
Indexing for Data Models with Classes and Constraints

by

Sridhar Ramaswamy

B. Tech., indian Institute of Technology, Madras, July 1989

Sc. M., Brown University, May 1991

Thesis

Submitted in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy in the Department of Computer Science

at Brown University.

May 1995

j

1

/-5/~E

I-N
Ph·]).
19'95

1<39
Co;-2...
5cI

This dissertation by Sridhar Ramaswamy

is accepted in its present form by the Department of

Computer Science as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date dj /13/~"
I I ~

Paris C. Kanellakis

Recommended to the Graduate Council

Date o/t:3/Cjf
I • .~6r''k..

Stanley B. Z~ik

Date <1d1/9/f
Thomas W. Doeppner Jr.

Approved by the Graduate Council

Date 10;"/9'1 ~~~

ii

Vita

I was born on February 26, 1967 in Tiruchirapally, India. After attending high school in

the National_College, Bangalore, India, I studied computer science and engineering at the

Indian Institute of Technology, Madras, India, from which I graduated in 1989 with the

Bachelor of Technology degree. I then joined the Ph.D. program in computer science at

Brown University, where I received an Sc.M. degree in 1991.

iii

Abstract

We examine I/O-efficient data structures that provide indexing support for new data models.

The database languages of these models include concepts from constraint programming (e.g.,

relational tuples are generalized to conjunctions of constraints) and from object-oriented

programming (e.g., objects are organized in class hierarchies).

Indexing by one attribute in many constraint data models is equivalent to external

dynamic interval management, which is a special case of external dynamic two-dimensional

range searching. We present the first optimal worst-case solution for the static version of

this problem.

Indexing by one attribute and class name in an object-oriented database (OODB) in

which objects are organized as a forest hierarchy of classes is also a special case of external

dynamic two-dimensional range searching. On the basis of this observation, we first identify

a simple algorithm, called the class-divisions algorithm, with provably good worst-case per

formance for this problem. Using the forest structure of the class hierarchy and techniques

used in solving the constraint indexing problem, we improve its query I/O time.

We then introduce a technique called path caching that can be used to convert many

main memory data structures for the problems we study to efficient secondary storage data

structures. By doing so, we examine important time/space tradeoffs in secondary storage.

Finally, we present the experimental evaluation of the class-divisions algorithm for

IV

indexing in OODBs by comparing it with the algorithm commonly adopted in OODBs. We

prove that by paying a sma.ll overhead in storage (typica.lly less than a factor of 3), impressive

performance gains in querying (typically a factor of over 8) are made possible. By doing

this, we demonstrate that algorithms can be designed with good guaranteed bounds for

difficult indexing problems in databases.

~~:"

"..

'

.It
...

~

r v

i:

~,

Credits

Part of the research described in this thesis was done in collaboration with Paris Kanellakis,

Sairam Subramanian, Darren Vengroff, and Jeffrey Vitter. In particular, the material in

Chapters 1-5 was co-authored with Paris Kanellakis, Darren Vengroff and Jeffrey Vitter

and appeared in [21]. The material in Chapter 6 was co-authored with Sairam Subramanian

and appeared in [31].

While I was at Brown, I was supported by ONR grant N00014-91-J-4052, ARPA Order

8225 and by ONR grant N00014-91-J-1603. I gratefully acknowledge this support.

'"

vi

r
I
,]

"1

Acknowledgements

I would like to thank my advisor, Paris Kanellakis, for all that he has done for me at Brown.

He has been much more than just a thesis advisor for me. He has been a warm friend, an

astute career counselor and a colleague with a far-reaching vision. I am very grateful to

him. In particular, he introduced the field of indexing to me, and it was in discussions

about indexing that the central ideas of this thesis germinated.

My thanks go to my Master's thesis advisor, Stan Zdonik, for introducing me to re

search in computer science and for being very considerate with a very raw, and often very

frustrated, researcher. My thanks go to Tom Doeppner for being very helpful in the two

courses for which I was his teaching assistant. In addition, my thanks go to Stan and Tom

for being on my thesis committee.

My co-authors, Prof. Jeff Vitter, Dr. S. Sairam, and Darren Vengroff, get my thanks

for many stimulating discussions. SaPs unceasing energy and enthusiasm for research have

been a great inspiration to me.

I would like to thank the departmental technical staff for providing the best work en

vironment that I have seen in my life. (Thanks here should also go to Bob Cohen, Ashim

Garg and Lloyd Greenwald whose sporadic presence in the office greatly helped my monop

olization of a workstation.) The administrative staff, in particular Mary Andrade, Katrina

Avery, Tina Cantor, Patti Courtemanche, Jennet Kirschenbaum, and Dawn Nicholaus, get

my thanks for their help in dealing with the university bureaucracy and the many day-to-day

vii

matters.

I would like to thank my friend and roommate Matthias Wloka for being a wonderful

roommate. Our apartment has always been a happy and welcome refuge for me away from

school and he deserves many thanks for that.

My many friends and acquaintances at Brown have contributed immensely to and have

enriched my life at Brown. I would like to thank Swarup Acharya, Ajit Agrawal, the

Anjalis, Rudrani Banik, Ravi Bellamkonda, Randy Calistri, Bob Cohen, Anne Fitzpatrick,

Ashim Garg, Herb, Gerd Hillebrand, P. Krishnan, David Langworthy, Jenny Lowe, Uma

Madapur, Alberto Marquez, T. M. Murali, Chip Natarajan, Andrea Pietracaprina, Amy

Prashkar, Kavita Ramanan, Prabha, Susanne Raab, Shobhana Raghupathy, R. Rajesh,

Viswanath Ramachandran, Ravi Ramamurthy, Ruth Rusch, Craige Ruffin, Fred Shoucair,

Sai and Bharathi Subramanian, Sairam Sundaram, Ram Upadrastha, Emily Weymar and

the many others who made life interesting and fun.

And finally, I would like to thank my parents, N. P. Ramaswamy and P. R. Namagiri,

my sister R. Vijaya, and my girlfriend Seema Bansal for their love and support.

viii

Contents

1 Introduction 1

1.1 Motivation 1

1.2 Indexing Constraints 3

1.3 Indexing Classes 5

1.4 Path Caching 6

1.5 Experimental Work. 7

1.6 Summary of Contributions and Overview 7

2 Related Research 9

3 The Problems and Initial Approaches 14

3.1

3.2

Indexing Constraints 14

Indexing Classes .. 19

."

~

...

An Algorithm for External Semi-Dynamic Interval Management
4 29

ix

4.1 An I/O Optimal Static Data Structure for Diagonal Corner Queries 30

4.2 Dynamization of Insertions 42

5 A Class Indexing Algorithm Using Hierarchy Decomposition 49

5.1 Extremes of the Class Indexing Problem 	 49

5.2 Rake and Contract 	 54

6 Path Caching 	 59

6.1 Path caching 	 60

6.2 	 Priority search trees all.d path caching 63

6.3 	 U sing recursion to reduce the space overhead 67

6.4 	 A fully dynamic secondary memory data structure for answering two-sided

queries. .. 72

7 Experimental Work 	 77

7.1 Indexing Classes Revisited. 	 77

7.2 The Implementation 	 79

7.3 The Experiments .. 	 84

7.4 The Class-Divisions Algorithm: Conclusions 	 95

8 Conclusions and Open Problems 	 101

x

-
.,;, "
.~J ~
,:..~

ROY

Chapter 1

Introduction

1.1 Motivation

The successful realization of any data model requires supporting its language features with

efficient secondary storage manipulation. For example, the relational data model [10] in

cludes declarative programming in the form of relational calculus and algebra and expresses

queries of low data complexity because every fixed relational calculus query can be evalu

ated in LOGSPACE and PTIME in the size of the input database. More importantly, these

language features can be supported by data structures for searching and updating that make

optimal use of secondary storage. B-trees and their variants B+ -trees [2,11Jare examples of

such data structures and have been an unqualified success in supporting external dynamic

one-dimensional range searching in relational database systems.

The general data structure problem underlying efficient secondary storage manipulation

for many data models is external dynamic k-dimensional range searching. The problem of

k-dimensional range searching in both main memory and secondary memory has been the

subject of much research. To date, solutions approaching the worst-case performance of

1

B-trees for one-dimensional searching have not been found for even the simplest cases of

external k-dimensional range searching. In this thesis, we examine new I/O-efficient data

structures for special cases of the general problem of k-dimensional range searching. These

special cases are important for supporting new language features, such as constraint query

languages [20] and class hierarchies in object-oriented databases [23,41].

We make the standard assumption that each secondary memory access transmits one

page or B units of data, and we count this as one I/O. (We use the terms page and disk

block interchangeably, as also the terms in-core and main memory.) We also assume that

at least O(B2) words of main memory are available. This is not an assumption that is

normally made, but is entirely reasonable given that B is typically on the order of 102 to

103 and today's machines have main memories of many megabytes.

Let R be a relation with n tuples and let the output to a query on R have t tuples. We

also use n for the number of objects in a class hlerarchy with c classes and t for the output

size of a query on this hlerarchy. The performance of our algorithms is measured in terms

of the number of I/Os they need for querying and updating and the number of disk blocks

they require for storage. The I/O bounds are expressed in terms of n, c, t and B, Le., all

constants are independent of these four parameters. (For a survey of the state of the art

in I/O complexity, see [40].) We first review B+-tree performance since we use that as our

point of reference.

A B+-tree on attribute x of the n-tuple relation Ruses O(n/B) pages of secondary

storage. The following operations define the problem of external dynamic one-dimensional

range searching on relational database attribute x, with the corresponding I/O time per

formance bounds using the B+ -tree on x: (1) Find all tuples such that for their x attribute

al ~ x ~ a2. If the output size is t tuples, then this range searching takes O(logB n + t/B)

secondary memory accesses, worst-case. If at = a2 and x is a key, i.e., it uniquely iden

tifies the tuple, then this is key-based searching. (2) Inserting or deleting a given tuple

takes O(logB n) secondary memory accesses, worst-case. The problem of external dynamic

k-dimensional range searching on relational database attributes Xl, ••• , Xk generalizes one

2

..

dimensional range searching to k attributes, with range searching on k-dimensional intervals.

If there are no deletes we say that the problem is semi-dynamic. If there are no inserts or

deletes we say that the problem is static.

In this thesis we are concerned with external two-dimensional range searching: dynamic

(Chapters 3, 6 and 7), and semi-dynamic and static (Chapters 4 and 5). We are concerned

with algorithms that have provably good worst-case I/O bounds.

To put our contributions into perspective we point out (from the literature by using

standard mappings of in-core data structures to external ones) that external dynamic two

dimensional range searching, and thus the problems examined here, can be solved in static

query I/O time O(log2 n+t/B) worst-case using fractional cascading, and in dynamic query

I/O time O(lOg2 nlogB n + t/B) worst-case using O(n/B) log2 n) pages. The amortized

update I/O time is o(1og2 nlogB n). (Note that log2 n = (log2 B)(logB n) is asymptotically

much larger than 10gB n.) Using the special structure of the indexing problems of interest,

we improve the above bounds.

1.2 Indexing Constraints

Constraint programming paradigms are inherently "declarative", since they describe com

putations by specifying how these computations are constrained. A general constraint

programming framework for database query languages called constraint query languages or

CQLs was presented in [20]. This framework adapts ideas from constraint logic program

ming, e.g., from [19], to databases, provides a calculus and algebra, guarantees low data

complexity, and is applicable to managing spatial data.

It is, of course, important to index constraints and thus support these new language

features with efficient secondary storage manipulation (see Section 3.1 for a detailed ex

position of the problem). Fortunately, it is possible to do this by combining CQLs with

existing two-dimensional range searching data structures [20]. The basis of this observation

3

• •

two-dimensional query

•

•

••
•

Figure 1.1: Diagonal corner queries, two-sided, three-sided and general two-dimensional
range queries.

is a reduction of indexing constraints, for a fairly general class of constraints, to dynamic

interval management on secondary storage. Given a set of input intervals, dynamic in

terval management involves being able to perform the following operations efficiently: (1)

Answer interval intersection queries; that is, report all the input intervals that intersect a

query interval. (2) Delete or insert intervals from the interval collection. Dynamic interval

management can be shown to be a special case of external dynamic two-dimensional range

searching.

Dynamic interval management is interesting because it can be solved optimally in-core

using the Priority Search Tree of McCreight [27] in query time o(logz n +t), update time

O(logz n), and space O(n), which are all optimal. Achieving analogous I/O bounds is much

harder. In Section 3.1, we reduce indexing constraints to a special case of external dynamic

two-dimensional range searching that involves diagonal corner queries and updates. A

diagonal corner query is a two-sided range query whose corner must lie on the line x = y and

whose query region is the quarter plane above and to the left ofthe corner (see Figure 1.1).

In Chapter 4, we propose a new data structure, which we call the metablock tree, for this j

I 	 problem. Our data structure has optimal worst-case space O(n/B) pages, optimal query

I/O time o (10gB n + t/ B) and has O(logB n + (10gB n)Z / B) amortized insert I/O time.

I This performance is optimal for the static case and nearly optimal for the semi-dynamic

1 . case where only insertions are allowed (modulo amortization).

I
j

i
1

4

"I'·'.·.i.'

1.3 Indexing Classes

Indexing by one attribute and by class name in an object-oriented model, where objects are

organized as a static forest hierarchy of classes, is also a special case of external dynamic

two-dimensional range searching. Together with the different problem of indexing nested

objects, as in [26], it constitutes the basis for indexing in object-oriented databases. Indexing

classes has been examined in [22] and more recently in [25], but the solutions offered there

are largely heuristic with poor worst-case performance.

In Section 3.2, we reduce indexing classes to a special case of external dynamic two

dimensional range searching called three-sided searching. Three-sided range queries are a

special case of two-dimensional range queries. In three-sided range queries, one of the four

sides defining the query rectangle is always one of the coordinate axes or at infinity.1 We

also assume that the class-subclass relationship is static, although objects can be inserted

or deleted from classes. Under this reasonable assumption, for a class hierarchy with c

classes having a total of n objects, we identify a simple algorithm called the class-divisions

algorithm with worst-case space O((n/B)logzc) pages, query I/O time O(1ogz clogB n+

t/B), and update I/O time o(logz clogB n). Even with the additional assumption of a

static class-subclass relationship, the problem is a nontrivial case of two-dimensional range

searching. We show in Section 3.2 that it is impossible to achieve optimal query time for

this problem (O(logB n +t/B) disk I/Os) with only one copy of each object in secondary

storage. (For lower bounds on range searching in main memory, see [14] and [7].) In Chapter

5, analyzing the hierarchy using the hierarchical decomposition of [37] and using techniques

from the constraint indexing problem, we improve query I/O time to O{logB n + t/B +
logz B) using space O((n/B) logz c) pages. Amortized update I/O time for the semi-dynamic

problem with inserts is o(Iogz c(logB n + (10gB n)Z / B)).

1 Note that diagonal corner queries are a special case of two-sided queries and two-sided queries are a
special case of three-sided queries (see Figure 1.1).

5

1.4 Path Caching

Many efficient algorithms exist for two-dimensional range searching and its special cases (see

[9] for a detailed survey). Most of these algorithms cannot easily be mapped efficiently to

secondary storage. We present a general technique called path caching that can be used to

map many main memory data structures like the priority search tree [27J, segment tree [3],

and interval tree [12,13] efficiently to secondary storage. These data structures are relevant

and important to the indexing problems we are considering because of the following reasons:

(1) Dynamic interval management can be solved efficiently in main memory by all the three

data structures mentioned above; and (2) three-sided queries can be solved efficiently in

main memory by the priority search tree. The data structures obtained by applying path

caching to these main memory data structures will have very efficient query times at the

expense of slight overheads in storage. This technique is also simple enough to allow for

inserts and deletes in small amortized time.

U sing path caching, we present a data structure that implements priority search trees

on disk to answer two-sided queries, a generalization of diagonal corner queries (see Fig

ure 1.1). We use path caching and obtain bounds of o(logB n+t/B) l/Os for query time and

O(logB n) for amortized updates. The data structure occupies O('B log log B) disk blocks

of storage. We also present a data structure that implements priority search trees on disk

to answer three-sided queries. For this data structure, we get bounds of O(logB n + t/B)

for query time and O(logB n log2 B) for amortized updates. The data structure occupies

O('B log B log log B) disk blocks of storage.

In addition to these data structures, path caching can also be applied to other main

memory data structures like the segment tree and interval tree to obtain optimal query

times at the expense of small space overheads. By doing this, we improve on the bounds of

[6] for implementing segment trees in secondary memory.

>.

i
6

t,
.. ,

1.5 Experimental Work

The actual use of a data structure in a database depends on many factors. Most of the

data structures considered here have good worst-case bounds, but asymptotic bounds by

themselves are not enough proof that a data structure will work well in practice. Many

other factors like general efficiency, ease of implementation, interaction with the rest of

the database system, etc. also play an important role. In this thesis, however, we restrict

ourselves to experimentally verifying two of the important factors, namely general efficiency

and ease of implementation. This can be thought of as a necessary prerequisite for an index

structure to be successful.

We implemented the class-divisions algorithm presented in Section 3.2 for indexing

classes in an OODB. This algorithm is especially suitable for implementation because it is

simple and uses a data structure that is readily available in all database systems, namely

B+ -trees. We performed extensive evaluation of this algorithm by comparing it with the

method used commonly in OODBs today.

The experiments offered conclusive proof that we can successfully trade storage for

good, guaranteed query times. For storage overheads that were generally under a factor

of 3, the class-divisions algorithm offered an overall performance improvement of a factor

of 8 or more. For sub-cases of the problem, this factor was often more than 50. These

results were strong proof of the effectiveness of the algorithm, especially since the tests

were conducted with "well behaved" data.

1.6 Summary of Contributions and Overview

The main contribution of this thesis can be summarized as follows: (1) We present 1/0

efficient data structures, with provably good worst-case bounds, providing indexing support

for new data models that are becoming more and more important. (2) We perform a rigorous

7

experimental evaluation of some of the new data structures to prove that they can perform

extremely well in a realistic setting.

The rest of this thesis is organized as follows. Chapter 2 examines related research in

the area of indexing. Section 3.1 explains the constraint data model in detail and shows

that indexing constraints can be reduced to dynamic interval management in secondary

storage, which in turn reduces to answering diagonal corner queries. In Chapter 4, we

propose a new data structure, optimal for the static case, for this problem. Section 3.2

discusses the problem of indexing classes in more detail and presents a simple algorithm

for this problem with good worst-case bounds. We improve on these bounds in Chapter 5

using the techniques developed for indexing constraints. Chapter 6 presents the idea of path

caching and the results that we obtain using that idea. Chapter 7 presents the experimental

evaluation of the work done on indexing in OODBs. We finish in Chapter 8 with the

conclusions and open problems.

-...
8

(

;..,'J
~

Chapter 2

Related Research

A large literature exists for in-core algorithms for two-dimensional range searching. The

range tree [4] can be used to solve the problem in O(nlog2 n) space and static worst

case query time O(log2 n + t) . By using fractional cascading, we can achieve a worst-case

dynamic query time 0(1og2 n log2log2 n +t) and update time O(log2 n log2log2 n) using the

same space. We refer the reader to [9] for a detailed survey of the topic.

The ideal worst-case I/O bounds .would involve making all the above logarithms have

base B and compacting the output term to t/B; any other improvements would of course

imply improvements to the in-core bounds. Unfortunately, the various in-core algorithms do

not map to secondary storage in as smooth a fashion as balanced binary trees map to B+

trees. For example, [30,38] examine mappings which maintain the logarithmic overheads

and make the logarithms base B; however, their algorithms do not compact the t-sized

output on t/B pages.

The practical need for general I/O support has led to the development of a large num

ber of data structures for external k-dimensional searching. These data structures do not

have good theoretical worst-case bounds, but have good average-case behavior for common

9

spatial database problems. Examples are the grid-file, various quad-trees, z-orders and

other space filling curves, k-d-B-trees, hB-trees, cell-trees, and various R-trees. For these

external data structures there has been a lot of experimentation but relatively little algo

rithmic analysis. Their average-case performance (e.g., some achieve the desirable static

query I/O time of O(logB n + t/B) on average inputs) is heuristic and usually validated

through experimentation. Moreover, their worst-case performance is much worse than the

optimal bounds achievable for dynamic external one-dimensional range searching using B+

trees. We present here a brief survey of general purpose data structures to solve external

two-dimensional range searching.

General purpose external k-dimensional range searching techniques can be broadly di

vided into two categories: those that organize the embedding space from which the input

data is drawn and those that organize the input data.

We will first consider data structures that organize the embedding space with reference

to our problem. Quad trees [33,34] were designed to organize two-dimensional data. They

work by recursively subdividing each region into four equal pieces until the number of points

in each region fits into a disk block. Because they do not adapt to the input data, they can

have very bad worst-case times.

The grid file [28] was proposed as a data structure that treats all dimensions symmet
i\ "

~· rically, unlike many other data structures like the inverted file which distinguish between
J."

:.:'
.I
:;; primary and secondary keys. The grid file works by dividing each dimension into ranges and

maintaining a grid directory that provides a mapping between regions in the search space

and disk blocks. The paper [28] does not provide analysis for worst-case query times. They

do mention that range queries become very efficient when queries return "many" records.

If we assume a uniform two-dimensional grid of points (with a point on each location

with integral x and y coordinates) as input, the grid file would produce regions which are of

size O(-IE) x O(-IE). The time to report answers to a two-sided range query would then

be (in the worst-case) O(t/-IE) where t is the number of points in the query result. This

is higher than the optimal time of O(t/B). In fact, it turns out that most data structures

10

in the literature fail to give optimal performance for this very simple example.

The second class of general purpose external k-dimensional range searching data struc

tures that have been proposed for multi-attribute indexing are based on the principle of

building a search structure based on the recursive decomposition of input data. Many of

them are based on a B-tree-like organization. We will consider several of them with reference

to our problems.

Two related data structures that have been proposed for multi-attribute indexing are

the k-d-B-tree [32] and the hB-tree [24].

k-d-B-trees combine properties of balanced k-d-trees in a B-tree-like organization. In

the two-dimensional case (these ideas generalize readily to higher dimensions), the k-d-B

tree works by subdividing space into rectangular regions. Such subdivisions are stored in

the interior nodes of the k-d-B-tree. If a subdivision has more points than can be stored in a

disk block, further subdivision occurs until each region in the lowest level of the tree contains

no more points than can be stored in a disk block. Insertion and deletion algorithms for

the k-d-B-tree are also outlined in [32]. This work does not offer any worst-case analysis

for range search. As mentioned before, the k-d-B-tree works by subdividing space into

rectangular regions. With a uniform grid of points as input, we would read O(tj..fli) disk

blocks to report t points on a straight line.

f
[.;
Ii; The hB-tree is based on the k-d-B-tree. Instead of organizing space as rectangles, they
~. "

organize space into rectangles from which (possibly) other rectangles have been removed.

t." This helps bring down the cost of managing insertions and deletions. This paper also does f
not provide a formal analysis of the cost of range searching. Although range searching in

hB-trees is similar to range searching in B-trees, the crucial difference is that with B-trees,

it is possible to totally order data. This is because B-trees index data along only one

attribute. In fact, almost all implementations of B-trees recognize this and keep data only

in their leaves and chain the leaves from left to right. (Such B-trees are called B+ -trees.)

This makes range searching extremely simple and efficient. In order to find elements in a

range [a, b], we locate a in the B+-tree and follows pointers to the right until the value b is

11

.J

I

crossed. Such a total ordering is not possible for k-dimensional data. The problem that we

had with k-d-B-trees with respect to the question at hand remains. Given a uniform grid,

hB-trees still produce rectangles of size O(..JB) X O(..JB) and range searching is inefficient.

That is, we would read O(t/..JB) disk blocks to report t points on a straight line.

Several data structures have been proposed in the literature to handle region data.

These include the R-tree [17], the R+-tree [35], the cell tree [16] and many others. These

data structures are not directly applicable to point data. However, they can deal with

one-dimensional range data and hence are relevant to our problem. All of them are based

on the recursive decomposition of space using heuristics and cannot offer the worst-case

guarantees in space and time that we seek.

An interesting idea based on the use of space-filling curves is proposed in [29]. This

paper identifies a space-filling curve to order points in k-dimensional space. This curve has

the desirable property that points that are close by in the input will, with high probability,

be close by in the resulting ordering. This helps in making range searching efficient, because

it is desirable to keep nearby points in the same disk block. This paper also does not offer

any worst-case analysis for range searching. Specifically, this method will not have optimal

reporting time with our standard case, i.e., the uniform grid of points.

Dynamic interval management has been examined extensively in the literature (see

[9]). As mentioned before, the best in-core bounds have been achieved using the priority

search tree of [27], yielding O(n) space, dynamic query time O(log2 n +t) and update time

O(log2 n), which are all optimal. Other data structures like the Interval Tree [12,13], and

Segment Tree [3] can also solve the interval management problem optimally in-core, with

respect to the query time. Among these, the priority search tree does the best because it

solves the interval management problem in optimal time and space, and provides an optimal

worst-case update time as well.

There have been several pieces of work done by researchers to implement these data

structures in secondary memory. These works include [18], [5], [6]. [18] contains a claimed

optimal solution for implementing static priority search trees in secondary memory. Unfor

12

tunately, the [18] static solution has static query time O(log2 n +t/ B) instead of o(10gB n +
t/B) and the claimed optimal solution is incorrect. None of the other approaches solve the

problem of interval management in secondary memory in the optimal time of O(IogB n+t/B)

either.

Recently, some progress has been made in the case where our goal is to handle a

very large number of queries in a batch [15]. In this case, two-dimensional queries can be

answered in O((n/B + kjB)(IogM/B(n/ B)) + t/B) I/Os where k is the number of queries

being processed and M is the amount of main memory available.

r

!"I

i

--
~ ~

1'

i 13

J : I I

Chapter 3

The Problems and Initial

Approaches

3.1 Indexing Constraints

To illustrate indexing constraints in CQLs consider the domain of rational numbers and

a language whose syntax consists of the theory of rational order with constants + the

relational calculus. (See [20] for details.)

In this context, a generalized k-tuple is a quantifier-free conjunction of constraints on k

variables, which range over the domain (rational numbers). For example, in the relational

database model R(3,4) is a tuple of arity 2. It can be thought of as a single point in two

dimensional space and also as R(x, y) with x = 3 and y = 4, where x, y range over some

finite domain. In our framework, R(x, y) with (x = y" x < 2) is a generalized tuple of arity

2, where x, y range over the rational numbers. Hence, a generalized tuple of arity k is a

finite representation of a possibly infinite set of tuples of arity k.

14

(a2, d2) (C2, d2) .
(a3, d3) (C3, d3)

(al, d1) (cl,d1)

(a3,b3) I (C3, b3)

(a2,b2) «

_ _ _ 4)

(aI, b1) (c},b1) ~(C"b')
Figure 3.1: Rectangle intersection

A generalized relation of arity k is a finite set of generalized k-tuples, with each k-tuple

over the same variables. It is a disjunction of conjunctions (Le., in disjunctive normal form

DNF) of constraints, which uses at most k variables ranging over domain D. A generalized

database is a finite set of generalized relations. Each generalized relation of arity k is a

quantifier-free DNF formula of the logical theory of constraints used. It contains at most

k distinct variables and describes a possibly infinite set of arity k tuples (or points in

k-dimensional space Dk).

The syntax of a CQL is the union of an existing database query language and a decidable

logical theory (theory of rational order + the relational calculus here). The semantics of

the CQL is based on that of the decidable logical theory, by interpreting database atoms as

shorthands for formulas of the theory. For each input generalized database, the queries can

be evaluated in closed form, bottom-up, and efficiently in the input size. Let us motivate

this theory with an example.

Example 3.1.1 The database consists of a set of rectangles in the plane, and we want to

compute all pairs of distinct intersecting rectangles. (See Figure 3.1.)

This query is expressible in a relational data model that has a ~ interpreted predicate.

One possibility is to store the data in a 5-ary relation named R. This relation will contain

15

j
i....
~ ~ .
"

."~

',~... ,.
II"

i.,.
;~

f
,

tuples of the form (n, a, b, c, d), and such a tuple will mean that n is the name of the rectangle

with corners at (a, b), (a, d), (c, b) and (c, d). We can express the intersection query as

{(n}, n2) I nl f. n2 1\ (3ab a2, b1 , b2, Cll C2, d1, d2)(R(nl, all bll Cll dJ) 1\ R(n2, a2, b21 C2, d2)

1\(3x,y E {al,a2,b1 ,b2,CllC2,dll d2})

(al ~ x ~ Cl 1\ b1 ~ Y ~ d1 1\ a2 ~ x ~ C2 1\ b2 ~ Y ~ d2»}

To see that this query expresses rectangle intersection note the following: the two rectangles

nl and n2 share a point if and only if they share a point whose coordinates belong to the

set {all a2, b}, b2, Cll C2, db d2}. This can be shown by exhaustively examining all possible

intersecting configurations. Thus, we can eliminate the (3x, y) quantification altogether and

replace it by a boolean combination of ~ atomic formulas, involving the various cases of

intersecting rectangles.

The above query program is particular to rectangles and does not work for triangles or

for interiors of rectangles. Recall that, in the relational data model quantification is over

constants that appear in the database. By contrast, if we use generalized relations the query

can be expressed very simply (without case analysis) and applies to more general shapes.

Let R(z,x,y) be a ternary relation. We interpret R(z,x,y) to mean that (x,y) is a

point in the rectangle with name z. The rectangle that was stored above by (n, a, b, c, d),

would now be stored as the generalized tuple (z = n) 1\ (a ~ x ~ c) 1\ (b ~ Y ~ d). The set

of all intersecting rectangles can now be expressed as

{(nil n2)ln l f. n2 1\ (3x, y)(R(nI, x, y) 1\ R(n2, x, y)}

The simplicity of this program is due to the ability in CQL to describe and name point-sets

using constraints. The same program can be used for intersecting triangles. This simplicity

of expression can be combined with efficient evaluation techniques, even if quantification is

over the infinite domain of rationals. For more examples and details, please see [20]. 0

The CQL model for rational order + relational calculus has low data complexity, be

16

i

cause every fixed query is evaluable in LOGSPACE. That alone is not enough to make it a

suitable model for implementation. This situation is similar to that in the relational model,

where the language framework does have low data complexity, but does not account for

searches that are logarithmic or faster in the sizes of input relations. Without the ability

to perform such searches relational databases would have been impractical. Very efficient

use of secondary storage is an additional requirement, beyond low data complexity, whose

satisfaction greatly contributes to any database technology.

In the above example the domain of database attribute x is infinite. How can we index

on it? For CQLs we can define indexing constraints as the problem of external dynamic

one-dimensional range searching on generalized database attribute x using the following

operations: (i) Find a generalized database that represents all tuples of the input generalized

database such that their x attribute satisfies al :::; x :::; a2. (ii) Insert or delete a given

generalized tuple.

If (al :::; x :::; a2) is a constraint of our CQL then there is a trivial, but inefficient,

solution to the problem of one-dimensional searching on generalized database attribute x.

We can add the constraint (al :::; x :::; a2) to every generalized tuple (i.e., conjunction of

constraints) and naively insert or delete generalized tuples in a table. This involves a linear

scan of the generalized relation and introduces a lot of redundancy in the representation. In

many cases, the projection of any generalized tuple on x is one interval (a :::; x :::; a'). This

is true for Example 3.1.1, for relational calculus with linear inequalities over the reals, and

in general when a generalized tuple represents a convex set. (We call such CQLs convex

CQLs.) Under such natural assumptions, there is a better solution for one-dimensional

searching on generalized database attribute x .

• 	 A generalized one-dimensional index is a set of intervals, where each interval is associ

ated with a generalized tuple. Each interval (a :::; x :::; a') in the index is the projection

on x of its associated generalized tuple. The two endpoint a, a' representation of an

interval is a fixed length generalized key.

• 	 Finding a generalized database, that represents all tuples of the input generalized

17

•Query Interval
(Xl,X2)

1-------111
I-----------l! 2

Data Intervals
II!3
r-+-----------------------~!4

Xl I 1 X2

Stabbing Query 	 Stabbi'ng Query

Figure 3.2: Reducing interval intersection to stabbing queries and stabbing queries to diag
onal corner queries

database such that their x attribute satisfies (al ~ x ~ a2), can be performed by

adding constraint (al ~ x ~ a2) to only those generalized tuples whose generalized

keys have a non-empty intersection with it .

• 	 Inserting or deleting a given generalized tuple is performed by computing its projection

and inserting or deleting an interval from the set of intervals.

By the above discussion, the use of generalized one-dimensional indexes reduces redun

dancy of representation and transforms one-dimensional searching on generalized database

attribute x into the problem of external dynamic interval management. The framework

described in this section is from [20].

In this thesis, we examine solutions for the problem of external dynamic interval man

agement that have good I/O performance. Keeping in mind that a diagonal corner query

is a two-sided range query whose corner must lie on the line x = y and whose query region

is the quarter plane above and to the left of the corner (see Figure 1.1), we now can show.

the following proposition:

Proposition 3.1.2 Indexing constraints for convex CQLs reduces to external dynamic

interval management which reduces to external dynamic two-dimensional range searching

with diagonal corner queries and updates.

18

Proof: As remarked before, indexing constraints means solving the problem of interval

intersection in secondary memory. Given a set of input intervals, we would like to find all

intervals that intersect a query interval. Intervals that intersect a query interval [Xl, X2]

can be divided into four categories as shown in Figure 3.2. Types 1 and 2 can be reported

by sorting all the intervals on the basis of their first endpoint and reporting those intervals

whose first endpoint lies between Xl and X2. This can be done efficiently using a B+ -tree.

Types 3 and 4 can be reported by performing what is called a stabbing query at Xl. (A

stabbing query at Xl on a set of intervals returns those intervals that contain the point Xl'

See Figure 3.2.) It is also clear that no interval gets reported twice by this process.

Therefore, we will be able to index constraints if we can answer stabbing queries effi

ciently. An interval contains a point q if and only if its first endpoint YI is less than or equal

to q and its second endpoint Y2 is greater than or equal to q. Let us map an interval [YI, Y2]

to the point (YI, Y2) in two-dimensional space. Clearly, the stabbing query now translates

into a two-sided query. That is, an interval [YI, Y2] belongs to a stabbing query at q if and

only if the corresponding point (YI, Y2) is inside the box generated by the lines X = 0, X = q,

Y = q, and Y = 00. Since the second endpoint of an interval is always greater than or equal

to the first endpoint, all points that we generate are above the line X = y. One of the

corners of any two-sided query (corresponding to a stabbing query) is anchored on this line

as well. (See Figure 3.2.) The proposition follows. o

3.2 Indexing Classes

To illustrate the problem of indexing classes, consider an object-oriented database. The

objects in the database are classified in a forest class hierarchy. Each object is in exactly

one of the classes of this hieraTchy. This partitions the set of objects and the block of the

partition corresponding to a class C is called C's extent. The union of the extent of a class

C with all the extents of all its descendants in this hierarchy is called the full extent of C.

Let us illustrate these ideas with an example.
"\

.-J,"

"

",()

; 19
',,;
"

:~
":i

c

Example 3.2.1 Consider a database that contains information about people such as names

and incomes. Let the people objects be organized in a class hierarchy which is a tree with

root Person, two children of Person called Professor, Student, and a child of Professor called

Assistant-Professor. (See Figure 3.4.) We can read this as follows: Assistant-Professor isa

Professor, Professor isa Person, Student isa Person. People get partitioned in these classes.

For example, the full extent of Person is the set of all people, whereas the extent of Person

is the set of people who are not in the Professor, Assistant-Professor, and Student extents.

o

Indexing classes means being able to perform external dynamic one-dimensional range
"

searching on some attribute of the objects, but for the full extent of each class in the hier

archy.

Example 3.2.2 Consider the class hierarchy in Example 3.2.1. Indexing classes for this

hierarchy means being able to find all people in (the full extent of) class Professor with

income between $50K and $60K, or to find all people in (the full extent of) class Person

with income between $100K and $200K, or to insert a new person with income $lOK in the

Student class. 0

Let c be the number of classes, n the number of objects, and B the page size. We use

the term index a collection when we build a B+-tree on a collection of objects. (This B+-tree

will be built over some attribute which will always be clear from context. In Example 3.2.2,

the attribute was the salary attribute.) One way of indexing classes is to create a single

B+-tree for all objects (i.e., index the collection of all objects) and answer a query by looking

at this B+-tree and filtering out the objects in the class of interest. This solution cannot

compact a t-sized output into t/B pages because the algorithm has no control over how the

objects of interest are interspersed with other objects. Another way is to keep a B+-tree

per class (Le., index the full extent of each class), but this uses O((n/ B)c) pages, has query

I/O time O(logB n +t/B) and upd~te I/O time O(clogB n).
,':

The indexing classes problem h~s the following special structure: (1) The class hierarchy

20

is a forest and thus it can be mapped in one dimension where subtrees correspond to

intervals. (2) The class hierarchy is static, unlike the objects in it which are dynamic.

Based on this structure we show that indexing classes is a special case of external

dynamic two-dimensional range searching on some attribute of the objects. We then use

the idea of the two-dimensional range tree (see [9]), with classes as the primary dimension

and the object attribute as a secondary dimension to devise an efficient storage and query

strategy. These ideas are formalized in the proposition and theorem to follow.

Proposition 3.2.3 Indexing classes reduces to external dynamic two-dimensional range

searching with one dimension being static.

Proof: We write a simple algorithm which attaches a new attribute called "class" to every

object. This attribute has a value corresponding to the class to which the object belongs.

Further, we associate a range with each class such that it includes all the class attribute

values of each one of its subclasses. (The class attribute and ranges are for the purposes

of this reduction only. In an actual implementation, these are computed once and stored

separately.) We start out by associating the half-open range [0,1) with the root of the

class hierarchy. We then make a call to the procedure label-class shown in Figure 3.3 with

the root and the range as parameters. (If the hierarchy is a forest of k trees, we simply

divide the range [0,1) into k equal parts, associate every root with a distinct range and call

label-class once for each root.)

At the end of the procedure, every class is associated with a range and every object

has a "class" value associated with it. If we apply label-class to the class hierarchy in

Example 3.2.1, the root Person class is associated with the range [0,1) and all the objects

in its extent have their class attribute set to O. Similarly, the Student, Professor and Asst.

Prof. classes are associated with ranges [i, ~), [~, 1), and [~, 1) respectively. The objects in

the Student, Professor and Asst. Prof. classes have their class attributes set to ~) i and ~

respectively.

21

procedure label-class (node, [a, b))i
Associate [a, b) wi th node
Let a be the value of attribute "class" for every object in class node
Let S = (The number of children of node) +1
if node has no children, terminate
Divide [a, b) into S equal parts of size K
Recursively call label-class for each child with ranges

[a + K, a +2K), [a +2K, a +3K), etc.

Figure 3.3: The procedure label-class used in the proof of Proposition 3.2.3.

n,~)

1
Asst. Pror.

5
6

Professor
"2 Xl X2
.3

Student

1

3 IIPerson[~, 1) I Asst. Prof.
o

Salary

Figure 3.4: Using label-class to reduce indexing classes to two-dimensional range search

It is easy to see how querying some class over some particular attribute corresponds to

two-dimensional range searching. The first dimension of this search is the class attribute

and the second dimension is the attribute over which the search is specified. The range in

the class dimension is the range that we associate with the query class in our label-class

algorithm. Since we assume that the class hierarchy is static, the proposition follows. See

Figure 3.4 for an example of the results of applying label-class to a class hierarchy.

Theorem 3.2.4 Indexing classes can be solved in dynamic query I/O time 0(10g2 c 10gB n+

t/ B) and update I/O time O(lOg2 clogB n), using O((n/ B) log2 c) pages. Here, n is the

number of objects in the input database, c the size of the class hierarchy, t the number of

objects in the output of a query, and B the size of a disk block.

22

0

• • • • • • • • •
• •

• • • • •
• • •

• ••

•

••• •
•

i •ru'·1·
•

.•

~x
Figure 4.1: A metablock tree for B = 3 and n = 70. All data points lie above the line
y = x. Each region represents a metablock. The root is at the top. Note that each non-leaf
metablock contains B2 = 9 data points.

4.1 	 An 110 Optimal Static Data Structure for Diagonal

Corner Queries

At the outermost level, a metablock tree, whether static or dynamic, is a B-ary tree of

metablocks, each of which represents B2 data points. The root represents the B2 data

points with the B2 largest y values. The remaining n - B2 data points are divided into

B groups of (n - B2)/ B data points each based on their x coordinates. The first group

contains the (n - B2)/ B data points with the smallest x values, the second contains those

with the next (n - B2)/ B smallest x values, and so on. A recursive tree of the exact same

type is constructed for each such group of data points. This process continues until a group

has at most B2 data points and can fit into a single metablock. This is illustrated in Figure

4.1.

Now let us consider how we can store a set of k ::;;; B2 data points belonging to a

metablock in blocks of size B. One very simple scheme is to put the data points into

• •
• •

•

• •

I.

30

• • • • •

• • •• •
• •• • •
• • •

.
•'---

•

(a) Vertically

oriented

Figure 4.2: Vertically and horizontally oriented blockings of data points. Each thin rectangle
represents a block.

horizontally oriented blocks by putting the B data points with the largest y values into the

first block, the B data points with the next largest y values into the next block, and so on.

Similarly, we can put the data points into vertically oriented blocks by discriminating on

the x coordinates. These techniques are illustrated in Figure 4.2. Each metablock in our

tree is divided into both horizontally and vertically oriented blocks. This means that each

data point is represented more than once, but the overall size of our data structure remains

G(n/ B).

In addition to the horizontally and vertically oriented blocks, each metablock contains

pointers to each of its B children, as well as a location of each child's bounding box. Finally,

each metablock M contains pointers to B blocks that represent, in horizontal orientation,

the set TS(M). TS(M) is the set obtained by examining the set of data points stored in

the left siblings of M and taking the B2 such points with the largest y values. This is

illustrated in Figure 4.3. Note that each metablock already requires G(B) blocks of storage

space, so storing T S(M) for each metablock does nothing to the asymptotic space usage of

the metablock tree.

The final bit of organization left is used only for those metablocks that can possibly

contain the corner of a query. These are the leaf metablocks, the root metablocks, and all

metablocks that lie along the path from the root to the rightmost leaf. (See the metablocks

on the diagonal in Figure 4.1.) These blocks will be organized as prescribed by the following

31

• •

• • • •• • • • • •

• • •• • •

•

..•• ••• • I M.~
Figure 4.3: A metablock M and the set TS(M). Note that TS(M) spans all of M's left
siblings in the metablock tree. Though it is not explicitly shown here, T S(M) will be
represented as a set of B horizontally oriented blocks.

lemma:

Lemma 4.1.1 A set S of k ~ B2 data points can be represented using O(k/B) blocks of

size B so that a diagonal corner query on S can be answered using at most 2t/B +4 I/O

operations where t is the number of data points in S that lie within the query region.

Proof: Initially, we divide S into a vertically oriented blocking of k/B blocks. Let C be

the set of points at which right boundaries of the regions corresponding to the vertically

oriented blocks intersect the line y = x. Now we choose a subset C* ~ C of these points

and use one or more blocks to explicitly represent the answer to each query that happens

to have a corner c E C*. This is illustrated in Figure 4.4.

In order to decide which elements of C will become elements of C*, we use an iterative

process. The first element of C* is chosen to be at the intersection of the left boundary of

the rightmost block in the vertically oriented blocking. We will call this point cj. To decide

which other elements of C should be elements of C*, we proceed along the line y = x from

the upper right (large x and y) to the lower left (small x and y), considering each element

of C we encounter in turn. Let c; be the element of C most recently added to C*j initially

this is cj. We now move down the line y = x, considering each Ci E C until we find one to

add to C*. In considering Ci E C, we define the sets ni, ~il , ~i2 and ~t to be subsets

of S as shown in Figure 4.5. Let ~i = ~il U~i2. Let S; = ni U ~il be the answer to a

query whose corner is cj. This was the last set of points that was explicitly blocked. Let

32

Figure 4.4: The sets C and C* used in the proof of Lemma 4.1.1. The marked points lying
along the diagonal line y = x are the points in the set C. Those that are small and dark
are points in C \ C*. The larger open points are in the set C*. The dark lines represent
the boundaries of queries whose corners are at points C E C*. One such query is shaded to
demonstrate what they look like.

Si = !1i U fl.t be the answer to a query whose corner is Ci. We decide to add Ci to C*, and

thus explicitly store Si, if and only if

1fl.;1 + Ifl.tl > ISil·

Intuitively, we do not add Ci to C* when we can efficiently amortize the cost of a query

cornered at Ci over a number of blocks that have already been constructed.

Having constructed C*, we now explicitly block the set S; answering a diagonal corner

query for each element ct E C*. Clearly the space used for each such set is flSil1 Bl blocks.

An obvious concern is that by explicitly blocking these sets, we may already be using more

space than the lemma we are trying to prove allows. This, however, is not the case. We can

prove this by amortization. Each time we add a Ci to C*, we will charge ISil credits to the

set fl.; U fl.t. The charge is divided equally among the elements of the set being charged.

Once we add Ci to C*, no element of fl.; can ever be in another fl.; for a larger value of

i as the iteration continues. The same holds for elements of fl.t, which can never appear

as elements of fl.t again for larger i. Thus no element of Scan be a part of a set that is

charged for the insertion of a Ci into C* more than twice. Since the size of the set being

33

f!i

,6,1
1

,6, :-1
~

Figure 4.5: The sets nil ~i1 l ~i2 and ~t as constructed in the proof of Lemma 4.1.1.
cj is the last point that was added to C* and Ci is the point being considered for inclusion.
The sets consist of subsets of S falling within the labeled regions.

charged is at least the size of the set being inserted, the total cost charged to any point is at

most 2. Thus the total size of all the sets in C* is at most 2k, which we can clearly represent

within O(k/B) blocks. The only possible concern is that almost a full block can be wasted

for each set in C* due to roundoff. This is not a problem however, since IC*I ~ ICI k/ B,

so the number of blocks wasted is at most of the same order as the number used.

Now that we have a bound on the space used by our data structure, we have only to

show that it can be used to answer queries in 2t/ B +4 l/Os. To answer a query whose

corner is at some ci E C*, we simply read the blocks that explicitly store the answer to the

query. This takes rtf B1 ~ t/B +1 l/Os, which is clearly within the required bounds.

The more complicated case is when the query point c lies between two consecutive

elements cj and cj+1 in C*. Let T be the subset of S that is the answer to the query whose

corner is c. We find T in two stages. In the first stage, we read blocks from Sj+1 l which

we assume is horizontally blocked, starting at the top and continuing until we reach the

bottom of the query. This is illustrated in Figure 4.Q(a). At most one block is wasted in

this process.

34

(a) The first phase of the algorithm to (b) The second phase of the algorithm
answer a query whose corner is c. The to answer a query. In this phase the
shaded blocks correspond to blocks of shaded vertical blocks are examined.
the explicitly blocked set S1+1 that
are read in this phase.

Figure 4.6: The two phases of the algorithm to answer a query whose corner is c as used
in the proof of Lemma 4.1.1. c; and c;+1 are consecutive elements of the set C*, an thus
answers to queries having them as corners are explicitly blocked.

In the second stage, we return to our original vertical blocking of S (into k/ B blocks),

and read blocks from left to right, starting with the one directly to the right of cj+l and

continuing until we reach the block containing c. This is illustrated in Figure 4.6(b). To

show that we are still within the I/O bounds we are trying to prove, we consider two cases.

In the first case, there is no Ci E C between c and cj+1' This is illustrated in Figure 4.7(a).

In this case, we only have to read one block from the vertical blocking, namely the one

immediately to the right of cj+l' and the proof is done.

In the second case, there is at least one Ci E C between c and cj+1' Let us consider the

leftmost such Ci. Since cj and cj+1 are consecutive elements of C*, it must be the case that

Ci was not chosen in the iterative process that constructed C*. This means that

lail + latl ~ ISil,

35

(a) In the first case c is in the vertical (b) In the second case there is at least
block immediately to the right of cj+1 . one element of C between c and Cj+l'

Ci is the leftmost such element.

Figure 4.7: Two cases ofthe second phase ofthe algorithm (Figure 4.6(b)) used in the proof
of Lemma 4.1.1.

otherwise Ci would have been added to C*. Subtracting I~tl from both sides, we get

I~il ~ Inil,

since ~t and ni are disjoint but their union is Si. Referring to Figure 4.7(b), we see that

ni is a subset of T, the answer to the query whose corner is c. Thus

l~iI ~ Inil ~ ITI·

We also see that except for the leftmost block, all the vertical blocks examined in the second

phase in Figure 4.6(b) are fully contained in ~i. This means that in the worst case we will

have to examine all of ~i plus one additional block. But since I~il ~ ITI, the number of

blocks examined is at most equal to the number of blocks needed to represent the output

of our query. Even if all these blocks are wasted because the points they contain lie in the

region below c, no more than rtf Bl blocks are wasted. If we add these to the blocks used

36

in the first stage, and the vertical block just to the right of Cj+l , the total number of blocks

used is no more than 2t/B +3.

The final step of the proof is to show how we can determine where to begin looking

for a query given a query point c. Since k ~ B2, the size of C is at most B. We can thus

use a single block to store an index with pointers to the appropriate locations to begin the

two stages of the search for any query value falling between two consecutive elements of C.

This gives us our overall result of 2t/B +4 I/Os.

The only cases we have not considered occur when c does not fall between two elements

of C*, but rather completely to either the left or right of them. These special cases can be

handled by minor variations of the arguments given above. o

Now that we know how to structure the corner blocks of a metablock tree so that the

portion of a query that falls within that metablock can be reported efficiently, we need

only show that the portions of the query residing in the rest of the metablocks can also be

reported efficiently. We do this with the following theorem:

Theorem 4.1.2 If a set of n data points (x, y) in the planar region y ~ x and y > 0 is

organized into a metablock tree with blocks of size B I then a diagonal corner query with t

data points in its query region can be performed in O(logB n + t/ B) I/O operations. The

size of the data structure is O(n/B) blocks of size Beach.

Proof: First we consider the space used by the tree. In Lemma 4.1.1 we showed that the

number of blocks used by each corner metablock containing k points is O(k/B). All other

metablocks in the tree must be internal, and thus contain B2 points. Each such metablock

occupies O(B) blocks as was shown in the discussion of their construction. This includes

the associated T S data structures. In addition, we will use a constant number of disk

blocks per metablock to store control information for that metablock. This will include

split values and pointers to its children, boundary values and pointers to the horizontal

organization, etc. This control information uses O(n/B2) disk blocks since there are only

37

(1) procedure diagonal-query (query q, node M)j
(2) if M contains the corner of query q then
(3) use the corner structure for M to answer the query; return;
(4) else 1* M does not contain the corner of query q *I
(5) use M's vertically oriented blocks to report points of M that lie inside q
(6) let Me be the child of M containing the vertical side of the query
(7) 	 if Me has siblings to its left that fall inside the query, use the bottom boundary

of TS(Me) to determine if TS(Mc) falls completely inside the query.
(8) 	 If T S(Mc) does not fall completely inside the query, report the points

in TS(Mc) that lie inside the query.
(9) 	 If TS(Mc) falls completely inside the query, examine the siblings one

by one using their horizontally oriented blocks.
(10) 	 If any sibling is completely contained inside the query, look at its children

using their (the children's) horizontally oriented organizations
and continue downwards until the bottom boundary of the query is
reached for every metablock so examined.

(11) invoke diagonal-query(q , Me)

Figure 4.8: Procedure diagonal-query to answer diagonal corner queries using a metablock
tree

O(nlB2) metablocks. Thus a total of O(nlB) blocks are used.

Queries are answered using the procedure diagonal-query in Figure 4.8 (by invoking

diagonal-query (query q, root of metablock tree). We associate every metablock with the

minimum bounding rectangle of the points inside it. Call this the metablock's region. Also,

a diagonal corner query q is completely specified by the point at which it is anchored on

the line x = y. We will use phrases like "if metablock M contains the corner of query q,"

etc. with the understanding that these are really short procedures that can be implemented

easily by considering intersections of the appropriate regions.

To prove the bound on the query time, we consider the fact that once we know the

query region, each block that has a non-empty intersection with it falls into one of four

categories based on how it interacts with the boundary of the query. These four types are

illustrated in Figure 4.9. To complete the proof we simply look at the contributions of each

type of metablock to the total number of 110s required.

38

Type I Type II Type III Type IV

Figure 4.9: The four types of metablocks. The shaded rectangles represent metablock
boundaries and the thick lines are the boundaries of queries. The four types appear in
processing diagonal corner queries as described in Section 4.1 and are used in the proof of
Theorem 4.1.2

• 	 There are at most O(logB2 n) = O(logB n) Type I nodes, each of which can be queried,

using its vertically oriented blocks, so as to visit at most one block that is not com

pletely fulL These potentially wasted blocks are accounted for in the O(1ogB n) term.

• 	 Only one Type II node can exist. Let tc be the number of data points stored in the

metablock at this node that are within the query region. By Lemma 4.1.1 the tc

points can be found using only O(tc/ B) I/O operations. This gets absorbed into the

O(t/B) term.

• 	 A Type III metablock returns B2 data points and uses O(B) I/O operations. These

are accounted for in the O{t/B) term.

• 	 The set of all Type IV children of a Type III node can be queried, using their horizon

tally oriented blocks, so as to examine at most O(B) blocks that are not entirely full

(one per child). Since we used O(B) I/O operations for the output from the Type III

block, the extra Type IV I/O operations can be absorbed into the Type III I/O and

added to the O{t/B) term.

• 	 The last type of block that has to be considered is a Type IV child of a Type I node.

Up to B Type IV nodes can be children of a single Type I node M. Let Mr be

the rightmost Type IV child of M. We can determine whether or not to examine

the Type IV siblings of Mr by first examining TS(Mr). If the bottom boundary of

T S(Mr) is below the bottom boundary of the query, we load the blocks that make

up TS(Mr) one at a time from top to bottom until we cross the bottom boundary of

39

M

(a) In this case the entire TS(Mr) (b) In this case the T S(Mr) structure
structure lies above the bottom of the intersects the bottom boundary of the
query region, implying that we can in query region, thus all points in the
dividually examine all Type IV right query that appear in Type IV siblings
siblings of Mr. of Mr will be located when TS(Mr) is

examined.

Figure 4.10: Use of the T S structure to search Type IV metablocks as used in the proof of
Theorem 4.1.2.

the query. If the bottom boundary of TS(Mr) is above the bottom boundary of the

query, then we know that the siblings contain at least B2 points that are inside the

query. Thus we can afford to examine each of Mr's Type IV siblings individually. This

process may result in one block of overshoot for each such sibling, but we will get at

least B2 points overall, so we can afford this. This case is illustrated in Figure 4.10(a).

If we hit the boundary of the query first, we can simply report all the points we saw

as part of the output and we have no need to examine any of Mr's Type IV siblings at

all. This case is illustrated in Figure 4.1O(b). In both cases, all the blocks examined

can be charged to the O(t/ B) term.

o

Theorem 4.1.2 gives us an upper bound for handling diagonal corner queries. The

following proposition provides a matching lower bound, which proves that the metablock

tree technique is optimal.

40

Figure 4.11: The set of points S and a query whose corner is an element of the set of Q as
described in the lower bound proof of Theorem 4.1.3.

Proposition 4.1.3 Any method that performs diagonal corner queries on sets of n data

points (x, y) in the planar region y ~ x and y > 0 must use S1(logB n +t IB) 110 operations,

where t is the number of items in the answer to the query. Furthermore, the data structure

it uses must occupy S1(nlB) blocks.

Proof: Consider the set of points S = {(x, x +1) : x E Z~} and the set of n queries whose

corners are the elements of the set Q = {(x + 4, x + 4) : x E Z~}. Each of these queries

contains exactly one point in the set S. This is illustrated in Figure 4.11. Since there are n

distinct subsets of S that can be reported as answers to queries, we must have some means

of deciding which, if any, answer our question. Each time we read a block, we can make a

decision between at most O(B) alternatives. This means that if we view our algorithm as a

decision tree with a block read at each node it must have depth S1(logB n) in order to have

n leaves. This gives us the first term of our lower bound.

The second term of the lower bound comes from the fact that in general we must report

the answer to any query of size t ~ n and therefore at least tlB block reads will be required.

The space utilization follows since every element of S may appear in the answer to

some query, and thus it must be represented somewhere in the data structure.

41

0

4.2 Dynamization of Insertions

The data structure described in Section 4.1 can be made semi-dynamic in the sense that

it will support the efficient insertion of points. Because of the complexity of the internal

organization of a metablock, it will not be possible for us to reorganize the data structure

immediately after the insertion of a point. Our strategy will be to defer reorganization

until sufficient inserts have occurred for us to be able to pay for the reorganizations that

we perform. Thus, the bounds we get are amortized.

The general strategy will be to collect inserts that go into a metablock in an update

block that is associated with that metablock. When that update block fills up, we will

perform certain reorganizations on the associated metablock. In order to keep the size of a

metablock itself under limits, we will peform certain other reorganizations when the size of a

metablock reaches 2B2 from the initial size of B2. This will eventually cause the branching

factors of the nodes in the metablock tree to go up. We will let branching factors increase

from the initial value of B to 2B after which will perform certain other reorganizations that

will restore the branching factor back to B. The precise details are below.

To start with, we first enumerate the different positions at which a point can be stored

in a metablock tree:

a. 	in the vertically oriented organization of a metablock,

b. in the horizontally oriented organization of a metablock,

c. 	 in the corner structure of a metablock (if the metablock intersects the diagonal line),

and,

d. in the TS structures of the right siblings of the metablock.

It is relatively easy to handle the reorganization of the (a), (b), and (c) (where it exists)

components of a metablock when insertions are allowed. Note however, that immediate

reorganization after the insertion of a point is still not possible because it takes O(B) Ii0s

42

to reorganize components (a), (b), and (b) of a metablock. Our strategy will be to associate

an additional update block in the control information of a metablock. When this update

block fills up, we have had B inserts into the metablock. At this point, we reorganize the

vertically and horizontally oriented components of the metablock, and rebuild the corner

structure (if it exists for the metablock) optimally as described in Lemma 4.1.1. This

costs O(B) 1/0s. This implies that we spend only 0(1) l/Os amortized per point for this

reorganization. Let us call this reorganization of a metablock M a level I reorganization of

M. Note that we will peform a level 1 reorganization once in every B inserts. When the

size of a metablock reaches 2B2, we will perform other reorganizations that are outlined

below.

Updating the TS structures of the siblings of a metablock when points are inserted

into it is much more difficult because a point, potentially, can belong in the T S structures

of B-1 siblings. Since rebuilding these TS structures (of total size 0(B2) blocks) takes

0(B2) l/Os, we cannot afford to rebuild the TS structures even once in B inserts.

In order to circumvent this problem, we use the following crucial observation: Consider

an internal (non-leaf) metablock M. Take the points that are inserted into its children

and build a comer structure for these points as prescribed by Lemma 4.1.1. A diagonal

corner query on the whole metablock tree is also a diagonal corner query on this new comer

structure and can be answered optimally as long as the number of points in it is less than

0(B2)! We call this corner structure the TD comer structure for M.

As in the case of a metablock, this T D corner structure will have an update block

and will be rebuilt once in B insertions into it. When the size of the T D structure of a

metablock M becomes B2 points, we discard the T D corner structure and rebuild the T S

structures of all the children of M (taking into account the points that were in the T j)

corner structure). Call this reorganization a T S reorganization of the children of M.

We cannot let the size of a metablock increase indefinitely. Our bounds hold only when

the number of points in a metablock is 0(B2). Therefore, when the number of points in

a metablock reaches 2B2 , we perform the following actions (if the metablock is a non-leaf

43

metablock):

1. 	select the top B2 points (with the largest y values) of the metablock and build the

vertical) horizontal and corner (if necessary) organizations of the metablock (this takes

O(B) I/Os),

2. insert the bottom B2 points of the metablock into the appropriate children depending

on the x values of the points,

3. 	perform a TS reorganization of M and its siblings (this takes O(B2) I/Os).

We call such a reorganization a level II reorganization of a metablock. Obviously) this

scheme will not work if the metablock M is a leaf because there are no children to insert

into. In that case, we perform the following actions:

1. split the metablock into two children containing B2 points each and update the control

information of the metablock's parents, and,

2. perform a T S reorganization of the two new metablocks and its siblings.

We call this reorganization a level 11 reorganization of a leaf.

The final detail has to do with the branching factor of the parent of a leaf that just

split. We will let this grow from the initial value of B to 2B. Once it reaches 2B, we split

the parent itself into two by reorganizing the entire metablock tree rooted at the parent.

One subtree will contain the leftmost B leaves, and the other will contain the rightmost B

leaves. We insert the two new roots of these subtrees above in place of the parent. This

procedure has to be continued up recursively as necessary. We show that this will not take

too much time by showing that such reorganizations cannot happen too often.

Figure 4.12 is an algorithm for performing updates in an augmented metablock tree

that presents concisely the steps that we have discussed so far.

44

(1) procedure insert-point (p)
(2) M := the metablock p falls in
(3) P:= M's parent
(4) Add p to M's update block
(5) Add p to P's T D update block
(6) If M's update block is full then

perform a level I restructuring of M
(7) If P's T D update block is full then

rebuild the T D corner structure
(8) If the size of P's T D corner structure is B2 then

discard the points in the structure and perform a T S reorganization of
the children of P

(9) If M is a non-leaf metablock and contains 2B2 points then
perform a level II reorganization of M

(10) If M is a leaf and contains 2B2 points then
perform a level II reorganization of the leaf and call
propagate-branching-factor(P)

(11) procedure propagate-branching-factor (M)
(12) P M's parent
(13) 	 If the branching factor of M is 2B then

reorganize M into two equal subtrees rooted at metablocks ML and MR
and insert these into P in place of M. Perform a T S reorganization
of ML, MR and their siblings. Recursively call
propagate-branching-factor(P)

(14) 	 If (13) cannot be done because M is the root, create a new root with
two children ML and MR

Figure 4.12: An algorithm for inserting a point into an augmented metablock tree. insert
point() is the main procedure for inserting a point. It inserts a point and propagates
insertions down the tree as needed. propagate-branching-factor() is a subroutine which
splits metablocks and propagates changes up the tree.

Lemma 4.2.1 The space used by an augmented metablock tree containing n points is

O(n/B) blocks of size B.

Proof: The additional structures that we have added to the metablock tree are as follows:

45

• 	 the update block for every metablock, and

• 	 the T D corner structure and its update block for every non-leaf node.

Every metablock contains 0(B2) points and having one update block per metablock obvi

ously does not add to the asymptotic complexity of the storage used. ATD corner structure

for a non-leaf block contains at most B2 points and therefore occupies no more than OCB)

blocks as per Lemma 4.1.1. Since every metablock contains at least 0 (B2) points, we can

charge the cost of the T D corner structure to it. This implies that the total storage used

by the augmented metablock tree is O(n/B) disk blocks.

Lemma 4.2.2 An augmented metablock tree containing n points can answer diagonal cor

ner queries in optimal O(IogB n +t/ B) I/O operations.

Proof: The search procedure for an augmented metablock tree is very similar to that of

a normal metablock tree. The differences are as follows:

• 	 Every time a horizontal organization, or a vertical organization, or a corner structure

of a metablock is to be examined, we will examine the update block of the metablock

as well. This obviously will not add to the asymptotic complexity of the querying

because examining any of these organizations imposes an overhead of at least one

disk I/O, and the update block increases it by at most one.

• 	 Every time a T S structure of a metablock needs to be examined, we will examine the

T D corner structure of the parent. This does not change the asymptotic complexity

of the query because the T D corner structure imposes only a constant overhead for a

search (outside of the reporting, which pays for itself), and this overhead is imposed

by the T S structure anyway.

M'Odulo these changes, the query procedure remains exactly the same. The lemma

follows from the previous proof for Theorem 4.1.2. o

46

0

Lemma 4.2.3 Insertions into an augmented metablock tree containing n points can be

performed in O(1ogB n +(logB n)2/ B) amortized I/O operations.

Proof: Finding and inserting a point into the appropriate metablock involves O(logB n)

disk I/Os.

Let us consider the different reorganizations that the insertion of a point into a meta

block M can lead to and list the amortized costs of each of these reorganizations:

1. 	The insertion of a point can cause a level I reorganization of the metablock Minto

which it is inserted. Since this happens only once per B inserts, the amortized cost

for this is 0(1).

2. 	 The insertion of a point can cause a reorganization of the T D corner structure of M's

parent metablock. Since this happens only once per B inserts, the amortized cost for

this is 0(1).

3. 	The insertion of a point can cause a T S reorganization of M and its siblings. This

happens once in 0(B2) inserts and costs 0(B2) I/Os. The amortized cost is 0(1).

4. 	 The insertion of a point can cause a level II reorganization of the metablock into which

it is inserted. The amortized cost ofthis is also 0(1) because this happens once in B2

insertions and costs 0(B2) disk I/Os. Note that we don't count the cost of inserting

the points further down in the tree nor the cost of keeping the branching factor within

2B here. They are discussed separately below.

At the end of a level II reorganization (which must eventually happen as points are

continuously being inserted into M), the inserted point has been either inserted into a child

of M or has forced some other point to be inserted there. This is because after M reaches

a size of 2B2, the bottom B2 points are inserted into M's children. This means that an

inserted point can cause these reorganizations all the way down to the leaf. This gives us a

total amortized cost of o(logB n) for these reorganizations.

47

At the end of the situation described above, the inserted points have trickled down to

the bottom of the metablock tree or have caused other points to get trickled down. The

final cost for the insertion comes from the fact that we have to reorganize subtrees once

the branching factor of a node reaches 2B. The following statements are easily proved by

induction:

• 	If a subtree rooted at M has k points to start with and no branching factor in the

subtree exceeds B, we have to insert at least k points into it before the branching

factor of M becomes 2B .

• 	 It costs O((kIB) 10gB k) disk I/0s to build a perfectly balanced metab10ck tree with

k points. The amortized cost per point for this building is ((10gB k)1 B).

An inserted point contributes to the cost of these rebuilds from the leaf level all the

way upto the root. The amortized cost per point is

x::::logB n

L: xlB = O((logB n)2 IB)
x==1

The lemma follows when we add up the costs for the trickling down and the rebuilding.

o

We put everything together in the following theorem:

Theorem 4.2.4 A set of n data points (x, y) in the planar region y ~ x and y > 0 can

be organized into an augmented metablock tree with blocks of size B, such that a diagonal

corner query with t data points in its query region can be performed in O(1ogB n + tlB)

I/O operations and points can be inserted into this data structure at an amortized cost of

O(logB n + (10gB n?I B) disk l/Os. The size of the data structure is O(nl B) blocks of size

Beach.

48

Chapter 5

A Class Indexing Algorithm Using

Hierarchy Decomposition

In Chapter 3 we showed how to solve the class indexing problem such that the worst-case

query time is O(logz c logBn + t/B), the worst-case update time is o(logz c logBn), and

the storage used is 0((n/B)(1ogz c)) disk blocks. Here c is the size of the class hierarchy, n

is the size of the problem and B is the disk block size.

In this chapter, we have a preliminary lemma concerning our ability to answer three

sided queries. We then consider two extremes of the class indexing problem and show that

they both have efficient solutions. We call a class hierarchy degenemte when it consists

of a tree where every node has only one child. We give efficient solutions to the class

indexing problem when the hierarchy is degenerate and when the hierarchy has constant

depth. Combining these techniques, we give an efficient solution to the whole problem.

5.1 Extremes of the Class Indexing Problem

49

4=b~g~~

Case I Case 2 Case 3 Case 4 Case 5

Figure 5.1: Problems with using the metablock tree for three-sided queries.

Lemma 5.1.1 U8] There exists a data structure that can answer any three-sided query on

a set of n points on the plane in o(log2 n + t/B) disk l/Os. This data structure occupies

O(n/B) disk blocks and can be built in O((n/ B) 10gB n) disk l/Os.

A data structure to achieve these bounds was presented in [18]. The data structure

is essentially a priority search tree where each node contains B points. A simple recursive

algorithm can build this tree in O((n/B)logBn) disk I/Os.

Lemma 5.1.2 Consider an instance of the class indexing problem where k is the maximum

depth of the class hierarchy and n is the size of the problem instance. We can index the

class hierarchy so that the worst-case query time is O(logBn + t/ B), the worst-case update

time is O(k logBn), and the scheme uses O((n/B) k) storage. This is optimal when k is

constant.

Proof: We simply keep the full extent of a class in a collection associated with that class

and build an index for this collection. This might entail copying an item at most k times,

since k is the maximum depth of the hierarchy. The bounds for the query and update times,

and the storage space follow. And clearly, this is optimal when k is a constant.

It should be pointed out that this lemma does not contradict Theorem 3.2.6 which

applies when we have only one copy of the objects in the database. Lemma 5.1.2 uses k

copies to index efficiently.

50

0

Lemma 5.1.3 When the hierarchy is degenerate, the class indexing problem reduces to

answering three-sided queries in secondary memory and can be solved using a variant of the

metablock tree such that the worst-case query time is O(logB n + log2 B + tf B).

Proof: In Chapter 3, we reduced the class indexing problem to two-dimensional range

searching in secondary memory. To see why this reduces to answering three-sided queries if

the hierarchy is degenerate, consider the behavior of procedure label-class in Figure 3.3 on a

degenerate hierarchy. The root of this hierarchy will be associated with the range [0,1), its

child with n, 1), the grandchild with [~, 1) and so on. Each successive range is completely

contained in its previous range. From this, we can infer that a query on the full extent of

a class is precisely a three-sided query.

We will try to modify the metablock tree to solve this problem. The metablock tree

solves two-sided range queries in secondary memory where the corner always lies on the

diagonal. Three-sided queries are different for the following reasons: (1) the corners need

not lie on the diagonal of a metablock; (2) both corners may lie on the same metablock

for this problem, forcing us to answer a three-sided query on a metablock; (3) both the

vertical sides of a three-sided query may pass through the same metablock (remember that

a two-sided query has only one vertical side)i (4) the two vertical sides of the query may

lie on metablocks which are children of the same metablock (This makes the TS structures

useless for this case because they contain points from all the siblings to the left. We now

are interested in only a subset of them.); and (5) in the construction of the TS structures

in the metablock tree, we build them assuming that the query will always contain the left

siblings, never the right siblings. With three-sided queries, this assumption is no longer

true. See Figure 5.1 illustrating these cases.

We deal with these problems one by one. To handle (1) and (2), we build, for the

points in each metablock, a data structure to answer three-sided queries as prescribed

in Lemma 5.1.1. Since that data structure uses optimal storage, our asymptotic storage

does not change. Also, since three-sided queries are generalizations of diagonal queries, we

dispense with the corner structures we used for the metablock tree. Case (3) requires no

51

special handling because we can determine the points of a metablock that lie in between two

vertical lines by looking at the vertical organization for the metablock. We handle (5) by

building two TS structures for every metablock. One will contain points from left siblings

and the other from right siblings.

The most difficult problem is that of case (4). In order to handle cases like this, where

the two vertical sides of the query lie on metablocks that are siblings, we perform the

following action for every interior (non-leaf) metablock M: we combine the points of the

children of M (to get a total of 0(B3) points) and build a data structure to answer three

sided queries as prescribed in Lemma 5.1.1. The understanding is that this structure will

be used whenever case (4) occurs. This three-sided structure will be called the three-sided

structure for the children of M. Figure 5.2 gives a modified version of procedure diagonal

query to handle three-sided queries.

The time bound analysis is very similar to the one in Theorem 4.1.2. While answering

a three-sided query, no more than three three-sided strucures have to be accessed: one each

for the two corners of the query and one for the case where the vertical sides of the query

fall on sibling metablocks(i.e., case (4)). All these three-sided structures have B3 or less

points in them and by the bounds of Lemma 5.1.1 can be used to answer three-sided queries

in o (logz B + tlB) disk 1/0s. Combining this with the bounds of Theorem 4.1.2, we get

this lemma.

Lemma 5.1.4 There exists a data structure that can answer any three-sided query on a

set of n points in O(logB n + logz B + tl B) disk IjOs. Points can be inserted to this data

structure at an amortized cost of O(logB n + (log1 n)1 B) per operation, and the storage

space required is 0 (niB).

Proof: The proof of this lemma parallels that of Lemma 4.2.3. The corner structures

that we build for that proof become three-sided structures. In particular, the T D corner

structure for an internal node M becomes a three-sided structure also. This will have an

update block as the T D corner structure did before and will be rebuilt once in B insertions.

52

0

(1) procedure 3sided-query (query q, node M);
(2) if query q is three-sided then
(3) if M contains both the corners of q
(4) use the three-sided structure for M to answer the query; return;
(5) else if both the vertical sides of query q fall inside one child of M
(6) let this child be Me
(7) 	 use M's vertically oriented blocks to report points that lie in between

the vertical sides of the query q
(8) invoke 3sided-query (q, Me);
(9) else 1* the two vertical sides fall on different children * /
(10) 	 use M's vertically oriented blocks to report points that lie

in between the vertical lines of q
(11) 	 let M/ and Mr be the children of M containing the left and right sides

of q resp.
(12) let MI , M2 , ••• , Mk be the children of M in between M/ and Mr
(13) 	 use the three-sided structure for M's children to determine points of

M1 , M2, • •• , Mk that fall inside the query
(14) 	 if any of Mb M2 , ••• , Mk fall completely inside the query, examine its

children using the horizontally oriented blocks and continue
downwards until the boundary of the query is reached for every
metablock so examined.

(15) invoke 3sided-query(left side of q, M/)
(16) invoke 3sided-query(right side of q, Mr)
(17) else /* query q is two-sided * /
(18) if M contains the corner of query q
(19) use the three-sided structure for M to answer the query; return;
(19) else 1* corner of q does not fall inside M * /
(20) use 	M's vertically oriented blocks to report points of M that lie inside q
(21) let M/ be the child of M containing the vertical side of q
(22) let MI. M2 •.•• , Mk be the other children of M intersecting q
(23) 	 use the appropriate T S structure of M/ to determine the points of

M I , M2 • ••• , Mk and their descendants that fall inside the
query (as above)

(24) invoke 3sided-query(q, MI)

Figure 5.2: Procedure to answer three-sided queries.

When its size reaches B2, the three-sided structure for the children of M will be rebuilt, as

will the T S structures for the children of M.

As before, a level I reorganization of a metablock involves the rebuilding of the vertical,

53

horizontal and three-sided organizations of a metablock. A level II reorganization (remem

ber that a level II reorganization is done when the number of points in a metablock reaches

2B2) of a non-leaf metablock M involves: (1) the rebuilding of the vertical, horizontal and

three-sided organizations for the top B2 points in it; (2) the insertion of the bottom B2

points into the children of M; (3) a TS reorganization of M and its siblings and (4) a

rebuilding of the three-sided structure built for M and its siblings.

Similarly, a level II reorganization of a leaf metablock M involves: (1) the splitting

of the leaf into two; (2) a TS reorganization of the siblings of M; and (3) a rebuilding

of the three-sided structures for the siblings of M. Procedure insert-point in Figure 4.12,

with minor modifications that take into account the three-sided structures, can be used to

perform inserts.

To get the bounds for the number of l/Os for an insert, we note that a three-sided

structure with B2 (respectively B3) points can be rebuilt in O(B) (O(B2)) disk l/Os as per

Lemma 5.1.1. The analysis for Lemma 4.2.3 applies here and gives us the required bounds.

o

5.2 Rake and Contract

In this section, we show how to combine the two lemmas above so that we can deal with

any class hierarchy. We restrict our attention to hierarchies that are trees. The procedure

trivially extends to forest hierarchies. Before that, we need an algorithm that enables us to

decide which of the two lemmas to apply on which part of the hierarchy. The idea for the

hierarchy tree labeling algorithm is from a dynamic tree algorithm of [37]. The following

lemma is easily proven by induction.

Lemma 5.2.1 Let the procedure label-edges shown in Figure 5.3 be applied to an arbitrary

hierarchy tree of size c. The number of thin edges from a leaf of this hierarchy tree to the

root is no more than log2 C'.

54

(1) procedure label-edges (root);
(2) S := { children of root };
(3) Max := element of S with the maximum number of descendants;

/* Break ties arbitrarily * /
(4) Label edge between Max and root as thick;
(5) Label edges between other children and root as thin;
(6) Apply procedure label-edges recursively to each child of root;

/*order irrevelant* /

Figure 5.3: An algorithm for labeling a tree with thick and thin edges as used in
Lemma 5.2.1.

(1) procedure rake-and-contract (root);
(2) repeat
(3) for each leaf L connected by means of a thin edge to the tree do
(4) 	 index collection associated with L;
(5) 	 copy items in L's collection to its parent's collection;
(6) 	 delete L from the tree and mark L as indexed;
(7) endfor
(8) 	 for each path in the hierarchy tree composed entirely of thick edges whose sole

connection to the rest of the tree is by means of a thin edge
(or ends in the root) do

(9) 	 build a three-sided structure for the path (as described in Lemma 5.1.3);
(10) 	 copy all the collections associated with the nodes of the path into the

collection of the parent of the topmost node in the path;
(11) 	 mark all the nodes in the path as indexed;
(12) 	 delete all the nodes in the path from the hierarchy tree;
(13) endfor
(14) until hierarchy tree is made up of one node only;

Figure 5.4: The rake and contract algorithm for reducing an arbitrary hierarchy tree.

We are now ready 	to prove the key lemma. The procedure rake-and-contract shown

in Figure 5.4 takes as input a hierarchy processed by label-edges and applies procedures

outlined in the proofs of Lemmas 5.1.2 and 5.1.3 appropriately to parts of the hierarchy.

Initially, we associate a unique collection with each class. This collection will contain the

extent (not the full extent) of the class.

55

Lemma 5.2.2 Let an instance of the class indexing problem have class hierarchy size c,

problem size n. Let us index the collections as per the procedure rake-and-contract. Then

we have:

1. 	 No extent of any class is duplicated more than log2 c times;

2. 	 Every class in the input class hierarchy gets indexed in the sense that either an explicit

index is built for its full extent (which means that a query on this class is simply a

one-dimensional query on a s+ -tree) or a three-sided structure is built for it as per

Lemma 5.1.3 (which means that a query on this class can be answered by performing

a three-sided query on the three-sided structure).

Proof: Consider the first part of the lemma. In procedure rake-and-contract, we copy the

extent of a class as many times as there are thin edges from it to the root of the hierarchy.

We know from Lemma 5.2.1 that there are no more than log2 c thin edges from any leaf to

the root. Part 1 of the lemma follows.

It is easy to see that one of the two for loops in procedure rake-and-contract runs at

least once unless the hierarchy has size one. This is a simple proof: (1) In the beginning,

there are leaves attached· by means of thin edges to their parents; and (2) if the nodes

attached by means of thin edges are removed, there are path(s) composed entirely of thick

edges (these paths exist because every interior node has at least one thick edge coming out

of it), whose sole connection to the rest of the tree is a thin edge. Once the nodes in a

thick path are deleted, case (2) has to apply again for the same reason. This implies that

every iteration of the repeat loop reduces the size of the hierarchy, which implies that the

algorithm will terminate.

To prove part 2, we first claim that if a node is deleted from the hierarchy in the first for

loop in procedure rake-and-contract, its collection must have contained the full extent of the

class that the node corresponds to. This trivially follows because only leaves get deleted in

the first for loop (because every interior node has a thick path coming out of it and therefore

56

::::.:..

will be deleted only in the second for loop). We now claim that if a node is deleted from

the hierarchy in the second for loop in procedure rake-and-contract, its collection contains

the extents of all the classes in its descendants except for the ones attached to it by means

of a thick path. This is easily proved by noting that whenever we delete nodes, we copy

their collections to the parent upwards in the tree.

It is easy to show Part 2 of the lemma now. If a node is deleted in the first for loop,

a class indexing query on the corresponding class is simply a one-dimensional query on the

index built for it, since this index contains the complete extent of the class. If a node is

deleted in the second for loop, it must have been part of a path consisting entirely of thick

edges. Further, we know from our previous claim that every node in this path contains

its complete extent except for the nodes in the thick path below it. In other words, the

class corresponding to the node can be thought of as belonging to a degenerate hierarchy.

Lemma 5.1.3 applies here and therefore an indexing query on the class can be answered by

looking at the three-sided query structure built in rake-and-contract. The lemma follows.

See Figure 5.5 for an example of how a hierarchy is processed.

We put everything together in the following theorem. Note that the bounds for insertion

come from the fact that an object can be rep~esented no more than log2 c times in the indexes

built by procedure rake-and-contract.

Theorem 5.2.3 An instance of the class indexing problem, where c is the size of the input

class hierarchy, n is the size of the problem, and B is the disk block size, can be solved

such that the worst-case query time is O(1ogB n + t/ B + log2 B), the amortized insertion

time is O((lOg2 c)(10gB n + (log1 n)/ B) per operation, and the storage space required is

O((n/B)log2c).

57

0

Chapter 6

Path Caching

In this chapter, we present a simple technique called path caching that can be used to

transform many in-core data structures like the priority search tree [27], segment tree [3],

and interval tree [12,13] to efficient secondary storage structures. These data structures

are important because they solve the problems that we are concerned with-like interval

management and three-sided searching- efficiently in main memory.

Section 6.1 explains the general principles behind path caching by applying it to segment

trees. Section 6.2 explains the application of path caching to priority search trees to obtain

reasonably good worst-case bounds for two-sided range searching. We also present results

about the application of path caching to three-sided range searching, segment trees and

interval trees. Section 6.3 applies recursion and path caching to two-sided queries to improve

on the bounds of Section 6.2. It also briefly touches on applying similar ideas to three-sided

queries. Section 6.4 shows how updates to the data structures can be handled in optimal

amortized time.

59

6

Figure 6.1: Constructing the skeletal graph

it can be shown that we require !1(l.ogB n) l/Os to identify the path to y. Thus an ideal

implementation of segment trees in secondary memory would require O(i} log n) disk blocks

of space and would answer stabbing queries with O(logB n +t/B) l/Os.

To lower the time required to locate the root-to-y path P we can store the tree T in a

blocked fashion by mapping subtrees of height log B into disk blocks. The resulting search

structure is called the skeletal B-tree and is similar in structure to a B-tree (see Figure 6.1).

With this blocking, and a searching strategy similar to B-trees we can locate a log B-sized

portion of P with every I/O. If the cover-list of each node is stored in a blocked fashion

(with B intervals per block) then we could examine the cover-list C L(x) of each node x on

P and retrieve the intervals in C L(x) B at a time. A closer look reveals that this approach

could result in a query time of O(log n +t/B). This is because even though we can identify

Pin O(logB n) time we still have to do at least O(logn) l/Os, one for each cover-list on the

path (see Figure 6.2). These l/Os may be wasteful if the cover-lists contain fewer than B

intervals. To avoid paying the additional log n in the query time we need to avoid wasteful

1/Os (ones that return fewer than B intervals) as much as possible. In particular, if the

number of wasteful I/Os are smaller than the number of usefull/Os (ones that return B

61

ely)
path-QChing underfull
cover-lists at the leaves
saves on wasteful I/O

Figure 6.2: Underfull cover-lists along the query path result in wasteful l/Os. Path-caching
alleviates this problem.

intervals) then the l/Os required to report all the intervals on P will be ~ 2t/B =O(t/ B)'l.

This combined with fact that we need O(logB n) time to identify P would give us the desired

query time.

Consider a node x on P such that its cover-list has at least B intervals. It is then

easy to see that the first I/O at node x will be useful. In fact all but the last I/O at

node x will return B intervals. This implies that the number of wasteful l/Os at node x

is upper-bounded by the number of useful l/Os at that node. Thus the problem nodes are

only· those that have fewer than B intervals stored at them.

This leads us to the idea of path caching: If we coalesce all the cover-lists on P that

have ~ B elements and store it in a cache C(y) at y then we could look at C(y) instead

of looking at log n possibly underfull cover-lists. If C(y) is stored in a blocked fashion then

retrieving intervals from it would cause at most one wasteful I/O instead of log n wasteful

ones (see Figure 6.2). The time for reporting all the intervals would then be ~ 2t/B + 1.

This combined with the time for finding P would give us the desired query time.

We therefore make the following modification to the segment tree:

For each leaf y identify the underfull cover-lists C L1 , ••. C Lk (cover-lists that contain less

21n other words each wasteful I/O will be paid for by performing a useful one.

62

than B intervals) along the root-to-y path. Make copies of the intervals in all the underfull

cover-lists and store it in a cache C(y) in y. Block C(y) into blocks of size B on to secondary

memory.

From the above discussions we can see that using this modified version of a segment

tree we can answer stabbing queries with O(1ogB n + t/B) I/Os. The only thing left to

analyze is the amount of storage required for the modified data structure. The number of

disk blocks required to block the search tree T is O(n/B). The total number of intervals in

all the cover-lists is 0 (n log n). These can be stored in 0 (]} log n) disk blocks. At each leaf

y we have a cache C(y) that contains up to Blogn intervals (from the logn nodes along

the root-to-y path). Therefore to store the caches from the 2n leaves we need 2nlogn disk

blocks. Putting all of this together we see that the space required is O(nlogn) blocks.

The space overhead can be reduced to the optimal value O(]}logn) by performing

two optimizations: (1) Building caches at the leaf nodes of the skeletal tree instead of the

complete binary tree (we therefore have to build only O(n/ B) path-caches); and (2) By

requiring the query to look at O(logB n) path-caches instead of just one (this would allow

us to build smaller path-caches). We can get a secondary memory implementation of the

segment tree that requires O(-§- logn) space and answers queries with O(logB n+t/B) I/Os.

6.2 Priority search trees and path caching

In this section, we apply the idea of path caching to priority search trees and use them

to solve special cases of two-dimensional range searching. We first consider two-sided two

dimensional queries that are bound on two sides and free on the other two as shown in

Figure 1.1. As before, n will indicate the number of data items, B the size of the disk page,

and t the number of items in the query result.

Let us consider the implementation of priority search trees in secondary memory for

answering two-sided queries. The input is a set of n points in the plane. The priority search

63

2-sided query

• .
•

• •
•

•.
• .

• • .
•. . • •.. • I • • •

• . . I • •. •

•

. ..
•. ..

•. • •.•.

• .

• •
• . .

.
•

•

•

•

.
•

Sibling
Ancestor

Descendant
of Sibling

Comer

Figure 6.3: Binary tree implementation of Priority Search Tree in secondary memory show
ing corner, ancestor, sibling and sibling's descendant. Here, B is 4.

tree is a combination of a heap and balanced binary search tree. The solution proposed in

[18] works as follows: Find the top B points (on the basis of their y values) in the input

set, store them in a disk block and associate this disk block with the root of the search

tree. Divide the remaining points into two equal sets based on their x values. From these

two sets, choose the top B points in each set and associate them with the two children of

the root. Continue this division recursively. The skeletal structure for the binary tree itself

is stored in a B-tree (called the skeletal B-tree). It is clear that to store n points in this

fashion, we will use only O(n/ B) disk blocks.

As illustrated in Figure 6.3, each node in the priority search tree defined above corre

sponds to a rectangular region in the plane that contains all the points stored in that node.

Furthermore, the tree as a whole defines a hierarchical decomposition of the plane. As is

shown in [18], this organization has the following crucial property: A point in a node x

can belong in a two-sided query if (1) the region corresponding to x's parent is completely

contained within the query or, (2) the region corresponding to x or the one corresponding

to its parent is cut by the left side of the query.

With this division, we can show that a two-sided query with t points in the output can

be answered by looking at only O(1og n +t/B) disk blocks. To do that, we classify nodes

that contain points inside the query into four categories as follows:

64

• 	 The corner: This is the node whose region contains the corner of the query.

• 	 Ancestors of the corner: These are nodes whose regions are cut by the left side of the

query and there can be at most O(log n) such nodes.

• 	 Right siblings of the corner and the ancestors: These are nodes whose parents' regions

are cut by the left side of the query. There can be at most O(log n) such nodes.

• 	 Descendants of right siblings: There can be an unbounded number of them, but for

every such node, its parent's region has to be completely contained inside the query.

That pays for the cost of looking into these nodes. That is, for every k descendant

blocks that are partially cut by the query, there will be at least ~ blocks that lie

completely inside the query.

The algorithm proceeds by locating the nodes intersecting the left side of our query.

This is done by performing a search on the skeletal B-tree. The nodes are examined to find

the points inside the query. Next, right siblings of these nodes and their descendants are

examined in a top-down fashion until the bottom boundary of the query is crossed. In this

algorithm, for each node examined, we perform one I/O operation. The corner, ancestor,

and sibling nodes can cause wasteful I/Os but there are at most o(log n) such nodes. For

every descendant of a "sibling" that is examined, its parent would have contributed an

useful I/O. From this analysis, we can conclude that we can answer two-sided queries in

o(log n +t/B) I/Os.

We now show how to avoid the log n wasteful 1/ Os by caching the data in the ancestor

and sibling nodes. We store two caches associated with the corner. One cache will contain

all the data in the ancestors sorted in right-to-Ieft (largest x value first) fashion. Call this

cache the A-list. The second cache will contain all the data in the siblings stored in top

to-bottom (largest y value first) fashion. Call this cache the S-list. Using these caches

we can answer two-sided queries in O(1ogB n +t/B) I/Os. In order to answer a two-sided

query, we simply look at the skeletal B-tree and locate the corner in O(logB n) time. We

then look at the caches (performing at most two wasteful I/Os) to determine which points

65

from the ancestors/siblings fall into the query. After this, we look into the descendants if

necessary. As discussed above, any wasteful query that is caused by examining a descendant

can be counted off against a useful query that is the result of examining its parent. The

descendants thus pay for looking into them through their parents. The following lemma

follows.

Lemma 6.2.1 Given n input points on the plane, the data structure described above an

swers any two-sided query containing t points using O(1ogB n + t/B) l/Os. The storage

used is O(Blog n) disk blocks of size Beach.

Now, we show that we can bring the storage overhead down to O(i log B). We do

this by observing that maintaining caches of size O(log n) at each node is wasteful. We

cut the total path length of log n into 10gB n segments of size log B. We maintain A-lists

and S-lists at each node as before. However, to construct these lists at a node we only

examine the ancestors and siblings that are in the log B segment of the root-to-node path

that the node belongs to. Thus the lists at any node contain at most O(log B) disk blocks.

Therefore the total storage required comes down to O(i log B). To answer a query, we

now have to look at a total of log n/ log B = 10gB n A-lists and S -lists(one for each of the

log B-sized subpaths). The descendants of siblings are handled as they were in the previous

construction. We get the following theorem.

Theorem 6.2.2 Given n input points on the plane, path caching can be used to construct

a data structure that answers any two-sided query using O(logB n + t/ B) l/Os. Here t is

the output size of the query. The data structure requires O(Blog B) disk blocks of storage.

In the next section, we show how we can combine the idea of path caching with recursion

to make the storage required even less while keeping queries efficient.

Using similar ideas, we can obtain the following bounds for three-sided queries, segment

trees and interval trees.

66

Theorem 6.2.3 Given n input points on the plane, path caching can be used to construct

a data structure that answers any three-sided query using O(logB n +t/ B) l/Os. Here, t is

the number of points in the query. The data structure requires O(Jjlog2 B) disk blocks of

storage.

Theorem 6.2.4 We can implement Segment Trees in secondary memory so that a point

enclosure query containing t intervals can be answered in O(logB n + t/B) I/Os. For n

input intervals, the storage used is O(Blog n) disk blocks.

Theorem 6.2.5 We can implement Interval Trees in secondary memory so that a point

enclosure query containing t intervals can be answered in O(logB n + t/B) l/Os. For n

input intervals, the storage used is O(Blog B) disk blocks.

We now explore two-sided queries in more detail to improve the bounds obtained in

this section. We then discuss algorithms for updating the resulting data structures.

6.3 Using recursion to reduce the space overhead

In this section we describe how to extend the ideas of Section 6.2 to develop a recursive data

structure that has a much smaller space overhead and still allows queries to be answered in

optimal time. We restrict ourselves to the problem of answering general two-sided queries

by using a secondary memory priority search tree. Similar ideas can be used to get better

space overheads for the other data structures as well.

We first describe a two-level scheme for building a secondary memory priority search tree

that requires only O(.y log log B) storage while still admitting optimal query performance.

We then briefly describe a multi-level version of this idea that requires only O(.y log* B)

storage.

Recall that the basic scheme divides the points into regions of size B. A careful look at

67

this scheme shows that the log B overhead is due to the fact that the ancestor and sibling

caches of each of the n/B regions can potentially contain log B blocks. To reduce the space

overhead we could either (1) reduce the amount of information stored in each region's cache

or (2) reduce the total number of regions.

A closer look shows that to get optimal query time, with any region, we must store

the information associated with log B of its ancestors. This is because in the priority tree

structure the path length from any block to the root is O(1ogn). Thus to achieve a query

overhead of at most 10gB n we must divide such a path into no more than 10gB n pieces.

Since 10gB n log n/log B, we see that with each node we must store the information

associated with o(log B) of its ancestors. We therefore turn to the second idea. To get a

linear space data structure we build a basic priority search tree that divides the points into

regions of size B log B instead of B. We thus have n/B log B regions.

To build the caches associated with each of the regions we proceed in a slightly different

fashion. First, we sort the points in each region R right-to-Ieft (Le. largest to smallest)

according to their x-coordinates. We store these points (B at a time) in a list of disk blocks

associated with R. In the same fashion we also sort the points top-to-bottom (Le. largest

to smallest) and store them in a list of disk blocks associated with R. Thus the points in

each region are blocked according to their x as well as their y coordinates. These lists are

called the X -list and the Y -list of R respectively.

To build the ancestor cache associated with a region R we look at its log B immediate

ancestors. From each of the ancestor's X -list we copy the points in the first block. We then

sort all these points right-to-Ieft according to their x-coordinates and store them in a list

of disk blocks associated with region R. These blocks constitute the ancestor list (A-list)

of R. Similarly, to build the sibling cache (S-list) of R we consider the first blocks from the

Y-lists of the siblings of R and its ancestors. Adding up the all the storage requirements

we get the following lemma.

Lemma 6.3.1 The total storage required to implement the top level priority search tree and

68

the associated A I S I X, and Y lists is 0 C:~).

Unlike in the basic scheme we now have regions which contain 0 (B log B) points or

O(1og B) disk blocks. To complete our data structure we therefore build secondary level

structures for each of these regions. For each region we build a priority search tree as per

Lemma 6.2.1. In other words, we divide the region into blocks of size B and build ancestor

and sibling caches (as before) for each of the blocks. In this case the height of any path is

at most o(log log B)j therefore for each region we use all of its ancestors and the siblings

to construct the ancestor and sibling caches.

We now count the space overhead incurred due to the priority search trees built for each

region. For each block in a given region R we need no more than O(log log B) disk blocks

to build its ancestor and sibling caches. This follows from the fact that the priority search

tree of R has height o(log log B). A given region R has O(log B) disk blocks; therefore

the space required for storing the ancestor and sibling caches of all the blocks in R is

O(1og B log log B). Adding this over all the regions we get the following lemma.

Lemma 6.3.2 The total storage required by the two-level data structure is O(Hlog log B).

Answering queries using the two-level data structure: We now show how to answer

two-sided queries using this data structure. To answer such a query we proceed as follows:

As in the basic scheme we first determine the region R (in the top level priority search tree)

that contains the corner of the query. As discussed in Section 6.2, the points in the query

belong to either the region R, or one of R's ancestors Q, or a sibling T of Q (or R), or to a

descendant of some sibling T.

To find the points that are in the ancestors and their siblings we look at the 10gB n

ancestor and sibling caches along the path from R to the root. From these caches we collect

all the points that lie inside the query. However, just looking at these two caches is not

enough to guarantee that we have collected all the points from the ancestors and their

siblings. This is because we only use one block from each ancestor (and each sibling) to

69

build the A and S-lists.

To collect the other points in these regions that are in the two-sided query we examine

the X and Y -lists of the ancestors and their siblings respectively. These lists are examined

block by block until we reach a block that is not fully contained in our query. The X-list

of an ancestor Q of R is examined if and only if all the points from Q that were in the

ancestor cache of R are found to be inside the two-sided query. Similarly the Y -list of a

sibling T (along the path from R to the root) is examined if and only if the points from T

that are in the sibling cache are all inside our two-sided query.

We claim that this algorithm will correctly find all points in the ancestor and the sibling

regions that are in our query. We now show that all the points in the ancestor regions are

found correctly. The case for the siblings of the ancestors is similar. Consider some ancestor

region Q of R and its associated right-to-Ieft ordering of the points as represented in its

X-list. Since Q is an ancestor, it is cut by the vertical line of the two-sided query (see

Figure 6.3). Therefore, all the points in Q that are to the right of the vertical line are in the

query and the rest aren't. Thus, all the points in the query are present in consecutive disk

blocks (starting from the first one) in the X -list of Q. We therefore need to examine the ith

block in the X -list if and only if all the previous i-I blocks are completely contained in

our query. Since the first block is part of R's ancestor cache we need to look at the X -list

of Q if and only if all of the points of Q in the ancestor cache of R are contained in the

two-sided query.

To account for the time taken to find these points we note that there are G(logB n)

caches that we must look at. It is not hard to see that apart from these initial lookups we

only look at a disk-block from a region Q if our last I/O yielded B points (inside the query)

from this region. Therefore all the other l/Os are paid for. Thus the time to find these

points is G(logB n + (tA + ts)/B) where tA and ts denote the number of points contained

in the ancestors and their siblings.

To find the points in the query that are in the descendants of the siblings, we use the

same approach as the basic scheme. We find the points in all these regions by scanning

70

their Y -lists. We traverse a region Q if and only if its parent P is fully contained in the

query. An argument similar to the one above shows that all such points are found by this

algorithm, and that the number of l/Os required is O(tD/ B). Here tD denotes the number

of points contained in the descendants of the siblings.

To find the points in the query that are in region R we use the second level priority

tree associated with R. Let tR denote the number of points in R that belong to the query.

We find these points by asking a two-sided query inside region R. This requires at most

O(tR/B) l/Os (by the arguments in Section 6.2).

Therefore, the total number ofl/Os required to answer a two sided query is o (1ogB n+

t/B) where t is the size of the output. This in conjunction with Lemma 6.3.2 gives us the

following theorem.

Theorem 6.3.3 There exists a secondary memory static implementation of the priority

search tree that can be used to answer general two-sided queries using O(logB n + t/B)

l/Os; where t is the size of the output. This data structure requires O(Blog log B) disk

blocks of space to store n points.

A multi-level scheme to further lower the space over-head: It is possible to reduce

the space overhead further by using more than two levels. The idea is similar to the one

used before. At the second stage instead of building a basic priority search tree for each

region we build a tree that contains regions of size B log log B and build the X, Y, A, and

S lists as before. A three-level scheme gives us a space overhead of O(i log log log B) while

maintaining optimum query time. If we carry this multi-level scheme further then we get a

data structure with the following bounds.

Theorem 6.3.4 There exists a secondary memory static implementation of the priority

search tree that can be used to answer general two-sided queries using o (10gB n + t/ B +
log* B) l/Os; where t is the size of the output. This data structure requires O(Blog* B)

disk blocks of space to store n points.

71

These ideas can be applied to three-sided queries as well, to reduce the space overhead

incurred by the sibling caches. In particular we can get the following bounds for answering

three-sided queries.

Theorem 6.3.5 There exists a secondary memory static implementation of the priority

search tree that can be used to answer general three-sided queries using O(logB n +tf B +
log'" B) l/Os; where t is the size of the output. This data structure requires O(Blog B log'" B)

disk blocks of space to store n points.

6.4 	 A fully dynamic secondary memory data structure for

answering two-sided queries

In this section we show how to dynamize the two-level scheme discussed in Section 6.3. Our

data structure is fully dynamic, i.e. it can handle both additions and deletions of points.

The amortized time bound for an update is O(logB n).

Before we describe our dynamic data structure we first discuss an alternate way of

visualizing the top level priority search tree in the two-level scheme. In this tree a node

corresponds to a region of size B log B. We partition this priority search tree into subtrees

of height log B log log B. Each such subtree is considered a supernode. As in Section 6.2,

in order to build the ancestor and sibling cache of any region R, we only consider those

ancestors (and their siblings) of R that are in the same supernode as R. Considering subtrees

of height log B log log B (instead of log B) does not change the query times because we

are now dealing with regions of size B log B.

The advantage of viewing these subtrees as supernodes is that now we can isolate the

duplication of information due to the S and A-lists to within a supernode, since none of

the caches ever cross the supernode boundary. The layer of supernodes (regions) immedi

ately following the last layer in a supernode N can be thought of as children of N in this

72

visualization. Note that each supernode N contains BI log B regions and has O(BI log B)

supernodes as its children. Also note that the number of supernodes on any path in the

tree is O(logB n).

Our dynamic data structure associates an update buffer U of size B with each supernode

N in the tree. It also associates an update buffer u (also of size B) with each region R.

These buffers are used to store incoming updates until we have collected enough of them to

account for rebuilding some structure. To process a query, we first use the algorithm from

Section 6.3 to collect the points that have been entered into the data structure. We then

look through the associated update buffers to add new points that have been added and to

discard old points that have been deleted by an unprocessed update.

We now need to be careful in claiming optimal query time because the points that we

collect by searching the priority search structures may then have to be deleted when we look

at the respective update buffers. However, it can be shown that for every Blog B points we

collect we can lose at most B points, thus resulting in at most two wasted II0s for log B

useful ones. Therefore, the loss of points due to unprocessed deletes is very small and does

not affect the overall query performance.

Whenever an update occurs, we first locate the supernode N where the update should

be made. The update could be a point insertion or a deletion. We then log the update in

the associated update buffer U. If the buffer does not overflow we don't do anything. If

U overflows then we take all the updates collected and propagate them to the regions in

N where they should go. For instance, a point insertion is trickled down to the region of

N that contains its coordinates. In each such region we then log the update into the local

update buffer u associated with it. We now rebuild the X and Y lists of each region in N

taking into account the updates that have percolated into it. We also rebuild each region's

ancestor and sibling caches; again taking into account the updates that have percolated into

that region.

The number of 110s required to rebuild the A, S, X, and Y lists of one region R is

o(log B). Therefore, the number of II0s required to rebuild all the caches is

73

(B / log B) x O(log B) = O(B). Since we do this only once in B updates the amortized

cost of rebuilding the caches is 0(1) per update.

If for none of the regions in N any of their buffers overflow, we don't do anything

further. Otherwise for each region R whose update buffer has overflowed we rebuild the

second level priority search tree associated with it. As before, we take into account the

updates in the buffer u of R.

The number of l/Os required to rebuild the priority search tree associated with a given

region R is O(log B log log B). This is because we need to rebuild the caches of log B blocks

each of which could contain up to log log B disk-blocks of information. Since this is done

only once every B updates the amortized time per update is O«log B log log B)/B) 0(1).

For every supernode N; once every B log B updates we do a rebuild. This rebuilding

keeps the same x-division as the old one. Keeping the x-divisions same we change the y-lines

of the regions so that each region now contains exactly B log B points. Using these new

regions structure we rebuild the A, S, X, and Y lists for each region as well as the secondary

level priority search trees associated with each region. Note that it is important to keep

the same x-division to preserve the underlying binary structure of the priority search tree.

We cannot view the regions in a given supernode in isolation since they are part of a bigger

priority search tree.

To keep the invariant that each region in N contain B log B points we may have to

push points into its children or we may have to borrow points from them. These are logged

as updates in the corresponding supernodes. Pushing points into a node is equivalent to

adding points to that region while borrowing points from a node is the same as deleting

points from the region. These updates may then cause an overflow in the buffers associated

with one or more of those supernodes. We repeat the same process described above with

any such supernode.

It is easy to show that the number of l/Os required to rebuild a supernode is

O(BloglogB). Since a rebuild is done once every BlogB updates, the amortized time

74

required for one such rebuild is 0(1). However, since we push updates down when we re

build supernodes, we may have to do up to 10gB n rebuilds (along an entire path) due to a

single overflow. Therefore, the amortized cost of a rebuild is O(1ogB n).

A moment of thought reveals that pushing points down is not enough to keep the

priority search tree balanced. Repeated additions or deletions to one side can make subtrees

unbalanced. We therefore periodically rebuild subtrees in the following manner.

With each node in the tree we associate a size which is the number of points in the

subtree rooted at that node. We say that a node is unbalanced if the size of one of its

children is more than twice the size of its other child. Whenever this happens at a node

R we rebuild the subtree rooted at R. The number of Ii0s required to rebuild a priority

search tree with x points is O«xIB) 10gB x +(xIB) log log B). This is because we need to

rebuild the secondary level priority search trees as well as the primary level tree along with

all the caches at both levels. Since a subtree of size x can get unbalanced only after O(x)

updates we get an amortized rebuilding time of O«logB x +log log B)IB) = 0(1).

Summing up all the Ii0s that are required to rebuild various things we see that the

total amortized time for an update is O(IogB n). We therefore have the following theorem.

Theorem 6.4.1 There exists a fully dynamic secondary memory implementation of the

priority search tree that can be used to answer general two-sided queries using O(1ogB n +
tlB) l/Os; where t is the size of the output. The amortized I/O-complexity of processing both

deletions and additions of points is 0 {logB n). This data structure requires O(Blog log B)

disk blocks of space to store n points.

Similar ideas can be used to get a dynamic data structure for answering three-sided

queries as well. The time to answer queries is still optimal but the time to process updates

is not as good. In particular we get the following bounds for answering three-sided queries.

Theorem 6.4.2 There exists a fully dynamic secondary memory implementation of the

priority search tree that can be used to answer general three-sided queries using O(logB n +

75

t/ B) II0s,' where t is the size of the output. The amortized 110~complexity of processing

both deletions and additions of points is o(logB nlog2 B). This data structure requires

O(Blog B log log B) disk blocks of space to store n points.

To summarize, we have presented in this chapter, a technique called path caching

which can be used to implement many main memory data structures for these problems in

secondary memory. Our data structures have optimal query performance at the expense of

a slight overhead in storage. Furthermore, our technique is simple enough to allow inserts

and deletes in optimal or near optimal amortized time.

76

Chapter 7

Experimental Work

In this chapter we study the implementation and benchmarking of the class-divisions algo

rithm of Chapter 3. Section 7.1 reconsiders the possible options for indexing classes, which

were discussed briefly in Section 3.2. We identify one particular method that is used very

often in OODBs and use that as the point of comparison for the class-divisions algorithm.

Section 7.2 then discusses the important implementation details for the comparison we

make and outlines the experimental data we want to collect. Section 7.3 presents a series

of experiments and the results we obtain from them, and the conclusions derived from the

experiments are presented in Section 7.4.

7.1 Indexing Classes Revisited

As before, let c be the number of classes, n the number of objects, and B the page size.

One way of indexing classes is to,create a B+ -tree per class by indexing the full extent of

each class. This gives the optimal query time of G(1ogB n +t/B) I/Os but has a big price:

the storage requirement of this algorithm is G«n/ B)c) pages and the update time is also

77

multiplied by c to become O(clogB n) I/0s. In a database system, the storage overhead

of this method is unacceptable. Even a moderately sized class hierarchy of 20 classes can

make the storage overhead of this method very high.

Two other methods for indexing classes are: (1) to build a B+-tree on the individual ex

tent of each class, and (2) to build a single B+-tree for all objects by indexing the collection

of all objects. We refer to the latter as the single-index method. The extensive comparison

of these two methods in [22] concludes that the technique of indexing the collection of all

objects is better than indexing each class's individual extent separately. The main reason

for this is that the technique of indexing individual extents has a very high query time,

O(clogB n+tl B): that is, the query time increases linearly with the size ofthe class hierar

chy. For input data whose density on the indexed attribute does not vary dramatically (Le.,

for reasonably "well behaved" data), the single-index method offers performance superior

to the method of building B+-trees on the individual extents of each class.

The main disadvantage of the single-index method is its lack of a good worst-case

guarantee for query time. This is because we have to combine the collections of objects

from all the classes to build the index. When performing a range query on a particular

class, we get a mixture of objects that belong to the queried class and objects that do not.

We get the correct answer to the range query by "filtering" out the objects of interest. In

spite of this disadvantage, this is the method used most often in object-oriented database

systems, for example, the 02 database system [1], and thus we use it as our point of reference

for the methods we propose.

The only other method for indexing classes appearing in the literature is a scheme

called the H-tree [25], based on the idea of threading many B+-trees together to facilitate

simultaneous search. (This idea is known as "fractional cascading" in the data structures

literature [8].) The H-tree scheme, however, offers no good performance guarantees for

querying and in addition, the update algorithm is complicated and potentially unbounded.

Therefore, we do not include this method in our benchmarking.

The solution we proposed in Chapter 5 using rake and contract is too complicated to

78

implement in practice. The· main reason for this is the lack of a data structure to answer

three-sided queries efficiently, in a practical sense. The data structure proposed in Chapter 5

to handle three-sided queries is based on the metablock tree, which in itself is a complicated

data structure. And the data structure for three-sided queries obtained using path caching

has a very high storage overhead (a factor on the order of 40), so that it is effectively

unrealistic in a practical setting.

However, the class-divisions algorithm proposed in Section 3.2 is a practical solution.

This algorithm uses an existing index structure, namely the B+ -tree. The storage overhead

is low, logarithmic in the size of the class hierarchy. For example, for a class hierarchy

containing 128 classes, the storage overhead is a factor of seven or less. Query and update

times are also low. Accordingly, our experimental work involves the comparison of the single

index and class-divisions algorithms. We use many different class hierarchies and many

different experimental situations to gain an overall perspective on the relative performances

of the two algorithms.

The goal of our experiments, therefore, is to compare the performance of the class

divisions and single-index algorithms for class indexing. We implement the two algorithms

under identical experimental conditions and compare them. Specifically, we compare the

following three important characteristics of the two algorithms: (1) the querying efficiency,

(2) the storage overhead, and (3) the update time. The next section defines precisely these

terms and our techniques for measuring them.

7.2 The Implementation

The successful incorporation of an indexing structure into a database system depends on

many factors. While efficiency of the index is an obvious concern, other factors like ease of

implementation and interaction with the database system often play an important role. In

particular, index structures have intricate interactions with the lock manager. Concurrency

control and recovery issues frequently become difficult problems.

79

Both the single-index method and the class-divisions algorithm are good candidate

solutions for the problem of indexing classes because they can be easily integrated into an

OODB. This is because both the methods use only the B+ -tree, an index structure that

is available in almost all database systems. Because of this, we can avoid many of the

integration problems discussed above.

However, we restrict ourselves to measuring the efficiency of the index structures, since

it can be thought of as a necessary prerequisite for an index to be successful. In addition,

implementing data structures as part of a database kernel is not an option for commercial

databases nor for most research prototypes. (This is because source code is often not

available for commercial databases, and where available, poses difficult and time-consuming

problems in system integration.)

The first design issue to be faced is whether the data structures should be implemented

under the aegis of a database system or as a stand-alone unit. We have chosen to do

the latter for several reasons, the most important reason being that implementing a data

structure from the application programming level of a database system (in 02C, for example,

under the O2 database system) often introduces many overheads in the measurements we

make that might or might not exist in another database system.

A modified version of the Berkeley DB code [36] that went into the making of the

POSTGRES database system [39] was used to implement B+ -trees. The code builds B+

trees on disk using the OS-l~vel file system. The experiments were conducted on Sparc 10

workstations running SunOS 4.1.3. The Berkeley DB code runs at the user level, does

its own buffer management, and exercises no control over the virtual memory and paging

activity of the operating system. Therefore, in order to count I/Os, we restricted ourselves

to measuring the explicit read requests issued by the program. In other words, implicit

reads generated by the operating system pager did not figure in the statistics collected.

A hand-optimized version of the class-divisions algorithm was used to create collections

that were then indexed using B+ -trees. The class-divisions algorithm of Chapter 3, even

though asymptotically optimal, does not exploit the structure of the input class hierarchy

80

when creating collections. This can result in a query time of 210gz c10gB n+O(tlB) I/0s for

range querying (the asymptotic complexity is o(logz c 10gB n + tlB». By precisely tuning

the way in which collections are created, we can almost always keep the query time under

logz clogB n +O(tlB). In most cases, how to do this will be fairly apparent. Rather than

go into the details here, we explain the optimizations whenever we present a class hierarchy

to be processed by the class-divisions algorithm.

The six example class hierarchies in the experiments were carefully selected to be a

mixture of hierarchies that were difficult to index and typical examples from real situations.

(For example, some of them came from the 02 book [1].) When populating these class

hierarchies, several simplifying assumptions were made:

1. 	It was assumed that the objects were small. (The objects used in our experiments

were always less than 100 bytes long.) Large objects, typically of size greater than

the page size of the underlying secondary storage, pose difficult problems that are

orthogonal to the ones being considered here.

2. In each class hierarchy, it was assumed that the number of objects in the individual

extent of each class was the same.

3. 	Further, it was assumed that the keys of the objects were uniformly distributed over a

range. Other experiments conducted with normalized data (i.e., where the keys were

distributed in a "normal" or Gaussian distribution over the range) produced similar

results. Queries were also assumed to be uniformly distributed over the range of the

keys as well as over the different classes in the class hierarchy.

In the actual experiment, there are many variables we can control:

• 	data size. This is the number of objects that belong to the individual extent of a class .

• 	ordering of input data. The Berkeley DB code for B+ -trees has a hook that optimizes

the space utilization of the B+-trees produced when the input data is given in sorted

81

order. Both sorted and unsorted input data are realistic situations, since occasional

reorganizations in a database can be considered similar to presenting sorted input to

the B-tree algorithm.

• 	 buffer size. Typical values range from 100 kilobytes to 5 megabytes.

• 	 page size (or disk block size). Typical values for the page size range from 512 bytes

to 64 kilobytes.

• 	 query size. Queries can be either restricted to retrieve only a small portion of the

database (typically < 10%) or totally unrestricted, possibly retrieving the entire

database.

• number of queries. This is the number of queries the algorithms are asked to answer

in one experiment.

The experiments were performed as follows. First, a class hierarchy was selected for

the experiment and values were chosen for each of the variables that could be controlled.

Input data was then generated and the B+-trees required by the single-index and the class

divisions algorithm were created. A query file was then produced. (We usually generated a

set of 200 queries.) One process was started to answer queries using the single-index method

and after it finished, another was started to answer queries using the class-divisions method.

These processes had identical parameters. Queries from the query file were answered one by

one and the number of disk I/Os requested for each query was recorded in a file. After this

concluded, the output files were processed to compare the number of I/Os each method took

for the queries. Since all the test conditions were identical for the two processes, this was a

fair comparison. The ratio of the l/Os for the single-index method and the class-divisions

algorithm was computed for each query answered and recorded for further processing. This

ratio, called the query efficiency ratio (QE ratio), was the most important statistic derived

from the experiments.

While the QE ratio helps us determine the relative merits of the two methods for

querying, we need other numbers to calculate the storage and update overheads. We use

82

the following parameters:

• 	 storage overhead factor. This is the ratio of the space used by the class-divisions

algorithm to that used by the single-index algorithm.

• 	 maximal replication factor. In the single-index method, an object is represented at

most once, while in the class-divisions method, an object may be replicated. This

factor measures the maximum number of times an object is replicated. Note that this

factor directly determines the ratio of the time to update objects in the two methods.

• 	 maximal query factor. A query in the single-index method can always be answered

by looking at only one B+ -tree. This factor measures the overhead per failed query

incurred by the class-divisions method. In other words, this factor measures the

maximum number of B+ -trees we have to search in order to answer a class indexing

query when using the class-divisions method.

The QE ratio depends on the experimental conditions under which queries are answered.

The other parameters can be determined directly by looking at the indexes needed for the

class-divisions algorithm on the target class hierarchy. Consequently, the QE ratio is the

statistic we present graphically the most frequently. The other parameters are computed

and presented whenever we present a class hierarchy.

We conducted two major sets of experiments. In the first set, hierarchy H1 in Figure 7.1

was used to study the effect of buffer pool size and page size on the QE ratio. A variety

of values were assigned to data size, buffer pool size, and page size. Further, both sorted

and unsorted inputs as well as small and large queries were considered (for a total of 2400

test runs, answering 48,000 queries and performing many gigabytes of disk activity). In

the second set of experiments, which were performed on all six class hierarchies H1-H6

(Figure 7.1 and Figures 7.6-7.10), "moderate" values were chosen for data size, buffer pool

size and page size and the QE ratio was computed while varying the other parameters.

83

http:7.6-7.10

Figure 7.1: Hierarchy HI. For this hierarchy, the storage overhead factor is 2.25, the
maximal replication factor 3 and the maximal query factor 2.

7.3 The Experiments

Before presenting the experiments and class hierarchies, we give some notation that will be

useful in explaining the workings of the algorithms. Cl, C2, C3, ••. are used to denote classes

in the input class hierarchies. They are also used to denote the individual extents of the

classes and also the size of these individual extents. The meaning will always be clear from

context. Ci indicates the full extent of class i and Co refers to the collection of all objects.

Since all our class hierarchies are trees, this is the full extent of the root hierarchy.

Example 7.3.1 Consider hierarchy HI in Figure 7.1. The class-divisions algorithm pro

ceeds by first indexing Cl. Cl and C2 are combined to give C2 , which is then indexed. C3 is

indexed next. Finally, all the individual extents are combined to give Co (which is the same

as C4), which is also indexed.

Queries on class Cl are answered using the index on Cl, on C2 using the index on C2 , on

C3 by using the indexes on C3 and C2 simultaneously, and on C4 using the index on Co.

84

The total storage used for the indexes is:

where S is the average storage utilization of the B+ -trees. S is normally around 0.7 for

unordered input for the B+ -trees and 0.99 for ordered input.

The single-index method needs only the index on Co. If we assume that the size of

the individual extents is the same, the storage overhead factor for hierarchy HI is 2.25. (It

is equal to the ratio of (4 +2 +2 + 1)/S to 4/S, which is 9/4.) The maximal replication

factor is 3, because objects in Cl are replicated three times. The maximal query factor is 2,

because C3 must be queried using two B+-trees.O

Figures 7.2-7.5 present a set offour graphs that plot the QE ratio against page size and

buffer pool size. In the experiments generating these four graphs, the size of each individual

class extent was 20,000 objects, and 200 queries uniformly distributed over the range of the

key and the four classes in hierarchy HI were used. The graphs differ in the nature of the

queries asked (small or large) and the nature of the input used to construct the B+ -trees

(sorted or unsorted input).

The graphs show a fairly high QE ratio, proving the usefulness of the class-divisions

algorithm even with a relatively small class hierarchy. The single-index method takes at least

twice as many I/Os as the class-divisions method in almost all cases, and frequently much

more. Given that we are dealing with uniformly distributed data, this is an impressive gain.

When the input data is skewed, as real data often tends to be, the performance improvement

with the class-divisions method will be even more.

Figures 7.2-7.5 also show that the QE ratio tends to increase with buffer pool size.

The reason for this is that, once a significant portion of the database fits into memory,

the class-divisions algorithm performs extremely well when queries fall nearby, and this is

bound to happen when a large number of queries are asked. The single-index method, on

the other hand, cannot take advantage of the large buffer pool size because it has no control

85

QE ratio for unsorted inputs with large queries

64

32

16

8
QE
4

ratio
2

1

1M

Figure 7.2: Plot of QE ratio against page size and buffer pool size. This experiment, on
hierarchy Ht, was conducted with unsorted input to the B-tree code, large queries were
used, and each class had 20,000 objects.

over how data from different classes are interspersed together. The QE ratio shows little

or no change with increasing page size, except when the page size becomes so large that

no more than a few pages can fit into the buffer pool. At this point, the QE ratio drops

slightly but quickly increases again as the size of the buffer pool increases.

The graphs also show that the QE ratio is not greatly affected by the small/large nature

of the queries or the sorted/unsorted nature of the input. It can be observed, however, that

the QE ratio is somewhat larger for large queries than for small queries. Similarly, it is a

little larger for unsorted input than sorted input.

86

QE ratio for sorted inputs with large queries

QE

ratio

1M

Figure 7.3: Plot of QE ratio against page size and buffer pool size. This experiment, on
hierarchy HI, was conducted with sorted input to the B-tree code (leading to better space
utilization), large queries were used, and each class had 20,000 objects.

87

QE ratio for unsorted inputs with small queries

32

16

8

QE 4

ratio 2

1M

Figure 7.4: Plot of QE ratio against page size and buffer pool size. Thls experiment, on
hierarchy HI, was conducted with unsorted input, queries usually retrieved only a small
portion of the database, and each class had 20,000 objects.

88

QE ratio for sorted inputs with small queries

32

16

8
QE
4

ratio
2

1

1M

Figure 7.5: Plot of QE ratio against page size and buffer pool size. This experiment,
on hierarchy HI, was conducted with sorted input, queries usually retrieved only a small
portion of the database, and each class had 20,000 objects.

89

Figure 7.6: Hierarchy H2. For this hierarchy, the storage overhead factor is 3.27, the
maximal replication factor 4 and the maximal query factor 1.

We now present the remaining five class hierarchies used, in addition to hierarchy HI,

in the second set of experiments.

Example 7.3.2 Hierarchy H2 (in Figure 7.6) is a complete binary tree of height 3.

CI, C2, ..• , Cs are indexed first using their individual extents. C9 is obtained by combin

ing CI, C2 and C9, ClO by combining C3, C4 and CIO, Cll by combining Cs, Cs and Cll, and

C12 by combining C7, Cs and C12. Cl3 is obtained by combining C9 , ClO and C13, and Cl4 by

combining Cll , C12 and C14. Finally, Co (CIS) is obtained by combining C13, C14 and C15.

C9 , ClO, ••• , CIS are then indexed.

The storage overhead factor for this example can easily be shown to be

As before, if we assume that all the individual extents are of the same size, the storage

overhead factor is 49/15 3.27. In this example, the full extent of every class is indexed as

a separate collection, and therefore the maximal query factor is 1. The maximal replication

factor is 4.0

90

Figure 7.7: Hierarchy H3. For this hierarchy, the storage overhead factor is 2.62, the
maximal replication factor 3 and the maximal query factor 1.

Example 7.3.3 Hierarchy H3 (in Figure 7.7) is a complete ternary hierarchy of height

2. Like in hierarchy H2, CI, Cz, ••. ,C9 are indexed first using their individual extents. C10

is created by combining Ct, cz, C3 and cw. Cu and C1Z are created in a similar fashion.

Finally, Co (CI3) is created by combining Cw , Cn , CIZ and CI3. Cw , ... , CI3 are then

indexed.

The storage overhead factor for this example, making the usual assumption of equal

individual extents, is

This equals 34/13 = 2.62. The maximal query factor is 1 since the full extent of every class

is indexed as a separate collection. The maximal replication factor is 3.0

Example 7.3.4 Hierarchy H4 (in Figure 7.8) combines the "long, skinny" nature of hier

archy H1 and the "bushy" nature of hierarchy H2. Cl, Cz, ... , Cs are indexed separately, and

after this C7 , Cs, Cg and Co (C1O) are created in the usual manner and indexed. By doing

this, every class other than Cs has its full extent indexed. Queries on Cs are thus answered

by looking at the indexes on Cs and cs.

91

Figure 7.8: Hierarchy H4. For this hierarchy, the storage overhead factor is 2.5, the maximal
replication factor 3 and the maximal query factor 2.

Figure 7.9: Hierarchy H5. For this hierarchy, the storage overhead factor is 2.54, the
maximal replication factor 3 and the maximal query factor 2.

The storage over head factor is

This equals 25/10 = 2.5 with the usual assumption of individual extents of equal size. The

maximal query factor is 2, and the maximal replication factor is 3.0

92

Figure 7.10: Hierarchy H6. For this hierarchy, the storage overhead factor is 2.17, the
maximal replication factor 3 and the maximal query factor 2.

Example 7.3.5 Hierarchy H5 (in Figure 7.9) is similar to H4 in its combination of "skinny"

and "bushy" hierarchies. As in the previous example, CI, C2, ••• ,Cs are indexed separately.

This is followed by the creation and indexing of ClO) Cll , CI2 and Co (CI3). All classes

except C9 have their full extents indexed as a separate collection. Queries on C9 are answered

using the indexes on Cl and C9.

The storage overhead factor is

This equals 33/13 = 2.54 with the assumption of individual extents of equal size. The

maximal query factor is 2 and the maximal replication factor is 3.0

Example 7.3.6 Hierarchy H6 (in Figure 7.10) is a small hierarchy of 6 classes. Cll C2,

C3 and C4 are indexed first. This is followed by the creation and indexing of Cs and Cs.

Under this scheme, every class except C4 has its complete extent indexed. Queries on C4 are

answered using the indexes on C3 and C4.

The storage overhead factor is

93

This equals 13/6 = 2.17 with the assumption of equal individual extents. The maximal

query factor is 2 and the maximal replication factor 3.0

We can see from these examples that with relatively small overheads in space, it is

possible to index class hierarchies so that queries on them can be answered extremely

efficiently. Figures 7.11-7.16 present a series of six graphs showing the results of experiments

on the six class hierarchies HI-H6 presented above. These graphs plot the QE ratio on a

per class basis. (That is, the ratio is averaged over each class separately rather than over

the entire hierarchy.) The average over all the classes is presented as the QE ratio for class

value zero. In these experiments, the size of each individual class extent was set to 10,000

objects, the page size was set to 4096 bytes, and the buffer pool size was set to 500 kilobytes.

We generated a set of 200 queries for each run and conducted the experiments. We plot

four separate lines on each graph to get an understanding of the effect of sorted input and

query size on the QE ratio.

As before, we can make the general observation that unsorted input and large queries

lead to somewhat higher QE ratios. The QE ratio tends to be very high for the classes

at the bottom of the hierarchy and tends to come down as we go up the class hierarchy.

It usually is very close to 1 for the root hierarchy. All this is to be expected because the

single-index method performs the worst for classes low in the hierarchy: in the B+ -tree

this method uses, objects in a "low" class are interspersed with many objects from other

classes but none of the other objects are needed for queries asked on the "low" class. The

class-divisions algorithm avoids this problem by keeping separate indexes. The QE ratio is

close to 1 for the root hierarchy because the two methods are querying the same B+ -tree to

answer queries on the root class. Slight deviations arise because of the action of the buffer

pool.

On the whole, the QE ratio obtained tends to be many times the storage overhead

factor, proving the efficacy of trading space for better query times.

94

http:7.11-7.16

Hierarchy HI

l28~------------~------------~------------~------------~
unsorted, large •
unsorted, small •

64 sorted, large _

sorted, small •
,

32 ___ J .. __ .. ____ .. ---- .. --_ .. _-- .. -1--- .. ----_ ,

.... ~
.. ~ ,. _ .. _",... _I .. _, _ I16 ,,/ " ,.. .

........ r
""
............ " I_ -l
QE 8

ratio
 " , ~

4 ·······;....::.· ... ~'· -.······r· ~ .

.. III •••••o '
filii""" .- I -.. ~ ~

• ••••• I .-....... ,,, ","",

.. If l1li ., .. Ilit.. '"2 .,..tII.. _.. ~ f; '; ..- - -_.... ~_.....J....

........ ~" I

..... 'lit t

, lit-..:...::...:.. .. .-=.. lit
. - .. -_ .. ---- .. - ---- .. _- --"'r--- 1a,

O.5~------------~------------~----------~~----------~Average over
Czall classes Class name

Figure 7.11: Plot of QE ratio for the classes in hierarchy HI. (The average taken over all
the classes is shown on the extreme left.) Each class had 10,000 objects, the page size was
4 kilobytes, and the buffer pool size was 500 kilobytes.

7.4 The Class-Divisions Algorithm: Conclusions

The results of our experiments clearly show the superior performance of the class-divisions

method over the single-index method. As the size of the class hierarchy increases, the

storage overhead of the class-divisions method increases relatively slowly as a logarithmic

function. The QE ratio, however, seems to increase almost linearly with class size. For

example, for hierarchies H2 and H3, the QE ratio is well over 8 when averaged over all the

queries, and some individual classes have QE ratios of over 64. This means that the single

index method can take 64 times as long as the class-divisions method for some queries.

That these results can be obtained with uniformly distributed and extremely well behaved

data is further proof of the robustness of the method.

95

}.

Hierarchy H2

128~--~--~--~--~--~--~--~--~--~--~--~--~--~--~--~

.- - - - - ,..

......
-'

,

-

-

J

-

~nsorted, large •
unsorted, small •,..64 -' sorted, large •

sorted, small • ,- ("32

,
16 - - - - ,- ,. - - -,

- - - + - ,QE 8
ratio

, ,,.4 - - - - -

, ,- - ,- + - - - -, -' - -,

, ,
J1 - - ,- - - - - ,- -' - - - ,

O.5~~~~~~--~--~--~--~--~------~--~--~--~----~
Average over c

c2all classes 1

Figure 7.12: Plot of QE ratio for the classes in hierarchy H2. (The average taken over all
the classes is shown on the extreme left.) Each class had 10,000 objects, the page size was
4 kilobytes, and the buffer pool size was 500 kilobytes.

-

,..

96

Hierarchy H3
128

unsorted, large •,
unsorted, small •64 J _ r - ,- - -, 	 - - - ~- -~

I ' \

32 	 .- .

,

\

'\

' .. " ~ .. ~ 16 " ... _,..J ,.
...~ " .. -....
.. 4f ---..:::,' ,- - .' - - - - ~ - - r

ratio

QE 8

,
.J4 - - - - -	 - ,- - -, -

2 - -	 - .- - - . - -

, 	 . ,
1 - - - - -' - r - -, - - - -	 ,

0.5 1...-____-'-_.......____--'1...-____-'--_-1.._.....______.......

Average over cl Cs c6 C7 Cg
all classes Class name

Figure 7.13: Plot of QE ratio for the classes in hierarchy H3. (The average taken over all
the classes is shown on the extreme left.) Each class had 10,000 objects, the page size was
4 kilobytes, and the buffer pool size was 500 kilobytes.

sorted, large •
sorted, small •, J _-.- - -

A
,- -

' •• -4It ,
~ - - r. - -
\ '1

\ 'I \
- .~ - ..-: - - -'-, .- ...~::.

- ,

- - -

97

Hierarchy H4
128r---~~--~~--~----~----~----~----~----~----'---~

64 - + -

32 - - - - ~ - - - - 4

,)11-.. '

QB 8
ratio

4

2

J

.. ~
.J _

-'

- -'

.' .

- -'" "

\

.' J

_ I _ _ _ _, _ ..J _

-' .

unsorted, large •
unsorted, small •

sorted, large •
sorted, small •

- r -

-I!--...•
, .
, .

0.5__-.1____-'""'___--'-__......__......._---1____......__--'-_____---'

Average over ci
all classes

Figure 7.14: Plot of QE ratio for the classes in hierarchy H4. (The average taken over all
the classes is shown on the extreme left.) Each class had 10,000 objects, the page size was
4 kilobytes, and the buffer pool size was 500 kilobytes.

98

Hierarchy H5
128~--~---p--~----~--~---p--~----~--~---r--~----~~

unsorted, large •
unsorted, small •

sorted, large •
sorted, small •

32 . .J

16 - , -' -

QE 8 - , -'
ratio

4 -.- -' - - -r .
2 -I - - - - ~ - . .J _

1 -I - .J • - r -' - - .

O.5L---~--~--~--~--~~--~--~--~--~--~--~~--~~
Average over cl C6 c., Cg

all classes
 Class names

Figure 7.15: Plot of QE ratio for the classes in hierarchy H5. (The average taken over all
the classes is shown on the extreme left.) Each class had 10,000 objects, the page size was
4 kilobytes, and the buffer pool size was 500 kilobytes.

99

Hierarchy H6

128r-------~r_------~---------r--------~--------~------__,
unsorted, large •
unsorted, smaIl •

64 - - - - - r -' sorted, large _

sorted, smaIl •

- ,

" ,
--

~
I

~
", .. '" j~.

-.f'# '! .. ,.. - -'
~oQ< I ,.,

A, - ,32

- ,.16 - T ------ .
I /

, /
--V
..~- • I"'QE 8

I

ratio ... ' y \

.., I .. , . .

4 r - - - - - - - ~ - - - - - - .' - - - - • - ~';~.: " •• \

f·" 'I
2 - ,.

1 _ .J ,

- -
.......

- j~ ~ -

.,. .. ~o'"

.. .,.,...~...
....... ..~

O.5~--------~--------~--------~--------~--------~------~
Average over ~

all classes Class name

Figure 7.16: Plot of QE ratio for the classes in hierarchy H6. (The average taken over all
the classes is shown on the extreme left.) Each class had 10,000 objects, the page size was
4 kilobytes, and the buffer pool size was 500 kilobytes.

100

Chapter 8

Conclusions and Open Problems

We have examined I/O-efficient data structures which provide indexing support for data

models with constraint programming and object-oriented programming features. There are

two components to this thesis: (1) to obtain algorithms with good worst-case performance

(in an asymptotic sense), and (2) to obtain algorithms with good worst-case performance

that also perform well in practice.

We believe that this thesis has successfully demonstrated both the components. We

have proved that it is possible to devise data structures that have provably good worst-case

bounds on storage, query, and update times. By doing so, we have examined important

tradeoffs between space and query efficiency for special cases of two-dimensional searching.

By devising algorithms with good worst-case performance bounds that also perform

well in practical settings, we have demonstrated that we need not always rely on heuristics

to handle difficult indexing problems.

There are some questions that still elude a good answer. One of the more important

questions concerns our ability to solve the interval management problem well. Can dynamic

interval management on secondary storage be achieved optimally in O(n/B) pages, query

101

I/O time O(logB n+ t/B) and update time O(logB n)? In other words, is there a B-tree for

this problem?

102

Chapter 9

References

[1] 	 F. Bancilhon, C. Delobel, and P. Kanellakis, eds., Building an Object-Oriented Database

System - The Story of O2 , Morgan Kaufmann Publishers, 1992.

[2] 	 R. Bayer and E. McCreight, "Organization of Large Ordered Indexes," Acta Informat

ica 1 (1972), 173-189.

[3] 	 J. 1. Bentley, "Algorithms for Klee's Rectangle Problems," Dept. of Computer Science,

Carnegie Mellon Univ., unpublished notes, 1977.

[4] 	 J.1. Bentley, "Multidimensional Divide and Conquer," CACM 23(6)(1980), 214-229.

[5] 	 G. Blankenagel and R. H. Gliting, "XP-Trees External Priority Search Trees," Fer

nUniversitat Hagen, Informatik-Bericht Nr. 92, 1990.

[6] 	 G. Blankenagel and R. H. Giiting, "External Segment Trees," FernUniversitat Hagen,

Informatik-Bericht, 1990.

103

[7] B. Chazelle, "Lower Bounds for Orthogonal Range Searching: I. The Reporting CaSe,"

J. 	ACM 37(2)(1990),200-212.

[8] 	 B. Chazelle and L. J. Guibas, "Fractional Cascading: I. A Data Structuring Technique,"

Algorithmica 1 (1986),133-162.

[9] 	 Y.-J. Chiang and R. Tamassia, "Dynamic Algorithms in Computational Geometry,"

Proceedings of IEEE, Special Issue on Computational Geometry 80(9) (1992), 362-381.

[W] 	 E. F. Codd, "A Relational Model for Large Shared Data Banks," CACM 13(6) (1970),

377-387.

[11] 	 D. Comer, "The Ubiquitous B-tree," Computing Surveys 11(2)(1979),121-137.

[12] 	 H. Edelsbrunner, "A New Approach to Rectangle Intersections, Part II,>' Int. J. Com

puter Mathematics 13(1983),221-229.

[13] 	 H. Edelsbrunner, "A New Approach to Rectangle Intersections, Part I," Int. J. Com

puter Mathematics 13 (1983),209-219.

[14] 	 M. L. Fredman, "A Lower Bound on the Complexity of Orthogonal Range Queries,"

J. 	ACM 28(1981),696-705.

[15] 	 M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, "External-Memory Com

putational Geometry," Proc. 34th Annual IEEE Symposium on Foundations of Com

puter Science (1993), 714-723.

[16] 	 O. Gunther, "The Design of the Cell Tree: An Object-Oriented Index Structure for

.Geometric Databases," Proc. of the Fifth Int. Conf. on Data Engineering (1989),598

605.

[17] 	 Antonin Guttman, "R-Trees: A Dynamic Index Structure for Spatial Searching," Proc.

1984 ACM-SIGMOD Conference on Management of Data (1985),47-57.

104

I [18] C. Icking, R. Klein, and T. Ottmann, Priority Search Trees in Secondary Memory
I

I 	
(Extended Abstract), Lecture Notes In Computer Science #314, Springer-Verlag, 1988.

I
[19] J. Jaffar and J. L. Lassez, "Constraint Logic Programming," Pmc. 14th ACM POPL

(1987),111-119.

[20] 	 P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, "Constraint Query Languages," Pmc.

9th A CM PODS (1990),299-313, invited to the special issue of JCSS on Principles of

Database Systems (to appear). A complete version of the paper appears as Technical

Report 90-31, Brown University.

[21] 	 P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter, "Indexing for Data

Models with Constraints and Classes," Pmc. 12th ACM PODS (1993), 233-243, invited

to the special issue of JCSS on Principles of Database Systems (to appear). A complete

version of the paper appears as Technical Report 93-21, Brown University.

[22] 	 W. Kim, K. C. Kim, and A. Dale, "Indexing Techniques for Object-Oriented Databases,"

in Object-Oriented Concepts, Databases, and Applications, W. Kim and F. H. Lo

chovsky, eds., Addison-Wesley, 1989,371-394.

[23] 	 W. Kim and F. H. Lochovsky, eds., Object-Oriented Concepts, Databases, and Appli

cations, Addison-Wesley, 1989.

[24] 	 D. B. Lomet and B. Salzberg, "The hB-Tree: A Multiattribute Indexing Method

with Good Guaranteed Performance," ACM Transactions on Database Systems 15(4)

(1990),625-658.

[25] 	 C. C. Low, B. C. Ooi, and H. Lu, "H-trees: A Dynamic Associative Search Index for

OODB," Proc. ACM SIGMOD (1992), 134-143.

[26] 	 D. Maier and J. Stein, "Indexing in an Object-Oriented DBMS," IEEE Proc. Interna

tional Workshop on Object-Oriented Database Systems (1986), 171-182.

105

[27J E. M. McCreight, "Priority Search Trees," SIAM Journal of Computing 14(2) (1985),

257-276.

[28) 	 J. Nievergelt, H. Hinterberger, and K. C. Sevcik, "The Grid File: An Adaptable, Sym

metric Multikey File Structure," ACM Transactions on Database Systems 9(1)(1984),

38-71.

[29] 	 J. A. Orenstein, "Spatial Query Processing in an Object-Oriented Database System,"

Proc. ACM SIGMOD (1986),326-336.

[30) 	 M. H. Overmars, M. H. M. Smid, M. T. de Berg, and M. J. van Kreveld, "Maintaining

Range Trees in Secondary Memory: Part I: Partitions," Acta Informatica 27 (1990),

423-452.

[31] 	 S. Ramaswamy and S. Subramanian, "Path Caching: A Technique for Optimal External

Searching," Proc. 13th ACM PODS (1994), 25-35.

[32) 	 J. T. Robinson, "The K-D-B Tree: A Search Structure for Large Multidimensional

Dynamic Indexes," Proc. ACM SIGMOD (1984).

[33] 	 H. Samet, Applications of Spatial Data Structures; Computer Graphics, Image Pro

cessing, and GIS, Addison-Wesley, 1989.

[34] 	 H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1989.

[35] 	 T. Sellis, N. Roussopoulos, and C. Faloutsos, "The R+-Tree: A Dynamic Index for

Multi-Dimensional Objects," Proc. 1987 VLDB Conference, Brighton, England (1987).

[36] 	 M. Seltzer, K. Bostic, and O. Yigit, The Berkeley DB code, available by ftp from

ftp.cs.berkeley.edu as ucb/4bsd/db.tar.Z .

[37] 	 D. D. Sleator and R. E. Tarjan, "A Data Structure for Dynamic Trees," J. Computer

and System Sciences 24 (1983),362-381.

106

http:ftp.cs.berkeley.edu

[38] 	 M. H. M. Smid and M. H. Overmars, "Maintaining Range Trees in Secondary Memory:

Part II: Lower Bounds," Acta Informatica 27 (1990), 453~480.

[39] 	 M. Stonebraker and L. Rowe, "The Design of POSTGRES," Proc. ACM SIGMOD

(1986).

[40] 	 J. S. Vitter, "Efficient Memory Access in Large-Scale Computation," 1991 Symposium

on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer

Science (1991), invited paper.

[41] 	 S. Zdonik and D. Maier, Readings in Object-Oriented Database Systems, Morgan Kauf

mann, 1990.

107

	sridhar1
	sridhar2.pdf

