs at every iteration and thus has a total running time of O(n3). The algo-

rithm, when tested on 20 graphs with 9 to 49 vertices mapped onto processor meshes

of size 4 × 4 to 7 × 7, produced solutions of good quality.

Bollinger and Midkiff[15] used simulated annealing to map trees into hypercubes

and hypercubes onto themselves. The size of the hypercubes ranges from 8 to 512

64 Chapter 4. Local Search Heuristics for VLSI Placement

nodes, and the authors report that SA performs very well and was able to find optimal

mappings for hypercubes of size 128 or less.

Chen and Stallmann[29] and Chen, Stallmann, and Gehringer[28] give a survey of

hypercube-embedding algorithms. Reports are given on experiments to embed into a

128-node hypercube various types of graphs, such as random graphs, geometrical ran-

dom graphs, trees, hypercubes and hypercubes with randomly selected missing edges.

Algorithms for which running times and performance are reported are SA, SA re-

stricted to moves along hypercube axis, Kernighan-Lin, steepest descent, and construc-

tive heuristics. The authors report that the restricted version of SA consistently found

the best solutions for all types of graphs, and was thus the most versatile heuristic. SA

and the more restricted version of SA were also the most time-consuming heuristics.

The time-versus-quality trade-off still favored restricted SA on random graphs, where

the heuristic performed at its best. On more regular graphs, a simple constructive

heuristic might be a better choice, at least as a preprocessing step to generate a good

initial solution that can then be further improved by a local search heuristic.

Parallel Local Search Since graph embedding requires considerable computational

resources, recent work has addressed parallel methods. Most of this work has focused

on parallel simulated annealing.

Parallel simulated annealing heuristics for VLSI placement have been proposed by

Casotto and Sangiovanni-Vincentelli[25] and Wong and Fiebrich[142] for the Connec-

tion Machine, by Darema et al.[38] for an IBM 3081 multiprocessor simulating virtual

processors, and by Banerjee et al.[6] for an Intel Hypercube. Experiments done by

these researchers indicate that that no large benefits in solution quality are derived

from perfect convergence algorithms, and that the gain-correcting procedures consume

vast amounts of time.

Parallel simulated annealing has been applied by Dahl[35] to reduce communication

costs on the hypercube. Costs are computed in the HCUBE metric and vertex swaps are

restricted to hypercube edges. For each vertex, the move-generation scheme chooses a

neighboring hypercube node at random. The change in the cost function is computed,

and the move is either accepted or rejected by the simulated annealing algorithm.

Since single-vertex moves cause unbalanced embeddings, a vertex move is executed

only when two neighboring nodes want to swap positions. This approach works well for

mappings of G1 = (V1, E1) into G2 = (V2, E2), where |V1| = |V2| log |V1|. The balancing

requirement serializes the algorithm for 1-to-1 mappings (|V1| = |V2|), and for many-

to-1 mappings (|V1| ≫ |V2|), for instance graph partitioning (|V2| = 2). A package

incorporating the parallel simulated-annealing algorithm for hypercube embedding has

been implemented on the Connection Machine 2.

4.5. Channel Routing with Column Conflicts 65

4.5 Channel Routing with Column Conflicts

In this section we discuss how local search can be used for the channel-routing problem.

As shown in Section 3.1, the left-edge channel-routing algorithm can be parallelized to

run in NC1(n), but it does not deal with column conflicts. It is therefore tempting

to design a parallel heuristic based on local search that minimizes column conflicts or

tries to remove them altogether. The approach studied here is due to Brouwer and

Banerjee[19], who have applied parallel simulated annealing to the channel-routing

problem and report that this approach yields routings of high quality.

In Section 5.3 we address the question of how much speedup can be expected in

the worst case from a parallel local search heuristic for channel routing. We show that

any local search heuristic that minimizes the number of column conflicts in a channel

routing by accepting cost-improving swaps of tracks or subtracks is P-hard. Thus it is

unlikely that a parallel algorithm exists that can find even a local minimum solution in

polylogarithmic time, because that would imply that every polynomial-time problem

would have a similar solution.

To cast the problem of minimizing the column conflicts of a channel routing as a

local search problem, we need to give a cost function and a method for making changes

to one channel-routing solution; this will generate the neighborhood structure.

Definition 21 Let the channel routing R be a mapping of nets to tracks. The cost

function COLUMNS(R) is defined as the number of overlapping vertical segments.

Ideally, we want a solution with COLUMNS cost of zero. However, such a solution

may be hard to find for a local search heuristic or may not exist at all. Let G be the

vertical constraint graph of a channel-routing problem. G has a vertex for every net

in the channel-routing problem. For two nets a and b, G has a directed edge (a, b) iff

net a has a terminal at a location on the upper side of the channel and net b has a

terminal at the same location x on the lower side of the channel. A path (a, . . . , c) in

G represents the fact that net a must be placed in a track above net c to avoid column

conflicts. Clearly, if G has a cycle, then no routing without column conflicts exists. If

G does not have a cycle but contains a path that is longer than d, then no routing of

density d without column conflicts exists.

A solution with low COLUMNS cost is still desirable, even though it is not routable

in two layers with one horizontal wire segment. The YACR2 channel router[102] and

the router by Brouwer and Banerjee [19] use a post-processing pass with dog-legging

and the insertion of extra tracks to remove remaining conflicts from a channel routing

with low COLUMNS cost.

4.5.1 The SUBTRACK-SWAP Neighborhood

Routing solutions are generated by swapping tracks: all nets mapped to a track i

change their mapping to track j, and the nets in track j change their mapping to track

66 Chapter 4. Local Search Heuristics for VLSI Placement

i. Additionally, it may also be possible to swap subtracks, which are a sequence of

adjacent nets in a track. A subtrack swap exchanges the track assignments of a subset

of the nets in a track pair. We require that a subtrack swap produce no overlap of

horizontal segments. A subtrack swap can involve all nets mapped to a track pair,

so the swap of two tracks is also a subtrack swap. A transition is the change of one

channel-routing solution into another by a subtrack swap.

Definition 22 The SUBTRACK-SWAP(R) neighborhood of a channel-routing solu-

tion R is the set of channel routings obtained by swapping one subtrack pair.

For a channel routing of n nets of density d, there are at least d! and at most n!

possible solutions. We show in the following Lemma 9 that the solution space induced

by the SUBTRACK-SWAP neighborhood is connected. This is important to satisfy

the necessary conditions given in Section 4.1.2 for the convergence of SA to an optimal

solution in time O(an), a > 1.

Lemma 9 A channel-routing solution A with n intervals can be transformed into any

other solution B by O(n) subtrack swaps.

Proof We present a constructive proof. We are given solution A with n intervals

(horizontal segments). We store with every interval Ii its track assignment TB(i) in

solution B, in addition to its current track assignment T (i). T (i) is initially equal

to TA(i), but will change during the course of transformation. Let PB be a set that

is a partial solution B; it will contain intervals where the current track assignment

T (i) = TB(i). Initially, let PB be empty. When PB contains all intervals, it is equal

to solution B.

We now scan the current channel-routing solution from left to right and iterate the

following operations:

1. For each track t, find the rightmost interval RIt in PB. If a track t in PB is

empty, let RIt be the interval −∞,−∞ + 1. If a track t in PB is equal to the

track t in B, let RIt be the interval ∞− 1,∞.

2. Let s be the track of the rightmost interval RIs with the smallest end point. Let

Ij be the interval immediately to the right of RIs.

3. If T (j) = TB(j), Ij is already in the track required by solution B. Ij is added to

PB.

4. If T (j) 6= TB(j), let Ik be the leftmost interval in track TB(j), and not in PB.

Swap Ij and all intervals in track T (j) to the right of Ij with Ik and all intervals

in track T (k) = TB(j) to the right of Ik. After the swap, we have T (j) = TB(j),

so Ij is added to PB. Update all T (i).

4.5. Channel Routing with Column Conflicts 67

Track 2

Track 1

Track 0

Interval Ij . T(j) = 2. TB(j) = 0

Interval Ik . T(k) = 0

PB

Subtrack Swap

Interval RI2

Figure 4.6: Transforming a channel-routing solution A into a solution B by subtrack
swaps. The set PB contains intervals in which the current track assignment T (i)
is equal to the desired track assignment TB(i) in solution B. Track 2 contains the
interval with the smallest end point RI2 and Ij is the interval immediately to the
right of RI2. Ik is the leftmost interval in track TB(j). Since Ij is not in its target
track (T (j) 6= TB(j)), the subtracks containing Ij and Ik are swapped. No horizontal
overlaps can occur.

In the example in Figure 4.6, track 2 contains the interval with the smallest end

point RI2 and Ij is the interval immediately to the right of RI2. Ik is the leftmost

interval in track TB(j) and not in PB. Since Ij is not in its target track (T (j) 6=
TB(j)), Ij and all intervals in track 2 to the right of Ij are swapped with Ik and all

intervals in track 0 to the right of Ik. After the swap, Ij is added to PB.

Note that the subtrack swap in Step 3, which is shown in Figure 4.6, produces no

horizontal overlaps. Ij will not overlap with any interval in track TB(j), since B is a

solution without overlaps. Ik will not overlap with any interval in track T (j) = s in

PB, since by construction the rightmost interval in PB in track s has a smaller end

point than the rightmost interval in PB in any other track, and in particular in track

TB(j).

Intervals that are in PB are not swapped again. Since each iteration places one

more interval in PB, PB contains all n intervals after O(n) swaps and is equal to

solution B. 2

Application of Local Search to Channel Routing In the parallel simulated-

annealing heuristic for channel routing by Brouwer and Banerjee[19], an initial dense

solution is constructed. The heuristic uses the SUBTRACK-SWAP Neighborhood and

the COLUMNS cost function defined above and executes the swaps in parallel. We will

see that the reason that any local search heuristic using the COLUMNS cost function

and the SUBTRACK-SWAP neighborhood is hard to parallelize is that the gain of two

or more swaps cannot be computed independently of each other.

68 Chapter 4. Local Search Heuristics for VLSI Placement

The heuristic by Brouwer and Banerjee is designed for the Intel iPSC/2, a MIMD

machine with up to 16 processors arranged as a hypercube. The machine is programmed

by an asynchronous message-passing model. The implementation of the heuristic is

restricted by the architecture of the machine. The startup time and latency of the

message-passing mechanism are considerable, the number of processors (at most 16) is

small, and there is no support for the simulation of virtual parallel processors. These

restrictions favor applications with coarse-grained parallelism.

The initial solution is constructed by a serial left-edge algorithm, since any parallel

implementation of the left-edge algorithm probably requires so much nearest-neighbor

communication as to swamp the Intel iPSC/2. The neighborhood defined by Brouwer

and Banerjee explicitly distinguishes between track swaps, subtrack swaps and moves

to empty subtracks. This distinction is unnecessary, however, both in theory and in

practical implementations, since the definition of subtrack swap does not specify how

many nets have to be swapped, as long as no horizontal overlap is produced.

Swaps were restricted to randomly chosen hypercube axes. This restricted neigh-

borhood yields an excellent trade-off between computational resources allocated to

exploring a neighborhood and SA’s convergence behavior; it has also been used in a

serial SA algorithm for graph embedding on the hypercube by Chen and Stallmann[29]

and Chen, Stallmann, and Gehringer[28], and for graph embedding on the grid and

hypercube with our parallel Mob heuristic[119,125].

The Brouwer and Banerjee heuristic does not exploit other available parallelism

in the problem, since the architecture is not well suited for small-grained parallelism.

Channel density, horizontal net overlaps and vertical column overlaps can all be com-

puted very quickly in time O(log n) when each terminal is assigned a processor on a

parallel machine with reasonable interprocessor communication.

69

Chapter 5

The Parallel Complexity of Local

Search

In this chapter we investigate how much speedup can be expected from various parallel

local search heuristics in the worst case. We demonstrate in Section 5.1 that a number

of local search heuristics are P-complete or P-hard. We show that Kernighan-Lin (KL)

is P-complete under logspace reductions on graphs with unit-weight edges. A random-

ized local search algorithm, the zero-temperature version of simulated annealing (SA),

is shown to be P-hard under logspace reductions. The proofs consist of reductions to

the circuit-value problem (CVP). The result that local search under the SWAP neigh-

borhood for graph partitioning is P-complete was shown independently by Yannakakis

and Schäffer[126]. We demonstrate in Section 5.2 that graph-embedding heuristics for

embedding graphs into the two-dimensional grid and the hypercube are P-hard; this

is done by a reduction to graph partitioning. In Section 5.3 we show that any local

search heuristic that minimizes the number of column conflicts in a channel routing by

accepting cost-improving swaps of tracks or subtracks is P-hard. The proof consists of

a reduction to the circuit-value problem.

5.1 P-hard Graph-Partitioning Heuristics

5.1.1 P-Completeness of the KL Heuristic

In this section we demonstrate that KL is P-complete for graphs with unit-weight edges,

the case of interest in many practical applications. Our proof consists of a logspace

procedure to translate a given fan-in/fan-out 2, dual-rail monotone circuit DR(C) into

a graph G. When we apply the KL heuristic to G, it returns the best partition P1 in

the neighborhood KL-N(P0) of the given initial partition P0 that uniquely determines

the value of DR(C). The actual value of the circuit DR(C) can then be determined

from P1 in logarithmic space. Thus the KL language is P-complete. If the partition P1

can be computed by a deterministic circuit of polynomial width and polylogarithmic

70 Chapter 5. The Parallel Complexity of Local Search

AND OR

1

K

2

K

1

K

2

K

1

K

2

K

1

K

2

KK

1

K

3

A

B

C

O

Figure 5.1: Subgraphs equivalent to AND and OR gates.

depth, so can the value of any circuit DR(C). This would imply that P ⊆ NC.

Theorem 6 The Kernighan-Lin local search algorithm for graph bisection is P-complete.

Proof We reduce the dual-rail monotone circuit-value problem (DRMCVP) intro-

duced in Section 2.1.2 to KL by constructing graphs so that the early steps in the local

search by KL mimic the computation by a monotone circuit when all inputs initially

have value 0 and then some inputs are assigned value 1. We are given a fan-in/fan-out

2, dual-rail monotone circuit DR(C). AND and OR gates are represented by subgraphs,

as shown in Figure 5.1. A gate subgraph has two input arms, with three vertices la-

beled A, B, and C and a central vertex labeled O. Note that edges with missing vertices

are connected to other gate subgraphs or input cliques. A composite graph is created

from a circuit by interconnecting such gate subgraphs, as shown in Figure 5.2. Extra

subgraphs are added to direct the action of KL, as shown in Figure 5.3.

The vertices are partitioned into two sets, X and Y , that correspond to circuit

values of 0 and 1, as suggested in Figure 5.3; the initial sets are X0 and Y0. KL then

searches its neighborhood swapping vertices. This search process moves some gate

subgraphs from X to Y , thereby indicating that a value 1 has propagated to their

outputs. Gate subgraphs are moved in an order consistent with the propagation of

input values to outputs in a circuit when all inputs are initially zero and some are

subsequently given the value 1. We now describe this construction in more detail.

We attach pull-up cliques of size K (K = 10) to certain gate vertices and put these

cliques in the set Y . A weight w on an edge attached to a K-clique is a shorthand for

w unit-weight edges each attached to different K-cliques. K is chosen so large that KL

5.1. P-hard Graph-Partitioning Heuristics 71

A=1

C=0

D=1

B=0

AND

1

K

2

K

1

K

2

K K

1

OR

1

K

2

K

1

K

2

K K

3

OR

1

K

2

K

1

K

2

K K

3

K

K

K

K

Figure 5.2: A monotone circuit and its equivalent subgraph.

swaps clique vertices only after all gate vertices have been swapped. We attach zero,

one or two vertices by a unit-weight edge to each output vertex of a gate subgraph so

that each gate has outdegree two.

Since DR(C) is a monotone dual-rail circuit, it contains an equal number of AND

and OR gates and exactly half of the circuit and gate inputs and gate outputs have value

1 when a computation is complete. Inputs, gates and outputs appear in complementary

pairs in DR(C). We let |C| be the number of paired gates in DR(C) and I be the number

of paired circuit inputs. Let L (L = 14) be the number of vertices internal to a gate pair,

i.e. not in attached cliques, and let D (D = 16) be the number of K-cliques attached

to the internal vertices of a pair of AND and OR gates in the graph of DR(C). Let F

be the number of paired vertices attached to outputs of gates in DR(C) so that the

outdegree of a gate is always two.

In Figure 5.3 we show the initial partition for KL. All vertices of the graph associated

with DR(C) except for the K-cliques are placed initially in X0 . All of the attached K-

cliques except those connected to inputs of DR(C) are placed in Y0. Those connected

to inputs that are assigned value 1 are placed in Y0 and the rest are placed in X0.

The graph G also contains iY isolated vertices, cX isolated K-cliques, and tY tree-like

subgraphs. Each tree-like subgraph (see Figure 5.4) consists of one vertex connected

to eight K-cliques. Initially the iY isolated vertices, the tY tree-like subgraphs, and

the cX balancing K-cliques are placed in Y0, as shown in Figure 5.3. Here diamonds

represent cliques, triangles represent the tree-like subgraphs, solid circles represent

isolated vertices and the trapezoid represents the graph associated with the dual-rail

monotone circuit DR(C). Edges between these elements are not shown. The role of the

various subgraphs will be described in more detail as we explain the action of KL.

72 Chapter 5. The Parallel Complexity of Local Search

X0 0

0
Y 1

Dual−Rail Circuit

(D |C| + I) K−Cliques

(c + I) K−Cliques

I Isolated VerticesT Tree−like Subgraphs

 x

yy

Figure 5.3: Schematic representation of G.

K K

1 1

(b)

8

Figure 5.4: Tree-like balancing subgraphs.

We choose the following values for iY , tY , and cX so as to yield equal numbers of

vertices in each half of the partition:

iY = (L|C| + F)/2

tY = (L|C| + F)/2

cX = D|C| + 8tY

The execution of KL on the graph G proceeds through three stages. Stage 0 cor-

responds to the initial partition. During Stage 1 subgraphs corresponding to gates in

DR(C) are moved to Y if the gates of DR(C) assume value 1 on the given pattern of

inputs. Isolated vertices from Y move to X to maintain a balance between the two sets.

During Stage 2 all remaining vertices in the graph corresponding to DR(C) move to Y

as the roots of tree subgraphs move in parallel. Finally, during Stage 3 all remaining

vertices move to the other side. We show that the bisection width is locally minimal

at the end of Stage 1.

5.1. P-hard Graph-Partitioning Heuristics 73

Stage 0 We compute bw0(G), the initial bisection width of G, by using the fact that

DR(C) is a dual-rail circuit. Ignoring K-cliques attached to inputs, each gate and its

dual are connected to D K-cliques by unit-weight edges. Each of these edges contributes

one to the initial bisection width bw0(G). I edges connected to K-cliques representing

inputs of value 1 in DR(C) also contribute to bw0(G) and no other edges cross the

partition. Consequently,

bw0(G) = D|C| + I

Stage 1 As described in Section 4.3.3, KL swaps and freezes the pair of vertices on

opposite sides of the partition that causes the largest reduction (or smallest increase) in

the width of the bisection. The only vertices in X whose swapping can initially reduce

the width of the bisection are those connected to inputs whose value is 1. Moving one of

these by exchanging it with one of the iY isolated vertices in Y decreases the bisection

width by one. This may change the conditions at an adjacent vertex so that swapping

this vertex causes yet another reduction in the bisection width. Vertex swapping with

isolated vertices continues until all gates that should eventually have value 1 do have

value 1. Since DR(C) is a dual-rail circuit, at this time exactly half of the non-clique

vertices in DR(C) have been swapped with iY isolated vertices from Y . At this point

no more isolated vertices are available; any further swapping of a vertex in DR(C)∩X

causes the bisection width to increase.

At the end of Stage 1 the value of the circuit can be computed from the partition

P by determining on which side of the partition the output vertex falls. We show

later that the OR and AND gate subgraphs have been designed correctly, i.e. that gate

subgraphs mimic the operation of gates and compute the correct circuit value of every

gate.

Let us look now at the the bisection width bw1(G) of the graph at the end of Stage 1.

Consider an OR gate in DR(C) and its dual AND gate. When both inputs to the OR

gate are 0, the contribution of the gate to the bisection width is 9 while nothing is

contributed by its dual AND gate. When the inputs to both gates are 0 and 1, their

combined contribution to the bisection width is 9. When the two inputs to the OR

gate are 1, all vertices in the equivalent subgraph have moved to Y and there is no

contribution to the bisection width. The dual AND gate has both inputs 0 and the

contribution to the bisection width is 7. It follows that

bw1(G) = 9|C| − 2nOR
1,1

where nOR
1,1 is the number of OR gates in DR(C) that have both inputs 1.

Stage 2 The next gates in X to be moved are also from DR(C). To see this, observe

that no vertex in DR(C) has degree more than 7; one vertex cannot cause an increase

of more than 7 in the bisection width. All other vertices in X are in the K-cliques,

with K = 10, and would cause an increase of at least 9 in the bisection width. Each

74 Chapter 5. The Parallel Complexity of Local Search

vertex in DR(C) is swapped with a vertex of degree 8 in a tree-like subgraph because

this pair causes the smallest increase in the bisection width. Consequently, each swap

of a remaining vertex with one from Y causes an increase in the bisection width of at

least 1. The bisection width bw2, after all vertices have been moved, satisfies

bw2(G) = 8tY + I

since tY tree vertices of degree 8 have changed sides, I input edges in DR(C) are

connected to K-cliques in X and no other edges cross the cut.

Stage 3 The only vertices available for moving at Stage 3 are the K-cliques. A clique

is attached to at most one vertex in the rest of the graph. As a clique moves, the

bisection width first increases and then decreases, but the clique contributes positively

to the bisection width until it has changed sides completely. Thus, we can guarantee

that the bisection width during these moves never falls below bw0.

To summarize, the steps taken by KL cause the bisection width to decrease uni-

formly from bw0 to bw1, then to increase uniformly to bw2, with bw2 > bw0, and then

to decrease back to bw0. We conclude that the best partition in the KL-neighborhood

corresponds exactly to the point at which the value of DR(C) has been computed.

The gate values of DR(C) can be computed in logspace from this partition by looping

through all vertices of G, checking whether they are output vertices, and using the side

of the partition as gate value.

Operation of Gate Subgraphs We now verify the correct operation of the gate

subgraphs during Stage 1 of the KL algorithm, and demonstrate that gate subgraphs

mimic gate operations.

In the KL heuristic, vertices are frozen once they have moved. Therefore, once

the input arm vertices A, B, and C and the central vertex O have moved to X, they

are unavailable for further swaps. As we have seen, the locally minimal bisection is

assumed at the end of Stage 1. During Stage 1, we need consider only swaps of gate

vertices in X with isolated vertices in Y , and only swaps that improve the partition

are accepted. The various attached pull-up cliques do not move during Stage 1.

The gate state of a gate subgraph is the current assignment of its vertices to either

X or Y . Once the local search algorithm starts operating on the initial partition, it

changes vertex assignments by moving vertices between sets X and Y , thus causing

transitions from one gate state to another. Special gate states are the initial states,

where vertices are on the X side of the partition (with the exception of the pull-up

cliques) and the minimal states reached at the end of Stage 1, in which no more positive

gain (bisection-width improving) moves can be executed by the local search algorithm.

We show that a sequence of transitions starting from the initial state of a gate

subgraph eventually leads to a minimal state. To do this we examine all possible states

and all possible state transitions during the course of the local search algorithm.

5.1. P-hard Graph-Partitioning Heuristics 75

A

B

CI O

A

B

CI O

A

B

CI O

A

B

CI O

A

B

CI O

A

B

CI O

A

B

CI O

A

B

CI O

A

B

CI O

A

B

CI O

A CI O

B

O

C1

C2

O

C1

C2

O

C1

C2

O

C1

C2

O

C1

C2

O

C1

C2

A1

A2

A1

A2

A1

A2

A1

A2

A1

A2

A1

A2

1

1

1

1

1

1

3

3

1

(1) (2) (3)

Input Arm AND Gate

O

C1

C2

O

C1

C2

O

C1

C2

O

C1

C2

O

C1

C2

O

C1

C2

A1

A2

A1

A2

A1

A2

A1

A2

A1

A2

A1

A2

O

C1

C2

O

C1

C2

O

C1

C2

A1

A2

A1

A2

A1

A2

1

3

(4) (5)

OR gate

Figure 5.5: Operation of AND and OR gate subgraphs.

76 Chapter 5. The Parallel Complexity of Local Search

For simplicity, the AND and OR gate subgraphs are decomposed. As mentioned

above, every gate has two input arms, with three vertices A, B, and C (Columns 1

and 2 in Figure 5.5.) The gate also has a central vertex labeled O (Columns 3, 4, and

5 in Figure 5.5.) Vertex C1 (C2) is the vertex C of the attached first (second) input

arm, and vertex A1 (A2) is the vertex A of the attached first (second) output arm, or

a single vertex, if the gate has less than two outputs. Depending on whether this gate

is an AND or an OR gate, either one or three edges attach the central vertex to its

pull-up cliques.

Column 1 of Figure 5.5 shows the operation of the input arm when the central

vertex is still in X, and an input I moves to Y : first vertex A, then B, and then C

move to Y , all with a gain of 1. Column 2 of Figure 5.5 handles the special case where

the input arm is connected to the central vertex O of an OR gate, whose other input

and central vertex have already moved to Y . The vertex C of the input arm stays in X

unless vertex A moves from X to Y , because all possible moves have negative gain. As

a consequence, gate subgraphs mimic the operation of gates in that a change in output

does not cause the change of an input. In Column 2 of Figure 5.5, Vertex C in the 4th

state and vertex B in the 5th state move with gain 3 to the 6th state in Column 1; all

other vertices move with gain 1. Column 3 of Figure 5.5 shows the states of the central

vertex of an AND gate. Note that only one pull-up clique is attached to it. Vertex O

moves to Y with gain 1 only when both vertices C1 and C2 have moved to Y . Note

that the isolating effect of vertex C in the input arm now assures that the vertices A1

and A2 never move before the central vertex 0 moves. Columns 4 and 5 of Figure 5.5

show the states of the central vertex of an OR gate. Vertex O moves to Y with gain 1

when either C1 or C2 have moved to Y , and moves to Y with gain 3 when both vertices

C1 and C2 have previously moved to Y .

All states but the minimal ones allow moves with positive gain. Consequently

improving swaps are executed until a minimal state is reached, and thus our gate

subgraphs operate correctly during Stage 1 of the KL local search algorithm. 2

In the Fiduccia-Mattheyses (FM) local search algorithm for graph bisection de-

scribed in Section 4.3.3, the move set is altered to let single vertices be moved to the

other side of the partition and then frozen. Note that the above reduction, and in

particular the operation of the gate subgraphs shown in Figure 5.5, remains correct in

the FM-N neighborhood. The FM balance condition, that the smaller of two sets in

a partition must have a size that is an approximate fraction r of the total number of

vertices, does not influence the operation of the gate subgraphs. Let |V | be the number

of vertices in G. We add |V |2 K-cliques on each side of the partition. It can be shown

that this construction satisfies any balance condition r.

Theorem 7 The Fiduccia-Mattheyses local search algorithm for graph bisection is P-

complete.

5.1. P-hard Graph-Partitioning Heuristics 77

5.1.2 P-Hardness of the SA Heuristic

ZT-SA, the “zero-temperature” version of graph partitioning by SA, defined in Sec-

tion 4.1.2, is a type of probabilistic steepest-descent algorithm. We first show that

ZT-SA is in the class BPP (see Section 2.1.1), so the error probability in finding a local

minimum can be made arbitrarily small. We then show that any heuristic that accepts

only swaps with positive gain is P-hard; it can solve the circuit-value problem and is

unlikely to be in NC. Instances of such heuristics are ZT-SA, deterministic swap, and

also the Mob heuristic (with mob size 1) which we introduce in Section 6.1.

Theorem 8 The ZT-SA heuristic is in BPP.

Proof In the proof of Theorem 6 in Section 5.1.1 a boolean circuit C with n gates

was transformed into a graph G with |V | = O(n) vertices and |E| = O(n) edges. The

initial bisection width of G is therefore at most |E|. Let PE be the probability that

ZT-SA does not reach a local minimum after execution of a polynomial number q(n)

of steps. We have to show that PE ≤ 1/2− ǫ, i.e. that the error probability is bounded

away from 1/2 by a constant.

ZT-SA must execute |E| moves that improve the bisection width. Divide the q(n)

time steps of the procedure into |E| intervals of m(n) = q(n)/|E| of time steps each.

If the procedure fails to find the local minimum in time q(n), then by the pigeon hole

principle at least one of these intervals does not contain a swap that improves the

bisection width. Thus, the probability PE of an unsuccessful execution is bounded

above by the probability that a pair of vertices is not swapped in one or more of these

|E| intervals.

Since at each step until the local minimum is reached there is at least one vertex

in each half of the partition which can be selected and swapped, it follows that the

conditional probability of failing to make a successful swap on any given time step,

conditioned on all prior actions, is at most 1− 4/|V |2, since there are [|V |/2]2 possible

pairs to swap. The probability of failing to find a successful swap in a set of m(n)

contiguous time steps is thus at most (1 − 4/|V |2)m(n). The probability of this event

happening in one or more of the E intervals is an upper bound to PE and satisfies the

inequality

PE ≤ |E|(1 − 4/|V |2)m(n) ≤ |E|e−4m(n)/|V |2

Thus, if we choose q(n) for some constant ǫ so that

q(n) ≥ |E|
4

|V |2[(− ln(1/2 − ǫ)) + ln |E|]

then we have PE ≤ 1/2 − ǫ. Since both |V | and |E| in our constructed graph G are

proportional to n, it follows that q(n) need grow only slightly faster than n3. ZT-SA

computes with bounded error probability the correct circuit value for C. 2

78 Chapter 5. The Parallel Complexity of Local Search

Theorem 9 Let H be a graph-partitioning algorithm operating on the SWAP neigh-

borhood. If H accepts only vertex swaps that improve the bisection width whenever such

a swap is available, then H is P-hard.

Proof The SWAP neighborhood for graph partitioning was defined in Section 4.3.2.

We reduce DRMCVP to H by constructing graphs so that the steps in the local search

mimic the computation by a monotone circuit when all inputs initially have value 0

and then some inputs are assigned value 1. We are given a fan-in/fan-out 2, dual-rail

monotone circuit DR(C). The construction of the graph G and its initial partition is

exactly the same as in the KL reduction, and is in logspace and deterministic.

As in the KL reduction, we must show that a sequence of transitions starting from

the initial state of a gate subgraph eventually leads to a minimal state. Correct values

for all gates in DR(C) correspond to a local minimum that H reaches and cannot leave.

The main difference from the KL reduction is that vertices are not frozen; they can

move back and forth across the partition boundary. A vertex swap consists of a vertex

move from X to Y and a vertex move from Y to X.

We know that H accepts only positive-gain (bisection-width-improving) swaps, but

the exact rule for selecting vertices to swap is left unspecified. We show by induc-

tion that the gate subgraphs continue to operate correctly as they move. By correct

operation we mean:

(a) At all instants of time the gate states are identical to those of the KL algorithm

shown in Figure 5.5 in Section 5.1.1.

(b) Vertex moves from X to Y have gain 0, 1 or 3.

(c) Vertex moves from Y to X have gain 0 or −1.

(d) Only positive gain-swaps are accepted by H.

Initially assumptions (a) to (d) hold. We again examine in Figure 5.5 all possible

states and all possible state transitions that can occur during the execution of the local

search algorithm. Vertices belonging to the cliques and tree-like subgraphs cannot move

because they cause large negative gains, and there are no vertices to be moved with

even larger positive gains so as to cause a vertex swap to be accepted. Vertex moves

with gain 0 are due to solitary vertices and do not influence the gate subgraphs. The

gate states and transitions of a move of a vertex in DR(C) from X to Y with gain 1

or 3 are those assumed by the KL algorithm and shown in Figure 5.5. Once in one of

these states, the only vertex moves from Y to X have gain −1 and are the inverse of

moves with gain 1.

We find that no gate states and transitions than those shown in Figure 5.5 are

possible. Therefore our assumptions that gate states are identical to the gate states of

the KL algorithm, that vertex moves from X to Y have gain 0, 1 or 3, and that vertex

5.2. P-hard Graph-Embedding Heuristics 79

moves from Y to X have gain 0 or −1 continue to hold. All states but the minimal

states allow moves with positive gain, and consequently improving swaps are executed

until a minimal state is reached. Thus our gate subgraphs operate correctly until the

H algorithm reaches a local minimum. 2

Note that we have implicitly assumed in the above proof that the gain of a vertex

swap is the sum of of the vertex move gains. If the vertex moving from X to Y and

the vertex moving from Y to X are connected by an edge, the gain of the swap is the

sum of the gains minus 2. This cannot cause the acceptance of a swap that violates the

assumption of correct gate-subgraph operation. Thus the difference in how the gain of

a swap is computed has no effect on the correct operation of the subgraphs.

Let us now apply Theorem 9 to a number of heuristics operating on the SWAP

neighborhood. These heuristics can be distinguished by the rule that selects swaps. As

long as the heuristic accepts only swaps with positive gain, it is P-hard. In ZT-SA the

vertices to be selected are chosen at random. Theorem 9 also applies to heuristics in P,

where a deterministic rule, like lexicographic-first, guides the selection of swaps, and

to the Mob heuristic given in Section 6.1, when the mob size is fixed at 1 throughout

an execution of Mob.

Theorem 10 ZT-SA is P-hard. Deterministic swap is P-complete. Mob with mob

size fixed at 1 is P-hard.

The results that local search heuristics under the SWAP and FM neighborhoods

are P-complete were obtained independently by Schäffer and Yannakakis [126].

5.2 P-hard Graph-Embedding Heuristics

We now demonstrate that traditional graph-embedding heuristics for embedding graphs

into the two-dimensional grid and the hypercube are P-hard. This is done by reducing

them to P-hard problems for graph partitioning under the SWAP neighborhood and

the CROSS cost function.

The proof of Theorem 9 in Section 5.1.2 holds for any heuristic H that accepts

only vertex swaps with positive gain. H can be a deterministic heuristic such as steep-

est descent, which selects the vertex pair with the highest positive gain for swapping,

and stops if no more positive-gain swaps are possible. To make steepest descent com-

pletely deterministic, a rule is needed to arbitrate among swaps with the same gain.

Theorem 9 in Section 5.1.2 also holds for randomized heuristics H such as random-

ized steepest descent and zero-temperature simulated annealing (ZT-SA). Randomized

steepest descent has a randomized rule to select the vertex swap of highest positive

gain among swaps of equal gain. Thus the heuristic has to run on a randomized Turing

machine RT, but the probability that RT accepts or rejects its input string in poly-

nomial time is always 1. In SA the mechanism that generates swaps is randomized.

ZT-SA, the zero-temperature version of SA, accepts only swaps of positive gain. We

80 Chapter 5. The Parallel Complexity of Local Search

have shown in Section 5.1.2 that ZT-SA is in BPP so, while it is not a polynomial-time

heuristic, the probability that the RT running ZT-SA accepts or rejects its input string

in polynomial time can be made arbitrarily small.

The following lemma is very useful in the proofs below since it connects the results

showing that graph partitioning under the SWAP neighborhood is P-hard and the local

search algorithms discussed in this section.

Lemma 10 REDUCTION LEMMA. Let H be a local search algorithm for graph em-

bedding that uses the SWAP neighborhood. H is P-hard if every swap accepted by H cor-

responds to a positive-gain swap in the local search algorithm for the graph-partitioning

problem based on the SWAP neighborhood.

The proof of this lemma follows immediately from Theorem 9 in Section 5.1.2.

There are certain graph-embedding problems whose solution can be computed in NC.

For example, an n-vertex graph can be partitioned into n/2 sets under the CROSS

cost function in NC, since this corresponds to computing a maximum matching, which

has been shown to be no harder than matrix inversion by Mulmuley et al.[94]. Un-

fortunately, known randomized and deterministic algorithms for maximum matching

use matrix inversion as a subroutine, which makes these algorithms impractical for

large graphs. The local search heuristics are interesting possible alternatives for these

problems.

5.2.1 Grid Embeddings

We now consider a family of local search algorithms for the two-dimensional grid in

which the PERIMETER cost function is used. The PERIMETER cost function is an

approximation to wiring cost and is widely used in practice. It should be noted that

this cost function does not measure wire congestion in the spaces between objects but

that reduction of wire lengths reduces congestion as a secondary effect.

Theorem 11 Let H be a local search algorithm for grid embedding using the PERIME-

TER cost function and the SWAP neighborhood. Let the grid embedding be constrained

to allow only one graph vertex per network node: S : V 7→ {0..k − 1} × {0..l − 1} with

S(i) 6= S(j) when i 6= j. If H accepts only vertex swaps that improve the cost, then H

is P-hard.

Proof We give a construction to convert the graph G = (V1, E1) used in the proof

of Theorem 9 in Section 5.1.2 into the graph G′ used here. Let (X0, Y0) be the initial

partition of G. Every vertex in G has degree at most K = 9. The construction can be

done in logspace and gives an initial embedding of G′ in the grid, as shown in Figure 5.6,

in which every positive-gain swap accepted by H corresponds to a positive-gain swap in

the associated graph-partitioning problem. Thus, by the reduction lemma, H is P-hard.

5.2. P-hard Graph-Embedding Heuristics 81

DxD Cliques

Vertices of G Solitary Vertices

Vertices of GSolitary Vertices

DxD CliquesEdges of G

Expander Edges

Expander Edges

L0 L1

Figure 5.6: Reduction from graph partitioning to grid embedding: the graph G from
the proof of Theorem 9 in Section 5.1.2 is placed on the grid so that positive-gain swaps
on the grid correspond to positive-gain swaps in the graph-partitioning problem.

82 Chapter 5. The Parallel Complexity of Local Search

The construction consists of a grid with two vertical lines L0, L1 with unit horizontal

separation. L0 represents a logical value 0 and L1 represents a logical value 1. The

vertices of G are placed along L0 and L1. The vertices in the set X0 of G are placed

on L0 as shown in Figure 5.6 and above them is an equal number of solitary vertices.

The vertices in Y0 are placed on L1 above an equal number of solitary vertices. The

vertices on the vertical lines L0 and L1 are spaced D (D = K + 1) vertical grid points

apart, to leave enough room for the rest of the construction. (We show later that the

only swaps accepted by H are those between a vertex of G and the opposing solitary

vertex.)

To limit the movement of a vertex v in G, we place L (L = 2K + 2) D ×D anchor

cliques to the left and another L anchor cliques to the right of the two vertical lines,

and we connect the closest vertex of every clique to v with an expander edge, of which

there are 2L. The solitary vertices are not anchored and thus can move freely. We show

that the expander edges and cliques constrain v to move along the x-axis between the

two vertical lines.

The above construction can be done in logspace, and leaves us with a graph G′

embedded on the grid. In the following, we shall compute the change in the cost

function, or gain, caused by a vertex swap:

gain = cost(old) − cost(new)

The PERIMETER cost function allows us to decompose costs and gains into x and y

components:

gain = gainx + gainy

We now must show that all cost-improving swaps executed on G′ correspond to cost-

improving swaps in the associated graph-partitioning problem.

We first examine swaps involving anchor-clique vertices and show that such swaps

have negative gain. All other possible swaps involve vertices of G. We examine what

we call regular swaps, where a vertex v is exchanged with the opposing solitary vertex.

We then examine irregular swaps, where v moves to some other grid location. Our

induction hypothesis is that regular swaps have only positive gain when they can be

interpreted as positive-gain graph-partitioning swaps, and irregular swaps have only

negative gain.

Swaps with Anchor-clique Vertices Vertex swaps inside D × D anchor cliques

have gain 0 and are not accepted. A swap involving a vertex in a D × D clique and

an outside vertex have negative gain. A clique vertex has degree at least D ×D − 1 =

(K + 1)2 − 1, whereas all other vertices have degree at most K + 2L = 5K + 4, and

at most one edge in common with a clique vertex. Consequently, the swaps of two

vertices from different cliques or of a clique vertex with a non-clique vertex both have

large negative gain.

5.2. P-hard Graph-Embedding Heuristics 83

vi vi vi’

L1
L0L1

L0

Figure 5.7: (a) Vertex vi in its initial position, before swap. (b) Regular positive-gain
swap of vi with a solitary vertex.

Regular Swaps In Figure 5.7, vertex vi at (xi, yi) is swapped with a solitary vertex

v′i on line L0 to (xi + 1, yi). A symmetrical argument holds when vertex vi at (xi, yi)

is swapped with a solitary vertex v′i on line L1 to (xi − 1, yi).

The movement of the solitary vertex has no effect on the cost function. Since the

vertex vi only moves along the x-dimension, we have

gainy = 0

Let d(vi) be the number of graph vertices to which vi is attached. By induction,

these vertices are placed on the two vertical lines. Let d0(vi) be the number of attached

vertices in set L0 and let d1(vi) be the number of attached vertices in set L1. The gain

of a regular vertex swap is

gain = d1(vi) − d0(vi)

Assume a positive-gain swap in the associated graph-partitioning problem. We have

d1(vi) > d0(vi), so gain > 0 and the swap is accepted. Assume a negative-gain swap in

the associated graph-partitioning problem. We have d1(vi) < d0(vi), so gain < 0 and

the swap is not accepted.

Irregular Swaps The grid-embedding heuristic may of course consider a swap of vi

to an undesired location. Figure 5.8 shows how vi moves to a irregular position. We

now demonstrate that such a swap can only have negative gain.

84 Chapter 5. The Parallel Complexity of Local Search

vi vi vi’

vi’

L1L0
L1L0

Figure 5.8: (a) Irregular swap, ∆y 6= 0. (b) Irregular swap, ∆y = 0,∆x > 1.

Case (a) The vertex vi moves from (xi, yi) on line L0 to (xi + ∆x, yi + ∆y) and we

assume ∆y ≥ 1, as shown in Figure 5.8(a). A symmetrical argument holds when vertex

vi moves from (xi, yi) on line L1 to (xi + ∆x, yi + ∆y), ∆y ≤ −1. We have

gain = gainx + gainy

We compute the gain along the x-dimension. Vertex vi is attached to d(vi) vertices.

By induction, the vertices of G are on the two vertical lines. Therefore, for each edge

the initial edge length in the x-dimension is either 0 or 1:

gainx = costx(old) − costx(new)

≤ costx(old)

=
∑

j=1..d(vi)

|xj − xi|

≤ d(vi)

The gain along the y-dimension depends on both the attached vertices in G and on

the L expander edges attached to their cliques. Thus,

gainy = costy(old) − costy(new)

=
∑

j=1..d(vi)

|yj − yi| − [L∆y +
∑

j=1..d(vi)

|yj − (yi + ∆y)|]

=
∑

j=1..d(vi)

|yj − yi| − L∆y −
∑

j=1..d(vi)

|yj − yi − ∆y|)

5.2. P-hard Graph-Embedding Heuristics 85

Since we have |a| − |b| ≤ |a − b|,

gainy ≤
∑

j=1..d(vi)

|yj − yi| − L|∆y| −
∑

j=1..d(vi)

|yj − yi| −
∑

j=1..d(vi)

−|∆y|

= −L|∆y| + d(vi)|∆y|
= (d(vi) − L)|∆y|

We assumed above that |∆y| ≥ 1. In the following, let K = maxvi∈G d(vi) be the

maximum degree of G. We shall set the parameter L so that L = 2K + 2 ≥ 2d(vi) + 2:

gain ≤ d(vi) + (d(vi) − L)|∆y|
≤ (d(vi) + d(vi) − L)|∆y|
< 0

Case (b) Vertex vi moves from (xi, yi) on line L0 to (xi + ∆x, yi), ∆x > 1, as shown

in Figure 5.8(b). A symmetrical argument holds for vertex moves from (xi, yi) on line

L1 to (xi − ∆x, yi), ∆x > 1.

As the vertex vi moves only along the x-dimension, we have gainy = 0. By induc-

tion, all vertices in G attached to vi are placed on the two vertical lines. Thus, before

vi moves, the length of all edges attached to vi in the x-dimension is either 0 or 1.

After vi moves to (xi + ∆x, yi), ∆x > 1, every edge that attaches vi to other vertices

in G has length of at least 1. Since every edge length remains the same or is stretched

along the x-dimension, this vertex move can only increase the cost. This move is not

accepted by H, as it does not have positive gain.

Case (c) Vertex vi moves from (xi, yi) on line L0 to (xi − ∆x, yi), ∆x > 0. A

symmetrical argument holds for vertex moves from (xi, yi) on line L1 to (xi + ∆x, yi),

∆x > 0.

As the vertex vi moves only along the x-dimension, we have gainy = 0. This vertex

move can only increase the cost, since every edge is stretched along the x-dimension.

This move is not accepted by H, as it has negative gain.

To summarize, the conditions of the reduction lemma hold for a regular swap. Other

swaps cannot be accepted by H since they have negative gain. No swaps are accepted

that violate our inductive assumption that the vertices of G are placed on the two

vertical lines. 2

5.2.2 Hypercube Embeddings

Theorem 12 Let H be a local search algorithm for hypercube embedding using the

HCUBE cost function and the SWAP neighborhood. Let the hypercube embedding be

constrained to allow only one graph vertex per network node: S : V 7→ {0..2k − 1} with

86 Chapter 5. The Parallel Complexity of Local Search

S(i) 6= S(j), i 6= j. If H accepts only vertex swaps that improve the cost, then H is

P-hard.

Proof We give a construction to convert the graph G = (V1, E1) used in the proof

of Theorem 9 in Section 5.1.2 into the graph G′ used here. Let (X0, Y0) be the initial

partition of G. Every vertex in G has degree at most K = 9. The construction can be

done in logspace and gives an initial embedding of G′ in the hypercube in which every

positive-gain swap accepted by H corresponds to a positive-gain swap in the associated

graph-partitioning problem. Thus, by the reduction lemma, H is P-hard.

To construct G′, let the tuple (a1, a2, a3, a4) represent the k-bit address of a hyper-

cube node, where the fields a1, a2, a3, a4 are binary numbers with constant k1, k2, k3, k4

number of bits, k = k1+k2+k3+k4. We can associate the individual fields a1, a2, a3, a4

with collections of hyperplanes. As a shorthand, 0 represents a binary number of arbi-

trary length in which all bits are 0.

Field a1 has length k1 = 1. Graph vertices of G and their associated solitary

vertices are placed on either side of the hyperplane a1. All addresses (0, a2, a3, a4)

denote a logical value of 0, while addresses (1, a2, a3, a4) denote a logical value of 1.

Field a2 has length k2 = ⌈log |V1|⌉, where |V1| is the number of vertices in G. If

vertex vi is in the set X0 of G, vi is placed at (0, i, 0, 0) and a solitary vertex is placed

at (1, i, 0, 0). If vertex vi is in the set X1 of G, vi is placed at (1, i, 0, 0) and a solitary

vertex is placed at (0, i, 0, 0). The solitary vertices are not anchored and thus can move

freely.

To limit the movement of a vertex vi in G, we place L (L = K + 5) anchor vertices

for every vertex vi. Field a3 with length k3 = L is used for the placement of the anchor

vertices. Let el be a binary number of length k3 in which the lth bit is 1 and all

other bits are 0. Anchor vertices are placed at addresses (0, i, e1, 0), . . ., (0, i, eL, 0) for

every vertex vi. Another set of anchor vertices is placed at addresses (1, i, e1, 0), . . .,

(1, i, eL, 0) for every vertex vi. Let E0 be the set of anchor vertices at (0, i, e1, 0), . . .,

(0, i, eL, 0) and let E1 be the set of anchor vertices at (1, i, e1, 0), . . .,(1, i, eL, 0). Since

we do not want the anchor vertex to move itself, every anchor vertex (0, i, ej , 0) is part

of a D × D clique, with (D = K + 1). We use field a4 with length k4 = ⌈log D × D⌉
for the cliques and place the kth vertex of the D × D clique at (0, i, ej , k).

We connect each anchor vertex to vi with an expander edge. The purpose of ex-

pander edges is to constrain vi to move only between the planes (0, i, 0, 0) and (1, i, 0, 0).

Whether a vertex vi is at (0, i, 0, 0) or (1, i, 0, 0), it is connected by expander edges to

the set of anchor vertices at (0, i, e1, 0), . . ., (0, i, eL, 0) and to the set of anchor vertices

at (1, i, e1, 0), . . ., (1, i, eL, 0). One set of expander edges has cost L and the other set

has cost 2L. As we shall see later, the expander edges drastically add to the cost when

vi moves to some other location in the hypercube. The only swaps accepted by H are

those between a vertex of G and the opposing solitary vertex.

The above construction can be done in logspace, and leaves us with a graph G′

embedded on the hypercube. We now have to show that all cost-improving swaps

5.2. P-hard Graph-Embedding Heuristics 87

executed on G′ correspond to cost-improving swaps in the associated graph-partitioning

problem. We first examine swaps involving anchor-clique vertices and show that such

swaps have negative gain. All other possible swaps involve vertices of G. We examine

what we call regular swaps, in which a vertex v is exchanged with the opposing solitary

vertex. We then examine irregular swaps, in which v moves to some other hypercube

location. Our induction hypothesis is that regular swaps have positive gain only when

they can be interpreted as positive-gain graph-partitioning swaps, and irregular swaps

have only negative gain.

Swaps with Anchor-clique Vertices Vertex swaps inside D × D anchor cliques

have gain 0 and are not accepted. A swap involving a vertex in a D × D clique and

an outside vertex has negative gain. A clique vertex has degree at least D × D − 1 =

(K + 1)2 − 1, whereas all other vertices have degree at most K + 2L = 5K + 4, and

at most one edge in common with a clique vertex. Consequently, the swaps of two

vertices from different cliques or a clique vertex with a non-clique vertex both have

large negative gain.

Regular Swaps Assume vi moves from (0, i, 0, 0) to (1, i, 0, 0). A symmetrical argu-

ment holds when vi moves from (1, i, 0, 0) to (0, i, 0, 0).

Let d(vi) be the number of graph vertices to which vi is attached. By induction,

these vertices are placed at addresses (0, j, 0, 0) or (1, j, 0, 0), j 6= i. Let d0(vi) be the

number of attached vertices in L0, and let d1(vi) be the number of attached vertices in

L1. In a regular move, the expander edges do not contribute to the gain, since L edges

belonging to the anchor vertices at (0, i, e1, 0), . . ., (0, i, eL, 0) are stretched by 1 and L

edges belonging to the anchor vertices at (1, i, e1, 0), . . ., (1, i, eL, 0) are shortened by

1. The change in edge length is either 0 or 1:

gain = d1(vi) − d0(vi)

Assume a positive-gain swap in the associated graph-partitioning problem. We have

d1(vi) > d0(vi), so gain > 0 and the swap is accepted. Assume a negative-gain swap in

the associated graph-partitioning problem. We have d1(vi) < d0(vi), so gain < 0 and

the swap is not accepted.

Irregular Swaps The hypercube-embedding heuristic may of course consider a swap

of vi to an undesired location. We now show that such a swap can only have negative

gain, and is thus not accepted by H. Let us assume that vi moves from (0, i, 0, 0)

to v′i = (a1, a2, a3, a4): a symmetrical argument holds when vi moves from (1, i, 0, 0)

to (a1, a2, a3, a4). Let h = HCUBE(vi, v
′
i) be the distance that vi moves, and let

cost(expander(vi)) be the cost of the expander edges attached to vi. The gain of the

vertex swap is dependent on the attached edges of the graph G and the expander edges:

gain =
∑

j=1..d(vi)

HCUBE(vi, vj) + cost(expander(vi))

88 Chapter 5. The Parallel Complexity of Local Search

−[
∑

j=1..d(vi)

HCUBE(v′i, vj) + cost(expander(v′i))]

HCUBE() is a metric, so we can use the triangular inequality to get an upper bound

on the summation:

HCUBE(vi, vj) − HCUBE(v′i, vj) ≤ HCUBE(vi, v
′
i) = h

gain ≤ d(vi)h + cost(expander(vi)) − cost(expander(v′i))

It remains to consider the effect of the move from vi to v′i on the expander edges.

By induction, vi is at (0, i, 0, 0). Recall that the anchor vertex set E0 is located at

(0, i, e1, 0), . . . , (0, i, eL, 0) and the anchor vertex set E1 is at (1, i, e1, 0), . . . , (1, i, eL, 0).

The address (0, i, 0, 0) and anchor vertices in E0 have a Hamming distance of 1, and

(0, i, 0, 0) and anchor vertices in E1 have a Hamming distance of 2, so the cost of the

expander edges before the move is:

cost(expander(vi)) = L + 2L

Let us compute cost(expander(v′i)), the cost of the 2L expander edges that connect

v′i at (a1, a2, a3, a4) to E0 and E1. Let b1, b2, b3, b4 be the number of bits that change

in a1, a2, a3, a4, respectively. We have h = b1 + b2 + b3 + b4. We now examine how edge

costs are affected by a change of bits in the address fields.

(a1) The contribution of a1 to the cost of the 2L expander edges is L, both when

a1 = 0 and when a1 = 1.

(a2) A change of b2 bits in a2 causes a cost increase of b2 for every edge.

(a3) Consider the change of b3 bits in the third field. For every bit j that changes

in a3, exactly one pair of expander edges, namely that attached to (0, i, ej , 0)

and (1, i, ej , 0), contributes a cost of 0, whereas the 2L − 2 other expander edges

contribute a cost of 1. L − b3 bits do not change in a3. For every bit j that

does not change in a3, exactly one pair of expander edges, namely that attached

to (0, i, ej , 0) and (1, i, ej , 0), contributes a cost of 1, whereas all other expander

edges contribute a cost of 0. Therefore the contribution of a3 to the cost of the

2L expander edges is b3(2L − 2) + (L − b3)2.

(a4) A change of b4 bits in a4 causes a cost increase of b4 for every edge.

The total cost of the expander edges that join v′i to E0 and E1 is:

cost(expander(v′i)) = L + b22L + b3(2L − 2) + (L − b3)2 + b42L

= (L + 2L) + 2L(b2 + b3 + b4) − 4b3

In the following, let K = maxvi∈G d(vi) be the maximum degree of G. We set the

parameter L so that L = K + 5 > d(vi) + 3. Given the above equation, we consider

first the special case where h = 1.

5.3. P-hard Channel-Routing Heuristics 89

Case h = 1 When h = 1, we have b1 = 0, otherwise v′i would be at (1, i, 0, 0), a

regular position. We have b2 + b3 + b4 = 1 and b3 ≤ 1.

cost(expander(v′i)) ≥ (L + 2L) + 2L − 4

and so

gain ≤ d(vi) − 2L + 4

Since L > d(vi) + 5, we have gain < 0

Case h > 1 When h > 1, we have b2 + b3 + b4 ≥ h − 1 and b3 ≤ h.

cost(expander(v′i)) ≥ (L + 2L) + 2L(h − 1) − 4h

and so

gain ≤ d(vi)h − 2L(h − 1) + 4h

≤ d(vi)h − Lh + 4h

≤ (d(vi) + 4)h − Lh

Since L > d(vi) + 5, we have gain < 0.

To summarize, the conditions of the reduction lemma hold for a regular swap. Other

swaps cannot be accepted by H since they have negative gain. 2

5.3 P-hard Channel-Routing Heuristics

We have shown in Section 3.1 that the left-edge channel-routing algorithm can be par-

allelized to run in NC1(n), but it does not deal with column conflicts. It is therefore

tempting to design a parallel heuristic based on local search that minimizes column

conflicts or tries to remove them altogether. Brouwer and Banerjee[19] applied paral-

lel simulated annealing to the channel-routing problem and report that this approach

yields routings of high quality. The local search channel-routing problem to reduce col-

umn conflicts was defined in Section 4.5. To cast the problem of minimizing the column

conflicts of a channel routing as a local search problem, we introduced in Section 4.5 the

COLUMNS cost function and a method for making changes to one channel-routing so-

lution; this generates the SUBTRACK-SWAP neighborhood structure. In this section

we demonstrate that finding a locally minimum channel routing using the COLUMNS

cost function and the SUBTRACK-SWAP neighborhood is P-hard.

5.3.1 P-hardness of the Column-Swap Heuristic

Theorem 13 Let H be a local search algorithm for channel routing using the COLUMNS

cost function and the SUBTRACK-SWAP neighborhood. If H accepts only swaps that

improve the cost, then H is P-hard.

90 Chapter 5. The Parallel Complexity of Local Search

Proof Our proof consists of a logspace procedure to translate a given fan-in/fan-out

2 ordered monotone circuit OM(C) (see Section 2.1.2) with n gates into an initial solu-

tion R0 of a channel-routing problem. When we apply heuristic H to R0, it executes a

polynomial number q(n) of swaps and returns a solution Rq(n) that has a locally mini-

mum number of column conflicts. Rq(n) uniquely determines the value of OM(C), and

the actual value of the circuit OM(C) can then be determined from Rq(n) in logarithmic

space. Thus H is P-hard. If H is a deterministic algorithm with running time bounded

by a polynomial q(n), then H is P-complete. If the partition Rq(n) could be computed

by a deterministic circuit of polynomial size and polylogarithmic depth, so could the

value of any circuit OM(C). This would imply that P ⊆ NC.

Construction of Circuit OM(C) We show how to build the circuit elements of

OM(C) out of nets, and show how the components are placed in the channel. The

construction yields a dense channel-routing solution R0. We demonstrate that the

gates compute the correct logical values for their inputs, and that the whole circuit

construction computes the correct logical value of OM(C).

From the construction of OM(C) we can assume that the boolean value of the circuit

inputs is given as part of the problem description and that every circuit input is used

exactly once. Let the number of circuit elements in OM(C) be n. We can assume that

OM(C) is non-cyclic, and that OM(C) is ordered: all circuit elements (AND/OR gates

and input variables) are indexed so that when circuit element k depends on circuit

element i, then k > i. For every gate Gr in the circuit OM(C) we use two connecting

output wires Wk and Wl. The wires serve to propagate output values to other gates

and to buffer the gates, as will become clear later.

In the following, the weight w of a column, indicated by the number above the

columns and also illustrated by the width of the columns, is a shorthand for the w

wires attached to pins at the channel sides. Two columns of weight w overlapping

vertically cause w column conflicts.

Figure 5.9 shows the overall construction of R0 from OM(C). AND/OR gates,

circuit inputs, and connecting wires each have a pair of center subtracks, the horizontal

segments of a net that can be swapped. When the subtrack pairs remain in their initial

positions, the associated logical value of the component is 0; when the subtrack pair is

swapped, the associated logical value of the component is 1. Shown in Figure 5.9 are

the center subtracks of an input Ia, a gate Gr and two connecting output wire Wk and

Wl. The positions of two other gates Gs, Gt are sketched. To simplify Figure 5.9, the

vertical segments of the circuit elements that cause column conflicts are not shown.

We now describe how to construct the components of the circuit OM(C), which are

circuit inputs, AND/OR gates, and connecting wires, and then show how the circuit is

assembled.

Construction of Circuit Inputs Figure 5.10 shows how circuit inputs are built

out of nets. Circuit input Ia consists of one subtrack pair, the center subtrack pair

5.3. P-hard Channel-Routing Heuristics 91

GLr

WLk

WLl

Anchor Columns and Nets

Anchor Columns and Nets Anchor Columns and Nets

Gate Gr

Wire Wk

Wire Wl

Gate Gs

Gate Gt

ILa

GUr

WUk

WUl

IUa

Input Ia

Figure 5.9: The overall construction of a channel-routing problem from circuit OM(C).
Circuit inputs, AND/OR gates, and connecting wires each have a pair of center sub-
tracks (horizontal segments). The anchor nets placed to the left and right of the circuit
subtracks prohibit swaps except between center subtracks. The vertical segments of
the circuit elements that cause column conflicts are not shown.

92 Chapter 5. The Parallel Complexity of Local Search

L 2

C Out

IUa

GUs

ILa

GLs

L 2

C Out

IUa

GUs

ILa

GLs

Figure 5.10: Circuit input Ia. (a) Ia = 0. (b) Ia = 1.

ILa, IUa. To demonstrate how circuit inputs are attached to gates, Figure 5.10 also

shows the subtrack pairs GLs, GUs of the gate Gs.

The problem description of the circuit OM(C) gives the boolean values of the circuit

inputs and specifies that every circuit input is used exactly once. When input Ia = 0,

one column of weight 2 is attached from the top of the channel to ILa. When Ia = 1,

one column of weight 2 is attached from the top of the channel to IUa. (The black-

bordered column of weight 2 is part of gate Gs, and is included in Figure 5.10 to show

how the circuit is assembled.)

The columns attached to the center subtrack pair ILa, IUa have weight L = x; this

weight is made so large that swapping of subtrack pair ILa, IUa causes a negative gain

that is greater than the sum of the weights on all AND/OR gates and connecting wires

in the routing of OM(C).

Construction of AND/OR Gates Figure 5.11 shows how AND and OR gates

are built out of nets. Both AND and OR gates Gr contain the center subtrack pair

GLr, GUr. Figure 5.11 also shows the two subtrack pairs WLi,WUi, WLj,WUj of the

wires Wi and Wj, which serve as inputs to gate Gr, and the subtrack pairs WLk,WUk,

WLl,WUl of the wires Wk and Wl, which are the two copies of the output of gate Gr.

The connecting wires shown in Figure 5.11 serve as buffers between gates.

The difference between AND and OR gates is that the two vertical columns attached

to the center subtrack pair GLr, GUr have weight 1 for the OR gate and weight 3 for

the AND gate. As shown, both gates have two columns of weight 2, attached from the

5.3. P-hard Channel-Routing Heuristics 93

In1 C Out1 Out2In2

81 82 2

In1 C Out1 Out2In2

83 82 2

GUr

WUj

WUk

WUl

WUi

GLr

WLj

WLk

WLl

WLi

GUr

WUj

WUk

WUl

WUi

GLr

WLj

WLk

WLl

WLi

Figure 5.11: (a) OR gate Gr. (b) AND gate Gr.

bottom of the channel to GUr, one for each input. Two columns of weight 8 attached

from the top of the channel to GLr, one for each output. The black-bordered columns

of weight 2 attach to the center subtracks WLi,WLj of wires Wi and Wj. The black-

bordered columns of weight 8 attach to the center subtracks WLk,WLl of wires Wk

and Wl.

Construction of Wires The wires propagate output values to other gates. Fig-

ure 5.12 shows how the wire is built out of nets. The wire Wk consists of one subtrack

pair, the center subtrack pair WLk,WUk. Figure 5.12 also shows the subtrack pair

GLr, GUr of the gate Gr and the subtrack pair GLs, GUs of the gate Gs.

The columns attached to the center subtrack pair WLk,WUk have weight 4. The

wire has one input column of weight 8 attached to WUk and one output column of

weight 2 attached to WLk. The black-bordered columns belong to attached gates.

Note that gate Gs must be located on center tracks that lie above the tracks assigned

to Gr and Wk. Here we need the property that OM(C) is ordered: when circuit element

k depends on circuit element i, then k > i.

Anchor Nets In Figure 5.9 the subtrack pairs ILa and IUa, GLr and GUr, WLk

and WUk and WLl and WUl can be swapped. It is highly undesirable in the operation

of our reduction to allow any other swaps of subtracks or whole tracks, and thus anchor

nets are placed to the left and right of each circuit net. As can be seen in Figure 5.9,

swapping net ILa with net GUr would result in an horizontal overlap of nets.

To prohibit the swapping of anchor nets, we attach columns of weight L to each pair

94 Chapter 5. The Parallel Complexity of Local Search

8 4 2

In C Out

GUr

WUk

GUs

GLr

WLk

GLs

Figure 5.12: Connecting wire Wk.

of anchor nets. L = x is made so large that swapping two tracks causes a negative gain

of 2L that is greater than the sum of the weights on all AND/OR gates and connecting

wires in the routing of OM(C).

Overall Placement We assign the center subtracks of circuit element i in OM(C)

to tracks 3i and 3n + 3i, where n is the number of inputs and gates in OM(C). If i is

an AND/OR gate, the center subtracks of the connecting wire Wk are placed on tracks

3i + 1, 3n + 3i + 1, and the center subtracks of the wire Wl are placed on tracks 3i + 2,

3n + 3i + 2. If i is an input to OM(C), tracks 3i + 1, 3i + 2, 3n + 3i + 1, 3n + 3i + 2

are simply left empty. The channel routing R0 has 6n center subtracks and is dense at

the sides of the channel where the anchor nets are placed.

As illustrated in Figure 5.9, the center subtracks of circuit element i+ 1 are shifted

3×2 integer grid units to the right of circuit element i. The length of a center subtrack

is 26 × 3n since there are 3n circuit elements, the longest of which (the AND gate) is

26 grid units wide.

On each side of the center nets, 3n anchor nets are generated. The number of pins

for the anchor nets used in R0 is 3n(3n− 1)4L, since 3n(3n− 1) pairs of tracks can be

swapped. The number of pins for the circuit elements is < 26n, since the AND gate,

with 26 pins, is the circuit element that uses the most pins.

The above construction can be done in logspace. Note that no solution without

column conflicts (COLUMNS = 0) exists in this construction.

5.3. P-hard Channel-Routing Heuristics 95

States and Transitions The state of a circuit input is a boolean 2-tuple (i0, g1). The

fields in this tuple represent whether the center subtrack pair and the output subtrack

pair have been swapped from their initial routing. The state of a gate is a boolean

5-tuple (w0, w1, g2, w3, w4). The fields in this tuple represent whether the two input

subtrack pairs, the center subtrack pair, and the two output subtrack pairs have been

swapped from their initial routing. The state of a wire is a boolean 3-tuple (g0, w1, g2).

The fields in this tuple represent whether the input subtrack pair, the center subtrack

pair, and the output subtrack pair have been swapped from their initial routing.

State transitions are possible only between states that differ in one bit position. The

states of a boolean k-tuple can be seen to form the nodes of a k-dimensional hypercube.

The transitions caused by a swap of subtrack pairs are the edges of this hypercube.

The position of the black crosses in our figures show whether the subtrack pairs have

been swapped. For example, the gates in Figure 5.11 have state 00000 and the wire

in Figure 5.12 has state 000. We use the notation 00x to indicate that a state can be

either 000 or 001, and the notation 00
2→ 01 to indicate a transition of gain 2 from

state 00 to state 01.

Operation of Circuit OM(C) Since the original circuit OM(C) is monotonic, we

know that gate inputs stay at 0 or transition from 0 to 1 once. By notational convention,

a subtrack pair that remains in its initial position has an associated logical value of 0.

When the subtrack pair is swapped, it has an associated logical value of 1. A swapped

input subtrack is associated with an input of 1, whereas a swapped center subtrack is

associated with a logical value of 1.

We use the invariants I, II, III, and IV below to show by induction that when

positive-gain swaps are applied to the initial channel routing R0, the AND/OR gate

constructions act as boolean gates and compute a logical output value for the available

inputs.

Invariant I The center track i0 of a circuit input is swapped iff the associated boolean

input variable is 1.

Invariant II The center track w1 of a connecting wire is swapped iff its input track

has been swapped.

Invariant III The center track g2 of an AND gate is swapped iff both input tracks

have been swapped.

Invariant IV The center track g2 of an OR gate is swapped iff at least one input

tracks has been swapped.

We show that invariants I, II, III, and IV hold for the initial channel routing R0.

Our inductive hypothesis is that if the invariants hold for a state, the invariants will

hold for a state reached by a positive-gain transition. We examine all possible states

96 Chapter 5. The Parallel Complexity of Local Search

L 2 L 200
Cost =2

00
Cost =2

L 210
Cost =2

L 210
Cost = 0

0 2

Figure 5.13: The state-transition graph of the circuit input Ia. (a) Ia = 0. (b) Ia = 1.

reachable by positive-gain transitions to verify the inductive hypothesis. When no more

positive-gain transitions are possible, it follows from the invariants that all AND/OR

gates and connecting wires have computed the correct logical values for their inputs.

Operation of Circuit Inputs The states, state costs, and transitions of the circuit

input are shown in Figure 5.13. States 01 and 11 are not shown since swapping the

subtrack pair ILa, IUa would cause transitions from either 00 or 01 with large negative

gain L, which is not possible.

The initial state of the input is 00. For Ia = 0 there are no positive-gain transitions

from state 00, and the circuit input remains in state 00. For Ia = 1 there is a positive-

gain transition

00
2→ 10

The circuit input then remains in state 10. Invariant I holds for the initial state 00 and

5.3. P-hard Channel-Routing Heuristics 97

continues to hold for all states reached by positive-gain transitions.

Operation of Wires The states, state costs, and transitions of the connecting wire

are shown in Figure 5.14. Since the input of a wire is the center subtrack of a gate,

invariants III or VI hold. The initial states of the wire are:

(a) 000 for an input of 0,

(b) 001 for an input of 1,

(c) 100 for an input of 0,

(b) 101 for an input of 1.

There are no positive-gain transitions for input 0 (states 000 or 100), and the output

of the wire remains at 0. In accordance with the function of a wire and Invariant II,

only the input of 1 permits two paths of positive-gain transitions:

(a) 001
4→ 011

2→ 111

(b) 101
6→ 111

No other positive-gain transitions are possible, as can be seen from Figure 5.14. It

follows that invariant II holds for the initial states and continues to hold for all states

reached by positive-gain transitions.

As we will see, the initial states 100 and 101 can occur when the connecting wire

serves as an input to an OR gate, and that OR gate goes to 1 because the other gate

input is 1. This special case is not prohibited by the invariants: however, by showing

that invariant II holds, we ensure that it has no effect on the gate that serves as input

to the connecting wire.

Operation of AND Gate The states and state costs of the AND gate are shown

in Table 5.1. State transitions of the AND gate are possible only between states that

differ in one bit position. The input of the AND gate is a connecting wire or a circuit

input, for which invariants I and II hold. The initial states of the AND gate are:

(a) 00000 for an input of (0, 0),

(b) 00010 for an input of (1, 0),

(c) 00001 for an input of (0, 1),

(d) 00011 for an input of (1, 1).

98 Chapter 5. The Parallel Complexity of Local Search

8 4 28 4 2

8 4 2 8 4 2

8 4 2

8 4 28 4 2

8 4 2

000 010

100

001

101

110

011

111

Cost = 14Cost = 10

Cost = 10

Cost = 10

Cost = 10

Cost = 12

Cost = 6

Cost = 4

-4

-2

 6

 4

0

0

2

2

0

0

8

8

Figure 5.14: The state-transition graph of the wire Wk.

5.3. P-hard Channel-Routing Heuristics 99

Table 5.1: The states of AND/OR gates and their COLUMNS cost.

Gate cost Gate cost Gate cost Gate cost
State AND OR State AND OR State AND OR State AND OR

00000 20 20 01000 20 20 10000 20 20 11000 20 20
00001 20 20 01001 20 20 10001 20 20 11001 20 20
00010 20 20 01010 20 20 10010 20 20 11010 20 20
00011 20 20 01011 20 20 10011 20 20 11011 20 20

00100 23 21 01100 15 13 10100 15 13 11100 7 5
00101 21 19 01101 13 11 10101 13 11 11101 5 3
00110 21 19 01110 13 11 10110 13 11 11110 5 3
00111 19 17 01111 11 9 10111 11 9 11111 3 1

There are no positive-gain transitions for inputs (0, 0), (0, 1), (1, 0), and the output

of the gate remains at (0, 0). In accordance with the function of an AND gate, only an

input of (1, 1) permits reaching the final state 11111 of the AND gate, corresponding

to an output of (1, 1). There are two different paths with positive-gain transitions,

depending on which output goes to 1 first:

00011
1−→ 00111

8−→ 01111
8−→

8−→ 10111
8−→

11111

As can be verified from Table 5.1, no other positive-gain transitions are possible from

the initial states.

To verify correct operation of the AND gate, we also have to ensure that states

010xx, 110xx and 100xx cannot be reached. These states are associated with a con-

necting wire forcing a gate output to 1. By the inductive hypothesis, invariant II holds

for the connecting wires at the AND gate’s outputs: the output subtrack pair of the

AND gate (center subtrack pair of connecting wire) is only swapped iff the center sub-

track pair of the AND (input subtrack pair of the connecting wire) gate is swapped. It

follows that invariant III holds for the initial states 000xx and continues to hold for all

states reached by positive-gain transitions.

Operation of OR ate The states and state costs of the OR gate are also shown in

Table 5.1. State transitions of the OR gate are possible only between states that differ

in one bit position. The behavior of the OR gate is more complex than that of the

AND gate, and it will become evident why we use the connecting wires. The input of

the OR gate is a connecting wire or a circuit input, for which invariants I and II hold.

The initial states of the OR gate are the same as for the AND gate:

(a) 00000 for an input of (0, 0),

(b) 00010 for an input of (1, 0),

100 Chapter 5. The Parallel Complexity of Local Search

00001

00011

00101

00111

11101

10101

01101

3

1 8

8

8

2

2

8 2

8

8

00010 00110 10110

01110

1

11111

2

8

11110

01111

10111

8

8

8

8

8

2

2

Figure 5.15: The state-transition graph of the OR gate.

(c) 00001 for an input of (0, 1),

(d) 00011 for an input of (1, 1).

There are no positive-gain transitions for input (0, 0), and the output of the gate

remains at (0, 0). In accordance with the function of an OR gate, the other inputs (0, 1)

(1, 0) (1, 1) permit reaching the final state 11111 of the OR gate, corresponding to an

output of (1, 1). The paths leading to the final state 11111 are shown in Figure 5.15.

An input of (1, 1) leads to two paths of positive-gain transitions that are the same

as for the AND gate, again depending on which output goes to 1 first. An input of

(0, 1) or (1, 0) leads to five different paths each. The transitions of gain 8 correspond

to outputs going to 1. Each path starting from an input of (0, 1) or (1, 0) has one

transition of gain 2. This corresponds to the other input of the OR gate going to 1

while the value of the gate is being computed, or the other input being forced to 1!

This result does not affect the logical value of the OR gate itself, since this value is

1 when one or two inputs are 1. It could still have undesirable consequences, however,

and explains why we need the buffering action of the wires and why we have to show

that invariant II must hold at all times. Were the wires absent, forcing an input to

1 would mean that the gate supplying this input has an output that is forced to 1.

For example, assume an AND gate is in its initial state 00000. If the second output

5.3. P-hard Channel-Routing Heuristics 101

were to go to logical value 1, the AND gate would go to state 10000, a state that the

AND gate is never supposed to reach. From state 10000 there is a path of positive-gain

transitions to state 11111. Thus the output value of the AND gate would be 1, even

though both its inputs are 0.

As can be verified from Table 5.1, no positive-gain transitions other than those

shown in Figure 5.15 are possible from the initial states. To verify correct operation

of the OR gate, we also have to ensure that states 010xx, 110xx and 100xx cannot

be reached. These states are associated with a connecting wire forcing a gate output

to 1. By the inductive hypothesis, invariant II holds for the connecting wires at the

OR gate’s outputs: the output subtrack pair of the OR gate (center subtrack pair of

connecting wire) is only swapped iff the center subtrack pair of the OR (input subtrack

pair of the connecting wire) gate is swapped. It follows that invariant III holds for

the initial states 000xx and continues to hold for all states reached by positive-gain

transitions.

In summary, we have shown that all circuit elements function as required by in-

variants I, II, III, and IV. Therefore the AND/OR gate constructions obtained by the

logspace reduction from OM(C) behave as boolean gates and compute a logical output

value for the available inputs, thus computing the circuit value for OM(C). 2

5.3.2 P-hardness of the Restricted Column-Swap Heuristic

As discussed in Section 4.5.1, in the actual implementation of the local search heuristic

it is desirable to restrict the SUBTRACK-SWAP neighborhood. In the unrestricted

SUBTRACK-SWAP neighborhood, O(n2) neighbors of a channel-routing solution R

can be reached by swaps. Computing the gain ∆f for all of these swaps would waste

computational resources. In the restricted SUBTRACK-SWAP neighborhood, the as-

signed tracks are interpreted as a linear array and subtrack swaps are allowed only for

track pairs with a separation of d = ±1, 2, 4, 8, 16, . . . tracks. (See definition 27 in Sec-

tion 6.3 for a definition of separation d.) The size of the neighborhood of a solution R

is now O(n), which is a good compromise between efficiency and convergence behavior

for a local search algorithm. The proof in Section 5.3 can be extended to show that

the P-hardness result holds for the restricted SUBTRACK-SWAP neighborhood.

Corollary 4 Let H be a local search algorithm for channel routing using the COLUMNS

cost function and the SUBTRACK-SWAP neighborhood restricted to linear array swaps

with a separation d of ±1, 2, 4, 8, 16, . . . tracks. If H accepts only swaps that improve

the cost, then H is P-hard.

Proof The construction of Theorem 13 generates 3n track pairs. We simply add m

anchor nets in their own tracks above the 3n track pairs, with m = 2k − 3n, 2k−1 <

3n < 2k. The center subtracks of the circuit components in OM(C) are then d = 2k−1

apart, and are still available for swapping. 2

103

Chapter 6

The Mob Heuristic

6.1 The General Mob Heuristic

We have developed a new massively parallel heuristic, the Mob heuristic, that is closely

related to both Kernighan-Lin and simulated annealing. Our algorithm uses a mob-

selection rule to swap large sets, called mobs, of elements. The mob-selection rule

searches for an approximation to the subset that causes the largest improvement in the

embedding cost, and is designed to be computed very quickly in parallel.

We now explicitly define the Mob local search algorithm. The algorithm searches

a mob neighborhood of a solution with a given mob size. If the new solution found

has a smaller cost, the search is repeated on the neighborhood of the new solution

with the same mob size. If the cost increases, the neighborhood of the new solution

is searched with the next scheduled mob size, which is usually smaller. We assume

that Mob executes a number of steps that does not exceed q(n), a polynomial in the

number n of vertices. The probabilistic nature of Mob is reflected by sets R1, R2 of q(n)

random index variables chosen uniformly and independently from the interval (0, 1). A

schedule determines the value of the variable mob.

Our heuristic is outlined in pseudocode in Figure 6.1. Here, the neighborhood

structure MOB-NR(S,m) depends on the problem that is to be solved. We define

neighborhoods for graph partitioning and graph embedding in Section 6.2 and 6.3. A

schedule MS of mob sizes is used to control the searches.

Definition 23 A mob schedule MS of length L is a sequence [MS1,MS2, . . . ,MSL]

of integers from the interval [1, . . . , n/2].

In the following, we describe the Mob graph-partitioning algorithm and the Mob

hypercube- and grid-embedding algorithms, and report how these algorithms performed

on the CM-2. We complete the definition of the Mob heuristic by explicitly giving

the neighborhood structure MOB-NR(S,m) and the schedule MS for the particular

problem. We also describe how Mob was implemented on the CM-2. The details of the

104 Chapter 6. The Mob Heuristic

Mob(S)

Let S be the initial solution;

Let R1[1..q(n)], R2[1..q(n)] be random reals in (0,1);

Let MS[1..q(n)] be a mob schedule in [1,n/2];

t = 1; s = 1;

while(t <= q(n))

{

Q = MOB-NR(S, MS[s], R1[t], R2[t]);

if(bw(Q) > bw(S))

s = s + 1;

S = Q;

t = t + 1;

}

return S ;

Figure 6.1: The Mob heuristic

implementation also apply to other local search heuristics. The data structures were

designed to allow the computation of cost and gain functions without expensive global

communication primitives. The mechanism for changing a solution into a neighboring

solution was designed to use a minimum number of global communication operations.

We were able to avoid the powerful but extremely slow sort primitive.

6.2 The Mob Graph-Partitioning Heuristic

We have applied Mob to the graph-partitioning problem[120,121]. The Mob neighbor-

hood for graph partitioning is described in Section 6.2.1. Mob was implemented on

a CM-2 Connection Machine, a parallel machine with 32K processors, as detailed in

Section 6.2.2. In Section 6.2.3 we describe experiments with Mob on random graphs

with small degrees. We ran Mob on random graphs with degrees ranging from 3 to 16,

and observed that Mob’s running time grows very slowly (logarithmically) with graph

size if enough processors are available. The graph sizes were limited by available mem-

ory; we can currently handle graphs with up to 2 million edges, corresponding to an

effective utilization of 4 million simulated processors. We compared the performance

of Mob against that of KL and SA on small random graphs with up to 1,000 vertices

(the largest graphs where we have independent data and for which a comparison with

serial heuristics was feasible) and found that Mob gives excellent results.

6.2. The Mob Graph-Partitioning Heuristic 105

6.2.1 The Mob Neighborhood for Graph Partitioning

Definition 24 The mob neighborhood Mob-N(P0,m) of a partition P0 = (X0, Y0) is

the set of partitions obtained from P0 by swapping a mob of m vertices from X0 with

an equal number of vertices from Y0.

The number of partitions in the neighborhood Mob-N(P,m) is

(

|V |/2
m

)2

. A mob is

selected from the vertices in each set whose exchange would cause the largest individual

change in the bisection width. The rule MOB-R(P,m, r1, r2) is used to select a partition

from Mob-N(P,m):

Definition 25 The rule MOB-R(P,m, r1, r2) selects a mob of size m from Mob-N(P,m)

as follows: let r1, r2 be random real numbers drawn uniformly from the interval (0, 1).

For each vertex v, let gain(v) be the change in the bisection width if v alone changes

sides, and let gain(v) be positive if the bisection width decreases. Let SX(g) = {v ∈
X | gain(v) ≥ g}. Choose gX such that |SX(gX + 1)| < m ≤ |SX(gX)|. Let

mp = |SX(gX)| be the size of the pre-mob SX(gX). Each element in SX(gX) is

indexed from 0 to mp − 1. A mob of size m is selected from SX(gX) by adding ⌊r1mp⌋
to each index modulo mp and selecting those with index less than m. A mob is selected

from Y using the same rule and the random variable r2.

The procedure is applied to both sides of the partition. The mob-selection rule,

designed to be computed very quickly in parallel, looks for a rough approximation to

the subset that causes the largest improvement in the bisection width. We implemented

routines to choose exactly m vertices whose individual gains are largest, but neither

sorting or randomized methods provided adequate performance. Instead, we choose

vertices at random among all vertices in SX(gX). While in so doing we may miss some

vertices with large gain, our heuristic is very effective.

Our heuristic starts with an initial random partition of the vertices of a graph. As

explained above, it then forms a pre-mob of vertices from each set of the partition on

the basis of the effect of individual vertices on the bisection width (as measured by

the gain of a vertex). From each pre-mob a mob is selected, of a size determined by a

mob schedule. The vertices in mobs then swap sets. If the cost of the new bisection

decreases, another mob of the same size is selected in the same manner and swapped. If

the bisection width increases, the mob size is decreased. When the mob size reaches its

minimum value, it is increased to the maximum value again and the process repeated.

We have shown in Section 5.1.2 that when the mob size is fixed at 1 by the mob

schedule, the execution of a sequence of moves in the neighborhood Mob-N(P, 1) up to

a locally minimal partition is P-hard. The Mob heuristic based on exchange of subsets

of the partition is in the class of heuristics described in general terms by Kernighan

and Lin[68]. Bui[23] describes a “block” heuristic in which the gains of all vertices are

computed in advance. Then vertices in each set of a partition with the largest gains are

106 Chapter 6. The Mob Heuristic

repeatedly selected and frozen without updating gains. This defines a neighborhood

and the partition within this neighborhood with the smallest bisection width is selected.

One pass is taken. Bui reports good results on graphs with large degree, graphs for

which most heuristics give fairly good results.

6.2.2 Implementation of Mob

We now discuss how the Mob heuristic was implemented to make full use of the CM-2’s

parallel hardware and instruction set. We describe a collection of primitive operations

used to build the graph-partitioning Mob heuristic, and the hypercube and grid Mob

heuristics introduced in Section 6.3.2. These operations are common to any parallel

graph-partitioning or graph-embedding heuristic that uses local search, and can be

used to design variations of the Mob or SA heuristic. We show how to construct an

edge structure that can exchange vertices and compute cost and gain functions with

minimal communication overhead. We describe how the mob selection rule MOB-R is

implemented without calling an expensive sorting routine. The advantages of parallel

move generation hold also for serial algorithms. The Mob heuristic gets maximum use

out of cost and gain computations. No queues or bucket data structures would be

necessary in a serial implementation.

Edge Data Structure We experimented with several ways of implementing our

heuristic on the Connection Machine. Initially we used one virtual processor per ver-

tex and one per edge. However, we found that the network became badly congested

when edge processors had to send messages simultaneously to the corresponding vertex

processors so that the latter could compute gains. A bottleneck was created when ver-

tex processors sent messages to adjacent edges telling them which side of the partition

their end points were now on. To avoid this congestion, we eliminated vertex processors

and simulated them with edge processors.

Our algorithm is based on a data structure in which each edge is repeated twice,

e.g. (a, b) and (b, a). These edges are stored in a linear array and each stores the

array address of the other. One virtual processor is used for each edge, and the edges

are sorted by their left vertex so that groups of vertices with the same left vertex are

formed that represent all edges going into one vertex. We let the first edge processor in

a group also serve as a vertex processor. This data structure supports the computation

of the bisection width of a partition as well as the gain of individual vertices, and also

permits us to select and swap mobs easily. Blelloch reports that this data structure

also works very well for other graph algorithms[13].

Computing Addresses of Twins A presorting phase is used to compute the ad-

dresses of edge duplicates, so that we need not make this computation on every exchange

operation.

6.2. The Mob Graph-Partitioning Heuristic 107

Cost Every edge computes whether or not it crosses the cut. A reduction operation

counts the number of crossing edges. Since every edge has a twin, this number is

divided by two to obtain the bisection width.

Gain The gain measures the effect of a vertex move on the bisection width. It

is computed for each vertex by summing the contributions of each edge adjacent to

the vertex. Every edge computes whether or not it crosses the cut. A crossing edge

contributes a gain of 1 to each vertex to which it is connected, a non-crossing edge

contributes a gain of −1. We use a segmented additive scan in reverse order in the

array to sum up the (adjacent) edge gains into a vertex gain. The segments are the

groups of edge processors with the same left component.

Selecting a Mob Vertices that join the pre-mob are those with the largest gains.

Since there are generally many vertices with the smallest gain in a pre-mob, we need

a method to select between them. All edge processors except the first in each group

(which also serves as a vertex processor) are then idled and a forward additive-scan

operation on these vertices is used to rank vertices. Adaptive binary search then is

used to form the smallest pre-mob of at least mob vertices with the highest gains,

where mob is provided by a mob schedule. This avoids the cost of a sorting step. An

integer randomly chosen from the interval (0,mob − 1) is then broadcast to all active

processors (the simulated vertex processors), which then add this value to their rank

modulo mob to compute a new rank. Finally, all active processors with new rank less

than mob are selected for the mob and a change of side.

Exchange After every vertex has decided whether or not to swap sides, all edge

processors become active and the first edge processor in a group (the simulated vertex

processors) communicates its side of the partition to all processors in its group by a

segmented copy-scan. Edge processors then use send operations to their twin edges to

notify the right vertex of each edge of their correct side.

6.2.3 Experimental Results

Much effort has gone into developing good serial heuristics for the graph-partitioning

problem, and thus new heuristics should be calibrated against them. We have done

this by running the Mob heuristic on two small graphs used by Johnson et al.[65] in

their study of KL and SA. Any new heuristic should also provide internally consistent

results over a variety of graphs of varying degrees and sizes. Our data confirm the

internal consistency of the results provided by Mob.

No experimental results on large graphs have been published in the literature. We

conjecture that the queue data structures that give the KL and FM algorithms asymp-

totically optimal serial running times should cause massive paging on a supercomputer

108 Chapter 6. The Mob Heuristic

Table 6.1: r500 , m1000 are small random graphs of degree 5. The bisection widths
obtained from the KL, SA, and Mob graph-partitioning algorithms are compared to a
graph partition chosen at random.

Graph V E d Random KL SA Mob MobR

r500 500 1,196 4.784 594 222 206 206 .3468
m1000 1,000 2,496 4.992 1,246 475 451 450 .3616

Table 6.2: Results for r500 , m1000 . (a) Convergence is measured by expressing Mob’s
bisection width after a number of iterations as a percentage over the best solution
obtained. The bisection widths computed by Mob after 100 iterations are smaller than
those of KL. (b) CM-2 execution times for KL and Mob.

Quality in Relation to Iterations Execution Times (sec.)

Bisection Quality (% over Best) 8K CM-2

Graph KL 100 1000 2000 3000 KL 1 2000

r500 16.5 14.4 5.6 4.3 4.1 2.61 .00455 9.1
m1000 14.0 13.3 4.8 3.8 3.4 4.92 .00467 9.3

with a carefully balanced memory hierarchy, such as a Cray. We expect Mob to per-

form very well on a serial supercomputer, since the algorithm minimizes global data

movement. Our experiments include running times and bisection widths for KL. KL

was partially parallelized on the CM-2: cost and gain functions were computed in par-

allel, but the sequence of moves was left serial. We believe partitioning large graphs on

a serial machine is an open research problem, and we hope that the data we provide

can serve as a basis for the comparative evaluation of partitioning algorithms by other

researchers.

Comparisons Between KL, SA and Mob David Johnson supplied us with the

two graphs, r500 and m1000 , used in the study of graph-partitioning algorithms by

Johnson et al.[65]. Data on these graphs are given in Table 6.1, which shows the

degrees of these graphs, their number of vertices and edges and their bisection widths

for random partitions and best-ever partitions over many runs with KL, SA and Mob.

Also shown is the ratio Mob/R of the bisection width of the best-ever Mob partition to

that of a random partition. The bisection width data for KL and SA are those reported

by Johnson et al., the results for Mob were obtained by running our Mob heuristic on

the Connection Machine. Mob gives results as good or better than SA and much better

than KL in terms of the best bisection width ever recorded.

Table 6.2 compares the quality of the bisections obtained with KL to Mob on the

6.2. The Mob Graph-Partitioning Heuristic 109

basis of their execution times. We implemented KL on the Connection Machine by

modifying our implementation for Mob, and gave KL an advantage by computing the

bisection widths and vertex pair selected for a swap in parallel.

The first column labeled KL in Table 6.2 reports the percentage by which the

average width of a bisection found by our implementation of KL exceeds the best-ever

bisection size (with any heuristic) on r500 in 100 runs with randomly chosen initial

partitions and on m1000 in 400 runs. The columns labeled 100, 1000, 2000 and 3000

report the same data for Mob when the number of iterations (one iteration is the

swapping of two mobs) is that in the column header. It is a characteristic of Mob

that the bisection width it discovers improves as the number of swaps increases, while

the bisection width discovered by KL improves only by choosing increasing numbers

of random initial partitions, thereby increasing the odds that a good partition will be

found.

Table 6.2 also reports the average execution time for one iteration of KL and for

one and 2,000 iterations of Mob on an 8K-node CM-2 machine. The run times reflect

the fact that the graphs are too small to use the Connection Machine fully.

Large Random Graphs To calibrate Mob further, we conducted experiments on

randomly generated graphs with up to 1M vertices and 2M edges. Our random graphs

were generated by selecting pairs of vertices at random and removing multiple edges

and self-loops to yield a total of V d/2 edges. (We did not use the standard approach of

generating edges by flipping a coin with the appropriate probability for all V (V − 1)/2

potential edges in a graph because the number of trials would have been far too large.)

The graphs are of small average degree d, ranging from d = 3 . . . 16, since this is the kind

found in VLSI CAD and processor-mapping problems. SA and KL have prohibitive

running times for such large graphs. Consequently, we measure the quality of our

results primarily by comparing them among themselves, although we do report results

given by KL on 16K-vertex graphs and one 32K-vertex graph.

The number of edges and vertices and average degree of the random graphs in our

experiments are given in Table 6.3. We used seven graphs of degree 4 and seven graphs

of degree 8 to study the effect of increasing graph size on solution quality and running

time. We performed experiments on nine graphs with 16K vertices and degrees ranging

from 3 to 16 to examine the effect of graph degree on the behavior of the Mob algorithm.

This data was averaged over at least 10 runs.

Mob Schedule for Graph Partitioning The mob schedule specifies how many

vertices can swap at one iteration and thus influences how the Mob heuristic converges.

The mob schedule used for random graphs is constructed as follows: the maximum

mob size of the schedule is set to 10% of the number of vertices in the graph. The mob

size is then decremented to 0 in 40 uniform steps. The process is then repeated. Mob

was always stopped after 4000 iterations. We found that this schedule worked well with

graphs of varying size and degree.

110 Chapter 6. The Mob Heuristic

Table 6.3: Large random graphs of small degree.

Graph V E d

Degree 4

4.16K 16,384 32,699 3.94
4.32K 32,768 12,996 3.97
4.64K 65,536 129,996 3.97
4.128K 131,072 259,898 3.97
4.256K 262,144 519,996 3.97
4.512K 524,288 1,039,999 3.97
4.1M 1,048,576 2,082,998 3.97

Degree 8

8.8K 8,192 31,997 7.81
8.16K 16,384 64,995 7.93
8.32K 32,786 129,994 7.93
8.64K 65,536 259,997 7.93
8.128K 131,072 519,996 7.93
8.256K 262,144 1,039,998 7.93
8.512K 524,288 2,079,997 7.93

Variable Degree

3.16K 16,384 24,574 2.99
4.16K 16,384 32,699 3.94
5.16K 16,384 40,923 4.99
6.16K 16,384 49,093 5.99
7.16K 16,384 57,199 6.98
8.16K 16,384 64,995 7.93
9.16K 16,384 73,693 8.99
10.16K 16,384 81,918 9.99
16.16K 16,384 130,996 15.99

6.2. The Mob Graph-Partitioning Heuristic 111

Summary of Results on Large Graphs Our experiments show that Mob has the

following desirable properties:

(a) The quality of solutions is consistently good.

(b) The algorithm can produce good solutions in a short time.

(c) The algorithm can produce increasingly better solutions with increasing time.

(d) The running time of the algorithm grows logarithmically if the number of pro-

cessors available is proportional to the graph size.

(e) The algorithm uses the parallel CM-2 hardware well.

Consistent Results Table 6.4 shows the bisection widths produced by a random

partition and the KL and Mob algorithms. The Mob/R column in this table reports

the ratio of the best Mob bisection width to the average random bisection width. We

see that the variation in the ratio of best-ever bisection width to average bisection

width is just about constant for graphs of constant degree, independent of size. This

is consistent with the theoretical bounds given by Bui[23] for random graphs of degree

> 18. As shown in Figure 6.2, these ratios rise with increasing degree toward an

asymptote of 1.

Rates of Convergence of Mob Table 6.4 also reports the convergence of KL and

Mob for increasing iterations. The data in this table are bisection widths as percentages

above the best-ever bisection width for these graphs. Again, Mob improves with the

number of iterations. This data and the average bisection widths with KL are plotted

in Figure 6.3.

Another measure of the consistency of Mob’s results is the number of iterations

needed to reach a fixed percentage above the best-ever bisection width. As shown

in Table 6.4, this number of iterations appears to be approximately constant over a

wide range of graph sizes for graphs of fixed degree. Also, the number of iterations to

achieve a given percentage decreases as the degree increases. Thus, very few iterations

are needed on high-degree graphs.

The results describing Mob’s behavior given here and in Section 6.3.3 were obtained

for random graphs. In fact, the work on the P-hardness of local search heuristics for

graph partitioning (see Section 5.1) and hypercube and grid embedding (see Section 5.1)

should serve as a base for constructing worst-case examples at small mob size, where

at each Mob iteration a small and constant improvement in the cost function is made,

thus forcing Mob to slowly “creep” towards a local minimum.

112 Chapter 6. The Mob Heuristic

Table 6.4: Graph-partitioning results for large random graphs. The bisection widths
of the KL and Mob graph-partitioning algorithms are compared to a graph partition
chosen at random. Convergence is measured by expressing Mob’s bisection width after
a number of iterations as a percentage over the best solution obtained. The bisection
widths computed by Mob after 100 iterations are smaller than those of KL.

Graph Bisections Bisection Quality (% over Best)

Graph Random KL Mob Mob/R KL 100 1000 2000 3000

Degree 4

4.16K 16,130 5,685 4,838 .2999 17.5 14.3 3.0 1.4 1.1
4.32K 32,224 11,477 9,824 .3049 16.8 13.2 3.2 2.8 1.0
4.64K 65,547 - 19,504 .2976 - 14.5 3.7 1.8 1.2
4.128K 131,173 - 39,010 .2974 - 14.7 4.2 1.8 0.9
4.256K 259,843 - 80,725 .3107 - 14.0 4.2 2.0 1.0
4.512K 520,538 - 156,294 .3003 - 14.4 4.8 2.1 1.3
4.1M 1,041,426 - 314,463 .3020 - 13.8 4.7 1.9 1.0

Degree 8

8.8K 16,013 8,100 7,716 .4819 5.0 5.8 1.5 1.0 0.9
8.16K 32,479 16,778 15,873 .4887 5.7 5.2 1.1 0.4 0.3
8.32K 64,991 33,924 31,670 .4873 7.1 5.4 1.3 0.7 0.5
8.64K 129,876 - 63,539 .4892 - 5.0 1.1 0.4 0.2
8.128K 260,034 - 127,003 .4884 - 5.1 1.2 0.5 0.2
8.256K 520,041 - 253,804 .4880 - 5.2 1.4 0.6 0.3
8.512K 1,039,073 - 507,824 .4887 - 5.1 1.4 0.6 0.2

Variable Degree

3.16K 12,290 3,402 2,653 .2159 28.2 22.8 5.3 3.0 2.1
4.16K 16,130 5,685 4,838 .2999 17.5 14.3 3.0 1.4 1.1
5.16K 20,443 8,482 7,520 .3679 12.9 10.3 2.1 1.1 0.9
6.16K 24,554 11,246 10,234 .4170 9.9 7.3 1.4 0.6 0.4
7.16K 28,608 14,212 13,030 .4555 9.1 6.4 1.6 0.8 0.7
8.16K 32,479 16,778 15,873 .4887 5.7 5.2 1.1 0.4 0.3
9.16K 36,865 20,123 19,046 .5166 5.7 4.4 1.0 0.5 0.3
10.16K 40,971 23,319 22,068 .5386 5.7 4.3 1.3 0.8 0.7
16.16K 65,517 42,722 41,324 .6307 3.4 2.7 0.7 0.4 0.3

6.2. The Mob Graph-Partitioning Heuristic 113

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

M
o
b

/

R

Degree

"16K Vertex Graph"

Figure 6.2: Ratios of best Mob bisection width to random bisection width for random
graphs plotted as a function of graph degree.

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

%

o
v
e
r

B
e
s
t

Iterations

Mob, D = 4
Mob, D = 8
KL, D = 4
KL, D = 8

Figure 6.3: Mob convergence behavior, measured by expressing Mob’s bisection width
after a number of iterations as a percentage over the best solution obtained.

114 Chapter 6. The Mob Heuristic

Table 6.5: Timing results (sec.) for graph partitioning for large random graphs: exe-
cution times were measured for KL on an 8K CM-2 and for 1 and 2000 Mob iterations
on an 8K, 16K, and 32K CM-2.

8K CM-2 16K CM-2 32K CM-2

Degree 4

Graph 1 KL 1 2000 1 2000 1 2000

4.16K - .0175 35.0 .0106 21.2 - -
4.32K - .0331 70.2 .0188 37.6 .0100 20.0
4.64K - .0650 130.0 .0347 69.4 .0220 44.0
4.128K - .1262 252.4 .0660 132.0 .0361 72.2
4.256K - .2469 493.8 .1277 255.4 .0669 133.8
4.512K - - - .2674 534.8 .1316 267.2
4.1M - - - - - .2597 519.4

Degree 8

8.8K 433 .0185 37.0 .0105 21.0 .0065 13
8.16K 1445 .0320 64.0 .0186 37.2 .0103 20.6
8.32K 4000 .0601 120.2 .0348 69.6 .0199 39.8
8.64K - .1230 246.0 .0730 146.0 .0360 72.0
8.128K - .2448 489.6 .1295 259.0 .0674 134.8
8.256K - - - .2610 522.0 .1298 259.6
8.512K - - - - - .2581 516.2

Variable Degree

3.16K - .0173 34.6 .0103 20.6 - -
4.16K - .0175 35.0 .0106 21.2 - -
5.16K 983 .0330 66.0 .0190 38.0 .0120 24.0
6.16K 961 .0362 72.4 .0179 35.8 .0101 20.2
7.16K 1266 .0340 68.0 .0183 36.6 .0102 20.4
8.16K 1444 .0320 64.0 .0186 37.2 .0103 20.6
9.16K 940 .0610 122.0 .0331 66.2 .0191 38.2
10.16K 1741 .0660 132.0 .0329 65.8 .0192 38.4
16.16K 1998 .0637 127.4 .0351 70.2 .0203 40.6

6.2. The Mob Graph-Partitioning Heuristic 115

Computation Time We also experimented with graphs of different sizes on ma-

chines with varying numbers of real processors. The results of these experiments are

reported in Table 6.5. We find that the time per iteration normalized by the num-

ber of virtual processors is nearly constant on the Connection Machine. That is, our

heuristic runs in nearly constant time per edge. For the largest graphs with 2M edges,

we used 4M virtual processors. Since the graph size that can be handled on the CM-2

is bounded by the memory required for each virtual processor, as more real proces-

sors and memory are added, execution times should keep decreasing and bisections of

increasingly larger graphs can be computed.

The absolute speed at which a bisection is produced by Mob is remarkable: On a

32K CM-2, a bisection of a 1M-vertex, 2M-edge random graph that is within 2 percent

of optimal is found in 520 seconds (less than 9 minutes).

116 Chapter 6. The Mob Heuristic

6.3 The Mob Graph-Embedding Heuristic

We modified the Mob heuristic for graph partitioning described in Section 6.2 and

applied it to grid and hypercube embedding. The performance of the Mob heuristics

was evaluated by an extensive series of experiments on the Connection Machine CM-

2[119,125]. The Mob neighborhood for grid and hypercube embedding is described

in Section 6.3.1, and the details of the implementation are given in Section 6.3.2. In

Section 6.3.3 and 6.3.4 we describe experiments with Mob. 1-to-1 mappings of graph

vertices to network nodes were used to model VLSI placement problems and standard

embedding problems and 16-to-1 mappings were chosen to model bulk parallelism. We

conducted experiments on randomly generated graphs of small (d = 3 . . . 16) degrees

with up to 500K vertices and 1M edges. On random graphs, the parallel complexity

of the Mob heuristic on the CM-2 was found to be time O(log |E|) with 2|E| proces-

sors. The absolute speed at which an embedding is produced shows that Mob can be

implemented very efficiently on a SIMD-style machine. Due to excessive run times,

heuristics previously reported in the literature can construct graph embeddings only

for graphs 100 to 1000 times smaller than those used in our experiments.

6.3.1 The Mob Neighborhood for Graph Embedding

The Mob heuristic for graph partitioning introduced in Section 6.2.1 is the basis for

our graph-embedding heuristics. We report on two new Mob heuristics for embedding

graphs into two-dimensional grid and hypercube networks. We now define the mob-

neighborhood MOB-N(S,m) structure for graph embedding.

Definition 26 The mob neighborhood MOB-N(S,m) of an embedding S is the set of

embeddings obtained from S by swapping m pairs of vertices.

The size of MOB-N(S,m) is n!
(n−2m)!m! . Clearly, it is not feasible to compute the

gains of all embeddings in the neighborhood MOB-N(S,m) of a solution S. If we were to

pick an embedding S at random from MOB-N(S,m), we should expect only a very small

change in the cost function on average. Therefore, for grid and hypercube embeddings

we use the neighborhood MOB-NR(S,m, d), a restriction of the mob-neighborhood

MOB-N(S,m) that uses the mob-selection rule MOB-R given below to look for a rough

approximation to the subset that causes the largest improvement in the embedding

cost.

We can approximate the gain of swapping m pairs of vertices by adding the gains

of the vertex swaps. For every embedding,
(|V1|

2

)

individual vertex swaps are possi-

ble. The processor-time cost of proposing all possible vertex swaps, computing their

gains, and then using the mob procedure to pick the swaps with the best gain, while

ensuring that swaps do not share vertices, would be O(|V1|2); this would be a waste of

computational resources and inappropriate for the graphs in our experiments, where

|V1| > 106. We want to generate an O(|V1|)-size subset of all possible vertex swaps.

6.3. The Mob Graph-Embedding Heuristic 117

A subset of size O(|V1|) swaps picked at random from the set of all possible swaps

will probably not contain a very large number of possible high-gain swaps. Therefore,

on the hypercube, a hypercube axis d is chosen at random and vertices are swapped

between hypercube neighbors across the chosen hypercube axis. On the grid, a dis-

tance d of ±1, 2, 4, 8, 16, . . . on either the X or Y axis is chosen at random and vertices

are swapped between grid nodes that have separation d. We make the meaning of

separation d unambiguous to rule out that a grid node swaps vertices with two other

nodes:

Definition 27 Let i(v) be the coordinate of a node in a linear array, grid axis or

hypercube. Let (v,w) be a pair of nodes with i(v) < i(w). On the linear array or grid

axis, the node pair (v,w) has separation d if |i(v)− i(w)| = |d|, and if ⌈i(v)/|d|⌉ is even

when d is positive, or if ⌈i(v)/|d|⌉ is odd when d is negative. On the hypercube, the

node pair (v,w) has separation d if the coordinates i(v) and i(w) differ in the dth bit.

This move set is geared to the communication bottlenecks of the underlying com-

puting network; its effect is that, while a vertex may not be able to move to its optimal

position in one step, it can approach this position in a very small number of steps.

Definition 28 The mob neighborhood MOB-NR(S,m, d) of an embedding S is the set

of embeddings obtained from S by selecting m pairs of vertices with separation d in

the network with the MOB-R rule and swapping these vertices.

Definition 29 The rule MOB-R(S,m, r1, r2, d) selects a mob of size m as follows: let

r1, r2 be random real numbers drawn uniformly from the interval (0, 1). For each

vertex pair (v,w) that have separation d in the network, let gain(v,w) be the change

in the embedding cost if v and w are swapped, and let gain(v,w) be positive if the

embedding cost decreases. Let SX(g) = {v ∈ X | gain(v,w) ≥ g}. Choose gX such

that |SX(gX + 1)| < m ≤ |SX(gX)|. Let mp = |SX(gX)| be the size of the pre-mob

SX(gX). Each element in SX(gX) is indexed from 0 to mp − 1. A mob of size m is

selected from SX(gX) by adding ⌊r1mp⌋ to each index modulo mp and selecting those

with index less than m.

The rule MOB-R(S,m, r1, r2, d) selects a group of high-gain vertices of size mob to

move a distance d. To avoid sorting by gain, we use an adaptive binary search algorithm

to identify a pre-mob of vertices with gain g or larger in each set of the embedding,

where g is the smallest gain for which at least mob vertices have a gain greater than or

equal to g. We select mob vertices at random from this pre-mob.

We also implemented routines to choose exactly m vertices whose individual gains

are largest, but neither sorting or randomized methods provided adequate performance.

Instead we choose vertices at random among all vertices in SX(gX). While in so doing

we may miss some vertices with large gain, our heuristic is very effective.

118 Chapter 6. The Mob Heuristic

6.3.2 Implementation of Mob

We now discuss how the Mob grid-and hypercube-embedding heuristic was implemented

to make full use of the CM-2’s parallel hardware and instruction set. Since the heuris-

tics are closely related to the Mob graph-partitioning heuristic, we do not repeat the

description in Section 6.2.2 of operations common to both types of the Mob heuristic.

We used the same edge data structure as for the Mob graph-partitioning heuristic. The

operations of computing cost, gain, selecting a mob from a pre-mob, and exchanging

vertices are identical to the operations used for graph-partitioning, and are described

in Section 6.2.2. The move-generation routine limits the size of the neighborhood of an

embedding in order to use a reasonable number of processors and still allow the Mob

heuristic to converge quickly to a good solution. We show how to construct a vertex

data structures that can exchange vertices with minimal communication overhead.

Move Generation When more than one vertex is embedded on a network node,

ordering the vertices on a network node by their gain generates swaps with higher added

gains. We have found that this significantly speeds up the convergence behavior of the

Mob heuristic. We experimented with several move-generating procedures and found

that the cost of sorting vertex gains, segmented by the network nodes, is prohibitive on

the CM-2. We therefore implemented a compromise in which every network node finds

the vertex with highest gain and swaps it into the first location of the node segment

in the vertex array. We believe that this max-gain shuffle offers an excellent trade-off

between computation time and convergence behavior.

Vertex Data Structure The number of vertices at a network node must remain

constant to ensure correct operation of our heuristic. Therefore, after every vertex has

computed its gain, a separate vertex data structure is used to form pairs of vertices to

be swapped. (This data structure was not needed for the graph-partitioning heuristic

in Section 6.2.2, since it was not necessary to form vertex pairs to be swapped.) The

vertices are stored in a linear array, and the edge data structure maintains link pointers

to the vertex processors. The vertex data structure is designed to facilitate rapid vertex

exchanges. Vertices embedded on the same network node are adjacent in the vertex

array. Filler vertices are added at the initialization stage of the Mob heuristic to ensure

that every network node has the same number of embedded vertices. Let V1 be the

number of vertices to be embedded, |V2| the number of network nodes, and k = |V1|/|V2|
the number of embedded vertices per node. Every network node can communicate and

swap vertices with a network node a distance d away by simply adding kd modulo

|V2| to its own address in the vertex array. Such monotonic communication patterns

are asymptotically easier to route on most architectures than general patterns. For

instance, the pattern can be implemented by a chain of nearest-neighbor communication

operations on the hypercube network of the Connection Machine.

6.3. The Mob Graph-Embedding Heuristic 119

We experimented with an alternative method of generating vertex swaps, that re-

quires only the edge data structure. Each vertex processor, represented by the first

edge processor in the edge data structure, computes the address of the network node

to which it will move. Computing the address of this target node is a simple arithmetic

operation. To form a pair of vertices to be swapped, the vertex at the target node

has to be located in the edge data structure; this is an operation not easily supported

by the edge data structure. One easy solution is to sort the vertices by their target

addresses. We concluded that the cost of transferring information to and from the

vertex data structure was an order of magnitude smaller than the cost of sorting node

addresses, and gave us a more flexible data structure.

6.3.3 Experimental Results for Random Graphs

We evaluated the performance of the Mob hypercube and grid-embedding algorithms

by conducting experiments on the CM-2. 1-to-1 mappings of graph vertices to network

nodes were used to model VLSI placement problems and standard embedding problems.

We also wanted to model bulk parallelism, where n virtual processors are embedded

into a computing network of size n/ log n, and chose 16-to-1 mappings as a rough

approximation of log n-to-1 mappings. The random graphs studied here are more than

1000 times larger than graphs previously studied in the literature. Serial algorithms

such as SA or KL would have prohibitive running times for such large graphs. We

measured the solution quality, convergence as a function of time, and running times

with a varying number of processors, and compared Mob to other algorithms. The

Mob embedding heuristics produce excellent solutions, converge quickly, run in time

O(log |E|) with 2|E| processors, and are well matched to the parallel CM-2 hardware.

We conducted experiments on randomly generated graphs with up to 512K vertices

and 1M edges. (See Section 6.2.3 on how these graphs were generated.) The number of

edges, vertices and average degree of the random graphs used in our experiments are

the same as used for graph partitioning, and are given in Table 6.3 in Section 6.2.3.

We used six graphs of average degree 4 and six graphs of average degree 8 to study

the effect of increasing graph size on solution quality and running time. We performed

experiments on nine graphs with 16K vertices and average degrees ranging from 3 to

16 to examine the effect of graph degree on the behavior of the Mob algorithms. The

data was averaged over at least five runs.

Mob Schedule for Graph Embedding The mob schedule specifies how many ele-

ment pairs can swap at one iteration, and thus influences how the grid and hypercube

Mob heuristic converges. The mob schedule used for random graphs is constructed as

follows: the maximum mob size of the schedule is set to the number of vertex pairs

divided by 8. The mob size is then decremented in 16 uniform steps. The process is

repeated, doubling the number of steps required to decrement the mob size from the

maximum value every time. Mob was always stopped after 8000 iterations.

120 Chapter 6. The Mob Heuristic

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

M
o
b

/

R

Degree

"cube 1:1"
"cube 16:1"
"grid 1:1"
"grid 16:1"

Figure 6.4: Ratios of best Mob embedding cost to random embedding cost for random
graphs plotted as a function of graph degree.

The maximum mob size corresponds to two vertex pairs per hypercube node in

the 16-to-1 mappings and thus shows a preference for the specially selected pairs of

maximum gain at each hypercube node, but also moves other vertex pairs. We ex-

perimented with various schedules and concluded that this schedule combined initial

rapid convergence and very good results at the later stages of the algorithm, when the

possible improvements get smaller and smaller. We found that this schedule worked

well with 16-to-1 and 1-to-1 mappings, and with both grid and hypercube embeddings.

Solution Quality of Mob The quality of the solutions produced by Mob is shown

in Tables 6.6 and 6.7 for 1-to-1 and 16-to-1 embeddings. Table 6.6 gives results for

hypercube embeddings, Table 6.7 gives results for grid embeddings. The results in

these tables are expressed as average edge lengths, and have to be multiplied by the

number of edges nd/2 to give total embedding costs. The columns labeled D give the

dimension of the hypercube in which the graph is embedded. For the grid embeddings,

D is the dimension of the hypercube containing a 2⌊D/2⌋ × 2⌈D/2⌉ grid. The columns

labeled R give the average edge length produced by a random embedding, and those

columns labeled Mob give the average edge length in an embedding produced by Mob.

We can see that the Mob heuristic offers impressive reductions in embedding costs.

The columns labeled Mob/R give the ratio of improvement produced by Mob over a

random solution.

6.3. The Mob Graph-Embedding Heuristic 121

Table 6.6: Hypercube-embedding results for large random graphs. The costs of the
Mob hypercube-embedding algorithm, expressed as average edge length, are compared
to a hypercube embedding chosen at random. Convergence is measured by expressing
Mob’s cost after a number of iterations as a percentage over the best solution obtained.

16-to-1 mappings
Iterations

Graph D R Mob Mob/R 100 1000 4000
Degree 4
4.16K 10 5.0 1.538 .3076 50.0 13.1 3.6
4.32K 11 5.5 1.720 .3127 51.3 10.6 2.2
4.64K 12 6.0 1.861 .3102 55.8 13.9 3.0
4.128K 13 6.5 2.022 .3110 68.7 12.3 4.0
4.256K 14 7.0 2.175 .3107 72.7 13.3 3.9
4.512K 15 7.5 2.369 .3159 76.6 12.6 1.8
Degree 8
8.8K 9 4.5 2.207 .4904 20.6 4.9 1.0
8.16K 10 5.0 2.460 .4920 24.6 5.3 1.2
8.32K 11 5.5 2.712 .4931 25.4 4.7 0.9
8.64K 12 6.0 2.955 .4925 31.4 5.7 1.8
8.128K 13 6.5 3.201 .4925 29.6 6.6 1.7
8.256K 14 7.0 3.473 .4961 31.7 5.0 0.8
Variable Degree
3.16K 10 5.0 1.148 .2296 79.8 19.4 5.1
4.16K 10 5.0 1.538 .3076 50.0 13.1 3.6
5.16K 10 5.0 1.874 .3748 34.9 9.4 1.7
6.16K 10 5.0 2.111 .4222 28.7 7.6 1.3
7.16K 10 5.0 2.312 .4624 25.4 6.0 1.1
8.16K 10 5.0 2.460 .4920 24.6 5.3 1.2
9.16K 10 5.0 2.607 .5214 23.8 4.6 1.1
10.16K 10 5.0 2.719 .5434 21.3 4.3 1.1
16.16K 10 5.0 3.186 .6372 13.5 2.7 0.5

1-to-1 mappings
Iterations

Graph D R Mob Mob/R 100 1000 4000
Degree 4
4.16K 14 7.0 2.559 .3655 62.7 16.1 6.6
4.32K 15 7.5 2.783 .3711 62.5 16.0 3.2
4.64K 16 8.0 2.924 .3655 66.2 16.0 2.7
4.128K 17 8.5 3.111 .3660 90.8 16.2 5.0
4.256K 18 9.0 3.251 .3612 97.7 17.3 4.5
4.512K 19 9.5 3.398 .3577 98.9 19.8 4.2
Degree 8
8.8K 13 6.5 3.497 .5380 28.5 6.9 1.2
8.16K 14 7.0 3.759 .5370 30.3 6.6 1.4
8.32K 15 7.5 4.007 .5343 31.8 7.1 1.6
8.64K 16 8.0 4.261 .5326 32.9 7.6 2.5
8.128K 17 8.5 4.517 .5314 33.8 8.5 2.7
8.256K 18 9.0 4.781 .5312 35.1 8.3 2.4
Variable Degree
3.16K 14 7.0 2.123 .3033 80.3 24.2 4.5
4.16K 14 7.0 2.559 .3655 62.7 16.1 6.6
5.16K 14 7.0 2.975 .4250 47.9 11.6 4.5
6.16K 14 7.0 3.291 .4701 40.0 9.1 2.2
7.16K 14 7.0 3.553 .5075 34.5 7.6 1.5
8.16K 14 7.0 3.759 .5370 30.3 6.6 1.4
9.16K 14 7.0 3.933 .5619 27.4 6.4 1.7
10.16K 14 7.0 4.085 .5836 24.3 5.7 1.6
16.16K 14 7.0 4.666 .6666 17.0 4.5 1.0

122 Chapter 6. The Mob Heuristic

Table 6.7: Grid-embedding results for large random graphs. The costs of the Mob
grid-embedding algorithm, expressed as average edge length, are compared to a grid
embedding chosen at random. Convergence is measured by expressing Mob’s cost after
a number of iterations as a percentage over the best solution obtained.

16-to-1 mappings
Iterations

Graph D R Mob Mob/R 100 1000 4000
Degree 4
4.16K 10 21.3 6.142 .2884 38.7 9.6 1.7
4.32K 11 32.0 9.312 .2910 40.2 11.8 2.5
4.64K 12 42.6 12.486 .2931 41.5 12.9 2.9
4.128K 13 64.0 18.917 .2956 43.4 13.0 2.8
4.256K 14 85.3 25.186 .2953 49.6 12.4 1.3
4.512K 15 128.0 37.787 .2952 52.8 12.2 3.3
Degree 8
8.8K 9 15.9 7.694 .4839 16.8 3.4 0.3
8.16K 10 21.3 10.226 .4801 17.7 4.1 0.9
8.32K 11 32.1 15.525 .4836 18.1 4.4 0.7
8.64K 12 42.7 20.737 .4856 18.5 4.8 1.1
8.128K 13 64.0 31.063 .4854 18.5 5.2 1.3
8.256K 14 85.3 41.672 .4885 18.7 5.3 1.2
Variable Degree
3.16K 10 21.2 4.417 .2074 61.8 15.7 3.4
4.16K 10 21.3 6.142 .2884 38.7 9.6 1.7
5.16K 10 21.3 7.688 .3609 29.2 6.8 1.0
6.16K 10 21.2 8.727 .4117 24.2 6.0 1.3
7.16K 10 21.3 9.597 .4506 20.3 4.7 1.0
8.16K 10 21.3 10.226 .4801 17.7 4.1 0.9
9.16K 10 21.3 10.934 .5133 15.7 3.6 0.7
10.16K 10 21.3 11.450 .5376 14.7 3.3 0.7
16.16K 10 21.3 13.449 .6314 9.8 2.2 0.5

1-to-1 mappings
Iterations

Graph D R Mob Mob/R 100 1000 4000
Degree 4
4.16K 14 85.1 26.702 .3138 54.1 16.9 4.6
4.32K 15 128.3 40.387 .3148 55.9 16.4 4.3
4.64K 16 170.7 55.386 .3245 59.9 17.2 4.5
4.128K 17 256.1 81.779 .3193 59.9 18.1 3.9
4.256K 18 341.1 108.484 .3180 65.6 17.4 4.0
4.512K 19 512.2 163.316 3189 68.4 18.7 4.2
Degree 8
8.8K 13 64.1 31.987 .4990 24.9 7.9 2.2
8.16K 14 85.5 42.779 .5003 24.8 7.8 1.9
8.32K 15 127.9 64.102 .5012 28.4 7.9 1.7
8.64K 16 170.7 85.097 .4985 27.8 8.1 2.0
8.128K 17 256.5 127.866 .4985 29.7 9.5 4.9
8.256K 18 341.4 170.619 .4998 29.7 8.0 1.7
Variable Degree
3.16K 14 85.1 19.946 .2344 77.6 23.7 6.3
4.16K 14 85.1 26.702 .3138 54.1 16.9 4.6
5.16K 14 85.2 32.750 .3844 39.8 12.3 3.1
6.16K 14 85.8 36.978 .4310 33.7 10.1 2.3
7.16K 14 85.3 40.232 .4717 28.4 8.6 2.3
8.16K 14 85.5 42.779 .5003 24.8 7.8 1.9
9.16K 14 85.1 45.511 .5348 22.4 6.2 1.5
10.16K 14 85.3 47.416 .5559 19.8 6.1 1.4
16.16K 14 85.3 55.061 .6455 14.8 4.2 1.0

6.3. The Mob Graph-Embedding Heuristic 123

Our experiments show:

(a) For fixed degree d, Mob/R is largely independent of graph size.

(b) 16-to-1 mappings give slightly better Mob/R ratios than 1-to-1 mappings. When

communication costs are modeled by edge lengths, this shows the advantage of

the bulk-parallel model in reducing overall network-communication bandwidth.

(c) The grid-embedding Mob heuristic achieves lower Mob/R ratios than the hyper-

cube Mob heuristic.

(d) The ratio Mob/R rises with increasing average graph degree toward an asymptote

of 1, as shown in Figure 6.4. The differences between grid and hypercube embed-

dings and between 1-to-1 and 16-to-1 embeddings become smaller with increasing

graph degree.

Rates of Convergence of Mob Tables 6.6 and 6.7 also report the convergence of

Mob for an increasing number of iterations. The columns labeled Iterations show the

average embedding cost as percentages above the best-ever embedding cost, produced

after 100, 1000 and 4000 iterations of Mob, respectively. Our experiments indicate

that the number of iterations needed to reach a fixed percentage above the best-ever

embedding cost appears to be approximately constant, and therefore independent of

graph size or network size. This important observation holds for hypercube and grid

embeddings and for 1-to-1 and 16-to-1 mappings. The behavior is surprising, since

vertices must travel larger distances, especially in grid networks, to reduce average edge

costs by a fixed ratio; it points out the importance and appropriateness of Mob’s set of

moves along hypercube axes. The fact that Mob’s rate of convergence is independent

of graph size was also observed for graph partitioning (see Section 6.2.3).

The Iterations columns in Tables 6.6 and 6.7 show that the reductions in embedding

costs decrease rapidly as the total number of iterations increases. The rate of conver-

gence is shown in Figure 6.5 for 16-to-1 mappings of the Mob grid and hypercube-

embedding algorithms. Thus, a good solution is produced rapidly; further improve-

ments can be obtained if enough computation time is available. Also, the number of

iterations to achieve a given percentage decreases as the degree increases, as seen in

Figure 6.5. Thus, fewer iterations are needed on high-degree graphs.

Computation Time The edge and vertex data structures are never used at the same

time in the Mob heuristic. The edge data structure, the larger of the two, requires 2|E|
processors. The scan operations are the most complex operations in an iteration of

Mob. Thus, one iteration of Mob should run in time O(log |E|). This was tested by

experiments on the CM-2 with graphs of different sizes, in which the number of real

processors varied between 8K and 32K and the number of virtual (simulated) processors

ranged between 16K and 2M.

124 Chapter 6. The Mob Heuristic

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

%

o
v
e
r

B
e
s
t

Iterations

"cube 16:1, D = 4"
"cube 16:1, D = 8"
"grid 16:1, D = 4"
"grid 16:1, D = 8"

Figure 6.5: Mob convergence behavior, measured by expressing Mob’s bisection width
after a number of iterations as a percentage over the best solution obtained.

The results of these experiments are reported in Table 6.8 for hypercube embeddings

and in Table 6.9 for grid embeddings. We find that the time per iteration normalized

by the number of virtual processors grows logarithmically on the CM-2. Since the

graph size that can be handled on the CM-2 is bounded by the memory required

for each virtual processor, as more real processors and memory are added, execution

times should keep decreasing and embeddings of increasingly larger graphs should be

computable.

As observed above, the total number of iterations required by Mob to reach a fixed

percentage above the best-ever embedding cost appears to be approximately constant.

It follows that the empirical parallel complexity of the Mob heuristic is time O(log |E|)
with 2|E| processors.

Tables 6.8 and 6.9 also indicate that one iteration of the Mob grid-embedding heuris-

tic took approximately 40-50% more time than the corresponding iteration of the Mob

hypercube-embedding heuristic, since the PERIMETER cost and gain functions require

more arithmetic operations than their HCUBE equivalents. The 16-to-1 embeddings

execute slightly slower than the 1-to-1 mappings, since Mob must select a vertex with

maximum gain for every node and shuffle it to the head of the node’s vertex list (as

described in detail in the move-generation stage in Section 6.3.2).

The absolute speed at which an embedding is produced by Mob is remarkable, and

shows that Mob can be implemented very efficiently on a SIMD-style machine. On a

6.3. The Mob Graph-Embedding Heuristic 125

Table 6.8: Timing results (sec.) for hypercube embedding for large random graphs.
Execution times were measured for 1 Mob iteration on an 8K, 16K, and 32K CM-2.

16-to-1 mappings 1-to-1 mappings

Degree 4

Graph D 8K CM-2 16K CM-2 32K CM-2 D 8K CM-2 16K CM-2 32K CM-2

4.16K 10 .0532 .0306 - 14 .0395 .0222 -
4.32K 11 .1089 .0547 .0314 15 .0740 .0405 .0223
4.64K 12 .2012 .1050 .0564 16 .1650 .0760 .0416
4.128K 13 .4060 .2113 .1139 17 .3073 .1572 .0799
4.256K 14 - .4165 .2190 18 - .3111 .1630
4.512K 15 - - .4302 19 - - .3160

Degree 8

8.8K 9 .0417 - - 13 .0323 - -
8.16K 10 .0734 .0446 - 14 .0590 .0329 -
8.32K 11 .1434 .0754 .0475 15 .1133 .0602 .0353
8.64K 12 .2841 .1618 .0803 16 .2305 .1169 .0664
8.128K 13 - .3163 .1544 17 - .2360 .1210
8.256K 14 - - .3031 18 - - .2441

Variable Degree

3.16K 10 .0555 .0310 - 14 .0406 .0225 -
4.16K 10 .0532 .0306 - 14 .0395 .0222 -
5.16K 10 .0712 .0462 - 14 .0610 .0346 -
6.16K 10 .0751 .0448 - 14 .0595 .0337 -
7.16K 10 .0737 .0418 - 14 .0592 .0328 -
8.16K 10 .0734 .0446 - 14 .0590 .0329 -
9.16K 10 .1157 .0648 - 14 .0974 .0540 -
10.16K 10 .1140 .0633 - 14 .0963 .0529 -
16.16K 10 .1106 .0617 - 14 .0988 .0525 -

126 Chapter 6. The Mob Heuristic

Table 6.9: Timing results (sec.) for grid embedding for large random graphs. Execution
times were measured for 1 Mob iteration on an 8K, 16K, and 32K CM-2.

16-to-1 mappings 1-to-1 mappings

Degree 4

Graph D 8K CM-2 16K CM-2 32K CM-2 D 8K CM-2 16K CM-2 32K CM-2

4.16K 10 .0726 .0428 - 14 .0640 .0355 -
4.32K 11 .1405 .0768 .0441 15 .1161 .0640 .0395
4.64K 12 .2682 .1422 .0784 16 .2252 .1152 .0691
4.128K 13 .5502 .2824 .1514 17 .4600 .2342 .1277
4.256K 14 - .5630 .2940 18 - .4762 .2500
4.512K 15 - - .5932 19 - - .5394

Degree 8

8.8K 9 .0583 - - 13 .0532 - -
8.16K 10 .1094 .0615 - 14 .0974 .0566 -
8.32K 11 .2092 .1224 .0643 15 .1886 .1134 .0626
8.64K 12 .4127 .2232 .1151 16 .4015 .2229 .1091
8.128K 13 - .4241 .2273 17 - .3950 .2156
8.256K 14 - - .4495 18 - - .4246

Variable Degree

3.16K 10 .0730 .0417 - 14 .0593 .0448 -
4.16K 10 .0726 .0428 - 14 .0640 .0355 -
5.16K 10 .1095 .0624 - 14 .0974 .0554 -
6.16K 10 .1101 .0632 - 14 .0976 .0563 -
7.16K 10 .1089 .0623 - 14 .0984 .0569 -
8.16K 10 .1094 .0615 - 14 .0974 .0566 -
9.16K 10 .1758 .1056 - 14 .1581 .0951 -
10.16K 10 .1734 .1060 - 14 .1607 .0962 -
16.16K 10 .1771 .0956 - 14 .1648 .0916 -

6.3. The Mob Graph-Embedding Heuristic 127

32K CM-2 it takes approximately 1720 seconds (≈ 29 minutes) to find an embedding

of a 500K-vertex, 1M-edge graph into a 15-dimensional hypercube, and approximately

1264 seconds (≈ 21 minutes) to embed that graph into a 19-dimensional hypercube.

It takes approximately 2370 seconds (≈ 40 minutes) to find an embedding of a 500K-

vertex, 1M-edge graph into a 256 × 64 grid, and approximately 2157 seconds (≈ 36

minutes) to embed that graph into a 1024× 512 grid. All these embeddings are within

5 percent of best-ever.

Comparison to Graph-partitioning Algorithms To calibrate our results, we

measured the graph partitions produced by the hypercube and grid embeddings. A

graph embedding S is a mapping of graph vertices to network nodes. S is completely

described by storing for every vertex v the network node on which v is embedded. In the

implementation of Mob, this node field contains the hypercube address of the network

node, this is used directly for hypercube embeddings, and from it x, y-coordinates are

computed for grid embeddings. A graph partition P = (X,Y) can be generated from

an embedding S by cutting the embedding in half along a hyperplane. A bit position

is selected in the node field, and all vertices with a 0 in that bit position are placed

in set X of the partition P , and all vertices with a 1 in that bit position are placed

in set Y . A d-dimensional hypercube network has d hyperplanes and thus d projected

partitions from which we can choose the partition with minimum cost. For hypercube

embeddings, we found that the cost of the projected partitions, measured by the number

of edges between the two sets, is about the same for all cutting hyperplanes. For grid

embeddings, the two hyperplanes corresponding to vertical and horizontal lines cutting

the grid in half gave the best partitions.

Table 6.10 shows how the Mob hypercube and grid embedding algorithms perform

as graph-partitioning algorithms. The data for random graphs on the performance

of the Mob graph-partitioning algorithm and the KL graph-partitioning algorithm is

taken from our study of local search graph-partitioning heuristics in Section 6.2.3. The

cost of the graph embeddings P = (X,Y) is given in Table 6.10 by the percentage of all

edges that cross the cut between X and Y . We found that both 16-to-1 Mob embedding

algorithms produced graph partitions comparable to the Mob graph-partitioning algo-

rithm. The KL graph-partitioning algorithm, which we ran on graphs with only 32K

(or fewer) vertices due to running time considerations, was significantly outperformed

by both 16-to-1 Mob embedding algorithms. KL was slightly worse than the 1-to-1

Mob grid-embedding algorithm and slightly better than the 1-to-1 Mob hypercube-

embedding algorithm.

The performance of the Mob embedding algorithms used as graph-partitioning al-

gorithms is remarkable, considering that Mob is optimizing the “wrong” cost function.

While the data in Table 6.10 cannot show conclusively how good the Mob embedding

algorithms are, the existence of a better graph-embedding algorithm would also imply

the existence of a better graph-partitioning algorithm.

128 Chapter 6. The Mob Heuristic

Table 6.10: Graph partitions of random graphs generated by cutting the hypercube
and grid embeddings across a hyperplane. Bisection widths are expressed as average
edge lengths. The Mob hypercube and grid heuristic produce bisection widths that are
better than those of the KL heuristic.

Graph R MobPartition KL Partition Cube 16:1 Cube 1:1 Grid 16:1 Grid 1:1

Degree 4

4.16K .5 .1480 .1739 .1520 .1808 .1503 .1608
4.32K .5 .1512 .1765 .1551 .1835 .1510 .1616
4.64K .5 .1500 - .1541 .1804 .1521 .1619
4.128K .5 .1500 - .1545 .1813 .1525 .1636
4.256K .5 .1552 - .1547 .1797 .1527 .1629
4.512K .5 .1503 - .1567 .1770 .1524 .1633

Degree 8

8.8K .5 .2411 .2531 .2442 .2660 .2456 .2539
8.16K .5 .2442 .2581 .2453 .2671 .2449 .2539
8.32K .5 .2436 .2610 .2462 .2658 .2468 .2539
8.64K .5 .2444 - .2458 .2652 .2484 .2539
8.128K .5 .2442 - .2459 .2648 .2473 .2543
8.256K .5 .2440 - .2478 .2650 .2476 .2543

Variable Degree

3.16K .5 .1080 .1384 .1135 .1485 .1096 .1200
4.16K .5 .1480 .1739 .1520 .1808 .1503 .1608
5.16K .5 .1838 .2073 .1863 .2103 .1858 .1951
6.16K .5 .2085 .2290 .2100 .2330 .2095 .2220
7.16K .5 .2278 .2485 .2303 .2521 .2295 .2408
8.16K .5 .2442 .2581 .2453 .2671 .2449 .2539
9.16K .5 .2585 .2730 .2596 .2794 .2611 .2701
10.16K .5 .2694 .2847 .2710 .2910 .2729 .2814
16.16K .5 .3155 .3261 .3181 .3323 .3187 .3258

6.3. The Mob Graph-Embedding Heuristic 129

Comparison to Simulated Annealing Chen et al.[28,29] evaluated the perfor-

mance of 1-to-1 hypercube-embedding heuristics. The graphs to be embedded were

random graphs, random geometric graphs, random trees, hypercubes, and hypercubes

with randomly added and deleted edges. All graphs had 128 vertices and were embed-

ded in a 7-dimensional hypercube. Among the algorithms tested, simulated annealing

with a move set limited to swapping vertex pairs along hypercube edges produced the

best solutions.

We obtained the ten random graphs used by Chen et al. and also generated ten

random graphs with our own generator. For each graph five runs were performed, and

results were averaged over these runs. Each run of Mob was limited by 8000 iterations,

and a schedule as described above was used. Chen et al. report that on ten random

graphs of average degree 7, a reduction of 58.1% over the cost of a random embedding

was achieved. We found that the average solution produced by Mob is 58.28% for Chen

et al.’s graphs and 58.17% for our own graphs. Thus Mob’s performance was about

equal to the performance of a tuned version of SA.

Our experiments on much larger graphs, shown in Table 6.6, indicate that the

Mob achieves a 51.7% reduction for degree-7 graphs, with very little variation between

individual runs. Thus, the difference between 58.1% and 51.7% may well be an artifact

of using very small graphs. It would be interesting to see how SA performs on larger

examples, unless excessive running time prohibits experiments.

6.3.4 Experimental Results for Geometric Graphs

We performed experiments on random geometric graphs, which have more structure

than random graphs. The cost ratio of minimum embedding to random embedding

tends to be much smaller than for random graphs. This makes it more desirable to

find a good embedding, but also suggests that a good embedding is harder for a local

search heuristic to find. A random geometric graph Gn,d with n vertices and average

degree d is generated by randomly selecting n points in the unit square [0, 1) × [0, 1).

These points are the vertices of Gn,d. The geometric graph Gn,d contains an edge if the

vertex pairs are a distance r or less apart, as measured by a distance metric. To obtain

graphs of degree d, the distance parameter r is set to the value rd. Figure 6.6(a) shows

a random geometric graph, and Figure 6.6(b) shows a grid embedding of this graph.

The following three metrics have been used in the literature:

(a) Manhattan metric r = |x1 − x2| + |y1 − y2|
rd =

√

d/2n

(b) Euclidean metric r =
√

|x1 − x2|2 + |y1 − y2|2
rd =

√

d/πn

(c) Infinity metric r = max(|x1 − x2|, |y1 − y2|)
rd =

√

d/4n

130 Chapter 6. The Mob Heuristic

Figure 6.6: (a) A random geometric graph on the unit plane. (b) Grid embedding of
the geometric graph.

For our experiments we used the Manhattan metric, since it matches the cost func-

tion used for grid embeddings. The graph-partitioning experiments by Johnson et

al.[65] were performed on random geometric graphs generated with the Euclidean met-

ric. Chen et al.[28,29] used random geometric graphs generated with the infinity metric

to test hypercube-embedding algorithms.

Efficient Construction of Random Geometric Graphs We now address the

problem of efficiently generating geometric graphs. The naive method of computing

the distance of every vertex pair on the unit square leads to an O(n2) work algorithm.

This approach was perfectly adequate in previous studies, which concerned themselves

with the embeddings of small graphs. However, a more sophisticated method is required

for graph sizes of 1, 000, 000 vertices or more.

Our approach was to divide the unit square into 1/rd × 1/rd cells. It follows that

all vertices a distance rd or less apart must be located in the same cell or in one of the

eight neighboring cells. This holds for any of the above metrics. Every vertex computes

the cell it belongs to, and the vertices are sorted by their cell value. Vertices in the

same cell are now adjacent in the vertex array. An indirection table is constructed

that contains for every cell i the address in the vertex array of the first vertex in cell

i, or a value of −1 if cell i is empty; this facilitates finding the contents of the eight

neighboring cells.

The number of cells on the unit square is 1/rd × 1/rd = 2n/d for the Manhattan

metric. n vertices were distributed randomly over the unit square. Thus every cell

contains an average of d/2 vertices. An average total of 9nd/2 distance computations

6.3. The Mob Graph-Embedding Heuristic 131

is done to generate nd/2 edges, and the total computational work is O(n log n + nd).

Under the realistic assumption that sorting n vertices by their cell value takes time

O(log2n) with O(n) processors, the above algorithm is easily parallelized to run in

time O(log2 n+ d) with O(n) processors. Our experiments show that the constants are

very small.

Note that the above search structure works only for points distributed randomly

in the plane. More sophisticated algorithms, such as quad-trees, Voronoi diagrams,

and trapezoidal decompositions, have been developed in the field of computational

geometry to deal with nearest-neighbor problems. The considerable implementation

complexity and (usually) O(n log n) storage-space requirements make these algorithms

inappropriate for the special case of generating geometric graphs, since the much sim-

pler algorithm above exists.

We can derive a simple upper bound for the bisection width b of a geometric graph

Gn,d. Assume a vertical line divides the unit square into two sets containing n/2 vertices

each. We can place 1/rd cells along both sides of the line that contain an average of

d/2 vertices when the Manhattan metric is used. The edges Gn,d are of length rd or

less, so any edge that crosses the vertical line must have its two vertices in the cells

along the vertical line. A vertex in one cell can be connected by an edge to all vertices

in the three neighboring cells across the vertical line. Thus bmin, the average number

of edges crossing the vertical line, is

bmin ≤ 3
1

rd

(

d

2

)2

= 3
√

n

(

d

2

)3/2

= O(
√

n)

In a random graph partitioning of Gn,d half the edges cross the cut, so the average cost

br of a random graph partitioning is

br =
nd

4

We estimate gmin, the minimum cost grid embedding, by superimposing a
√

n × √
n

grid on the unit square and assuming that the vertices of Gn,d are mapped to grid

vertices close to their locations on the unit square. Thus the total edge cost gmin under

the Manhattan metric is approximately

gmin ≈ nd

2
rd

√
n = n

(

d

2

)3/2

whereas gr, the average cost of a random embedding of Gn,d, can be estimated by

gr =
nd

2

√
n

Since we can fold the
√

n × √
n grid into a hypercube of dimension log n, the same

estimate as given above holds for hmin, the minimum cost hypercube embedding:

hmin ≈ nd

2
rd

√
n = n

(

d

2

)3/2

132 Chapter 6. The Mob Heuristic

whereas hr, the average cost of a random hypercube embedding of Gn,d can be estimated

by

hr =
nd

4
log n

The above estimates indicate that, for geometric graphs with increasing size, the ratio

of minimum-cost embeddings to random embeddings decreases asymptotically to 0.

The columns labeled Slice in Tables 6.12 and 6.13 show results for the Slice heuris-

tic, introduced below, that are close to the above estimates. (The results presented in

the tables are expressed as average edge lengths, and must be multiplied by the number

of edges nd/2 to give total embedding costs.)

The Slice Heuristic Intuitively, if every randomly generated vertex of Gn,d on the

unit square were shifted by a small distance so that the point occupied a unique grid

location, the resulting grid embedding should be quite good, and certainly better than

a randomly generated mapping of vertices to the grid. Such a heuristic can serve both

as a starting solution for the Mob heuristic and as a reference point to observe Mob’s

convergence from a random solution.

The Slice heuristic presented here is a divide-and-conquer algorithm to find unique

vertex to grid mappings by slightly displacing the vertices on the unit square. The

Slice heuristic is closely related to the slicing structure tree introduced by Otten[95] for

VLSI floorplan design. The vertices are sorted along the x- or the y-dimension. The

sorted vertices are divided into two sets, which are mapped to different halves of the

grid. Each set is now sorted along the other dimension. The procedure of sorting along

alternating dimensions and halving the vertex set and the grid node set is repeated until

the sets are of size one. At this point every vertex has a unique grid node assigned to

it.

Johnson et al.[65] used a similar approach in designing their LINE heuristic for par-

titioning geometric graphs: the unit square is cut into half to obtain a graph partition.

They report that local search algorithms do not converge quickly on geometric graphs,

local search algorithms need considerable running time to equal the performance of

LINE, and LINE followed by local search produced the best results.

Since x, y-coordinates are usually not part of the input to a graph-embedding prob-

lem, Slice is definitely not a practical graph-embedding heuristic. We present its results

here since we suspect it produces solutions very close to the optimal embedding; thus

allowing us to evaluate the performance of the Mob heuristic.

By itself, the knowledge that a graph G is a random geometric graph seems not to

be very helpful. A heuristic is required to construct approximate x- and y-coordinates

of G’s vertices in the unit square. Unfortunately, the best candidate for doing so is a

grid-embedding heuristic.

Experiments on Large Geometric Graphs We evaluated the performance of the

Mob hypercube and grid-embedding algorithms for geometric graphs with up to 256K

6.3. The Mob Graph-Embedding Heuristic 133

Table 6.11: Large random geometric graphs of small degree.

Graph V E d

Degree 4

4.16K 16,384 31,946 3.90
4.32K 32,768 64,222 3.92
4.64K 65,536 129,649 3.96
4.128K 131,072 258,561 3.95
4.256K 262,144 517,080 3.95

Degree 8

8.8K 8,192 32,233 7.87
8.16K 16,384 64,515 7.88
8.32K 32,786 129,661 7.91
8.64K 65,536 259,982 7.93
8.128K 131,072 520,719 7.95

Variable Degree

3.16K 16,384 24,327 2.97
4.16K 16,384 31,946 3.90
5.16K 16,384 40,542 4.95
6.16K 16,384 49,868 6.09
7.16K 16,384 56,557 6.90
8.16K 16,384 64,515 7.88
9.16K 16,384 72,397 8.84
10.16K 16,384 80,549 9.83
16.16K 16,384 130,514 15.93

134 Chapter 6. The Mob Heuristic

vertices and 512K edges by conducting experiments on the CM-2. Again, both 1-to-1

and 16-to-1 mappings were studied. The exact number of edges, vertices and average

degree of the random graphs used in our experiments are given in Table 6.11. We

generated five graphs of average degree 4 and five graphs of average degree 8 to study

the effect of increasing graph size on solution quality and running time. We performed

experiments on nine graphs with 16K vertices and average degrees ranging from 3 to 16

to examine the effect of graph degree on the behavior of the Mob algorithms. At least

five runs were performed for each embedding. The mob schedule used was the same as

for random graphs, and is given in Section 6.3.3. Mob was always stopped after 8000

iterations.

The computation time needed for one iteration of Mob is the same as for random

graphs, so Tables 6.8 and 6.9 also apply to geometric graphs. We shall see that while

Mob with a constant number of iterations does not produce embeddings that are close

to optimal, the reduction of average edge lengths is larger than for random graphs.

Solution Quality of Mob The quality of the solutions produced by Mob is shown

in Tables 6.12 and 6.13 for 1-to-1 and 16-to-1 embeddings. Table 6.12 gives results for

hypercube embeddings, Table 6.13 gives results for grid embeddings. The results in

these tables are expressed as average edge lengths, and have to be multiplied by the

number of edges nd/2 to give total embedding costs. The columns labeled D give the

dimension of the hypercube in which the graph is embedded. For the grid embeddings,

D is the dimension of the hypercube containing a 2⌊D/2⌋ × 2⌈D/2⌉ grid. The columns

labeled R give the average edge length produced by a random embedding, and those

labeled Slice give the average edge length produced by the Slice heuristic. The columns

labeled Mob give the average edge length in an embedding produced by Mob from an

initial random embedding. The columns labeled Slice / R and Mob/R give the ratio

of improvement produced by Slice and Mob over a random solution. Our experiments

show that:

(a) The Slice heuristic produces slightly better results than Mob for hypercube em-

beddings, and considerably better results than Mob for grid embeddings.

(b) For fixed degree d, Mob/R is largely independent of graph size, but Slice/R

becomes smaller with increasing graph size. This means that the gap between a

near-optimal solution and Mob will widen as graphs become larger.

(c) 16-to-1 mappings give better Mob/R ratios than 1-to-1 mappings.

(d) The grid-embedding Mob heuristic achieves lower Mob/R ratios than the hyper-

cube Mob heuristic.

(e) The ratio Mob/R rises with increasing average graph degree toward an asymptote

of 1. The differences between grid and hypercube embeddings and between 1-to-1

and 16-to-1 embeddings become smaller with increasing graph degree.

6.3. The Mob Graph-Embedding Heuristic 135

Table 6.12: Hypercube-embedding results for large geometric graphs. The cost of the
Slice and Mob hypercube-embedding algorithms, expressed as average edge length, are
compared to a hypercube embedding chosen at random. Convergence is measured by
expressing Mob’s cost after a number of iterations as a percentage over the best solution
obtained.

16-to-1 mappings
Iterations

Graph D R Slice Slice/R Mob Mob/R 100 1000 4000
Degree 4
4.16K 10 5.0 0.298 0.0596 0.249 0.0498 283.1 60.2 12.7
4.32K 11 5.5 0.318 0.0578 0.274 0.0498 304.6 52.6 10.7
4.64K 12 6.0 0.305 0.0508 0.298 0.0497 314.6 53.2 12.1
4.128K 13 6.5 0.320 0.0492 0.317 0.0488 349.4 60.7 22.1
4.256K 14 7.0 0.306 0.0437 0.338 0.0483 422.5 90.5 33.8
Degree 8
8.8K 9 4.5 0.402 0.0893 0.419 0.0931 147.7 29.2 12.3
8.16K 10 5.0 0.404 0.0808 0.465 0.0930 197.8 47.3 22.9
8.32K 11 5.5 0.426 0.0774 0.499 0.0907 230.6 64.3 25.1
8.64K 12 6.0 0.404 0.0673 0.536 0.0893 306.7 84.1 41.7
8.128K 13 6.5 0.422 0.0649 0.573 0.0881 339.3 91.5 47.8
Variable Degree
3.16K 10 5.0 0.273 0.0546 0.170 0.0340 356.0 70.3 12.7
4.16K 10 5.0 0.298 0.0596 0.249 0.0498 283.1 60.2 12.7
5.16K 10 5.0 0.322 0.0644 0.304 0.0608 242.0 53.9 11.1
6.16K 10 5.0 0.364 0.0728 0.389 0.0778 203.8 44.2 15.3
7.16K 10 5.0 0.382 0.0764 0.434 0.0868 205.6 47.7 21.0
8.16K 10 5.0 0.404 0.0808 0.465 0.0930 197.8 47.3 22.9
9.16K 10 5.0 0.417 0.0834 0.507 0.1014 208.1 52.4 29.5
10.16K 10 5.0 0.440 0.0880 0.529 0.1058 195.3 53.7 29.7
16.16K 10 5.0 0.535 1.1000 0.668 0.1336 167.7 54.3 32.3

1-to-1 mappings
Iterations

Graph D R Slice Slice/R Mob Mob/R 100 1000 4000
Degree 4
4.16K 14 7.0 1.661 0.2372 1.719 0.2456 68.4 17.1 6.7
4.32K 15 7.5 1.684 0.2245 1.747 0.2329 79.5 22.4 7.3
4.64K 16 8.0 1.676 0.2095 1.783 0.2229 90.8 27.1 10.3
4.128K 17 8.5 1.689 0.1986 1.808 0.2207 104.2 28.1 13.7
4.256K 18 9.0 1.676 0.1863 1.838 0.2042 120.1 32.1 17.4
Degree 8
8.8K 13 6.5 1.910 0.2938 2.069 0.3183 56.1 18.9 11.7
8.16K 14 7.0 1.893 0.2704 2.106 0.3009 72.3 24.3 14.7
8.32K 15 7.5 1.904 0.2539 2.140 0.2853 79.4 30.6 15.8
8.64K 16 8.0 1.904 0.2539 2.174 0.2718 94.3 35.7 17.9
8.128K 17 8.5 1.905 0.2242 2.213 0.2603 106.6 39.1 22.3
Variable Degree
3.16K 14 7.0 1.600 0.2286 1.565 0.2236 70.7 11.7 3.3
4.16K 14 7.0 1.661 0.2373 1.719 0.2456 68.4 17.1 6.7
5.16K 14 7.0 1.737 0.2481 1.867 0.2667 66.4 20.2 10.7
6.16K 14 7.0 1.811 0.2587 1.979 0.2827 69.4 23.1 12.6
7.16K 14 7.0 1.850 0.2643 2.045 0.2921 71.4 23.5 13.8
8.16K 14 7.0 1.893 0.2704 2.106 0.3009 72.3 24.3 14.7
9.16K 14 7.0 1.944 0.2777 2.171 0.3101 68.5 24.4 14.8
10.16K 14 7.0 1.987 0.2839 2.219 0.3170 65.7 23.8 14.8
16.16K 14 7.0 2.201 0.3144 2.468 0.3526 60.3 22.1 14.8

136 Chapter 6. The Mob Heuristic

Table 6.13: Grid-embedding results for large geometric graphs. The costs of the Slice
and Mob grid-embedding algorithms, expressed as average edge length, are compared
to a grid embedding chosen at random. Convergence is measured by expressing Mob’s
cost after a number of iterations as a percentage over the best solution obtained.

16-to-1 mappings
Iterations

Graph D R Slice Slice/R Mob Mob/R 100 1000 4000
Degree 4
4.16K 10 21.280 0.298 0.0140 0.797 0.0375 958.8 347.5 210.9
4.32K 11 31.955 0.318 0.0099 1.142 0.0357 1575.3 580.1 324.3
4.64K 12 42.676 0.305 0.0071 1.780 0.0417 2149.3 874.3 580.9
4.128K 13 64.009 0.320 0.0050 2.627 0.0410 3325.8 1299.4 857.7
4.256K 14 85.342 0.306 0.0036 3.479 0.0408 5273.8 1847.6 1228.0
Degree 8
8.8K 9 15.998 0.402 0.0251 1.142 0.0714 708.9 282.1 202.5
8.16K 10 21.296 0.404 0.0190 1.435 0.0674 1029.4 455.7 301.7
8.32K 11 31.998 0.426 0.0133 2.301 0.0720 1624.5 746.5 527.0
8.64K 12 42.652 0.404 0.0095 3.089 0.0724 2334.1 1105.5 771.3
8.128K 13 63.970 0.422 0.0066 4.651 0.0727 3509.2 1604.7 1142.4
Variable Degree
3.16K 10 21.281 0.273 0.0128 0.489 0.0230 966.5 239.1 121.0
4.16K 10 21.280 0.298 0.0140 0.797 0.0375 958.8 347.5 210.9
5.16K 10 21.311 0.322 0.0151 1.011 0.0474 1049.5 391.3 260.2
6.16K 10 21.231 0.364 0.0171 1.238 0.0583 1040.0 419.2 280.1
7.16K 10 21.293 0.382 0.0180 1.373 0.0645 1048.1 442.0 299.6
8.16K 10 21.296 0.404 0.0190 1.435 0.0674 1029.4 455.7 301.7
9.16K 10 21.312 0.417 0.0200 1.616 0.0758 967.1 466.1 329.5
10.16K 10 21.311 0.440 0.0206 1.595 0.0749 1017.7 440.5 310.8
16.16K 10 21.319 0.535 0.0251 1.894 0.0889 910.4 431.8 311.4

1-to-1 mappings
Iterations

Graph D R Slice Slice/R Mob Mob/R 100 1000 4000
Degree 4
4.16K 14 85.374 1.708 0.0200 6.510 0.0763 1288.6 510.1 344.4
4.32K 15 127.980 1.765 0.0138 9.054 0.0707 2021.3 771.4 500.8
4.64K 16 170.618 1.728 0.0101 11.236 0.0659 3043.7 1084.0 674.2
4.128K 17 256.180 1.771 0.0069 15.903 0.0621 4321.8 1476.5 977.0
4.256K 18 341.428 1.728 0.0051 20.504 0.0601 6435.3 2572.7 1321.4
Degree 8
8.8K 13 64.153 2.087 0.0326 7.169 0.1117 936.5 433.0 285.7
8.16K 14 85.288 2.008 0.0235 9.057 0.1062 1450.0 637.5 415.1
8.32K 15 128.052 2.079 0.0162 12.744 0.0995 2173.8 938.4 609.7
8.64K 16 170.595 2.021 0.0118 16.852 0.0990 3019.9 1246.4 859.9
8.128K 17 255.985 2.080 0.0081 25.198 0.0984 4576.2 1936.5 1296.7
Variable Degree
3.16K 14 85.296 1.639 0.0192 5.011 0.0587 1170.5 426.1 265.7
4.16K 14 85.374 1.708 0.0200 6.510 0.0763 1288.6 510.1 344.4
5.16K 14 85.324 1.803 0.0211 7.402 0.0868 1422.9 578.3 381.6
6.16K 14 85.251 1.897 0.0220 8.196 0.0961 1434.9 604.2 402.8
7.16K 14 85.365 1.947 0.0228 8.449 0.0990 1464.1 618.5 413.0
8.16K 14 85.288 2.008 0.0235 9.057 0.1062 1450.0 637.5 415.1
9.16K 14 85.460 2.072 0.0242 9.453 0.1106 1431.7 624.5 425.2
10.16K 14 85.469 2.137 0.0250 9.259 0.1083 1417.5 611.7 407.0
16.16K 14 85.376 2.475 0.0290 10.199 0.1195 1219.6 593.0 372.0

6.3. The Mob Graph-Embedding Heuristic 137

(f) The ratio Mob/R is smaller for geometric graphs than for random graphs. (Com-

pare Tables 6.6, 6.7 to Tables 6.12, 6.13). For 16-to-1 and 1-to-1 grid embeddings

and for 1-to-1 hypercube embeddings, Mob/R is almost ten times smaller for

degree-4 graphs, and almost five times smaller for degree-8 graphs. For 1-to-1

hypercube embeddings, the ratio Mob/R for geometric graphs is about half of

the ratio Mob/R for random graphs. So while Mob with a constant number of

iterations does not produce embeddings that are close to optimal, the reduction

of average edge lengths is larger than for random graphs.

Rates of Convergence of Mob Tables 6.12 and6.13 also report the convergence

of Mob for increasing iterations. The columns labeled Iterations show the average

embedding cost as percentages above the best-ever embedding cost, produced after 100,

1000 and 4000 iterations of Mob, respectively. Our experiments for geometric graphs

indicate that Mob still converges rapidly towards a solution that is good compared to

the best-ever solution produced by Mob. However, as can be inferred from the Iterations

columns, the cost ratio of a Mob solution divided by the best solution (produced by

Slice) increases with increasing graph size.

Comparison to Graph-partitioning Algorithms To calibrate our results, we

again measured the graph partitions produced by the hypercube and grid embeddings,

as described in Section 6.3.3. Table 6.14 shows how the Mob hypercube and grid

embedding algorithms behaved as graph-partitioning algorithms, compared to the Mob

graph-partitioning algorithm and the KL graph-partitioning algorithm.

The cost of the graph embeddings P = (X,Y) is given in Table 6.14 as the per-

centage of all edges that cross the cut between X and Y . The Mob graph-partitioning

heuristic produced better results that the hypercube- and grid-embedding algorithms,

but does not approach the partitions produced by Slice. At least with a constant num-

ber of iterations, the Mob heuristics produce embeddings in which the average edge

length as a function of graph size is constant or decreases slowly, whereas the aver-

age edge lengths produced by Slice as a function of graph size decrease quickly, about

O(1/
√

n).

We found that both 16-to-1 embedding algorithms and the grid 1-to-1 embedding

algorithm produced good graph partitions that were larger by a factor of roughly 1.5

to 4 than the Mob graph-partitioning algorithm. The KL graph-partitioning algo-

rithm, which we ran only on graphs with 32K (or fewer) vertices due to running-time

considerations, was slightly worse than these three graph-embedding heuristics. The

hypercube 1-to-1 algorithm produced graph partitions that were roughly larger by an

order of magnitude.

As for random graphs, we find the performance of the Mob embedding algorithms

used as graph-partitioning algorithms remarkable, considering that Mob is optimizing

the “wrong” cost function. None of the local search algorithms we implemented was

able to get close to the results produced by Slice.

138 Chapter 6. The Mob Heuristic

Table 6.14: Graph partitions of geometric graphs generated by cutting the hypercube
and grid embeddings across a hyperplane. Bisection widths are expressed as average
edge lengths. The Mob hypercube and grid heuristic produce bisection widths compa-
rable to those of the Mob graph-partitioning heuristic and better than those of the KL
heuristic.

Graph R Slice Mob Partition KL Partition Cube 16:1 Cube 1:1 Grid 16:1 Grid 1:1

Degree 4

4.16K .5 0.0031 0.0093 0.0376 0.0230 0.1174 0.0166 0.0291
4.32K .5 0.0027 0.0130 0.0421 0.0238 0.1081 0.0156 0.0284
4.64K .5 0.0014 0.0143 0.0409 0.0235 0.1053 0.0186 0.0266
4.128K .5 0.0015 0.0146 - 0.0238 0.1004 0.0185 0.0257
4.256K .5 0.0009 0.0116 - 0.0236 0.0974 0.0188 0.0243

Degree 8

8.8K .5 0.0066 0.0204 0.0438 0.0422 0.1472 0.0300 0.0420
8.16K .5 0.0047 0.0177 0.0476 0.0433 0.1423 0.0284 0.0422
8.32K .5 0.0037 0.0171 0.0463 0.0431 0.1382 0.0300 0.0390
8.64K .5 0.0026 0.0228 - 0.0431 0.1296 0.0297 0.0401
8.128K .5 0.0016 0.0196 - 0.0428 0.1250 0.0322 0.0413

Variable Degree

3.16K .5 0.0022 0.0077 0.0293 0.0146 0.1028 0.0091 0.0225
4.16K .5 0.0031 0.0093 0.0376 0.0230 0.1174 0.0166 0.0291
5.16K .5 0.0033 0.0162 0.0464 0.0288 0.1253 0.0203 0.0339
6.16K .5 0.0050 0.0139 0.0496 0.0365 0.1304 0.0257 0.0386
7.16K .5 0.0049 0.0154 0.0565 0.0414 0.1360 0.0248 0.0423
8.16K .5 0.0047 0.0177 0.0476 0.0433 0.1423 0.0275 0.0407
9.16K .5 0.0042 0.0103 0.0517 0.0459 0.1441 0.0284 0.0422
10.16K .5 0.0059 0.0213 0.0477 0.0483 0.1502 0.0320 0.0445
16.16K .5 0.0072 0.0175 0.0542 0.0579 0.1597 0.0335 0.0480

Table 6.15: Hypercube embeddings of 128-vertex, degree-7 geometric graphs. Compar-
ison of Mob to SA.

Heuristic Min Avg. Cost Avg. Edge Length % of Random

Mob + Slice 620 676.0 1.694 47.7
Mob 649 702.7 1.758 49.5
Slice 664 737.6 1.849 52.1
Random 1320 1410.1 3.552 100.0

SAC (pushed) 694 742.8 1.691 48.0

6.3. The Mob Graph-Embedding Heuristic 139

Comparison to Simulated Annealing Analogously to the experiments with ran-

dom graphs, we compared the performance of the Mob cube-embedding heuristic on

geometric graphs to the results reported for simulated annealing by Chen et al.[28,29].

To duplicate their experiments, we generated 10 random geometric graphs with our

own generator. Each graph had 128 vertices. The distance parameter for the infinity

metric was set to rd =
√

d/4n = 0.117386 to obtain graphs of degree 7.

For each graph five runs were performed and results were averaged over these runs.

Each run of Mob was limited by 8000 iterations, and a schedule as described above

was used. The results, expressed as percent reduction in edge lengths of a random

embedding, are given in Table 6.15. Chen et al. report that on ten random geometric

graphs of average degree 7, a reduction of 48.0% was achieved by SAC, a version of SA

with the move set limited to hypercube edges. We found that the average reduction

produced by Mob is 49.5% for our own graphs. The Slice heuristic produced solutions

with 52.1% reductions. The best solutions were obtained when the solutions produced

by Slice were further improved by Mob.

141

Chapter 7

Conclusions and Open Problems

We believe that eventually the entire suite of CAD tools used to design VLSI chips,

from high-level specification to the generation of masks for fabrication, will run on a

massively parallel machine. There are various reasons for eliminating all serial elements

from the system: a CAD system designed for a homogeneous underlying machine ar-

chitecture is more elegant and reduces code complexity, serial tools would limit the

overall speed of the CAD system, and the process of transferring intermediate design

representations back and forth between serial and parallel machines would introduce

serial bottlenecks.

We have concentrated here on problems related to parallel layout synthesis. There

are other areas in VLSI CAD in which parallelism can reduce design time by several

orders of magnitude and can allow the creation of new tools to handle larger problem in-

stances and return higher-quality solutions. The most active research area is currently

parallel simulation at all levels, including high-level behavioral simulation, switch-level

simulation, logic simulation, and semiconductor device modeling. The problems of

test-vector generation, database access and management, and parsing languages for

intermediate design representations are all promising candidates for research in par-

allelism. (See the excellent surveys by Preas and Lorenzetti[99] and Lengauer[85] for

detailed problem descriptions and further references.)

Channel Routing

We have demonstrated in Chapter 3 that massive parallelism is inherent in channel

routing. Our parallel channel-routing algorithm for channels without column conflicts

is in NC1(n/ log n). The constants hidden in the O() notation are very small. The

algorithm and its extensions are composed of simple primitives that can be tuned to run

very fast on an actual multiple-processor machine. This algorithm is directly related to

the coloring of an interval graph and is based on the left-edge heuristic of Hashimoto

and Stevens[58]. It can be applied as a subroutine in other channel routers based on

the left-edge heuristic.

142 Chapter 7. Conclusions and Open Problems

The extensions to the basic channel-routing algorithm that developed to deal with

column conflicts need to be examined for parallelism. We have shown in Chapter 5 that

any local search heuristic that minimizes the number of column conflicts in a channel

routing by accepting cost-improving swaps of tracks or subtracks is P-hard. It would

be interesting to know whether Fiduccia and Rivest’s greedy channel router [105] and

YACR2 by Reed et al.[102] are hard to parallelize.

Compaction

We have given a parallel algorithm for computing the transitive reduction of an interval

dag. This is equivalent to a parallel algorithm for computing a minimum-distance

constraint dag from a VLSI layout, and is substantially simpler than a previously

published serial algorithm. An intermediate result during the execution of the above

algorithm is a parallel algorithm to construct a tiling or corner stitching, a geometrical

data structure used in the Magic VLSI layout system. All these computations take

time O(log2 n) using O(n/log n) processors on an EREW PRAM, so their processor-

time product is optimal. We designed our algorithm to use local operations plus the

parallel primitives sort, merge and parallel prefix. We implemented a prototype of the

compaction algorithm on the CM-2 Connection Machine, and found that the time to

construct the horizontal visibility graph of a 128K-rectangle layout is ≈ 20 seconds

using 16K processors.

Further research is needed to obtain efficient parallel shortest-path algorithms for

general, planar or VLSI-specific graphs. The constraint-graph model must be aug-

mented to deal with issues that arise in practice, such as the addition of equality

constraints (two units must touch) and upper-bound constraints (two units should not

be too far apart). Also, in practice VLSI layouts are modeled by multiple layers of

rectangles and these layers must be coordinated. Such a system must also incorporate

a mechanism for stretching and jogging wires. All of these issues must be examined

from the point of view of parallelism.

The Parallel Complexity of Local Search

We have shown in Chapter 5 that the Kernighan-Lin graph-partitioning heuristic is P-

complete. We have also shown that the zero-temperature version of simulated annealing

is P-hard. Thus, it is unlikely that either heuristic can be parallelized. We have seen

that certain local search heuristics based on the SWAP neighborhood, such as simulated

annealing for cube-embedding and grid-embedding problems, are P-hard. This suggests

that there is (probably) no parallel SA algorithm that does exactly what the serial

algorithm does.

We believe that many other P-complete or P-hard local search heuristics for NP-

complete problems can be found. In the area of VLSI placement, grid-embedding

heuristics are used with cost functions that measure wiring congestion and maximum

143

wire lengths. The equivalent cost functions for hypercube embedding measure rout-

ing congestion and maximum routing-path length. Local search heuristics for these

important graph-embedding problems need to be examined for P-hardness.

The MobHeuristic

In Chapter 6 we presented a new massively parallel heuristic, the Mob heuristic, that

is closely related to both Kernighan-Lin and simulated annealing. We applied our

heuristic to the graph-partitioning, grid and hypercube-embedding problems, which

are closely related to VLSI placement. We ran Mob on the CM-2 to show that it

is massively parallel, is fast and can handle very large graphs. The speed of the Mob

heuristic should be adequate for the optimized placement of large (100,000 to 1,000,000

gates) circuits.

Mob can be applied to other optimization problems in which local search heuristics

have been successful. It would be interesting to see the Mob heuristic used in an indus-

trial production system for VLSI gate-array placement or full custom logic placement.

Mob’s speed and its ability to handle unusually large problem sizes could reduce design

time by several orders of magnitude and would allow the creation of new tools to handle

larger problem instances and return higher-quality solutions. We plan to apply Mob to

the traveling salesman problem, the best known and most widely researched benchmark

problem for optimization heuristics, for further comparisons with simulated annealing

and other standard algorithms.

Bibliography 145

Bibliography

[1] “Connection Machine Model CM-2 Technical Summary,” Thinking Machines Cor-

poration TMC Technical Report HA 87-4, 1987.

[2] F. Afrati, C. H. Papadimitriouand G. Papadimitriou, “The Complexity of Cubical

Graphs,” in Information and Control, pp. 53–60, 1985.

[3] M. Ajtai, J. Komlósand E. Szemerédi, “An O(n log n) Sorting Network,” in 15th

Annual ACM Symposium on Theory of Computing, pp. 1–9, 1983.

[4] A. Apostolico, M. J. Atallah, L. L. Larmoreand H. S. McFaddin, “Efficient Parallel

Algorithms for String Editing and Related Problems,” preprint, Feb. 1988.

[5] M. J. Atallah, R. Coleand M. T. Goodrich, “Cascading Divide-and-Conquer: A Tech-

nique for Designing Parallel Algorithms,” in 28th Annual Symposium on Foundations

of Computer Science, pp. 151–160, 1987.

[6] P. Banerjee, M. H. Jonesand J. S. Sargent, “Parallel Simulated Annealing Algorithms

for Cell Placement on Hypercube Multiprocessors,” IEEE Transactions on Parallel

and Distributed Systems, vol. PDS-1, no. 1, pp. 91–106, January 1990.

[7] K. E. Batcherand H. S. Stone, “Sorting Networks and Their Applications,” AFIPS

Proc., Spring Joint Comput. Conf., vol. 32, pp. 307–314, 1968.

[8] M. Ben-Or, “Lower Bounds for Algebraic Computation Trees,” in 15th Annual ACM

Symposium on Theory of Computing, pp. 80–86, May 1983.

[9] S. Bettayeb, Z. Millerand I. H. Sudborough, “Embedding Grids into Hypercubes,” in

VLSI Algorithms and Architectures: 3rd Aegean Workshop on Computing, pp. 201–

211, 1988.

[10] G. Bilardiand A. Nicolau, “Bitonic Sorting with O(N log N) comparisons,” in 20th

Annual Conf. on Inform. Sci. and Systems, Princeton University, Princeton, NJ,

1986.

[11] G. Bilardiand A. Nicolau, “Adaptive Bitonic Sorting: An Optimal Parallel Algorithm

for Shared-Memory Machines,” SIAM Journal on Computing, vol. 18, no. 2, pp. 216–

228, Apr. 1989.

[12] G. Blelloch, “Scans as Primitive Parallel Operations,” in Proc. 1987 International

Conference on Parallel Processing, pp. 355–362, 1987.

146 Bibliography

[13] G. E. Blelloch, “Scans as Primitive Parallel Operations,” IEEE Transactions on

Computers, vol. 38, no. 11, pp. 1526–1538, 1989.

[14] S. H. Bokhari, “On the Mapping Problem,” IEEE Transactions on Computers, vol.

C-30, no. 3, pp. 207–214, Mar. 1981.

[15] S. W. Bollingerand S. F. Midkiff, “Processor and Link Assignment in Multicomput-

ers Using Simulated Annealing,” Proceedings International Conference on Parallel

Processing, vol. 1, pp. 1–6, 1988.

[16] A. Borodinand J. E. Hopcroft, “Routing, Merging, and Sorting on Parallel Models

of Computation,” J. Comp. Sys. Sci, vol. 30, pp. 130–145, 1985.

[17] G. J. Brebnerand L. G. Valiant, “Universal Schemes for Parallel Computation,” in

13th Annual ACM Symposium on Theory of Computing, pp. 263–277, 1981.

[18] M. A. Breuer, “Min-Cut Placement,” Design Automation and Fault-Tolerant Com-

puting, vol. 1, no. 4, pp. 343–362, Aug. 1977.

[19] R. J. Brouwerand P. Banerjee, “A Parallel Simulated Annealing Algorithm for Chan-

nel Routing on a Hypercube Multiprocessor,” in Proceedings of the International

Conference on Computer Design, pp. 4–7, 1988.

[20] T. Bui, S. Chaudhuri, F. T. Leightonand M. Sipser, “Graph Bisection Algorithms

with Good Average Case Behavior,” in 25th Annual Symposium on Foundations of

Computer Science, pp. 181–192, 1984.

[21] T. Bui, S. Chaudhuri, F. T. Leightonand M. Sipser, “Graph Bisection Algorithms

with Good Average Case Behavior,” Combinatorica, vol. 7, no. 3, pp. 171–191, 1987.

[22] T. Bui, C. Heigham, C. Jonesand T. Leighton, “Improving the Performance of the

Kernighan-Lin and Simulated Annealing Graph Bisection Algorithms,” in 26th IEEE

Design Automation Conference, pp. 775–778, 1989.

[23] T. N. Bui, “On Bisecting Random Graphs,” Dept. of Electrical Engineering and

Computer Science, M.I.T., MS Thesis MIT/LCS/TR-287, Feb. 1983.

[24] J. L. Burnsand A. R. Newton, “SPARCS: A New Constraint-Based IC Symbolic

Layout Spacer,” in Trans. IEEE Custom Integrated Circuits Conf., pp. 534–539,

May 1986.

[25] A. Casottoand A. Sangiovanni-Vincentelli, “Placement of Standard Cells Using Sim-

ulated Annealing on the Connection Machine,” in ICCAD, pp. 350–453, Nov. 1987.

[26] R. D. Chamberlain, M. N. Edelman, M. A. Franklinand E. E. Witte, “Simulated

Annealing on a Multiprocessor,” in Proceedings of the International Conference on

Computer Design, pp. 540–544, 1988.

[27] M. -Y. Chan, “Dilation-2 Embeddings of Grids into Hypercubes,” Proceedings In-

ternational Conference on Parallel Processing, vol. 3, pp. 295–298, 1988.

Bibliography 147

[28] W. -K. Chen, E. F. Gehringerand M. F. M. Stallmann, “Hypercube Embedding

Heuristics: An Evaluation,” International Journal of Parallel Programming, vol. 18,

no. 6, pp. 505–549, 1989.

[29] W. -K. Chenand M. F. M. Stallmann, “Local Search Variants for Hypercube Embed-

ding,” in Proceedings 5th Distributed Memory Computer Conference, pp. 1375–1383,

1990.

[30] Y. E. Cho, “A Subjective Review of Compaction,” in Proc. 22nd IEEE Design Au-

tomation Conference, pp. 396–404, 1985.

[31] R. Cole, “Parallel Merge Sort,” in 27th Annual Symposium on Foundations of Com-

puter Science, pp. 511–616, 1986.

[32] S. A. Cook, “The Complexity of Theorem-proving Procedures,” in 3rd Annual ACM

Symposium on Theory of Computing, pp. 151–158, 1971.

[33] S. A. Cook, “A Taxonomy of Problems with Fast Parallel Algorithms,” in Informa-

tion and Control, pp. 2–22, 1985.

[34] C. Corneiland R. C. Read, “The Graph Isomorphism Disease,” Journal of Graph

Theory , vol. 1, no. 4, pp. 339–363, 1977.

[35] E. D. Dahl, “Mapping and Compiled Communication on the Connection Machine,”

in Proceedings 5th Distributed Memory Computer Conference, pp. 756–766, 1990.

[36] B. A. Dalio, “DeCo–A Hierarchical Device Compilation System,” Dept. of Computer

Science, Brown University, PhD Thesis CS-87-08, May 1987and B. A. Dalio.

[37] B. A. Dalioand J. E. Savage, “DeCo–A Device Compilation System,” in International

Workshop on Logic and Architecture Synthesis for Silicon Compilers, May 1988.

[38] F. Darema, S. Kirkpatrickand V. A. Norton, “Parallel Algorithms for Chip Place-

ment by Simulated Annealing,” IBM Journal of Research and Development, vol. 31,

no. 3, pp. 391–401, May 1987.

[39] D. N. Deutsch, “A Dogleg Channel Router,” in Proc. 13th IEEE Design Automation

Conference, pp. 425–433, 1976.

[40] D. N. Deutsch, “Compacted Channel Routing,” in Proc. of the IEEE Intl. Conf. on

Computer-Aided Design, ICCAD-85, pp. 223–225, 1985.

[41] D. Dobkinand R. Lipton, “On the Complexity of Computations Under Varying Sets

of Primitives,” Journal of Computer and Systems Sciences, vol. 18, pp. 86–91, 1979.

[42] J. Doenhardtand T. Lengauer, “Algorithmic Aspects of One-Dimensional Layout

Compaction,” IEEE Transactions on Computer-Aided Design, vol. CAD-6, no. 5,

pp. 863–878, Sept. 1987.

[43] D. Dolev, K. Karplus, A. Siegel, A. Strongand J. D. Ullman, “Optimal Wiring be-

tween Rectangles,” in 13th Annual ACM Symposium on Theory of Computing,

pp. 312–317, 1981.

148 Bibliography

[44] A. E. Dunlopand B. W. Kernighan, “A Procedure for Placement of Standard-Cell

VLSI Circuits,” IEEE Transactions on Computer-Aided Design, vol. CAD-4, no. 1,

pp. 92–98, Jan. 1985.

[45] H. Edelsbrunner, M. H. Overmarsand D. Wood, “Graphics in Flatland,” Advances

in Computing Research, vol. 1, pp. 35–59, 1983.

[46] F. E. Fich, “New Bounds for Parallel Prefix Circuits,” in 15th Annual ACM Sym-

posium on Theory of Computing, pp. 27–36, 1983.

[47] C. M. Fiducciaand R. M. Mattheyses, “A Linear-Time Heuristic for Improving Net-

work Partitions,” in 19th IEEE Design Automation Conference, pp. 175–181, 1982.

[48] K. Fukunaga, S. Yamadaand T. Kasai, “Assignment of Job Modules onto Array

Processors,” IEEE Transactions on Computers, vol. c-36, no. 7, pp. 888–891, July

1987 .

[49] M. R. Gareyand D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, New York, 1979.

[50] S. Gemanand D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images,” in Neurocomputing: Foundations of Research, J. A. Ander-

sonand E. Rosenfeld, Eds. MIT Press, 1988.

[51] J. Gill, “Computational Complexity of Probabilistic Turing Machines,” SIAM Jour-

nal on Computing, vol. 6, no. 4, pp. 675–695, 1977.

[52] L. M. Goldschlager, “The Monotone and Planar Circuit Value Problems,” ACM

Sigact News, vol. 9, no. 2, pp. 25–29, 1977.

[53] L. M. Goldschlager, “A Space Efficient Algorithm for the Monotone Planar Circuit

Value Problem,” Information Processing Letters, vol. 10, no. 1, pp. 25–27, 1980.

[54] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.

[55] D. R. Greening, “A Taxonomy of Parallel Simulated Annealing Techniques,” IBM,

Technical Report No. RC 14884, 1989.

[56] F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969.

[57] B. Harperand J. H. Haynes, Jaguar E Type Owners Workshop Manual. Haynes

Publishing Group, 1974.

[58] A. Hashimotoand J. Stevens, “Wire Routing by Optimizing Channel Assignments

Within Large Apertures,” in Proc. 6th IEEE Design Automation Conference, pp. 155–

163, 1971.

[59] D. V. Heinbuch, CMOS3 Cell Library. Addison-Wesley, Reading, MA, 1988.

[60] D. Helmboldand E. Mayr, “Two-Processor Scheduling is in NC,” in VLSI Algorithms

and Architectures: 2nd Aegean Workshop on Computing , pp. 12–25, 1986.

[61] W. D. Hillis, The Connection Machine. MIT Press, 1985.

Bibliography 149

[62] D. S. Hirschberg, A. K. Chandraand D. V. Sarvate, “Computing Connected Com-

ponents on a Parallel Computer,” CACM , vol. 22, pp. 461–464, 1979.

[63] C. -T. Hoand S. L. Johnsson, “On the Embedding of Arbitrary Meshes in Boolean

Cubes with Expansion Two Dilation Two,” in Proceedings International Conference

on Parallel Processing, pp. 188–191, 1987.

[64] K. E. Iverson, A Programming Language. Wiley, New York, 1962.

[65] D. S. Johnson, C. A. Aragon, L. A. McGeochand C. Schevon, “Optimization by

Simulated Annealing: An Experimental Evaluation (Part 1),” Operations Research,

vol. 37, no. 6, pp. 865–892, Nov.-Dec. 1989.

[66] D. S. Johnson, C. H. Papadimitriouand M. Yannakakis, “How Easy is Local Search?,”

in Journal of Computer and Systems Sciences, pp. 79–100, 1988.

[67] R. M. Karpand V. Ramachandran, “A Survey of Parallel Algorithms for Shared-

Memory Machines,” in Handbook of Theoretical Computer Science. North-Holland,

1988.

[68] B. W. Kernighanand S. Lin, “An Efficient Heuristic Procedure for Partitioning

Graphs,” AT&T Bell Labs. Tech. J., vol. 49, pp. 291–307, Feb. 1970.

[69] S. Kirkpatrick, C. D. Gelattand M. P. Vecchi, “Optimization by Simulated Anneal-

ing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[70] P. N. Klein, “Efficient Parallel Algorithms for Chordal Graphs,” in 29th Annual

Symposium on Foundations of Computer Science, pp. 150–161, 1988.

[71] S. Kravitzand R. Rutenbar, “Multiprocessor-based Placement by Simulated Anneal-

ing,” in 23rd IEEE Design Automation Conference, pp. 567–573, 1986.

[72] B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI Net-

works,” IEEE Trans. Computers, vol. 33, no. 5, pp. 438–446, May 1984.

[73] E. S. Kuhand T. Yoshimura, “Efficient Algorithms for Channel Routing,” IEEE

Transactions on Computer-Aided Design, vol. CAD-1, no. 1, pp. 25–35, Jan. 1982.

[74] A. S. LaPaugh, “Algorithms for Integrated Circuit Layout: an Analytic Approach,”

Dept. of Electrical Engineering and Computer Science, M.I.T., PhD Thesis, 1980.

[75] R. E. Ladner, “The Circuit Value Problem is Log Space Complete for P,” ACM

SIGACT News, vol. 7, no. 1, pp. 18–20, 1975.

[76] R. E. Ladnerand M. J. Fischer, “Parallel Prefix Computation,” Journal of the ACM ,

vol. 27, pp. 831–838, 1980.

[77] J. Lamand J. -M. Delosme, “Simulated Annealing: a Fast Heuristic for Some Generic

Layout Problems,” in ICCAD, pp. 510–513, 1988.

[78] F. T. Leighton, Introduduction to Parallel Algorithms & and Architectures. Mor-

gan Kaufmann Publishers, San Mateo, 1991.

[79] F. T. Leighton, “A Layout Strategy for VLSI Which is Provably Good,” in 14th

Annual ACM Symposium on Theory of Computing, pp. 85–98, May 1982.

150 Bibliography

[80] T. Leighton, “Tight Bounds on the Complexity of Parallel Sorting,” IEEE Transac-

tions on Computers, vol. C-34, pp. 344–354, 1985.

[81] T. Leighton, C. E. Leiserson, B. Maggs, S. Plotkinand J. Wein, “Advanced Parallel

and VLSI Computation,” Dept. of Electrical Engineering and Computer Science,

M.I.T., MIT/LCS/RSS 2, Mar. 1988.

[82] T. Leighton, C. E. Leiserson, B. Maggs, S. Plotkinand J. Wein, “Theory of Parallel

and VLSI Computation,” Dept. of Electrical Engineering and Computer Science,

M.I.T., MIT/LCS/RSS 1, Mar. 1988.

[83] C. E. Leiserson, “VLSI Theory and Parallel Supercomputing,” in Advanced Research

in VLSI: Proceedings of the 1989 Decennial Caltech Conference , Cambridge, MA,

pp. 5–16, Mar. 1989.

[84] C. E. Leiserson, “Area-Efficient Graph Layouts (for VLSI),” in 21th Annual Sym-

posium on Foundations of Computer Science, pp. 270–281, Oct. 1980.

[85] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. John Wiley

& Sons, 1990.

[86] E. Lodiand L. Pagli, “A VLSI Algorithm for a Visibility Problem,” in International

Workshop on Parallel Computing and VLSI, pp. 125–134, 1984.

[87] M. Lundyand A. Mees, “Convergence of an Annealing Algorithm,” Mathematical

Programming, vol. 34, no. 1, pp. 111–124, 1986.

[88] M. A. Mahhowaldand C. Mead, “The Silicon Retina,” in Scientific American, pp. 76–

82, May 1991.

[89] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching. Springer-

Verlag, 1984.

[90] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Tellerand E. Teller,

“Equations of State Calculations by Fast Computing Machines,” Journal of Chemical

Physics, vol. 6, no. 21, pp. 1087–1091, June 1953.

[91] D. Mitra, F. Romeoand A. Sangiovanni-Vincentelli, “Convergence and Finite-Time

Behaviour of Simulated Annealing,” Advances in Applied Probability , vol. 18, no.

3, pp. 747–771, Sept. 1986.

[92] B. Monienand I. H. Sudborough, “Simulating Binary Trees on Hypercubes,” in VLSI

Algorithms and Architectures: 3rd Aegean Workshop on Computing , pp. 170–180,

1988.

[93] R. C. Mosteller, A. H. Freyand R. Suaya, “2-D Compaction: A Monte Carlo Method,”

in Proc. Conference on Advanced Research in VLSI, pp. 173–197, 1987.

[94] K. Mulmuley, U. V. Vaziraniand V. V. Vazirani, “Matching is as Easy as Matrix

Inversion,” in 19th Annual ACM Symposium on Theory of Computing, pp. 345–354,

1987.

Bibliography 151

[95] R. H. J. M. Otten, “Automatic Floorplan Design,” in Proc. 19th IEEE Design Au-

tomation Conference, pp. 261–267, 1982.

[96] J. K. Ousterhout, “Corner Stitching: A Data-Structuring Technique for VLSI Layout

Tools,” IEEE Transactions on Computer-Aided Design, vol. CAD-3, no. 1, pp. 87–

100, Jan. 1984.

[97] N. Pippenger, “On Simultaneous Resource Bounds,” in 20th Annual Symposium on

Foundations of Computer Science, pp. 307–311, Oct. 1979.

[98] B. T. Preasand P. G. Karger, “Placement, Assignment and Floorplanning,” in Phys-

ical Design Automation of VLSI Systems, B. Preasand M. Lorenzetti, Eds. The

Benjamin/Cummings Publishing Company, Menlo Park, pp. 87–155, 1988.

[99] B. T. Preasand M. Lorenzetti, Eds., Physical Design Automation of VLSI Systems:

The Benjamin/Cummings Publishing Company, Menlo Park, 1988.

[100] F. P. Preparataand M. I. Shamos, Computational Geometry. Springer-Verlag, New

York, 1985.

[101] A. G. Ranade, “How to Emulate Shared Memory,” in 28th Annual Symposium on

Foundations of Computer Science, pp. 185–194, 1987.

[102] J. Reed, A. Sangiovanni-Vincentelliand M. Santomauro, “A New Symbolic Channel

Router: YACR2,” IEEE Transactions on Computer-Aided Design, vol. CAD-4, no.

3, pp. 208–219, July 1985.

[103] J. H. Reif, Ed., Synthesis of Parallel Algorithms: Morgan Kaufmann Publishers, San

Mateo, 1991.

[104] S. P. Reissand J. E. Savage, “SLAP–A Methodology for Silicon Layout,” in Procs.

Intl. Conf. on Circuits and Computers, pp. 281–285, 1982.

[105] R. L. Rivestand C. M. Fiduccia, “A Greedy Channel Router,” in Proc. 19th IEEE

Design Automation Conference, pp. 418–424, 1982.

[106] A. L. Rosenberg, Three-dimensional Integrated Circuitry. Computer Science Press,

1981.

[107] P. Roussel-Ragotand G. Dreyfus, “A Problem Independent Parallel Implementation

of Simulated Annealing: Models and Experiments,” IEEE Transactions on Computer-

Aided Design, vol. 9, no. 8, pp. 827–835, Aug. 1990.

[108] P. Sadayappanand F. Ercal, “Nearest-Neighbor Mapping of Finite Element Graphs

onto Processor Meshes,” IEEE Transactions on Computers, vol. C-36, no. 12, pp. 1408–

1424, Dec. 1987.

[109] P. Sadayappanand F. Ercal, “Cluster-Partitioning Approaches to Mapping Paral-

lel Programs onto a Hypercube,” in Supercomputing: 1st International Conference,

pp. 475–497, June 1987.

152 Bibliography

[110] M. Sarrafzadeh, “Channel-Routing Problem in the Knock-Knee Mode is NP-Complete,”

IEEE Transactions on Computer-Aided Design, vol. CAD-6, no. 4, pp. 503–506, July

1987.

[111] S. Sastryand A. Parker, “The Complexity of Two-Dimensional Compaction of VLSI

Layouts,” in Proc. Intl. Conf. on Circuits and Computers, pp. 402–406, Sept. 1982.

[112] C. Savage, “Parallel Algorithms for Graph Theoretic Problems,” Department of

Mathematics, Univ. of Illinois, PhD Thesis, 1977.

[113] J. E. Savage, The Complexity of Computing. John Wiley and Sons, 1976.

[114] J. E. Savage, “Planar Circuit Complexity and the Performance of VLSI Algorithms,”

in VLSI Systems and Computations, H. T. Kung, B. Sproulland G. Steele, Eds.

Computer Science Press, pp. 61–68, 1981.

[115] J. E. Savage, “Heuristics in the SLAP Layout System,” in IEEE Intl. Conf. On

Computer Design, Rye, New York, pp. 637–640, 1983.

[116] J. E. Savage, “Three VLSI Compilation Techniques: PLA’s, Weinberger Arrays, and

SLAP, A New Silicon Layout Program,” in Algorithmically-specialized Computers.

Academic Press, 1983.

[117] J. E. Savage, “Heuristics for Level Graph Embeddings,” in 9th International Work-

shop on Graph-Theoretic Concepts in Computer Science, pp. 307–318, June 1983.

[118] J. E. Savage, “The Performance of Multilective VLSI Algorithms,” Journal of Com-

puter and Systems Sciences, vol. 29, no. 2, pp. 243–273, Oct. 1984.

[119] J. E. Savageand M. G. Wloka, “Parallel Graph-Embedding and the Mob Heuristic,”

to be submitted, 1991.

[120] J. E. Savageand M. G. Wloka, “Parallelism in Graph Partitioning,” in Journal of

Parallel and Distributed Computing, to appear, 1991.

[121] J. E. Savageand M. G. Wloka, “On Parallelizing Graph-Partitioning Heuristics,” in

Proceedings of the ICALP’90, pp. 476–489, July 1990.

[122] J. E. Savageand M. G. Wloka, “Parallelizing SA For Graph Embedding Is Hard,”

in Proceedings of the IMACS World Congress on Computation and Applied Math-

ematics, Special Session on Simulated Annealing, Dublin, to appear, July 1991.

[123] J. E. Savageand M. G. Wloka, “A Parallel Algorithm for Channel Routing,” in

Graph-Theoretic Concepts in Computer Science, no. 344. Amsterdam: Lecture

Notes in Computer Science, Springer-Verlag, pp. 288–301, June 1988.

[124] J. E. Savageand M. G. Wloka, “Parallel Constraint Graph Generation,” in Advanced

Research in VLSI: Proceedings of the 1989 Decennial Caltech Conference, Cam-

bridge, MA, pp. 241–259, Mar. 1989.

[125] J. E. Savageand M. G. Wloka, “Parallel Graph-Embedding Heuristics,” in 5th SIAM

Conference on Parallel Processing for Scientific Computing, Houston, to appear, Mar.

1991.

Bibliography 153

[126] A. A. Schäfferand M. Yannakakis, “Simple Local Search Problems That Are Hard

to Solve,” SIAM Journal on Computing, vol. 20, no. 1, pp. 56–87, Feb. 1991.

[127] M. Schlag, F. Luccio, P. Maestrini, D. T. Leeand C. K. Wong, “A Visibility Problem

in VLSI Layout Compaction,” Advances in Computing Research, vol. 2, pp. 259–282,

1985.

[128] Y. Shiloachand U. Vishkin, “Finding the Maximum, Merging, and Sorting in a Par-

allel Computation Model,” J. Algorithms, vol. 2, pp. 88–102, 1981.

[129] D. B. Shmoysand E. Tardos, “Computational Complexity,” preprint, 1988.

[130] M. Snir, “Depth-Size Trade-offs for Parallel Prefix Computation,” in J. Algorithms,

pp. 185–201, 1986.

[131] G. B. Sorkin, “Simulated Annealing on Fractals: Theoretical Analysis and Relevance

for Combinatorial Optimization,” in Advanced Research in VLSI, Proceedings of the

Sixth MIT Conference, pp. 331–351, 1990.

[132] R. Suayaand G. Birtwistle, Eds., VLSI and Parallel Computation: Morgan Kaufmann

Publishers, San Mateo, 1991.

[133] T. G. Szymanski, “Dogleg Channel Routing is NP-Complete,” IEEE Transactions

on Computer-Aided Design, vol. CAD-4, no. 1, pp. 31–40, Jan. 1985.

[134] R. E. Tarjan, Data Structures and Network Algorithms. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1983.

[135] C. D. Thompson, “Area-time Complexity For VLSI,” in 11th Annual ACM Sympo-

sium on Theory of Computing, pp. 81–88, May 1979.

[136] L. G. Valiant, “A Bridging Model for Parallel Computation,” Communications of

the ACM , vol. 33, no. 8, pp. 103–111, Aug. 1990.

[137] L. G. Valiant, “Parallelism in Comparison Problems,” SIAM J. Comput., vol. 4, no.

3, pp. 348–355, Sept. 1975.

[138] J. Vuillemin, “A Combinatorical Limit to the Computing Power of VLSI Circuits,”

in 21st Annual ACM Symposium on Theory of Computing, pp. 294–300, Oct. 1980.

[139] A. Wagnerand D. G. Corneil, “Embedding Trees in a Hypercube is NP-Complete,”

SIAM Journal on Computing, vol. 19, no. 4, pp. 570–590, June 1990.

[140] W. H. Wolfand A. E. Dunlop, “Symbolic Layout and Compaction,” in Physical

Design Automation of VLSI Systems, B. T. Preasand M. Lorenzetti, Eds. The

Benjamin/Cummings Publishing Company, Menlo Park, pp. 211–281, 1988.

[141] W. H. Wolf, R. G. Mathews, J. A. Newkirckand R. W. Dutton, “Algorithms for

Optimizing Two-Dimensional Symbolic Layout Compaction,” IEEE Transactions on

Computer-Aided Design, vol. CAD-7, no. 4, pp. 863–878, Apr. 1987.

[142] C. Wongand R. Fiebrich, “Simulated Annealing-Based Circuit Placement on the

Connection Machine,” in Proceedings of the International Conference on Computer

Design, pp. 78–82, Oct. 1987.

154 Bibliography

[143] A. Y. Wu, “Embedding of Tree Networks into Hypercubes,” in Journal of Parallel

and Distributed Computing, pp. 238–249, 1985.

