
Abstract of “Building Query Optimizers with Combinators” by Mitch Cherniack, Ph.D.,

Brown University, May 1999.

Query optimizers generate plans to retrieve data requested by queries. Optimizers are hard

to build because for any given query, there can be a prohibitively large number of plans to

choose from. Typically, the complexity of optimization is handled by dividing optimization

into two phases: a heuristic phase (called query rewriting) that narrows the space of plans

to consider, and a cost-based phase that compares the relative merits of plans that lie in the

narrowed space.

The goal of query rewriting is to transform queries into equivalent queries that are

more amenable to plan generation. This process has proven to be error-prone. Rewrites

over nested queries and queries returning duplicates have been especially problematic, as

evidenced by the well-known COUNT bug of the unnesting rewrites of Kim. The advent of

object-oriented and object-relational databases only exacerbates this issue by introducing

more complex data and by implication, more complex queries and query rewrites.

This thesis addresses the correctness issue for query rewriting. We introduce a novel

framework (COKO-KOLA) for expressing query rewrites that can be verified with an au-

tomated theorem prover. At its foundation lies KOLA: our combinator-based query algebra

that permits expression of simple query rewrites (rewrite rules) without imperative code.

While rewrite rules are easily verified, they lack the expressivity to capture many query

rewrites used in practice. We address this issue in two ways:

• We introduce a language (COKO) to express complex query transformations using

KOLA rule sets and an algorithm to control rule firing. COKO supports expression

of query rewrites that are too general to be expressed with rewrite rules alone.

• We extend KOLA to permit expression of rewrite rules whose firing requires inferring

semantic conditions. This extension permits expression of query rewrites that are too

specific to be expressed with rewrite rules alone.

The recurring theme of this work is that all of the proposed techniques are made possible

by a combinator-based representation of queries.

Abstract of “Building Query Optimizers with Combinators” by Mitch Cherniack, Ph.D.,

Brown University, May 1999.

Query optimizers generate plans to retrieve data requested by queries. Optimizers are hard

to build because for any given query, there can be a prohibitively large number of plans to

choose from. Typically, the complexity of optimization is handled by dividing optimization

into two phases: a heuristic phase (called query rewriting) that narrows the space of plans

to consider, and a cost-based phase that compares the relative merits of plans that lie in the

narrowed space.

The goal of query rewriting is to transform queries into equivalent queries that are

more amenable to plan generation. This process has proven to be error-prone. Rewrites

over nested queries and queries returning duplicates have been especially problematic, as

evidenced by the well-known COUNT bug of the unnesting rewrites of Kim. The advent of

object-oriented and object-relational databases only exacerbates this issue by introducing

more complex data and by implication, more complex queries and query rewrites.

This thesis addresses the correctness issue for query rewriting. We introduce a novel

framework (COKO-KOLA) for expressing query rewrites that can be verified with an au-

tomated theorem prover. At its foundation lies KOLA: our combinator-based query algebra

that permits expression of simple query rewrites (rewrite rules) without imperative code.

While rewrite rules are easily verified, they lack the expressivity to capture many query

rewrites used in practice. We address this issue in two ways:

• We introduce a language (COKO) to express complex query transformations using

KOLA rule sets and an algorithm to control rule firing. COKO supports expression

of query rewrites that are too general to be expressed with rewrite rules alone.

• We extend KOLA to permit expression of rewrite rules whose firing requires inferring

semantic conditions. This extension permits expression of query rewrites that are too

specific to be expressed with rewrite rules alone.

The recurring theme of this work is that all of the proposed techniques are made possible

by a combinator-based representation of queries.

Building Query Optimizers with Combinators

by

Mitch Cherniack

B. Ed., McGill University, Montreal, Canada, 1984

Dip. Ed., McGill University, Montreal, Canada, 1985

Dip. Comp. Sci., Concordia University, Montreal, Canada, 1990

M. Comp. Sci., Concordia University, Montreal, Canada, 1992

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 1999

c© Copyright 1995, 1996, 1998, 1999 by Mitch Cherniack

This dissertation by Mitch Cherniack is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Stan Zdonik, Director

Recommended to the Graduate Council

Date
Pascal Van Hentenryck, Reader

Date
Dave Maier, Reader

Oregon Graduate Institute

Date
Joe Hellerstein, Reader

University of California, Berkeley

Approved by the Graduate Council

Date
Peder J. Estrup

Dean of the Graduate School and Research

ii

Vita

Mitch Cherniack was born on August 18th, 1963 in Winnipeg, Canada. He completed

secondary school in Denver, Colorado, and then attended McGill University in Montreal,

Canada, where he received his Bachelor of Education degree (Elementary) in 1984, and a

Diploma of Education degree (Secondary) in 1985. He taught in the far north of Canada for

a time in 1984, and then taught high school Computer Science and Mathematics in Montreal

from 1985–1989. He returned to school at Concordia University in Montreal in 1989, and

subsequently earned a Diploma in Computer Science in 1990, and a Masters degree in

Computer Science in 1992. He then joined the doctoral program at Brown University in

the fall of 1992.

iii

Acknowledgements

This thesis work could not have been completed without the help and support of colleagues,

friends and family. I have been lucky in my time at Brown to be surrounded by so many

talented people. I would first like to thank my fellow graduate students in Computer Science

departments here at Brown and elsewhere, with whom I drank late night coffees while

sharing thoughts about our work and our lives. Swarup Acharya was my contemporary

in the database group at Brown. Swarup was an endless source of information, support

and good humor. Among the database students who preceded me, I would especially

like to thank Ted Leung and Bharathi Subramanian for showing me the ropes, and Misty

Nodine who took me under her wing upon my arrival at Brown. Michael Littman and Tony

Cassandra, though not members of the database group, provided invaluable feedback on

ideas that I presented to them and became close friends. Outside of Brown, Bennet Vance

of Oregon Graduate Institute (and now at IBM, Almaden) has been an invaluable source

of advice on all things mathematical. My apologies, Bennet, for keeping you up so late at

SIGMOD every year. I also benefited from many fruitful discussions with Leo Fegaras (now

at the University of Texas, Arlington), Eui-Suk Chung (of Ericsson), Torsten Grust of the

University of Konstanz, and Joachim Kröger of the University of Rostock.

I would like to thank the students who worked on the implementations of this work.

Blossom Sumulong worked on the dynamic query rewriting implementation presented in

Chapter 7 as part of her Masters thesis. Kee Eung Kim and Joon Suk Lee built the initial

COKO compiler described in Chapter 4 as a class project for a graduate seminar. I am

especially grateful to Joon who maintained the compiler implementation in the face of many

requests for revisions, and who added the semantic extensions to the compiler described in

Chapter 5 as part of the work for his Masters thesis.

The administrative and technical staffs of the Computer Science at Brown went far

beyond the call of duty in answering my many requests for assistance. For this help, I

would especially like to acknowledge the help of Mary Andrade, Kathy Kirman, Max Salvas

iv

and Jeff Coady.

Working at Brown gave me the opportunity to meet many members of the database

and formal methods research communities. I owe my initial interest in formal methods to

discussions held with John Guttag of MIT. Steve Garland of MIT was an endless provider

of knowledge and advice on using Larch. While designing KOLA, we had many useful

discussions with Barbara Liskov and her programming methodology group at MIT. Catriel

Beeri of Hebrew University was most generous with his time providing suggestions and

criticisms, as was Tamer Öszu of the University of Alberta who also provided personal and

professional guidance to me during his visits here and my visit to Alberta. Ashok Malhotra

of the T.J. Watson Research Division of IBM was an early supporter of this work, and

was instrumental in our successful efforts to receive a Partnership Grant from IBM. The

database reading group of the Oregon Graduate Institute provided much useful feedback

during the early development of KOLA, as did Gail Mitchell of GTE who doubly served as

a reader for each of our conference submissions.

Each of the members of my thesis committee provided extremely valuable advice long

before we asked them to serve on my committee. Joe Hellerstein, whom I met when he

visited here, pushed us to explore the Starburst query rewrites (especially the Magic Sets

rewrites) as an expressivity challenge for COKO. I am indebted to Joe for our many lengthy

discussions held at the various SIGMOD and VLDB conferences where we met. Dave Maier

also provided early advice and was the one who encouraged study of work done by the

functional programming community on combinators. Finally, Pascal Van Hentenryck proved

to be a tremendous resource for the functional programming and programming language

design components of this work, and also proved to be especially helpful during my job

search.

I would like to thank all of my friends who were so supportive of me during some of the

personally difficult years during my time here. My friends in Montreal provided an oasis to

escape to when times were especially difficult. I would like to thank Leslie Silverstein and

Helene Brunet, Nicole Allard and Paul Duarte, Peggy Hoffman, Peter Grogono and Sharon

Nelson, Elizabeth Wiener, Diane Bouwman, Jeff Karp and Daniel Nonen for their support

and friendship. I’d also like to thank my close friends here in New England: Sonia Leach,

Kathy Kirman, Grace Ashton, Adrienne Suvajian, Rob Netzer and Carol Collins, and Gail

Mitchell and Stan Zdonik.

My family has been a wonderful source of support, love and strength. My sister Karen

has been a source of encouragement from the onset, providing me with computer equipment

when I couldn’t afford my own and providing sisterly advice along the way. My brother

v

Mark is my closest friend, and has always been there for me whenever I have needed him

to be. And my parents, Edith and Reuben Cherniack have helped me out in every possible

way. In my last few months at Brown when circumstances forced me to leave Rhode Island,

they welcomed me back home and reminded me through their generosity and kindness of

all that they have done for me throughout my life. Mom and Dad, this thesis would not

have happened if not for you.

Finally, I would like to thank my two mentors who are primarily responsible for my

development as a researcher. Peter Grogono, my Masters degree supervisor at Concordia

University, is quite simply the best teacher I have ever known. I aspire to teach and write

as well as he does, and I know that I have a lifelong challenge ahead of me in trying to

meet this goal. I also owe Peter thanks for exposing me to the excitement of research and

to the elegance of mathematics; neither of which I knew before enrolling at Concordia over

10 years ago.

Lastly, I cannot possibly express the depth of gratitude I feel for my Ph.D. supervisor,

Stan Zdonik. Stan has been an ideal supervisor. He helped me to see the big picture in

research when I got lost in details. He taught me how to communicate my ideas effectively,

both in writing and in presentation. He gave me confidence by being a constant source of

moral support, and by maintaining excitement about my work. Perhaps most importantly

to me, Stan has been a close friend. He and Gail took me into their home when I had

nowhere else to go — for this and so much more, I will always be grateful.

vi

Credits

Some of these chapters are adapted from our papers. Chapter 3 is based on our 1996

SIGMOD paper [22] and our 1995 DBPL paper [23]. Chapter 4 is based on our 1998

SIGMOD paper [20]. Chapter 5 is based on our 1998 VLDB paper [21]. Chapter 6 is based

on a recent conference submission [19]. Chapter 7 forms the basis of a paper currently in

preparation. All of these papers were written jointly with Stan Zdonik. As well, [23] was

written jointly with Marian H. Nodine and [19] was written jointly with Ashok Malhotra.

Joon Suk Lee and Kee-Eung Kim were primarily responsible for the implementation

of the compiler described in Chapter 4. Joon Suk Lee implemented the semantic exten-

sions described in Chapter 5. Blossom Sumulong is building the prototype implementation

described in Chapter 7.

I was supported by numerous grants during my time at Brown, including ONR grant

number N00014-91-J-4052 under ARPA order number 8225 and contract DAAB-07-91-C-

Q518 under subcontract F41100, NSF grant IRI 9632629, and a gift from the IBM corpo-

ration. I gratefully acknowledge this support.

vii

Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Preliminaries . 1

1.1.1 Query Optimization . 3

1.1.2 Query Rewriting . 3

1.1.3 Rule-Based Query Optimizers and Query Rewriters 4

1.2 Issues in Query Rewriting . 5

1.2.1 The Correctness Issue . 5

1.2.2 The Expressivity Issue . 6

1.3 Contributions . 6

1.3.1 Conceptual Contributions . 6

1.3.2 Implementations . 7

1.3.3 High-Level Contributions . 7

1.4 Outline . 8

2 Motivation 10

2.1 The Thomas Website . 10

2.2 An Object Database Schema for Thomas 11

2.3 The “Conflict of Interests” Queries (COI) 13

2.3.1 Naive Evaluation of COI1 . 14

2.3.2 A Complex Query Rewrite for COI1 15

2.3.3 Correctness . 16

2.4 The “NSF” Queries (NSF) . 17

2.4.1 Naive Evaluation of NSF1 . 18

viii

2.4.2 A Semantic Query Rewrite for NSF1 18

2.4.3 Dynamic Query Rewriting . 20

2.5 Chapter Summary . 21

3 KOLA: Correct Query Rewrites 22

3.1 The Need for a Combinator-Based Query Algebra 22

3.1.1 Variables Considered Harmful . 23

3.1.2 The Need for a Combinator-Based Query Algebra: Summary 29

3.2 KOLA . 30

3.2.1 An OQL Query Expressed in KOLA 30

3.2.2 The KOLA Data Model . 33

3.2.3 KOLA Primitives and Formers . 37

3.3 Using a Theorem Prover to Verify KOLA Rewrites 44

3.3.1 A Formal Specification of KOLA Using LSL 44

3.3.2 Proving KOLA Rewrite Rules Using LP 46

3.4 Revisiting the “Conflict of Interests” Queries 50

3.4.1 KOLA Translations of the COI Queries 50

3.4.2 A Rule Set for Rewriting the COI Queries 62

3.5 Discussion . 66

3.5.1 The Expressive Power of KOLA . 66

3.5.2 Addressing the Downsides of KOLA 67

3.6 Chapter Summary . 68

4 COKO: Complex Query Rewrites 70

4.1 Why COKO? . 71

4.2 Example 1: CNF . 72

4.2.1 CNF for KOLA Predicates . 72

4.2.2 An Exhaustive Firing Algorithm . 73

4.2.3 A Non-Exhaustive Firing Algorithm for CNF 77

4.3 The Language of COKO Firing Algorithms 83

4.3.1 The COKO Language . 84

4.3.2 TRUE, FALSE and SKIP . 87

4.3.3 The COKO Compiler . 87

4.4 Example 2: “Separated Normal Form” (SNF) 88

4.4.1 Definitions . 89

ix

4.4.2 A COKO Transformation for SNF 91

4.5 Example Applications of SNF . 107

4.5.1 Example 3: Predicate-Pushdown . 107

4.5.2 Example 4: Join-Reordering . 107

4.6 Example 5: Magic-Sets . 109

4.6.1 An Example Magic-Sets Rewrite . 110

4.6.2 Expressing Magic-Sets in COKO . 114

4.7 Discussion . 121

4.7.1 The Expressivity of COKO . 121

4.7.2 The Need for Normalization . 122

4.8 Chapter Summary . 123

5 Semantic Query Rewrites 125

5.1 Example 1: Injectivity . 127

5.1.1 Expressing Semantic Query Rewrites in COKO-KOLA 130

5.1.2 Correctness . 133

5.1.3 Revisiting the “NSF” Query of Chapter 2 134

5.1.4 More Uses for Injectivity . 135

5.2 Example 2: Predicate Strength . 136

5.2.1 Some Rewrite Rules Conditioned on Predicate Strength 136

5.2.2 A COKO Property for Predicate Strength 137

5.2.3 Example Uses of Predicate Strength 138

5.3 Implementation . 141

5.3.1 Implementation Overview . 141

5.3.2 Performing Inference . 142

5.3.3 Integrating Inference and Rule Firing 144

5.4 Discussion . 145

5.4.1 Benefits to this Approach . 145

5.4.2 The Advantage of KOLA . 147

5.5 Chapter Summary . 148

6 Experiences With COKO-KOLA 149

6.1 Background . 150

6.1.1 San Francisco Object Model . 150

6.1.2 Relational Implementation of the Object Model 151

x

6.1.3 Querying . 152

6.1.4 Our Contribution . 153

6.2 Translating Query Lite Queries into KOLA 153

6.2.1 Translation Strategies . 156

6.2.2 T: The Query Lite → KOLA Translation Function Described 160

6.2.3 Sample Traces of Translation . 167

6.2.4 Translator Implementation . 171

6.3 Query Rewriting . 172

6.3.1 A Library of General-Purpose COKO Transformations 172

6.3.2 Normalizing the Results of Translation 183

6.3.3 Transforming Path Expressions to Joins 200

6.4 Translating KOLA into SQL . 210

6.5 Discussion . 214

6.5.1 Integration Capabilities of COKO-KOLA 214

6.5.2 Ease-Of-Use of COKO-KOLA . 217

6.6 Chapter Summary . 221

7 Dynamic Query Rewriting 223

7.1 A Dynamic Query Rewriter for ObjectStore 224

7.1.1 Making ObjectStore Objects Queryable 225

7.1.2 Iterators . 227

7.1.3 Combining Rewriting With Evaluation 229

7.2 Putting It All Together: The NSF Query 236

7.2.1 Initial Rewriting and Evaluation . 236

7.2.2 Dynamic Query Rewriting: Extracting Elements from the Result . . 236

7.2.3 Extracting Results from the Nested Query 242

7.3 Discussion . 248

7.3.1 Cost Considerations . 248

7.3.2 The Advantage of KOLA . 250

7.4 Chapter Summary . 250

8 Related Work 252

8.1 KOLA . 252

8.1.1 KOLA and Query Algebras . 253

8.1.2 KOLA and Combinators . 256

xi

8.1.3 KOLA and Query Calculii . 258

8.2 COKO . 259

8.2.1 Systems that Express Complex Query Rewrites With Single Rules . 259

8.2.2 Systems that Express Complex Query Rewrites With Rule Groups . 261

8.2.3 Theorem Provers . 262

8.3 Semantic Query Rewriting . 263

8.3.1 Semantic Optimization Strategies . 263

8.3.2 Semantic Optimization Frameworks 264

8.4 Dynamic Query Rewriting . 268

8.4.1 Dynamic Plan Selection . 269

8.4.2 Adaptive Query Optimization . 271

8.4.3 Partial Evaluation . 272

9 Conclusions and Future Work 274

9.1 Future Directions . 277

9.2 Conclusions . 280

A A Larch Specification of KOLA 281

A.1 Functions and Predicates . 281

A.2 Objects . 282

A.3 Primitives (Table 3.1) . 287

A.4 Basic Formers (Table 3.2) . 303

A.5 Query Formers (Table 3.3) . 314

B LP Proof Scripts 329

B.1 Proof Scripts for CNF . 329

B.2 Proof Scripts for SNF . 329

B.3 Proof Scripts for Predicate Pushdown . 329

B.4 Proof Scripts for Magic Sets . 329

B.5 Proof Scripts for Rules of Chapter 5 . 329

B.6 Proof Scripts for Rules of Chapter 6 . 329

Bibliography 330

xii

List of Tables

2.1 A Database Schema for Thomas . 12

3.1 KOLA Primitives . 39

3.2 Basic KOLA Formers . 40

3.3 KOLA Query Formers . 41

4.1 Average Times (in seconds) for CNF-TD and CNF-BU 77

4.2 Average Times (in seconds) for CNF-TD and CNF 79

4.3 Rewrite Rules Used In SimplifyJoin . 120

6.1 The Syntax of Query Lite . 155

6.2 T: The Query Lite → KOLA Translation Function 161

6.3 Analysis of the General-Purpose COKO Transformations 183

6.4 Analysis of the COKO Normalization Transformations 195

6.5 Analysis of the Query Lite → SQL Transformations 210

6.6 T−1: Applied to KOLA Primitives . 211

6.7 T−1: Applied to KOLA Formers . 215

7.1 Mappings of KOLA Operators to their Parse Tree Representations 231

7.2 Results of Partially Evaluating and Rewriting KOLA Queries 234

7.3 Results of Evaluating KOLA Queries . 235

xiii

List of Figures

1.1 A Traditional Architecture for Query Processors 2

2.1 COI1: Find all committees whose chairs belong to a subcommittee chaired by

someone from the same party. 14

2.2 Rewriting COI1 → COI1 . 15

2.3 An Incorrect Query Rewrite . 16

2.4 NSF1: Find all House resolutions relating to the NSF and associate them with

the set of cities that are largest in districts that the bills’ sponsors represent 17

2.5 Rewriting NSF1 → NSF1 . 19

2.6 NSF2: Find all Bills (Senate and House resolutions) relating to the NSF and

associate them with the set of cities that are largest in regions that the bills’

sponsors represent . 20

3.1 COI2: Find all committees whose chairs belong to a party that includes some-

one that both chairs and is a member of the same subcommittee. 24

3.2 Transforming COI2 → COI2 → COI2 . 26

3.3 A Rewrite Rule Justifying COI2 → COI2 27

3.4 COI1∗ → COI1 (a) and a Rule to Justify It (b) 28

3.5 A Simple OQL Query (a) and its KOLA Equivalent (b): Name All Subcom-

mittees Chaired by Republicans . 31

3.6 An Example LP Proof Script . 47

3.7 Some LP Rewrite Rules Generated from Specification Axioms 48

3.8 KOLA Translations of the Conflict of Interests Queries 51

3.9 Rewrite Rules For the Query Rewrites of the “Conflict of Interests” Queries 63

3.10 Transforming COIK
2 → COIK

2 → COIK
2 64

4.1 A KOLA Predicate Before (a) and After (b) its Transformable into CNF . 74

4.2 Exhaustive CNF Transformations Expressed in COKO 74

xiv

4.3 Illustrating CNF-BU on the KOLA Predicate of Figure 4.1a 75

4.4 An Efficient CNF Transformation . 78

4.5 Illustrating the CNF Firing Algorithm on the KOLA Predicate of Figure 4.1a 79

4.6 The Full CNF Transformation Expressed in COKO 82

4.7 The Effects of a GIVEN Statement on Environments 86

4.8 The SQL/KOLA Predicates of Figure 4.1 in SNF 91

4.9 The SNF Normalization Expressed in COKO 92

4.10 Auxiliary Transformations Used by SNF . 93

4.11 Tracing the effects of SNF on the Predicate p of Fig 4.1a (Part 1) 96

4.12 Tracing the effects of SNF on the Predicate p of Fig 4.1a (Part 2) 97

4.13 Pushdown: A COKO Transformation to Push Predicates Past Joins 108

4.14 Join-Associate: A COKO Transformation to Reassociate a Join 109

4.15 OQL (a) and KOLA (b) queries to find all committees whose chair is a Demo-

crat and has served more than the average number of terms of the members

of his/her chaired committees. 110

4.16 The queries of Figure 4.15 after rewriting by Magic-Sets 111

4.17 The Magic-Sets Rewrite Expressed in COKO 114

4.18 Transformation SimpLits2 and its Auxiliary Transformation Pr2Times . . 117

5.1 The “Major Cities” (a) and “Mayors” (b) Queries Before and After Rewriting 128

5.2 KOLA Translations of Figures 5.1a and 5.1b 129

5.3 Conditional Rewrite Rules to Eliminate Redundant Duplicate Elimination 131

5.4 Properties Defining Inference Rules for Injective Functions (a) and Sets (b) 133

5.5 NSF1k: The “NSF” Query of Figure 2.4 expressed in KOLA 134

5.6 Rewrite Rules Conditioned on Predicate Strength 137

5.7 A COKO Property for Predicate Strength 137

5.8 A Conditional Rewrite Rule Firer . 141

6.1 An Architecture for the Query Lite Query Rewriter 154

6.2 OQL Queries that make Translation into KOLA Difficult 157

6.3 A Query Lite Query (a), its Translation (b) and its Normalization (c) . . . 158

6.4 A Prototypical OQL Query . 163

6.5 The Query of Figure 6.2b After deBruijn Conversion 164

6.6 Results of Translating the OQL queries of Figure 6.2 168

6.7 Transformation LBComp . 173

xv

6.8 Transformations LBJoin and LBJAux . 175

6.9 Transformations LBJAyx2 and PullFP Auxiliary Transformations 176

6.10 Transformation SimpFunc and Its Auxiliary Transformations 177

6.11 Transformation SimpPred and Its Auxiliary Transformations 179

6.12 An Input KOLA Parse Tree to PCFAux . 180

6.13 Transformation PullComFunc and Its Auxiliary Transformation 182

6.14 The KOLA Query of Figure 6.6a After Normalization 184

6.15 Transformation NormTrans . 185

6.16 Transformation OrdUnnests . 186

6.17 An OQL Join Query (a) and Its Translation into KOLA (b) 187

6.18 Rewrite Rules in PullP2SHRF . 190

6.19 Translated OQL Queries Following Rewriting of their Data Functions . . . 191

6.20 Rewrite Rules in FactorK and FKAux . 192

6.21 Query 1 (a), Normalization (b), Rewrite by PEWhere (c) In SQL (d) 196

6.22 Query 2 (a), Normalization (b), Rewrite by PEWhere (c) In SQL (d) 197

6.23 Query 3 (a), Normalization (b), . 198

6.24 Query 3 (cont.) . . ., Rewrite by PEWhere (c) In SQL (d) 199

6.25 Transformation PEWhere and its Auxiliary Transformation 204

6.26 Scope Facts Assumed Known for these Examples 206

6.27 Property Scope and Sample Metadata Infomation Regarding Scope 207

7.1 An Alternative Architecture for Object Database Query Processors 225

7.2 The ObjectStore Queryable Class Hierarchy 226

7.3 The KOLA Representation Class Hierarchy 230

7.4 NSF2k: The KOLA Translation of Query NSF2 of Figure 2.6 236

7.5 The Parse Tree Representation of NSF2k 243

7.6 The result of calling obj and res on the “NSF Query” 244

7.7 Calling query NSF2k’s predicate on a bill, b 245

7.8 Calling NSF2f ’s data function on a House resolution, b 246

7.9 Calling NSF2k’s inner query function on a House Representative, l 247

xvi

Chapter 1

Introduction

Query optimizers produce plans to retrieve data specified by queries. Optimizers are inher-

ently difficult to build because for any given query, there can be a prohibitively large space

of candidate evaluation plans to consider. Further, the difficulty of formulating estimates

of plan costs makes the comparisons of plans within this space difficult. As a result, op-

timizers invariably forego searches for “best plans” and instead are considered effective if

they usually produce good plans and rarely produce poor ones.

Query optimizers are perhaps the most complex and error-prone components of databases.

In describing software testing methodology developed at Microsoft, Bill Gates reported that

hundreds of randomly generated queries were processed incorrectly by Microsoft’s SQL

Server [41]. The problem is not unique to Microsoft. Even research literature for query

optimization has been susceptible to bugs, as in the notorious “COUNT bug” revealed of

the optimization strategies proposed by Kim [63].

Software engineering has introduced formal methods for the development of correct

software. This thesis applies software engineering methodology to the development of one

error-prone component of query optimizers: the query rewriter [79].

1.1 Preliminaries

We begin by defining terms that appear throughout this thesis: query optimization, query

rewriting and rule-based query optimization and query rewriting.

1

2

Query

Query Representation

Query Representation

Query Plan

Data

Translator

Query Rewriter

Plan Generator

Query Evaluator

Figure 1.1: A Traditional Architecture for Query Processors

3

1.1.1 Query Optimization

Query optimizers typically follow an “assembly line” approach to processing queries, as

illustrated in Figure 1.1:

1. Translation first maps a query posed in a standard query language such as SQL (for

relational databases) or OQL [14] (for object-oriented databases), into an internal

representation (or algebra) manipulated by the optimizer. Example internal represen-

tations include the Query Graph Model (or QGM) which is used in Starburst [79] and

DB2, and Excess which is used in Exodus [13].

2. Query Rewriting uses heuristics to rewrite queries (more accurately, query represen-

tations) into equivalent queries that are more amenable to plan generation.1

3. Plan Generation generates alternative execution plans that retrieve the data specified

by the represented query, estimates the execution costs of each and then chooses the

one it considers “best”.

4. Plan Evaluation can immediately follow plan generation (in the case of ad hoc queries)

or can occur later if queries are compiled (as with embedded queries).

This architecture is by no means fixed. For example, Cascades [42] generates multiple

queries during query rewriting, and generates plans for each before choosing one that is

best.

1.1.2 Query Rewriting

Query rewriting has its roots in early relational databases such as System R [85] and Ingres

[92] which supported view merging: the rewriting of a query over a view into a query over the

data underlying the view. Kim [63] proposed query unnesting strategies that rewrite nested

queries (queries containing other queries) into join queries, thereby giving plan generators

more alternatives to consider. (Kim’s ideas were later refined by many, including Ganski

and Wong [39], Dayal [29] and Muralikrishnan [75, 76].) What is common to these early

proposals is that they were intended as ad hoc extensions of query optimizers.

Starburst [79] elevates these ad hoc extensions to a distinct phase of query optimization

known as query rewriting. Rewrites applied during this phase include view merging and

query unnesting, as well as other rewrites that accomplish one of the following objectives:
1Some (e.g., [95]) call the heuristic preprocessing optimization stage algebraic optimization, because this

stage involves manipulation of expressions of a query algebra. The term query rewriting was introduced by
Starburst [79].

4

• Normalization: Queries sometimes get posed in ways that force optimizers to choose

poor evaluation plans. For example, because query optimizers build plans incremen-

tally (i.e., by composing plans for subqueries to build full execution plans), nested

queries tend to get evaluated using nested loop algorithms. By rewriting nested

queries to join queries, optimizers are able to consider alternative algorithms such

as sort-merge joins, hash joins etc. Therefore, one goal of query rewriting is to nor-

malize a query into a form that allows a query optimizer to consider a greater number

of alternative plans.

• Improvement: Query rewriting might also apply heuristics that are likely to lead to

better plans, regardless of the contents or physical representation of the collections

being queried. An example of this is a rewrite of a query that performs duplicate

elimination into a query that does not. This rewrite is valid when duplicate elimination

is performed on a collection that is already free of duplicates (for example, a collection

resulting from projecting on a key attribute of a relation). Duplicate elimination is

costly, requiring an initial sort or grouping of the elements of a collection. Therefore,

rewriting a query to avoid duplicate elimination is always worthwhile.

1.1.3 Rule-Based Query Optimizers and Query Rewriters

With the emergence of alternative data models in the 1980’s (e.g., object-oriented) came

the need for extensible query optimizers that could adjust to variations in data. Optimizers

are extensible if they can be easily modified to account for new data models or data retrieval

techniques. Rule-based optimizers (proposed concurrently by Freytag [38] and Graefe and

DeWitt [13]) were the first optimizers introduced for this purpose.

Rule-based optimizers express the mapping of queries to plans (or queries to queries

in the case of rule-based query rewriters) incrementally in terms of rules. Rules might be

executed (fired) directly (as in Starburst, where rules are programmed in C), or used to

generate an optimizer, as with Exodus/Volcano [13, 43] which express rules as rewrite rules

supplemented with code. Rules make optimizers extensible because the behavior of the

optimizer can be modified simply by modifying its rule set. Example rule-based systems

aside from Starburst and Exodus/Volcano include Gral [6], Cascades [42] and Croque [50].

For query rewriters, rules offer a second potential benefit as formal specifications of query

rewriting behavior, making it possible for query rewriters to be formally verified. This thesis

shows how query rewrite rules can be expressed to enable their formal verification.

5

1.2 Issues in Query Rewriting

1.2.1 The Correctness Issue

As with other aspects of query optimization, query rewriting is complex and error-prone.

Definition 1.2.1 (Correctness) A query rewriter is correct if rewriting always produces

an semantically equivalent query (i.e., a query that is guaranteed to produce the same result

over all database states as the original query).

Many of Kim’s nested query rewrites were revealed to be incorrect by Kiessling [62]. Among

the errors revealed was the “COUNT bug” which adversely affected unnesting rewrites of

queries with aggregates (such as COUNT).2 Developers of Starburst have pointed out that

aside from nested queries, queries involving duplicates and NULL’s are also problematic for

ensuring correctness [49]. The correctness problem is only getting worse with the emergence

of object databases (i.e., object-relational and object-oriented databases). Object databases

relax the flatness restrictions imposed by relational databases, and therefore allow queries

to be nested to a far greater degree than was possible with relations. (For example, an OQL

query can be nested in its SELECT clause and not just in its FROM and WHERE clauses.)

This thesis addresses the correctness issue for query rewriters. It is not enough to

supplement rewrite strategies that appear in the literature with handwritten proofs. (Kim’s

rewrites were accompanied by formal correctness proofs that had bugs like the rewrites

they were intended to verify.) Our goal is to instead make query rewriters verifiable with an

automated theorem prover. Theorem provers were developed within the artificial intelligence

community to assist with the development and error-checking of logic proofs [51]. They have

since been adopted by the software engineering community as a means of verifying software

relative to their formal specifications [90]. Theorem provers have proven to be especially

valuable in verifying complex software (such as concurrent systems [54]) and safety-critical

systems [77]. Verification of query rewriting is another natural application of this technology.

Automated theorem provers vary greatly in their complexity. Many higher-order provers

(such as Isabelle [78]) are powerful but hard to use. As such, they are tools for logicians

rather than software engineers. As our goal is to influence the work of systems builders, we

have chosen a simple first-order theorem prover (LP [46]) that is straightforward to learn

and use. Automated theorem provers are also software, and as such are fallible. For this
2To this day, the “COUNT bug” has inspired numerous remedies. The most recent work we found
to address the “COUNT bug” is Steenhagen’s 1994 work [91]. More comprehensive studies of query
unnesting have since appeared, such as Fegaras’ 1998 work [32].

6

reason, absolute guarantees of software correctness are unrealistic. But correctness can be

viewed as a relative measure of confidence rather than an absolute truth. Our inclination

is to have more confidence in systems that have been verified with an established theorem

prover than those that have not.

1.2.2 The Expressivity Issue

Query rewrites can be quite complex. Rewrites that unnest nested queries must be able to

do so for any degree of nesting. Rewrites that eliminate the need for duplicate elimination

must have semantic knowledge of the data being queried (e.g., knowledge about keys).

The inherent complexity of many query rewrites is another reason that in practice, query

rewrites get expressed with code.

As with correctness, object databases exacerbate the expressivity issue. Unnesting

rewrites for object queries must account for more kinds of nesting (e.g., nesting in SELECT

clauses, nesting resulting from methods or attributes returning collections) than do rewrites

for relational queries. Object queries can also invoke user-defined methods that dominate

the cost of query processing, and about which the optimizer knows nothing. Such methods

make semantic reasoning more difficult and more crucial. In short, correctness gains in

query rewriting cannot come at the expense of expressivity. This thesis attempts to balance

these two concerns.

1.3 Contributions

1.3.1 Conceptual Contributions

This thesis addresses the correctness and expressivity issues for query rewriting. To address

the former, it proposes a framework for the expression, verification and implementation of

rule-based query rewriters. The foundation of this work is our query algebra, KOLA. KOLA

is a combinator-based algebra (i.e., an algebra that does not use variables). Combinators

make simple rewrites of KOLA queries expressible with rewrite rules whose correctness can

be verified with the theorem prover, LP [46].

Not all query rewrites are simple. The other conceptual contributions of this work ad-

dress the expressivity issue for query rewriters. First, we address the expression of complex

query rewrites that are too general to be expressed as rewrite rules. To express rewrites

such as these, we developed a language (COKO) that permits the association of multiple

7

KOLA rewrite rules with a firing algorithm that controls their firing. Expressivity is ad-

dressed without compromising correctness. As with KOLA rewrite rules, rewrites expressed

in COKO are verifiable with LP.

Whereas COKO rewrites are too general to be expressed as rewrite rules, other rewrites

are too specific to be expressed as rewrite rules. (That is, these rewrites depend on

semantic, and not just syntactic properties of the queries they rewrite.) We have extended

COKO and KOLA to permit the expression of such rewrites and the procedures that decide if

semantic conditions hold. Again, this gain in expressivity does not compromise correctness;

both semantic rewrites and condition checking are verifiable with LP.

1.3.2 Implementations

The conceptual contributions described above are complemented by the following more

tangible contributions that serve as proofs of concept:

• a formal specification of KOLA using the Larch specification tool, LSL [46],

• scripts for the Larch theorem prover, LP [46] that verify several hundred query

rewrites,

• a translator to translate set and bag queries from the object query language OQL [14]

into KOLA,

• a compiler to translate COKO specifications (including those with semantic rewrites)

into executable query rewriting components, and

• a query rewriter generated using the software and methodology presented in this thesis,

for an object-oriented database presently under development at IBM.

1.3.3 High-Level Contributions

The high-level contribution of this work is the recognition of the impact of query representa-

tion on query optimizer design. The key to making query rewrites verifiable with a theorem

prover is to express them declaratively (i.e., without supplemental code) as in the rewrite

rules of term rewriting systems. In practice, query rewrites are not expressed declaratively

and instead get expressed with code that performs the rewriting. This code is difficult to

verify.

Query representations affect whether or not rewrites need to be expressed with code,

and hence whether or not rewrites can be verified with a theorem prover. A query rewrite

8

will typically (1) identify one or more subexpressions in a given query (subexpression iden-

tification) and (2) formulate a new query expression by recomposing these subexpressions

(query formulation). Both subexpression identification and query formulation are difficult

to express declaratively over variable-based query representations (i.e., query representa-

tions that use variables to denote arbitrary elements of queried collections) such as QGM.

The problem is that query subexpressions can include free variables, making their mean-

ing dependent on context. Subexpression identification then requires code to examine the

context of subexpressions to ensure that the correct ones are identified. Query formulation

requires code to ensure that subexpressions that are used in new contexts have their mean-

ings preserved. Combinator-based algebras, by eliminating variables, eliminate the need for

this kind of code.

In short, the combinator-based representation of KOLA queries makes it possible to ex-

press simple, complex and semantic query rewrites in a manner facilitating their verification

with a theorem prover. Further, combinator-based query algebras also make it possible to

consider alternative query processing architectures that vary when query rewriting occurs.

We are presently studying the potential benefits of dynamic query rewriting: query rewrit-

ing that occurs during a query’s evaluation. Dynamic query rewriting could potentially

affect the processing of queries over collections whose contents and characteristics are not

known until run-time, such as object queries (which might query embedded collections)

or heterogeneous database queries (which might query collections known only to the local

databases they oversee). Dynamic query rewriting also uses subexpression identification

and query formulation, and therefore it too benefits from the combinator-based approach.

1.4 Outline

The thesis is structured as follows. In Chapter 2, we motivate the work presented in this

thesis by describing an example object database schema, some example queries over this

database and some query rewrites that would be useful to express. Chapter 3 describes

KOLA; our combinator-based query algebra that makes it possible to use a theorem prover

to verify rewrites. Chapter 4 describes COKO; our language for expressing complex query

rewrites in terms of sets of KOLA rewrite rules. Chapter 5 describes extensions to COKO

and KOLA that permit the expression of semantic rewrites. Chapter 6 assesses the prac-

ticality of the COKO-KOLA approach in light of experiences building a query rewriting

component for an object-oriented database being developed at IBM. Chapter 7 describes

ongoing work in dynamic query rewriting. Chapter 8 describes related work conclusions

9

and future work follow in Chapter 9.

Chapter 2

Motivation

In this chapter, a potential application of the thesis work is described. We have chosen an

object database example to motivate this work, as the potential complexity of object queries

illustrates the need for expressive query rewriting for which correctness can be assured.

The application is based on the Thomas web site [97], which describes the activities of

the United States Congress. After describing how Thomas could be modeled with an object

database, two example sets of queries are presented to illustrate correctness and expressivity

challenges for query rewriting. The first set of queries (the “Conflict of Interests” queries)

demonstrates the potential complexity of object query rewrites and why correctness is a

concern. The second set of queries (the “NSF” queries) demonstrates the need for semantic

rewrites, and motivates our ongoing work in dynamic query rewriting.

2.1 The Thomas Website

The United States Congress maintains the web site Thomas [97] to describe its daily activi-

ties. Thomas maintains information about each Congressional bill (both Senate resolutions

and House resolutions) such as its name, topic and set of sponsors. Additionally, Thomas

maintains information about every legislator (Senator and House Representative) such as

his or her name, the region (state or Congressional district) he or she represents, his or

her party affiliation, the city in which he or she was born, and the number of terms he or

she has served. Every Congressional committee is represented with such information as its

topic, chair and members. Thomas also includes links to related sites such as the United

States Census Bureau [96], which maintains information about represented regions (states

and Congressional districts) and cities. Regional information includes the name of the re-

gion, the set of major cities contained in the region, the largest city in the region and the

10

11

population of the region. Information about cities includes the name of the city, its mayor

and its population. Information about mayors include their name, the city they represent,

their party affiliation, the city in which they were born and the number of terms they have

served.

Thomas is not a database but a file system with hyperlinks. As a result, querying

of Thomas (as with most web sites) is restricted to navigational queries (i.e., following

links) and keyword searches. There is no support for associative access to data, as in

a query that identifies committees whose chairs have potential conflict of interests due

to their membership in other subcommittees (Figure 2.1), or a query that identifies the

cities that potentally had influence in the formulation of policies regarding research funding

(Figure 2.4). To support queries such as this, Thomas would have to be provided with a

database backbone.

2.2 An Object Database Schema for Thomas

An object database would be ideal for maintaining the data accessible from Thomas. En-

tities such as legislators, committees and bills are naturally modeled as objects. And be-

cause both object-oriented and object-relational databases support complex data (object

attributes that name other objects or collections), a committee can have an attribute de-

noting its set of members, a bill can have an attribute denoting its set of sponsors, and a

region can have an attribute denoting its set of major cities.

A schema for Thomas is shown in Table 2.1 and includes types: Bill (with subtypes

Senate Resolution and House Resolution), Legislator (with subtypes Senator and Representative),

Mayor, Committee, Region (with subtypes State and District) and City. The interface for

these types is summarized below:

• Type Bill includes a name1 attribute denoting the name of the bill, a topic attribute

denoting the topic of the bill, and a spons attribute denoting the set of legislators who

are the bill’s sponsors. Subtypes Senate Resolution and House Resolution specialize

their sets of sponsors to sets of Senators and House Representatives respectively.

• Type Legislator includes a name attribute denoting the name of the legislator, a

reps attribute denoting the region of the country that the legislator represents, a
1This proposal adopts the notational convention that all names of attributes are written in typewriter

font (e.g., name).

12

Type Supertype Attributes Collections
name String

Bill topic String Bills∗

spons {Legislator}
Senate Resolution Bill spons {Senator} SenRes∗

House Resolution Bill spons {Representative} HouseRes∗

name String
reps Region

Legislator pty String
bornin City
terms Int

Senator Legislator reps State Sens∗

Representative Legislator reps District HReps∗

topic String
Committee chair Legislator Coms, SComs

mems {Legislator}
name String

Region cities {City}
lgst cit City
popn Integer

State Region – Sts∗

District Region – Dists∗

name String
City mayor Mayor Cits∗

popn Integer
name String
city City

Mayor pty String Mays∗

bornin City
terms Integer

Table 2.1: A Database Schema for Thomas

13

pty attribute denoting the name of the political party that the legislator is affili-

ated with, a bornin attribute denoting the city where the legislator was born, and a

terms attribute denoting the number of terms that the legislator has served. Subtypes

Senator and Representative specialize the type of object denoted by attribute reps to

State and District respectively.

• Type Committee includes a topic attribute naming the topic being investigated by

the committee, a chair attribute denoting the legislator who is chair of the committee,

and a mems attribute denoting a set of legislators who are members of the committee.

• Type Region includes a name attribute denoting the name of the region, a cities at-

tribute denoting the set of major cities located in the region, a lgst cit attribute

denoting the largest city contained in the region, and a popn attribute denoting the

region’s population. Subtypes State and District do not specialize these attributes in

any way.

• Like Region, City also has name and popn attributes. But unlike Region, City also has

a mayor attribute denoting the mayor of the city.

• Type Mayor has the same attributes as Legislator, but with a city attribute (denoting

the city represented by the mayor) instead of a reps attrubute..

Collections of objects of each type are listed in the right most column of Table 2.1. Those

with an asterisk denote the extents of the type (i.e., the collection of all objects of that

type). For example, Sens is the extent of type Senator. The only collections that are not

extents listed are Coms and SComs, that are collections of Congressional committees and

subcommittees respectively. The union of these disjoint collections is the extent of type

Committee.

2.3 The “Conflict of Interests” Queries (COI)

Figure 2.1 shows an OQL [14] query over the Thomas database (hereafter, this query will

be referred to as COI1 (COI is short for “Conflict of Interests”) that finds committees that

are chaired by a member of a subcommittee chaired by someone from the same party. This

query might be posed to identify those committees whose integrity could be called into

question.2

2We deviate from OQL syntax in using ‘‘==’’ to denote an equality operator. We reserve “=” for reasoning
about the meaning of query expressions throughout this thesis.

14

SELECT DISTINCT x
FROM x IN Coms

WHERE EXISTS y IN


 SELECT c

FROM c IN SComs
WHERE x.chair.pty == c.chair.pty


 : (x.chair IN y.mems)

Figure 2.1: COI1: Find all committees whose chairs belong to a subcommittee chaired by
someone from the same party.

As in SQL, OQL queries have SELECT, FROM and WHERE clauses. The FROM clause of

this query indicates that objects are drawn from the set of committees, Coms. The WHERE

clause filters committees (x) by a complex predicate that determines whether a collection

of committees returned by a subquery contains one (y) whose members (y.mems) include

x’s chair (x.chair). The subquery is another SELECT-FROM-WHERE query that returns the

subset of SComs whose chair belongs to the same party as x’s chair. The subset of commit-

tees in Coms that satisfy this predicate are returned free of duplicates (as directed by the

“DISTINCT” qualifier in the SELECT clause).

2.3.1 Naive Evaluation of COI1

A naive plan to evaluate COI1 might perform the following steps:

1. For each x in Coms:

(a) Extract the values x.chair and x.chair.pty

(b) Scan collection SComs. For each object c in SComs, extract the value c.chair.pty

and compare this value to x.chair.pty. If the values are the same, then add c

to a temporary collection.

(c) For each object y in the collection generated in (b), extract the collection y.mems.

Scan y.mems comparing each object to x.chair.

(d) If x.chair is found in y.mems for some object y then add x to a temporary

collection.

2. Remove duplicates from the temporary collection of legislators generated in 1d.

The naive evaluation plan is wasteful. First, it requires duplicates to be removed from

a collection of committees that is guaranteed to be free of duplicates already. (A selection

15

SELECT DISTINCT x
FROM x IN Coms

WHERE EXISTS y IN


 SELECT c

FROM c IN SComs
WHERE x.chair.pty == c.chair.pty


 : (x.chair IN y.mems)

→

Temp = SELECT p, S : partition
FROM c IN SComs
GROUP BY p : c.chair.pty

SELECT DISTINCT x

FROM x IN Coms, t IN Temp
WHERE (x.chair.pty == t.p) AND (EXISTS y IN t.S : (x.chair IN y.mems))

Figure 2.2: Rewriting COI1 → COI1

of a set is a set.) Duplicate elimination is costly, requiring sorting or grouping of the col-

lection. A more subtle problem with this plan is that it requires processing the collection

SComs (Step 1b) more times than necessary. In particular, the collection of all subcom-

mittees chaired by a Democrat (Republican) will be regenerated as the inner query result

for each Democratic (Republican) chair of a committee in Coms. Below, a query rewrite to

address this inefficiency is considered.

2.3.2 A Complex Query Rewrite for COI1

Figure 2.2 shows how query COI1 could be rewritten during query rewriting to an equivalent

query for which plan generation is likely to be more effective. This figure shows the two

queries, COI1 and COI1 separated by the “rewrites to” symbol, “→”. Straightforward

evaluation of COI1 would require first preprocessing the collection SComs, and producing a

new collection, Temp. OQL’s “GROUP BY” operator partitions SComs on the equivalence of

party affiliations of subcommittee chairs. The result of this partition (Temp) is a collection of

pairs that associate a political party (p) with the set of subcommittees chaired by someone

in that party (S), for each party affiliated with some subcommittee’s chair. (For each party

p, the OQL keyword partition names the collection of subcommittees chaired by someone

whose party is p.) Temp is then used as an input to a join with Coms to find those committees

whose chair is a member of some subcommittee chaired by someone from the same party.

16

SELECT DISTINCT x
FROM x IN Coms

WHERE FOR ALL y IN


 SELECT c

FROM c IN SComs
WHERE x.chair.pty == c.chair.pty


 : (x.chair IN y.mems)

6→

Temp = SELECT p, S : partition
FROM c IN SComs
GROUP BY p : c.chair.pty

SELECT DISTINCT x

FROM x IN Coms, t IN Temp
WHERE (x.chair.pty == t.p) AND (FOR ALL y IN t.S : (x.chair IN y.mems))

Figure 2.3: An Incorrect Query Rewrite

A better plan is likely to be generated for COI1 than for COI1 for two reasons:

1. Plans for COI1 will generate the collection of subcommittees whose chairs are from

the same party just once per party, rather than once per committee in Coms chaired

by someone from that party.

2. Plans for COI1 will perform a join of Coms and Temp rather than scanning all of

SComs for each object in Coms. The conversion to a join query is advantageous for

two reasons. First, join queries offer more algorithmic choice (e.g., sort-merge join,

hash join, nested-loop join etc.) than do nested queries, which tend to get evaluated

using nested loops. Secondly, even if a nested loop algorithm is chosen for the join,

Temp will likely have fewer objects than SComs, having one entry per political party

rather than one entry per subcommittee.

2.3.3 Correctness

The unnesting query rewrite demonstrated in Figure 2.2 is useful, but under what circum-

stances is it correct? Clearly, it is correct if it is applied to queries that differ from COI1
only in trivial ways such as the choice of attributes. But what about queries that differ in

more substantial ways? For example, what about a query for which the existential quantifier

exists is replaced by the universal quantifier, for all as shown in Figure 2.3?

17

SELECT STRUCT


 bill: r.name

cities:

(
SELECT DISTINCT x.reps.lgst cit
FROM x IN r.spons

) 


FROM r IN HouseRes
WHERE r.topic == ‘‘NSF’’

Figure 2.4: NSF1: Find all House resolutions relating to the NSF and associate them with
the set of cities that are largest in districts that the bills’ sponsors represent

Such a subtle change results in an incorrect query rewrite. To see why, suppose there

exists a committee in Coms chaired by Representative Bernie Sanders of Vermont, the sole

independent in Congress, and suppose that Sanders is not the chair of any subcommittee

in SComs. In this case, the initial query of Figure 2.3 will include the committee chaired by

Sanders in the query result, but the rewritten (second) query of this figure will not. This

is because no subcommittees are chaired by Sanders, and therefore independents are not

represented in the preprocessed collection, Temp. Thus, Sanders will fail to satisfy the join

predicate with all entries in Temp and will be excluded from the second query’s result.

This discrepancy in query results is very similar to that which was symptomatic of the

“COUNT bug” of Kim [63]. In fact, the query rewrite demonstrated in Figure 2.3 generalizes

the Type JA rewrite that contains the bug. The subtlety of this bug illustrates the difficulty

of determining correctness conditions for query rewrites. This particular rewrite is correct

if it is applied only to queries with predicates that are not true of empty collections. COI1
is such a query because an existentially quantified predicate cannot be true of an empty

collection. On the other hand, a universally quantified predicate is always true of an empty

collection and therefore the effect of rewriting the initial query of Figure 2.3 is to produce

a query with a different semantics.

2.4 The “NSF” Queries (NSF)

Figure 2.4 shows an OQL query (hereafter referred to as NSF1) that associates every House

resolution concerning the National Science Foundation (NSF) with the set of cities that are

largest in the districts represented by the bill’s sponsors. This query finds the cities that

potentially have the most influence on research funding policies. Unlike COI1, this query

is nested in its SELECT clause and not its WHERE clause. Additionally, this query includes a

18

chain of attribute selections (a path expression),

x.reps.lgst cit

that returns the largest city located in the district represented by legislator x. Path expres-

sions can only be posed over object databases, as they require that all but the last attribute

return a complex object.

2.4.1 Naive Evaluation of NSF1

A naive plan for NSF1 might perform the following steps:

For each r in HouseRes:

1. Extract the value r.topic. If this value is “NSF”, proceed to step 2.

2. Extract the collection attribute, r.spons. For each x in r.spons, extract the value

x.reps.lgst cit.

3. Collect the extracted names of all cities identified in 2, and store in a new collection.

Eliminate duplicates from this new collection.

4. Extract the value r.name. Add the tuple consisting of r.name and the set resulting

from the previous step to the result collection.

2.4.2 A Semantic Query Rewrite for NSF1

The naive evaluation plan for the NSF1 includes costly duplicate elimination (in Step 3) from

collections of cities. Duplicate elimination from these collections is unnecessary because:

• a House resolution has a set of House Representatives as its sponsors,

• each House Representative represents a unique district (i.e., the reps attribute of type

Representative is an injective function), and

• each district’s largest city is uniquely situated in that district (i.e., the lgst cit at-

tribute of type Region is an injective function.)3

3We make the simplifying assumption that every city is located in exactly one district. We can enforce
this assumption by assigning a city to the district where the largest number of its residents reside.

19

SELECT STRUCT


 bill: r.name,

cities:

(
SELECT DISTINCT x.reps.lgst cit
FROM x IN r.spons

) 


FROM r IN HouseRes
WHERE r.topic == ‘‘NSF’’

→

SELECT STRUCT


 bill: r.name,

cities:

(
SELECT x.reps.lgst cit
FROM x IN r.spons

) 


FROM r IN HouseRes
WHERE r.topic == ‘‘NSF’’

Figure 2.5: Rewriting NSF1 → NSF1

Because each attribute in its chain is injective,

x.reps.lgst cit

is also injective over type Representative. An injective function that is applied to all ele-

ments of a set generates another set. Therefore, the collection of largest cities situated in

the represented districts is guaranteed to be free of duplicates, and duplicate elimination

is unnecessary. Figure 2.5 shows the NSF query before and after the application of the

semantic rewrite that exploits semantic knowledge about keys and duplicates to produce a

query that avoids duplicate elimination.

This example motivates the need to express semantic rewrites. But note that injective

path expressions can be of any length, as in

x.reps.lgst cit.mayor

which finds the mayor of the largest city of the district represented by x, or even

x.reps.lgst cit.mayor.city.lgst cit

which returns the same result but in a more roundabout way. It is unrealistic to expect

that any metadata file could list all injective path expressions, for there may be too many to

list.4 Therefore, a query rewriting facility must provide some way for an optimizer to infer

the semantic properties (such as injectivity) on which semantic rewrites are conditioned.
4Because the Thomas schema has mutually recursive references (e.g., a city has a mayor (mayor) and a
mayor is born in a city (bornin)), the number of injective path expressions over this schema is infinite.

20

SELECT STRUCT


 bill: b.name,

cities:

(
SELECT DISTINCT x.reps.lgst cit
FROM x IN b.spons

) 


FROM b IN Bills
WHERE b.topic == ‘‘NSF’’

Figure 2.6: NSF2: Find all Bills (Senate and House resolutions) relating to the NSF and as-
sociate them with the set of cities that are largest in regions that the bills’ sponsors represent

2.4.3 Dynamic Query Rewriting

Consider the second NSF query (NSF2) shown in Figure 2.6. This query is similar to NSF1,

but queries a collection (Bills) of House and Senate resolutions, and not just a collection

of House resolutions.

As was stated previously, the application of the path expression,

x.reps.lgst cit

over any set of House Representatives is guaranteed to return a set because reps is a key

for type House Representative and lgst cit is a key over type Region. However,

x.reps.lgst cit

is not an injective function over type Senator because reps is not a key over type Senator.

Rather, there are two Senators for every state represented by a Senator. Because Bills can

include a Senate resolution b, b.spons can be a set of Senators. Therefore, the query rewrite

described in the previous section cannot be applied to this query.

On the other hand, query NSF2 could be evaluated in the following way:

• For bills that are Senate resolutions, perform duplicate elimination on the collection

of cities associated with the bill’s sponsors.

• For bills that are House resolutions, do not perform duplicate elimination on the

collection of cities associated with the bill’s sponsors.

In other words, the semantic rewrite described in the previous section could be applied

dynamically to rewrite subqueries applied to House resolutions and to leave alone subqueries

applied to Senate resolutions. Because of its potential for avoiding duplicate elimination

at least for some bills, this evaluation strategy offers potentially large savings in evaluation

21

cost. But this strategy requires the query rewriting to take place dynamically during a

query’s evaluation and not just during its optimization. Examples such as this motivate

our ongoing work on dynamic query rewriting.

2.5 Chapter Summary

The schema presented in this Chapter will serve as the schema underlying all example

queries in this thesis. The two sets of queries presented in this Chapter motivate the work

described in the thesis. The “Conflict of Interests” queries presented in Section 2.3 demon-

strate the potential complexity of query rewrites and the subtlety of ensuring correctness.

Query COI1 is a nested query that can be transformed into a join query in the spirit of

Kim’s unnesting rewrites [63]. Query COI2 is syntactically very similar to COI1 but for

the choice of quantifier appearing in the WHERE clause. This subtle difference is enough to

distinguish a query that can be rewritten into a join query (COI1) from one that cannot

(COI2). Being able to pinpoint with confidence the exact conditions that make unnesting

rewrites correct is one of the benefits that arises from the work presented in this thesis.

The “NSF” queries presented in Section 2.4 motivate our work on semantic rewrites, and

our ongoing work studying dynamic query rewriting. Query NSF1 shows an object query for

which an appropriate query rewrite (that makes duplicate elimination unnecessary) depends

upon the semantics of the underlying data (i.e., key information and knowledge about the

lack of duplicates in collections). This example also motivates the need for query rewriters

to infer the conditions that guard semantic rewrites. Query NSF2 differs from NSF1 in that

the collection it queries can contain both Senate and House resolutions. For this query, the

semantic rewrite that makes duplicate elimination unnecessary can only be applied when

House resolutions are processed. Selective application of semantic query rewrites motivated

our ongoing work on dynamic query rewriting which allows query rewrites to be performed

in the midst of a query’s evaluation (e.g., as each bill is retrieved).

Chapter 3

KOLA: Correct Query Rewrites

This chapter motivates and describes KOLA, a novel combinator-based (variable-free) repre-

sentation and query algebra. KOLA is intended to be a query representation for rule-based

query rewriters, and thus is an alternative to query representations such as QGM [79],

and query algebras such as Excess [13]. We chose to define a representation for a rule-

based query rewriter because query rewrites expressed as rules offer the best opportunity

for verification with a theorem prover. We chose to define a new representation because

representations used in existing query optimizers, being variable-based, impede verification

with a theorem prover.1

3.1 The Need for a Combinator-Based Query Algebra

The firing of a query rewrite consists of two steps:

• Step 1: Subexpression Identification

During this initial step, the query rewrite identifies relevant subexpressions of the

query on which it is fired. If some specified subexpression cannot be identified, the

query is not rewritten. (This case is a failed firing.) The second step of the rewrite is

performed only if all specified subexpressions are identified.

• Step 2: Query Formulation

During this step, a new query expression is formulated using the subexpressions iden-

tified in the previous step. This new query is returned as the result of the rewrite.
1KOLA was developed in response to difficulties faced attempting to formulate declarative rules over the
variable-based algebra, AQUA [70].

22

23

Different rule-based systems express subexpression identification and query formulation

in different ways. Starburst [79] expresses both steps algorithmically with C code. Exodus

and Volcano [13, 43] also use code, but as supplements to rewrite rules.

Rewrite rules consist of pairs of patterns and are fired using standard pattern matching.

Firing first matches the pattern of the left-hand side of a rule (the head pattern) with the

query on which the rule is fired. Patterns can include pattern variables that match arbitrary

subexpressions. Therefore, successful matching creates a set of bindings (an environment)

of subexpressions to pattern variables. Firing then proceeds to use this environment to

substitute for pattern variables appearing in the pattern of the right-hand side of the rule

(the body pattern). The resulting expression is returned as the result of firing.

The two steps of rule firing correspond to subexpression identification and query for-

mulation. But unlike query rewrites that are expressed with code, query rewrites that are

expressed with rewrite rules describe the effects of the rewrite without saying how the rewrite

takes place. (The latter is instead described by the pattern matching algorithm.) There-

fore, rewrite rules are declarative specifications of query rewrites. Declarative query rewrites

are much easier to verify than query rewrites expressed with code because verification of

the former simply requires proving the equivalence of the two expressions characterized by

the head and body patterns of the rule. On the other hand, verification of query rewrites

expressed with code requires reasoning about the state of the rewrite computation after

each statement in the code is executed. Verification with a theorem prover is similarly

far simpler when query rewrites are expressed with rewrite rules. This is because theorem

provers are special-purpose term rewriting systems [51] that have natural application to

proofs establishing that two expressions are equivalent.

3.1.1 Variables Considered Harmful

Exodus/Volcano and Starburst must express query rewrites with code because both systems

use variable-based query representations. Variables make it difficult to express subexpres-

sion identification and query formulation with rewrite rules, as we show below.

Variables Complicate Subexpression Identification

Two queries represented in a variable-based representation can have syntactically identical

parse trees and yet be semantically distinct and subject to different query rewrites. This

is due to the nature of variables which typically are represented uniformly in a parse tree

24

SELECT DISTINCT x
FROM x IN Coms

WHERE EXISTS y IN


 SELECT c

FROM c IN SComs
WHERE x.chair.pty == c.chair.pty


 : y.chair IN y.mems

Figure 3.1: COI2: Find all committees whose chairs belong to a party that includes someone
that both chairs and is a member of the same subcommittee.

representation regardless of the variable name. Pattern matching relies on syntactic dis-

tinctions recognized during subexpression identification to determine when rewrite rules can

fire. Therefore, query rewrites over variable-based query representations must be at least

partially expressed with code to make the distinctions that pattern matching cannot.

We illustrate this point with an example. Figure 3.1 shows an OQL query (COI2) that

is syntactically identical to query COI1 of Figure 2.1. The only difference between these

two queries is the variable that appears in the existentially quantified expression in the

WHERE clause: for query COI1 this variable is x (x.chair IN y.mems) and for query COI2
this variable is y (y.chair IN y.mems).

Queries COI1 and COI2 differ only by this variable and therefore are syntactically iden-

tical. But these queries have very different semantics. Whereas COI1 finds committees

whose chairs belong to subcommittees chaired by someone from the same party, COI2 finds

committees whose chairs belong to parties that include members who are both chairs and

members of the same subcommittees. COI1 and COI2 are also subject to different query

rewrites. We showed in Section 2 that query COI1 can be rewritten into the equivalent join

query, COI1 (Figure 2.2). COI2 can similarly be rewritten to COI2 as demonstrated by

the first rewrite of Figure 3.2. But this query can be further rewritten into COI2 as shown

in the second query rewrite of Figure 3.2.2 A rewrite rule for this query rewrite is shown in

Figure 3.3. The rule separates two OQL patterns with the “rewrites to” symbol, →=.3 These

patterns include pattern variables:

A1, . . . , A6, V1, . . .V4, C1, . . . , C3, and Op1.

2The second rewrite returns a query that uses OQL’s HAVING clause to filter Temp. This clause excludes
entries for parties with which some subcommittee chair is affiliated, but with which no subcommit-
tee chair who is also a member of his subcommittee is affiliated. This rewrite is useful because the
mems collection for a given subcommittee will be scanned once, rather than once for every committee in
Coms whose chair is from the same party.

3→= should not be confused with →, which separates two queries rather than two patterns.

25

COI2 matches the head pattern of this rule by making the following bindings of subexpres-

sions to pattern variables:

A1 = p V1 = c C1 = Coms

A2 = S V2 = x C2 = SComs

A3 = chair.pty V3 = t C3 = Temp

A4 = chair.pty V4 = y Op1 = IN

A5 = chair

A6 = mems

Substituting for the pattern variables appearing in the body pattern of the rule leaves COI2.

The rule of Figure 3.3 appropriately expresses the transformation in such a way that

COI2 will be rewritten and COI1 will not be. This discrimination is guaranteed by the use

of the same pattern variable (V4) in both operands of the operator (Op1) that appears in

the WHERE clause. But this discrimination comes at a cost of making this predicate pattern

overly specific. This rule should transform queries whose quantified predicate includes no

variables other than y (i.e., the variable bound by the quantifier). For example, queries that

substitute any of the following expressions for

y.chair IN y.mems

should be rewritten according to this rule, but will not be given its expression in Figure 3.3:

• y.chair == ‘‘Newt Gingrich’’,

• ‘‘Newt Gingrich’’ IN y.mems

• y.chair.pty == ‘‘GOP’’.

The condition that an expression contain only one particular free variable cannot be

expressed with a head pattern alone. Instead a head pattern would have to match all

expressions, and supplemental code would have to analyze matched expressions to see if

variables other than y occur free. Code supplements to rules could be defined perhaps by

the writers of rules, or could be provided by way of a library available to rule designers.

Regardless, the actions of code supplements (such as checking for the existence of free

variables) are meta-level actions and as such complicate verification, making it necessary

to use complicated (higher-order) theorem prover tools for which performance and ease-

of-use become issues. This example illustrates the need for code to perform subexpression

identification for rules expressed over variable-based query representations.

26

SELECT DISTINCT x

FROM x IN Coms

WHERE EXISTS y IN


 SELECT c

FROM c IN SComs
WHERE x.chair.pty == c.chair.pty


 : y.chair IN y.mems

(COI2)

→

Temp = SELECT p, S : partition
FROM c IN SComs
GROUP BY p : c.chair.pty

SELECT DISTINCT x
FROM x IN Coms, t IN Temp
WHERE (x.chair.pty == t.p) AND (EXISTS y IN t.S : (y.chair IN y.mems))

(COI2)

→

Temp = SELECT p, S : partition
FROM c IN SComs
GROUP BY p : c.chair.pty
HAVING EXISTS y IN partition : (y.chair IN y.mems)

SELECT DISTINCT x

FROM x IN Coms, t IN Temp
WHERE x.chair.pty == t.p

(COI2)

Figure 3.2: Transforming COI2 → COI2 → COI2

27

C1 = SELECT A1, A2 : partition
FROM V1 IN C2
GROUP BY A1 : V1.A3

SELECT DISTINCT V2.A7
FROM V2 IN C1, V3 IN C3
WHERE (V2.A4 == V3.A1) AND (EXISTS V4 IN V3.A2 : (V4.A5 Op1 V4.A6)

→=

C1 = SELECT A1, A2 : partition
FROM V1 IN C2
GROUP BY A1 : V1.A3
HAVING EXISTS V4 IN partition : (V4.A5 Op1 V4.A6)

SELECT DISTINCT V2.A7
FROM V2 IN C1, V3 IN C3
WHERE V2.A4 == V3.A1

Figure 3.3: A Rewrite Rule Justifying COI2 → COI2

To summarize, queries COI1 and COI2 are syntactically similar but semantically distinct.

Further, these two queries are subject to different query rewrites. Query rewrites perform

subexpression identification in part to determine if rewriting can occur. As pattern matching

can only make syntactic distinctions between expressions, code must be used by any non-

trivial query rewrite that rewrites COI2 to COI2 to ensure that COI1 is not affected.

Variables Complicate Query Formulation

In formulating new queries, query rewrites can reuse subexpressions identified in the original

query. But if these subexpressions include free variables, the meanings of these subexpres-

sions may change as a result of their use in a different context. Code is required under these

circumstances to massage subexpressions to ensure that their semantics are preserved.

We illustrate this again with an example. Figure 3.4a shows an equivalent query to COI1
(COI1∗) and its rewrite into COI1. This rewrite uses a quantified predicate expression,

x.chair.pty == y.chair.pty

28

SELECT DISTINCT x
FROM x IN Coms
WHERE EXISTS y IN SComs : ((x.chair IN y.mems) AND (x.chair.pty == y.chair.pty))

(COI1∗)

→

SELECT DISTINCT x

FROM x IN Coms

WHERE EXISTS y IN


 SELECT c

FROM c IN SComs
WHERE x.chair.pty == c.chair.pty


 : x.chair IN y.mems

(COI1)

(a)

SELECT DISTINCT V1
FROM V1 IN C1
WHERE EXISTS V2 IN C2 : (E1 AND (V3.A1 Op1 V2.A2))

→=

SELECT DISTINCT V1
FROM V1 IN C1

WHERE EXISTS V2 IN


 SELECT V4

FROM V4 IN C2
WHERE V3.A1 Op1 V4.A2


 : E1

(b)

Figure 3.4: COI1∗ → COI1 (a) and a Rule to Justify It (b)

29

as a filter condition for a new (inner) subquery:

SELECT c

FROM c IN SComs

WHERE x.chair.pty == c.chair.pty.

This rewrite is useful as it enables COI1∗ to be subsequently rewritten into COI1.

Figure 3.4b shows a rewrite rule expressing this rewrite. Again, this rewrite rule is

overly specific. Any predicate expression can be moved out of a quantifier and into an inner

query; predicate expressions need not be of the form,

V3.A1 Op1 V2.A2

as stipulated by the rule of Figure 3.4b. But if any predicate that is moved includes

occurences of the quantified variable V2 (y), then all occurences of this variables must be

renamed. In this case, y is renamed to c, changing the expression

x.chair.pty == y.chair.pty

to

x.chair.pty == c.chair.pty.

Thus, code is necessary to rename variables appearing in subexpressions used to formu-

late new queries, and more generally, to substitute any expressions (not just variables) for

variables appearing in other expressions.

3.1.2 The Need for a Combinator-Based Query Algebra: Summary

Query rewrites perform two steps in rewriting a query: (1) subexpression identification,

and (2) query formulation. For query rewrites to be expressed as rewrite rules, a query

representation must ensure that subexpressions of the query:

1. can be identified on the basis of their structure (syntax), and

2. have context-independent semantics so that they can be reused without modification

when new queries are formulated.

Variable-based query representations fail to satisfy both criteria. Therefore, query rewrites

expressed over variable-based representations must be fully or partially expressed with code

that analyzes or manipulates the variables appearing in subexpressions. Combinator-based

representations eliminate variables, and in so doing, eliminate the need for this supplemen-

tary code. In the next section, we illustrate this by revisiting the examples presented in

this section in the context of our combinator-based query algebra, KOLA.

30

3.2 KOLA

Variable-based query representations impede the formulation of query rewrites with rewrite

rules. Therefore, we designed the query algebra, KOLA, which is variable-free (combinator-

based).4 More accurately, KOLA is an algebra of functions and predicates, of which query

operators are simply those that apply to or return collections.

KOLA functions and predicates are expressed using combinator primitives whose seman-

tics are predefined, and combinator formers (second-order functions) that produce complex

functions and predicates from simpler ones. Because combinators have no variables, KOLA

avoids the problems that variables introduce. The semantics of a KOLA expression is tied

to its structure and not to the context in which it appears. Therefore KOLA rewrite rules

need no code to assist with subexpression identification or query formulation.

It should be noted that KOLA is a language for optimizers and not users, and KOLA

queries are far more difficult to read than OQL queries. As best as possible, we will assist

the reader in decomposing KOLA queries referring to the definitions that appear in the

coming sections. The reader is advised to trace reductions of KOLA queries as we do in the

next section, until becoming comfortable with the notation and combinator style.

3.2.1 An OQL Query Expressed in KOLA

KOLA is a language for expressing functions and predicates invokable on objects. Invoca-

tion is explicit, with “f ! x” denoting the invocation of function f on object x (returning

an object of any type) and “p ? x” denoting the invocation of predicate p on object x (re-

turning a Bool). The KOLA style of querying is illustrated with a simple query shown in

Figure 3.5. Figure 3.5a shows an OQL query that finds all subcommittees in SComs chaired

by Republicans. Figure 3.5b shows its KOLA equivalent.

The KOLA query of Figure 3.5b includes:

• the primitive identity function, id, which maps every object to itself,

• the complex predicate,

Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair)

which is true of a committee if its chair is Republican, and
4KOLA resembles AQUA but for its combinator foundation and some other language differences described
in our 1995 DBPL paper [23]. Thus, the name KOLA was coined from the acronym, [K]ind [O]f [L]ike
[A]QUA.

31

SELECT c
FROM c IN SComs
WHERE c.chair.pty == ‘‘GOP’’

(a)

iterate (Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair), id) ! SComs

(b)

Figure 3.5: A Simple OQL Query (a) and its KOLA Equivalent (b): Name All Subcommit-
tees Chaired by Republicans

• the complex query function,

iterate (Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair), id)

which filters a bags of committees for those whose chair is Republican.

We can break these query components down even further as follows.

• pty and chair are primitive functions named for attributes of the Thomas schema

(Table 2.1). For any legislator l,

pty ! l = l.pty

and for any committee c,

chair ! c = c.chair.

Therefore, the semantics of attribute-based primitives such as these depend on the

values of the corresponding attributes for objects populating the database.

• eq is a primitive equality predicate invoked on pairs (denoted by [,]) of objects

of the same type. The definition of eq is depends on each type’s definition of equality

(==).

• ◦ is a function composition former that builds a new function that invokes two

other functions in succession. That is, given functions f and g the function f ◦ g has

an operational semantics defined in terms of invocation on an object x:

(f ◦ g) ! x = f ! (g ! x).

32

For example, given a committee x, the semantics of (pty ◦ chair) ! x is revealed by

the reduction below:

(pty ◦ chair) ! x = pty ! (chair ! x)

= pty ! (x.chair)

= x.chair.pty

• Cp (,) is a currying predicate former that builds a unary predicate from a binary

predicate by binding the first argument. The semantics of this predicate can be

expressed in terms of any binary predicate p and objects x and y by the equation,

Cp (p, x) ? y = p ? [x, y].

For example, given some string, x, (Cp (eq, ‘‘GOP’’) ? x) has semantics revealed by

the reduction below:

Cp (eq, ‘‘GOP’’) ? x = eq ? [‘‘GOP’’, x]

= ‘‘GOP’’ == x

= x == ‘‘GOP’’

• ⊕ is a combination predicate former that builds a predicate from another predi-

cate and function. Much like function composition, ⊕ first applies the function

to its argument and then tests the predicate on the result. That is, given predicate p

and function f , the predicate (p ⊕ f) has semantics expressible in terms of invocation

on an object x:

(p ⊕ f) ? x = p ? (f ! x).

For example, when invoked on a committee, x,

Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair)

has semantics revealed by the reduction below:

(Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair)) ? x

= Cp (eq, ‘‘GOP’’) ? ((pty ◦ chair) ! x)

= Cp (eq, ‘‘GOP’’) ? (x.chair.pty)

= x.chair.pty == ‘‘GOP’’

33

• iterate (,) is a querying function former that builds a function on bags given a

predicate and a function as inputs. Given any predicate p, function f and bag A, we

have

iterate (p, f) ! A = {|(f ! x)i | xi ∈ A, p ? x|},

such that the expression on the right hand side describes a bag (delimited by “{|”
and “|}”) that contains the result of invoking f on all objects in A that satisfy p.

The expression, xi ∈ A indicates that there are i copies of x in A and that i > 0.5

Therefore, the number of elements, x that are in A determines the number of elements,

f ! x that are inserted into the result.

Given these definitions, we can reduce the query expression,

iterate (Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair), id) ! SComs

as follows:

iterate (Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair), id) ! SComs

= {|(id ! x)i | xi ∈ SComs, (Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair)) ? x|}
(By the definition of iterate)

= {|xi | xi ∈ SComs, (Cp (eq, ‘‘GOP’’) ⊕ (pty ◦ chair)) ? x|}
(By the definition of id)

= {|xi | xi ∈ SComs, x.chair.pty == ‘‘GOP’’|}
(By the definitions of Cp, eq, ⊕, ◦, pty and chair.)

Thus, this query returns those committees in SComs whose chair is Republican.

3.2.2 The KOLA Data Model

The KOLA data model assumes a universe of objects, each associated with a type that

defines its interface. A type’s interface can include operators that construct the object, or

observe or mutate its state. A type which includes operators that can mutate an object’s
5To keep our notation similar to set comprehension notation, we write x /∈ A when there are no copies

of x in A rather than x0 ∈ A.

34

state is called a mutable type and its objects are mutable objects. Conversely, a type or

object upon which no mutating operations are defined is immutable.

Immutable objects have immutable state, and hence their state reveals their identity.

That is, the integer object 3 has an identity that is inseparable from its value (i.e., all

instances of objects representing the value 3 are equal). On the other hand, mutable objects

should not be compared on the basis of their mutable states as this makes their identities

ephemeral and provokes unintuitive behaviors in any collections that contain them [23].

Rather, mutable objects are assumed to be implemented with immutable, unique object

identifiers (OID’s) that are used by the run-time system to decide if two objects are equal.

In short, KOLA supports both mutable and immutable objects, but mutable objects are

assumed to be compared for equality on the basis of their immutable object identifiers while

immutable objects are compared on the basis of keys.

An informal description of the object types supported by the KOLA data model follows.

Appendix A includes a formal specification of the data model expressed in Larch [46].

• Base Types

The base types supported in KOLA are the immutable types Bool (booleans), Int

(integers), Char (characters), Float (floats) and String (strings). A standard interface

for these types is assumed. Constants of these types have the usual form. As well,

NULL is assumed to be a constant belonging to all types.

• Class Types

KOLA permits queries over collections of objects that are instances of class types. It

is assumed that a class definition defines an interface to which queries have access. In

particular, we assume that queries can invoke the observer operators of objects but

not their mutators or constructors, as queries are assumed to be free of side-effects.6

Finally, it is assumed that observers are unary (attributes).

• Pair Types

A pair type is any type of the form

(t1 × t2)
6This is one way that KOLA is less expressive than OQL, as OQL queries can return collections of new

mutable objects. This confuses the issue of optimizer correctness which must then be based on similarity
rather than equality of results. We discuss this issue at length elsewhere [18], but have yet to modify KOLA
in light of our analysis.

35

such that t1 and t2 are types. Given object x of type t1 (x : t1) and y of type t2

(y : t2), [x, y] is a pair object of type (t1 × t2) ([x, y] : (t1 × t2)). (For example,

the type of [3, Joe] is (Int × Person) assuming that 3 is of type Int and Joe is of

type Person.) Pairs are used to express relationships between objects of potentially

differing types.

• Collection (Bag and Set) Types

For any type t, {|t|} denotes the type of bags whose elements are all of type t. Formally,

a bag A : {|t|} is a function, t → Z such that for any object x : t, A(x) is the number of

occurences of x in A. It is easier to formalize bags and bag operators when bags are

defined in terms of their characteristic functions rather than as collections containing

elements. But sometimes it is more intuitive to use comprehension notation (as used,

for example, in Fegaras and Maier’s work [33]) to reason about the “contents” of a

bag. Therefore, this proposal uses the following shorthand notation:

– for any bag A : {|t|} and expression e : t,

e ∈ A

is shorthand for A(e) > 0 and

ei ∈ A

(for i > 0) is shorthand for A(e) = i.

– for any x1, . . . , xn : t, and positive integers i1, . . . , in,

{|(x1)i1, . . . , (xn)in |}

denotes a bag B : {|t|} containing elements x1, . . . , xn whose count of any element,

y (B(y)) is ∑
1≤j≤n, y == xj

ij.

For example, {|(3)1, (−3)2, (2)2, (−3)1|} denotes the bag B such that:

B(−3) = 3,

B(2) = 2,

B(3) = 1,

and for any i not equal to −3, 2 or 3, B(i) = 0. As a further shorthand, we write

{|x1, . . . , xn|}

36

when the element “counts” are implicitly 1. That is,

{|x1, . . . , xn|} = {|(x1)1, . . . , (xn)1|}

– for any bag, A : {|t|}, variable x : t, and expressions, f(x) : u, g(x) : Int and

p(x) : Bool,

{|f(x)g(i) | xi ∈ A, p(x)|}

denotes a bag B : {|u|} containing elements f(x) (for each x ∈ A) whose count of

any element y : u (B(y)) is:

∑
xi∈A, y == f(x), p(x)

g(i)

For example, if A = {|3,−3, 2,−3|}. Then

{|(x ∗ x)i | xi ∈ A|}

denotes the bag, B such that

B(4) = 1,

B(9) = 3,

and for any e not equal to 4 or 9, B(e) = 0.

More generally, for bags A1 : {|t1|} . . . An : {|tn|}, variables x1 : t1, . . . xn : tn,

positive integers i1, . . . , in and g(i1, . . . , in), and expressions f(x1, . . . , xn) : u,

p(x1, . . . , xn) : Bool,, and y : u:

{|f(x1, . . . , xn)g(i1,...,in) | (x1)i1 ∈ A1, . . ., (xn)in ∈ An, p(x1, . . . , xn)|}

denotes B : {|u|} such that for all y : u:

B(y) =
∑

(x1)i1∈A1,...,(xn)in∈An, y == f(x1,...,xn), p(x1,...,xn)

g(i1, . . . , in)

As an example, suppose that A is defined as above and A′ = {|5, 11, 5, 6|}, then

{|(x + y)ij | xi ∈ A, yj ∈ A′|}

37

denotes the bag, B such that

B(2) = 4,

B(3) = 2,

B(7) = 2,

B(8) = 5,

B(9) = 1,

B(13) = 1,

B(14) = 1,

and for any i not equal to 2, 3, 7, 8, 9, 13 or 14, B(i) = 0.

A set is a special kind of bag whose element counts are either 0 or 1. That is, A is a

set of elements of t if it is a bag of t’s and for all x of type t, A(x) = 1 or A(x) = 0. We

use set comprehension notation in discussing sets. That is, for any x : t, p(x) : Bool

and f(x) : u

{f(x) | x ∈ A, p(x)}
is equivalent to

{|(f(x))1 | x ∈ A, p(x)|}

For simplicity, we assume a namespace of identifiers that refer exclusively to stored

collections. All named bags and sets (e.g., Coms, SComs, Lgs etc.) are assumed to be

mutable. However, all bags and sets constructed by KOLA operators are assumed to be

immutable (as in OQL). For queries, the mutable vs. immutable distinction only makes a

difference when deciding if two bags (sets) are equal. Two mutable bags (sets) are equal if

they are the same object (i.e., they have the same object identifier). Two immutable bags

(sets) are equal if they have the same members (modulo equality definitions for the type of

objects they contain). An immutable bag (set) is never equal to a mutable bag (set). Thus,

a query rewrite that rewrites the OQL query,

SELECT x

FROM x IN Coms

to “Coms” is incorrect, as this rewrites a query returning an immutable collection into one

that returns a mutable collection.

3.2.3 KOLA Primitives and Formers

The operators of KOLA are listed in Tables 3.1 (primitives), 3.2 (formers) and 3.3 (query

formers). Each primitive or former is named in the left columns of these tables, and given

38

an operational semantics in the right columns of these tables. These tables are intended

to provide a brief summary of KOLA, and therefore express KOLA’s semantics somewhat

informally. A formal semantics of KOLA expressed in Larch [46] is presented in Appendix A.

Table 3.1: KOLA’s Primitives

KOLA’s primitives functions and predicates are listed in Table 3.1. The operational se-

mantics of these primitives are defined by showing the result of invoking these primitives

on arbitrary objects (x, y and z), integers or floats (i and j), bags (A and B) and bags

containing bags (X).

Primitive functions include the identity function (id) defined over all types, and projec-

tion functions (π1 and π2) and shifting functions (shl and shr) defined over pairs. Integer

and float primitives include an absolute value function (abs) and basic arithmetic operations

(add, sub, mul, and div). The remainder function, mod is also a primitive defined on pairs

of integers only. String functions include an indexing function on (string× integer) pairs to

isolate a character in the string (at) and a string concatenation function on pairs of strings

(concat). Bag primitives include a singleton constructor (single), an element extraction

function (elt), a duplicate removal function (set), a nested bag flattening function (flat),

bag union (uni), intersection (int) and difference (dif) operators over pairs of bags, an

insertion function (ins), and aggregate operators max, min, cnt, sum and avg. KOLA’s

aggregate operators are defined with the same semantics as their corresponding SQL/OQL

aggregates as defined in [28]. Therefore, some of these aggregates (e.g., MAX) return NULL

when invoked on empty collections.

Basic predicate primitives include equality (eq) and inequality (neq) predicates on pairs

of objects of the same type. String, float and integer predicate primitives include the

ordering relations (lt, leq, gt and geq) on pairs of integers and pairs of strings. Not

listed but assumed are schema-dependent functions and predicates based on unary methods

or attributes of objects such as pty and chair. The semantics of such primitives are

determined by the population of the underlying database.

Table 3.2: KOLA’s Basic Formers

KOLA’s basic function and predicate formers are listed in Table 3.2. The operational

semantics of functions and predicates formed with these formers are given in terms of

arbitrary functions (f and g), predicates (p and q), objects (x and y) and bools (b).

39

Description Semantics
Basic Function Primitives

identity id ! x = x
projection (1) π1 ! [x, y] = x

projection (2) π2 ! [x, y] = y
shift left shl ! [x, [y, z]] = [[x, y], z]
shift right shr ! [[x, y], z] = [x, [y, z]]

Int and Float Function Primitives (i, j integers or floats)
absolute value abs ! i = |i|

addition add ! [i, j] = i + j

subtraction sub ! [i, j] = i− j
multiplication mul ! [i, j] = i ∗ j

division div ! [i, j] = i/j
modulus mod ! [i, j] = i mod j (for integers i and j only)

String Function Primitives (s, t strings (arrays of chars))
string indexing at ! [s, i] = s[i]

string concatenation concat ! [s, t] = s ‖ t

Bag Function Primitives (A, B bags, X a bag of bags)
singleton single ! x = {|x|}

element extraction elt ! {|x|} = x
duplicate removal set ! A = {x | x ∈ A}

bag flattening flat ! X = {|xij | xi ∈ A, Aj ∈ X|}
bag union uni ! [A, B] = {|x(i+j) | xi ∈ A, xj ∈ B|}

bag intersection int ! [A, B] = {|xmin (i,j) | xi ∈ A, xj ∈ B|}
bag difference dif ! [A, B] = {|x(i−j) | xi ∈ A, xj ∈ B, i > j|}

insertion ins ! [x, A] = uni ! [{|x|}, A]
Aggregate Primitives (A a bag of integers or floats, u, v integers or floats)
maximum max ! A = v s.t. (vi ∈ A ∧ ∀u(uj ∈ A ⇒ v ≥ u))
minimum min ! A = v s.t. (vi ∈ A ∧ ∀u(uj ∈ A ⇒ v ≤ u))

count cnt ! A =
∑

vi ∈ A
(i)

sum sum ! A =
∑

vi ∈ A
(vi)

average avg ! A = (sum ! A) / (cnt ! A)
Basic Predicate Primitives (x and y of type T)

equality eq ? [x, y] = x == y

inequality neq ? [x, y] = x 6= y

String, Float and Int Predicate Primitives (x and y strings or integers)
less than lt ? [x, y] = x < y

less than or equal leq ? [x, y] = x ≤ y
greater than gt ? [x, y] = x > y

greater than or equal geq ? [x, y] = x ≥ y

Table 3.1: KOLA Primitives

40

Description Semantics
Basic Function Formers

composition (f ◦ g) ! x = f ! (g ! x)
pairing 〈f, g〉 ! x = [f ! x, g ! x]
products (f × g) ! [x, y] = [f ! x, g ! y]

constant function Kf (x) ! y = x
curried function Cf (f, x) ! y = f ! [x, y]

conditional function con (p, f, g) ! x =
{

f ! x, if p ? x

g ! x, else
Basic Predicate Formers

combination (p ⊕ f) ? x = p ? (f ! x)
conjunction (p & q) ? x = (p ? x) ∧ (q ? x)
disjunction (p | q) ? x = (p ? x) ∨ (q ? x)
negation ∼ (p) ? x = ¬ (p ? x)
inverse p−1 ? [x, y] = p ? [y, x]
products (p × q) ? [x, y] = (p ? x) ∧ (q ? y)

constant predicate Kp (b) ? x = b
curried predicate Cp (p, x) ? y = p ? [x, y]

Table 3.2: Basic KOLA Formers

Function formers include the function composition former (◦), the function pairing for-

mer (〈 〉) that produces functions that construct pairs, the pairwise product function former

(×) that applies separate functions to separate members of a pair to produce another pair,

the constant function former (Kf) that builds a function that always returns the same result,

the currying function former (Cf) that fixes one argument of a binary (pair) function to

produce a unary function and a conditional function former (con) that applies one of two

functions to its arguments depending on whether a given predicate holds.

KOLA’s predicate formers include the predicate/function combination former (⊕) that

acts much like function composition but producing a predicate, the logic-inspired conjunc-

tion, disjunction and negation predicate formers (&, | and ∼), the predicate inverse former

(−1) that flips its pair argument before applying a given predicate, a pairwise predicate

former (×) that applies distinct predicates to each element of a pair, a constant predicate

former (Kp) that always returns true or always returns false, and a currying predicate former

(Cp) that fixes one of the arguments of a binary predicate to produce a unary predicate.

41

Description Semantics
Query Function Formers

iteration iterate (p, f) ! A = {|(f ! x)i | xi ∈ A, p ? x|}
iteration2 iter (p, f) ! [x, B] = {|(f ! [x, y])j | yj ∈ B, p ? [x, y]|}
unnest unnest (f, g) ! A = {|(f ! [x, y])ij | xi ∈ A, yj ∈ (g ! x)|}
join join (p, f) ! [A, B] =

{|(f ! [x, y])ij | xi ∈ A, yj ∈ B, p ? [x, y]|}
left semijoin lsjoin (p, f) ! [A, B] = {|(f ! x)i | xi ∈ A, p ? [x, B]|}
right semijoin rsjoin (p, f) ! [A, B] = {|(f ! y)j | yj ∈ B, p ? [y, A]|}
nested join njoin (p, f, g) ! [A, B] =

{[x, g ! {|(f ! y)j | yj ∈ B, p ? [x, y]|}] | x ∈ A}
Query Predicate Formers

∃ exists (p) ? A = ∃x (x ∈ A ∧ p ? x)
∀ forall (p) ? A = ∀x (x ∈ A ⇒ p ? x)
∃ 2 ex (p) ? [x, B] = ∃y (y ∈ B ∧ p ? [x, y])
∀ 2 fa (p) ? [x, B] = ∀y (y ∈ B ⇒ p ? [x, y])

Table 3.3: KOLA Query Formers

Table 3.3: KOLA’s Query Formers

A query former is simply a former that constructs a function or predicate on bags. KOLA’s

query formers are listed in Table 3.3. As with tables 3.2, p and q denote predicates, f , g

and h denote functions, and x and y denote function and predicate arguments. As well,

A and B denote bags, X denotes a bag of bags and i and j are integers denoting element

counts.

KOLA’s Function Formers: KOLA’s function query formers include the following:

• iterate (p, f) forms a function on bags, A that behaves much like SQL/OQL’s

SELECT-FROM-WHERE in that it invokes a function (f) on every element of A that

satisfies a predicate (p).

• iter (p, f) forms a function on object, bag pairs, [x, B] that behaves much like

iterate but absorbs the constant x into binary predicate p and binary function f .

• unnest (f, g) forms a function on bags A that returns a bag of elements, f ! [x, y]

for each x drawn from A and each y drawn from (g ! x).

42

• join (p, f) forms a function on pairs of bags, [A, B] that applies f to every pair of

elements, [x, y] such that x is in A, y is in B and the pair [x, y] satisfies p.

• lsjoin (p, f) (short for left semijoin) forms a function on pairs of bags, [A, B] that

applies f to every element of A, x for which [x, B] satisfies p.

• rsjoin (p, f) (short for right semijoin) forms a function on pairs of bags, [A, B] that

applies f to every element of B, y for which [y, A] satisfies p.

• njoin (p, f, g) (short for nested join) forms a function on pairs of bags, [A, B] that

returns a set of pairs, [x, Sx] for each x ∈ A. For a given x, Sx is the result of

invoking g on the collection of (f ! y)’s such that y ∈ B and [x, y] satisfies p. For

example, the SQL query,

SELECT T .c1, agg (T .c2)

FROM T

GROUP BY T .c1

would be translated into the KOLA query,

njoin (eq ⊕ (id × c1), c2, agg) ! [iterate (Kp (true), c1) ! T , T]

such that agg is the KOLA equivalent of SQL aggregate, agg (e.g., COUNT = cnt,

SUM = sum).

Nested joins formed by njoin can also express groupings resulting from joins and

outerjoins. For example, the SQL join query,

SELECT T1.c1, agg (T2.c2)

FROM T1, T2

WHERE T1.c3 == T2.c3

GROUP BY T1.c1

is equivalent to the KOLA query,

njoin (eq ⊕ (π1 × (c1 ◦ π1)), π2, agg) ! [iterate (Kp (true), c1 ◦ π1) ! A, A]

such that

A = join (eq ⊕ (c3 × c3), id × c2) ! [T1, T2].

43

The SQL outerjoin query,

SELECT T1.c1, agg (T .c2)

FROM T1 LEFT JOIN T2 ON T1.c1 == T2.c1

GROUP BY T1.c1

is expressed in similar fashion to GROUP BY queries:

njoin (eq ⊕ (id × c1), c2, agg) ! [iterate (Kp (true), c1) ! T1, T2].

Note that if for some element of t1 ∈ T1 there are no elements t2 ∈ T2 such that

t1.c1 == t2.c2,

then t1.c1 will be paired with (agg ! �) in the result. If agg is an aggregate that

returns NULL when applied to an empty collection (such as MAX), then (agg ! �) is

also NULL and t1.c1 is paired with NULL in the result.

The OQL query below partitions a bag on the basis of predicates p1, . . . pn.

SELECT ∗
FROM t IN T

GROUP BY label1 : p1, . . . , labeln : pn.

The result of this query is a set of tuples consisting of n + 1 fields. The first n fields

contain the truth values for the n predicates for a given partition of elements of T

that agree on these values. The (n + 1)th field contains the associated partition of T .

The KOLA version of this query uses functions of the form,

fi = con (pi, Kf (1), Kf (0)),

that when invoked on some object, x, return a 1 or 0 depending on whether predicate

pi (the KOLA translation of pi) is satisfied by x. The partition of T is then based on

equivalence of the bitstring formed by applying functions fi for each 1 ≤ i ≤ n. That

is, given

f = 〈f1, 〈f2, . . . 〈fn−1, fn〉 . . .〉〉,

the KOLA equivalent to the OQL query above is:

njoin (eq ⊕ (id × f), id, id) ! [iterate (Kp (true), f) ! T, T].

44

KOLA’s Predicate Formers: KOLA’s query predicate formers include the following.

• Formers exists (p) and forall (p) form existential and universal quantifier predicates

on bags A that return true if some (all) elements of A satisfy p.

• Formers ex and fa are to exists and forall as iter is to iterate. Like functions

formed with iter, ex (p) and fa (p) are invoked on pairs of the form [x, B], such

that x is absorbed into the predicate, p. The result of invocation depends on whether

any (ex) or all (fa) elements y in B are such that (p ? [x, y]) holds.

3.3 Using a Theorem Prover to Verify KOLA Rewrites

3.3.1 A Formal Specification of KOLA Using LSL

Appendix A contains a formal specification of the KOLA data model and algebra. The

specification is expressed in the Larch algebraic specification language, LSL. LSL permits

the definition of traits, which roughly correspond to abstract data types [72]. LSL includes

a library of basic traits such as Int, Bool, FloatingPoint and String, which are assumed

by the KOLA specification.

KOLA bags (bag [T]) are defined by two traits: BagBasics (which defines bag con-

structors, {} and insert and unary operators on bags) and Bag which defines binary bag

operators (such as union and intersection) These traits introduce the bag constructors,

empty bag: {} : → bag [T],

singleton bag: { } : T → bag [T], and

bag insertion: insert : T, bag [T] → bag [T],

as well as operators,

membership: ∈ : T, bag [T] → Bool,

element difference: − : bag [T], T → bag [T],

bag union: ∪ : bag [T], bag [T] → bag [T],

bag intersection: ∩ : bag [T], bag [T] → bag [T], and

bag difference: − : bag [T], bag [T] → bag [T].

The axioms for these operators assume universally quantified variables A and B of type bag

[T] and x and y of type T. Membership is defined by the axioms:

x ∈ {} = false, and

x ∈ insert (y, A) = (x == y) ∨ (x ∈ A).7

45

Element difference is defined by axioms:

{} − x = {}, and

¬ (x == y) ⇒ (insert (x, A) − y == insert (x, A − y)).

Bag union, intersection and difference are defined by axioms:

(1) {} ∪ B = B,

(2) insert (x, A) ∪ B = insert (x, A ∪ B),

(3) {} ∩ B = {},
(4) x ∈ B ⇒ (insert (x, A) ∩ B == insert (x, A ∩ (B − x))) ,

(5) ¬ (x ∈ B) ⇒ (insert (x, A) ∩ B == A ∩ B)

(6) {} − B = {},
(7) x ∈ B ⇒ (insert (x, A) − B == A − (B − x)), and

(8) ¬ (x ∈ B) ⇒ (insert (x, A) − B == insert (x, A − B)).

These axioms are typical of algebraic specifications, in that they define each operator over

each constructor. Note that the use of the element difference operator “−” in axioms (4)

and (7) distinguishes the definition of bags from sets. The corresponding axioms for sets

would be:

(4b) x ∈ B ⇒ (insert (x, A) ∩ B == insert (x, A ∩ B)), and

(7b) x ∈ B ⇒ (insert (x, A) − B == A − B).

Note also that the axiom defining the singleton bag, {x}, establishes it as shorthand for

insert (x, {}). Therefore, this constructor does not need to be accounted for in these

axioms.

All function primitives and formers “inherit” the generic Function specification, which

introduces invocation (! : fun [T, U], T → U) (for domain type T and range type

U), and function equality (== : fun [T, U], fun [T, U] → Bool), which is defined

universally for functions f and g (fun [T, U]) by the axiom,

f == g = ∀ x:T (f ! x == g ! x).

Similarly, predicate primitives and formers “inherit” the generic Predicate specification,

which introduces invocation (? : pred [T], T → Bool) (for domain type T), and

predicate equality (== : pred [T], pred [T]→ Bool) which is defined universally

for predicates p and q (pred [T]) by the axiom,

p == q = ∀ x : T (p ? x == q ? x).

46

The axioms defining all KOLA predicate and function primitives and formers are given

in Appendix A. Axioms defining basic primitives and formers (i.e., defining functions and

predicates on arguments that are not collections) resemble the equations shown in Tables 3.1

and 3.2. Query primitives and formers are defined inductively over bag constructors {} and

insert, as in the axioms for

iterate : pred [T], fun [T, U] → fun [bag [T], bag [U]]

shown below:

iterate (p, f) ! {} = {},
p ? x ⇒
(iterate (p, f) ! insert (x, A) == insert (f ! x, iterate (p, f) ! A)), and

¬ (p ? x) ⇒ (iterate (p, f) ! insert (x, A) == iterate (p, f) ! A).

3.3.2 Proving KOLA Rewrite Rules Using LP

Theorem provers are term rewriters that apply rewrite rules to simplify terms. The LP

theorem prover interprets notation that resembles the notation of logic proofs as operations

to the term rewriting system. LP then gives the following operational interpretations to

these elements of logical proofs:

• the operational interpretation of a conjecture, goal or subgoal is a term,

• the operational interpretation of an axiom is a rewrite rule, and

• the operational interpretation of a proof is a rewrite of a term (conjecture) to the

built-in term true.8

To illustrate the operation of LP, we demonstrate a proof of the KOLA rewrite rule that

pushes projections and selections past unions::

iterate (p, f) ! (A ∪ B) →= (iterate (p, f) ! A) ∪ (iterate (p, f) ! B).
8Larch uses a number of built-in rewrite rules to supplement those that are generated from formal

specifications. For example, Larch has a rewrite rule that rewrites any term of the form

e == e

for some expression e into the term true. Therefore, rewrites of conjectures into the term true are possible
even when true does not appear as a term in a formal specification, as in the specification of KOLA.

47

%%
prove
iterate (p, f) ! (A \U B) =
(iterate (p, f) ! A) \U (iterate (p, f) ! B)

..

resume by induction on A % Step 1

% Base Case: Trivial
% Trivial Case

resume by induction on B % Step 2

% Base Case: Trivial
% Trivial Case

resume by cases p ? u1 % Step 3

% Case 1
resume by cases pc ? u % Step 4a

% Case 2
resume by cases pc ? u % Step 4b

qed
%%

Figure 3.6: An Example LP Proof Script

As with OQL rules, KOLA rules are expressed with patterns (KOLA queries supplemented

with pattern variables) separated by “→=”. Verification of this rule requires proving the LP

conjecture

iterate (p, f) ! (A \U B) = (iterate (p, f) ! A) \U (iterate (p, f) ! B)

Verification of this conjecture proceeds according to the the proof script shown in Figure 3.69.

To facilitate the tracing of this script, we have numbered the steps that appear in the script

in comments (delimited by %) to the right of each executable statement. Below we trace

the logic behind the proof, and the mechanics of the theorem prover as it processes each

step’s instruction.
9We use ASCII notation in presenting inputs to LP (e.g., \U is used instead of ∪, p is used instead of p
etc.) to emphasize their executable flavor.

48

1. {} \U B --> B
2. insert (x, A) \U B --> insert (x, A \U B)
3. iterate (p, f) ! {} --> {}
4. (p ? x) ::

iterate (p, f) ! insert (x, A) --> insert (f ! x, iterate (p, f) ! A)
5. ~(p ? x) ::

iterate (p, f) ! insert (x, A) --> iterate (p, f) ! A

Figure 3.7: Some LP Rewrite Rules Generated from Specification Axioms

The proof begins with the generation of a bank of rewrite rules from the axioms defining

the operators appearing in the proof. For this proof, these axioms generate a bank of rewrite

rules that include those shown in Figure 3.7. As with KOLA’s rewrite rules, LP’s rewrite

rules consist of pairs of patterns (separated by “-->” rather than →= to distinguish them

from KOLA rules). As well, LP’s rules can be conditional — an idea inspiring extensions

to KOLA presented in Chapter 5. Rules 4 and 5 can fire only if the conditions, (p ? x)

and ∼ (p ? x) are respectively satisfied.

Step 1: The proof begins by induction on the collection A. The theorem prover interprets

this instruction by first creating the basis subgoal,

iterate (p, f) ! ({} \U B) ==

(iterate (p, f) ! {}) \U (iterate (p, f) ! B).

This subgoal trivially reduces to true (i.e., is proven) by LP rewrite rules 1 and 3 of

Figure 3.7.

Successful proof of the basis subgoal initiates the addition of a new rewrite rule (corre-

sponding to the induction hypothesis) and the attempted proof of a second subgoal (corre-

sponding to the induction subgoal). For this proof, the induction hypothesis is the rewrite

rule,

iterate (p, f) ! (Ac \U B) -->

(iterate (p, f) ! Ac) \U (iterate (p, f) ! B)

and the induction subgoal is,

iterate (p, f) ! (insert (u, Ac) \U B) ==

(iterate (p, f) ! insert (u, Ac)) \U (iterate (p, f) ! B)

49

Step 2: Induction is again initiated, this time on the collection B in order to prove the

induction subgoal remaining after step 1. The basis subgoal,

iterate (p, f) ! (insert (u, Ac) \U {}) ==

(iterate (p, f) ! insert (u, Ac)) \U (iterate (p, f) ! {})

again reduces to true by rewrite rules 1 and 3 of Figure 3.7. Again, a rewrite rule corre-

sponding to a induction hypothesis is added:

iterate (p, f) ! insert (u, Ac \U Bc) ==

(iterate (p, f) ! insert (u, Ac)) \U (iterate (p, f) ! Bc)

and a new induction subgoal is generated:

iterate (p, f) ! insert (u, Ac \U insert (u1, Bc)) ==

(iterate (p, f) ! insert (u, Ac)) \U (iterate (p, f) ! insert (u1, Bc))

Step 3: The rest of the proof proceeds by cases. A proof by cases requires proving

the current subgoal assuming each case in turn. The assumption of a case is captured

operationally by adding the rewrite rule, p --> true (such that p is the term corresponding

to the case) to the bank of rewrite rules available to the rest of the proof. Step 3 first adds

the rewrite rule,

p ? u1 --> true

to the bank of rewrite rules.

Step 4a: A second case is assumed, adding

p ? u --> true

to the bank of rewrite rules. This rule, taken with the rule generated in step 3 and rule 4 of

Figure 3.7 is sufficient to prove the induction subgoal. Then the converse case is considered,

with

p ? u --> false

added to the bank of rewrite rules in place of the previously added rule. Again, the induction

subgoal is proved using this rule, the rule added in step 3 and rule 5 of Figure 3.7.

50

Step 4b: Having proven the conjecture assuming the case, p ? u1 (Step 3), the converse

case is assumed and

p ? u1 --> false

is added to the bank of rewrite rules replacing the rule added in Step 3. As in Step 4a, a

second case adds

p ? u --> true

and

p ? u --> false

successively to the bank of rewrite rules. The induction subgoal is proven in both cases with

the rewrite rules generated from the case assumptions, and rules 4 and 5 of Figure 3.7. �
Proofs such as that for the rewrite rule shown above have been completed for well over

300 KOLA rules. LP proof scripts that execute the operational versions of some of these

proofs are available electronically from the addresses listed in Appendix B.

3.4 Revisiting the “Conflict of Interests” Queries

In this section, we revisit the “Conflict of Interests” queries presented earlier in this chapter

and in Chapter 2. In Section 3.4.1, we show how each OQL query, COI1 (Figure 2.1),

COI1∗ (Figure 3.4), COI1 (Figure 2.2), and COI2, COI2 and COI2 (Figure 3.2), would get

expressed in KOLA. Then in Section 3.4.2, we show how the same set of rules and sequence

of rule applications rewrites KOLA translations of COI1, COI2, and COI1∗ into their final

forms. The point of this section is to show that these rewrites, when expressed over KOLA

query representations, can be expressed without code.

3.4.1 KOLA Translations of the COI Queries

Figure 3.8 shows KOLA translations of the Conflicts of Interests queries of Chapter 2 and

Section 3.1.1. Queries 1–3 in this figure are translations of COI1, COI1∗ and COI1 from

Figures 2.1, 3.4a and 2.2 respectively. Queries 4–6 are translations of queries COI2, COI2,

and COI2 from Figure 3.2. As before, we begin this section begins by tracing the reductions

of these queries to show that they are valid translations of their OQL equivalents.

Queries 1, 2 and 3 of Figure 3.8 are the KOLA translations of OQL queries COI1,

COI1∗ and COI1 (from Figures 2.1, 3.4a and 2.2) respectively. Therefore, each of these

51

1. set ! (iterate (ex (p) ⊕ 〈id, f〉, id) ! Coms)

COIK
1 : A KOLA Translation of COI1 (Figure 2.1)

2. set ! (iterate (ex (p & q) ⊕ 〈id, Kf (SComs)〉, id) ! Coms)

COIK
1∗: A KOLA Translation of COI1∗ (Figure 3.4a)

3. set ! (join (r & (ex (p) ⊕ (id × π2)), π1) ! [Coms, TempK])

COIK
1 : A KOLA Translation of COI1 (Figure 2.2)

4. set ! (iterate (ex (p2) ⊕ 〈id, f〉, id) ! Coms)

COIK
2 : A KOLA Translation of COI2 (Figure 3.2)

5. set ! (join (r & (ex (p2) ⊕ (id × π2)), π1) ! [Coms, TempK])

COIK
2 : A KOLA Translation of COI2 (Figure 3.2)

6. set ! (join (r, π1) ! [Coms, iterate (p3, id) ! TempK])

COIK
2 : A KOLA Translation of COI2 (Figure 3.2)

such that

p ≡ ex (eq) ⊕ 〈chair ◦ π1, mems ◦ π2〉
p2 ≡ ex (eq) ⊕ 〈chair ◦ π2, mems ◦ π2〉
p3 ≡ exists (ex (eq) ⊕ 〈chair, mems〉) ⊕ π2

q ≡ eq ⊕ ((pty ◦ chair) × (pty ◦ chair))
r ≡ eq ⊕ ((pty ◦ chair) × π1)
f ≡ iter (q, π2) ◦ 〈id, Kf (SComs)〉

TempK ≡ njoin (eq ⊕ (id × (pty ◦ chair)), id, id) !
[iterate (Kf (true), pty ◦ chair) ! SComs, SComs]

Figure 3.8: KOLA Translations of the Conflict of Interests Queries

52

queries returns a set consisting of committees whose chairs are members of a subcommittee

whose chair is from the same party. Queries 4, 5 and 6 of Figure 3.8 translate OQL queries

COI2, COI2 and COI2 from Figure 3.2. Therefore, each of these queries returns a set of

committees whose chairs who belong to a party that includes someone who both chairs

and is a member of the same subcommittee. All of these queries remove duplicates from

intermediate subquery results generated with iterate or join.

These queries are fairly complex, and are easiest to understand when decomposed.

Therefore, we begin by examining some of the common subexpressions that appear in these

queries.

1. The predicate p,

ex (eq) ⊕ 〈chair ◦ π1, mems ◦ π2〉

appears in queries 1, 2 and 3, and is a predicate on committee, subcommittee pairs,

[x, y]. The expression, p ? [x, y] reduces as follows:

(ex (eq) ⊕ 〈chair ◦ π1, mems ◦ π2〉) ? [x, y]

= ex (eq) ? (〈chair ◦ π1, mems ◦ π2〉 ! [x, y])

= ex (eq) ? [(chair ◦ π1) ! [x, y], (mems ◦ π2) ! [x, y]]

= ex (eq) ? [(chair ◦ π1) ! [x, y], mems ! (π2 ! [x, y])]

= ex (eq) ? [chair ! x, mems ! y]

= ex (eq) ? [x.chair, y.mems]

= ∃z : Legislator (z ∈ y.mems ∧ eq ? [x.chair, z])

= ∃z : Legislator (z ∈ y.mems ∧ x.chair == z)

= x.chair ∈ y.mems

Therefore, p ? [x, y] is equivalent to the OQL boolean expression,

x.chair IN y.mems.

2. The predicate p2,

ex (eq) ⊕ 〈chair ◦ π2, mems ◦ π2〉

appears in queries 4 and 5, and is similar to p in that it too is a predicate on committee,

subcommittee pairs, [x, y]. However, p2 ignores x as shown in the reduction below.

(ex (eq) ⊕ 〈chair ◦ π2, mems ◦ π2〉) ? [x, y]

53

= ex (eq) ? (〈chair ◦ π2, mems ◦ π2〉 ! [x, y])

= ex (eq) ? [(chair ◦ π2) ! [x, y], (mems ◦ π2) ! [x, y]]

= ex (eq) ? [(chair ◦ π2) ! [x, y], mems ! (π2 ! [x, y])]

= ex (eq) ? [chair ! y, mems ! y]

= ex (eq) ? [y.chair, y.mems]

= ∃z : Legislator (z ∈ y.mems ∧ eq ? [y.chair, z])

= ∃z : Legislator (z ∈ y.mems ∧ y.chair == z)

= y.chair ∈ y.mems

Therefore, p2 ? [x, y] is equivalent to the OQL boolean expression,

y.chair IN y.mems.

3. The predicate p3,

exists (ex (eq) ⊕ 〈chair, mems〉) ⊕ π2

appears in query 6, and is a predicate on pairs, [p, S], such that p is the name of a

party and S is a set of subcommittees. Reducing p3 ? [p, S], we get:

(exists (ex (eq) ⊕ 〈chair, mems〉) ⊕ π2) ? [p, S]

= exists (ex (eq) ⊕ 〈chair, mems〉) ? (π2 ! [p, S])

= exists (ex (eq) ⊕ 〈chair, mems〉) ? S

= ∃y (y ∈ S ∧ (ex (eq) ⊕ 〈chair, mems〉) ? y)

= ∃y (y ∈ S ∧ ex (eq) ? (〈chair, mems〉 ! y))

= ∃y (y ∈ S ∧ ex (eq) ? [y.chair, y.mems])

= ∃y (y ∈ S ∧ ∃z (z ∈ y.mems ∧ eq ? [y.chair, z]))

= ∃y (y ∈ S ∧ ∃z (z ∈ y.mems ∧ y.chair == z))

= ∃y (y ∈ S ∧ (y.chair ∈ y.mems)).

Thus, p3 ? [p, S], is equivalent to the OQL boolean expression,

EXISTS y IN S : (y.chair IN y.mems).

4. The predicate q,

eq ⊕ ((pty ◦ chair) × (pty ◦ chair))

54

appears in every query in Figure 3.8, and is a predicate on committee, subcommittee

pairs, [x, y]. Reducing q ? [x, y], we get:

(eq ⊕ ((pty ◦ chair) × (pty ◦ chair))) ? [x, y]

= eq ? [(pty ◦ chair) ! x, (pty ◦ chair) ! y]

= eq ? [pty ! (chair ! x), pty ! (chair ! y)]

= eq ? [pty ! (x.chair), pty ! (y.chair)]

= eq ? [x.chair.pty, y.chair.pty]

= x.chair.pty == y.chair.pty

Thus, q ? [x, y], is equivalent to the OQL boolean expression,

x.chair.pty == y.chair.pty.

5. The predicate r,

eq ⊕ ((pty ◦ chair) × π1)

of queries 3, 5 and 6 is similar to q, but is a predicate on nested pairs, [x, [p, S]]

such that x is a committee in Coms, p is the name of a political party and S is a bag

of subcommittees. Reducing r ? [x, [p, S]], we get:

(eq ⊕ ((pty ◦ chair) × π1)) ? [x, [p, S]]

= eq ? (((pty ◦ chair) × π1) ! [x, [p, S]])

= eq ? [(pty ◦ chair) ! x, π1 ! [p, S]]

= eq ? [pty ! (x.chair), p]

= eq ? [x.chair.pty, p]

= x.chair.pty == p

Thus, r ? [x, [p, S]], is equivalent to the OQL boolean expression,

x.chair.pty == p.

6. The function f,

iter (q, π2) ◦ 〈id, Kf (SComs)〉
appears in queries 1 and 4, and is a function on committees, x. Reducing f ! x, we

get:

(iter (q, π2) ◦ 〈id, Kf (SComs)〉) ! x

55

= iter (q, π2) ! (〈id, Kf (SComs)〉 ! x)

= iter (q, π2) ! [id ! x, Kf (SComs) ! x]

= iter (q, π2) ! [x, SComs]

= {|(π2 ! [x, c])j | cj ∈ SComs, q ? [x, c]|}
= {|cj | cj ∈ SComs, q ? [x, c]|}
= {|cj | cj ∈ SComs, x.chair.pty == c.chair.pty|}

Thus, f ! x is equivalent to the OQL query expression,

SELECT c

FROM c IN SComs

WHERE x.chair.pty == c.chair.pty.

7. TempK is a subquery of queries 3, 5 and 6. TempK uses iterate and njoin to generate

the KOLA equivalent of subquery Temp of Figure 2.2. This is illustrated by the

derivation below:

njoin (eq ⊕ (id × (pty ◦ chair)), id, id) !

[iterate (Kp (true), pty ◦ chair) ! SComs, SComs]

= njoin (eq ⊕ (id × (pty ◦ chair)), id, id) !

[{|((pty ◦ chair) ! c)i | ci ∈ SComs, Kp (true) ? c|}, SComs]

= njoin (eq ⊕ (id × (pty ◦ chair)), id, id) !

[{|(pty ! (chair ! c))i | ci ∈ SComs, Kp (true) ? c|}, SComs]

= njoin (eq ⊕ (id × (pty ◦ chair)), id, id) !

[{|(pty ! (c.chair))i | ci ∈ SComs|}, SComs]

= njoin (eq ⊕ (id × (pty ◦ chair)), id, id) !

[{|(c.chair.pty)i | ci ∈ SComs|}, SComs]

= {[c.chair.pty, Sc] | c.chair.pty ∈ {|(c.chair.pty)i | ci ∈ SComs|}} s.t.

Sc = id ! {|(id ! s)j | sj ∈ SComs, (eq ⊕ (id × pty ◦ chair)) ? [p, s]|}

56

= {|sj | sj ∈ SComs, (eq ⊕ (id × (pty ◦ chair))) ? [p, s]|}
= {|sj | sj ∈ SComs, eq ? ((id × (pty ◦ chair)) ! [p, s])|}
= {|sj | sj ∈ SComs, eq ? [id ! p, (pty ◦ chair) ! s]|}
= {|sj | sj ∈ SComs, eq ? [id ! p, pty ! (chair ! s)]|}
= {|sj | sj ∈ SComs, eq ? [p, s.chair.pty]|}
= {|sj | sj ∈ SComs, p == s.chair.pty|}

= {[c.chair.pty, Sc] | ci ∈ SComs}
s.t. Sc = {|sj | sj ∈ SComs, c.chair.pty == s.chair.pty|}

Therefore, this subquery returns a set of pairs, [p, S], such that p is the name of a

party affiliated with some subcommittee’s chair and S is the bag of all subcommittees

chaired by someone from that party. In other words, TempK is equivalent to the OQL

query,
SELECT p, S : partition

FROM c IN SComs

GROUP BY p : c.chair.pty

Using the subexpressions above, a description of each of the queries of Figure 3.8 follows.

COIK
1 (1):

Predicates p, q and f are all subexpressions of COIK
1 ’s subpredicate, (ex (p) ⊕ 〈id, f〉),

which when invoked on a committee x ∈ Coms is equivalent to the OQL expression,

EXISTS y IN




SELECT c

FROM c IN SComs

WHERE x.chair.pty == c.chair.pty


 : (x.chair IN y.mems).

as is demonstrated by the derivation below:

(ex (p) ⊕ 〈id, f〉) ? x = ex (p) ? (〈id, f〉 ! x)

= ex (p) ? [x, f ! x]

= ex (p) ? [x, Sx]

s.t. Sx = {|cj | cj ∈ SComs, x.chair.pty == c.chair.pty|}
= ∃y (y ∈ Sx ∧ p ? [x, y])

= ∃y (y ∈ Sx ∧ x.chair ∈ y.mems)

57

Therefore, the iterate subquery generates the collection derived below,

iterate (ex (p) ⊕ 〈id, f〉, id) ! Coms

= {|(id ! x)i | xi ∈ Coms, (ex (p) ⊕ 〈id, f〉) ? x|}
= {|xi | xi ∈ Coms, (ex (p) ⊕ 〈id, f〉) ? x|}
= {|xi | xi ∈ Coms, ∃y (y ∈ Sx ∧ x.chair ∈ y.mems)|}

Removing duplicates from this result leaves,

{x | x ∈ Coms, ∃y (y ∈ Sx ∧ x.chair ∈ y.mems)}

which is the same result returned by the OQL query, COI1.

COIK
1∗ (2):

COIK
1∗ is similar to COIK

1 in that it performs duplicate elimination on the result of an

iterate subquery, and contains the same subpredicates, p and q. But this query differs

from COIK
1 in that it does not generate an intermediate collection (Sx) for each x ∈ Coms.

Instead, the existential predicate (ex (p & q)) searches SComs for some subcommittee y

that with x satisfies both p and q. Therefore, when invoked on a committee x ∈ Coms, this

predicate is equivalent to the OQL expression,

EXISTS y IN SComs : ((x.chair IN y.mems) AND (x.chair.pty == y.chair.pty)),

as shown by the derivation below:

(ex (p & q) ⊕ 〈id, Kf (SComs)〉) ? x

= ex (p & q) ? (〈id, Kf (SComs)〉 ! x)

= ex (p & q) ? [id ! x, Kf (SComs) ! x]

= ex (p & q) ? [x, SComs]

= ∃y (y ∈ SComs ∧ (p & q) ? [x, y])

= ∃y (y ∈ SComs ∧ p ? [x, y] ∧ q ? [x, y])

= ∃y (y ∈ SComs ∧ x.chair ∈ y.mems ∧ x.chair.pty == y.chair.pty)

Thus, the iterate subquery of COIK
1∗ returns:

iterate (ex (p & q) ⊕ 〈id, Kf (SComs)〉, id) ! Coms

58

= {|(id ! x)i | xi ∈ Coms, (ex (p & q) ⊕ 〈id, Kf (SComs)〉) ? x|}
= {|xi | xi ∈ Coms, (ex (p & q) ⊕ 〈id, Kf (SComs)〉) ? x|}

=
{|xi | xi ∈ Coms

∃y (y ∈ SComs ∧ x.chair ∈ y.mems ∧ x.chair.pty == y.chair.pty)|}.

Removing duplicates from this result leaves,

{x | x ∈ Coms, ∃y (y ∈ SComs ∧ x.chair ∈ y.mems ∧ x.chair.pty == y.chair.pty)},

which is also the result of the OQL query, COI1∗.

COIK
1 (3):

COIK
1 computes the same result as COIK

1 and COIK
1∗, but using join in its sub-

query rather than iterate. The join is of Coms and TempK , and uses predicates r and

(ex (p) ⊕ (id × π2)). The latter complex predicate is a predicate on nested pairs

[x, [p, S]]

(such that x ∈ Coms and [p, S] ∈ TempK) that is equivalent to the OQL boolean expression,

EXISTS y IN S : (x.chair IN y.mems)

as illustrated by the derivation below:

(ex (p) ⊕ (id × π2)) ? [x, [p, S]] = ex (p) ? ((id × π2) ! [x, [p, S]])

= ex (p) ? [id ! x, π2 ! [p, S]]

= ex (p) ? [x, S]

= ∃y (y ∈ S ∧ p ? [x, y])

= ∃y (y ∈ S ∧ x.chair ∈ y.mems)

Therefore, the result of the join is a collection of committees whose chairs are members of

a subcommitee chaired by someone from the same party, as illustrated by the derivation:

join (r & (ex (p) ⊕ (id × π2)), π1) ! [Coms, TempK]

=
{|(π1 ! [x, [p, S]])ij |

xi ∈ Coms, [p, S]j ∈ TempK, (r & (ex (p) ⊕ (id × π2))) ? [x, [p, S]]|}

= {|xij | xi ∈ Coms, [p, S]j ∈ TempK, (r & (ex (p) ⊕ (id × π2))) ? [x, [p, S]]|}

59

= {|xi | xi ∈ Coms, [p, S] ∈ TempK , (r & (ex (p) ⊕ (id × π2))) ? [x, [p, S]]|}

=
{|xi | xi ∈ Coms, [p, S] ∈ TempK ,

r ? [x, [p, S]], (ex (p) ⊕ (id × π2)) ? [x, [p, S]]|}
After duplicate elimination, this becomes,

{x | x ∈ Coms, [p, S] ∈ TempK , r ? [x, [p, S]], (ex (p) ⊕ (id × π2)) ? [x, [p, S]]}.

Because r ? [x, [p, S]] is true if

x.chair.pty == p

and (ex (p) ⊕ (id × π2)) ? [x, [p, S]] is true if

∃y (y ∈ S ∧ x.chair ∈ y.mems),

this expression reduces to

{x | x ∈ Coms, [p, S] ∈ TempK , x.chair.pty == p, ∃y (y ∈ S ∧ x.chair ∈ y.mems)}

which is also what is returned by the OQL query, COI1.

COIK
2 (4):

Query COIK
2 (4) is almost identical to query COIK

1 (1) but using the predicate p2 rather

than p. Given a committee x ∈ Coms, ((ex (p2) ⊕ 〈id, f〉) ? x) is equivalent to the OQL

expression,

EXISTS y IN




SELECT c

FROM c IN SComs

WHERE x.chair.pty == c.chair.pty


 : y.chair IN y.mems

as is revealed by the derivation below:

(ex (p2) ⊕ 〈id, f〉) ? x

= ex (p2) ? [id ! x, f ! x]

= ex (p2) ? [x, Sx]

such that Sx = {|ci | ci ∈ SComs, x.chair.pty == c.chair.pty|}
= ∃y (y ∈ Sx ∧ p2 ? [x, y])

= ∃y (y ∈ Sx ∧ y.chair ∈ y.mems)

60

Therefore, the iterate subquery of this query generates the collection,

{|xi | xi ∈ Coms, ∃y (y ∈ Sx ∧ y.chair ∈ y.mems)|}.

Removing duplicates from this result leaves,

{x | x ∈ Coms, ∃y (y ∈ Sx ∧ y.chair ∈ y.mems)},

which is the same result returned by the OQL query, COI2.

COIK
2 (5):

Query COIK
2 (5) is almost identical to query COIK

1 (3) but for its use of p2 rather than

p. The join predicate for this query consists of r and (ex (p2) ⊕ (id × π2)). The latter

predicate on nested pairs [x, [p, S]] (such that x is in Coms and [p, S] is in TempK) is

equivalent to the OQL expression

EXISTS y IN S : (y.chair IN y.mems),

as is revealed by the derivation below:

(ex (p2) ⊕ (id × π2)) ? [x, [p, S]] = ex (p2) ? ((id × π2) ! [x, [p, S]])

= ex (p2) ? [id ! x, π2 ! [p, S]]

= ex (p2) ? [x, S]

= ∃y (y ∈ S ∧ p2 ? [x, y])

= ∃y (y ∈ S ∧ y.chair ∈ y.mems).

Therefore, the result of the join is a collection of committees whose chairs belong to a party

which also includes someone who both chairs and is a member of some subcommitee:

join (r & (ex (p2) ⊕ (id × π2)), π1) ! [Coms, TempK]

= {|xij | xi ∈ Coms, [p, S]j ∈ TempK , (r & (ex (p2) ⊕ (id × π2))) ? [x, [p, S]]|}
= {|xi | xi ∈ Coms, [p, S] ∈ TempK, (r & (ex (p2) ⊕ (id × π2))) ? [x, [p, S]]|}

=
{|xi | xi ∈ Coms, [p, S] ∈ TempK ,

r ? [x, [p, S]], (ex (p2) ⊕ (id × π2)) ? [x, [p, S]]|}

After duplicate elimination, this becomes,

{x | x ∈ Coms, [p, S] ∈ TempK , r ? [x, [p, S]], (ex (p2) ⊕ (id × π2)) ? [x, [p, S]]}.

61

Because r ? [x, [p, S]] is true if

x.chair.pty == p

and (ex (p2) ⊕ (id × π2)) ? [x, [p, S]] is true if

∃y (y ∈ S ∧ y.chair ∈ y.mems),

this expression reduces to

{x | x ∈ Coms, [p, S] ∈ TempK, x.chair.pty == p, ∃y (y ∈ S ∧ y.chair ∈ y.mems)},

which is what is also returned by the OQL query, COI2.

COIK
2 (6):

Query COIK
2 (6) generates TempK as a subquery result as in COIK

2 , but then filters this

result before proceeding with the join. The filtering subquery uses the predicate p3 which is

a predicate on pairs from TempK [p, S] that is equivalent to the OQL boolean expression,

EXISTS y IN S : (y.chair IN y.mems)

as illustrated by the derivation below:

(exists (ex (eq) ⊕ 〈chair, mems〉) ⊕ π2) ? [p, S]

= exists (ex (eq) ⊕ 〈chair, mems〉) ? (π2 ! [p, S])

= exists (ex (eq) ⊕ 〈chair, mems〉) ? S

= ∃y (y ∈ S ∧ (ex (eq) ⊕ 〈chair, mems〉) ? y)

= ∃y (y ∈ S ∧ ex (eq) ? (〈chair, mems〉 ! y))

= ∃y (y ∈ S ∧ ex (eq) ? [y.chair, y.mems])

= ∃y (y ∈ S ∧ ∃z (z ∈ y.mems ∧ eq ? [y.chair, z]))

= ∃y (y ∈ S ∧ ∃z (z ∈ y.mems ∧ y.chair == z))

= ∃y (y ∈ S ∧ (y.chair ∈ y.mems)).

Therefore, the result of filtering TempK is the set of party, subcommittee collection pairs

([p, S]) such that for some subcommittee in c ∈ S, c’s chair is also a member of c. The

intermediate result returned as a result of join is therefore:

join (r, π1) ! [Coms, iterate (p3, id) ! TempK]

62

= join (r, π1) ! [Coms, {|(id ! [p, S])j | [p, S]j ∈ TempK, p3 ? [p, S]|}]
= join (r, π1) ! [Coms, {[p, S] | [p, S] ∈ TempK , p3 ? [p, S]}]
= {|(π1 ! [x, [p, S]])i | xi ∈ Coms, [p, S] ∈ TempK , p3 ? [p, S], r ? [x, [p, S]]|}
= {|xi | xi ∈ Coms, [p, S] ∈ TempK , p3 ? [p, S], r ? [x, [p, S]]|}.

Because r ? [x, [p, S]] is true if

x.chair.pty == p

and p3 ? [p, S] is true if

∃y (y ∈ S ∧ (y.chair ∈ y.mems)),

this expression reduces to,

{|xi | xi ∈ Coms, [p, S] ∈ TempK, ∃y (y ∈ S ∧ (y.chair ∈ y.mems)), x.chair.pty == p|},

which is also what is returned by the OQL query, COI2.

3.4.2 A Rule Set for Rewriting the COI Queries

Figure 3.9 shows a set of KOLA rewrite rules that can be fired in the same sequence to

rewrite:

• COIK
1 → COIK

1∗ → COIK
1 , and

• COIK
2 → COIK

2 → COIK
2 .

(The KOLA transformation chain is slightly different than that presented for the OQL

versions of these queries in that COIK
1 is transformed into COIK

1∗ rather than vice-versa.)

The sequence used for these rules is:

1, 2, 3, 4, 5, 6, 5−1, 7, 5, 8, 9

such that 5−1 indicates that rule 5 is fired in right-to-left fashion. For the purposes of

discussion, this sequence can be broken down into four subsequences.10 To show the effects of

firing these rules, we illustrate by tracing the rewrite of query COIK
2 (Query 4 of Figure 3.8)

first into query COIK
2 (5) and then into COIK

2 (6). The steps of this query rewrite are

shown in Figure 3.10 and summarized below.
10These rewrites could instead be expressed with four rules (one for each subsequence), but these four

rules would be very complex and would make the specification of the rewrite harder to understand and
verify. Such complex rules also hide the fact that the simpler rules have general applicability (rules 4, 5
and 7 being the most obvious in this example). Thus, it was decided to keep rules as simple as possible
and to group rules into complex rewrites using COKO, as will be discussed in Section 4.

63

(1) ex (p) ⊕ 〈id, iter (q, π2) ◦ 〈id, Kf (B)〉〉 →= ex (q & p) ⊕ 〈id, Kf (B)〉
(2) set ! (iterate (ex (p) ⊕ 〈id, Kf (B)〉, f) ! A) →= set ! (join (p, f ◦ π1) ! [A, B])

(3) set ! (join (q & p, h ◦ π1) ! [A, B]) →=
set ! (join (r & (ex (p) ⊕ (id × π2)), h ◦ π1) ! [A, T])

such that
q = eq ⊕ (f × g)
r = eq ⊕ (f × π1)
T = njoin (eq ⊕ (id × g), id, id) ! [iterate (Kp (true), g) ! B, B]

(4) 〈f ◦ h, g ◦ h〉 →= 〈f, g〉 ◦ h

(5) p ⊕ (f ◦ g) →= (p ⊕ f) ⊕ g

(6) ex (p ⊕ π2)
→= exists (p) ⊕ π2

(7) π2 ◦ (f × g) →= g ◦ π2

(8) join (p & (q ⊕ π2), f) ! [A, B]
→= join (p, f) ! [A, iterate (q, id) ! B]

(9) id ◦ f
→= f

Figure 3.9: Rewrite Rules For the Query Rewrites of the “Conflict of Interests” Queries

Firing Rule 1: Rule 1 pulls a predicate (q) out of an inner query (iter (q, π2)) and into

the existential quantifier, ex. Matching rule 1 with COIK
2 binds pattern variables p and q

to KOLA predicates p2 and q. Rewriting then absorbs the predicate q in iter (q, π2) into

the existentially quantified predicate, resulting in ex (q & p2). In short, the result of firing

this rule on COIK
2 is a KOLA query equivalent to the OQL query,

SELECT DISTINCT x.chair

FROM x IN Coms

WHERE EXISTS y IN SComs : ((y.chair ∈ y.mems) AND (x.chair.pty == y.chair.pty)).

Firing Rules 2 and 3: Rules 2 and 3 together transform the query resulting from the

previous step into COIK
2 . Rule 2 fires on queries matching the head pattern

set ! (iterate (ex (p) ⊕ 〈id, Kf (B)〉, f) ! A).

This pattern characterizes nested OQL and SQL queries whose WHERE clause contains a

correlated membership or existence predicate (p). Once fired, Rule 2 transforms such queries

into the form,

set ! (join (p, f ◦ π1) ! [A, B]),

64

set ! (iterate (ex (p2) ⊕ 〈id, f〉, id) ! Coms)

p2 ≡ ex (eq) ⊕ 〈chair ◦ π2, mems ◦ π2〉
q ≡ eq ⊕ ((pty ◦ chair) × (pty ◦ chair))
f ≡ iter (q, π2) ◦ 〈id, Kf (SComs)〉

1→ set ! (iterate (ex (q & p2) ⊕ 〈id, Kf (SComs)〉, id) ! Coms)

2→ set ! (join (q & p2, id ◦ π1) ! [Coms, SComs])

3→ set ! (join (q & p2, id ◦ π1) ! [Coms, TempK])

TempK ≡ njoin (eq ⊕ (id × (pty ◦ chair)), id, id) !
[iterate (Kp (true), pty ◦ chair) ! SComs, SComs]

p2 ≡ ex (ex (eq) ⊕ 〈chair ◦ π2, mems ◦ π2〉) ⊕ (id × π2)
q ≡ eq ⊕ ((pty ◦ chair) × π1)

(a) The first transformation of COIK
2 to COIK

2

4→ set ! (join (q & p2, id ◦ π1) ! [Coms, TempK])
p2 ≡ ex (ex (eq) ⊕ (〈chair, mems〉 ◦ π2)) ⊕ (id × π2)

5→ set ! (join (q & p2, id ◦ π1) ! [Coms, TempK])
p2 ≡ ex (ex (eq) ⊕ 〈chair, mems〉 ⊕ π2) ⊕ (id × π2)

6,5−1

→ set ! (join (q & p2, id ◦ π1) ! [Coms, TempK])
p2 ≡ exists (ex (eq) ⊕ 〈chair, mems〉) ⊕ (π2 ◦ (id × π2))

7,5→ set ! (join (q & p2, id ◦ π1) ! [Coms, TempK])
p2 ≡ exists (ex (eq) ⊕ 〈chair, mems〉) ⊕ π2 ⊕ π2

8→ set ! (join (q, id ◦ π1) ! [Coms, iterate (p3, id) ! TempK])

TempK ≡ njoin (eq ⊕ (id × (pty ◦ chair)), id, id) !
[iterate (Kp (true), pty ◦ chair) ! SComs, SComs]

p3 ≡ exists (ex (eq) ⊕ 〈chair, mems〉) ⊕ π2

q ≡ eq ⊕ ((pty ◦ chair) × π1)

9→ set ! (join (q, π1) ! [Coms, iterate (p3, id) ! TempK])

(b) The second transformation of COIK
2 to COIK

2

Figure 3.10: Transforming COIK
2 → COIK

2 → COIK
2

65

thus eliminating the nesting by eliminating the existential predicate former, ex, and replac-

ing it with a join. Thus, this rule generalizes the Type N and Type J query transformations

of Kim [63].

Rule 3 is the most complex rule in this rule set. It fires on queries matching the head

pattern,

set ! (join (q & p, h ◦ π1) ! [A, B])

such that q = eq ⊕ (f × g). Queries matching this pattern return

{h ! a | a ∈ A, b ∈ B, f ! a == g ! b, p ? [a, b]}

as their result. What is noteworthy is that an element, (h ! a) only figures into the result

if there exists some b ∈ B such that f ! a == g ! b and p ? [a, b]. The idea behind rule

3 is to group elements of B by their values for (g ! b) so that the comparison,

f ! a == g ! b

need not be made for each b ∈ B but instead for each unique value of (g ! b). This grouping

is expressed with the body pattern subexpression,

T = njoin (eq ⊕ (id × g), id, id) ! [iterate (Kp (true), g) ! B, B]

that returns the grouped result,

{[g ! b, Sb] | b ∈ B}

such that

Sb = {|(b2)i | (b2)i ∈ B, g ! b == g ! b2|}.
That is, this subquery produces a set of pairs, [g ! b, Sb] such that Sb is the subcollection

of B whose elements have the same value for g as b.

The entire body pattern of rule 3 is:

set ! (join (r & (ex (p) ⊕ (id × π2)), h ◦ π1) ! [A, T])

such that r = eq ⊕ (f × π1). Queries rewritten to this form perform a join of A and T ,

and for each pair [a, [g ! b, Sb]] such that a ∈ A and [g ! b, Sb] ∈ T : determines if:

• f ! a == g ! b, and

• ∃ b2 ∈ Sb (p ? [a, b2]).

Finally, duplicates are removed from the result of this join. The result of firing these two

rules on COIK
2 is COIK

2 .

66

Firing Rules 4, 5, 6, 5−1, 7 and 5: These rules are fired on the predicate p2 of COIK
2 .

The effect is to normalize the predicate to make it of the form, p ⊕ π2 for some predicate

p. This sequence prepares it for the predicate pushdown rule, 8b.

When applied to COIK
2 , rule 4 factors the function π2 from the pair function,

〈chair ◦ π2, mems ◦ π2〉,

leaving

〈chair, mems〉 ◦ π2.

Rules 5, 6, 5−1, 7 and 5 again continue to factor π2 from p2, leaving a predicate, p2 ⊕ π2

such that

p2 = exists (ex (eq) ⊕ 〈chair, mems〉) ⊕ π2.

On the other hand, rule 4 fails to fire on COIK
1 ’s corresponding subfunction,

〈chair ◦ π1, mems ◦ π2〉.

The other rules that continue to factor π2 out of p (6 and 7) fail to fire also.

Firing Rule 8: This rule identifies the join predicate (p) that is a predicate on the second

argument to the join, and pushes this predicate onto a selection over this second argument.

Thus, the firing of this rule after the normalizing steps of the previous subsequence of rules

transforms COIK
2 into COIK

2 . This rule has no effect on COIK
1 because this query was not

normalized by the previous set of rule firings,

Firing Rule 9: Finally, rule 9 simplifies the data function of the join, rewriting id ◦ π1

to π1.

3.5 Discussion

3.5.1 The Expressive Power of KOLA

There are downsides to using KOLA as a query representation, but a lack of expressive

power for denoting queries is not one of them. Combinators can appear to lack expressivity

to those who first use them, but the right set of combinators can have rich expressive power.

For example, Schönfinkel [82] established that three combinators (S, K and I) were all that

were required as an alphabet for a free algebra over which one could translate all of the

lambda calculus. (It even was shown later that I was unnecessary.) Within the context of

67

querying, the rich expressivity of KOLA has been established via the design, correctness

proof and implementation of a translator from a set and bag based subset of OQL to KOLA.

This translator is described in Chapter 6.

3.5.2 Addressing the Downsides of KOLA

KOLA Query Representations Are Large

KOLA query representations tend to be larger than their variable-based counterparts (as

measured in parse tree nodes). The size increase is up to a factor of m where m is a

measure of how nested the query is.11 Intuitively, combinator representations are bigger

because functions can require expression with several parse tree nodes, whereas variable

referencces (which they replace) always require just one node. Deeply nested queries can

be especially problematic because variables that are used long after they are declared will

be replaced by functions that are long compositions of projection functions (π1 and π2)

that probe the nested pair data structures that replace the variable’s implicitly constructed

environment.

The representation size issue has been a major concern to the functional programming

community’s effort to use combinators internally to represent functional programs within a

compiler. One solution applied to this problem is to add combinators to the representation

language at the expense of redundancy. Also, a solution has been proposed that has special-

purpose combinators (supercombinators) generated on-the-fly [52].

The supercombinator approach has little practical benefit for querying given that query

rewriting relies on the existence of a fixed set of query operators. But queries tend to be

smaller than programs, and thus such drastic solutions may not be required. We could

get around the problem of having large representations for deeply nested queries by adding

special purpose environment accessing combinators (e.g., π3, π4, . . .) to make the increase in

representation size effectively linear in the size of the original query. But as yet, we haven’t

come across queries that have produced representations that were too large for our system.

The potential modification of KOLA brings up another philosophical issue, which is that

this thesis does not argue for KOLA as the ideal query algebra, but rather for the benefits of

(any) well-designed combinator-based query algebra. KOLA has been and continues to be

plastic – operators are added, removed and modified regularly as new insights are gleaned

into the optimization process. Thus, the potential addition of combinators (such as π3) will
11More precisely, m is the maximum number of variables that ever appear in an environment at one time

while evaluating the variable-based query.

68

not compromise our position. We fully expect KOLA to live and grow.

KOLA Requires More Rules than Variable-Based Representations

The other downside to KOLA specifically, and combinator-based query algebras in general,

is the apparent need for multiple rules to express desired transformations. In some ways, this

problem is self-induced. KOLA rules are purposely kept as small as possible to make them

more likely to be reused and understood. But optimizers that are left on their own to choose

a sequence in which to apply multiple rules to perform a single complex transformation are

greatly handicapped when there is an explosion in the number of rules to consider.

As we saw in Section 3.4.2, a fixed sequence of rule applications (perhaps with some rules

applied conditionally) can express a complex transformation for a large class of queries. This

makes a specific sequence of rule firings resemble a theorem prover script that guides normal-

ization of one expression into another to establish that the two expressions are equivalent.

This similarity reveals a serendipitous detail of this thesis work. Theorem prover verifiabil-

ity inspired KOLA, but actually working with a theorem prover and seeing how it operated

motivated COKO, our language for “programming” KOLA rule firing scripts. COKO is

discussed in the next section.

3.6 Chapter Summary

In order to use a theorem prover to verify query rewrites, rewrites must be expressed

declaratively, as in rewrite rules of term rewriting systems. In practice however, query

rewrites get expressed with code, or with rewrite rules supplemented with code.

Query rewrites perform two tasks: (1) subexpression identification identifies relevant

subexpressions of a query, and (2) query formulation constructs new query expressions

from the identified subexpressions. These two steps are captured within standard pattern

matching by actions that use head and body patterns of a rule respectively. But pattern

matching is insufficient for expressing query rewrites when the underlying query represen-

tation is variable-based. The problem is that an expression can contain free variables, which

make its semantics dependent on the context in which it appears. Context-dependent se-

mantics makes subexpression identification require context analysis, and query formulation

require massaging of subexpressions to ensure that their semantics are preserved when used

in a new query. Neither of these actions can be expressed with rule patterns, and therefore

in practice, they get expressed with code.

69

As variables are the problem, our solution was to remove the variables. We have intro-

duced the combinator-based query algebra, KOLA, which expresses functions and predicates

as primitives or as the result of instantiating formers with other functions and predicates.

This approach made it possible to express query rewrites that had been problematic to

express over variable-based representations, in a purely declarative fashion.

Chapter 4

COKO: Complex Query Rewrites

Our KOLA work only partially explains the reason why, in practice, query rewrites get

expressed with code. Rewrite rules are inherently “small” in their operation. They are

well-suited for expressing simple rewrites, such as ones that change the order of arguments

to a join or push selections past joins. But some query rewrites are too complex to be

expressed with rewrite rules, regardless of the underlying query representation. For exam-

ple, a rewrite to convert Boolean expressions to conjunctive normal form (CNF) cannot be

expressed with a rewrite rule because patterns are too constraining to capture its general-

ity. (All boolean expressions can be transformed into CNF.) Instead, this rewrite is more

appropriately described algorithmically. In this chapter, we introduce a language, COKO,1)

for specifying complex query rewrites such as CNF, in a manner that permits verification

with a theorem prover.

A COKO specification of a query rewrite (a transformation) consists of two parts:

1. a set of KOLA rewrite rules, and

2. a firing algorithm that specifies how the KOLA rewrite rules are to be fired.

Code is confined to firing algorithms that specify the order in which KOLA rewrite rules

are fired, the query subexpressions on which rules are fired and the conditions that must

be satisfied for firing to occur. Code is not used to rewrite queries. Instead, rewriting

occurs only by firing KOLA rewrite rules. Therefore, a COKO transformation is correct if

each of the KOLA rewrite rules it fires is correct. We showed in Chapter 3 that a theorem

prover can verify KOLA rewrite rules. By implication, a theorem prover can verify COKO

transformations also.
1COKO is an acronym for [C]ontrol [O]f [K]OLA [O]ptimizations.

70

71

This work generalizes and extends KOLA. COKO transformations behave like rewrite

rules in that they can be fired and can succeed or fail as a result. Therefore, the set of

“rules” maintained by a rule-based optimizer could include KOLA rules to express simple

query rewrites, and COKO transformations to express complex query rewrites. COKO

transformations are also built from KOLA rules. By grouping sets of KOLA rewrite rules

into COKO transformations, one can control the number of derivations produced by a rule-

based optimizer. Further, the modular approach of expressing complex transformations in

terms of simpler rewrite rules simplifies reasoning about the meanings of rewrites, just as

expressing complex KOLA queries in terms of simpler functions simplified reasoning about

the meanings of queries.

We begin this chapter in Section 4.1 by describing why COKO is necessary, and why

general purpose programming languages such as C do not satisfy our goal of expressing com-

plex query rewrites in a manner permitting verification with a theorem prover. We then

introduce COKO in Section 4.2 with three example transformations that convert KOLA

predicates into CNF. These examples also show how firing algorithms can determine the

performance of query rewriting.2 We discuss COKO’s language of firing algorithms fully

in Section 4.3. Then in Sections 4.4, 4.5, and 4.6 we demonstrate the expressive power

of COKO by showing how we were able to specify a number of complex, yet useful query

rewrites. These rewrites include a normalization (SNF) to identify subpredicates of a bi-

nary predicate that are effectively unary (Section 4.4), and some common rewrites such

as predicate-pushdown (Section 4.5.1), join-reordering (Section 4.5.2) and the magic-sets

rewrites of Mumick et al. [74] (Section 4.6).

4.1 Why COKO?

A complex query rewrite such as CNF cannot be expressed with a rewrite rule. Such

rewrites are best described algorithmically. But why invent a new language for expressing

these query rewrites? Why not use a general purpose programming language (such as C)

to express rewrites as in Starburst?

What COKO provides that general purpose programming languages do not is disciplined

query rewriting. COKO transformations are expressed algorithmically, but modifications

of queries can only occur as a result of firing rewrite rules. This restriction ensures that

COKO transformations are correct if the KOLA rewrite rules they fire are correct. Given
2Note that the performance of query rewriting differs from the performance of queries produced as the
result of rewriting.

72

the results of Chapter 3, COKO transformations can therefore be verified with a theorem

prover.

On the other hand, languages like C do not impose this discipline. Query rewrites

expressed in C might use assignment statements both to modify a query and to change the

position of a cursor within the query representation (e.g., as the representation is traversed).

This dual use of assignment statements makes it difficult to identify which parts of the

rewrite code make changes to a query representation, and therefore which parts require

verification. Also, assignment statements are much finer-grained modification primitives

than are rule firings. The changes made to a query by one rule may have to be expressed

with several assignment statements, each but the last leaving the query in an inconsistent

state. Thus, verification is also complicated by the need to consider the flow of control of

the rewrite code to determine if consistent states are revisited once left.

All of this is not to say that correct query rewrites cannot be written in C. Of course

they can, but incorrect query rewrites can be written in C also and discerning between

them is difficult. Writers of COKO transformations have a far easier task as they are using

a language that permits easy identification of proof obligations (i.e., rules), and can use a

theorem prover to help with the task of proving the rules correct.

4.2 Example 1: CNF

In this section, we introduce COKO by presenting COKO transformations that rewrite

KOLA predicates into CNF. These transformations demonstrate the potential performance

benefits possible from customizing firing algorithms.

We first describe what CNF means for KOLA predicates, and show three COKO trans-

formations that rewrite predicates to CNF. The first two transformations are exhaustive in

that they simply fire some set of KOLA rules on a query until rule firing no longer has any

effect. The last transformation uses a more efficient rewrite algorithm than the exhaustive

algorithms, thereby demonstrating that COKO firing algorithms can do more than just

group rules.

4.2.1 CNF for KOLA Predicates

A boolean subexpression of an OQL or SQL query is in CNF if it is a conjunct (AND)

of disjuncts (OR) of (possibly negated (NOT)) literals (i.e., expressions lacking conjuncts,

disjuncts and negations). A query rewrite to convert predicates into CNF is a typical

73

preprocessing step in the course of rewriting. For example, this rewrite might be fired

before selection predicates are reordered.

A KOLA predicate p is in CNF if for any argument x, p ? x reduces by the definitions

of Tables 3.1, 3.2, and 3.3 to a boolean expression that is in CNF. Put another way, p is

in CNF if it is a conjunction (&) of disjunctions (|) of (possibly negated (∼)) literals (i.e.,

predicates lacking subpredicates of forms, (q & r), (q | r) or (∼ (q))).

Figures 4.1a and 4.1b shows example KOLA predicates over the Thomas schema of

Table 2.1. Both queries contain subpredicates (literals) over pairs of committees ([x, y])

• Pk: which when invoked on a pair, [x, y] is equivalent to the OQL expresssion,

x.chair.pty == y.chair.pty,

• Qk: which when invoked on a pair, [x, y] is equivalent to the OQL expresssion,

x.chair.terms > y.chair.terms,

• Rk: which when invoked on a pair, [x, y] is equivalent to the OQL expresssion,

x.topic == ‘‘NSF’’, and

• Sk: which when invoked on a pair, [x, y] is equivalent to the OQL expresssion,

(x.chair.terms + SUM

(
SELECT y.terms

FROM y IN x.mems

)
) > 100

The query of Figure 4.1b is equivalent to that of Figure 4.1a, but is in CNF.

4.2.2 An Exhaustive Firing Algorithm

Figure 4.2 shows two COKO transformations that convert KOLA predicates lacking nega-

tions (i.e., subpredicates of the form, ∼ (p)) into CNF. A COKO transformation begins

with the keyword, TRANSFORMATION, followed by the name of the transformation. The rest

of the transformation consists of two parts:

• a rule section (introduced by the keyword, USES) that lists the KOLA rewrite rules

and other COKO transformations fired by the transformation, and

• a firing algorithm (delimited by keywords BEGIN and END).

74

(Pk & Qk & Rk) | Sk (Pk | Sk) & (Qk | Sk) & (Rk | Sk)
(a) (b)

such that

Pk = eq ⊕ 〈f ◦ π1, f ◦ π2〉,
Qk = gt ⊕ 〈g ◦ π1, g ◦ π2〉,
Rk = eq ⊕ 〈topic ◦ π1, Kf (‘‘NSF’’)〉,
Sk = gt ⊕ 〈add ◦ 〈g ◦ π1, sum ◦ h ◦ mems ◦ π1〉, Kf (100)〉

f = pty ◦ chair
g = terms ◦ chair
h = iterate (Kp (true), terms)

Figure 4.1: A KOLA Predicate Before (a) and After (b) its Transformable into CNF

TRANSFORMATION CNF-BU
USES

d1: (p & q) | r →= (p | r) & (q | r)
d2: r | (p & q) →= (p | r) & (q | r)

BEGIN
BU {d1 || d2} → CNF-BU

END

TRANSFORMATION CNF-TD
USES

d1: (p & q) | r →= (p | r) & (q | r)
d2: r | (p & q) →= (p | r) & (q | r)

BEGIN
TD {d1 || d2} → CNF-TD

END

(a) (b)

Figure 4.2: Exhaustive CNF Transformations Expressed in COKO

A COKO transformation can be fired on any KOLA parse tree (example KOLA parse

trees are shown in Figure 4.3), and may transform this tree as a result. In describing the

transformations of Figure 4.4, we will assume that they have been fired on the parse tree

for some KOLA predicate p. Hereafter, we will use p to name the KOLA predicate and its

parse tree and rely on context to differentiate between the two.

CNF-BU

CNF-BU uses two KOLA rewrite rules that distribute disjunctions over conjunctions:

d1 : (p & q) | r →= (p | r) & (q | r)
d2 : r | (p & q) →= (p | r) & (q | r)

75

1

2 3

4

6

7

5

21

(a) (b)

Fires d1

Pk

&

|

&

&

| |

&

Fires d1

Qk Rk

Sk

Pk Sk Sk

Qk Rk

3

4 5

6 7

8

9

21

(c)

&

& &

| |Sk

Sk Sk

Pk

Qk Rk

3

4 5

6

7 8

9

10

11

Figure 4.3: Illustrating CNF-BU on the KOLA Predicate of Figure 4.1a

In relation to a KOLA parse tree, the effect of either rule is to “push down” a disjunction

(|) past a conjunction (&). Fired exhaustively on an unnegated predicate, these rules “push

down” all disjuncts past all conjuncts, thereby leaving the predicate in CNF.

The firing algorithm for CNF-BU consists of the single complex COKO statement,

BU {d1 || d2} → CNF-BU.

This statement can be broken down as follows:

• d1 and d2 are rule firing statements. That is, by referencing these rules in the firing

algorithm (and provided each was defined in the rule section), these rules get fired.

Each rule succeeds in firing if, as a result of pattern matching, its head pattern matches

with the KOLA predicate on which it is fired.

• BU {d1 || d2} instructs the transformation to perform a bottom-up (or more accurately,

a preorder) traversal of predicate p, executing the statement,

{d1 || d2}

on each visited subtree, s. The effect of executing this statement on s is to first fire

d1 on s. If d1 succeeds in firing, then the statement is finished executing. If d1 fails

to fire, then d2 is fired on s. This statement succeeds if either d1 or d2 successfully

fires, and fails if both rules fail. The full statement

BU {d1 || d2}

succeeds if the statement,

{d1 || d2}

76

succeeds when executed on any subtree. Therefore, the effect of this statement as a

whole is to perform a bottom-up pass of p, firing d1 and d2 on each visited subtree

and succeeding if one of these rules successfully fires once.

• BU {d1 || d2} → CNF-BU executes the statement,

BU {d1 || d2},

and if it succeeds, fires CNF-BU recursively. Therefore, the effect of this statement (and

the transformation as a whole) is to perform successive bottom-up passes of p, firing

rules d1 and d2, and continuing with new passes until a pass of p is completed where

no rules have successfully fired. Put another way, this transformation fires rules d1

and d2 exhaustively in bottom-up fashion.

Figure 4.3 illustrates the effect of firing CNF-BU on the KOLA predicate of Figure 4.1a.

Figure 4.3a shows the parse tree representation of this predicate before it is transformed.

The bottom-up pass visits the subtrees rooted at shaded nodes of the initial tree in the

order indicated beneath each. Attempts to fire d1 and d2 on each proper subtree fail. But

d1 successfully fires on the root, resulting in the predicate tree of Figure 4.3b. Because

d1 successfully fired, another bottom-up pass is initiated on the tree resulting from firing

(Figure 4.3b). Rule d1 fires successfully on the 8th subtree visited during this pass, resulting

in the parse tree of Figure 4.3c. A final pass is performed over this parse tree where no

rules successfully fire. Therefore, the tree of Figure 4.3c is returned as the final result of

the transformation.

CNF-TD

Transformation CNF-TD (Figure 4.2b) is also an exhaustive algorithm for CNF. Unlike

CNF-BU, CNF-TD fires rules in top-down (i.e., inorder) fashion during each pass, as indi-

cated by the COKO operator TD. For CNF, the order in which subtrees are visited makes

no difference to the final result. Rules d1 and d2 form a confluent set — the same result

is returned no matter what order these rules are fired and no matter in what order parse

trees are visited, provided that these rules are fired exhaustively.

Though the order in which subtrees are visited during rule firing has no effect on the

predicate that results, order does affect the performance of the query rewrite itself. Table 4.1

shows a performance comparison of CNF-TD and CNF-BU. The transformations were compiled

with our COKO compiler (described in Section 4.3.3) into C++ code which in turn was

compiled on Sparcstation 10’s using the Sun C++ compiler. For each height class, both

77

Height Elapsed CPU
CNF-TD CNF-BU CNF-TD CNF-BU

4 0.17 0.17 0.07 0.07
5 0.42 0.48 0.23 0.26
6 1.19 2.05 1.07 1.68
7 3.24 4.18 3.05 3.98
8 7.71 12.95 6.69 11.63

Table 4.1: Average Times (in seconds) for CNF-TD and CNF-BU

transformations were run on the same 25 randomly generated queries. Both the elapsed

time (the total time taken by the system to perform the rewrite) and the CPU time (the

time for which the CPU is busy) were measured, and the times for all 25 queries were

averaged.

For CNF, top-down exhaustive firing has better performance overall than bottom-up

exhaustive firing. The performance discrepancy is due to the rules involved in these trans-

formations. Consider that the result of firing either rule successfully is a conjunction of

the form, (p | r) & (q | r). If additional rule firings are required, it would be because p

(Case 1), q (Case 2) or r (Case 3) are of the form p1 & p2, or because (Case 4) the entire

predicate is a subpredicate, p1 of some disjunctive predicate, p1 | p2. Each of the four cases

is equally likely given that our randomized query generating algorithm decides that a node

is a conjunct or disjunct with equal probability. But top-down passes of the query tree will

“catch” cases 1, 2 or 3 on the same pass that resulted in the initial firing because p, q and

r will be subtrees of the newly formed predicate. On the other hand, a bottom-up pass

will only “catch” case 4 on the same pass as the initial firing, and will require an additional

pass to “catch” cases 1, 2 and 3. Therefore, a bottom-up transformation is more likely to

require an additional pass to deal with the repercussions of a successful rule firing. This

example illustrates how even subtle differences in firing algorithms such as traversal order

can result in differences in performance. As we show below, the performance differences

become marked when exhaustive firing algorithms can be avoided altogether.

4.2.3 A Non-Exhaustive Firing Algorithm for CNF

Figure 4.4 shows an alternative COKO transformation (CNF) that rewrites KOLA predicates

into CNF using a firing algorithm that is more efficient than the exhaustive algorithms of

CNF-BU and CNF-TD. When CNF is fired on a predicate p, the statement

BU CNFAux

78

TRANSFORMATION CNF
USES
CNFAux

BEGIN
BU CNFAux

END

TRANSFORMATION CNFAux
USES

d1: (p & q) | r →= (p | r) & (q | r)
d2: r | (p & q) →= (p | r) & (q | r)

BEGIN
{d1 || d2} →

{GIVEN p′ & q′ DO {CNFAux (p′); CNFAux (q′)}}
END

(a) (b)

Figure 4.4: An Efficient CNF Transformation

performs a bottom-up pass of p, firing the auxiliary transformation, CNFAux on every subtree

of p. The effect of firing CNFAux on a subtree s is described below:

1. As in CNF-BU and CNF-TD, {d1 || d2} fires d1 on s, and then fires d2 on s if d1 fails.

2. Successful firing of either d1 or d2 results in the execution of the statement,

{GIVEN p′ & q′ DO {CNFAux(p′); CNFAux(q′)}}

on the predicate resulting from firing. This predicate will have the form,

(p | r) & (q | r).

The pattern, (p′ & q′) that follows the keyword GIVEN is matched with this predi-

cate (i.e., p′ gets bound to (p | r) and q′ gets bound to (q | r)) and CNFAux is fired

recursively on the subtrees bound to p′ and q′ respectively.

In short, CNF performs a bottom-up (BU) pass of p, firing the auxiliary transformation,

CNFAux, on each visited subtree. CNFAux fires rewrite rules d1 and d2 and if either succeeds,

initiates top-down passes on the conjunct subtrees that result from rule firing (by recursively

firing CNFAux). Each top-down pass proceeds until a subtree is visited on which both d1

and d2 fail to fire.

The effect of this transformation on the KOLA predicate of Figure 4.1a are illustrated

in Figure 4.5. Figure 4.5a shows the parse tree representation of this predicate before it is

transformed. The bottom-up pass visits the shaded nodes of the initial tree in the order

indicated beneath each. The firing of CNFAux fires d1 and d2. CNFAux fails to fire both

rules (and therefore fails to fire) on every visited subtree except the root which is visited

79

1

2 3

4

6

7

5 21

(a) (b)

Fires d1

Pk

&

|

&

&

| |

&

Fires d1

Qk Rk

Sk

Pk Sk Sk

Qk Rk

21

(c)

&

& &

| |Sk

Sk Sk

Pk

Qk Rk

Figure 4.5: Illustrating the CNF Firing Algorithm on the KOLA Predicate of Figure 4.1a

Height Elapsed CPU
CNF-TD CNF CNF-TD CNF

4 0.17 0.15 0.07 0.05
5 0.42 0.20 0.23 0.10
6 1.19 0.35 1.07 0.24
7 3.24 0.59 3.05 0.48
8 7.71 1.35 6.69 1.17

Table 4.2: Average Times (in seconds) for CNF-TD and CNF

last (node 7). Firing d1 on the root results in the predicate tree of Figure 4.5b. Because

d1 successfully fired, CNFAux is fired recursively on the two disjuncts produced from firing

(the subtrees rooted by the shaded nodes of Figure 4.5b). Firing d1 and d2 on the first

of these subtrees fails, and therefore terminates the top-down pass of this subtree. But d1

fires successfully on the second subtree, producing the predicate tree of Figure 4.5c. Again,

successful firing initiates recursive firings of CNFAux on the subtrees rooted by the shaded

nodes of Figure 4.5c. d1 and d2 fail to fire on both subtrees, and the tree of Figure 4.5c is

returned.

Table 4.2 shows a performance comparison of the more efficient of the two exhaustive

CNF transformations (CNF-TD) and CNF. CNF was run on the same 25 randomly generated

queries as was used for the comparisons of Table 4.1. As before, both the elapsed time (the

total time taken by the system to perform the transformation) and the CPU time (the time

for which the CPU is busy) were measured, and the times for all 25 queries were averaged.

CNF exhibits far better performance than either of the exhaustive transformations. (For

predicates of height 8, performance was improved by a factor of 6.) Intuitively, this is

80

because CNF is discriminating in how it fires rules:

• Successful firing of either d1 and d2 requires both exhaustive transformations to per-

form additional passes over the entire query tree. On the other hand, successful firing

of either rule requires CNF to perform passes over only selected parts of the query tree.

• The exhaustive transformations require a complete pass of failed rule firings in order

to terminate. This pass is not required by transformation CNF.

The savings in rule firings is illustrated by considering how all three transformations

transform the KOLA predicate,

(Pk & Qk & Rk) | Sk.

CNF performs one complete and two partial passes over this predicate’s representation,

firing rules 20 times with two firings succeeding. On the other hand, CNF-TD performs

two complete passes over this predicate’s representation, firing rules 42 times with two

succeeding. CNF-TD performs three complete passes over this predicate’s representation,

firing rules 52 times with two succeeding.3

Exhibited Features of COKO Firing Algorithms

CNF exhibits the fine-grained control of rule and transformation firing supported by COKO

firing algorithms. It is this control that makes it possible to express efficient query rewrites.

COKO supports four forms of rule-firing control:

• Explicit Firing: Rewrite rules used within a transformation are named (e.g., d1 and

d2) and explicitly fired by the firing algorithm.

• Traversal Control: Both bottom-up (in CNF) and top-down (in CNFAux) passes can be

performed in the course of rewriting predicates into CNF.

• Selective firing: CNFAux is fired recursively on the two disjuncts that result from

successful firings of either d1 or d2. CNFAux is not fired on the conjunct resulting from

these firings because both d1 and d2 can only succeed on trees rooted by “|”.
3For simplicity, we count each rule’s firing on a literal (such as Pk) as one firing. In fact, each literal
is a subtree with multiple nodes. Therefore, visiting a literal results in more than one firing. These
uncounted firings are the same for each algorithm. However, CNF will visit literals less frequently than
the exhaustive transformations, and therefore will exhibit even better performance in comparison.

81

• Conditional firing: Some firings are conditioned on the success or failure of previous

firings. E.g., CNFAux fires d2 only if d1 fails; CNFAux is only fired recursively if one of

the rules d1 or d2 succeeds.

Correctness of CNF

Theorem 4.2.1 (Correctness) CNF is correct.

Proof: All query modification performed by CNF occurs as result of firing CNFAux, which in

turn occurs as result of firing rules d1 and d2. Therefore, CNF is correct if both rewrite rules

are correct. Rules d1 and d2 are proved correct by execution of the theorem prover scripts

of Appendix B.1 using LP [46]. �

Proof that CNF transforms all KOLA predicates into CNF follows below.

Lemma 4.2.1 Let p be a KOLA predicate tree lacking negations, and whose child subtrees

are in CNF. Then CNFAux (p) is in CNF.

Proof: (By induction on the height, h(p) of the highest &-node in p.) For the base case

(h(p) = 0) p must contain no &-nodes and therefore is in CNF and is returned untouched

by CNFAux. For the inductive case, either p is already in CNF and is returned untouched,

or p is not in CNF and is a disjunction, Q | R such that Q and R are in CNF and at least

one of Q or R is a conjunction (x0 & x1). For the case where exactly one of Q and R is

a conjunction, assume without loss of generality that Q is a conjunction. Then, h(Q) is

larger than both h(x0) and h(x1) because both x0 and x1 are children of a &-node. Further,

because R is in CNF it has no &-nodes and therefore h(p) = h(Q). Firing d1 on (Q | R)

returns (S & T) such that S = (x0 | R) and T = (x1 | R), and CNFAux is subsequently fired

on S and T . But h(S) = h(x0) and h(T) = h(x1) and therefore by induction, these firings

result in trees that are in CNF. Therefore, the tree returned by CNFAux (p) is in CNF.

For the case where both Q (x0 & x1) and R (y0 & y1) are conjunctions, h(p) is larger

than h(x0), h(x1), h(y0) and h(y0) as all of the latter subtrees are children of &-nodes.

Firing CNFAux on p fires d1 once, and d2 on each of the resulting disjuncts, leaving

(S1 & S2) & (T1 & T2)

such that S1 = (x0 | y0), S2 = (x1 | y0), T1 = (x0 | y1) and T2 = (x0 | y1). CNFAux is fired

on each of S1, S2, T1 and T2 and by induction, each of these firings return a predicate in

CNF. Therefore, CNFAux (p) is in CNF. �

82

TRANSFORMATION CNF-NEG
USES
CNF,

involution: ∼ (∼ (p)) →= p,

deMorgan1: ∼ (p & q) →= ∼ (p) | ∼ (q),
deMorgan2: ∼ (p | q) →= ∼ (p) & ∼ (q)
BEGIN
TD {involution || deMorgan1 || deMorgan2};
BU {involution};
CNF
END

Figure 4.6: The Full CNF Transformation Expressed in COKO

Theorem 4.2.2 Let p be any KOLA predicate lacking negations. Then CNF (p) is in CNF.

Proof: Note that CNF (p) fires CNFAux on every subtree visited during a bottom-up traversal

of p. By Lemma 4.2.1, each firing leaves a subtree in CNF, and therefore p is left in

CNF. �

Accounting for Negations

Figure 4.6 contains a COKO transformation that transforms all KOLA predicates into CNF,

including those with negations. Besides using CNF, this transformation includes three other

rules:

• involution eliminates double negations,

• deMorgan1 pushes down a negation past a conjunction, and

• deMorgan2 pushes down a negation past a disjunction.

The firing algorithm for the full CNF transformation executes two statements on the

argument tree, p before firing CNF. These statements effectively push negations to the bot-

tom of p’s query tree while ensuring that consecutive negations are eliminated. The first

statement performs a top-down pass of p firing the involution and deMorgan rules on each

subtree visited during the traversal. Involution is then performed in a bottom-up pass of

the resulting tree. This second pass is necessary because the first pass may construct doubly

negated predicates. For example, a predicate of the form,

∼ (∼ (p) & q)

83

will be transformed after the first pass to

∼ (∼ (p)) | ∼ (q)

which must be transformed by a second pass firing the involution rule to

p | ∼ (q).

Once all negations have been pushed to the bottom of the query (i.e., below all conjuncts and

disjuncts), the resulting predicate can then be transformed into CNF using transformation

CNF.

We have introduced COKO with a simple yet practical example. The normalization of

predicates into CNF is a typical preprocessing rewrite for useful rewrites such as one that

reorders selection predicates. We showed a COKO transformation (CNF) that performs this

rewrite for predicates lacking negations and a complete COKO transformation (CNF-NEG)

that removes this restriction and fires CNF as if it were a subroutine. Because its rules are

confluent, CNF can also be implemented with exhaustive firing algorithms as in CNF-BU

and CNF-TD. But exhaustive firing is an inefficient means of performing this transforma-

tion. Therefore, this example demonstrates the potential performance benefits from using

customized firing algorithms to express complex query rewrites.

4.3 The Language of COKO Firing Algorithms

The semantics of statements that appear in COKO transformation firing algorithms have

two parts:

• their operation (what they do when executed), and

• their success value (what they return as a result of execution).

Success values are truth values that indicate if a statement succeeds when executed. For

example, fired rules return success values of true if their head patterns match the expressions

on which they are fired. In general, success values are intended to indicate whether or not

a statement accomplishes what it is intended to do. Note that a success value of false does

not, in general, mean that a statement has failed to modify the expression on which it was

executed.

84

4.3.1 The COKO Language

Below we present COKO’s statements, categorizing them by the kinds of firing control they

provide. Each is presented with its operation and success value semantics. For the purposes

of discussion, we assume that statements are contained in some transformation that has

been fired on some KOLA query tree, p.

Explicit Firing

Rules and transformations declared in the USES section of a transformation can be fired as if

they were procedures invoked in a programming language such as C. Rules and transforma-

tions can be fired on subtrees of p named by pattern variables (see Section 4.3.1) or can be

fired on p directly, in which case no argument needs to be named. As well, rules that use the

same pattern variables in their heads and their bodies can be fired inversely. For example,

d1 of Figure 4.4 could be fired inversely (d1 INV) to factor a common subexpression (r)

from a conjunction of disjuncts. Rule (and inverse rule) firings return true as their success

values if they successfully fire. Transformation firings succeed if the complex statements

that are their main bodies succeed (see Section 4.3.1).

Traversal Control

Query trees can be traversed in bottom-up (postorder) or top-down (preorder) fashion. For

any statement S,

BU S

performs a bottom-up pass of p executing S on every subtree. Analagously, TD S executes

S on every subtree during a top-down pass of p. Both traversal statements return a success

value of true if S succeeds when fired on some subtree visited during the traversal. Also,

REPEAT S

fires S repeatedly on p until S no longer succeeds, and returns a success value of true if

S succeeds at least once. Thus far, we have found BU, TD and REPEAT to be sufficient for

expressing the kinds of traversal control we have needed to express for our firing algorithms.

Our COKO compiler could be easily extended however, should we determine the need for

another form of traversal control at a later point.

85

Selective Firing

Rules and transformations need not be fired on all of p and can instead be fired on selected

subtrees of p. These subtrees are identified by matching patterns to query trees using

COKO’s GIVEN statement.

GIVEN patterns are like rule patterns, but can also include “don’t care” variables (“ ”),4

which act like pattern variables, but whose bindings are ignored. The COKO matching

statement, GIVEN, identifies these patterns with variables, producing environments for use

in subsequent statements. A GIVEN statement has the form,

GIVEN eqn1, . . ., eqnn DO S.

such that S is any COKO statement, and each “equation”, eqni is of the form,

<variablei > = <patterni >

(or just patterni, if this pattern is to be matched with all of p). The processing of eqni results

in an attempted match of patterni with the tree previously bound to variablei. Successful

matching adds the variables appearing in patterni (and the subtrees that they matched) to

an environment that is then visible to equations appearing after eqni and S. The success

value for the entire GIVEN statement is true if all n equations successfully match.

Unlike most programming languages, the environment visible inside statement S can

shrink dynamically. Dynamically varying environments are necessary because environment

entries label parts of a tree that can become obsolete as a result of a rule or transformation

firing. To illustrate, suppose that the GIVEN statement,

GIVEN f ! , f = g ◦ , g = 〈h, π2〉 DO {transform-1 (g); transform-2 (h)}

were executed on the query,

(〈π1, π2〉 ◦ π1) ! [[x, y], z].

The result of matching the three equations is to create an environment consisting of the

labels f, g and h matched with the subtrees shown in Figure 4.7a.

Suppose that transform-1 is a transformation or rule that replaces g with a completely

new tree. For example, transform-1 could be the rule,

〈π1, π2〉 →= id.

4The COKO compiler recognizes four different “don’t care” variables denoting predicates (P), functions
(F), objects (O) and Bools (B) respectively. To simplify the presentation, we will use only a single
“don’t care” variable () for the examples presented in this thesis.

86

f −→

g −→

h −→

π1

[]

[]

x y

z

!

◦

id

π1

(b)
π2

◦

〈 〉

π1 π2

π1

[]

[]

x y

z

!

f −→

g −→

h −→

(a)

Figure 4.7: The Effects of a GIVEN Statement on Environments

Then the result of this firing would invalidate all variable bindings to trees that were proper

subtrees of g (i.e., h), as these would no longer point to valid subtrees. Thus, the result of

this firing would be to change the environment seen by the statement that follows to remove

invalidated variable bindings, to the transformed environment of Figure 4.7b that no longer

includes an entry for h.

The COKO compiler performs a dependency analysis of variables declared in matching

equations, and indicates at compile time if a variable is used after it is invalidated. Thus,

it would flag the firing of transform-2 (h) in this example as an error. In general, the

invalidation of a variable, v occurs following execution of some statement S provided that

S is a statement that modifies a query (i.e., a firing of a rule or another transformation),

and S is executed on some variable w such that v names a subtree of the tree named by w.

Conditional Firing

One can condition the execution of a COKO statement, S ′ on the result of a previous

statement, S in three ways:

• S → S ′ executes S and then executes S ′ if S succeeds. This statement succeeds if S

succeeds.

• S || S ′ executes S and then executes S ′ if S fails. This statement succeeds if S or S ′

succeed.

• S ; S ′ executes S and then executes S ′. This statement succeeds if either S or S ′

succeed.

87

The complex statement connector,“→” is right-associative, and “|” and “;” are left-associative.

One can override default associativities using braces ({}).

4.3.2 TRUE, FALSE and SKIP

TRUE, FALSE and SKIP allow one to circumvent the default success values associated with

COKO statements. For any statement, S,

TRUE S

executes S and returns a success value of true, regardless of the success value of S. (Similarly,

FALSE S returns a success value of false.)

The statement SKIP performs no action at all and returns a success value of true. This

statement is useful if one wants to define a transformation that returns a success value of true

only if it rewrites expressions to a particular form. For example, consider a transformation

whose purpose is to rewrite KOLA functions into constant functions (i.e., of the form,

Kf (x) for some x). It might be desirable to return a success value of true only if functions

that result from the transformation are of this form. However, the firing algorithm for

this transformation may be a complex statement, S that does not always return the proper

success value. In this case, one can achieve the desired effect by replacing the firing algorithm

with
FALSE S;

GIVEN Kf (x) DO SKIP

The effect of this firing algorithm is to first execute S. Then, if a constant function is

produced by S, the subsequent GIVEN statement succeeds and a success value of true is

returned (because the “;”-separated statement succeeds if either of the separated statements

succeeds, and because the GIVEN statement succeeds if the pattern, Kf (x) successfully

matches the expression resulting from executing S). If a constant function is not generated

by S, the GIVEN statement fails and so too does the transformation as a whole.

4.3.3 The COKO Compiler

We have implemented a compiler for COKO ([68]) that generates C++ classes from COKO

transformations. Objects of these generated classes manipulate KOLA trees according to

the firing algorithm of the compiled COKO transformation. The compiler has an object-

oriented design. Every COKO statement is implemented with its own C++ class. Each

of these classes is a subclass of the virtual class, Statement, and is obligated to define a

88

method exec that takes an environment of variable-to-KOLA tree bindings as input and

produces a transformed version of this environment as output. These environments include

entries for the trees on which each statement is executed.

The compilation of a COKO transformation generates a new subclass of Statement,

complete with an implementation of an exec method. The exec method definition for a

compiled transformation simply constructs a tree of COKO Statement objects correspond-

ing to the parse structure of the COKO code, and then invokes exec on the root. By

compiling COKO transformations into Statements, COKO’s language of firing algorithms

is made extensible even at the level of its implementation.

4.4 Example 2: “Separated Normal Form” (SNF)

In this section we describe a novel normalization and show its expression in COKO. The

normalization is of binary predicates, (in KOLA, predicates on pairs) and involves isolating

those subpredicates that act as unary predicates on just one argument. This normalization

is a useful preprocessing step when unary predicates need to be moved to other parts of

the query as in predicate-pushdown, join-reordering and magic-sets rewrites. Because this

normalization “separates” unary and binary subpredicates, we characterize the predicates

that result as being in “Separated Normal Form” or SNF.

The point of this example is to show that COKO transformations are expressive enough

to to be used in place of rules in existing rule-based systems. We make this point in several

ways:

• The SNF normalization is more complex than CNF, even firing CNF as part of its firing

algorithm. Therefore, COKO is expressive enough to capture complex normalizations.

• SNF is itself fired in the firing algorithms of many transformations that are not nor-

malizations. These include predicate-pushdown (Section 4.5.1), join-reordering (Sec-

tion 4.5.2) and Magic-Sets rewrites (Section 4.6). These examples show that COKO

can express a wide variety of complex rewrites in modular fashion.

• SNF is not usually thought of as a normalization, and as far as we know has not been

expressed before with declarative rewrite rules. Thus, COKO can express rewrites

that are usually expressed only with code.

89

4.4.1 Definitions

Intuitively, a KOLA binary predicate, op on pairs [x, y] is in SNF if it is of the form,

p & q & r

such that p is a unary predicate on x, q is a unary predicate on y and r is the minimal

subpredicate of op that is a predicate on both x and y. In this section, we present a

COKO transformation (SNF) that converts unnested SQL predicates into SNF. More formal

definitions follow.

Qualifications

A qualification predicate is defined by Ramakrishnan [80] as:

... a Boolean combination (i.e., an expression using the logical connectives AND,

OR and NOT) of conditions of the form expression cmp expression, where cmp is

one of the comparison operators {<, <=, =, <>, >=, >}, [and an] expression

is a column name, a constant or an arithmetic or string expression.

Essentially, qualifications are the predicates of unnested SQL queries.

KOLA qualification predicates are translations of SQL qualification predicates. They

are defined formally in terms of basic functions (the KOLA equivalents of expressions) and

basic predicates (the KOLA equivalents of conditions).

Definition 4.4.1 (Basic Functions) A basic function is a KOLA function of one of the

forms below:

• att ◦ π1 such that att is a primitive attribute (e.g., a column name),

• att ◦ π2 such that att is a primitive attribute,

• Kf (c) such that c is a constant, or

• op ◦ 〈f, g〉 such that f and g are basic functions and op is a binary primitive function

(e.g., add).

Definition 4.4.2 (Basic Predicate) A basic predicate is a predicate of the form,

p ⊕ 〈f , g〉

such that p is a binary primitive (eq, lt, gt, leq, geq or neq), and f and g are basic

functions.

90

Definition 4.4.3 (Qualifications) A KOLA qualification predicate is a predicate consist-

ing of conjunctions (&), disjunctions (|) and negations (∼) of basic predicates.

SNF

We begin by defining functions and predicates that are inherently binary. Intuitively, in-

herently binary functions and predicates cannot be simplified in any way that makes them

unary.

Definition 4.4.4 (Inherently Binary Functions) A KOLA function f is inherently bi-

nary if it is of either of the forms:

• op ◦ 〈f ◦ π1, g ◦ π2〉,

• op ◦ 〈f ◦ π2, g ◦ π1〉, or

• op ◦ 〈f, g〉 such that f or g is inherently binary.

Definition 4.4.5 (Inherently Binary Predicates) A KOLA predicate p is inherently

binary if it is of the form,

p ⊕ f

such that f is an inherently binary function, or of the form.

p | q

such that

• p or q is inherently binary, or

• one of p or q is of the form (r1 ⊕ π1) and the other is of the form (r2 ⊕ π2).

Definition 4.4.6 (SNF) A KOLA predicate p is in SNF if it is of the form,

(ρ ⊕ π1) & (σ ⊕ π2) & τ

such that τ is a conjunction,

τ1 & . . . & τm

of inherently binary and constant (Kp (b)) predicates.

91

(ρ ⊕ π1) & (σ ⊕ π2) & τ such that

ρ = (R2k | S2k)
σ = Kp (true)
τ = ((Pk | (S2k ⊕ π1)) & (Qk | (S2k ⊕ π1)))

Pk = eq ⊕ 〈f ◦ π1, f ◦ π2〉,
Qk = gt ⊕ 〈g ◦ π1, g ◦ π2〉,
R2k = eq ⊕ (〈id, Kf (‘‘NSF’’)〉 ◦ topic)
S2k = gt ⊕ (〈id, Kf (100)〉 ◦ (add ◦ 〈g, sum ◦ h ◦ mems〉))

f = pty ◦ chair
g = terms ◦ chair
h = iterate (Kp (true), terms)

Figure 4.8: The SQL/KOLA Predicates of Figure 4.1 in SNF

Given any pair argument [x, y], (ρk ⊕ π1) ? [x, y] = ρk ? x and therefore ρk denotes

a predicate that requires only the first of its arguments. Similarly, σk denotes a predicate

requiring the second argument. The restriction that τ consist of inherently binary predicates

ensures that a predicate in SNF has “moved” as many non-constant subpredicates into ρ

and σ as possible. Figure 4.8 shows the SNF equivalent of the KOLA predicates of Figure

4.1. Note that for this predicate, τ is a conjunction of inherently binary predicates,

Pk | (S2k ⊕ π1)

(which is inherently binary because Pk is inherently binary), and

Qk | (S2k ⊕ π1)

(which is inherently binary because Qk is inherently binary).

4.4.2 A COKO Transformation for SNF

A COKO transformation that rewrites qualification predicates into SNF is shown in Fig-

ure 4.9 and its auxiliary transformations are shown in Figure 4.10. The latter figure contains

three COKO transformations: SimpLits, LBConj and OrderConjs.

Tracing the Execution

The firing algorithm for transformation SNF of Figure 4.9 consists of the seven steps de-

scribed below. We demonstrate these steps by showing how this transformation rewrites

92

TRANSFORMATION SNF
USES
SimpLits, CNF, LBConj, OrderConjs,

init : p
→= (Kp (true) ⊕ π1) & (Kp (true) ⊕ π2) & Kp (true) & p,

pull1 : (p ⊕ f) | (q ⊕ f) →= (p | q) ⊕ f,

pull2 : (p ⊕ f) | Kp (b) →= (p | Kp (b)) ⊕ f,

pull3 : Kp (b) | (q ⊕ f) →= (Kp (b) | q) ⊕ f,

pull4 : Kp (b1) | Kp (b2) →= Kp (b1 OR b2),
simp : Kp (true) & p

→= p
BEGIN
SimpLits; -- (1)
CNF; -- (2)
init; -- (3)
BU {pull1 || pull2 || pull3 || pull4}; -- (4)
LBConj; -- (5)
OrderConjs; -- (6)
GIVEN (p ⊕ π1) & (q ⊕ π2) & r DO {simp (p); simp (q); simp (r)} -- (7)

END

Figure 4.9: The SNF Normalization Expressed in COKO

qualification predicate p of Figure 4.1a:

Pk = eq ⊕ 〈f ◦ π1, f ◦ π2〉,
Qk = gt ⊕ 〈g ◦ π1, g ◦ π2〉,
Rk = eq ⊕ 〈topic ◦ π1, Kf (‘‘NSF’’)〉,
Sk = gt ⊕ 〈add ◦ 〈g ◦ π1, sum ◦ h ◦ mems ◦ π1〉, Kf (100)〉

f = pty ◦ chair

g = terms ◦ chair

h = iterate (Kp (true), terms)

into the predicate of Figure 4.8. Figures 4.11 and 4.12 show the parse tree for this predicate

at various stages during the execution of the transformation. The original predicate tree is

shown in Figure 4.11a.

Step 1: The first step of SNF fires the transformation SimpLits (Simplify Literals) shown

in Figure 4.10. The effect of firing SimpLits is to reduce subpredicates of the form (p ⊕ f)

to the forms (p ⊕ π1) or (p ⊕ π2) if such a reduction is possible. More precisely, SimpLits

93

TRANSFORMATION SimpLits
USES

sft : f ◦ (g ◦ h) →= (f ◦ g) ◦ h

sl1 : 〈Kf (x), Kf (y)〉 →= Kf ([x, y]),
sl2 : f ◦ Kf (x) →= Kf (f ! x),
sl3 : 〈f, Kf (x)〉 →= 〈id, Kf (x)〉 ◦ f,

sl4 : 〈Kf (x), f〉 →= 〈Kf (x), id〉 ◦ f,

sl5 : 〈f ◦ h, g ◦ h〉 →= 〈f, g〉 ◦ h,

sl6 : p ⊕ (f ◦ g) →= p ⊕ f ⊕ g,

sl7 : p ⊕ Kf (x) →= Kp (p ? x)
BEGIN
BU {sl1 || sl2 || {{sl3 || sl4} → REPEAT sft} || sl5 || sl6 || sl7 || REPEAT sft}
END

TRANSFORMATION LBConj
USES
sftp : p & (q & r) −→ (p & q) & r
BEGIN
BU {sftp → {GIVEN p & DO LBConj (p)}}
END

TRANSFORMATION OrderConjs
USES

oc1 : (p ⊕ π1) & (q ⊕ π2) & r & (s ⊕ π1)
→= ((p & s) ⊕ π1) & (q ⊕ π2) & r,

oc2 : (p ⊕ π1) & (q ⊕ π2) & r & (s ⊕ π2)
→= (p ⊕ π1) & ((q & s) ⊕ π2) & r,

oc3 : (p ⊕ π1) & (q ⊕ π2) & r & s
→= (p ⊕ π1) & (q ⊕ π2) & (r & s)

BEGIN
BU {oc1 || oc2 || oc3}
END

Figure 4.10: Auxiliary Transformations Used by SNF

94

transforms any basic predicate lacking subfunctions of the form (f ◦ π1) to either of the

forms (p ⊕ π2) or Kp (x) (and similarly for predicates lacking (f ◦ π2) as a subfunction).

SimpLits performs a single bottom-up pass of the input predicate, firing rules

sl1, . . . , sl7

on each visited subtree. Rules sl1, . . . , sl5 only fire successfully on function subtrees while

sl6 and sl7 only fire successfully on predicate subtrees. Because the pass is bottom-up, a

basic predicate is visited only after its subfunctions are visited.

SimpLits rewrites Rk (to R2k) and Sk (to S2k) but has no effect on Pk or Qk. In rewriting

Rk, SimpLits first fires rule sl3 on its subfunction,

〈topic ◦ π1, Kf (‘‘NSF’’)〉

generating

〈id, Kf (‘‘NSF’’)〉 ◦ (topic ◦ π1).

The successful firing of sl3 triggers the firing of sft leaving

(〈id, Kf (‘‘NSF’’)〉 ◦ topic) ◦ π1.

Finally, rule sl6 fires on the entire predicate leaving (R2k ⊕ π1).

When fired on Sk, SimpLits first fires sl5 on its subfunction

〈g ◦ π1, sum ◦ h ◦ mems ◦ π1〉

leaving

〈g, sum ◦ h ◦ mems〉 ◦ π1.

Then, sl3, sft and sl6 fire, resulting in (S2k ⊕ π1). Therefore, the result of firing SimpLits

on p is

p1 = (Pk & Qk & (R2k ⊕ π1)) | (S2k ⊕ π1)

as illustrated in Figure 4.11b.

Step 2: Next, transformation CNF of Figure 4.4 is fired. Applied to p1, this firing results

in

p2 = (Pk | (S2k ⊕ π1)) & (Qk | (S2k ⊕ π1)) & ((R2k ⊕ π1) | (S2k ⊕ π1))

as illustrated in Figure 4.11c.

95

Step 3: Rule init is fired, appending trivial conjuncts to the current predicate. The

purpose of this step is to ensure the satisfaction of an invariant for Step 4 which performs

a bottom-up pass on the resulting predicate. This invariant establishes that every subtree

visited during this bottom-up pass is of the form,

(ρ ⊕ π1) & (σ ⊕ π2) & τ

such that τ is a conjunction of subpredicates to be “appended” to either ρ, σ or neither.

Fired on p2, this step results in

p3 = (Kp (true) ⊕ π1) & (Kp (true) ⊕ π2) & Kp (true) & p2

as illustrated in Figure 4.11d.

Step 4: This step executes the COKO statement,

BU {pull1 || pull2 || pull3 || pull4}.

The effect of firing these rules in bottom-up fashion is to “pull” common functions out of

disjuncts. For example, the result of executing pull1 on p3’s subpredicate,

(R2k ⊕ π1) | (S2k ⊕ π1)

is (R2k | S2k) ⊕ π1. Therefore, this step converts disjuncts to the forms (p ⊕ π1) or

(p ⊕ π2) where possible. Applied to p3, this statement results in

p4 =
((Kp (true) ⊕ π1) & (Kp (true) ⊕ π2) & Kp (true)) &

((Pk | (S2k ⊕ π1)) & (Qk | (S2k ⊕ π1)) & ((R2k | S2k) ⊕ π1)

as illustrated in Figure 4.11e.

Step 5: This step executes the COKO transformation, LBComp. This transformation

rewrites a predicate that is in CNF,

p1 & p2 & . . . & pn

(with conjunctions associated in any way), into a predicate of the form,

(. . . (p1 & p2) & . . . & pn)

96

(a)
(b)

Pk

|
&

&

Sk

Rk

Qk

⊕
π1S2k

⊕
π1R2k

|

&

&

Pk Qk

(c)

Pk

|
&

S2kR2kQk

&

| | ⊕ ⊕
⊕ ⊕

π1 π1

π1 π1

S2k S2k

Kp

(d)

&

&

&

Pk

|
⊕

π1
S2k

Qk

|
⊕

π1S2k

|

R2k

⊕
π1 S2k

⊕
π1

&

Kp

true

&

⊕

π2

true

⊕

π1Kp

true

(e)

&

&

&

⊕
Kp

true

π1

⊕
Kp

true

π2

Kp

true

&

&

Pk

|
⊕

π1
S2k

Qk

|
⊕

π1S2k

|
R2k

⊕

S2k

π1

Figure 4.11: Tracing the effects of SNF on the Predicate p of Fig 4.1a (Part 1)

97

(h)

(g)

(f)

&

|
R2k

⊕

S2k

π1

&

Qk ⊕
|

π1S2k

&

Pk

S2k

|
⊕

π1

&

Kp

true

&

π1

⊕
Kp

true

⊕
Kp π2

true

&

⊕
Kp π2|

R2k

⊕

π1

S2k true

&

Qk⊕
|

π1S2k

Pk

S2k

|
⊕

π1

&

&

&

⊕

π1&

|
R2k S2k

Kp

true

⊕
Kp π2

true

&

Kp

true

Qk⊕
|

π1S2k

Pk

S2k

|
⊕

π1

&

Figure 4.12: Tracing the effects of SNF on the Predicate p of Fig 4.1a (Part 2)

98

that is “left-bushy” with respect to its parse tree. (Left-bushy conjunctions are defined

more formally in the next section.) This step prepares the predicate for the following step

that orders conjuncts. When applied to p4, LBConj returns the left-bushy conjunction,

p5 =
((((((Kp (true) ⊕ π1) & (Kp (true) ⊕ π2)) & Kp (true)) &

(Pk | (S2k ⊕ π1))) & (Qk | (S2k ⊕ π1))) & ((R2k | S2k) ⊕ π1))

as illustrated in Figure 4.12f.

Step 6: This step fires the transformation OrderConjs shown in Figure 4.10. This trans-

formation performs a bottom-up pass, firing rules oc1, oc2 and oc3 on subtrees of the

form,

(p ⊕ π1) & (q ⊕ π2) & r & S

for predicates p, q, r and S. Because of step 3, the first subtree visited with this form has

p, q and r equal to Kp (true), and S equal to a conjunct from the original predicate. The

structure of S determines which rule gets fired:

• if S is of the form (s ⊕ π1), then s is merged with p by rule oc1 to form ((p & s) ⊕ π1).

• if S is of the form, (s ⊕ π2), then s is merged with q by rule oc2 to form ((q & s) ⊕ π2).

• if S is of any other form, then it is combined with r by rule oc3 to form (r & s).

The effect of this step on p5 is to transform it to

p6 = ((Kp (true) & ρk) ⊕ π1) & (σk ⊕ π2) & (Kp (true) & τk)

(as illustrated in Figure 4.12g) such that ρk, σk and τk are as defined in Figure 4.8.

Step 7: Finally, this step fires rule simp to get rid of the Kp (true) predicates that were

added in Step 3. (Note that σk of p6 above is not affected by this step.) The effect of

this step on p6 is to produce the final KOLA predicate of Figure 4.8 that is illustrated in

Figure 4.12h.

Correctness of SNF

Theorem 4.4.1 (Correctness) SNF is correct.

Proof: All query modification performed by SNF occurs as result of firing rules init, pull1,

. . ., pull4, and simp of transformation SNF; sft, sl1, . . . sl7, of transformation SimpLits;

99

sftp of transformation LBComp; d1, d2, involution, deMorgan1 and deMorgan2 of CNF; and

oc1, oc2, and oc3 of OrderConjs. Therefore, SNF is correct if these rules are correct. CNF’s

rules are proven correct by execution of the LP [46] theorem prover scripts of Appendix B.1.

All other rules are proven correct by execution of the LP [46] theorem prover scripts of

Appendix B.2. �

Proof that SNF succeeds in transforming KOLA qualification predicates into SNF is shown

by the lemmas and theorem below.

Lemma 4.4.1 (The Effect of SimpLits on Basic Functions) Let f be any basic func-

tion. Then SimpLits (f) will be a function of any of the forms shown below:

• f ◦ π1 (type 1),

• f ◦ π2 (type 2),

• Kf (x) (type 3), or

• f such that f is an inherently binary function (type 4).

Proof: (by induction on the height of f). For the base case, assume that f has height,

h ≤ 2. Then f must be either:

1. att ◦ π1,

2. att ◦ π2, or

3. Kf (x).

In any of these cases, no rules in SimpLits are fired and the functions are returned as is.

The returned functions are types 1, 2 and 3 respectively.

For the inductive case, f has height = k > 2, and therefore must be of the form,

op ◦ 〈f1, f2〉

for some function op and basic functions f1 and f2. Because SimpLits works bottom-up,

induction applies to f1 and f2 and therefore, by the time the root of f is visited, f1 and f2

will have been rewritten to one of types 1, 2, 3 or 4. We summarize all possible combinations

for f1 and f2 below:

100

Case 1 — f1 and f2 are type 3: Assume that f1 = Kf (x) and f2 = Kf (y). In

this case, rule sl1 fires on 〈f1, f2〉 leaving Kf ([x, y]). Subsequently, rule sl2 fires on

(op ◦ Kf ([x, y])) leaving

Kf (op ! 〈x, y〉)
which is also type 3.

Case 2 — f1 and f2 are both type 1 or type 2: Let n be the type of f1 and f2. Assume that

f1 = f ′1 ◦ h and f2 = f ′2 ◦ h such that h = π1 or h = π2. In this case, rule sl5 fires on

〈f ′1 ◦ h, f ′2 ◦ h〉 leaving (〈f ′1, f ′2〉 ◦ h). Subsequently, rule sft fires on (op ◦ (〈f ′1, f ′2〉 ◦ h)),

leaving,

(op ◦ 〈f ′1, f ′2〉) ◦ h

which is type n.

Case 3 — One of f1 and f2 is type 3, and the other is type n (for n 6= 3): Suppose first

that f1 is type 3 and f2 = f ′2 ◦ h is type n. Then, rule sl4 fires on 〈f1, f2〉 leaving

〈g1, g2〉 ◦ (f ′2 ◦ h)

for some functions g1 and g2. Sft subsequently fires on this function leaving

(〈g1, g2〉 ◦ f ′2) ◦ h).

Sft fires again on

op ◦ (〈g1, g2〉 ◦ f ′2) ◦ h)

leaving

(op ◦ (〈g1, g2〉 ◦ f ′2)) ◦ h

which is type n.

A symmetric argument (such that sl3 is fired instead of sl4) handles the case where f2

is type 3.

Case 4 – One of f1 and f2 is type 4, or one is type 1 and the other is type 2: If one

of f1 or f2 is type 4, then no rules fire and 〈f1, f2〉 is inherently binary. No rules fire on

(op ◦ 〈f1, f2〉), and SimpLits returns this type 4 function.

If one of f1 or f2 is type 1 and the other is type 2, then no rules fire and again 〈f1, f2〉
is inherently binary. No rules fire on (op ◦ 〈f1, f2〉), and SimpLits returns this type 4

function. �

101

Lemma 4.4.2 (The Effect of SimpLits on Pairs of Basic Functions) Let f1 and f2

be any basic functions. Then SimpLits (〈f1, f2〉) will be a function of one of the forms

shown below:

• f ◦ π1 (type 1),

• f ◦ π2 (type 2),

• Kf (x) (type 3), or

• f such that f is an inherently binary function (type 4).

Proof: Because SimpLits works bottom-up, f1 and f2 will be visited before 〈f1, f2〉. By

Lemma 4.4.1, when 〈f1, f2〉 is visited, both f1 and f2 will be of one of the following forms:

• f ◦ π1 (type 1),

• f ◦ π2 (type 2),

• Kf (x) (type 3), or

• f such that f is an inherently binary function (type 4).

The proof then proceeds by cases as before.

Case 1 — f1 and f2 are both type 3: Assume that f = Kf (x) and g = Kf (y). In this

case, rule sl1 fires on 〈f, g〉 leaving

Kf ([x, y])

which is type 3.

Case 2 — f1 and f2 are both type 1 or type 2: Let n be the type of f1 and f2. Assume

that f1 = f ′1 ◦ h and f2 = f ′2 ◦ h such that h = π1 or h = π2. In this case, rule sl5 fires

on 〈f ′1 ◦ h, f ′2 ◦ h〉 leaving

〈f ′1, f ′2〉 ◦ h,

which is type n.

102

Case 3 — One of f1 and f2 is type 3, and the other is type n (for n 6= 3): Suppose first

that f1 is type 3 and f2 = f ′2 ◦ h is type n. Then, rule sl4 fires on 〈f1, f2〉 leaving

〈g1, g2〉 ◦ (f ′2 ◦ h)

for some functions g1 and g2. Sft subsequently fires on this function leaving

(〈g1, g2〉 ◦ f ′2) ◦ h)

which is type n. A symmetric argument (such that sl3 is fired instead of sl4) handles the

case where f2 is type 3.

Case 4 – One of f1 and f2 is type 4, or one is type 1 and the other is type 2: If one of

f1 or f2 is type 4, then no rules fire and 〈f1, f2〉 is inherently binary (type 4). If one of f1

or f2 is type 1 and the other is type 2, then no rules fire and again 〈f1, f2〉 is inherently

binary (type 4). �

Lemma 4.4.3 (The Effect of SimpLits on Basic Predicates) Let p = q ⊕ f be any

basic predicate. Then SimpLits (p) will be a predicate of one of the following forms:

• p ⊕ π1 (type 1),

• p ⊕ π2 (type 2),

• Kp (b) (type 3), or

• p such that p is an inherently binary predicate (type 4).

Proof: Observe that the bottom-up pass of SimpLits ensures that f is visited before p.

Function f is of the form, 〈f1, f2〉 such that f1 and f2 are basic functions. By Lemma 4.4.2,

once p is visited during the bottom-up pass of SimpLits, it is of one of the forms below:

1. p ⊕ (f ◦ π1)

2. p ⊕ (f ◦ π2),

3. p ⊕ Kf (x), or

4. p ⊕ f such that f is inherently binary.

103

In the first two cases, rule sl6 fires, leaving either

(p ⊕ f) ⊕ π1 (type 1), or

(p ⊕ f) ⊕ π2 (type 2).

In the third case, rule sl7 fires leaving

Kp (p ? x) (type 3).

And in the fourth case, no rule fires leaving the inherently binary predicate,

p ⊕ f (type 4) �.

Lemma 4.4.4 (The Effect of SimpLits on Qualification Predicates) Let p be a qual-

ification predicate. Then SimpLits (p) will consist of conjunctions, disjunctions and nega-

tions of predicates of one of the forms listed below:

• p ⊕ π1,

• p ⊕ π2,

• Kp (b), or

• p such that p is an inherently binary predicate.

Proof: Because SimpLits works bottom-up, all basic predicates are visited before those of

the form (p & q), (p | q) or (∼ (p)). SimpLits has no effects on predicates of these latter

forms. Therefore, by Lemma 4.4.3 SimpLits leaves a predicate consisting of conjuncts,

disjuncts or negations of predicates of the forms above. �

Definition 4.4.7 (Left-Bushy Conjunctions) A left-bushy conjunction is any KOLA

predicate that can be constructed according to the following rules:

• literals and disjuncts containing no subpredicates of the form (r1 & r2) are left-bushy

conjunctions,

• p & q is a left-bushy conjunction if p is a left-bushy conjunction and q is a literal or

disjunct containing no subpredicates of the form (r1 & r2).

Next, we show that LBComp rewrites predicates in CNF into left-bushy conjunctions.

Lemma 4.4.5 (The Effect of LBConj on Predicates in CNF (Part 1)) Let p and q

be left-bushy conjunctions. Then, LBConj (p & q) is a left-bushy conjunction.

104

Proof: The proof is by induction on the number, n, of conjunctions in q. For the base

case, n = 0, (p & q) is already left-bushy and LBConj does nothing. In the inductive case,

q = q1 & q2. By the definition of left-bushy conjunctions, q1 is a left-bushy conjunction and

q2 is a literal or disjunct containing no subpredicates that are conjunctions. In this case,

rule sftp fires leaving,

(p & q1) & q2.

LBConj is subsequently fired on (p & q1) leaving, by induction, a left-bushy conjunction, p2.

Therefore, the predicate

p2 & q2

is also a left-bushy conjunction. �

Lemma 4.4.6 (The Effect of LBConj on Predicates in CNF (Part 2)) Let p be a pred-

icate in CNF. Then, LBConj (p) is left-bushy conjunction.

Proof: Because LBConj works bottom up, it visits p and q before it visits (p & q). A

simple inductive argument using Lemma 4.4.5 establishes LBConj to return a left-bushy

conjunction when fired on p. �

Theorem 4.4.2 (SNF) Given any KOLA qualification predicate p, SNF (p) is a predicate

in SNF.

Proof: The proof consists of seven parts, proving invariants that hold after the execution

of each step 1-7.

Invariant 1 : After firing SimpLits, p consists of conjunctions, disjunctions and nega-

tions of predicates of one of the forms listed below:

• p ⊕ π1 (type 1),

• p ⊕ π2 (type 2),

• Kp (b) (type 3),

• p such that p is an inherently binary predicate (type 4).

This invariant was shown to result from firing SimpLits by Lemma 4.4.4.

105

Invariant 2: After firing CNF, p is of the form,

p0 & . . . & pn

with each pi a disjunction of possibly negated literals of one of the four types listed in

Invariant 1. This invariant was shown to result from firing CNF in Section 4.2.3.

Invariant 3: After firing init, p is of the form,

(Kp (true) ⊕ π1) & (Kp (true) ⊕ π2) & (Kp (true)) & p1 & . . . & pn

with each pi disjunction of possibly negated literals of one of the four types listed in In-

variant 1.

Invariant 4: After executing BU {pull1 || pull2 || pull3 || pull4}, p is of the

form,

(Kp (true) ⊕ π1) & (Kp (true) ⊕ π2) & (Kp (true)) & q1 & . . . & qn

such that each qi is of any of the forms shown below:

• p ⊕ π1 (type 1),

• p ⊕ π2 (type 2),

• Kp (b) (type 3), or

• p such that p is an inherently binary predicate (type 4).

Note that none of the rewrite rules, pull1, . . ., pull4, affect the conjuncts at the top of the

tree, or the negations at the bottom. Rather, only disjuncts are affected. The proof then

is by induction on the height h of a disjunct (such that literals are viewed as having height

0). For the base case, h = 0 and no rules fire. In this case, we are left with a literal of types

1, 2, 3 or 4 (as listed in Invariant 1).

The induction proof considers the disjunct, p1 | p2 such that p1 and p2 are (by induction)

of types 1, 2, 3 or 4. The proof proceeds by cases:

• Case 1 — p1 and p2 are both type 1 or type 2: Let n be the type of p1 or p2. In this

case, rule pull1 fires and we are left with a type n predicate.

• Case 2 — p1 and p2 are both type 3: In this case, pull4 fires and we are left with a

type 3 predicate.

• Case 3 — One of p1 or p2 is type 4, or one is type 1 and the other is type 2: In this

case, no rule fires and we are left with a type 4 predicate.

106

Invariant 5: After firing LBConj, p is a left-bushy conjunction (as proven by Lemma 4.4.6).

Invariant 6: After firing OrderConjs, p will be of the form

(ρ ⊕ π1) & (σ ⊕ π2) & τ

such that τ is a conjunction of m (m ≥ 0) inherently binary or constant predicates (i.e., p

will be in SNF). Again, the proof of the invariant is by structural induction. exploiting the

bottom-up nature of OrderConjs. In the base case, OrderConjs is fired on

(Kp (true) ⊕ π1) & (Kp (true) ⊕ π2) & Kp (true),

doing nothing and leaving a predicate that is trivially in SNF.

Because p is a left-bushy conjunction, in the inductive case OrderConjs is fired on a

predicate of the form,

((((ρ ⊕ π1) & (σ ⊕ π2)) & τ) & p1

such that p1 is of one of the types listed in Invariant 4. If p1 is type 1, then it is merged

with ρ by rule oc1 to form (ρ & p1) ⊕ π1, leaving,

((ρ & p1) ⊕ π1) & (σ ⊕ π2) & τ

which is in SNF. If p1 is type 2, then it is merged with σ by rule oc2 to form (σ & p1) ⊕ π2,

leaving,

(ρ ⊕ π1) & ((σ & p1) ⊕ π2) & τ

which is in SNF. Finally, if p1 is type 3 or 4, then it is merged with τ by rule oc3 to form

(τ & p1), leaving,

(ρ ⊕ π1) & (σ ⊕ π2) & (τ & p1)

which is in SNF.

Invariant 7: After completion of the final step of the firing algorithm, we are left with a

predicate in SNF,

(ρ ⊕ π1) & (σ ⊕ π2) & τ

such that neither ρ, σ nor τ is of the for,

Kp (true) & p.

Satisfaction of this invariant follows trivially by examination of the rewrite rule, simp.

107

4.5 Example Applications of SNF

4.5.1 Example 3: Predicate-Pushdown

Figure 4.13 shows a COKO transformation that pushes predicates past joins. The key rule

of this transformation is push, which identifies subpredicates (p and q) of join predicates

that apply only to one argument, and pushes these subpredicates out of the join and onto

the join inputs. This heuristic is useful as it will usually result in a join of smaller collections.

Rule push will not fire successfully on every join query, for the predicate used in the

join may not be in a form that makes “pushable” subpredicates recognizable. For example,

if this rule were fired on the query,

join (p, π1) ! [Coms, SComs]

such that Coms and SComs are collections of committees and subcommittees respectively as

presented in Table 2.1, and p is the predicate of Figure 4.1a, it fails because this predicate

does not match the pattern,

(p ⊕ π1) & (q ⊕ π2) & r.

Therefore before this rule is fired, the predicate argument to join is normalized into SNF so

that “pushable” subpredicates can be identified. In the case of the predicate of Figure 4.1a,

normalization into SNF results in the query,

join ((ρ ⊕ π1) & (σ ⊕ π2) & τ , π1) ! [Coms, SComs]

such that ρ, σ and τ are as defined in Figure 4.8. Once in this form, firing push results in

join (τ , π1) ! [iterate (ρ, id) ! Coms, iterate (σ, id) ! SComs].

In this case, σ is Kp (true). Therefore, the subsequent firing of rule, simplify results in

the query,

join (τ , π1) ! [iterate (ρ, id) ! Coms, SComs].

4.5.2 Example 4: Join-Reordering

Figure 4.14 shows a COKO transformation that might be fired to change the order in which

multiple joins are evaluated. Transfomation Join-Associate reassociates a composition of

join queries. That is, a query of the form,

join (. . ., . . .) ! [join (. . ., . . .) ! [A, B], C]

108

TRANSFORMATION Pushdown
USES
SNF,

push: join ((p ⊕ π1) & (q ⊕ π2) & r, f) ! [A, B]
→=

join (r, f) ! [iterate (p, id) ! A, iterate (q, id) ! B],

simplify: iterate (Kp (true), id) ! A
→= A

BEGIN
GIVEN join (p,) ! DO SNF (p);
push;
GIVEN ! [A, B] DO {simplify (A); simplify (B)}
END

Figure 4.13: Pushdown: A COKO Transformation to Push Predicates Past Joins

gets rewritten to

join (. . ., . . .) ! [A, join (. . ., . . .) ! [B, C]].

Join-Associate first normalizes join predicates into SNF. The innermost join predicate

(q) gets normalized by SNF into,

(p2 ⊕ π1) & (q2 ⊕ π2) & r2.

The outermost join predicate (p) gets normalized by SNF into the form,

(p1 ⊕ π1) & (q1 ⊕ π2) & r1.

The innermost join predicate applies to pairs, [a, b] (for a ∈ A and b ∈ B). Therefore, p2

applies to a, q2 applies to b, and r2 applies to [a, b]. The outermost join predicate applies

to pairs, [f2 ! [a, b], c] (for f2 ! [a, b] in the result of the innermost join, and c ∈ C).

Therefore, p1 applies to f2 ! [a, b], q2 applies to c, and r3 applies to f2 ! [[a, b], c].

Firing shift on this normalized query results in a new query for which the innermost

join predicate and function are applied to pairs, [b, c] and and the outermost join predicate

and function are applied to pairs, [a, [b, c]]. Therefore, the rewrite rule places:

• (q2 ⊕ π1) in the innermost predicate because (q2 ⊕ π1) ? [b, c] = q2 ? b.

• (q1 ⊕ π2) in the innermost predicate because (q1 ⊕ π2) ? [b, c] = q1 ? c.

• (p2 ⊕ π1) in the outermost predicate because (p2 ⊕ π1) ? [a, [b, c]] = p2 ? a.

• (r2 ⊕ (id × π1)) in the outermost predicate because

(r2 ⊕ (id × π1)) ? [a, [b, c]] = r2 ? [a, b].

109

TRANSFORMATION Join-Associate
USES
shift: join ((p1 ⊕ π1) & (q1 ⊕ π2) & r1, f1) !

[join ((p2 ⊕ π1) & (q2 ⊕ π2) & r2, f2) ! [A, B], C]
→=

join ((p1 ⊕ f1) & (r1 ⊕ h1) & (p2 ⊕ f2) & (r2 ⊕ h2), f1 ◦ h1) !
[A, join ((q1 ⊕ g1) & (q2 ⊕ g2), id) ! [B, C]]

SNF
BEGIN
GIVEN join (p,) ! [join (q,) ! [,],] DO {SNF (p); SNF (q); shift}

END

such that

f1 = f2 ◦ (id × π1)
g1 = π2

h1 = 〈f2 ◦ (id × π1), π2 ◦ π2〉
f2 = π1

g2 = π1

h2 = id × π1

Figure 4.14: Join-Associate: A COKO Transformation to Reassociate a Join

• (p1 ⊕ (f2 ⊕ (id × π1))) in the outermost predicate because

(p1 ⊕ (f2 ⊕ (id × π1))) ? [a, [b, c]] = p1 ? (f2 ! [a, b]),

and

• (r1 ⊕ 〈f2 ◦ (id × π1), π2 ◦ π2〉) in the outermost predicate because

(r1 ⊕ 〈f2 ◦ (id × π1), π2 ◦ π2〉) ? [a, [b, c]] = r1 ? [f2 ! [a, b], c].

While the predicates that result from this rewrite are quite complex, in most cases they

can be simplified afterwards. For example, any subpredicates for which p1, q1, . . ., r2 is

Kp (true) can be made to drop away as a result of simplification.

4.6 Example 5: Magic-Sets

The idea behind the Magic-Sets transformation for relational queries introduced by Mumick

et al [74] is to restrict the inputs to a join by filtering those elements that cannot possibly

satisfy the join predicate. Therefore, this transformation is very much in the spirit of

predicate-pushdown, but passing filter predicates “sideways” from one join input to another,

110

SELECT c
FROM c IN Coms, t in Temp
WHERE P (c, t) AND Q(c, t) AND R(c)

Temp (chair, avgTerms) =
SELECT z.chair, AVG (SELECT m.terms FROM x IN partition, m IN x.mems)
FROM z IN Coms
GROUP BY z.chair

P (c, t) = c.chair == t.chair
Q(c, t) = c.chair.terms > t.avgTerms

R(c) = c.chair.pty == ‘‘Dem’’

a. Before (OQL)

join (Pk & Qk & Rk, π1) ! [Coms, TempK]

TempK =
njoin (eq ⊕ (id × chair), mems, avg ◦ flat) !
[iterate (Kp (true), chair) ! Coms, Coms]

Pk = eq ⊕ 〈chair ◦ π1, π1 ◦ π2〉
Qk = gt ⊕ 〈terms ◦ chair ◦ π1, π2 ◦ π2〉
Rk = eq ⊕ 〈pty ◦ chair ◦ π1, Kf (‘‘Dem’’)〉

b. Before (KOLA)

Figure 4.15: OQL (a) and KOLA (b) queries to find all committees whose chair is a Demo-
crat and has served more than the average number of terms of the members of his/her
chaired committees.

rather than down from the join predicate. As with predicate-pushdown and join-reordering,

the magic-sets rewrite requires first normalizing the join predicate into SNF so that the

predicate that can be passed sideways can be identified.

4.6.1 An Example Magic-Sets Rewrite

Expressed in OQL

To illustrate, consider the OQL query of Figure 4.15a. This query returns the committees in

Coms that are chaired by someone who is a Democrat and who has served more terms than

111

SELECT c

FROM c IN MComs, t IN MTemp
WHERE P (c, t) AND Q(c, t)

MComs =
SELECT m3
FROM m3 IN MComs
WHERE R(m3)

CSet (chair) =
SELECT DISTINCT m2.chair
FROM m2 IN MComs

MTemp (chair, avgTerms) =
SELECT z.chair, AVG (SELECT m.terms FROM x IN partition, m IN x.mems)
FROM z IN Coms, y IN CSet
WHERE z.chair == y.chair
GROUP BY z.chair

P (c, t) = c.chair == t.chair
Q(c, t) = c.chair.terms > t.avgTerms
R(m3) = m3.chair.pty == ‘‘Dem’’

c. After (OQL)

join (P ′
k & Q′

k, π1) ! [MComsk, MTempk]

MComsk = iterate (R′
k, id) ! Coms

CSetk = set ! (iterate (Kp (true), chair) ! MComsk)

MTempk = njoin (eq ⊕ (id × chair), mems, avg ◦ flat) ! [CSetk, Coms]

P ′
k = eq ⊕ (chair × id) ⊕ (id × π1)

Q′
k = gt ⊕ ((terms ◦ chair) × π2) ⊕ (id × π2)

R′
k = eq ⊕ (〈id, Kf (‘‘Dem’’)〉 ◦ pty ◦ chair)

d. After (KOLA)

Figure 4.16: The queries of Figure 4.15 after rewriting by Magic-Sets

112

is average for the members of the committees he or she chairs. The query result is generated

from a join of Coms and the view, Temp. Temp groups each committee chair, c.chair with

the result of the OQL expression,

AVG (SELECT m.terms FROM x IN partition, m IN x.mems)

that averages the number of terms served by members of committees chaired by c.chair

(partition names the collection of all member sets for committees chaired by a given

legislator). The join of Coms and Temp then uses join predicates P , Q and R on pairs from

Coms (c) and Temp (t) such that

• P holds if c is chaired by the chair represented by t,

• Q holds if c’s chair has served more terms than the number of terms associated with

t, and

• R holds if c is chaired by a Democrat.

Each entry in Temp can be expensive to calculate, as each requires averaging values

extracted from a collection of collections. The Magic-Sets query rewrite addresses this

expense by observing that entries need not be computed for every committee chair. In

particular, only committees whose chairs are Democrats can possibly contribute to the

query result. Therefore, the Magic-Sets rewrite passes the predicate on Coms that requires

committee chairs to be Democrats (R) sideways to Temp. Rewriting produces the query

shown in Figure 4.16c, which includes three view definitions:

• MComs is the subcollection of Coms chaired by Democrats.

• CSet is the set of committee chairs who are Democrats.

• MTemp is the subcollection of Temp consisting of entries only for those committee chairs

who are represented in CSet.

Unlike Temp of Figure 4.15a, MTemp does not compute average numbers of terms for

every chair of a committee in Coms. Instead, only those chairs who are represented in CSet

are represented in the result. CSet is the set of all committee chairs who are Democrats.

Therefore, the equijoin of Coms and CSet prior to grouping ensures that aggregation is

performed only for committee chairs that are Democrats.

The main query then is a join of MComs and MTemp using join predicates P and Q. Unlike

the original form of the query, this form of the query requires additional projection and

113

duplicate elimination to generate CSet and an additional join to compute MTemp. However,

in many cases this additional cost is more than offset by the savings in not having to

compute average terms for committee chairs who are not Democrats.

Expressed in KOLA

Figures 4.15b and 4.16d show the KOLA equivalents of the OQL queries of Figures 4.15a and

4.16c respectively. The main query of Figure 4.15b performs a join of Coms and TempK (the

KOLA equivalent of Temp). The join predicate is the conjunction,

Pk & Qk & Rk

such that Pk is the KOLA equivalent to P and so on. The join function returns the first

element (the committee) of each pair, [c, t] (c ∈ Coms and t ∈ TempK) satisfying the join

predicate.

TempK is the KOLA equivalent of Temp, but for the naming of fields in the result. It

uses njoin to associate chairs of committees in Coms,

(iterate (Kp (true), chair) ! Coms)

with the sets of committees they chair. (For any committee chair l and committee c,

(eq ⊕ 〈π1, chair ◦ π2〉) ? [l, c]

holds if c is chaired by l.) For each committee c chaired by l, the set of c’s members (c.mems)

are added to an intermediate collection of legislator collections associated with l. Then, the

function, avg ◦ flat is applied to the result, first flattening this collection into a single

collection of legislators, and then averaging the number of terms they have served.

As with the OQL query of Figure 4.16c, the KOLA query of Figure 4.16d performs a join

of two new collections, MComsk and MTempk. The join predicate for this join is a conjunction

of predicates P ′
k and Q′

k that are equivalent but transformed versions of predicates Pk and

Qk of Figure 4.15b. Like MComs, MComsk filters Coms for those commitees that satisfy R′
k

(which is equivalent to Rk, but rewritten into a unary predicate). Like MTemp, MTempk

groups committees only if the committees are chaired by someone represented in CSetk

(CSet). And like CSet, CSetk determines the set of committee chairs for committees in

MComsk (MComs).

114

TRANSFORMATION Magic
USES
SNF2, Pushdown, SimplifyJoins,

magic: join (q ⊕ (id × π1) & r, f) ! [A1, njoin (p, g, h) ! [A2, B]]
→=

join (q ⊕ (id × π1) & r, f) !
[A1, njoin (p, g, h) !

[set ! (join (q, π2) ! [A1, A2]), B]],

sftp: (p & q) & r
→= p & (q & r)

BEGIN
Pushdown; -- Step 1
GIVEN join (p,) ! DO {SNF2 (p); sftp (p)} -- Step 2
magic -- Step 3
GIVEN ! [, A], A = ! [B,] DO {SimplifyJoin (B)} -- Step 4

END

Figure 4.17: The Magic-Sets Rewrite Expressed in COKO

4.6.2 Expressing Magic-Sets in COKO

A COKO Magic-Sets transformation that converts the KOLA query of Figure 4.15b to that

of Figure 4.16d is shown in Figure 4.17. The key rewrite rule of this transformation is

magic, which assumes that a predicate argument to a join query has first been normalized

into the form

(q ⊕ (id × π1)) & r.

This normal form isolates the subpredicate, q, which relates elements of A1 and A2, as is

evident by tracing the evaluation of this predicate on any pair, [a1, [a2, S]] such that

a1 ∈ A1, and [a2, S] belongs to the result of the njoin subquery:

(q ⊕ (id × π1)) ? [a1, [a2, S]] = q ? [id ! a1, π1 ! [a2, S]]

= q ? [a1, a2].

Rule magic then rewrites the query so that q is used to “filter” elements of A2 so that

only those that relate to some element of A1 will be involved in the grouping and aggregate

computation performed by njoin. This filtering is expressed in the body pattern of magic

with the subexpression,

join (q, π2) ! [A1, A2]

which performs a right semi-join of A1 and A2 with respect to q. The elements of B that are

collected from this query are then freed of duplicates via a subsequent invocation of set.

115

Note that the semantics of njoin show that duplicate elimination on the result of the

semi-join is strictly not necessary (njoin ignores duplicates in the first collection argument).

The reason that rule magic introduces this unnecessary operator is to prepare this expres-

sion for simplification by transformation SimplifyJoin whose rewrite rules are listed in

Figure 4.3. Rule (8) of Figure 4.3 rewrites this semijoin into an intersection. But semijoins

can only be rewritten into intersections when the result of the semijoin is returned as a set.

Therefore, the operator set is introduced into the semijoin expression as an “indicator”

that duplicates in the result can be ignored.

Below we describe the steps performed by this transformation, demonstrating their

effects on the KOLA query of Figure 4.15b, and showing how they result in a rewrite of

this query to that shown in Figure 4.16d. In practice, translation into KOLA performs view

merging, and therefore the query of Figure 4.15b would be presented to the COKO Magic

transformation as Q0:

join (Pk & Qk & Rk, π1) !

[Coms, njoin (eq ⊕ (id × chair), mems, avg ◦ flat) !

[iterate (Kp (true), chair) ! Coms, Coms]]

such that
Pk = eq ⊕ 〈chair ◦ π1, π1 ◦ π2〉
Qk = gt ⊕ 〈terms ◦ chair ◦ π1, π2 ◦ π2〉, and

Rk = eq ⊕ 〈pty ◦ chair ◦ π1, Kf (‘‘Dem’’)〉

Steps 1 and 2:

The purpose of the first two steps of the transformation is to isolate that part of the

join predicate,

Pk & Qk & Rk

that is of the form

(q ⊕ (id × π1)) & r

to prepare it for firing by magic.

1. In Step 1, transformation pushdown (Section 4.5.1) is fired. Pushdown fires SNF on the

join predicate to convert it to the form,

(ρ ⊕ π1) & (σ ⊕ π2) & τ .

116

Then, ρ and σ are pushed out of the join. Applied to Q0, this step leaves Q1:

join (Pk & Qk, π1) !

[MComsk, njoin (eq ⊕ (id × chair), mems, avg ◦ flat) !

[iterate (Kp (true), chair) ! Coms, Coms]]

such that
MComsk = iterate (R′

k, id) ! Coms, and

R′
k = eq ⊕ (〈id, Kf (‘‘Dem’’)〉 ◦ pty ◦ chair).

2. The second step normalizes τ by an SNF-like normalization. Transformation SNF2 is

similar to SNF, but rewrites τ into the form,

(α ⊕ (id × π1)) & (β ⊕ (id × π2)) & γ.

After these steps, the predicate is easily put into the desired form by setting q = α and

r = ((β ⊕ (id × π2)) & γ). This step prepares the predicate for a subsequent firing of rule

magic.

SNF2 is identical to SNF (Figure 4.9) but for the following exceptions:

1. Rather than firing SimpLits in Step 1, SNF2 fires the transformation SimpLits2 of

Figure 4.18.

2. Rather than firing rule init in Step 4, SNF2 fires the rule,

p
→= (Kp (true) ⊕ (id × π1)) & (Kp (true) ⊕ (id × π2)) & Kp (true) & p.

3. Rather than firing OrderConjs in Step 6, SNF2 fires the transformation OrderConjs2

which fires the rules,

oc21 : (p ⊕ (id × π1)) & q & r & (s ⊕ (id × π1))
→= ((p | s) ⊕ (id × π1)) & q & r,

oc22 : p & (q ⊕ (id × π2)) & r & (s ⊕ (id × π2))
→= p & ((q | s) ⊕ π2) & r,

oc23 : p & q & r & s
→= p & q & (r & s)

instead of rules oc1, oc2 and oc3 of Figure 4.10.

SimpLits2 adds transformation Pr2Times and rules sl8 – sl13 to the rules fired by

SimpLits. Pr2Times converts functions to products (f × g) where possible. Together with

the rules of SimpLits, rules sl8 – sl13 ensure that predicates on pairs [a, [b, S]] of the

form,

p = q ⊕ 〈f, g〉
such that f and g are basic functions, are transformed into one of the forms shown below:

117

TRANSFORMATION SimpLits2
USES
Pr2Times,

sft : f ◦ (g ◦ h) →= (f ◦ g) ◦ h

sl1 : 〈Kf (x), Kf (y)〉 →= Kf ([x, y]),
sl2 : f ◦ Kf (x) →= Kf (f ! x),
sl3 : 〈f, Kf (x)〉 →= 〈id, Kf (x)〉 ◦ f,

sl4 : 〈Kf (x), f〉 →= 〈Kf (x), id〉 ◦ f,

sl5 : 〈f ◦ h, g ◦ h〉 →= 〈f, g〉 ◦ h,

sl6 : p ⊕ (f ◦ g) →= p ⊕ f ⊕ g,

sl7 : p ⊕ Kf (x) →= Kp (p ? x),
sl8 : 〈f ◦ π1, g ◦ (id × h)〉 →= 〈f ◦ π1, g〉 ◦ (id × h),
sl9 : 〈f ◦ (id × h), g ◦ π1〉 →= 〈f, g ◦ π1〉 ◦ (id × h),
sl10 : 〈f ◦ (h ◦ π2), g ◦ (id × h)〉 →= 〈f ◦ π2, g〉 ◦ (id × h),
sl11 : 〈f ◦ (id × h), g ◦ (h ◦ π2)〉 →= 〈f, g ◦ π2〉 ◦ (id × h),
sl12 : 〈f ◦ (g ◦ π2), g ◦ π2〉 →= 〈f ◦ g, h〉 ◦ π2,

sl13 : 〈f ◦ π2, h ◦ (h ◦ π2)〉 →= 〈f, h ◦ g〉 ◦ π2,
BEGIN
BU {Pr2Times || sl1 || sl2 || {{sl3 || sl4} → REPEAT sft} || sl5 || sl6 || sl7 ||

sl8 || sl9 || sl10 || sl11 || sl12 || sl13 || REPEAT sft}
END

TRANSFORMATION Pr2Times
USES

co1 : 〈f ◦ π1, g ◦ (h ◦ π2)〉 →= (f × g) ◦ (id × h),
co2 : 〈f ◦ (h ◦ π2), g ◦ π1〉 →= 〈π2, π1〉 ◦ (f × g) ◦ (id × h),
co3 : 〈f ◦ (π1 ◦ π2), g ◦ (π2 ◦ π2)〉 →= (f × g) ◦ π2,

co4 : 〈f ◦ (π2 ◦ π2), g ◦ (π1 ◦ π2)〉 →= 〈π2, π1〉 ◦ (f × g) ◦ π2,

co5 : 〈f ◦ π1, g ◦ π2〉 →= (f × id) ◦ (id × g),
co6 : 〈f ◦ π2, g ◦ π1〉 →= 〈π2, π1〉 ◦ (f × id) ◦ (id × g),
co7 : 〈π1, π2〉 →= id,

co8 : f ◦ id →= f,

co9 : id ◦ f
→= f

BEGIN
BU {co1 || co2 || co3 || co4 || co5 || co6 || co7 || co8 || co9}
END

Figure 4.18: Transformation SimpLits2 and its Auxiliary Transformation Pr2Times

118

• Kp (b) (if q ignores its inputs),

• p ⊕ π1 (if q only requires a),

• p ⊕ π2 (if q only requires b and S),

• p ⊕ (id × π1) (if q only requires a and b),

• p ⊕ (id × π2) (if q only requires a and S).

When fired on Pk, rule co5 transforms the function,

〈chair ◦ π1, π1 ◦ π2〉

into

(chair × id) ◦ (id × π1).

Then, rule pr1 fires leaving the predicate

eq ⊕ (chair × id) ⊕ (id × π1).

When fired on Qk, rule co5 transforms the function,

〈terms ◦ chair ◦ π1, π2 ◦ π2〉

into

((terms ◦ chair) × id) ◦ (id × π2).

Then, rule pr1 fires leaving the predicate

gt ⊕ ((terms ◦ chair) × id) ⊕ (id × π2).

All subsequent steps in SimpLits2 are as in SimpLits. Therefore, the the result of firing

SimpLits2 on Q1 is the query, Q2:

join ((α ⊕ (id × π1)) & ((β ⊕ (id × π2)) & γ), π1) !

[MComsk, njoin (eq ⊕ (id × chair), mems, avg ◦ flat) !

[iterate (Kp (true), chair) ! Coms, Coms]]

such that
α = eq ⊕ (chair × id), and

β = gt ⊕ ((terms ◦ chair) × id), and

γ = Kp (true).

119

After SNF2 is fired, rule sftp is fired to reassociate the three conjunct join subpredicates,

((α ⊕ (id × π1)) & (β ⊕ (id × π2))) & γ

into

(α ⊕ (id × π1)) & ((β ⊕ (id × π2)) & γ).

This firing prepares the predicate for the firing of rule magic in the next step. The result

of firing sftp on Q2 is Q3:

join ((q ⊕ (id × π1)) & r, π1) !

[MComsk, njoin (eq ⊕ (id × chair), mems, avg ◦ flat) !

[iterate (Kp (true), chair) ! Coms, Coms]]

such that

q = eq ⊕ (chair × id), and

r = ((gt ⊕ ((terms ◦ chair) × id)) ⊕ (id × π2)) & Kp (true).

Step 3:

Next, rewrite rule magic is fired. This rule introduces the left join argument (A1) into

the right-hand side of the join. Firing magic makes it possible to restrict the input (A2) to

njoin to elements that are related by q to A1. Fired on Q3, magic leaves Q4:

join ((q ⊕ (id × π1)) & r, π1) !

[MComsk, njoin (eq ⊕ (id × chair), mems, avg ◦ flat) ! [CSet′k, Coms]]

or equivalently,

join (P ′
k & Q′

k, π1) !

[MComsk, njoin (eq ⊕ (id × chair), mems, avg ◦ flat) ! [CSet′k, Coms]]

such that

CSet′k = set ! (join (eq ⊕ (chair × id), π2) !

[MComsk, iterate (Kp (true), chair) ! Coms]),

MComsk = iterate (R′
k, id) ! Coms,

P ′
k = eq ⊕ (chair × id) ⊕ (id × π1), and

Q′
k = gt ⊕ ((terms ◦ chair) × π2) ⊕ (id × π2)

120

1. (id × id) →= id
2. p ⊕ id →= p

3. Kp (true) ⊕ f
→= Kp (true)

4. p & Kp (true) →= p

5a. f ◦ id →= f

5b. id ◦ f
→= f

6. (f × g) ◦ (h × j) →= (f ◦ h) × (g ◦ j)
7. p ⊕ f ⊕ g

→= p ⊕ (f ◦ g)
8. set ! (join (eq, π2) ! [A, B]) →= set ! (A ∩ B)

9. join (p ⊕ (f × g), π2) ! [A, B]
→=

join (p ⊕ (id × g), π2) ! [iterate (Kp (true), f) ! A, B]

10. iterate (p, f) ! (iterate (q, g) ! A) →= iterate (q & (p ⊕ g), f ◦ g) ! A

11. (iterate (p, f) ! A) ∩ (iterate (Kp (true), f) ! A) →= iterate (p, f) ! A

12. njoin (p, f, g) ! [set ! A, B]
→= njoin (p, f, g) ! [A, B]

13. iterate (p, f) ! A
→= iterate (Kp (true), f) ! (iterate (p, id) ! A)

Table 4.3: Rewrite Rules Used In SimplifyJoin

Step 4:

Step 4 fires transformation SimplifyJoin on the semijoin expression resulting from the

previous step. SimplifyJoin uses the rules of Table 4.3 to rewrite CSet′k into CSetk (of

Figure 4.16d) as we show below:

• The first rule fired is rule 9, which rewrites CSet′k,

set ! (join (eq ⊕ (chair × id), π2) !

[MComsk, iterate (Kp (true), chair) ! Coms])

to

set !

(join (eq ⊕ (id × id), π2) !

[iterate (Kp (true), chair) ! MComsk, iterate (Kp (true), chair) ! Coms]).

• Firing rules 1 and 2 simplifies the join predicate, leaving

set !

(join (eq, π2) !

[iterate (Kp (true), chair) ! MComsk, iterate (Kp (true), chair) ! Coms]).

121

• Expanding for MComsk and firing rules 10, 3, 4 and 5a, leaves

set !

(join (eq, π2) !

[iterate (R′
k, chair) ! Coms, iterate (Kp (true), chair) ! Coms]).

• Next, rule 8 fires, converting the right semijoin to an intersection. Firing rule 8 leaves:

set ! ((iterate (R′
k, chair) ! Coms) ∩ (iterate (Kp (true), chair) ! Coms)).

• This expression in turn reduces by firing rule 11 to:

set ! (iterate (R′
k, chair) ! Coms),

which then gets split up by firing rule 13 to:

set ! (iterate (Kp (true), chair) ! (iterate (R′
k, id) ! Coms))

= set ! (iterate (Kp (true), chair) ! MComsk)

= CSetk.

Therefore, after SimplifyJoin has finished firing, we are left with the query of Fig-

ure 4.16d:

join (P ′
k & Q′

k, π1) ! [MComsk, MTempK]

such that MTempK is:

njoin (eq ⊕ (id × chair), mems, avg ◦ flat) ! [CSetk, Coms].

4.7 Discussion

4.7.1 The Expressivity of COKO

COKO is still evolving. Our goal is to reach a point with it where we are able to express

all of the useful query rewrites that can be expressed with a programming language with-

out compromising the separation of rewrite rules from firing algorithms. To this end, our

design process alternates between modifying the language and using it to express complex

query rewrites. In this chapter, we have presented some of the rewrites that we have gener-

ated with COKO, including CNF (exhaustive and non-exhaustive versions), SNF, Pushdown,

Join-Associate and Magic.

122

Though COKO is evolving, it is not immature. We believe that COKO already pro-

vides most of the useful idioms required to express query rewriting. By combining COKO

statements in varying ways, we are able to express such common firing algorithms as

• BU {r1 || . . . || rn}:
fire every rule r1, . . ., rn succesively on every subtree,

• BU r1; . . . BU rn:

fire every rule r1, . . ., rn on every succesive subtree,

• BU {{REPEAT r1}; . . .; {REPEAT rn}}:
fire every rule r1, . . ., rn repeatedly on every successive subtree,

• S → S ′ || S ′′:

execute S and then S ′ if S succeeds and S ′′ if S fails, and

• S → recursive fire:

execute S exhaustively.

As before, attempts to express transformations drive the design of the language. Provided

that we are able to maintain the separation of rewrite rules from firing algorithms, we are

prepared to let COKO evolve into a steady and usable state.

4.7.2 The Need for Normalization

The CNF and SNF query rewrites are normalizations: query rewrites that convert expres-

sions into syntactically characterizable (i.e., normal) forms. Normalizations epitomize the

kinds of complex query rewrites that cannot be expressed as rewrite rules and that typically

get expressed with code.

Normalization gets little attention in the optimizer literature. And yet, normaliza-

tion can be more complex, expensive and error-prone than the optimizations they preceed.

(Consider that Kim’s erroneous rewrites are normalizations whose normal forms are join

queries.) In the context of object-oriented and object-relational databases, normalization

assumes even greater importance. Firstly, nested object queries are far more prevalent and

can be more deeply nested than relational queries making their normalization more diffi-

cult and more urgent. Secondly, because many object databases are built as extensions

of existing systems (e.g., object-relational extensions of relational systems), normalization

123

affords the opportunity to rewrite complex (e.g., object) queries into a series of simpler

(e.g., relational) queries that can be posed of the original query engine. (We will see an

example of this object → relation translation in Chapter 6.)

We have shown with two examples (CNF and SNF) that COKO is capable of expressing

complex normalizations that typically get expressed only with code. For both normaliza-

tions, we were able to show not only correctness, but also prove that the firing algorithms for

these transformations did as they were intended. Neither of these results is straightforward

when the normalizations are expressed with code, even when the normalizations themselves

have more straightforward expression with code.5 Therefore, the correctness results arising

from the COKO-KOLA approach come at a complexity cost for expressing certain rewrites.

In designing future versions of COKO, our goal will be to make firing algorithms simpler to

formulate, in order to lower this cost.

4.8 Chapter Summary

In this chapter, we introduced a language (COKO) for defining transformations: complex

query rewrites for rule-based optimizers. COKO transformations generalize rewrite rules.

Like rules, they can be fired and can succeed or fail as a result. But because they are

expressed algorithmically, they are able to express many rewrites (such as normalizations)

that rewrite rules cannot.

A COKO transformation consists of a set of rewrite rules and a firing algorithm spec-

ifying how they are fired. The separation of rewriting (expressed with rewrite rules) and

firing control (expressed with firing algorithms) makes it possible to express complex and

efficient rewrites that can still (because rewrite rules are over KOLA queries) be verified

with a theorem prover.

COKO transformations can be made efficient and expressive. The language for firing

algorithms includes the kinds of operators that are most useful for describing rewrites.

These include explicit rule firing, traversal control, selective firing and conditional firing.

We demonstrated the efficiency benefits of firing algorithms with an example COKO trans-

formation that converts predicates to CNF. We demonstrated the expressivity of COKO

with numerous examples that typically do not get expressed with declarative rewrite rules.

These examples included a complex normalization (SNF) and three complex rewrites that
5SNF for example, is straightforward to express with code that 1) converts a binary predicate to CNF,
and 2) traces the origins of all attributes appearing in each conjunct to see which conjuncts involve
attributes only from the first input, second input or both.

124

depend on it (predicate-pushdown, join-reordering and Magic-Sets rewrites).

COKO extends and generalizes KOLA. Whereas KOLA used a modular approach to

build queries from functions, COKO uses a modular approach to build complex query

rewrites from rewrite rules. This modular approach facilitates the verification of query

rewriters.

Chapter 5

Semantic Query Rewrites

Rewrite rules are inherently simple and as such, are not expressive enough to specify many

query rewrites. In the previous chapter, we considered how to express complex query

rewrites that are too general to express with rewrite rules. The CNF rewrite for example,

cannot be expressed as a rewrite rule because no pair of patterns is both general enough

to match all Boolean expressions and specific enough to express their CNF equivalents.

To address this issue, we introduced the language COKO. COKO transformations express

complex query rewrites using sets of KOLA rewrite rules accompanied by firing algorithms.

In this chapter, we consider the complementary issue of expressing query rewrites that

are too specific for rewrite rules. To illustrate, consider a query rewrite that transforms a

query that performs duplicate elimination into one that does not. The correctness of this

rewrite depends on duplicate elimination being redundant, as it is when performed on the

result of a subquery that projects on a key. A rewrite rule expressing this rewrite for SQL

queries is shown below.

SELECT DISTINCT x.f

FROM x IN A

WHERE p

→=
SELECT x.f

FROM x IN A

WHERE p

This rule must be qualified by additional restrictions that ensure that attributes matching

f are keys and collections matching A are sets. Any query that matches the head pattern

of this rule but does not satisfy these additional conditions could have its semantics (specif-

ically, its element counts) changed as a result of rewriting. Semantic conditions such as

those identifying f as a key and A as a set cannot be expressed with patterns. Therefore,

query rewrites whose correctness depends on semantic conditions such as these cannot be

expressed solely with rewrite rules.

125

126

As with complex query rewrites, existing rule-based systems address this expressivity is-

sue by replacing or supplementing rewrite rules with code. Whereas complex query rewrites

use code to manipulate matched expressions in ways that cannot be expressed with patterns,

semantic query rewrites use code to test semantic conditions of expressions that successfully

unify. For example, the SQL transformation above that eliminates duplicate removal would

be expressed in Starburst [79] with C code that examined annotations of the underlying

query representation (QGM) to decide if a matched attribute was a key and if a matched

collection was a set.

This chapter proposes an alternative approach for expressing semantic query rewrites

that is consistent with our goal of making query rewriters verifiable with a theorem prover.

As with COKO, this work builds upon the KOLA work introduced in Chapter 3. We add

two new kinds of rules to the COKO-KOLA framework:

• Conditional rewrite rules, and

• Inference rules.

Conditional rewrite rules resemble (unconditional) rewrite rules, except that when they are

fired, the match of the rule’s head pattern to a query expression is followed by analysis to

see if certain conditions hold of identified subexpressions. Inference rules tell the optimizer

how to decide if these conditions hold.

The contributions of the work presented in this chapter are:

1. Verifiable Semantic Query Rewrites: In keeping with our goal outlined in Chapter 1,

all query rewrites specifiable with inference and conditional rewrite rules are verifiable

with a theorem prover.

2. Use of Inference Rules to Infer Query Semantics: This work is unique in its use of

inference rules to specify semantic conditions. This technique separates the rules that

depend on semantic conditions (conditional rewrite rules) from the decision-making

process that decides if these semantic conditions hold. Our approach is distinct from

that of existing rule-based systems that embed decision-making code within the rule

that may or may not fire as a result.

The use of inference rules to specify semantic conditions makes optimizers extensible

in ways that standard rule-based optimizers are not. By modifying a set of rewrite rules

used by an optimizer, one can change how a query gets rewritten. On the other hand, by

127

modifying a set of inference rules used by an optimizer, one can change when rewrite rules

predicated on inferred conditions get fired.

The rest of this chapter proceeds as follows. In Section 5.1, we motivate this work by

presenting queries over the Thomas database, and showing how the semantics of their data

functions (in this case, their injectivity) can be inferred and exploited for rewriting. In this

section, we also show how the conditional rewrite rules and inference rules that specify these

semantic rewrites would be expressed within COKO-KOLA. Section 5.2 presents a second

example of a semantic condition (predicate strength) that can be used as a condition for

many useful semantic rewrites. Section 5.3 describes how our COKO compiler was modified

to account for inference and conditional rewrite rules. Section 5.4 discusses issues that arose

in the design and implementation of this compiler extension, and a chapter summary follows

in Section 5.5.

The semantic query rewrites presented in this chapter are not new. The injectivity-based

rewrites of Section 5.1 have been discussed in numerous texts (e.g., Ullman’s introductory

text on databases [95]). The predicate strength rewrites of Section 5.2 are similar to the

predicate “move-around” rewrites introduced by Levy, et al. [71]. Our work is unique

in its declarative expression of these rewrites that makes them verifiable with a theorem

prover. Further, the use of inference rules to define these conditions makes rule-based query

rewriters extensible in ways that have not been proposed before.

5.1 Example 1: Injectivity

Figures 5.1a and 5.1b show two simple OQL queries over the Thomas database. The “Major

Cities” query (Figure 5.1a) queries a set of House Representatives (HReps) applying the path

expression, x.reps.lgst cit, to each. The result of this query is the collection of cities that

are the largest of those located in the districts represented by House Representatives in

HReps, with duplicate cities removed.1 The “Mayors” query (Figure 5.1b) also queries a set

of House Representatives. For each Representative, this query returns the mayors of major

cities located in the district that the Representative represents (this time, with duplicate

mayor collections removed from the result).

The “Major Cities” query and the “Mayors” query can be evaluated in similar ways: by

first retrieving House Representatives in HReps, applying a data function to each to generate
1As we mentioned in Chapter 2, we make the simplifying assumption that cities are located in only one
Congressional district. While this may not be the case in practice, we can enforce this assumption by
assigning every city to that district where a majority of its inhabitants reside.

128

SELECT DISTINCT x.reps.lgst cit
FROM x IN HReps

SELECT DISTINCT (SELECT d.mayor
FROM d IN x.reps.cities)

FROM x IN HReps

(a) (b)

↓ ↓

SELECT x.reps.lgst cit
FROM x IN HReps

SELECT (SELECT d.mayor
FROM d IN x.reps.cities)

FROM x IN HReps

Figure 5.1: The “Major Cities” (a) and “Mayors” (b) Queries Before and After Rewriting

an intermediate collection, and then eliminating duplicates. For the “Major Cities” query,

duplicates are cities with the same OID. For the “Mayors” query, duplicates are collections

with the same members.

Duplicate elimination is expensive, requiring an initial sort or hash of the contents of

a collection. But for both the “Major Cities” query and the “Mayors” query, duplicate

elimination is unnecessary. Because of the semantics of their data functions, both queries

generate intermediate collections that already are free of duplicates. No Congressional

district is represented by more than one House Representative, and no city is found in

more than one district.2 Therefore, the “Major Cities” query inserts a distinct city into

its intermediate result for each distinct House Representative. As HReps has no duplicates,

neither will this collection of cities. Similarly, every district has a unique collection of major

cities and every city has a unique mayor. Therefore, the collections of mayors generated as

an intermediate result of the “Mayors” query will not require duplicate elimination.

Rewritten versions of these queries that do not perform duplicate elimination are shown

below the original queries. The query rewrite resulting in these queries is similar to the

relational query rewrite presented at the onset of this chapter. However, this rewrite is

more general in that it can be applied to queries that cannot be expressed as relational

queries (such as object queries with path expressions or subqueries as data functions). For

the object version of this rewrite to be correct, a query’s data function need not be a key

attribute but any injective function (of which keys comprise a special case). And whereas
2Again, according to our simplifying assumption.

129

set ! (iterate (Kp (true), f) ! HReps)
s.t.: f = lgst cit ◦ reps

↓
iterate (Kp (true), f) ! HReps

s.t.: f = lgst cit ◦ reps

KOLA Equivalents of the “Major Cities” Query (Before and After Rewriting)

set ! (iterate (Kp (true), f) ! HReps)
s.t.: f = iterate (Kp (true), mayor) ◦ cities ◦ reps

↓
iterate (Kp (true), f) ! HReps

s.t.: f = iterate (Kp (true), mayor) ◦ cities ◦ reps

KOLA Equivalents of the “Mayors” Query (Before and After Rewriting)

Figure 5.2: KOLA Translations of Figures 5.1a and 5.1b

a relational query rewriter need only consult metadata files (e.g., the database schema) to

determine whether a query’s data function is a key, this approach is inadequate for deciding

the injectivity of functions that might appear in object queries. The number of injective path

expressions alone might be very large and even infinite. (Aside from x.reps.lgst cit, other

injective path expressions on House Representatives are x.name, x.reps, x.reps.cities,

x.reps.lgst cit.mayor and so on.) Thus, it is unlikely that metadata files can be scaled to

keep track of all injective data functions, and inference is required instead.

Figure 5.2 shows KOLA equivalents of the “Major Cities” query and “Mayors” query

both before and after the application of a semantic query rewrite to remove duplicate

elimination (set). The KOLA translations of the data functions (f) for these two queries

are:

• lgst cit ◦ reps, equivalent to the “Major Cities” query path expression,

x.reps.lgst cit,

and

130

• iterate (Kp (true), mayor) ◦ cities ◦ reps, equivalent to the “Mayors” query sub-

query,
SELECT d.mayor

FROM d IN x.reps.cities.

5.1.1 Expressing Semantic Query Rewrites in COKO-KOLA

To express semantic rewrites in COKO, we introduce two new kinds of declarative rules to

the language:

• Conditional Rewrite Rules resemble (unconditional) rewrite rules, but can include

semantic conditions on the subexpressions of matched query expressions. These con-

ditions can, for example, indicate that a given KOLA function must be injective or

that a given KOLA collection must be a set. Like unconditional rules, conditional

rewrite rules can be fired within COKO transformations.

• Inference Rules specify how semantic conditions can be inferred of KOLA functions,

predicates, objects and collections. A property is a set of rules that can be used to

infer the same condition. We have modified our COKO compiler to compile properties

into code that gets executed during rule firing.

Conditional Rewrite Rules in COKO

Conditional rewrite rules have the form,

C :: L
→= R

such that L and R are patterns of KOLA expressions (i.e., such that L
→= R is an un-

conditional rewrite rule), and C is a set of semantic conditions that must hold of various

subexpressions of query expressions that unify with L. Figure 5.3 shows two example con-

ditional rewrite rules that eliminate redundant duplicate elimination. Inj1 can be fired on

either the “Major Cities” query or the “Mayors” query. (Inj2 will be discussed in Sec-

tion 5.1.3.) The head pattern of this rule matches queries that remove duplicates (with

set) from the results of iterate queries. The rule’s body pattern shows the same query

as the rule’s head pattern, but with the invocation of set removed. The conditions of the

rule state that the rule is correct provided that function f is injective and collection A is a

set. Therefore, conditional rewrite rules specify query rewrites that should only be fired if

certain conditions hold.

131

inj1 : is inj (f), is set (A) ::
set ! (iterate (p, f) ! A) →= iterate (p, f) ! A

inj2 : is inj (f), is set (g !) ::
set ◦ iterate (p, f) ◦ g

→= iterate (p, f) ◦ g

Figure 5.3: Conditional Rewrite Rules to Eliminate Redundant Duplicate Elimination

Inference Rules (Properties) in COKO

To perform a query rewrite that removes redundant duplicate elimination, a rewriter must

determine that a query’s data function is injective and that a collection is a set. Like

most semantic properties of functions, injectivity is undecidable in general. Determination

of whether or not a given collection is a set could be made at runtime, but this requires

processing (sorting the collection and scanning for duplicates) that the conditional rewrite

rules of Figure 5.3 are intended to avoid. Therefore, it is not realistic to assume that a

complete reasoning system for user-defined properties is possible or even desirable. But

with guidance, a rewriter can infer that properties such as injectivity hold in some cases.

Incomplete inference is preferable to not performing inference at all for at least in these cases,

rewriting might improve the evaluation of the query. Therefore, we care about soundness

and not about completeness in inferring semantic properties.

Guidance comes from two sources:

• metadata provided by the user that declares object types, integrity (including key)

constraints, etc., and

• inference rules defined by the optimizer developer.

For example, a user might state that a particular attribute of a type is a key.3 As well,

a user might identify the types of objects that are globally named, thus identifying some

named collections as sets and others as bags. The depth and accuracy of the information

supplied by the user determines the quality and correctness of rewriting.
3In the relational world, a key is typically thought of as a property of a collection (i.e., a relation) rather
than a property of a type. However, relations are often used to represent the extent of a type and in this
case the association of key with type is natural. Further, equality definitions for types must be defined
in terms of keys for sets of objects of that type to be well-behaved. (See our DBPL ’95 paper [23] for
the argument as to why this is so.) Therefore, keys can be thought of as properties of types and not
just collections.

132

The inference rules supplied to the optimizer enable inference of conditions that are

not explicitly stated. For example, a user might identify lgst cit and reps as being key

attributes for sets of Congressional districts and House Representatives respectively, but is

unlikely to identify longer path expressions (such as x.reps.lgst cit) as keys given that

there can be too many path expressions to anticipate and consider. But an inference rule

can be used to infer that a path expression is injective given that each of the attributes in

its path is a key. Or, it can be used to infer that a tuple construction is injective if any of

its fields is derived from a key.

A rewriter constructed using the COKO compiler could infer that some functions are

injective according to the inference rules defined in the property definitions of Figure 5.4a.

Inference rules have the form,

body =⇒ head

(or just head which states a fact that is unconditionally true). The head of an inference

rule names a condition (e.g., is inj (f)) to infer. A condition is an uninterpreted logical

relation whose arguments can be either KOLA expressions or pattern variables (such as f)

that implicitly are universally quantified. The body of an inference rule is a logical sentence

(i.e., consisting of conjunctions (∧), disjunctions (∨) and negations (¬) of terms), whose

terms are conditions that must be satisfied to infer the head condition. To illustrate, the

rules of Figure 5.4a should be interpreted as follows:

1. the identity (id) function is injective,

2. a KOLA function is injective if it is a key (is key is a built-in property generated

from metadata specific to a database schema),

3. KOLA function f ◦ g is injective if both f and g are injective,

4. KOLA function 〈f, g〉 is injective if either f or g is injective, and

5. KOLA query function iterate (Kp (true), f) is injective if f is injective.

Figure 5.4b shows a COKO property definition to help decide if collections are sets. The

rules contained in this property state that:

1. the result of invoking the function, set, on any collection is a set (as with COKO’s

GIVEN statement, a “don’t care” expression () in a pattern denotes a variable whose

binding is irrelevant),

2. a collection A is a set if its declared type is a set,

133

PROPERTY Injective
BEGIN
is inj (id). (1)
is key (f) =⇒ is inj (f) (2)
is inj (f) ∧ is inj (g) =⇒ is inj (f ◦ g) (3)
is inj (f) ∨ is inj (g) =⇒ is inj (〈f, g〉). (4)
is inj (f) =⇒ is inj (iterate (Kp (true), f)) (5)
END

(a)

PROPERTY Is Set
BEGIN
is set (set !). (1)
is type (A, set ()) =⇒ is set (A). (2)
is type (m, , set()) =⇒ is set (m !). (3)
is set (A) ∧ is set (B) =⇒ is set (A × B). (4)
is set (A) ∨ is set (B) =⇒ is set (A ∩ B). (5)
is set (A) =⇒ is set (A− B). (6)
END

(b)

Figure 5.4: Properties Defining Inference Rules for Injective Functions (a) and Sets (b)

3. a method m whose range type is a set returns a set when invoked,

4. the Cartesian product of two sets is a set,

5. the intersection of any two collections, of which one is a set, is a set, and

6. taking the difference of any collection from a set returns a set.

Provided that a query rewriter can discern from metadata that reps and lgst cit are

keys and that HReps is a set of House Representatives, Rules 2, 3 and 5 of Figure 5.4a, and

Rule 2 of Figure 5.4b are sufficient to decide that the “Major Cities” query and “Mayors”

query can be safely rewritten.

5.1.2 Correctness

Semantic query rewrites expressed in COKO can be verified with LP. Correctness proofs

require that all conditions that appear in a conditional rewrite rule be given a formal

134

iterate (Cp (eq, ‘‘NSF’’) ⊕ topic, f) ! HouseRes
s.t. f = 〈name, set ◦ iterate (Kp (true), lgst cit ◦ reps) ◦ spons〉

Figure 5.5: NSF1k: The “NSF” Query of Figure 2.4 expressed in KOLA

specification. For example, is inj would be defined in Larch with the axiom:

∀ f : fun [T, U]

is inj (f) = ∀ x, y : T (((f ! x) == (f ! y)) ⇒ (x == y))

Condition is set is defined by the axiom:

∀ A : bag [T] (is set (A) == ∀ x : T ¬(x ∈ (A− x))).

Once formally specified, the inference rules that infer these conditions and the con-

ditional rewrite rules that use them are straightforward to verify. A conditional rewrite

rule,

C :: L
→= R

is correct if C implies that L = R:

C ⇒ (L == R).

An inference rule, B =⇒ H is correct if the conditions in the body of the rule (B) imply

the condition in the head of the rule (i.e., if B ⇒ H). The inference rules and conditional

rewrite rules presented in this section were verified with the LP theorem prover scripts of

Appendix B.5.

5.1.3 Revisiting the “NSF” Query of Chapter 2

Figure 5.5 shows the KOLA equivalent of the “NSF” query of Figure 2.4. It might be

remembered that this query associates the name of every House resolution concerning the

NSF with the set of universities that are largest in the regions represented by one of the

resolution’s sponsors.

As with the “Major Cities” and “Mayors” queries, the duplicate elimination performed

in the data function of this query is unnecessary. That is, the subfunction,

set ◦ iterate (Kp (true), lgst cit ◦ reps) ◦ spons

can be rewritten to

iterate (Kp (true), lgst cit ◦ reps) ◦ spons.

135

This rewrite requires the inference rules of Figure 5.4 along with the conditional rewrite

rule, inj2 of Figure 5.3. In particular, because reps is a key for any set of House Repre-

sentatives, and lgst cit is a key for any set of Congressional districts, by inference rule

(3) of Figure 5.4a,

lgst cit ◦ reps

is an injective function. Also, the schema of Table 2.1 indicates that when applied to a

House resolution, spons returns a set of House Representatives. Therefore, the conditions

guarding inj2 are satisfied by this query.

Rule inj2 resembles inj1, but is defined on compositions rather than invocations of

functions. That is, inj2 rewrites a composition of functions, (set ◦ f) to f unlike inj1,

which rewrites an invocation of functions (set ! (f ! x)) to (f ! x). The need for two

rules reflects the fact that query expressions can denote collections or data functions (in

the case of nested queries). Inj1 gets fired on query expressions denoting collections, as in

the “Major Cities” and “Mayors” queries. Inj2 gets fired on query expressions denoting

functions, as in the “NSF” query.4

5.1.4 More Uses for Injectivity

Another conditional rewrite rule conditioned on the injectivity of a function is shown below:

is inj (f) ::

iterate (p, f) ! (A ∩ B) →= (iterate (p, f) ! A) ∩ (iterate (p, f) ! B).

Intersection is typically implemented with joins. Thus, this rule effectively pushes selections

(p) and projections (f) past joins. Function f must be injective for the rewrite to be correct,

for if it is not, then the query that results from firing this rule might return more answers

than the original query. (For example, if f is the noninjective squaring function, A contains

3 but not -3, and B contains -3 but not 3, then the query resulting from firing this rule may

include 9 in its result whereas the original query will not.)

If HReps2 is another collection of House Representatives, then this rule could be used

with the inference rules described earlier to rewrite a query that returns the largest cities

of all districts represented by House Representatives in both HReps and HReps2 who have

served at least 5 terms,

iterate (Cp (lt, 5) ⊕ terms, lgst cit ◦ reps) ! (HReps ∩ HReps2)
4If translation into KOLA translates all expressions into functions, then only rule inj2 is necessary. In
fact, our OQL → KOLA translator translates all KOLA expressions into functions or predicates as we
show in Chapter 6.

136

into the equivalent query,

(iterate (Cp (lt, 5) ⊕ terms, lgst cit ◦ reps) ! HReps)

∩
(iterate (Cp (lt, 5) ⊕ terms, lgst cit ◦ reps) ! HReps2).

The initial query first takes a potentially expensive intersection of collections of House

Representatives before filtering the result for those who have served more than 5 terms. The

transformed version of this query filters the collections of House Representatives for their

senior members before performing the intersection of the presumably smaller collections

that result.

5.2 Example 2: Predicate Strength

In this section, we show another example of a condition (this time concerning predicates

rather than functions) whose inference enables a number of useful query rewrites. Predicate

strength is unlike injectivity in that it holds of two predicates rather than of individual

functions. A predicate p is “stronger” than a predicate q (is stronger (p, q)) if p always

implies q. Predicate strength is specified in Larch with the following axiom:

∀ p, q : pred [T]

is stronger (p, q) = (∀ x : T (p ? x ⇒ q ? x)).

As with the injectivity examples, the query rewrites presented in this section are not

new — many are implemented in commercial database systems and some were proposed

in the context of relations by Levy, et al. in [71]. What is new is their expression with

declarative rules that simplifies their verification and extension.

5.2.1 Some Rewrite Rules Conditioned on Predicate Strength

Predicate strength is used as a condition for two kinds of rewrite rules:

• If p is stronger than q and a query requires that both p and q be invoked on some

object, x, then the query can be rewritten to one that only invokes p. This rewrite is

advantageous in certain circumstances because it saves the cost of invoking q.

• If p is stronger than q and a query requires that p be invoked on some object, x,

then the query can be rewritten to one that invokes both p and q. This rewrite

is advantageous in cases where q is much cheaper to invoke than p, and therefore

invoking q before invoking p limits the objects on which p must be invoked.

137

str1 : is stronger (p, q) :: (p & q) →= p

str2 : is stronger (p, q) :: p
→= (p & q)

str3 : is stronger (p, q) :: forall (q) ? (iterate (p, id) !) →= true

str4 : is stronger (p, q) :: exists (q) ? (iterate (p, id) ! A) →= exists (p) ? A

str5 : is stronger (p, q) :: forall (q) ? (join (p, id) ! [,]) →= true

Figure 5.6: Rewrite Rules Conditioned on Predicate Strength

PROPERTY is stronger
USES is inj
BEGIN
is stronger (p, p). (1)
is stronger ((eq ⊕ (f × g)) & (p ⊕ f ⊕ π1), p ⊕ g ⊕ π2). (2)
is stronger ((eq ⊕ (f × g)) & (p ⊕ g ⊕ π2), p ⊕ f ⊕ π1). (3)
is stronger (eq ⊕ (f × f), eq ⊕ ((g ◦ f) × (g ◦ f))). (4)
is stronger (p, q) ∧ is stronger (p′, q′) =⇒ is stronger (p & p′, q & q′). (5)
is stronger (p, r) ∨ is stronger (q, r) =⇒ is stronger (p & q, r). (6)
is inj (f) =⇒ is stronger (eq ⊕ (f × f), eq ⊕ (g × g)). (7)
END

Figure 5.7: A COKO Property for Predicate Strength

Figure 5.6 shows rewrite rules conditioned on predicate strength. Rule str1 says that

if p is stronger than q, then the conjunction of p and q can be rewritten to p. Rule str2

is the inverse of rule (1). Rules str3, str4 and str5 state that quantification with a

weaker predicate over the result of filtering a collection with a stronger predicate can be

simplified to avoid traversing the collection at all (Rules str3 and str5) or to quantify over

an unfiltered collection (Rule str4).

5.2.2 A COKO Property for Predicate Strength

Figure 5.7 shows a COKO property with inference rules for inferring predicate strength.

Rule (1) states that any predicate is stronger than itself. Rule (2) states that if

f ! x == g ! y,

138

and predicate p is known to be true of (f ! x), then p must also be true of (g ! y). Rule (3)

similarly infers that p is true of (f ! x) if p is true of (g ! y) and (f ! x == g ! y). Rule

(4) states that equality of partial path expressions implies equality on full path expressions.

That is:
x.a1.ai = y.a1.ai =⇒
x.a1.ai.an = y.a1.ai.an.

Rules (5) and (6) show how predicate strength can be inferred of predicate conjuncts. Rule

(7) uses the injectivity property described earlier to say that equality of keys implies equality

of all other attributes.

5.2.3 Example Uses of Predicate Strength

Below we show some example OQL queries whose KOLA equivalents can be rewritten using

the conditional rewrite rules of Figure 5.6 and the the inference rules of Figure 5.7.

Example 1: The OQL predicate expression below applies a universally quantified pred-

icate to the result of a subquery. The subquery performs a join of Senator collections,

Sens and Sens2 returning a collection of Senator pairs representing the same state. FOR ALL

returns true if the largest cities of the states represented by each pair of Senators is the

same.

FOR ALL y IN




SELECT STRUCT (one : s1, two : s2)

FROM s1 IN Sens, s2 IN Sens2

WHERE s1.reps == s2.reps


 :

y.one.reps.lgst cit == y.two.reps.lgst cit.

Because all pairs of Senators resulting from the subquery represent the same state, the

largest cities of the states represented by the pairs of Senators will also be the same. There-

fore, this complex expression can be transformed into the constant, true.

Expressed over KOLA, this query rewrite transforms the predicate invocation,

fa (eq ⊕ ((lgst cit ◦ reps) × (lgst cit ◦ reps))) ?

(join (eq ⊕ (reps × reps), id) ! [Sens, Sens2])

to the constant true. This rewrite is captured by the conditional rewrite rule, str5 of

Figure 5.6 and uses inference rule (3) of Figure 5.7.

139

Example 2: Whereas the previous example used predicate strength to avoid invoking

predicates unnecessarily, the following examples add predicates to queries to make them

more efficient to evaluate. These examples evoke the spirit of “predicate move-around”

rewrites [71].

The OQL query below joins House Representatives from collections HReps and HReps2

who have served the same number of terms such that the House Representative from

HReps has served more than 5 terms. As this query stands, it likely would be evaluated by

first filtering House Representatives in HReps to include only those who have served more

than 5 terms, and then joining this result with HReps2.

SELECT ∗
FROM h1 IN HReps, h2 IN HReps2

WHERE (h1.terms > 5) AND (h1.terms == h2.terms)

A better form of this query introduces a new predicate (h2.terms > 5) on House Repre-

sentatives in HReps2:

SELECT ∗
FROM h1 IN HReps, h2 IN HReps2

WHERE (h1.terms > 5) AND (h1.terms == h2.terms) AND (h2.terms > 5)

The addition of this predicate does not change the semantics of the query, as any House

Representatives from HReps2 that appear in the original query result will have served more

than 5 terms because they will have served the same number of terms as some House

Representative in HReps who has served more than 5 terms. Put another way, this query

rewrite is correct because the predicate,

(h1.terms > 5) AND (h1.terms == h2.terms)

is stronger than the predicate, h2.terms > 5. This rewrite is advantageous as it makes

it likely that both HReps and HReps2 will be filtered for their senior House Representatives,

before being submitted as inputs to the join.

The KOLA equivalents of these two queries are shown below. The first query would be

expressed in KOLA as,

join (ρ, id) ! [HReps, HRepsk]

such that ρ is:

(eq ⊕ (terms × terms)) & (Cp (lt, 5) ⊕ terms ⊕ π1).

140

The second query is

join (ρ & τ , id) ! [HReps, HReps2]

such that τ is:

Cp (lt, 5) ⊕ terms ⊕ π2.

The transformation of ρ to ρ & τ is justified by rewrite rule str2 of Figure 5.6 with p set

to ρ and q set to τ . That p is stronger than q is justified by inference rule (2) of Figure 5.7

(setting p to Cp (lt, 5) and f and g to terms).

Example 3: Predicate strength rules can be used to generate new predicates and not just

to duplicate existing ones as the following example shows. The query below pairs House

Representatives in HReps who represent Congressional districts whose largest cities have

more than 100 000 people, with mayors in Mays who are the mayors of those cities:

SELECT ∗
FROM h IN HReps, m IN Mays

WHERE (h.reps.lgst cit.popn > 100K) AND (h.reps.lgst cit == m.city)

The KOLA equivalent to this query is, join ((ρ ⊕ γ ⊕ π1) & τ , id) ! [HReps, Mays] such

that
ρ = Cp (lt, 100K) ⊕ popn,

γ = lgst cit ◦ reps, and

τ = eq ⊕ (γ × city).

Rule (2) of Figure 5.7 can be used to generate a new predicate that can filter the mayors

that participate in the join. Specifically, by setting f to γ, g to city and p to ρ, the new

predicate,

Cp (lt, 100K) ⊕ popn ⊕ city ⊕ π2

can be determined to be weaker than

(ρ ⊕ γ ⊕ π1) & τ .

Thus, applying rewrite rule (2) of Figure 5.6 leaves a query that would be expressed in OQL

as:
SELECT ∗
FROM h IN HReps, m IN Mays

WHERE (h.reps.lgst cit.popn > 100K) AND

(h.reps.lgst cit == m.city) AND

(m.city.popn > 100K)

141

QueryQuery

Inference Query

Response

Rule Firer
Inference
Engine

Conditional
Rewrite Rule

Figure 5.8: A Conditional Rewrite Rule Firer

such that m.city.popn > 100K is a new predicate and not just a copy of a predicate

that appeared elsewhere in the original query. If the number of mayors who serve cities

with populations over 100 000 is small, or if mayors are indexed on the populations of their

cities, then this rewrite is likely to make the query more efficient to evaluate.

5.3 Implementation

In this section, we show how both conditional rewrite rules and properties (inference rules)

are processed in our implementation.

5.3.1 Implementation Overview

A key component of a rule-based query rewriter is a rule firer, which accepts representations

of a query and a rule as inputs and produces a new query representation (resulting from

firing the rule) as a result. We implemented the ideas presented in this chapter by extending

the operation of the traditional pattern-matching-based rule firer. The modified rule firer,

illustrated in Figure 5.8, extends the traditional rule firer in two ways:

• Inference: The modified rule firer can consult an inference engine to infer conditions

relevant to the firing of conditional rewrite rules. The rule firer can issue inference

queries such as:

– is the function, lgst cit ◦ reps injective?, or

– can any predicate be generated that is weaker than:

(Cp (lt, 5) ⊕ terms ⊕ π1) & (eq ⊕ (terms × terms))?

The inference engine answers queries with a simple yes or no (as in the first inference

query above) or with KOLA expressions that satisfy the inference query (as in the

second inference query above).

142

• Conditional Rule Firing: The modified rule firer accepts conditional rewrite rules (as

well as unconditional rules) as inputs. When such rules are fired, inference queries are

posed to the inference engine and the answers interpreted.

Section 5.3.2 presents the inference engine component of our optimizer. Section 5.3.3

describes the operation of our rule firer in the presence of conditional functions.

5.3.2 Performing Inference

Our inference engine is the Sicstus Prolog interpreter [83]. Using a Prolog interpreter as

an inference engine makes our implementation a prototype rather than one of commercial

quality. We envision replacing the Prolog interpreter with specialized matching routines

that operate directly on KOLA queries as future work.

The interpreter’s inputs are Prolog programs that are:

• built-in facts and rules describing aspects of the data model that are invariant (e.g.,

rules for inferring subtyping, type information for KOLA operators, etc.),

• facts and rules generated from inference rules, and

• facts generated from metadata information specific to a given database instance, such

as types contained in the schema, signatures of attributes, types of persistent data,

and attributes that are keys.

Presently, metadata based rules are generated manually. However, Prolog facts and rules

are generated automatically by compiling COKO properties.

COKO inference rules are either of the form “B =⇒ H” or simply “H”, such that

H names a condition to infer and B is a logical sentence of conditions. Compilation of

the latter generates the Prolog fact, “H” (described below). Compilation of the former

generates the Prolog rule, “H :- B.” such that B is the Prolog translation of the logic

sentence, B.

Conditions generally have the form,

ident (k1, . . . , kn)

such that each ki is a KOLA pattern. These terms are translated into Prolog terms,

ident (k1, . . . , kn)

such that the translation, ki of KOLA pattern ki:

143

• prepends KOLA’s pattern variables with an uppercase “V” (Prolog requires all vari-

ables to begin with a capital letter),

• translates all built-in primitive functions and predicates (e.g., id) into corresponding

Prolog constants (e.g., id),

• translates all user-defined primitive functions and predicates (e.g., reps) into Pro-

log terms that associate a function with its domain and range (e.g., fun (kreps,

kRepresentative, kDistrict)),

• translates all KOLA object names (e.g., HReps) into Prolog terms prepended with a

lower-case ‘o’ (e.g., oHReps), and

• translates KOLA’s formers into prefix notation. For example, the function pattern,

f ◦ g is translated into the string “compose (Vf, Vg)” while invocation (f ! A) is

translated into the string “invoke (Vf, VA)”.

Translation of logical expressions into Prolog expressions translates conditions as de-

scribed above, and maps:

• conjunctive expressions “p1 ∧ p2” to “p1, p2”,

• disjunctive expressions “p1 ∨ p2” to “p1; p2”,

• negation expressions “not (p1)” to “not (p1)”,

• equations “p1 = p2” to “p1 = p2”, and

• arithmetic comparisons “p1 < p2” to “p1 < p2”, etc.

To illustrate translation into Prolog, the result of compiling property is inj of Fig-

ure 5.4a is the set of Prolog rules and facts shown below:

is inj (id).

is inj (times).

is inj (Vf) : − is key (Vf).

is inj (compose (Vf, Vg)) : − is inj (Vf), is inj (Vg).

is inj (sum (Vf, Vg)) : − is inj (Vf); is inj (Vg).

is inj (iterate (const (true), Vf)) : − is inj (Vf).

Any conditional rule will consult the Prolog rules and facts compiled from the properties

named in the USES clause of the containing transformation. As well, two more Prolog files

144

are consulted automatically. The first of these is a collection of facts and rules automatically

generated from database metadata (for now this file is generated manually). These include

typing information for all global names and all attributes and methods, and semantic in-

formation (such as key constraints) specific to the database. The second file consulted is a

set of built-in rules that provide information that is invariant across database populations.

These built-in rules include typing rules regarding KOLA’s primitives and formers.

5.3.3 Integrating Inference and Rule Firing

Below we illustrate the steps that are performed when a conditional rewrite rule is fired on

a query. We demonstrate these steps by tracing the firing of rule inj1 of Figure 5.3 on the

KOLA version of the “Major Cities” query (Figure 5.2: 1a).

1. The head pattern of the rule above is matched with the “Major Cities” query gen-

erating an environment of bindings for pattern variables: p (bound to Kp (true)), f

(bound to lgst cit ◦ reps) and A (bound to HReps).

2. A Prolog query is generated. First, Prolog subqueries of the form, Vi = Ti are

generated for each variable, Vi appearing in the head pattern (p, f and A). For a

given variable Vi, Ti is the Prolog translation of the subexpression bound to Vi. In

the case of the “Major Cities” query, the generated subqueries are:

Vp = const (true),

Vf = compose (fun (klgst cit, kDistrict, kCity),

fun (kreps, kRepresentative, kDistrict)), and

VA = oHReps.

These Prolog subqueries are then added to a Prolog subquery generated by translating

the conditions of the conditional rewrite rule. The Prolog query generated from firing

the conditional rewrite rule on the “Major Cities” query is

?− Vp = const (true),

VA = oHReps,

Vf = compose (fun (klgst cit, kDistrict, kCity),

fun (kreps, kRepresentative, kDistrict)),

pis inj (Vf), pis set (VA).

3. The generated Prolog query is issued to the Prolog interpreter with the built-in rules

described earlier, and the relevant Prolog facts and rules generated from inference

145

rules and metadata. In the case of the “Major Cities” query, the relevant Prolog rules

would be those resulting from the compilation of the inference rules of Figure 5.4a

and 5.4b, and the metadata facts:

pis key (fun(klgst cit, kDistrict, kCity)),

pis key (fun(kreps, kRepresentative, kDistrict)), and

pis type (oHReps, set(oRepresentative)).

4. The Prolog query is posed of the Prolog interpreter and the results interpreted. If

the results include new variable bindings to KOLA expressions expressed as Prolog

terms, these terms are translated back into KOLA expressions and added to the

environment of (variable, subexpression) bindings generated in Step (1). For the

“Major Cities” query, the Prolog interpreter uses the translations of inference rules

(2) and (3) (Figure 5.4a) and (2) (Figure 5.4b) to reduce the inference query generated

in step (2) to the simpler queries,

pis key (fun(klgst cit, kDistrict, kCity)),

pis key (fun(kreps, kRepresentative, kDistrict)) and

pis type (oHReps, set()).

These simpler queries all are satisfied by facts generated from metadata.

5. The environment generated in steps (1) and (4) is used to instantiate the pattern vari-

ables appearing in the body pattern of the conditional rewrite rule. The instantiated

pattern is then returned as the output of rule firing. In the case of the “Major Cities”

query, the returned query is: iterate (Kp (true), lgst cit ◦ reps) ! HReps.

5.4 Discussion

5.4.1 Benefits to this Approach

The examples presented in this chapter demonstrate our approach to expressing semantic

query rewrites. The query rewrite presented at the chapter’s onset that eliminates redun-

dant duplicate elimination is used in many commercial relational database systems. It is

also presented as one of the Starburst query rewrites in [79]. In Starburst, this rewrite

is used as a normalization step before view merging. Subqueries that perform duplicate

elimination make view merging impossible because duplicate semantics are lost as a result

of the merge. Starburst uses this rewrite in order to recognize subqueries that can be trans-

formed into equivalent queries that perform no duplicate elimination so that view merging

146

can take place. The rewrites of Section 5.2 that use predicate strength have also been con-

sidered elsewhere. Those that remove quantification from complex predicates (Example 1

of Section 5.2) are standard techniques that one can find in many textbooks. Those that

introduce new predicates (Examples 2 and 3 of Section 5.2) are similar to the “predicate

move-around” techniques for transforming relational queries [71].

What is unique in our work is the use of declarative conditional rewrite rules and infer-

ence rules to express these complex transformations. With our approach we can verify all

of the rules presented in these sections with a theorem prover. (See Appendix B.5 for LP

theorem prover scripts for these rules.) Verification of conditional rewrite rules establishes

that query semantics are preserved when these rules are fired on queries satisfying the rules’

semantic preconditions. Verification of inference rules establishes that semantic conditions

are inferred only when appropriate (soundness).

The other contribution of this approach concerns extensibility. Starburst and “predicate

move-around” rewrites use the ideas discussed in Sections 5.1 and 5.2 in the context of

relational databases. To simulate their results, we do not need all of the inference rules of

Figure 5.4a that infer injectivity, nor do we need all of the inference rules of Figure 5.7 that

infer predicate strength. For example, to capture the duplicate elimination query rewrite

presented in Starburst for relational queries, we only need inference rules that establish an

attribute to be injective if it is a key (Figure 5.4a, Rule (2)) and if it is a pair (equivalently,

a relational tuple) containing a key (Figure 5.4a, Rule (4)). Rule (3) of Figure 5.4a is not

needed as there is no notion of a composed data function in the relational data model.

But if the relational version of this rewrite were expressed in our framework, it would be

straightforward to extend this rewrite (to work for example, in an object database setting)

simply by adding a verified inference rule such as Rule (3) of Figure 5.4a. Note that the

addition of this one inference rule makes the rewrite rules conditioned on injectivity fired

in a greater variety of contexts (e.g., when queries include path expressions with keys, or

tuples with fields containing path expressions with keys etc.). By similar reasoning, not all

of the predicate strength inference rules of Figure 5.7 are required to express the “predicate

move-around” rewrites when confined to relations (e.g., Rule (4) of Figure 5.7 is unnecessary

because of its use of function composition). Again, rules such as this one can be added to

simply extend a relational optimizer to work robustly in an object setting.

147

5.4.2 The Advantage of KOLA

We argued in Chapter 3 that the combinator flavor of KOLA makes declarative rewrite rules

easy to express. The meaning of a KOLA subexpression is context-independent. Therefore,

code supplements are not required to identify subexpressions, nor are code supplements

required to formulate new queries that reuse identified subexpressions in new contexts.

The advantage of combinators extends to the formulation of conditional rewrite rules

and inference rules. Conditional rewrite rules must identify subexpressions upon which to

express conditions. Inference rules also must identify subexpressions because conditions

tend to be inferred from conditions held of subexpressions (e.g., the injectivity of complex

functions can be inferred from the injectivity of their subfunctions). Again, variables in a

query representation complicate the identification of these subexpressions.

Consider as an example, the data functions appearing in the “Major Cities” query and

the “Mayors” query. The KOLA forms of these functions are:

lgst cit ◦ reps, and

iterate (Kp (true), mayor) ◦ cities ◦ reps.

These two functions are both injective by similar reasoning: they are compositions of other

functions that are injective. Inferring injectivity of the OQL forms of these data functions,

x.reps.lgst cit, and

SELECT DISTINCT d.mayor

FROM d IN x.reps.cities

is more complicated. The identification of both of these data functions as being compo-

sitions of other functions requires machinery beyond what can be expressed with rewrite

rules. Specifically, determining exactly what are the subfunctions of these functions requires

reversing the process of substituting expressions for variables by factoring the complex ex-

pressions denoting the functions into two expressions for which the substitution of one

for a variable in the other reproduces the original expression. For the path expression,

x.reps.lgst cit, these subfunctions are x.reps and x.lgst cit (as substituting the first

of these expressions for x in the second expression reproduces the original path expression).

For the subquery, the subfunctions are, x.reps.cities and

SELECT DISTINCT d.mayor

FROM d IN x

148

as again, substituting the first expression for x in the second expression results in the

original expression. The decomposition required to identify subfunctions is inexpressible

with declarative rewrite rules and instead requires calls to supplemental code.

5.5 Chapter Summary

This chapter presents our approach to extending the expressive power of rewrite rules with-

out compromising the ease with which they can be verified. The techniques proposed here

target the expression of query rewrites that are too specific to be captured with rewrite

rules. The correctness of these rewrites depends on the semantics, and not just the syntax

of the queries on which they fire.

This work builds upon the foundation laid with KOLA. We introduced conditional

rewrite rules; rewrite rules whose firing depends on the satisfaction of semantic conditions

of matched expressions. We then introduced inference rules that tell query rewriters how

to decide if these semantic conditions hold. In the spirit of KOLA, both conditional rewrite

rules and inference rules are expressed declaratively and are verifiable with LP.

This work contributes to the extensibility and verifiability of query rewriters. With

respect to verification, the declarative flavor of both forms of rules makes them amenable

to verification with a theorem prover. This approach is in stark contrast to the code-based

rules of existing rule-based systems such as Starburst [79] and Cascades [42], which express

conditions and condition-checking with code. With respect to extensibility, the separation

of a condition’s inference rules from the rewrite rules that depend on them, achieves a

different form of extensibility than was provided by rewrite rules alone. Whereas rewrite

rules make optimizers extensible by making it simple to change the potential actions taken

by an optimizer, inference rules make optimizers extensible by making it simple to change

the contexts in which these rules get fired.

Chapter 6

Experiences With COKO-KOLA

The goal of the work presented in this chapter was to determine the feasibility of the COKO-

KOLA approach in an industrial setting. The COKO-KOLA approach clearly offers large

gains in the formal methods aspects of query optimizer development; it is the first rule-

based optimizer framework whose inputs can be verified with a theorem prover. But do

these gains come at some practical cost? Can fully functional query optimizers be built

within this framework or are we limited to toy examples with trivial functionality? Just

how expressive is COKO for expressing the kinds of query rewrites that get used in real

optimizers?

To address these questions, we teamed up with researchers from the IBM Thomas J.

Watson Research Center and the IBM AS/400 Divisions to build a query rewriting com-

ponent for a query optimizer for an object-oriented database. The IBM San Francisco

project implements an Object-Oriented database using the relational database, DB2. Our

contribution to this project was to use COKO-KOLA build a query rewriter that trans-

lates object queries on this object-oriented database (expressed in an experimental subset

of OQL, informally called Query Lite) into equivalent SQL queries over the underlying DB2

relations. This project thereby provided a workbench with which we could consider the

following issues concerning the practicality of the COKO-KOLA approach:

• Integration: How easy is it to use query rewriters generated from COKO transforma-

tions with existing query processors? That is, can we use COKO-KOLA to generate

components that improve upon the behavior of an optimizer (either by making it work

over a larger set of queries or by making it produce “better” plans), without having

to make changes to optimizer code?

• Ease-Of-Use: How straightforward is it to express useful query rewrites? For the

149

150

Query Lite project, how many COKO transformations, KOLA rewrite rules and lines

of firing algorithm code would be required to express the object → relational query

mapping?

This chapter begins in Section 6.1 with background on the San Francisco project and

Query Lite. Sections 6.2 and 6.4 describe additions to the COKO-KOLA implementation

required to complete this project, including translators to translate:

• Query Lite queries (and more generally, OQL’s set-and-bag queries) into KOLA (Sec-

tion 6.2), and

• KOLA queries into SQL (Section 6.4).

Section 6.3 describes the COKO transformations developed for the San Francisco project.

These include a normalization transformation described in Section 6.3.2, whose purpose

is to normalize KOLA queries resulting from translation (from Query Lite or OQL) into

a form that makes query rewriting straightforward, and a transformation (presented in

Section 6.3.3) to rewrite these normalized queries into a form that can be translated into

SQL. Section 6.5 considers the feasibility issues in light of these transformations. Section 6.6

summarizes the chapter.

6.1 Background

The San Francisco project uses relational technology to implement an object-oriented database.

Specifically, the database implementation for this project uses DB2 as its relational back-

bone.

6.1.1 San Francisco Object Model

The object model for San Francisco is similar to the ODMG object model outlined in [14],

and therefore similar also to the KOLA data model described in Section 3.2.2. Specifically,

objects have unique immutable identifiers (OID’s), and are classifiable by their types. An

object type defines a set of public methods that can be invoked on collections of objects of

that type in a query. These methods can have any arity, are invoked using message passing

syntax, and can return values of basic types (e.g., integers), OID’s for other objects, or

references to collections. These methods can either be attribute-based (meaning they simply

return a value associated with the object, as with instance variables) or derived, in which

case the returned value is computed rather than retrieved.

151

Objects themselves can be contained in any number of object collections and will at

least be included in the automatically maintained collection of instances of objects of the

same type (the type’s extent).

6.1.2 Relational Implementation of the Object Model

The relational implementation of objects is straightforward, and similar to schemes de-

scribed elsewhere (e.g., [60]). Firstly, any collection of objects of a particular type (including

a type extent) is represented by a relation. The structure of this relation is derived from

the interface of the associated object type in the following way:

• A column (which for simplicity we will name OID) is dedicated to denote each object’s

unique identifier. Such identifiers are typically strings.

• Columns are reserved for each attribute-based method (except those that are collection-

valued.) Atribute-based methods that return values of some basic type (e.g., integers)

are represented by columns with values of that type. Attribute-based methods that

return other objects are represented by columns whose values are strings denoting

object identifiers.

To illustrate the object → relational mapping, a relational implementation of a portion of

the object schema illustrated in Figure 2.1 is described. Object collections Sens and Sts

would be implemented with the relations Sens and Sts shown below with their respective

structures:

Sens: (OID: String, name: String, reps: String, pty: String, terms: Int)

Sts: (OID: String, name: String, lu: String)

An object population that included Senator objects s1 and s2 representing Rhode Island

(“R.I”), and named “Jack Reed” and “John Chafee” respectively would result in the

following entries in these relations:

Sens

OID name reps pty terms

“s1” “Jack Reed” “r1” “Dem” 1

“s2” “John Chafee” “r1” “GOP” 5

Sts

OID name lu

“r1” “R.I.” “University of R.I.”

152

Objects with attribute-based methods returning collections are treated as a special case

in the relational implementation. Specifically, these methods are represented with their own

relations that associate OID’s with the values or OID’s of objects contained in the collection.

For example, the collection SRs of Senate resolution objects (as defined in Figure 2.1) would

be implemented with the relations shown below:

SRs : (OID : String, topic : String)

SRs--spons : (OID1 : String, OID2 : String).

Relation SRs stores Senate resolution object identifiers with the values of their non-collection

attribute-based method, topic. Relation SRs-spons stores Senate resolution object iden-

tifiers with the OID’s of objects contained in the collection returned by attribute-based

method, spons. For example, if sr1 is a Senate resolution object whose topic is “NSF

funding”, and that is sponsored by the Senators, s1 and s2, then relations SRs and

SRs-spons would include the following entries:

SRs

OID topic

“sr1” “NSF Funding

SRs-spons

OID1 OID2

“sr1” “s1”

“sr1” “s2”

6.1.3 Querying

A query processor for San Francisco is under development. Early releases will support a

limited subset of OQL called Query Lite. Query Lite restricts queries to those of the form,

SELECT x

FROM x IN A

[WHERE BoolExp]

[ORDER BY OrderExp]

such that [. . .] denotes an optional component, BoolExp denotes a boolean expression con-

sisting of conjunctions, disjunctions and negations of simple comparison expressions, and

OrderExp is either the name of an externally defined comparison function or a list of unary

methods defined on the objects in A. Like OQL, Query Lite queries can contain invocations

of methods with multiple arguments and path expressions (although only in their WHERE

clause). But Query Lite supports neither join queries nor embedded collections. A full

grammar for Query Lite is shown in Table 6.1.

153

6.1.4 Our Contribution

Our contribution was to build a query rewriter (using COKO-KOLA) that transforms Query

Lite queries with path expressions, into equivalent SQL queries over the underlying rela-

tional implementation.1 For example, the Query Lite query,

SELECT x

FROM x IN Sens

WHERE x.reps.name == ‘‘R.I.’’

gets rewritten by our rewriter into the SQL query,

SELECT x

FROM x IN Sens, y IN Sts

WHERE x.reps == y.OID AND y.name == ‘‘R.I.’’

(assuming the scheme for representing object collections as relations described in the pre-

vious section). This effort required that we (1) translate Query Lite queries with path

expressions into KOLA, (2) rewrite the KOLA path expression queries into KOLA join

queries, and (3) translate the KOLA join queries into SQL.2 The components required for

each of these tasks are illustrated in Figure 6.1. Sections 6.2, 6.3 and 6.4 present the designs

and implementations of these components.

6.2 Translating Query Lite Queries into KOLA

The simplicity of Query Lite makes a Query Lite → KOLA translator straightforward to

design. However, as the eventual goal of the San Francisco project is to support querying

in OQL, a sophisticated approach to translation is required. In this section, we describe the

reasoning behind our approach to translation, which accounts for an eventual migration to

OQL.
1Because KOLA does not yet have support for lists, we only address Query Lite queries that do not
contain an ORDER BY clause.

2A fourth step to provide an object view over the relational data returned by the SQL queries is not
considered here.

154

SQL Query

Query Lite Query

KOLA → SQL
Translator

DB2

Query Lite Query Processor

Query Lite → KOLA
Translator

Query Rewriter

Figure 6.1: An Architecture for the Query Lite Query Rewriter

155

Constants, Variables and Path Expressions
Exp : c (c a non-Bool constant/global name)

| IDENT (an identifier denoting the name of a variable)

| Exp . IDENT
| Exp . IDENT (Exp , Exp , . . . , Exp)

Arithmetic Expressions
| - (Exp)
| ABS (Exp)
| Exp + Exp
| Exp - Exp
| Exp * Exp
| Exp / Exp
| Exp MOD Exp

Query Expressions

Query :

SELECT x (Any variable name can be substituted for x)
FROM x IN IDENT
[WHERE BoolExp]
[ORDER BY OrdExp]

Boolean Expressions
BoolExp : TRUE

| FALSE
| Exp IS NULL
| Exp IS NOT NULL
| Exp == Exp
| Exp != Exp
| Exp < Exp
| Exp > Exp
| Exp <= Exp
| Exp >= Exp
| NOT (BoolExp)
| BoolExp AND BoolExp
| BoolExp OR BoolExp

Ordering Expressions
OrderExp : IDENT . IDENT, . . . , IDENT . IDENT Direction

| IDENT Direction

Direction : ASC | DESC
Table 6.1: The Syntax of Query Lite

156

6.2.1 Translation Strategies

Translation from Query Lite into KOLA is straightforward. Given a Query Lite query e,

SELECT x

FROM x IN A

WHERE p (x),

KOLA equivalent of e (T JeK) is

iterate (T JpK, id) ! A.

This simplistic approach says that translation generates a KOLA query of the form,

f ! x,

such that x (the data component of the KOLA query) is generated from the expression in

the query’s FROM clause, and f (the function component of the KOLA query) is generated

from the expressions in the query’s SELECT and WHERE clauses.

We decided against this translation strategy because it does not generalize well to OQL,

the language that eventually will be used as the query language for San Francisco. Specifi-

cally, determining which parts of a query correspond to the data and function components

of the KOLA translation becomes blurred in the presence of nested queries and embedded

collections. Consider for example, the OQL query of Figure 6.2a, which finds all committees

with Republican members. This query invokes the method mems to return the embedded

collection of members of any given committee. The simplistic assumption that what ap-

pears in a query’s FROM clause is automatically the data component of a query is violated

here, as a collection of committee members can only be determined by applying a function

(mems) to a given committee. Therefore, the simplistic translation strategy that works for

Query Lite queries does not work for queries such as this.

An Alternative Strategy: The 1st Collection in a FROM Clause is Data

Consider the following alternative translation strategy: rather than designating all expres-

sions appearing a query’s FROM clause as data components, instead designate only the first

collection named in the FROM clause as a data component. Therefore, translation of the

query of Figure 6.2a would designate Coms as the only data component of the query, and

produce a KOLA query on Coms:

(iterate (eq ⊕ 〈pty ◦ π2, Kf (‘‘GOP’’)〉, π1) ◦ unnest (id, mems)) ! Coms.

157

SELECT DISTINCT x
FROM x IN Coms, y IN x.mems
WHERE y.pty == ‘‘GOP’’

a. A Query with a Path Expression (x.mems) in its FROM Clause

SELECT


 SELECT y

FROM y IN x.mems
WHERE y.terms > 5




FROM x IN Coms
WHERE x.topic == ‘‘NSF’’

b. A Nested Query

Figure 6.2: OQL Queries that make Translation into KOLA Difficult

This query first pairs every committee with each of its members (unnest), and then deter-

mines which (committee, member) pairs satisfy the condition that member is a Republican

(iterate).

Once queries can be nested, this strategy also fails. Consider the nested query of Fig-

ure 6.2b which finds the senior members of committees in Coms that study the NSF. The

subquery
SELECT y

FROM y IN x.mems

WHERE y.terms > 5

has the path expression, x.mems in its FROM clause. This expression is not a data component

and instead must be mapped to a function, even though it is the first expression in the FROM

clause. Therefore, this translation strategy must treat outer queries (queries that include

subqueries, which must get translated to function invocations) differently from inner queries

(queries that are subexpressions of outer queries, which must get translated into functions).

Our Strategy: Everything Generates a Function

The solution we take is to designate all parts of the query as function components. This

approach to translation simplifies the design of the translator greatly as it removes the

need to analyze each subexpression to see if it constitutes data or function. However, the

consequence of this design decision is that translation returns KOLA expressions that are

not intuitive. This problem is addressed after translation by a normalization (defined in

COKO) to rewrite translated queries into more intuitive forms.

158

SELECT x
FROM x IN Sens
WHERE x.terms > 5

a. A Query Lite Query

(iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, Kf (Sens)) ◦
single) ! NULL

b. Translation Into KOLA

iterate (gt ⊕ 〈id, Kf (5)〉 ⊕ terms, id) ! Sens
c. After Normalization

Figure 6.3: A Query Lite Query (a), its Translation (b) and its Normalization (c)

Figures 6.3a and 6.3b show a simple Query Lite query (that finds all Senators who

have served more than 5 terms) and the result of translating this query according to this

strategy. Note that translation produces a function that gets invoked on NULL. NULL is an

arbitrary argument to this function; in fact the function would return the same result no

matter what was its argument (i.e., the function generated by the translator is a constant

function). This translation strategy makes the result of translation counterintuitive, as the

query that is produced does not get invoked on one or more collections, but on a constant

that does not even figure in the final result.

The result of translation shown in 6.3b is not as intuitive a translation as the equivalent

KOLA query shown in Figure 6.3c, which simply filters Senators in Sens who have served

more than 5 terms. However, the KOLA expression of Figures 6.3b has the same semantics

as the initial Query Lite query, as is demonstrated by the reduction below:

(iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, Kf (Sens)) ◦ single) ! NULL

1→ iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) !

(unnest (id, Kf (Sens)) ! (single ! NULL))
2→ iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ! (unnest (id, Kf (Sens)) ! {|NULL|})
3→ iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) !

({|(id ! [x, s])ij | xi ∈ {|NULL|}, sj ∈ (Kf (Sens) ! x)|})
4→ iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ! ({|[x, s]ij | xi ∈ {|NULL|}, sj ∈ Sens|}

159

5→ iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ! ({|[NULL, s]j | sj ∈ Sens|}
6→ {|(π2 ! [NULL, s])j | sj ∈ Sens, (gt ⊕ 〈terms ◦ π2, Kf (5)〉) ? [NULL, s]|}
7→ {|(π2 ! [NULL, s])j | sj ∈ Sens, gt ? (〈terms ◦ π2, Kf (5)〉 ! [NULL, s])|}
8→ {|sj | sj ∈ Sens, gt ? [(terms ◦ π2) ! [NULL, s], Kf (5) ! [NULL, s]]|}
9→ {|sj | sj ∈ Sens, gt ? [terms ! (π2 ! [NULL, s]), Kf (5) ! [NULL, s]]|}
10→ {|sj | sj ∈ Sens, gt ? [terms ! s, Kf (5) ! [NULL, s]]|}
11→ {|sj | sj ∈ Sens, gt ? [s.terms, Kf (5)]|}
12→ {|sj | sj ∈ Sens, s.terms > 5|}

Step 1 of this reduction follows from the definition of ◦. Step 2 follows from the definition

of single. Step 3 follows from the definition of unnest. Step 4 follows from the definitions

of id and Kf . Step 5 follows from the fact that xi is being drawn from a singleton set. Step

6 follows from the definition of iterate. Step 7 follows from the definition of ⊕. Step 8

follows from the definition of 〈 〉. Step 9 follows from the definition of ◦. Step 10 follows

from the definition of π2. Step 11 follows from the definition of function attribute primitives

and Kf . Step 12 follows from the definition of gt.

Our approach to translation is similar to how Query Lite or OQL queries would be

given a denotational semantics. Because arbitrary Query Lite and OQL expressions can

have occurences of free variables (e.g., x in “x > 5”), the semantics of such expressions is

dependent on an environment that defines what is referred to by the free variables appearing

within the expression. More precisely, an environment is a list of (variable, value) pairs

((v1, d1), (v2, d2), . . . , (vn, dn))

providing the bindings of all free variables, v1, . . . , vn appearing in a given expression. (If

an environment ρ gives bindings to every free variable in an expression, e, we say that e

is well-formed with regard to to ρ.) The denotational semantics of a Query Lite or OQL

expression, e is a function (Eval JeK) that maps all environments for which it is well-formed

to values. For example,

Eval Jx > 5K ρ

is true if ρ = ((x, 6)) but false if ρ = ((x, 4)). Queries that do not appear as subexpressions

of other queries will have no free variables, and therefore are well-formed with regard to

the empty environment, (). The denotational semantics of these expressions are constant

functions.

160

The idea behind this translation strategy is to map every expression e to the KOLA

function T JeK whose operational semantics coincides with e’s denotational semantics. More

precisely, if e is well-formed with respect to some environment,

ρ = ((v1, d1), (v2, d2), . . . , (vn, dn)),

then T JeK is a KOLA function satisfying the constraint that

T JeK ! (ρ) = Eval JeK ρ

such that ρ is the KOLA nested pair representation of environment ρ,

[. . .[d1, d2], . . .dn].
3

Queries that are well-formed with regard to the empty environment get mapped to constant

KOLA functions. The choice of NULL as an argument to these functions can be thought of

as reflecting how KOLA represents the empty environment (i.e., () = NULL).

6.2.2 T: The Query Lite → KOLA Translation Function Described

We have defined a translator from a set-and-bag-based subset of OQL to KOLA. This subset

of OQL is a superset of Query Lite. The part of the translator that processes Query Lite

queries is described here. (The full OQL translator is described and proven correct in [17].4)

The translation of a Query Lite query q, is

T JqK ! NULL

such that T JqK is as defined in Table 6.2. Below we examine this translation function,

defined over all Query Lite queries and expressions.

Translating Constants

All non-Bool constants (e.g., −3, 5.322, ‘‘Hello World’’, NULL, . . .) are translated into

constant functions (Kf (−3), Kf (5.32), Kf (‘‘Hello World’’), Kf (NULL), . . .). (Bool

constants are translated into constant predicates Kp (TRUE) and Kp (FALSE).)
3A boolean expression b would similarly be mapped to KOLA predicate, T JbK such that

T JbK ? (ρ) = Eval JbK ρ.

4In fact, an older translator that translates a set-based (as opposed to a set-and-bag based) subset of
OQL is presented and proven correct in a technical report [17]. The correctness proof (by structural
induction) is nonetheless highly suggestive of what the correctness proof for this version of the translator
will involve. The updated correctness proof is future work.

161

Constants, Variables and Path Expressions
T JcK = Kf (c) (c a non-Bool constant/global name)

T JV0K = π2

T JViK = T JVi−1K ◦ π1 (for i > 0)

T JExp . IDENTK = IDENT ◦ T JExpK
T JExp . IDENT (Exp1, Exp2, . . . , Expn)K =
IDENT ◦ 〈T JExpK, 〈〈 . . . 〈T JExp1K, T JExp2K〉, . . . 〉, T JExpnK〉〉

Arithmetic Expressions
T J− (Exp)K = Cf (mul, −1) ◦ T JExpK

T JABS (Exp)K = abs ◦ T JExpK
T JExp0 + Exp1K = add ◦ 〈T JExp0K, T JExp1K〉
T JExp0 - Exp1K = sub ◦ 〈T JExp0K, T JExp1K〉
T JExp0 * Exp1K = mul ◦ 〈T JExp0K, T JExp1K〉
T JExp0 / Exp1K = div ◦ 〈T JExp0K, T JExp1K〉

T JExp0 MOD Exp1K = mod ◦ 〈T JExp0K, T JExp1K〉
Query Expressions

T

uv SELECT x
FROM x IN IDENT
WHERE BoolExp

}~ =
iterate (T JBoolExpK, π2) ◦
unnest (id, Kf (IDENT)) ◦
single

Boolean Expressions
T JTRUEK = Kp (TRUE)

T JFALSEK = Kp (FALSE)

T JExp IS NULLK = isnull ⊕ T JExpK
T JExp IS NOT NULLK = isnotnull ⊕ T JExpK

T JExp0 == Exp1K = eq ⊕ 〈T JExp0K, T JExp1K〉
T JExp0 != Exp1K = neq ⊕ 〈T JExp0K, T JExp1K〉
T JExp0 < Exp1K = lt ⊕ 〈T JExp0K, T JExp1K〉
T JExp0 > Exp1K = gt ⊕ 〈T JExp0K, T JExp1K〉

T JExp0 <= Exp1K = leq ⊕ 〈T JExp0K, T JExp1K〉
T JExp0 >= Exp1K = geq ⊕ 〈T JExp0K, T JExp1K〉
T JNOT (BoolExp)K = ∼ (T JBoolExpK)

T JBoolExp0 AND BoolExp1K = T JBoolExp0K & T JBoolExp1K
T JBoolExp0 OR BoolExp1K = T JBoolExp0K | T JBoolExp1K

Table 6.2: T: The Query Lite → KOLA Translation Function

162

Translating Variables

The translation of variables is perhaps the most complex aspect of translation. Conceptu-

ally, variable translation works from a preprocessed version of the query in which all variable

references are replaced by deBruijn variables [30]. A deBruijn variable is a variable index

(Vi for i ≥ 0) that indicates the position of a variable reference relative to its declaration.

(Higher values of i indicate a greater “distance” between reference and declaration. V0

always refers to the most “recently” declared variable.)

The preprocessing step that converts variable references into deBruijn variables must

first associate every referenced variable with its declaration. Variable declarations typically

occur in a query’s FROM clause, as in “x IN COLL”, which declares variable x to range over

the elements of collection COLL. In OQL, variable declarations can also occur in a query’s

WHERE clause if it contains a quantifier expression, as in

EXISTS x IN COLL: p (x)

which also declares variable x to range over the elements of collection COLL.

The algorithm followed during this preprocessing step visits each subexpression of a

given query expression’s FROM, SELECT and WHERE clauses in turn. Each subexpression

is associated with a scope list which is a list of variables that can be referenced by the

subexpression.5 Scope lists of subexpressions are propagated and amended during each

step of the expression traversal. That is, the visit of a subexpression will accept the scope

list associated with a previously visited subexpression (its incoming scope list). If the

subexpression declares a new variable, this variables is appended to the incoming scope list

to produce a scope list for subexpressions still to be visited (its outgoing scope list).

The algorithm is described below with respect to the generic OQL query of Figure 6.4.6

In this figure, Es, Ew, and Ei, . . . , Em (0 ≤ i ≤ m) are OQL subexpressions that potentially

include free occurences of variables. For this example, it is assumed that this query has

(x0, . . . , xi−1)

as its incoming scope list. (If the query is not a subexpression of another query, then its

incoming scope list is (). That is, i = 0.)

The subexpressions of this query are visited and processed as follows:
5The variables in a subexpression’s scope list are those that must be bound by any environment for which
that subexpression is well-formed.

6The algorithm is described in terms of an OQL query rather than a Query Lite query because every
Query Lite query declares exactly one variable, making preprocessing trivial.

163

SELECT Es

FROM xi IN Ei, . . . , xm IN Em

WHERE Ew

Figure 6.4: A Prototypical OQL Query

1. for each FROM subexpression: Ek (i ≤ k ≤ m):

• Ek’s incoming scope list is (x0, . . . , xk−1).

• conversion into deBruijn notation replaces each xj appearing in Ek with Vk−j−1.

• Ek’s outgoing scope list is (x0, . . . , xk). (That is, xk is appended to the incoming

scope list.)

2. for SELECT subexpression, Es and WHERE subexpression Ew:

• Es’s and Ew’s incoming scope lists are both (x0, . . . , xm).

• conversion into deBruijn notation replaces each xj in Es or Ew with Vm−j.

To illustrate the algorithm, we trace its effects on the OQL query of Figure 6.2b that is

nested in its SELECT clause. Assume that the outer query does not appear as a subexpression

of another query (i.e., the outer query is defined with respect to the empty environment,

()). The algorithm visits subexpressions of this query in the following order:

1. “x IN Kf (Coms)”:

1’s Incoming Scope List: ()

1’s Outgoing Scope List: (x)

Expression 1’s outgoing scope list is the result of appending its declared variable x to

its incoming scope list, ().

2. “SELECT y FROM y IN x.mems WHERE y.terms > 5”:

2’s Incoming Scope List: (x)

(a) “y IN x.mems” (in inner query’s FROM clause):

2a’s Incoming Scope List: (x)

2a’s deBruijn Conversion: variable reference x is replaced by V0

2a’s Outgoing Scope List: (x, y)

164

SELECT


 SELECT V0

FROM y IN V0.mems
WHERE V0.terms > 5




FROM x IN Coms
WHERE V0.topic == ‘‘NSF’’

Figure 6.5: The Query of Figure 6.2b After deBruijn Conversion

Expression 2a’s outgoing scope list is the result of appending its declared variable

y to its incoming scope list, (x).

(b) “SELECT y” (in inner query):

2b’s Incoming Scope List: (x, y)

2b’s deBruijn Conversion: variable reference y is replaced by V0

Variable y was the most “recently” declared variable in the incoming scope list

and hence its reference is replaced by V0. Had this reference instead been to x,

it would have been replaced by V1.

(c) “WHERE y.terms > 5” (in inner query):

2c’s Incoming Scope List: (x, y)

2c’s deBruijn Conversion: variable reference y is replaced by V0

After preprocessing of this query is completed, we are left with the query of Figure 6.5.

Note that the relative referencing of deBruijn notation means that the same deBruijn index

can refer to multiple variables within a single query. In the query of Figure 6.5, deBruijn

variable V0 refers to a committee in Coms in the WHERE clause of the outer query and the

FROM clause of the inner query, but refers to a committee member in the SELECT and WHERE

clauses of the inner query.

The translation of a deBruijn variable (Vi) into KOLA is defined as follows:

• T JV0K = π2, and

• T JViK (for i > 0) = T JVi−1K ◦ π1

The result of translation then, is a function that can be invoked on the KOLA representation

(ρ) of the environment (ρ) associated with the translated variable. When invoked on this

representation, the value bound to the variable in the environment is returned. For example,

suppose that variable reference x is associated with the incoming scope list,

(w, x, y, z)

165

and is therefore well-formed with regard to environment ρ:

((w, 3), (x, 5), (y,−7.3), (z, ‘‘Hello’’)).

The translation of x into KOLA first generates the deBruijn variable, V2 and then produces

the KOLA function, π2 ◦ π1 ◦ π1. When invoked on the KOLA pair, ρ:

[[[3, 5], −7.3], ‘‘Hello’’],

this function returns 5; the value that had been associated with x in ρ.

Translating Path Expressions:

The translation of a unary method invocation,

Exp . m

is

m ◦ T JExpK.
The translation of an n-ary method invocation,

Exp . m (Exp0, Exp1, . . . , Expn−1)

is

m ◦ 〈T JExpK, 〈〈 . . . 〈T JExp0K, T JExp1K〉, . . . 〉, T JExpn−1K〉〉.
Assuming that Exp . m and Exp . m (Exp0, Exp1, . . . , Expn−1) are well-formed with regard to

some environment, ρ, the results of invoking their KOLA translations on ρ are:

m ! (T JExpK ! ρ)

and

m ! [T JExpK ! ρ, [. . .[T JExp1K ! ρ, T JExp2K ! ρ], . . . , T JExpnK ! ρ]

respectively. Because m is a method, these expressions reduce to

(T JExpK ! ρ) . m

and

(T JExpK ! ρ) . m (T JExp1K ! ρ, T JExp2K ! ρ, . . . , T JExpnK ! ρ)

respectively, the KOLA equivalents of the original method invocations.

166

Translating Arithmetic Expressions:

Every arithmetic operator (e.g., ‘+’) has a corresponding KOLA primitive (e.g., add). The

translation of any arithmetic subexpression,

Exp0 ArithOp Exp1,

is the KOLA function,

ArithOp ◦ 〈T JExp0K, T JExp1K〉
such that ArithOp is the KOLA primitive corresponding to ArithOp.

Translating Query Expressions:

For any OQL or Query Lite query, q:

T

uwwv
SELECT Es

FROM x0 IN E0, . . . , xn IN En

WHERE Ew

}��~
=

iterate (T JE ′
wK, T JE ′

sK) ◦
unnest (id, T JE ′

nK) ◦ . . . ◦ unnest (id, T JE ′
0K) ◦

single

such that each E ′
i (for i ∈ {0, . . . , n, s, w}) is equivalent to Ei but for the replacement of all

variable references with their deBruijn equivalents. The translation of a Query Lite query

(for which n = 0) follows from the more general translation of OQL queries shown here.

That the translation of query expressions preserves semantics is demonstrated below.

Suppose that q (above) is well-formed with regard to some environment, ρ. Then T JqK ! (ρ)

reduces as follows:

1. Function single is invoked to create the singleton bag, {|ρ|}).

2. Successive invocations of unnest (id, E ′
0), . . ., unnest (id, T JE ′

nK) generate the

collection,

{|[. . .[[ρ, e0], e1], . . . en] |
e0 ∈ (T JE ′

0K ! (ρ)),

e1 ∈ (T JE ′
1K ! ([ρ, e0])),

. . . ,

em ∈ (T JE ′
nK ! ([. . .[[ρ, e0], e1], . . . , en−1]))|}.

167

The result above is a bag of KOLA pairs,

[. . .[[ρ, e0], e1], . . . en]

such that ei (0 ≤ i ≤ n) is an element of the collection denoted by Ei with regard to

ρ supplemented with pairs,

((x0, e0), . . . , (xi−1, ei−1)).

Put another way, this result is an (n + 1)-way cartesian product of the collections

denoted by E0, . . . , En with regard to the environments derived from ρ, and from

elements of preceeding collections.

3. Query iterate (T JE ′
wK, T JE ′

sK) is invoked on the result of 2, thereby applying the

expression in the original query’s SELECT clause (T JE ′
sK) to every tuple produced in

2 that satisfies the query’s WHERE clause (T JE ′
wK).

Translating Boolean Expressions:

The translation of Boolean expressions is straightforward, resembling the translation of

non-Boolean expressions but with combination (⊕) replacing composition (◦).

6.2.3 Sample Traces of Translation

In this section, we trace the application of the translation function on two queries: the

Query Lite query of Figure 6.3 and the OQL query of Figure 6.2b. The result of translating

the Query Lite query is shown in Figure 6.3b. The result of translating the OQL query and

also that of Figure 6.2a are shown in Figure 6.6.

Tracing the Translation of the Query Lite Query of Figure 6.3

The translation of the Query Lite query of Figure 6.3 first converts all variable references

to deBruijn variables, producing the query,

SELECT V0

FROM x IN Sens

WHERE V0.terms > 5.

Translation then proceeds as follows:

T JSELECT V0 FROM x IN Sens WHERE V0.terms > 5K

168

a:
(set ◦ iterate (eq ⊕ 〈pty ◦ π2, Kf (‘‘GOP’’)〉, π2 ◦ π1) ◦
unnest (id, mems ◦ π2) ◦ unnest (id, Kf (Coms)) ◦ single) ! NULL

b:
(iterate (eq ⊕ 〈topic ◦ π2, Kf (‘‘NSF’’)〉, f) ◦
unnest (id, Kf (Coms)) ◦ single) ! NULL

such that f =
(iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single)

Figure 6.6: Results of Translating the OQL queries of Figure 6.2

= iterate (T JV0.terms > 5K, T JV0K) ◦ unnest (id, T JSensK) ◦ single

= iterate (T JV0.terms > 5K, π2) ◦ unnest (id, Kf (Sens)) ◦ single

= iterate (gt ⊕ 〈T JV0.termsK, T J5K〉, π2) ◦ unnest (id, Kf (Sens)) ◦ single

= iterate (gt ⊕ 〈terms ◦ T JV0K, Kf (5)〉, π2) ◦ unnest (id, Kf (Sens)) ◦ single

= iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦ unnest (id, Kf (Sens)) ◦ single

Tracing the Translation of the OQL Query of Figure 6.2b

The translation of the OQL query of Figure 6.2b first converts all variable references to

deBruijn variables, producing the query of Figure 6.5. Translation then proceeds as follows:

T

uwwwwwwwv
SELECT




SELECT V0

FROM y IN V0.mems

WHERE V0.terms > 5




FROM x IN Coms

WHERE V0.topic == ‘‘NSF’’

}�������~

=
iterate (T JV0.topic == ‘‘NSF’’K, f) ◦
unnest (id, T JComsK) ◦ single

s.t. f = T

uwwv
SELECT V0

FROM y IN V0.mems

WHERE V0.terms > 5

}��~

169

=
iterate (T JV0.topic == ‘‘NSF’’K, f) ◦
unnest (id, T JComsK) ◦ single

s.t. f =
iterate (T JV0.terms > 5K, T JV0K) ◦
unnest (id, T JV0.memsK) ◦ single

=
iterate (eq ⊕ 〈T JV0.topicK, T J‘‘NSF’’K〉, f) ◦
unnest (id, T JComsK) ◦ single

s.t. f =
iterate (gt ⊕ 〈T JV0.termsK, T J5K〉, T JV0K) ◦
unnest (id, T JV0.memsK) ◦ single

=
iterate (eq ⊕ 〈T JV0.topicK, Kf (‘‘NSF’’)〉, f) ◦
unnest (id, Kf (Coms)) ◦ single

s.t. f =
iterate (gt ⊕ 〈T JV0.termsK, Kf (5)〉, T JV0K) ◦
unnest (id, T JV0.memsK) ◦ single

=
iterate (eq ⊕ 〈topic ◦ T JV0K, Kf (‘‘NSF’’)〉, f) ◦
unnest (id, Kf (Coms)) ◦ single

s.t. f =
iterate (gt ⊕ 〈terms ◦ T JV0K, Kf (5)〉, T JV0K) ◦
unnest (id, mems ◦ T JV0K) ◦ single

=
iterate (eq ⊕ 〈topic ◦ π2, Kf (‘‘NSF’’)〉, f) ◦
unnest (id, Kf (Coms)) ◦ single

s.t. f =
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single

The bravehearted can now follow the reduction of this function when invoked on NULL, to

confirm that translation has preserved query semantics.

170

(iterate (eq ⊕ 〈topic ◦ π2, Kf (‘‘NSF’’)〉, f) ◦
unnest (id, Kf (Coms)) ◦ single) ! NULL

s.t. f =
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single

=
iterate (eq ⊕ 〈topic ◦ π2, Kf (‘‘NSF’’)〉, f) !

(unnest (id, Kf (Coms)) ! (single ! NULL))

s.t. f =
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single

=
iterate (eq ⊕ 〈topic ◦ π2, Kf (‘‘NSF’’)〉, f) !

(unnest (id, Kf (Coms)) ! {|NULL|})

s.t. f =
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single

= iterate (eq ⊕ 〈topic ◦ π2, Kf (‘‘NSF’’)〉, f) ! {|([NULL, c])i | ci ∈ Coms|}

s.t. f =
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single

= {|(f ! [NULL, c])i | ci ∈ Coms, (eq ⊕ 〈topic ◦ π2, Kf (‘‘NSF’’)〉) ? [NULL, c]|}

s.t. f =
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single

= {|(f ! [NULL, c])i | ci ∈ Coms, eq ? [c.topic, ‘‘NSF’’]|}

s.t. f =
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single

.

171

The invocation of f on [NULL, c] then reduces as follows:

f ! [NULL, c] =
(iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) ◦
unnest (id, mems ◦ π2) ◦ single) ! [NULL, c]

=
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) !

(unnest (id, mems ◦ π2) ! (single ! [NULL, c]))

=
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) !

(unnest (id, mems ◦ π2) ! {|[NULL, c]|})

=
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) !

{|([[NULL, c], m])j |mj ∈ ((mems ◦ π2) ! [NULL, c])|}

=
iterate (gt ⊕ 〈terms ◦ π2, Kf (5)〉, π2) !

{|([[NULL, c], m])j |mj ∈ c.mems|}

=
{|(π2 ! [[NULL, c], m])j |

mj ∈ c.mems, (gt ⊕ 〈terms ◦ π2, Kf (5)〉) ? [[NULL, c], m]|}

= {|mj |mj ∈ c.mems, m.terms > 5|}

The result of this reduction then is

{|{|mj |mj ∈ c.mems, m.terms > 5|}i | ci ∈ Coms, c.topic == ‘‘NSF’’|}

which is a nested bag of committee members for committees whose topic concerns the NSF

(i.e., the result specified by the original OQL query).

6.2.4 Translator Implementation

The translator described above was implemented with the Ox compiler generator tool [8].

Ox is an attribute-grammar [3] based compiler tool in the spirit of Lex and Yacc [55].

Lex is a tool for generating lexical scanners and Yacc is a tool for generating parsers.

Lex specifications designate a set of tokens (or terminal symbols) and associate regular

expressions with each. The generated scanner maps text to tokens according to these

specifications. Yacc specifications are context-free grammars consisting of non-terminals

and tokens. The generated parser finds parse trees for strings according to the grammar

specification, and can also invoke semantic actions based on the parse.

Ox generalizes the operation of Yacc in the same manner that attribute grammars

generalize context-free grammars. Ox specifications are Lex and Yacc specifications that

172

are augmented with definitions of attributes that are either synthesized (passed up the

parse tree) or inherited (passed down the parse tree). Ox then uses these specifications to

generate a program that constructs and decorates attributed parse trees. Ox facilitates the

generation of compilers by making it possible to succinctly specify actions for those aspects

of compiler generation for which Yacc falls short, such as type checking, code generation

and so on.

To use Ox for the OQL/Query Lite → KOLA translator, we used a grammar augmented

with attributes denoting:

• functions and predicates: As described earlier, our translator returns a function or

predicate as the result of translating every expression. The function or predicate for

any given expression is constructed from the functions and predicates of its subex-

pressions, as the translation function T of Table 6.2 illustrates. Therefore, func and

pred are synthesized attributes of all expression non-terminals.

• incoming and outgoing scope lists: Scope lists are propagated from subexpression

to subexpression; one subexpression’s outgoing scope list becomes the next visited

subexpression’s incoming scope list. Therefore, insl is an inherited attribute denoting

the incoming scope list of all expressions, and outsl is a synthesized attribute denoting

the outgoing scope list.

6.3 Query Rewriting

This section presents COKO transformations that rewrite KOLA translations of Query Lite

queries into a form that can be translated into SQL. Section 6.3.1 presents a library of gen-

eral purpose COKO transformations used by these transformations. Section 6.3.2 presents a

specialized COKO transformation that normalizes KOLA queries resulting from translation

into a more intuitive form.7 Section 6.3.3 presents a specialized COKO transformation that

rewrites the resulting normalized KOLA queries into equivalent KOLA queries that can be

translated into SQL.

6.3.1 A Library of General-Purpose COKO Transformations

Many of the transformations defined for the Query Lite rewrites serve a more general-

purpose as normalization or simplification transformations. Whereas normalizations rewrite
7These normalizations are strictly unnecessary, but make it easier to implement rewrites proposed in the
literature in terms of the more intuitive expressions of queries.

173

TRANSFORMATION LBComp
USES
sft: f ◦ (g ◦ h) −→ (f ◦ g) ◦ h

BEGIN
BU {sft →

{GIVEN f ◦ F DO LBComp (f);
LBComp}

}
END

Figure 6.7: Transformation LBComp

expressions into structurally characterizable forms, simplifications make expressions “smaller”

by removing redundancies or trivial subexpressions. In this section, we describe the library

of general-purpose transformations defined for this task.

Normalizations

Left-Bushy Compositions LBComp (shown in Figure 6.7) is a normalization transfor-

mation that gets fired on KOLA functions. If the function is of the form,

f0 ◦ f1 ◦ . . . ◦ fn

(with compositions associated in any way), this transformation returns the equivalent func-

tion in “left-bushy” form:

(. . . (f0 ◦ f1) ◦ . . . ◦ fn).

The transformation of Figure 6.7 is similar to transformation LBComp from Figure 4.10

(Chapter 4). The firing algorithms and rewrite rules for these transformations are identical,

but for the use LBComp’s use of a composition former where LBConj has a conjunction former,

and LBComp’s use of function variables where LBConj has predicate variables.

Left-Bushy Joins Transformation LBJoin (Figure 6.8) gets applied to KOLA join queries

that have subqueries that are also joins. The effect of this transformation is to rewrite a

query with multiple applications of KOLA’s join operator into left-bushy form. For exam-

ple, the bushy join,

join (p, f) ! [join (q, g) ! [A1, A2], join (r, h) ! [B1, B2]]

gets transformed into the left-bushy join,

join (p′, f ′) ! [join (Kp (true), id) ! [join (Kp (true), id) ! [A1, A2], B1], B2]

174

such that p′ is derived from p, q and r, f ′ is derived from f , g and h, and join (Kp (true), id)

is the KOLA equivalent of the Cartesian product operator.

LBJoin is defined in terms of auxiliary transformations LBJAux (shown in Figure 6.8),

LBJAux2 (shown in Figure 6.9) and PullFP (also shown in Figure 6.9). Its firing algorithm

does the following:

1. Step 1: The auxiliary transformation, PullFP, “pulls up” all data functions and predi-

cates from join subqueries into the outermost join. The effect of this step is to return

a new join query that has the same structure as the initial query, but with all but

the outermost join replaced with Cartesian products.

2. Step 2: In this step, the large data predicate and data function now contained in the

outermost join (i.e., p and f in join (p, f)) are simplified by calls to COKO transfor-

mations SimpPred and SimpFunc respectively. (These simplification transformations

are presented in the next section.)

3. Step 3: This step performs all the necessary reassociations of joins to make the ex-

pression left-bushy. Transformation LBJAux (shown in Figure 6.8) invokes LBJAux2

in bottom-up fashion. LBJAux2 reassociates individual join by firing rule sft, which

rewrites a right associated join to a left associated join by combining (composing)

the data function (data predicate) instantiating the outermost join with shr (shift

right).

4. Step 4: This step repeats the action of Step 2 to simplify the data function and data

predicate in the outermost join operator.

Simplifications

Function Simplification Figure 6.10 shows the COKO transformation SimpFunc and its

auxiliary transformations. These transformations simplify functions built from the KOLA

primitives, id, π1, π2, shr and shl, and the KOLA formers, ◦, 〈 〉 and Kf . SimpFunc first

normalizes functions so that all composition chains (i.e., functions of the form f0 ◦ . . . ◦ fn)

contained as subfunctions are made left-bushy (via a call to LBComp). Next, auxiliary

transformation SFAux is invoked. This transformation applies the simplifying identities of

transformations BSAux1 and BSAux2 in a bottom-up fashion. If none of the rules in these

latter transformations fires on a given subquery, rules sft and dis are successively fired to

see if reassociation of compositions or distribution of compositions over function pairs (〈 〉)

175

TRANSFORMATION LBJoin
-- Convert n-ary join to left-bushy join
USES
cu: iterate (Kf (true), id) ! A −→ A,
SimpPred,
SimpFunc,
PullFP,
LBJAux

BEGIN
-- Step 1: Pull Up Data Predicates and Data Functions
PullFP;

-- Step 2: Simplify Top-Most Predicate and Data Function
{GIVEN iterate (p, f) ! A DO {SimpPred (p); SimpFunc (f); cu}} ||

{GIVEN join (p, f) ! O DO {SimpPred (p); SimpFunc (f)}};

-- Step 3: Reorder
LBJAux;

-- Step 4: Simplify
{GIVEN iterate (p, f) ! A DO {SimpPred (p); SimpFunc (f); cu}} ||

{GIVEN join (p, f) ! O DO {SimpPred (p); SimpFunc (f)}}
END

TRANSFORMATION LBJAux
-- Helps to Convert n-ary join to left-bushy join
USES
LBJAux2

BEGIN
BU {GIVEN join (P, F) ! O DO LBJAux2}

END

Figure 6.8: Transformations LBJoin and LBJAux

176

TRANSFORMATION LBJAux2
-- Helps to Convert n-ary join to left-bushy join
USES
pull1: join (p, f) ! [join (q, g) ! [A1, A2], B] −→

join ((q ⊕ π1) & (p ⊕ 〈g ◦ π1, π2〉), f ◦ 〈g ◦ π1, π2〉) !
[join (Kf (true), id) ! [A1, A2], B],

pull2: join (p, f) ! [A, join (q, g) ! [B1, B2]] −→
join ((q ⊕ π2) & (p ⊕ 〈π1, g ◦ π2〉), f ◦ 〈π1, g ◦ π2〉) !
[A, join (Kf (true), id) ! [B1, B2]],

sft: join (p, f) ! [A, join (Kf (true), id) ! [B1, B2]] −→
join (p ⊕ shr, f ◦ shr) ! [join (Kf (true), id) ! [A, B1], B2],

SimpFunc,
SimpPred

BEGIN
pull1 ||
{pull2 → sft → {GIVEN join (p, f) ! [A, O] DO LBJAux2 (A)}}

END

TRANSFORMATION PullFP
-- Pull all data functions and data predicates into top-most
-- iterate or join
USES
ru1: iterate (p, f) ! (iterate (q, g) ! A) −→

iterate (q & (p ⊕ g), f ◦ g) ! A,
ru2: iterate (p, f) ! (join (q, g) ! [A, B]) −→

join (q & (p ⊕ g), f ◦ g) ! [A, B],
ru3: join (p, f) ! [iterate (q, g) ! A, B] −→

join ((q ⊕ π1) & (p ⊕ 〈g ◦ π1, π2〉), f ◦ 〈g ◦ π1, π2〉) ! [A, B],
ru4: join (p, f) ! [A, iterate (q, g) ! B] −→

join ((q ⊕ π2) & (p ⊕ 〈π1, g ◦ π2〉), f ◦ 〈π1, g ◦ π2〉) ! [A, B],
ru5: join (p, f) ! [join (q, g) ! [A1, A2], B] −→

join ((q ⊕ π1) & (p ⊕ 〈g ◦ π1, π2〉), f ◦ 〈g ◦ π1, π2〉) !
[join (Kf (true), id) ! [A1, A2], B],

ru6: join (p, f) ! [A, join (q, g) ! [B1, B2]] −→
join ((q ⊕ π2) & (p ⊕ 〈π1, g ◦ π2〉), f ◦ 〈π1, g ◦ π2〉) !
[A, join (Kf (true), id) ! [B1, B2]]

BEGIN
BU {GIVEN F ! O DO {ru1 || ru2 || {{ru3 || ru5}; {ru4 || ru6}}}}

END

Figure 6.9: Transformations LBJAyx2 and PullFP Auxiliary Transformations

177

TRANSFORMATION SimpFunc
USES
SFAux,
LBComp
BEGIN
TD LBComp;
SFAux;
TD LBComp
END

TRANSFORMATION SFAux
USES
SFAux1,
SFAux2,
sft: (f ◦ g) ◦ h −→ f ◦ (g ◦ h),
dis: 〈f, g〉 ◦ h −→ 〈f ◦ h, g ◦ h〉,
LBComp

BEGIN
BU {SFAux1 ||

SFAux2 ||
sft → {SFAux; sft INV} ||
dis → {SFAux; dis INV} ||
dis INV →
{GIVEN f ◦ F DO

{SFAux (f);
REPEAT {SFAux1 || SFAux2}}

}
}

END

TRANSFORMATION BSAux1
USES
ru1: shl ◦ shr −→ id,
ru2: shr ◦ shl −→ id,
ru3: π1 ◦ shr −→ π1 ◦ π1,
ru4: π2 ◦ shl −→ π2 ◦ π2,
ru5: f ◦ id −→ f,
ru6: id ◦ f −→ f,
ru7: 〈π1, π2〉 −→ id,
ru8: 〈π1, π1〉 −→ 〈id, id〉 ◦ π1,
ru9: π1 ◦ shl −→ 〈π1, π1 ◦ π2〉,
ru10: π2 ◦ shr −→ 〈π2 ◦ π1, π2〉
BEGIN
ru1 || ru2 || ru3 || ru4 || ru5 ||
ru6 || ru7 || ru8 || ru9 || ru10
END

TRANSFORMATION BSAux2
USES
ru9: 〈π2, π2〉 −→ 〈id, id〉 ◦ π2,
ru10: 〈Kf (x), Kf (y)〉 −→ Kf ([x, y]),
ru11: Kf (x) ◦ f −→ Kf (x),
ru12: π1 ◦ 〈f, g〉 −→ f,
ru13: π2 ◦ 〈f, g〉 −→ g,
ru14: 〈Kf (x), f〉 −→ 〈Kf (x), id〉 ◦ f,
ru15: 〈f, Kf (x)〉 −→ 〈id, Kf (x)〉 ◦ f,
LBComp

BEGIN
ru9 || ru10 || ru11 || ru12 || ru13 ||
GIVEN 〈Kf (x), id〉 DO SKIP ||
GIVEN 〈id, Kf (x)〉 DO SKIP ||
{ru14 || ru15} → BU {LBComp}

END

Figure 6.10: Transformation SimpFunc and Its Auxiliary Transformations

makes it possible for these rules to be fired. The second attempt to fire the rules of BSAux1

and BSAux2 is triggered by a recursive firing of transformation SFAux.

Predicate Simplification Transformation SimpPred of Figure 6.11 simplifies predicates

in a manner similar to how SimpFunc simplifies functions. Predicates simplified are those

178

formed from predicate formers, &, |, ∼, ⊕ and Kp. SimpPred visits a predicate’s subpredi-

cates and subfunctions in bottom-up fashion (as achieved via recursive calls at the beginning

of the firing algorithm.) Then, auxiliary transformation SimpDisj is called on disjunct sub-

predicates (p | q), SimpConj is called on conjunct subpredicates (p & q), SimpNeg is called

on negation subpredicates (∼ (p)), and SimpOpls is called on combination subpredicates

(p ⊕ f) (after a call of REPEAT sft first moves as much of the function out of the predicate

p as possible). Each of these specialized transformations attempts to fire rules to simplify

predicates that are specific to the kind of predicate for which they are named. As with

SimpFunc, failure to fire any of the rules in the specialized auxiliary transformations makes

SimpPred attempt to reassociate predicate combinations.

Common Path Expression Elimination Transformation PullComFunc is shown in Fig-

ure 6.13 along with its auxiliary transformation, PCFAux. PullComFunc rewrites predicates

of the form,

(p1 ⊕ f1) & . . . & (pn ⊕ fn)

by grouping common functions, fi leaving a predicate of the form,

(p′1 ⊕ f1) & . . . & (p′m ⊕ fm)

such that m ≤ n and no two functions, fi and fj (i 6= j) are the same. Step 1 of the firing

algorithm for PullComFunc first normalizes input conjunction predicates into left-bushy

form (via a call to LBConj). Then in Step 2, auxiliary transformation PCFAux is called on

every conjunction subpredicate in bottom-up fashion.

To illustrate the effects of PCFAux, Figure 6.12 shows the parse tree for the ith con-

junction subpredicate visited. The call of PCFAux on this subtree is intended to merge

subpredicate pi+1 with a subpredicate below it, pj provided that fi+1 = fj . Merging is

accomplished by comparing fi+1 with each of the functions fi, fi−1, . . . in turn, until one

or none is found that is the same as fi+1. (Note that the invariant for this algorithm es-

tablishes that because PCFAux is called in bottom-up fashion on successive subtrees, that

each of the functions f1, . . . , fi is distinct). PCFAux handles each of the possible cases for

function comparisons as described below:

• Case 1: i = 1, f2 = f1

This case is handled by the successful firing of rule fac1 leaving

(pi & pi+1) ⊕ fi.

179

TRANSFORMATION SimpPred
USES

sft: (p ⊕ f) ⊕ g −→ p ⊕ (f ◦ g),
SimpFunc,
SimpConj,
SimpDisj,
SimpOpls,
SimpNeg

BEGIN
GIVEN p & q DO {SimpPred (p); SimpPred (q); SimpConj} ||
GIVEN p | q DO {SimpPred (p); SimpPred (q); SimpDisj} ||
GIVEN ∼ (p) DO {SimpPred (p); SimpNeg} ||
{REPEAT sft;
GIVEN p ⊕ f DO {SimpPred (p); SimpFunc (f); SimpOpls}
REPEAT {sft INV}}

END

TRANSFORMATION SimpDisj
USES
d1: p | Kp (true) −→ Kp (true),
d2: Kp (true) | p −→ Kp (true),
d3: p | Kp (false) −→ p,
d4: Kp (false) | p −→ p,
d5: p | p −→ p,
d6: p | ∼ (p) −→ Kp (true),
d7: ∼ (p) | p −→ Kp (true)

BEGIN
d1 || d2 || d3 || d4 ||
d5 || d6 || d7

END

TRANSFORMATION SimpConj
USES
c1: p & Kp (true) −→ p,
c2: Kp (true) & p −→ p,
c3: p & Kp (false) −→ Kp (false),
c4: Kp (false) & p −→ Kp (false),
c5: p & p −→ p,
c6: p & ∼ (p) −→ Kp (false),
c7: ∼ (p) & p −→ Kp (false)
BEGIN
c1 || c2 || c3 || c4 ||
c5 || c6 || c7
END

TRANSFORMATION SimpOpls
USES
opls1: p ⊕ id −→ p,
opls2: Kp (b) ⊕ f −→ Kp (b)

BEGIN
opls1 || opls2

END

TRANSFORMATION SimpNeg
USES
neg1: ∼ (Kp (false)) −→ Kp (true),
neg2: ∼ (Kp (true)) −→ Kp (false)

BEGIN
neg1 || neg2

END

Figure 6.11: Transformation SimpPred and Its Auxiliary Transformations

180

⊕

pi+1 fi+1

&

&

&

. . .

⊕

pi fi

⊕

f2p2

⊕

f1p1

Figure 6.12: An Input KOLA Parse Tree to PCFAux

181

• Case 2: i > 1, fi+1 = fi

This case is handled by the successful firing of rule fac2, which will rewrite the current

predicate into the form,

p & ((pi & pi+1) ⊕ fi)

such that p is

(p1 ⊕ f1) & . . . & (pi−1 ⊕ fi−1).

• Case 3: i = 1, f2 6= f1

In this case, none of the rules successfully fires and the predicate is not rewritten.

• Case 4: i > 1, fi+1 6= fi

In this case, fi+1 must be compared to the functions “below” fi: fi−1, . . . , f1. These

comparisons are accomplished by firing rule swtch which switches the order of sub-

predicates, (pi+1 ⊕ fi+1) and (pi ⊕ fi), and then calling PCFAux recursively on the

left bushy conjunct subpredicate that now has (pi+1 ⊕ fi+1) as its right-most branch.

Analysis

Table 6.3 summarizes the contents of the COKO transformations presented in this Section.

The table has 5 columns:

• the name of the transformation,

• the figure in which the transformation appears,

• the number of KOLA rewrite rules fired by the transformation,

• the number of the above rules that have been verified thus far with LP, and

• the number of lines of (firing algorithm) code that the transformation contains.

Admittedly, the number of lines of code is largely dependent on programming style; what

may be a single line of code for some, may be broken up into many lines of code for others.

The style used for the transformations in this chapter attempts to achieve readability and

clear presentation. For that reason, our line count is likely generous. Further, we count

all lines in a firing algorithm including white space, comments, and even the lines with the

reserved words BEGIN and END.

The library then, is quite small (roughly 100 lines of code) and dominated by rules (over

50) in all. All of the rewrite rules used for the transformations in the library have been

verified with the theorem prover, LP [46].

182

TRANSFORMATION PullComFunc
-- given a conjunctive predicate, rewrites it to the form
-- ((p11 & ... & p1n) OPLUS f1) & ... ((pm1 & ... & pmn) OPLUS fm)
-- by factoring common functions from separate conjuncts
USES
sft: p ⊕ (f ◦ g) −→ p ⊕ f ⊕ g,
PCFAux,
LBConj

BEGIN
-- Step 1: Next make Conjunct Left Bushy
LBConj;

-- Step 2: Then Pull Up Common Subfunctions
BU {GIVEN P & P DO PCFAux}

END

TRANSFORMATION PCFAux
-- Helper transformation for PullComFunc, rewriting
-- conjunctive predicates to the form
-- ((p11 & ... & p1n) ⊕ f1) & ... ((pm1 & ... & pmn) ⊕ fm)
-- by factoring common functions from separate conjuncts
USES
fac1: (p ⊕ f) & (q ⊕ f) −→ (p & q) ⊕ f,
fac2: (p & (q ⊕ f)) & (r ⊕ f) −→ p & ((q & r) ⊕ f),
swtch: (p & q) & r −→ (p & r) & q

BEGIN
-- Either merge the two leaf conjuncts or switch them
-- and try with the next two
{fac1 → GIVEN p ⊕ F DO PCFAux (p) ||
fac2 → GIVEN P & (p ⊕ F) DO PCFAux (p) ||
swtch → GIVEN p & P DO PCFAux (p)
}

END

Figure 6.13: Transformation PullComFunc and Its Auxiliary Transformation

183

Transformation Figure No. Rules No. Verified No. Lines in
Rules Firing Algorithm

LBComp 6.7 1 1 6
LBJoin 6.8 1 1 15
LBJAux 6.8 0 0 3
LBJAux2 6.9 3 3 4
PullFP 6.9 6 6 3

SimpFunc 6.10 0 0 5
SFAux 6.10 2 2 11
BSAux1 6.10 10 10 4
BSAux2 6.10 7 7 6

SimpPred 6.11 1 1 9
SimpDisj 6.11 7 7 4
SimpConj 6.11 7 7 4
SimpOpls 6.11 2 2 3
SimpNeg 6.11 2 2 3

PullComFunc 6.13 1 1 7
PCFAux 6.13 3 3 8
Total – 53 53 95

Table 6.3: Analysis of the General-Purpose COKO Transformations

6.3.2 Normalizing the Results of Translation

Translation of Query Lite and OQL queries, q generate KOLA functions, T JqK, of the form,

iterate (p, f) ◦ unnest (id, fn) ◦ . . . ◦ unnest (id, f0) ◦ single.

This function gets applied to KOLA representations of environments for which the original

query is well-formed. For example, if q is well-formed with regard to ρ, then T JqK ! ρ

reduces to:
{|f ! [. . .[ρ, e0], . . . en] |

e0 ∈ (f0 ! (ρ)),

e1 ∈ (f1 ! ([ρ, e0])),

. . . ,

en ∈ (fn ! ([. . .[ρ, e0], . . . en−1])),

p ? [. . .[ρ, e0], . . . , en]|}.

184

set !
(iterate (eq ⊕ 〈id, ‘‘GOP’’〉 ⊕ pty ⊕ π2, π1) !
(unnest (id, mems) ! Coms))

Figure 6.14: The KOLA Query of Figure 6.6a After Normalization

When ρ = () (ρ = NULL), this expression is:

{|f ! [. . .[NULL, e0], . . . en] |
e0 ∈ (f0 ! (NULL)),

e1 ∈ (f1 ! ([NULL, e0])),

. . . ,

en ∈ (fn ! ([. . .[NULL, e0], . . . en−1])),

p ? [. . .[NULL, e0], . . . , en]|}.

The purpose of the COKO transformation presented in this section is to rewrite the

translations that are invoked on NULL into a more intuitive form. More formally, this

transformation rewrites KOLA expressions of the form,

(iterate (p, f) ◦
unnest (id, fn) ◦ . . . ◦ unnest (id, f1) ◦ single) ! NULL

into the equivalent KOLA expression,

iterate (p′, f ′) !

(unnest (id, f ′m) ! (. . . ! (unnest (id, f ′1) ! A) . . .))

such that:

• 0 ≤ m < n (i.e., at least one and as many as all unnest functions are removed), and

• A is either the name of a collection, or a query expression that invokes iterate or

join on one or more named collections.

For example, this normalization converts the Query Lite translation of Figure 6.3b into the

KOLA expression of Figure 6.3c. The latter expression is much simpler, and unlike the

former expression, performs no operations with NULL. This normalization also converts the

KOLA expression of Figure 6.6a to the more intuitive expressions shown in Figure 6.14a.

The normalized queries differ from the unnormalized queries in that they invoke functions

on collections that figure into the result (i.e., Coms in Figure 6.14a) rather than invoking

functions on NULL.

185

TRANSFORMATION NormTrans
-- get rid of NULL appearing in translated query
USES
nonull: Kf (x) ! y −→ x,
comp: (f ◦ g) ! x −→ f ! (g ! x),
un2j: unnest (f, Kf (B)) ! A −→ join (Kf (true), f) ! [A, B],

collij: iterate (p, f) ! (join (q, g) ! [A, B]) −→
join (q & (p ⊕ g), f ◦ g) ! [A, B],

colljj: join (p, f) ! [join (q, g) ! [A1, A2], B]) −→
join ((q ⊕ π1) & (p ⊕ 〈g ⊕ π1, π2〉), f ◦ 〈g ◦ π1, π2〉) !

[join (Kp (true), id) ! [A1, A2], B],

FactorK, SimpFunc, SimpPred, OrdUnnests, LBComp
BEGIN
-- Step 1: First get rid of NULL’s

GIVEN f ! O DO {FactorK (f); nonull}

-- Step 2: Next, normalize to ensure result is of form
-- (f1 ! (f2 ! ...(fn ! x)...))

GIVEN f ! O DO LBComp (f);
REPEAT comp;

-- Step 3: Reorder Unnests so Joins on Constant
-- Expressions are Evaluated 1st

OrdUnnests;

-- Step 4: Convert unnests over constant collections to joins
BU {un2j};

-- Step 5: Collapse composed iterates and joins
BU {{collij || colljj} →

GIVEN join (p, f) ! O DO {SimpPred (p); SimpFunc (f)}}
END

Figure 6.15: Transformation NormTrans

186

TRANSFORMATION OrdUnnests
USES
comm: unnest (f, Kf (B)) ! (unnest (g, h) ! A) −→

unnest (f ◦ 〈〈π1 ◦ π1, π2〉, π2 ◦ π1〉, h ◦ π1) !
(unnest (id, Kf (B)) ! A,

SimpFunc
BEGIN
BU {GIVEN F ◦ unnest (F, Kf (O)) DO SKIP ||

comm → {GIVEN unnest (f, g) ! O DO {SimpFunc (f); SimpFunc (g)};
GIVEN F ! x DO OrdUnnests (x)
}

}
END

Figure 6.16: Transformation OrdUnnests

Transformation NormTrans

Transformation NormTrans (Figure 6.15) is the “main” COKO transformation that removes

NULL from the result of translation. If the original query has more than one collection

expression in its FROM clause, this transformation also reorders the FROM clause expressions

so that all named collections appear before all path expressions. For example, the OQL

query,
SELECT x

FROM x IN Coms, y IN x.mems, z IN Sens

gets rewritten to
SELECT x

FROM x IN Coms, z IN Sens, y IN x.mems

so that the path expression x.mems appears after the named collection Sens. (In terms

of KOLA, the resulting expression will have all unnest functions appearing before all

join functions.)

The firing algorithm for NormTrans has 5 steps, described below in terms of their effects

on the translation of the OQL join query of Figure 6.17a shown in Figure 6.17b: q0 =

(iterate (eq ⊕ 〈pty ◦ chair ◦ π2 ◦ π1, pty ◦ chair ◦ π2〉, π2 ◦ π1) ◦
unnest (id, Kf (SComs)) ◦ unnest (id, Kf (Coms)) ◦ single) ! NULL.

Step 1: In the first step, transformation FactorK and rule nonull combine to remove NULL

from the query produced by translation. In general, when called on a KOLA expression of

187

SELECT x
FROM x IN Coms, y IN SComs
WHERE x.chair.pty == y.chair.pty

(a)

(iterate (eq ⊕ 〈pty ◦ chair ◦ π2 ◦ π1, pty ◦ chair ◦ π2〉, π2 ◦ π1) ◦
unnest (id, Kf (SComs)) ◦ unnest (id, Kf (Coms)) ◦ single) ! NULL

(b)

Figure 6.17: An OQL Join Query (a) and Its Translation into KOLA (b)

the form,

(iterate (p, f) ◦
unnest (id, fn) ◦ . . . ◦ unnest (id, f0) ◦ single) ! NULL,

FactorK returns an expression, Kf (A) ! NULL such that A is of the form,

(iterate (p′, f ′) ◦
unnest (id, fn) ◦ . . . ◦ unnest (id, f0)) ! B

and B is either a named collection or an expression iterate (p, f) ! B′, such that B′

is a named collection. Put simply, FactorK rewrites the KOLA expression produced by

translation into an invocation of a constant function on NULL: Kf (A) ! NULL. Rule nonull

then rewrites this expression to A. To illustrate, FactorK transforms the query q0 above to

q1 = Kf (A) ! NULL such that A is:

(iterate (eq ⊕ 〈pty ◦ chair ◦ π1, pty ◦ chair ◦ π2〉, π1) ◦
unnest (id, Kf (SComs))) ! Coms

Nonull then rewrites this expression to A. The firing algorithm for FactorK is described

later in this chapter.

Step 2: Steps 2 and 3 prepare the query expression resulting from Step 1 for application

of rule un2j which rewrites unnest functions to joins. Step 2 first removes compositions

from the query A resulting from step 1, replacing them with function invocations. Replacing

compositions with invocations is accomplished by making the query function left-bushy by

calling LBComp, and then repeatly firing rule comp. In general, this step returns a KOLA

query of the form

iterate (p′, f ′) !

(unnest (id, fn) ! (. . . ! (unnest (id, f0) ! B) . . .)).

188

To illustrate this step, its effect on query q1 resulting from Step 1 is q2:

iterate (eq ⊕ 〈pty ◦ chair ◦ π1, pty ◦ chair ◦ π2〉, π1) !

(unnest (id, Kf (SComs)) ! Coms).

Step 3: Step 3 reorders the unnest functions appearing in the result of Step 2, so that

those instantiated with constant functions,

unnest (id, Kf (A))

are pushed past those that are not. This reordering is accomplished by transformation

OrdUnnests (Figure 6.16) which traverses a KOLA expression in bottom-up fashion. If

during this traversal, two unnest functions appear in the wrong order, they are commuted

(by firing rule comm) and the unnest function with the constant function is then pushed

further down with a recursive call to the transformation (much like a bubble sort). In

general, this step rewrites queries produced by Step 2 into the form,

iterate (p′, f ′) !

(unnest (id, gm) ! (. . . (unnest (id, g0) !

(unnest (id, Kf (Ak)) ! (. . . (unnest (id, Kf (A0)) ! B) . . .))) . . .))

such that no function gi is a constant function. This step has no effect on query q2 above,

which already satisfies the invariant.

Step 4: Step 4 converts all unnest functions that are instantiated with constant functions

into joins. Note that for any collections A and B,

unnest (id, Kf (B)) ! A = {|(id ! [a, b])ij | ai ∈ A, bj ∈ (Kf (B) ! a)|}
= {|([a, b])ij | ai ∈ A, bj ∈ B|}
= join (Kp (true), id) ! [A, B].

This identity (expressed by rule un2j) gets fired in bottom-up fashion to rewrite queries of

the form,

iterate (p′, f ′) !

(unnest (id, gm) ! (. . . (unnest (id, g0) !

(unnest (id, Kf (Ak)) ! (. . . (unnest (id, Kf (A0)) ! B) . . .))) . . .))

to

iterate (p′, f ′) !

(unnest (id, gm) ! (. . . (unnest (id, g1) !

(join (Kp (true), id) ! [. . . join (Kp (true), id) ! [B, A1], . . . , Ak])) . . .)),

189

if k > 0, and

iterate (p′, f ′) !

(unnest (id, gm) ! (. . . (unnest (id, g1) ! A1) . . .))

(such that A1 is not a join) if k = 0. Applied to query q2, this step leaves q4:

iterate (eq ⊕ 〈pty ◦ chair ◦ π1, pty ◦ chair ◦ π2〉, π1) !

(join (Kp (true), id) ! [Coms, SComs]).

Step 5: In the final step, rules collii and collij are fired in bottom-up fashion to

“collapse” successive joins and iterates. If there are no unnest functions resulting from

Step 4 (i.e., if there are no path expressions in the FROM clause of the original OQL or Query

Lite query), this step will result in a query of the form,

join (p′, f ′) !

[. . . join (Kp (true), id) ! [B, A1], . . . , Ak].

Applied to q4, this step results in the query,

join (eq ⊕ 〈pty ◦ chair ◦ π1, pty ◦ chair ◦ π2〉, π1) ! [Coms, SComs].

Transformation FactorK

Transformation FactorK is called to rewrite query functions resulting from translation into

the form

Kf (A)

for some collection A. The listing of the transformation’s firing algorithm is not shown but

is described instead below.

An OQL or Query Lite query q that is well-formed with regard to the empty environment

gets translated into a KOLA expression of the form, T JqK ! NULL, such that T JqK is:

(iterate (p, f) ◦
unnest (id, fn) ◦ . . . ◦ unnest (id, f0) ◦ single).

The reduction of T JqK ! NULL leaves:

{|f ! [. . .[NULL, e0], . . . en] |
e0 ∈ (f0 ! (NULL)),

e1 ∈ (f1 ! ([NULL, e0])),

. . . ,

en ∈ (fn ! ([. . .[NULL, e0], . . . en−1])),

p ? [. . .[NULL, e0], . . . , en]|}.

190

(1) f
→= (f ◦ shl) ◦ shr

(2) f ◦ π2 ◦ shl →= f ◦ π2 ◦ π2

(3) f ◦ π1 ◦ π1 ◦ shl →= f ◦ π1

(4) f ◦ π2 ◦ π1 ◦ shl →= f ◦ π1 ◦ π2

Figure 6.18: Rewrite Rules in PullP2SHRF

Because T JqK is a constant function, functions f0, . . . , fn, do not depend on NULL. Rather,

• f0 can be rewritten to a constant function that returns a collection (i.e., Kf (A0) for

some collection A0),

• f1 can be rewritten to a function on e0 (i.e., f ′1 ◦ π2 for some collection f ′1),

• f2 can be rewritten to a function on e0 and e1 (i.e., f ′2 ◦ π2 ◦ shr for some collection

f ′2)),

• . . .

• fn can be rewritten to a function on e0, e1, . . . en (i.e.,

f ′n ◦ π2 ◦ shr ◦ . . . ◦ shr︸ ︷︷ ︸
n−1

for some function f ′n).

Similarly, function f can be rewritten to a function on e0, e1, . . . , en (i.e., (i.e.,

f ′ ◦ π2 ◦ shr ◦ . . . ◦ shr︸ ︷︷ ︸
n

for some function f ′) and predicate p can be rewritten to a predicate on e0, e1, . . . , en (i.e.,

p′ ⊕ (π2 ◦ shr ◦ . . . ◦ shr︸ ︷︷ ︸
n

)

for some predicate p′).

The first step performed by transformation FactorK is to normalize all data functions

f0, f1, . . . , fn and f and the data predicate p in the manner just described. This step uses

the rewrite rules listed in Figure 6.18. For each unnest function, unnest (id, fi), these

rules are fired i − 1 times on fi. (They are fired n times on f and p of iterate (p, f).)

First, rule (1) is fired on fi leaving

fi ◦ shl ◦ shr.

191

(iterate (p, f) ◦
unnest (id, fn) ◦ unnest (id, fn−1) ◦ . . . ◦ unnest (id, f1) ◦ unnest (id, f0) ◦
single) ! NULL

such that
p = p′ ⊕ (π2 ◦ shrn)
f = f ′ ◦ π2 ◦ shrn

fi = f ′i ◦ π2 ◦ shri−1 (for i > 0), and
f0 = Kf (A)

Figure 6.19: Translated OQL Queries Following Rewriting of their Data Functions

Then, rules (2) and (3) and (4) are successively fired on

fi ◦ shl.

After i− 1 applications of these rules, we are left with a function of the form

f
′′
i ◦ g ◦ shr ◦ . . . ◦ shr︸ ︷︷ ︸

i−1

.

Note that fi is a function that gets invoked on arguments of the form,

[. . .[NULL, e0], . . . ei−1].

The invocation of

f
′′
i ◦ g ◦ shr ◦ . . . ◦ shr︸ ︷︷ ︸

i−1

.

on this argument reduces to

f
′′
i ! (g ! [NULL, [e0, . . .[ei−2, ei−1] . . .]]).

As fi ignores NULL, g must be π2. Therefore, the effect of this step is to leave a query

expression of the form shown in Figure 6.19.

The rest of this transformation proceeds in five steps and uses the rules of Figure 6.20.

In this figure and in the text, we use the notation “δi” to denote a KOLA function defined

for i ≥ 0 as follows:
δ0 = shr

δi = 〈π1, δi−1 ◦ π2〉, for i > 0

Substituting for δ in rules (10) and (11) of Figure 6.20 reveals these rules to be strictly

unnecessary: rule (11) follows from rule (7), and rule (12) follows from rule (9) (fired n

192

(1) iterate (p ⊕ (f ◦ h), g ◦ h) ◦ unnest (h1, h2) →=
iterate (p ⊕ f, g) ◦ unnest (h ◦ h1, h2)

(2) unnest (f ◦ shr ◦ shr, g ◦ shr) ◦ unnest (h1, h2) →=
unnest (f ◦ δ1 ◦ shr, g) ◦ unnest (shr ◦ h1, h2)

(3) unnest (f ◦ π2 ◦ shr, g ◦ π2) ◦ unnest (h1, h2) →=
unnest (f, g) ◦ unnest (π2 ◦ h1, h2)

(4) unnest (π2 ◦ shr, f ◦ π2) ◦ unnest (id, Kf (A)) ◦ single →=
Kf (unnest (id, f) ! A)

(5) f ◦ Kf (x) →= Kf (f ! x) (6) f
→= f ◦ shl ◦ shr

(7) π2 ◦ 〈f, g〉 →= g (8) f ◦ id →= f

(9) shr ◦ 〈π1, f ◦ π2〉 ◦ shl →= 〈π1, 〈π1, f ◦ π2〉 ◦ π2〉

(10) π2 ◦ δi
→= δi−1 ◦ π2 (11) shri ◦ δ1 ◦ shli →= δi+1

Figure 6.20: Rewrite Rules in FactorK and FKAux

times). In fact the COKO implementations of these transformations cannot express rules

(10) and (11) (and instead would fire rules (7) and (10) as many times as necessary) because

the matching of these rules to queries would require counting. (Note however that we can

fire rule (2) once we substitute 〈π1, shr ◦ π2〉 for δ1.) We include these “macro rules” here

to simplify the description of this transformation.

The normalization firing algorithm proceeds by visiting each subfunction of the form,

f ◦ g of the query shown in Figure 6.19. Therefore, the first subfunction visited is

iterate (p, f) ◦ unnest (id, fn),

the second is

unnest (id, fn) ◦ unnest (id, fn−1)

(modulo the normalizations of p, f and fn and the changes made to unnest (id, fn) after

visiting the first subfunction) and so on. These visits are described below.

Step 1: Substituting for p and f , the first visited subfunction is

iterate (p′ ⊕ (π2 ◦ shrn), f ′ ◦ π2 ◦ shrn) ◦ unnest (id, fn).

193

Rule (1) of Figure 6.20 fires on this function n + 1 times, and rule (9) fires once, leaving a

query of the form,

(iterate (p′, f ′) ◦
unnest (π2 ◦ shrn, fn) ◦ unnest (id, fn−1) ◦ . . . ◦ unnest (id, f1) ◦ unnest (id, f0) ◦
single) ! NULL

such that p′, f ′ and fi are as defined in Figure 6.19.

Step 2: In this step, each pair of adjacent unnest subfunctions in the composition chain,

unnest (π2 ◦ shrn, fn) ◦ unnest (id, fn−1) ◦ . . . ◦ unnest (id, f0)

is visited in turn. The purpose of this is to “push” the data function “π2 ◦ shrn” from the

left-most unnest function into the unnest functions to its right. Each “push” loses one of

the “shr” subfunctions, and so the effect of this step is to rewrite the above composition

chain into
unnest (gn, fn) ◦
unnest (gn−1, fn−1) ◦
. . . ◦
unnest (g2, f2) ◦
unnest (π2 ◦ shr, f1) ◦
unnest (id, f0)

for some functions g2, . . . , gn.

Substituting for fi, the visit of the (n− i + 1)th pair of unnest functions,

unnest (π2 ◦ shri, f ′i ◦ π2 ◦ shri−1) ◦ unnest (id, fi−1)

pushes the data function “π2 ◦ shri−1” out of the left unnest function and into the right.

This is captured by the “macro rule”,

unnest (π2 ◦ shri, f ◦ π2 ◦ shri−1) ◦ unnest (id, g ◦ π2 ◦ shri−2) →=

unnest (F , f) ◦ unnest (π2 ◦ shri−1, g ◦ π2 ◦ shri−2)

for some function F . Again, this rule is not expressible in COKO and instead we specify a

COKO transformation that achieves the same result with the KOLA rules of Figure 6.20.

In visiting the (n− i + 1)th pair of unnest functions (for i ≥ 2),

unnest (π2 ◦ shri, f ′i ◦ π2 ◦ shri−1) ◦ unnest (id, fi−1),

194

this transformation first fires rule (2) and rule (8), leaving:

unnest (π2 ◦ shri−2 ◦ δ1 ◦ shr, f ′i ◦ π2 ◦ shri−2) ◦ unnest (shr, fi−1).

Next, rule (6) fires i− 2 times, leaving:

unnest (π2 ◦ γ ◦ shri−1, f ′i ◦ π2 ◦ shri−2) ◦ unnest (shr, fi−1).

such that

γ = shri−2 ◦ δ1 ◦ shli−2.

The firing of “macro rule” (11) (equivalently, (i− 2) firings of rule (9)) on γ leaves:

unnest (π2 ◦ δi−1 ◦ shri−1, f ′i ◦ π2 ◦ shri−2) ◦ unnest (shr, fi−1).

Then, the firing of “macro rule” (10) (equivalently, rule (7)) leaves:

unnest (δi−2 ◦ π2 ◦ shri−1, f ′i ◦ π2 ◦ shri−2) ◦ unnest (shr, fi−1).

This pass is repeated for every occurence of “shr” that needs to be passed from right

to left. In this case, (i− 1) passes are completed in all, leaving

unnest (δi−2 ◦ . . . ◦ δ0 ◦ π2 ◦ shr, f ′i ◦ π2) ◦ unnest (shri−1, fi−1).

Subsequently, rule (3) fires, leaving:

unnest (δi−2 ◦ . . . ◦ δ0, f ′i) ◦ unnest (π2 ◦ shri−1, fi−1)

and, substituting for fi−1 the next adjacent pair of unnest functions,

unnest (π2 ◦ shri−1, f ′i ◦ π2 ◦ shri−2) ◦ unnest (id, fi−2)

is visited. In all, n− 1 visits are made of adjacent unnest functions, leaving a query of the

form,

(iterate (p′, f ′) ◦
unnest (δn−2 ◦ . . . ◦ δ0, f ′n) ◦ unnest (δn−3 ◦ . . . ◦ δ0, f ′n−1) ◦
. . . ◦
unnest (δ0, f ′2)

unnest (π2 ◦ shr, f ′1 ◦ π2) ◦ unnest (id, Kf (A)) ◦ single) ! NULL.

195

Transformation Figure No. Rules No. Verified No. Lines in
Rules Firing Algorithm

NormTrans 6.15 4 3 14
OrdUnnests 6.16 1 0 7
FactorK 6.20 13 9 15
Total – 18 12 36

Table 6.4: Analysis of the COKO Normalization Transformations

Steps 3, 4 and 5: In the next step,

unnest (π2 ◦ shr, f ′1 ◦ π2) ◦ unnest (id, Kf (A)) ◦ single

is rewritten by rule (4) leaving

(iterate (p′, f ′) ◦
unnest (δn−2 ◦ . . . ◦ δ0, f ′n) ◦ unnest (δn−3 ◦ . . . ◦ δ0, f ′n−1) ◦
. . . ◦
unnest (δ0, f ′2) ◦ Kf (unnest (id, f ′1) ! A)) ! NULL.

Then, rule (5) is fired in bottom-up fashion, leaving

Kf (iterate (p′, f ′) !

(unnest (δn−2 ◦ . . . ◦ δ0, f ′n) ! (unnest (δn−3 ◦ . . . ◦ δ0, f ′n−1) ! . . . !

(unnest (δ0, f ′2) ! (unnest (id, f ′1) ! A)))))) ! NULL.

Thus, the original query expression has been rewritten to the form Kf (A) ! NULL fos eome

collection A.

Analysis

Table 6.4 summarizes the transformations required to perform the normalization of trans-

lated KOLA queries. As before, the normalization is expressed with little code (fewer than

40 lines of firing algorithm code) and mostly in terms of rewrite rules.

Transformation NormTrans has been tested with over 100 Query Lite and OQL queries

of varying complexity, including the Query Lite query of Figure 6.3 and the OQL queries

of Figures 6.6a and 6.17b.8

8As yet this transformation does not work over queries nested in their SELECT clauses such as that of
Figures 6.6b.

196

SELECT s
FROM s IN Sens
WHERE s.reps.lgst cit.popn > 1M

a. Query Lite Query 1

iterate (gt ⊕ 〈id, Kf (10)〉 ⊕ popn ⊕ lgst cit ⊕ reps, id) ! Sens

b. Its Normalization

join ((((p1 & p2) ⊕ π2) & p3) ⊕ shr, π1 ◦ π1) !
[join (Kp (true), id) ! [Sens, Sts], Cits]

such that
p1 = gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ π2

p2 = eq ⊕ 〈lgst cit ◦ π1, OID ◦ π2〉
p3 = eq ⊕ 〈reps ◦ π1, OID ◦ π2〉

c. Its Rewrite by PEWhere

SELECT s
FROM s IN Sens, r IN Sts, c IN Cits
WHERE (c.popn > 1M) AND (r.lgst cit == c.OID) AND (s.reps == r.OID)

d. Its Translation Into SQL

Figure 6.21: Query 1 (a), Normalization (b), Rewrite by PEWhere (c) In SQL (d)

197

SELECT s

FROM s IN Sens
WHERE (s.reps.lgst cit.popn > 1M) AND

(s.terms > 5) AND
(s.reps.lgst cit.mayor.bornin.popn > 1M)

a. Query Lite Query 2

iterate ((gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ lgst cit ⊕ reps) &
(gt ⊕ 〈id, Kf (5)〉 ⊕ terms) &
(gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin ⊕ mayor ⊕ lgst cit ⊕ reps), id) !

Sens

b. Its Normalization

join (((((((((((p1 & p2) ⊕ π2) & p3 & p4) ⊕ π2) & p5) ⊕ π2) &
((p6 & p7) ⊕ 〈π1, (π1 ◦ π2)〉)) ⊕
〈π1, 〈π1 ◦ π1, shr ◦ 〈π2 ◦ π1, π2〉〉 ◦ π2〉) ⊕ shr) ⊕
〈〈π1 ◦ π1 ◦ π1, shr ◦ 〈〈π2 ◦ π1, π2〉 ◦ π1, π2〉〉 ◦ π1, π2〉),

π1 ◦ 〈π1 ◦ π1 ◦ π1, shr ◦ 〈〈π2 ◦ π1, π2〉 ◦ π1, π2〉〉 ◦ π1) !
[join (Kp (true), id) !
[join (Kp (true), id) !
[join (Kp (true), id) ! [Sens, Sts], Cits], Mays], Cits]

such that
p1 = gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ π2

p2 = eq ⊕ 〈bornin ◦ π1, OID ◦ π2〉
p3 = eq ⊕ 〈mayor ◦ π1, OID ◦ π1 ◦ π2〉
p4 = gt ⊕ 〈id, Kf (1M)〉 ◦ popn ⊕ π1

p5 = eq ⊕ 〈lgst cit ◦ π1, OID ◦ π1 ◦ π2〉
p6 = gt ⊕ 〈id, Kf (5)〉 ⊕ terms ⊕ π1

p7 = eq ⊕ 〈reps ◦ π1, OID ◦ π2〉

c. Its Rewrite by PEWhere

SELECT s
FROM s IN Sens, r IN Sts, c IN Cits, m IN Mays, x IN Cits
WHERE (x.popn > 1M) AND (m.bornin == x.OID) AND

(c.mayor == m.OID) AND (c.popn > 1M) AND
(r.lgst cit == c.OID) AND (s.terms > 5) AND (s.reps == r.OID)

d. Its Translation Into SQL

Figure 6.22: Query 2 (a), Normalization (b), Rewrite by PEWhere (c) In SQL (d)

198

SELECT s

FROM s IN Sens
WHERE s.bornin.mayor.terms < 4 AND

s.pty.name == ‘‘GOP’’ AND
s.reps.lgst cit.mayor.bornin.popn > 1M AND
NOT (s.bornin.popn > 1M) AND
s.reps.popn > 10M AND
s.reps.lgst cit.mayor.terms < 3 AND
s.terms > 5 AND
s.bornin.mayor.pty == ‘‘Dem’’ AND
NOT (s.reps.lgst cit.name == ‘‘Providence’’)

a. Query Lite Query 3

iterate ((lt ⊕ 〈id, Kf (40)〉 ⊕ terms ⊕ mayor ⊕ bornin) &
(eq ⊕ 〈id, Kf (GOP)〉 ⊕ name ⊕ pty) &
(gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin ⊕ mayor ⊕ lgst cit ⊕ reps) &
(∼ (gt) ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin) &
(gt ⊕ 〈id, Kf (10M)〉 ⊕ popn ⊕ reps) &
(lt ⊕ 〈id, Kf (30)〉 ⊕ terms ⊕ mayor ⊕ lgst cit ⊕ reps) &
(gt ⊕ 〈id, Kf (50)〉 ⊕ terms) &
(eq ⊕ 〈id, Kf (‘‘Dem’’)〉 ⊕ pty ⊕ mayor ⊕ bornin) &
(∼ (eq) ⊕ 〈id, Kf (‘‘Providence’’)〉 ⊕ name ⊕ lgst cit ⊕ reps), id) !

Sens

b. Its Normalization

Figure 6.23: Query 3 (a), Normalization (b), . . .

199

join ((((((((p1 & p2) ⊕ π2) & (p3 & p4)) ⊕ π2) &
(((((((((((p5 & p6 & p7) ⊕ π2) & ((p8 & p9) ⊕ 〈π1, π1 ◦ π2〉)) ⊕ π2) &
((p10 & p11) ⊕ 〈π1, π1 ◦ π2〉)) ⊕ π2) &
((p12 & p13) ⊕ 〈π1, π1 ◦ π2〉)) & p14) ⊕ π1) & p15) ⊕
〈π1, π1 ◦ π2〉)) ⊕ shr) ⊕ 〈〈〈π1 ◦ π1 ◦ π1 ◦ π1, 〈π2 ◦ π1 ◦ π1 ◦ π1, shr
◦ 〈〈π2 ◦ π1, π2〉 ◦ π1), π2〉〉〉 ◦ π1, π2〉 ◦ π1, π2〉,

π1 ◦ π1 ◦ 〈〈π1 ◦ π1 ◦ π1 ◦ π1, 〈π2 ◦ π1 ◦
π1 ◦ π1, shr ◦ 〈〈π2 ◦ π1, π2〉 ◦ π1, π2〉〉〉 ◦ π1, π2〉 ◦ π1) !
[join (Kp (true), id) !
[join (Kp (true), id) !
[join (Kp (true), id) !
[join (Kp (true), id) !
[join (Kp (true), id) ! [Sens, Sts], Cits], Mays], Cits], Cits], Mays]

such that
p1 = eq ⊕ 〈OID, Kf (‘‘Dem’’)〉 ⊕ pty
p2 = lt ⊕ 〈OID, Kf (40)〉 ⊕ terms
p3 = ∼ (gt) ⊕ 〈OID, Kf (1)〉 ◦ popn ⊕ π1

p4 = eq ⊕ 〈mayor ◦ π1, OID ◦ π2〉
p5 = gt ⊕ 〈OID, Kf (1)〉 ◦ popn ⊕ π2

p6 = lt ⊕ 〈OID, Kf (30)〉 ◦ terms ⊕ π1

p7 = eq ⊕ 〈bornin ◦ π1, OID ◦ π2〉
p8 = ∼ (eq) ⊕ 〈OID, Kf (‘‘Providence’’)〉 ◦ name ⊕ π1

p9 = eq ⊕ 〈mayor ◦ π1, OID ◦ π2〉
p10 = gt ⊕ 〈OID, Kf (1)〉 ◦ popn ⊕ π1

p11 = eq ⊕ 〈lgst cit ◦ π1, OID ◦ π2〉
p12 = eq ⊕ 〈OID, Kf (‘‘GOP’’)〉 ◦ pty ⊕ π1

p13 = eq ⊕ 〈reps ◦ π1, OID ◦ π2〉
p14 = gt ⊕ 〈OID, Kf (50)〉 ◦ terms ⊕ π1

p15 = eq ⊕ 〈bornin ◦ π1 ◦ π1, OID ◦ π2〉

c. Its Rewrite by PEWhere

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits, m IN Mays, x IN Cits, y IN Cits, z IN Mays
WHERE (z.pty == ‘‘Dem’’) AND (z.terms < 4) AND (NOT (y.popn > 1M)) AND

(y.mayor == z.OID) AND (x.popn > 1M) AND (m.terms < 3) AND
(m.bornin == x.OID) AND (NOT (c.name == ‘‘Providence’’)) AND
(c.mayor == m.OID) AND (r.popn > 1M) AND (r.lgst cit == c.OID) AND
(s.pty == ‘‘GOP’’) AND (s.reps == r.OID) AND
(s.terms > 5) AND (s.bornin == y.OID)

d. Its Translation Into SQL

Figure 6.24: Query 3 (cont.) . . ., Rewrite by PEWhere (c) In SQL (d)

200

6.3.3 Transforming Path Expressions to Joins

This section describes a COKO transformation (PEWhere) that rewrites Query Lite queries

with path expressions in their WHERE clause into SQL join queries. Specifically, Query

Lite queries that are translated and then normalized with the transformations described in

Section 6.3.2 are those affected by PEWhere and its auxiliary transformation, PEWAux.

Unlike those of the previous section, the COKO transformations described in this section

are few (2 in all) and short, requiring 3 rewrite rules, 2 inference rules and fewer than 20 lines

of firing algorithm code in all. In addition, the transformations presented here demonstrate

a novel application of the semantic query rewrite facility described in Chapter 5. The

semantic property concerns foreign keys.

Path Expression Elimination Overview

Consider Query Lite Query 1 of Figure 6.21a that finds all Senators in Sens who represent

states whose largest cities have a population of over 1 million people. This query includes

the path expression,

s.reps.lgst cit.popn

in its WHERE clause to find the population of the largest city in the state represented by

Senator s. Specifically, for any Senator s:

• s.reps returns the object denoting the state that s represents,

• s.reps.lgst cit returns the object denoting the largest city of the state that s rep-

resents, and

• s.reps.lgst cit.popn returns the integer denoting the population of the largest city

of the state that s represents.

The relational implementation of San Francisco described in Section 6.1 uses relations to

implement each type extent, with the OID columns as keys. For the object schema of

Figure 2.1,

• Sens is a relation representing the extent of objects of type Senator,

• Sts is a relation representing objects of type Region that are states, and

• Cits is a relation representing objects of type City.

201

As a result, for path expression s.reps.lgst cit.popn, method reps is a foreign key for

Sts, and lgst cit is a foreign key for Cits. This information makes it possible to rewrite

the Query Lite query of Figure 6.21 into the SQL join query,

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits

WHERE (c.popn > 1M) AND (r.lgst cit == c.OID) AND (s.reps == r.OID)

The COKO transformations described in this section perform the rewrite above. These

transformations exploit semantic knowledge of foreign keys (metadata information that is

assumed to be available to the optimizer), to decide when methods in a path expression

can be translated into relational joins. More precisely, these transformations rewrite Query

Lite queries of the form,

SELECT x

FROM x IN A

WHERE Comp1 AND . . . AND Compm

such that each Compi is a simple comparison predicate involving a path expression such as,

x.m0.mn op k

or

NOT (x.m0.mn op k).

As well, these transformations have the following characteristics:

• comparisons can appear in the opposite order, as in,

k op x.m0.mn,

• WHERE clauses can also contain disjunctions provided that the disjunctions disappear

when the WHERE clauses is converted into CNF,

• sharing of path expressions is recognized.

To illustrate sharing, consider Query Lite Query 2 of Figure 6.22a, which finds senators who

have served more than 5 terms, and who represent a state whose largest city: (1) has more

than 1 million people, and (2) has a mayor who was born in a city with more than 1 million

people. This query contains two path expressions that contain the common subexpression,

s.reps.lgst cit.

202

The transformations presented here rewrite this query into the SQL query,

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits, m IN Mays, x IN Cits

WHERE (x.popn > 1M) AND (m.bornin == x.OID) AND

(c.mayor == m.OID) AND (c.popn > 1M) AND

(r.lgst cit == c.OID) AND (s.terms > 5) AND (s.reps == r.OID)

rather than to the more naive translation,

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits, m IN Mays, x IN Cits, r2 IN Sts, c2 IN Cits

WHERE (x.popn > 1M) AND (m.bornin == x.OID) AND

(c.mayor == m.OID) AND (c.popn > 1M) AND

(r.lgst cit == c.OID) AND (s.terms > 5) AND (s.reps == r.OID) AND

(r2.lgst cit == c2.OID) AND (c2.mayor == m.OID) AND (s.reps == r2.OID)

which is a 7-way join rather than a 5-way join, redundantly joining collections Sts and

Cits twice (once for each occurence of the common subexpression).

The transformations described here not only recognize common subexpressions in path

expressions, but do so for:

• any number of path expressions in a WHERE clause,

• any degree of sharing amongst path expressions, and

• any number of path expressions sharing a given subexpression (even when path ex-

pressions with shared subexpressions are not adjacent).

An example application of this transformation is shown in Figures 6.23a. Figure 6.23a and

6.23b show the original Query Lite query and the result of its translation and normalization.

Figure 6.24c show the result of rewriting this query by PEWhere. Figure 6.24d shows this

same query after its translation into SQL.

Query 3 includes path expressions with varying degrees of sharing, such as:

• s.bornin.mayor.terms < 4, which shares:

– s.bornin with: NOT (s.bornin.popn > 1M), and

– s.bornin.mayor with: s.bornin.mayor.pty == ‘‘Dem’’, and

• s.reps.lgst cit.mayor.bornin.popn > 1M , which shares:

203

– s.reps with: s.reps.popn > 1M ,

– s.reps.lgst cit with: NOT (s.reps.lgst cit.name == ‘‘Providence’’), and

– s.reps.lgst cit.mayor with: s.reps.lgst cit.mayor.terms < 3.

The result of rewriting shown in Figure 6.24 exploits this sharing and joins as few collections

as possible.

Transformation PEWhere and Its Auxiliary Transformation

Translation of Query Lite queries generates KOLA expressions of the form,

(iterate (p, id) ◦ unnest (id, Kf (A)) ◦ single) ! NULL.

After normalization using the transformations of Section 6.3.2, these queries are of the form,

iterate (q, id) ! A.

If Query Lite queries have WHERE clauses as characterized in the previous section (i.e., con-

junctions of simple comparisons), then the predicate p in the query produced by translation

is of the form,

p0 & . . . & pm

such that each pi is of the form

op ⊕ 〈min ◦ . . . ◦ m0 ◦ gi, Kf (k)〉

or

∼ (op ⊕ 〈min ◦ . . . ◦ m0 ◦ gi, Kf (k)〉),
op is a KOLA comparison primitive (such as eq), each mj is a method primitive and k is a

constant. For these same queries, normalization results in predicates p′ of the form,

op ⊕ 〈id, Kf (k)〉 ⊕ min ◦ . . . ◦ m0 ◦ gi

or

∼ (op) ⊕ 〈id, Kf (k)〉 ⊕ min ⊕ . . . ⊕ m0 ⊕ gi

(as illustrated by the normalized translations of Query Lite Queries: 1 (Figure 6.21b), 2

(Figure 6.22b), and 3 (Figure 6.23b)).

PEWhere (Figure 6.25) gets invoked after translation and normalization, and therefore

affects queries of the form,

iterate (p′1 & . . . & p′m, id) ! A

204

TRANSFORMATION PEWhere
-- Transforms QL queries with where predicates of the form,
-- x.a1()...an() op k, or k op x.a1()...an()
-- into join queries using scoping rules for attributes
USES
LBJoin,
PEWAux,
PullComFunc,
SimpFunc,
SimpPred
BEGIN
-- Step 1: Find common subfunctions of conjuncts and factor out
GIVEN iterate (p, F) ! O DO PullComFunc (p);

-- Step 2: Call PEWAux
PEWAux;

-- Step 3: Recombine iterate’s and joins into left-bushy join tree
LBJoin
END

TRANSFORMATION PEWAux
USES
pe2j: scope (B, f, A) ::

iterate (p ⊕ f, id) ! A −→
join (eq ⊕ <f ◦ π1, OID ◦ π2〉, π1) ! [A, iterate (p, id) ! B],

splcon: iterate (p & q, id) ! A −→ iterate (p, id) ! (iterate (q, id) ! A),
SimpPred

INFERS
Scope

BEGIN
splcon → GIVEN F ! x DO {PEWAux (x); PEWAux};
pe2j → GIVEN join (p, F) ! [O, B] DO PEWAux (B)

END

Figure 6.25: Transformation PEWhere and its Auxiliary Transformation

205

such as those of Figures 6.21, 6.22 and 6.23. PEWhere operates in 3 steps, which are

demonstrated in terms of their effect on the query of Figure 6.22b: the result of translating

and normalizing the Query Lite Query 2 of Figure 6.22a.

Step 1: In the first step of this transformation, PullComFunc (Section 6.3.1) rewrites

conjunction predicates,

p1 & . . . & qn

into the form,

(q1 ⊕ f1) & . . . & (qm ⊕ fm)

such that m ≤ n and no two functions fi and fj (i 6= j) are the same. This step extracts

the common subexpressions from distinct path expressions.

Applied to Query 2:

When applied to the query of Figure 6.22b, this step results in the expression, Q:

iterate (((q1a & q1b) ⊕ lgst cit ⊕ reps) & q2, id) ! Sens

such that

q1a = gt ⊕ 〈id, Kf (1M)〉 ⊕ popn,

q1b = gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin ⊕ mayor and

q2 = gt ⊕ 〈id, Kf (5)〉 ⊕ terms.

Step 2: The second step of this transformation invokes auxiliary transformation, PEWAux

on the expression resulting from 1. PEWAux has two key rules. The first is rule splcon,

which splits an iterate function instantiated with a conjunction predicate into two. When

applied to queries of the form,

iterate (q1 & . . . & qm, id) ! A

such as those resulting from Step 1 of PEWhere’s firing algorithm, this rule returns

iterate (q1, id) ! (iterate (q2 & . . . & qm, id) ! A.

The effect of the recursive calls to PEWAux that follow the successful firing of splcon is to

invoke PEWAux successively on subqueries:

• iterate (qm, id) ! A,

206

scope (Sts, reps, Sens).
scope (Cits, reps, Mays).
scope (Cits, bornin, Sens).
scope (Cits, bornin, Mays).

scope (Cits, lgst cit, Rgs).
scope (Cits, lgst cit, Sts).

scope (Mays, mayor, Cits).

Figure 6.26: Scope Facts Assumed Known for these Examples

• iterate (qm−1, id) ! (iterate (qm, id) ! A),

• iterate (qm−2, id) ! (iterate (qm−1, id) ! (iterate (qm, id) ! A)), etc.

The second rule, pej2, is a conditional rewrite rule that depends on the condition,

scope (B, f, A). This condition holds of collections A and B and function f if f is a

function on elements of A and is also a foreign key of B. Figure 6.26 shows the scope facts

that are assumed to hold (and to be part of the schema accessible by our optimizer) for the

examples in this chapter.

Figure 6.27 shows a property definition for Scope that lists three inference rules for

inferring this property. The first of these rules,

scope (B, f, A) =⇒ scope (B, f, iterate (p, id) ! A)

says that if f is a foreign key for B that is defined on A, then it is also a foreign key for B

that is defined on any selection on A. The second and third rules,

scope (B, f, A) =⇒ scope (B, f, join (p, π1) ! [A, O]).

scope (B, f, A) =⇒ scope (B, f, join (p, π2) ! [O, A]).

say that if f is a foreign key for B that is defined on A, then it is a foreign key for B that is

defined on (left and right) semi-joins on A.

Provided that scope is inferred to be true for collection B, function f and collection A,

the query,

iterate (p ⊕ f , id) ! A

can be rewritten to a join of A and the subcollection of B satisfying p:

join (eq ⊕ 〈f ◦ π1, OID ◦ π2〉, π1) ! [A, iterate (p, id) ! B].

207

PROPERTY Scope
BEGIN
scope (B, f, A) =⇒ scope (B, f, iterate (p, id) ! A).
scope (B, f, A) =⇒ scope (B, f, join (p, π1) ! [A, O]).
scope (B, f, A) =⇒ scope (B, f, join (p, π2) ! [O, A]).

END

Figure 6.27: Property Scope and Sample Metadata Infomation Regarding Scope

This query screens B for those elements satisfying p, and then joins the result with A to

return those elements of A whose values for f are represented on the subcollection of B. In

terms of Query Lite queries, the left-hand side of the rule denotes queries of the form,

SELECT x

FROM x IN A

WHERE p (f (x)).

In terms of SQL queries, the right-hand side of the rule denotes queries of the form,

SELECT x

FROM x IN A, y IN B

WHERE f (x) == y AND p (y).

Each time pe2j is successfully fired, it returns a query of the form,

join (eq ⊕ 〈f ◦ π1, OID ◦ π2〉, π1) ! [A, iterate (p, id) ! B],

and PEWAux is called recursively on the second argument to the join,

iterate (p, id) ! B.

This recursive call ensures that all methods appearing in a path expression contribute to

the rewrite into a join query.

Applied to Query 2:

1. First, splcon successfully fires and triggers a recursive call of PEWAux on

iterate (q2, id) ! Sens.

208

Rule pe2j does not successfully fire on this expression (because there is no collection

B such that

scope (B, terms, Sens)

holds.) Therefore, a second recursive call to PEWAux is made on

iterate ((q1a & q1b) ⊕ lgst cit ⊕ reps, id) ! (iterate (q2, id) ! Sens).

2. The call of PEWAux on this query fails to fire splcon, but succeeds in firing pe2j. The

first inference rule for Scope in Figure 6.27 together with the fact,

scope (Sts, reps, Sens),

makes it possible to infer,

scope (Sts, reps, iterate (q2, id) ! Sens),

and therefore pej2 successfully fires. This results in the query,

join (eq ⊕ 〈reps ◦ π1, OID ◦ π2〉, π1) !

[iterate (q2, id) ! Sens, iterate ((q1a & q1b) ⊕ lgst cit, id) ! Sts].

3. The successful firing of rule pe2j triggers another recursive call of PEWAux, this time

on

iterate ((q1a & q1b) ⊕ lgst cit, id) ! Sts.

Again, pe2j successfully fires on this subquery because of the fact,

scope (Cits, lgst cit, Sts).

This leaves the subexpression,

join (eq ⊕ 〈lgst cit ◦ π1, OID ◦ π2〉, π1) !

[Sts, iterate (q1a & q1b, id) ! Cits].

4. Next, PEWAux is recursively called on

iterate (q1a & q1b, id) ! Cits,

or equivalently,

iterate ((gt ⊕ 〈id, Kf (1M)〉 ⊕ popn) &

(gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin ⊕ mayor), id) ! Cits.

209

First splcon is fired leaving,

iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn, id) !

(iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin ⊕ mayor, id) ! Cits).

Then PEWAux is fired on

iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin ⊕ mayor, id) ! Cits.

The fact

scope (Mays, mayor, Cits),

leads to a successful firing of pej2, leaving

join (eq ⊕ 〈mayor ◦ π1, OID ◦ π2〉, π1) !

[Cits, iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin, id) ! Mays].

5. Next, PEWAux is again called recursively on

iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ bornin, id) ! Mays.

The fact scope (Cits, bornin, Mays) leads pej2 to fire, leaving,

join (eq ⊕ 〈bornin ◦ π1, OID ◦ π2〉, π1) !

[Mays, iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn, id) ! Cits].

The subsequent recursive call of PEWAux on

iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn, id) ! Cits

fails (as there is no collection B such that scope (B, popn, Cits) and the recursion

terminates at all levels. Finally, the transformation call is finished leaving the query,

join (eq ⊕ 〈reps ◦ π1, OID ◦ π2〉, π1) ! [iterate (q2, id) ! Sens, B]

such that B is:

join (eq ⊕ 〈lgst cit ◦ π1, OID ◦ π2〉, π1) !

[Sts, iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn, id) !

join (eq ⊕ 〈mayor ◦ π1, OID ◦ π2〉, π1) !

[Cits, join (eq ⊕ 〈bornin ◦ π1, OID ◦ π2〉, π1) !

[Mays, iterate (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn, id) ! Cits]]]].

210

Transformation Figure No. Rules No. Verified No. Lines in
Rules Firing Algorithm

PEWhere 6.25 1 1 15
PEWAux 6.25 2 1 4
Scope 6.27 2 2
Total – 5 4 19

Table 6.5: Analysis of the Query Lite → SQL Transformations

Step 3: The final step of this transformation converts the query resulting from step 2 into

a left-bushy join. This step is strictly not required, but simplifies the task of converting the

resulting query into SQL as we show in Section 6.4. Applied to the query above, this step

returns the query of Figure 6.22c. Expressed in SQL, this query is:

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits, m IN Mays, x IN Cits

WHERE (x.popn > 1M) AND (m.bornin == x.OID) AND

(c.mayor == m.OID) AND (c.popn > 1M) AND

(r.lgst cit == c.OID) AND (s.terms > 5) AND (s.reps == r.OID)

Analysis

Table 6.5 summarizes the transformations and property presented in this section. Note that

this complex rewrite is expressed with 3 rewrite rules, 2 inference rules and fewer than 20

lines of firing algorithm code.

6.4 Translating KOLA into SQL

Transformation PEWhere leaves Query Lite queries in the form

join (p1 & . . . & pn, f) !

[join (Kp (true), id) !

[join (Kp (true), id) !

[. . .[join (Kp (true), id) ! [A1, A2], . . .], Am−2], Am−1], Am]

or in the form iterate (p, f) ! A. The sublanguage of KOLA that consists of such expres-

sions only includes primitives: id, π1, π2, shr, shl, OID, m (m a method), abs, add, sub,

mul, div, mod, eq, neq, lt, gt, leq, geq; and formers: 〈 〉, ◦, Kf , Cf , iterate, join , ⊕, &,

211

Basic Function Primitives
T−1 Jid ! xK = T−1 JxK

T−1 Jπ1 ! [x, y]K = T−1 JxK
T−1 Jπ2 ! [x, y]K = T−1 JyK

T−1 Jm ! xK = T−1 JxK .m (for m a unary method)
T−1 Jm ! [x, [. . .[y1, y2], . . . , yn]]K = T−1 JxK .m (T−1 Jy1K, . . . , T−1 JynK)

(for m an n-ary method)

Int and Float Function Primitives (i, j integers or floats)
T−1 Jabs ! iK = abs (T−1 JiK)

T−1 Jadd ! [i, j]K = (T−1 JiK) + (T−1 JjK)
T−1 Jsub ! [i, j]K = (T−1 JiK) - (T−1 JjK)
T−1 Jmul ! [i, j]K = (T−1 JiK) * (T−1 JjK)
T−1 Jdiv ! [i, j]K = (T−1 JiK) / (T−1 JjK)

T−1 Jmod ! [i, j]K = (T−1 JiK) MOD (T−1 JjK)
Basic Predicate Primitives (x and y of type T)

T−1 Jeq ? [x, y]K = (T−1 JxK) == (T−1 JyK)
T−1 Jneq ? [x, y]K = (T−1 JxK) != (T−1 JyK)

T−1 Jisnull ? xK = (T−1 JxK) IS NULL
T−1 Jisnotnull ? xK = (T−1 JxK) IS NOT NULL

String and Int Predicate Primitives (x and y strings or integers)
T−1 Jlt ? [x, y]K = (T−1 JxK) < (T−1 JyK)
T−1 Jgt ? [x, y]K = (T−1 JxK) > (T−1 JyK)

T−1 Jleq ? [x, y]K = (T−1 JxK) <= (T−1 JyK)
T−1 Jgeq ? [x, y]K = (T−1 JxK) >= (T−1 JyK)
Table 6.6: T−1: Applied to KOLA Primitives

212

∼, Kp, and Cp. Further, all queries in this sublanguage are assumed to be iterate queries,

binary join queries, or left-bushy n-ary join queries.

A translation function, T−1 to translate KOLA expressions over this subset of KOLA

into SQL is defined in Tables 6.6 and 6.7. Note that Table 6.7 includes two translation

definitions for join. The first of these is for translating n-ary joins (n > 2) only. The

second of these is for translating binary joins only.

The following example illustrates this translation function. As shown in Section 6.3.3,

when invoked on Query Lite query 1 of Figure 6.21b, transformation PEWhere returns the

query of Figure 6.21c. This query gets translated into SQL as follows:

T−1

t
join ((((p1 & p2) ⊕ π2) & p3) ⊕ shr, π1 ◦ π1) !

[join (Kp (true), id) ! [Sens, Sts], Cits]

|

such that

p1 = gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ π2

p2 = eq ⊕ 〈lgst cit ◦ π1, OID ◦ π2〉
p3 = eq ⊕ 〈reps ◦ π1, OID ◦ π1 ◦ π2〉

=

SELECT ((π1 ◦ π1) ! [[s, r], c])

FROM s IN Sens, r IN Sts, c IN Cits

WHERE (((((p1 & p2) ⊕ π2) & p3) ⊕ shr) ? [[s, r], c]).

213

Reducing the predicates in this expression leaves,

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits

WHERE (((((p1 & p2) ⊕ π2) & p3) ⊕ shr) ? [[s, r], c])

=

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits

WHERE ((((p1 & p2) ⊕ π2) & p3) ? [s, [r, c]])

=

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits

WHERE (((p1 & p2) ⊕ π2) ? [s, [r, c]]) AND (p3 ? [s, [r, c]])

=

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits

WHERE ((p1 & p2) ? [r, c]) AND (p3 ? [s, [r, c]])

=

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits

WHERE (p1 ? [r, c]) AND (p2 ? [r, c]) AND (p3 ? [s, [r, c]])

Reducing each subpredicate in turn, we get:

p1 ? [r, c] = (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn ⊕ π2) ? [r, c]

= (gt ⊕ 〈id, Kf (1M)〉 ⊕ popn) ? c

= (gt ⊕ 〈id, Kf (1M)〉) ? (c.popn)

= gt ? [c.popn, 1M]

= c.popn > 1M,

p2 ? [r, c] = (eq ⊕ 〈lgst cit ◦ π1, OID ◦ π2〉) ? [r, c]

= eq ? [(lgst cit ◦ π1) ! [r, c], (OID ◦ π2) ! [r, c]]

= eq ? [r.lgst cit, c.OID]

= r.lgst cit == c.OID, and

214

p3 ? [s, [r, c]] = (eq ⊕ 〈reps ◦ π1, OID ◦ π1 ◦ π2〉) ? [s, [r, c]]

= eq ? [(reps ◦ π1) ! [s, [r, c]], (OID ◦ π1 ◦ π2) ! [s, [r, c]]]

= eq ? [s.reps, r.OID]

= s.reps == r.OID.

Reduction leaves the SQL query,

SELECT s

FROM s IN Sens, r IN Sts, c IN Cits

WHERE (c.popn > 1M) AND (r.lgst cit == c.OID) AND (s.reps == r.OID)

Other examples of translation are shown for the results of rewriting (with transformation

PEWhere) Query Lite queries 1 (Figure 6.21d is the SQL translation of Figure 6.21c), 2

(Figure 6.22d is the SQL translation of Figure 6.22c), and 3 (Figure 6.24d is the SQL

translation of Figure 6.24c).

6.5 Discussion

In this section, we reflect upon our experiences using COKO and KOLA to determine how

well this framework met our integration and ease-of-use goals described at the chapter’s

onset.

6.5.1 Integration Capabilities of COKO-KOLA

COKO-KOLA is a generator of query rewriting components designed to accept queries as

inputs and generate inputs for cost-based optimizers. But how easy is it to integrate these

query rewriters within real query processing environments?

The integration of the COKO-KOLA framework within the San Francisco project re-

quired the development of two translators. The first (described in Section 6.2) translates

Query Lite queries (and more generally, all set and bag-based OQL queries) into KOLA.

The second (described in Section 6.4) translates a subset of KOLA queries into SQL. Of

these translators, the first was by far the easiest to design and implement. This translator

has a similar flavor to the many combinator translations of the lambda calculus (e.g., [27]).

The availability of sophisticated compiler generator tools such as Ox [8] made this part of

the project straightforward.

On the other hand, translation from KOLA to SQL was more tricky. The problem

here was specifying exactly the sublanguage of KOLA that could be translated into SQL.

215

Basic Function Formers
T−1 J(f ◦ g) ! xK = T−1 Jf ! (g ! x)K
T−1 J〈f, g〉 ! xK = [T−1 Jf ! xK, T−1 Jg ! xK]
T−1 JKf (x) ! yK = T−1 JxK

T−1 JCf (f, x) ! yK = T−1 Jf ! [x, y]K
Basic Predicate Formers

T−1 J(p ⊕ f) ? xK = T−1 Jp ? (f ! x)K
T−1 J(p & q) ? xK = (T−1 Jp ? xK) AND (T−1 Jq ? xK)
T−1 J∼ (p) ? xK = NOT (T−1 Jp ? xK)
T−1 JKp (b) ? xK = T−1 JbK

T−1 JCp (p, x) ? yK = T−1 Jp ? [x, y]K
Query Function Formers

T−1 Jiterate (p, f) ! AK =
SELECT (T−1 Jf ! xK)
FROM x IN A
WHERE (T−1 Jp ? xK)

T−1

uwwwwv
join (p, f) !
[join (Kp (true), id) !
[. . .
[join (Kp (true), id) !
[A1, A2], . . .], An]

}����~
=

SELECT (T−1 Jf ! [. . .[x1, x2], . . .], xn]K)
FROM x1 IN A1, . . . , xn IN An

WHERE (T−1 Jp ? [. . .[x1, x2], . . .], xn]K)
T−1 Jjoin (p, f) ! [A1, A2]K =

SELECT (T−1 Jf ! [x1, x2]K)
FROM x1 IN A1, x2 IN A2

WHERE (T−1 Jp ? [x1, x2]K)
Table 6.7: T−1: Applied to KOLA Formers

216

Some restrictions are easy. For example, flat can never be translated into SQL because the

input to this function (a nested collection) is forbidden by the flatness restrictions of the

relational model. Other restrictions are harder to specify. For example, queries of the form,

iterate (p, f) ! A, can be translated into KOLA, but only in certain cases. For example,

• f cannot be another iterate or join query,

• f can be a composition of some functions (e.g., add ◦ 〈terms, Kf (1)〉) but not others

(e.g., lgst cit ◦ reps) that translate into path expressions.

Our approach to this issue is unsatisfying in the long term. In defining our KOLA → SQL

translation function, T−1, we assumed that inputs were generated from the pipeline of (1)

the Query Lite → KOLA translator, (2) the NormTrans query rewrite, and (3) the PEWhere

rewrite. In fact, T−1 is not defined for all of KOLA, and worse, would translate some

queries that were not produced by the pipeline into queries not recognized by SQL.

The long term solution of this problem will be to somehow characterize useful sublan-

guages of KOLA (depending on the underlying object → relational data model mapping)

that can be translated into SQL. We consider this challenge to be extremely important.

Query rewriting is likely to become the primary technique for reusing query processing soft-

ware with new kinds of queries. San Francisco provides one example of this, extending the

capabilities of the DB2 query processor to handle object-oriented queries. But we foresee

other applications to object database products that want to provide query support for OQL

or SQL3 while using existing optimizer technology, and heterogeneous databases that might

want to rewrite queries expressed over an entire federation of databases into separate queries

specific to the individual databases included within the federation. We believe KOLA to be

an ideal intermediate representation for these efforts, both because of its expressive power

and because KOLA rewrites are verifiable with a theorem prover. But this will require

far more precision in specifying sublanguages of KOLA that will serve as targets for query

rewriting (e.g., the sublanguage of KOLA that can be translated into SQL).

In short, the integration of the COKO-KOLA framework within existing query process-

ing systems requires translation to and from KOLA. Translation to KOLA is not a problem;

already KOLA is expressive enough to express queries in the most complex of query lan-

guages such as OQL, and can be readily extended when it falls short in this regard (e.g.,

as it does presently with respect to lists and arrays). However, translation from KOLA will

often be to a language with less expressive power than KOLA (such as SQL). Understanding

exactly what are interesting sublanguages of KOLA that can be translated (and therefore

is the target for query rewriting) represents a challenging component of future work.

217

6.5.2 Ease-Of-Use of COKO-KOLA

For the San Francisco project, we used COKO-KOLA to generate:

1. a library of general-purpose normalization and simplification transformations (pre-

sented in Section 6.3.1),

2. a normalization to make the KOLA queries resulting from translation from OQL or

Query Lite more intuitive (presented in Section 6.3.2), and

3. a transformation to rewrite Query Lite queries with path expressions in their WHERE

clauses to SQL join queries (presented in Section 6.3.3).

Of these generated rewrites, the third by far was the easiest to write. This transformation

rewrites queries with any number of path expressions, of any length, and with any degree

of sharing. Yet, the transformation itself required fewer than 20 lines of firing algorithm

code. The ease with which this transformation was written is encouraging, as it is exactly

these kinds of transformations that are most likely to be developed for optimizers.

On the other hand, by far the most difficult transformation to write was the translation

normalization transformation, NormTrans, and all of its auxiliary transformations. This

transformation required over 50 rewrite rules, roughly 100 lines of firing algorithm code.

Further, this work is not yet complete. This transformation presently does not normalize

queries that are nested in their SELECT clauses (i.e., iterate or join queries with iterate or

join queries as their data functions). While we believe that this part of the normalization

will not be difficult to add (it will likely require merging the functionality of transformations

SimpFunc and FactorK), the task has clearly proved to be non-trivial.

Of course, it should be remembered that this normalization need only be written once

and users of the COKO-KOLA framework would most likely get NormTrans from a library

of rewrites at their disposal, rather than programming it themselves. But on the other

hand, our experience writing this transformation was revealing in certain deficiencies of

COKO as a programming language and development environment. It is these revelations

that will motivate improvements in future versions of the language and compiler. Amongst

our observations are the following:

COKO’s Control Language This exercise provided quite a bit of experience with

COKO’s language for firing algorithms, and revealed certain parts of the language that

could be improved. One aspect of the language that requires some additional thought is the

association of success values with statements in the language. For some statements (e.g.,

218

rule firings and complex statements), success values are quite natural. COKO provides for

concise expression of algorithms such as that which exhaustively applies a set of rules:

BU {ru1 || . . . || run} → recursive call,

or which conditionally executes a statement (S2) if another statement (S1) succeeds and a

different statement (S3) if it fails:

S1 → S2 || S3.

But for other statements, the success values associated with the statements sometimes ran

counter to the desired flow of control. The most obvious example of this concerns the GIVEN

statement. GIVEN statements have the form,

GIVEN eqn1, . . . , eqnn DO S.

and return a success value of true if all equations, eqni succeed in unifying and false other-

wise. While this success result is desirable sometimes, at other times the desired result is

to return true if all equations succeed in unifying and statement S succeeds. To address

this problem, we could change the default success value for GIVEN statements to return

true if both equations and follow-up statement succeed. Then, one could simulate the old

behavior of GIVEN (i.e., return true if all equations succeed regardless of the success value

of the follow-up statement) by writing:

GIVEN eqn1, . . . , eqnn DO {TRUE S}.

The other part of the firing algorithm language that deserves reconsideration are the

success values associated with “;”-separated statements. Presently, a complex statement,

S1; . . . ; Sn

succeeds if any statement, Si succeeds. Often though, what one desires is for this statement

to succeed if one of a particular subset of statements succeeds. The only way to express

this presently is to preface those statements that should not figure into the determination

of the success value with FALSE, as in:

FALSE {S1}; . . . ; FALSE {Sn}

such that all statements Si would be replaced by FALSE {Si} except for those whose success

should influence the success of the entire complex statement. Ideally however, we would

219

like to avoid the use of TRUE and FALSE statements, as their sole purpose is to circumvent

the default success values of statements. Eliminating these statements may require us to

rethink the entire notion of success values completely, perhaps restricting success values

to rule and transformation invocations and adding if-then-else statements to the firing

algorithm language to express desired control.

Parameterized (or Template) COKO Transformations In Section 6.3.1, we de-

scribed a COKO transformation (LBComp) that has an identical firing algorithm and rewrite

rules to transformation LBConj of Figure 4.10, but for the substitution of one former sym-

bol (◦) for another (&) and one set of variables (function variables) for another (predicate

variables). This example suggests another way that COKO could be improved, by allowing

the definition of parameterized transformations (e.g., LB) such that different instantiations

would generate different COKO transformations (e.g., LB (&, p, q, r) could generate LBConj

while LB (◦, f, g, h) could generate LBComp.

Pattern Matching Associative Formers One of the most time-consuming program-

ming tasks is to account for the various ways that associative functions and predicates (e.g.,

(f ◦ g ◦ h) or (p & q & r)) can be associated. Presently, we address this problem by nor-

malizing functions and predicates in advance so that a certain association can be assumed

(e.g., LBComp and LBConj make compositions and conjunctions left-associative (or “left-

bushy”)). But determining the associative structure guaranteed of transformation results

(when such guarantees are possible) is difficult, and frequently we find ourselves normalizing

perhaps unnecessarily, to ensure that functions and predicates are structured in a particular

way.

In the long term, we believe that a better approach to this problem will be to adapt

our matching algorithm to account for associative function and predicate formers. That is,

under this scheme the pattern,

f ◦ g ◦ h

would match either possible association of compositions,

f ◦ (g ◦ h) or (f ◦ g) ◦ h.

This approach is taken by theorem provers such as LP [46].

Speed of Generated Code The query rewrites that are generated from COKO trans-

formations sometimes have poor performance. For example, while transformation PEWhere

220

performs well on “small queries” such as those of Figures 6.21a and Figures 6.22a, it is

noticeably slower with larger queries such as that of Figure 6.23a, requiring upwards of 3

minutes to perform the desired rewrite on a 200Mz Sparcstation 10.

We need to examine our compiler implementation to find the performance bottleneck,

but there are many areas that could be contributing factors. Among them:

• As described in Chapter 4, our COKO compiler was designed for simplicity rather

than performance. The code it produces generates a parse tree for the compiled

transformations, and then invokes a method (exec) on its root (triggering subsequent

calls to exec in descendants of the tree). This approach was simple and made it easy to

extend the language with new statements (as we did by adding TRUE, FALSE and SKIP

statements, and as is done with the definition of every new COKO transformation).

However, the resulting code frequently has inadequate performance. For example, the

COKO statement,

S1; . . . ; Sn

gets compiled into code that builds a binary parse tree of minimum height n, as each

“;” appears as a node in the tree with the two statements it separates as its immediate

children. This design results in a great deal of information passing (e.g., environments

of pattern variables must be passed between parse tree nodes) and thereby puts a

strain on performance. Further, the generated parse trees can be so large that the

C++ compiler cannot generate the code that builds them. We have often been forced

to “break up” COKO transformations into separate subparts in order to get around

this deficiency.

• In Chapter 4, we showed an example of the kinds of efficiency one can get by having

fine control of rule firing. Transformation CNF exhibited far better performance with

a sophisticated and selective firing algorithm, then it did when implemented as an

algorithm that exhaustively applies deMorgan rules.

Unfortunately, we have not yet developed a methodology for developing efficient fir-

ing algorithms such as that for CNF. Many of the algorithms used for the rewrites

presented in this chapter are naive in their application of rewrite rules. For exam-

ple, transformation PCFAux, an auxiliary transformation to PullComFunc that col-

lapses subpredicates with common subfunctions (see Section 6.3.1), uses an algorithm

analagous to a bubble-sort algorithm in order to compare subfunctions appearing in

a predicate. Part of the problem lies with the inherent limitations of the rule-based

221

approach which demands that algorithms be composed from local operations (indi-

vidual rule firings). But at the very least, the performance of firing algorithms used in

our library of common normalizations and simplifications should be improved, given

how often these transformations are likely to be used. But we look forward to future

study of a methodology for writing firing algorithms that minimizes failed rule firings,

achieving for all transformations what we were able to achieve for CNF.

• As described in Chapter 5, our implementation of semantic query rewrites invokes a

Prolog interpreter druing rewriting to issue a semantic query. As in the case of PEWAux,

semantic queries can be posed numerous times during the course of rewriting. (For ex-

ample, in rewriting the relatively simple query of Figure 6.22a, the conditional rewrite

rule, pe2j was fired 9 times (succeeding 4 times).) Each call to the Prolog interpreter

incurs a tremendous amount of overhead from loading and initializing the interpreter,

and converting to and from Prolog representations of KOLA expressions. We believe

that performance of generated rewrites will improve greatly once our Prolog-based im-

plementation of semantic query rewrites is replaced by specialized pattern matching

routines for KOLA trees.

In short, the message from our experience is that the COKO-KOLA framework poten-

tially has much to offer in the development of “real-world” query rewriters given its formal

foundation. But for this potential to be realized, its implementation must grow beyond its

present prototype status. We were especially encouraged by the concise and elegant manner

with which we were able to express the path expression-to-join query rewrite described in

Section 6.3.3. This rewrite exploited all facets of the COKO-KOLA framework, includ-

ing the semantic rewrite facility in order to infer knowledge of foreign keys, and recursive

firing algorithms to ensure the handling of an unbounded number of path expressions of

unbounded length and unbounded degree of subexpression sharing. But while our imple-

mentation is adequate as a proof of concept, it still is only a research prototype.

6.6 Chapter Summary

In this chapter, we have described our experiences using the COKO-KOLA framework

presented in the preceding three chapters. Our challenge was to use COKO-KOLA to

develop a query rewriting facility for an experimental language for the IBM San Francisco

project. The query rewriter developed would translate object-oriented queries expressed in

a simple object-oriented query language, into equivalent SQL queries over the underlying

222

relational implementation of the object-oriented database.

This project alllowed us to determine the ease with which generated rewrites could

be integrated within existing query processor environments, and with which “real” query

rewrites could be expressed. To support integration, we built translators to translate Query

Lite and OQL queries into KOLA, and to translate KOLA queries into SQL. This work

revealed a challenging future direction in specifying sublanguages of KOLA equivalent in

expressive power to other known languages (e.g., SQL), but also showed our framework

to be easily integrated into existing query processor settings. To assess ease of use, we

analyzed the size and effort required to build COKO transformations that were general

purpose normalization and simplification routines, normalizations specific to the result of

translation, and Query Lite → SQL rewrites. Surprisingly, the library of normalizations

(especially the normalization of translated queries) proved most difficult to build. But the

experience revealed to us deficiencies in the COKO language and compiler implementation

that must be addressed in future versions. Most encouraging to us was the ease with which

we were able to write the transformation that did the “actual work” of the query rewrite.

Transformations PEWhere and PEWAux required few rules and few lines of firing algorithm

code to express a powerful and useful query rewrite.

Chapter 7

Dynamic Query Rewriting

In Chapters 3, 4 and 5, we proposed a framework for the expression of query rewrites. In

Chapter 3, we presented KOLA: a combinator-based query algebra and representation that

supports the expression of simple query rewrites with declarative rules. In Chapter 4, we

introduced COKO: a language for expressing complex rewrites in terms of sets of KOLA

rules and firing algorithms. And in Chapter 5, we introduced extensions to COKO and

KOLA that made it possible to express rewrites whose correctness depended on semantic

properties of queries and data. All of the rewrites presented in these chapters are verifiable

with a theorem prover. This is due to the combinator flavor of KOLA that makes it possible

to express subexpression identification and query formulation without code.

In this chapter, we consider another benefit arising from KOLA. This work concerns

when query rewrites get fired rather than how they get expressed. An intelligent decision

about how to rewrite or evaluate a query requires knowing the representations and contents

of the collections involved (e.g., whether or not collections are indexed, sorted, or contain

duplicates). Dynamic query rewriting (query rewriting that takes place during the query’s

evaluation) incorporates this philosophy in settings where this information is not known

until data is accessed (i.e., until run-time). Such settings include:

• object databases that permit queries on anonymous, embedded collections whose con-

tents and representations might only become apparent at run-time,

• network databases (e.g., web databases) that permit queries on collections whose avail-

ability can vary every time the query is executed, and

• heterogeneous databases that permit queries on collections maintained by local databases

with data models and storage techniques known only to them.

223

224

Dynamic query rewriting requires that a query evaluator identify subexpressions of the

processed query, and formulate new queries to ship to the query rewriter for further pro-

cessing. Because KOLA simplifies the expression of these tasks, it is an ideal underlying

query representation.

The work described in this chapter is ongoing and focuses on the application of dynamic

query rewriting to object databases. We have designed a dynamic query rewriter for the

ObjectStore object-oriented database [67], and an implementation of this design is in devel-

opment.1 We present this design using the “NSF” query (NSF2 of Figure 2.6) as a running

example. After presenting the design of the dynamic query rewriter for ObjectStore in

Section 7.1, we trace the evaluation and rewriting of this query in Section 7.2. Finally, we

consider some performance issues that have yet to be addressed and again look at the role

of KOLA in the design of the query rewriter in Section 7.3, before summarizing the chapter

in Section 7.4.

7.1 A Dynamic Query Rewriter for ObjectStore

The potential heterogeneity of collections in an object database makes it sometimes appro-

priate for evaluation strategies to vary from object to object. In Chapter 2, we introduced

the query NSF2 (Figure 2.6) that pairs every bill concerning the NSF with the largest cities

in the regions represented by the bill’s sponsors. The collection of bills queried (Bills)

can contain both House and Senate resolutions whose sponsors are sets of House Repre-

sentatives and Senators respectively. The path expression, x.reps.lgst cit, that finds the

largest city in the region represented by legislator x, is an injective function over objects

of type Representative, but not over objects of type Senator. Therefore, a semantic query

rewrite to eliminate redundant duplicate elimination (as described in Section 5.1) must be

applied selectively to affect the processing of House resolutions but not the processing of

Senate resolutions. Dynamic query rewriting is query rewriting that occurs during a query’s

evaluation (i.e., at run-time). Selective processing of NSF2 can be achieved by firing the du-

plicate elimination query rewrite dynamically as bills are retrieved and their origins (House

or Senate) identified.

We have designed a dynamic query rewriter and query evaluator for ObjectStore [67],

and the implementation and evaluation of this design is ongoing work. This design deviates

from the traditional query processor architecture presented in Chapter 1 (Figure 1.1). The
1ObjectStore already performs a limited form of dynamic query optimization involving run-time exploita-
tion of indexes, but does nothing by way of dynamic query rewriting.

225

Metadata

Query

Query Representation

Query Representation

Partial Query Plan

Data

Translator

Query Rewriter

Plan Generator

Semantic Condition Checker

Query Evaluator

B

A

Query
Representation

Evaluation

Optimization

Conditions

Figure 7.1: An Alternative Architecture for Object Database Query Processors

new architecture (illustrated in Figure 7.1) introduces a feedback loop between evaluation

and rewriting (labeled A in Figure 7.1), as well as incorporating the semantic rewrite com-

ponents described in Chapter 5 (B). The input to the evaluator is not a complete plan, but a

partial plan with “holes” left for those parts of the plan that will be generated dynamically.

To implement this architecture, our design includes two components:

• a plan language that permits expression of partial plans, and

• a query evaluator with hooks back to the optimizer.

After describing these two components, we demonstrate their intended behavior with respect

to the processing of query NSF2.

7.1.1 Making ObjectStore Objects Queryable

The present design of our dynamic query rewriter processes queries over ObjectStore. Our

eventual goal is for this design to be usable with other databases also. Therefore, a design

226

OSObject

kola (): KObject

OSBool

kola (): KBool

OSIterator

open (): Bool

close (): Bool
next (): OSObject

finished (): Bool
set (): OSIterator

OSSieve

. . .

OSStr

val: String

OSInt

val: Int

. . .

i2: OSIterator

OSNestedLoopSieve

f: KFunction
g: KFunction

i1: OSIterator

OSRegion

name (): OSStr
capt (): OSCity

OSLegislator

name (): OSStr
reps (): OSRegion
pty (): OSStr

terms (): OSInt

bornin (): OSCity
cities (): OSSource
lu (): OSStr
popn (): OSInt

. . .

OSSource

c: OSCollection

i2: OSIterator

OSMergeSieve

f: KFunction
g: KFunction

i1: OSIterator

OSFilterSieve

p: KPredicate

i: OSIterator

OSMapSieve

f: KFunction
i: OSIterator

OSBasicSieve

p: KPredicate

f: KFunction
i: OSIterator

Figure 7.2: The ObjectStore Queryable Class Hierarchy

goal was to maintain a loose coupling between the rewriter and ObjectStore.

Loose coupling is achieved by maintaining separate class hierarchies for ObjectStore

objects (which can be stored in an ObjectStore database) and KOLA objects (which can

be appear in queries). Because of this design, ObjectStore’s implementation requires no

modification to account for KOLA querying, and our design need not be restricted to

processing ObjectStore objects. The cost of this decision is redundancy in the two class

hierarchies, and the need to translate between the two representations during a query’s

evaluation. Because of the latter issue, a non-prototype design of the dynamic query rewriter

would likely integrate the two object representations.

The only requirement we introduce of queryable ObjectStore objects is that they belong

to a subclass of a class we provide (OSObject). All attributes of these classes should

also have types that are subclasses of OSObject (or OSBool if they are boolean-valued

attributes). This ensures that all classes of objects maintained in the database will have

a KOLA translation function inherited from OSObject and OSBool (kola), even though

designers of such classes may not be aware of this. Other queryable ObjectStore object

227

classes are provided as part of our design (e.g., basic classes such as strings (OSStr) and

integers (OSInt)) as is illustrated in the ObjectStore class hierarchy presented in Figure 7.2.

Figure 7.2 includes two of the classes defined for the Thomas database of Section 2 —

OSLegislator (Legislator) and OSRegion (Region). Subtypes could be be defined to inherit

from these classes (e.g., State could be defined as a subtype of Region in this way). This

figure also includes a subhierarchy of iterators rooted at OSIterator. While instances of

these classes are data (returned as the results of collection generating queries), the classes

themselves comprise the plan language for KOLA. This design is described below.

7.1.2 Iterators

The result of a query can be very large. If a query returns a collection, this collection might

contain many objects (i.e., the result might have a large cardinality). As well, each object in

the result might include other collections and other complex objects as attributes (i.e., the

result might have a large arity also). Thus, it would be inappropriate for a query processor

to return a query result “all at once” and instead a more lazy approach is called for.

Like many query processors (e.g., Exodus [13]) KOLA’s plan language merges query

results with the plans to retrieve them. An iterator is a view for a given collection with a

specialized interface that provides access to the collection one element at a time. Queries

that construct collections in fact return iterators. Thus, iterators serve as both data and

plan.

Our design defines several kinds of iterators (all subclasses of OSIterator) that can be

returned as the result of a query. There is at least one iterator per KOLA query former or

primitive, although not all are shown in Figure 7.2. Designed in an object-oriented style,

each iterator is obligated to provide implementations of the following methods:

• open: which opens all files required by the iterator to retrieve elements, and which

initializes any data structures required for processing,

• next: which returns the next element of the collection maintained by the iterator,

• finished: which returns true if there are no more elements to return,

• close: which closes all files and data structures opened or created by the iterator,

and

• set: which constructs a new stored collection (and accompanying iterator) with du-

plicates removed.2

2Set builds a new stored collection, because our assumption is that duplicate elimination is necessary

228

Thus, if one views a plan language as a collection of algorithms, the method implementations

for the collection of iterators comprise the KOLA plan language.

Iterators can range over collections stored on disk (access methods), or collections gen-

erated on the fly (query operators). Our design introduces the class OSSource to act as

the supertype of all access method iterators, and OSSieve to act as the supertype of all

query operator iterators. Examples of the latter include OSBasicSieve, OSMapSieve and

OSFilterSieve. Objects of class OSBasicSieve act as a view with respect to some KOLA

predicate p and function f over the result of some other iterator, i. Calling next on an

OSBasicSieve results in repeated calls of next on i until some element is returned that

satisfies p (or until the entire collection has been processed at which point an “End-Of-

Collection” token is returned). Function f is then applied to this element and the result

is returned. On the other hand, an OSMapSieve acts as a view solely with respect to a

KOLA function f over the result of some other iterator, i. Calling next on an OSMapSieve

results in a single call of next on i, with f applied to the result and returned. Finally, an

OSFilterSieve acts as a view with respect to a KOLA predicate p over the result of some

other iterator, i. As with an OSBasicSieve, calling next on an OSFilterSieve repeatedly

calls next on i until some element is returned that satisfies p. Unlike an OSBasicSieve,

this element is then returned as is. Our simple plan generator generates an OSBasicSieve

for queries of the form,

iterate (p, f) ! A,

an OSMapSieve for queries of the form,

iterate (Kp (true), f) ! A,

and an OSFilterSieve for queries of the form,

iterate (p, id) ! A.

Other iterators are defined for other KOLA query formers. For example, there are two

join iterators, each of which references a KOLA predicate, p, a KOLA function, f and two

input iterators, i1 and i2. Class OSNestedLoopSieve does no preprocessing in its open

method, and a call to next iterates through i2 looking for an element that together with

the last read element of i1, satisfies p. (If none is found, the next element of i1 is retrieved

and the process repeats itself.) Thus, this iterator performs a nested loop join. The open

if set is executed. Queries for which duplicate elimination is recognized as unnecessary get rewritten into
plans that do not execute set.

229

method of OSMergeSieve sorts i1 and i2, creating two temporary OSSource iterators for

the results of the sorts. A call to next then scans these sorted collections in parallel, thus

performing a sort-merge join.

The two most important features of these iterators are that they are extensible and that

they support the partial specification of plans. The object-oriented design of iterators (i.e.,

all iterator implementations inherit from OSIterator) makes it straightforward to extend

the plan language by adding additional iterators. For example, an iterator that uses an

index to filter objects contained in a collection could be added as a subclass of OSSieve.

Objects of this class could then be returned by iterate queries when indexes are available on

the data predicate. Our present design includes a simplistic plan generator that associates

most KOLA query formers with only a single iterator. But because additional subclasses

of OSIterator such as the ones above can be simply added, plan generation can be made

more sophisticated without disrupting the other components of the optimizer.

Iterators also support the partial specification of plans. All query operator iterators (i.e.,

objects belonging to subclasses of OSSieve) specify one or more iterators from which data

elements are drawn, and an operation to perform on these data elements. Data operations

are not specified with plans but with KOLA functions and predicates. In this way, an

iterator only partially specifies a plan. To complete the specification, each data element

retrieved can be packaged with the associated KOLA predicate or function and resubmitted

as a new query to the query rewriter. That is, KOLA functions and predicates serve as

specifications for the missing components of a plan, describing what the missing plan must

produce without committing to an algorithm. Partial specifications of plans make dynamic

query rewriting possible, marking the parts of a plan for which details must be supplied at

run-time.

7.1.3 Combining Rewriting With Evaluation

Translation of OQL queries results in KOLA parse trees. The nodes of KOLA’s parse trees

are instances of classes whose hierarchy is shown in part in Figure 7.3. The mappings of

KOLA functions, predicates, objects and bools to their associated classes within this hier-

archy are shown in Table 7.1. All function (predicate) classes are subclasses of KFunction

(KPredicate), obligating them to provide implementations for virtually defined methods

invoke and exec. As will be described in some detail below, invoke performs partial eval-

uation and query rewriting, and exec performs full evaluation and plan generation for the

function (predicate) denoted by the KFunction (KPredicate) parse tree. All object (bool)

230

KNode

KObject

obj (): KObject
res (): OSObject

. . .

KOInvoke

one: KFunction
two: KObject

KOStr

val: String

KOName

val: String

KOPair

one: KObject
two: KObject

KOWrapper

val: OSObject

KPredicate

invoke (KObject): KBool
exec (OSObject): OSBool

. . .

KPEqual

KPConst

one: KBool

KPOPlus

one: KPredicate
two: KFunction

KFunction

invoke (KObject): KObject
exec (OSObject): OSObject

KBool

obj (): KBool

res (): OSBool

. . .

KFId

KFSet

KFPair

one: KFunction
two: KFunction

KFCompose

one: KFunction
two: KFunction

KFIterate

one: KPredicate
two: KFunction

KFAttr

val: String

. . .

KBInvoke

one: KPredicate
two: KObject

KBConst

val: Boolean

Figure 7.3: The KOLA Representation Class Hierarchy

231

KOLA Operator (q) Node Class Comment
Subclasses of KFunction

id KFID –
set KFSet –
〈f, g〉 KFPair one is f , two is g
f ◦ g KFCompose one is f , two is g

iterate (p, f) KFIterate one is p, two is f
any attribute KFAttr val is the name of the attribute

Subclasses of KPredicate
eq KPEqual –
Kp (b) KPConst one is b
p ⊕ f KPOPlus one is p, two is f

Subclasses of KObject
f ! x KOInvoke one is f , two is x

[x, y] KOPair one is x, two is y
any string constant KOStr val is the string constant
any ObjectStore object KOWrapper val is the ObjectStore object
any object name KOName val is the object name

Subclasses of KBool
p ? x KBInvoke one is p, two is x
true or false KBConst val is the truth value

Table 7.1: Mappings of KOLA Operators to their Parse Tree Representations

classes are subclasses of KObject (KBool), obligating them to provide implementations for

virtually defined methods obj and res: methods that call invoke and exec respectively.

In describing how a query is processed, we will refer to KOLA expressions and their parse

trees interchangably and rely on context to differentiate between the two. For example, the

expression,

(set ! A) → obj ()

denotes a call of method obj on the parse tree representation of (set ! A). In other words,

method obj defined in class KOInvoke (written KOInvoke::obj) gets invoked on the associ-

ated KOLA tree. As much as possible in this discussion, we will supplement such expressions

with descriptions that point out which methods defined in which classes get invoked.

Partial Evaluation and Query Rewriting

True to object-oriented style, evaluation routines are distributed across the KOLA tree

representations they affect. Whereas evaluation (and plan generation) occur as a result of

calls to exec (for function and predicate nodes) and res (for object and bool nodes), query

232

rewriting (and partial evaluation) occur as a result of calls to invoke (for function and

predicate nodes) and obj (for object and bool nodes).

The processing of a KOLA query, q occurs as a result of the chain of calls,

q → obj () → res ()

which invokes method obj on the parse tree representation of q, and method res on the

parse tree resulting from the invocation of obj. The call of obj performs query rewriting

and partial evaluation on q. (The call of res returns an iterator, as discussed in the next

section.) For queries of the form (f ! x) that apply functions or predicates to objects, the

call

(f ! x) → obj ()

executes KOInvoke::obj, resulting in the subsequent call of,

f → invoke (x → obj ()).

Thus, invoke and obj are related functions that initiate query rewriting and partial eval-

uation.

Invoke is defined differently for different functions and predicates. Basic function form-

ers perform evaluation of the query up to the point where disk access is required or methods

are invoked. Thus, the call,

id → invoke (x)

(KFID::invoke) completely evaluates the expression, (id ! x), returning (the parse tree

representation of) x. In this case invoke fully evaluates the the function invocation (id ! x).

On the other hand, for any attribute att,

att → invoke (x)

(KFAttr::invoke) returns

att ! x

(i.e., a KOLA parse tree rooted by a KOInvoke object), performing no evaluation at all. In

general, invoke partially evaluates a query, as in

〈id, att〉 → invoke (x)

that returns the partially evaluated KOPair,

[x, att ! x].

233

When invoked on query functions or predicates, invoke initiates query rewriting. Every

KOLA function and predicate node can be associated with its own rewriter generated from

a COKO definition. Thus, KOFSet (set) might be associated with a transformation that

invokes rules de1 and de2 of Figure 5.3, and KFIterate (iterate) might be associated with

a COKO transformation that performs normalization with respect to iterate queries. Most

likely, only nodes representing query formers will be associated with rewriters. If the parse

tree representation of some function f is instantiated with a COKO transformation object,

t, then

f → invoke (x)

generates a call to t’s exec method (see Section 4.3.3) with the parse tree representation

of (f ! x) as its argument. The rewriter then returns the representation for an equivalent

expression that has been normalized in some way. Definitions of obj for some subclasses

of KObject and KBool, and invoke for some subclasses of KFunction and KPredicate are

presented in the tables of Table 7.2.

Evaluation and Plan Generation

Just as obj and invoke initiate query rewriting and partial evaluation, res and exec initiate

plan generation and complete evaluation. And analagously to obj and invoke, res and

exec are related in that the call,

(f ! x) → res ()

for some KOLA function f and KOLA object x generates the call,

f → exec (x → res ()).

As with invoke, exec is defined differently for different KOLA functions and predicates.

For KOLA query functions and predicates, exec returns an iterator over the collection

that the query denotes. For attributes, exec performs attribute extraction. For KOLA’s

arithmetic functions (add, mul, etc.) exec performs the arithmetic.

Our simplistic plan generator performs no data analysis in deciding upon an iterator

to return as the result of evaluating a query. Most formers generate a single iterator.

(The former, iterate is an exception as it can generate an OSBasicSieve, OSMapSieve or

OSFilterSieve.)3

3A more sophisticated plan generator would generate multiple iterators and choose a best amongst them
based on some cost model that estimates the cost of retrieving elements from each.

234

KOLA Class obj ()

KObject
KOInvoke one → invoke (two → obj ())
KOStr self
KOName self

KOWrapper self
KOPair KOPair (one → obj (), two → obj ())

KBool
KBInvoke one → invoke (two → obj ())
KBConst self

KOLA Class invoke (k: KObject)

KFunction

KFID k
KFMethod KOInvoke (self, k)
KFCompose KOInvoke (one, KOInvoke (two, k))
KFPair KOPair (KOInvoke (one, k), KOInvoke (two, k))
KFSet Calls optimizer on KOInvoke (self, k)

KFIterate Calls optimizer on KOInvoke (self, k)
KPredicate

KPEqual KBInvoke (equal, k)
KPConst one
KPCurry one → invoke (OPair (two, k))
KPOPlus one → invoke (two → invoke (k))

Table 7.2: Results of Partially Evaluating and Rewriting KOLA Queries

235

KOLA Class res ()
KObject

KOInvoke one → exec (two → res ())
KOStr OSStr (val)
KOName Performs lookup of val in database.

Returns object stored, if not a collection.
Returns an OSSource, if a collection.

KOWrapper val
KOPair STRUCT (one: one → res (), two: two → res ())

KBool
KBInvoke one → exec (two → res ())
KBConst val

KOLA Class exec (o: OSObject)
KFunction

KFID Never called
KFMethod Calls method on o
KFCompose Never called
KFPair Never called
KFSet (o → res ()) → set ()

KFIterate




OSMapSieve (two, o), if one = Kp (true)
OSFilterSieve (one, o), if two = id
OSBasicSieve (one, two, o), otherwise

KPredicate
KPEqual o.one == o.two
KPConst Never called
KPCurry Never called
KPOPlus Never called

Table 7.3: Results of Evaluating KOLA Queries

The definitions of res for some subclasses of KObject and KBool, and exec for some

subclasses of KFunction and KPredicate are presented in the tables of Table 7.3. Note

that for some function and predicate representation nodes (e.g., KFID, KFCompose), exec

will never be called as calling invoke beforehand will transform query representations using

these nodes into representations that don’t.

236

NSFk = iterate (p, f) ! Bills such that

p = Cp (eq, ‘‘NSF’’) ⊕ topic,
f = 〈name, set ◦ iterate (Kp (true), lgst cit ◦ reps) ◦ spons〉

Figure 7.4: NSF2k: The KOLA Translation of Query NSF2 of Figure 2.6

7.2 Putting It All Together: The NSF Query

We illustrate our design by tracing the processing of the KOLA version of NSF2 (NSF2k)

shown in Figure 7.4. Figure 7.5 illustrates the parse tree representation of this query over

which query evaluation takes place via successive calls of obj and res.

7.2.1 Initial Rewriting and Evaluation

For query NSF2k, there is little query rewriting or partial evaluation that can be performed

until data is touched. Calling obj on the parse tree representation of this query returns the

parse tree untouched. A subsequent call of res returns an OSBasicSieve with

• the parse tree representation of (Cp (eq, ‘‘NSF’’) ⊕ topic) as its predicate, p,

• the parse tree representation of

〈name, set ◦ iterate (Kp (true), lgst cit ◦ reps) ◦ spons〉

as its function, f , and

• The iterator object for Bills (i.e., an OSSource object) as its inner iterator, i.

This result is illustrated in Figure 7.6. In this figure and in others that include both KOLA

and ObjectStore objects, the two are differentiated by their shape: KOLA objects are drawn

with circles while ObjectStore objects are drawn with rectangles.

7.2.2 Dynamic Query Rewriting: Extracting Elements from the Result

The only query rewriting performed on NSF2k occurs when objects are retrieved from

the query’s iterator result. That is, rewriting occurs dynamically as a result of a call of

next on the OSBasicSieve of Figure 7.6. A call of next on this iterator in turn calls

next on the OSSource iterator for Bills. With each bill b returned by this call, a new

KOLA expression is formulated using the predicate (p) associated with the OSBasicSieve.

237

The formulated expression packages p with a predicate invocation node (KBInvoke) and

the KOLA translation of b (KOWrapper (b)) to construct the parse tree representation of

(p ? JbK) (such that JbK denotes the KOLA wrapper object referencing b). This is illustrated

in Figure 7.7 (A). Figure 7.7 (B) shows the result of calling obj on this tree. Figure 7.7 (C)

shows the result of calling res on the KOLA pair that is an argument to the predicate, eq.

(Evaluation then proceeds by comparing the one and two fields of the struct in (C).)

A trace of the calls of obj and res that lead to each result illustrated in Figure 7.7 is

presented below. Each step in the trace shows the “current” representation and the method

that was invoked most recently to generate it.

((Cp (eq, ‘‘NSF’’) ⊕ topic) ? JbK) → obj ()

= (Cp (eq, ‘‘NSF’’) ⊕ topic) → invoke (JbK → obj ()) (by KBInvoke :: obj)

= (Cp (eq, ‘‘NSF’’) ⊕ topic) → invoke (JbK) (by KOWrapper :: obj)

= Cp (eq, ‘‘NSF’’) → invoke (topic → invoke (JbK)) (by KPOPlus :: invoke)

= Cp (eq, ‘‘NSF’’) → invoke (topic ! JbK) (by KFAttr :: invoke)

= eq → invoke ([‘‘NSF’’, topic ! JbK]) (by KPCurry :: invoke)

= eq ? [‘‘NSF’’, topic ! JbK] (by KPEqual :: invoke)

Suppose that b is a House resolution. Calling res on

eq ? [‘‘NSF’’, topic ! JbK]
leads to the comparison of the fields of the ObjectStore STRUCT of Figure 7.7 (C) as illus-

trated below.

238

(eq ? [‘‘NSF’’, topic ! JbK] → res ())

= eq → exec ([‘‘NSF’’, (topic ! JbK)] → res ()) (by KBInvoke :: res)

= eq → exec (STRUCT (one: ‘‘NSF’’ → res (), two: (topic ! JbK) → res ()))

(by KOPair : res)

= eq → exec (STRUCT (one: ‘‘NSF’’, two: (topic ! JbK) → res ()))

(by KOString :: res)

= eq → exec (STRUCT (one: ‘‘NSF’’, two: topic → exec (JbK → res ())))

(by KOInvoke :: res)

= eq → exec (STRUCT (one: ‘‘NSF’’, two: topic → exec (b)))

(by KOWrapper :: res)

= eq → exec (STRUCT (one: ‘‘NSF’’, two: b.topic)) (by KFAttr :: exec)

= ‘‘NSF’’ == b.topic (by KPEqual :: exec)

Suppose that b.topic == ‘‘NSF’’. Then this expression evaluates to true and b is packaged

with f to construct the query tree of Figure 7.8 (A), (〈name, set ◦ h ◦ spons〉 ! JbK), such

that

h = iterate (Kp (true), lgst cit ◦ reps).

Calling obj on this tree results in the query tree of Figure 7.8 (B) as is shown in the

239

execution trace below.

(〈name, set ◦ h ◦ spons〉 ! JbK) → obj ()

= 〈name, set ◦ h ◦ spons〉 → invoke (JbK → obj ()) (by KOInvoke :: obj)

= 〈name, set ◦ h ◦ spons〉 → invoke (JbK) (by KOWrapper :: obj)

= [name → invoke (JbK), (set ◦ h ◦ spons) → invoke (JbK)] (by KFPair :: invoke)

= [name ! JbK, (set ◦ h ◦ spons) → invoke (JbK)] (by KFAttr :: invoke)

= [name ! JbK, (set ◦ h) → invoke (spons → invoke (JbK))]
(by KFCompose :: invoke)

= [name ! JbK, (set ◦ h) → invoke (spons ! JbK)] (by KFAttr :: invoke)

= [name ! JbK, set → invoke (h → invoke (spons ! JbK))]
(by KFCompose :: invoke)

The next step of this reduction executes FIterate::invoke which fires a COKO trans-

formation to rewrite the query,

iterate (Kp (true), lgst cit ◦ reps) ! (spons ! JbK).
Suppose that this rewriter has no effect on this query. Then the next step of the execution

trace is:

[name ! JbK, set → invoke (iterate (Kp (true), lgst cit ◦ reps) ! (spons ! JbK))].
At this point, the COKO transformation associated with set is fired to rewrite the query,

set ! (iterate (Kp (true), lgst cit ◦ reps) ! (spons ! JbK)).
If the COKO transformation is one that eliminates redundant duplicate elimination (firing

the rules of Figure 5.3), then the reduction continues as shown below:

1. Firing rule de1 of Figure 5.3 matches the pattern, set ! (iterate (p, f) ! A) with

240

the above query producing the variable bindings:

p = Kp (true)

f = lgst cit ◦ reps, and

A = spons ! JbK
2. A Prolog query is issued to the Prolog interpreter to determine the truth values of

conditions:

is inj (lgst cit ◦ reps)

and

is set (spons ! JbK).
The latter condition is satisfied by inference rule (2) of Figure 5.4b in combination

with schema information establishing the type of spons to return a set of House

Representatives. The former condition is satisfied by inference rules (2) and (3) of

Figure 5.4a in combination with metadata information identifying lgst cit as a key

for sets of regions, and reps as a key for sets of House Representatives.4

3. The success of the Prolog query leads to the firing of the conditional rewrite rule, de1,

leading to a rewrite of the query that performs duplicate elimination to one that does

not:

iterate (Kp (true), lgst cit ◦ reps) ! (spons ! JbK).
Thus, the call of next on the OSBasicSieve of Figure 7.6 has led to a dynamic call

of the query rewriter to perform the semantic rewrite that eliminates redundant duplicate

elimination. The execution trace then concludes, producing the representation,

[name ! JbK, h ! (spons ! JbK)]
such that

h = iterate (Kp (true), lgst cit ◦ reps).

4Our implementation resolves overloading (e.g., of attribute reps) by translating all references to functions
appearing in a schema, metadata files or queries to Prolog terms of the form,

fun (name, D, R)

such that name is the name of the function, D is the domain type of the function, and R is the range type of
the function. Therefore, fun (kreps, kHouse Representative, kRegion) would be identified as a key and
fun (kreps, kSenator, kRegion) would not be. A similar representation strategy is applied to predicates.

241

A call of res on this representation produces the result shown in Figure 7.8 (C) as is

illustrated by the execution trace below:

[name ! JbK, h] → res ()

= STRUCT (one: (name ! JbK) → res (), two: h ! (spons ! JbK) → res ())

(by KOPair :: res)

= STRUCT (one: name → exec (JbK → res ()), two: (h ! (spons ! JbK)) → res ())

(by KOInvoke :: res)

= STRUCT (one: name → exec (b), two: (h ! (spons ! JbK)) → res ())

(by KOWrapper :: res)

= STRUCT (one: b.name, two: (h ! (spons ! JbK)) → res ()) (by KFAttr :: exec)

= STRUCT (one: b.name, two: g → exec ((spons ! JbK) → res ()))

(by KOInvoke :: res)

= STRUCT (one: b.name, two: g → exec (spons → exec (JbK → res ())))

(by KOInvoke :: res)

= STRUCT (one: b.name, two: g → exec (spons → exec (b))) (by KOWrapper :: res).

Because the bill attribute spons returns a set, the result of the invocation,

spons → exec (b)

is an OSSource iterator (which will be expressed through the remainder of the trace as

“OSSource (b.spons)”. Therefore, the next expression in the execution trace becomes,

STRUCT (one: b.name, two: g → exec (OSSource (b.spons))).

Substituting for g, the expression labeled by two is:

iterate (Kp (true), lgst cit ◦ reps) → exec (OSSource (b.spons)).

Because the predicate argument to iterate is Kp (true), the call of KFIterate::exec

generates an OSMapSieve object, which will be written in the remainder of the trace as

242

“OSMapSieve (lgst cit ◦ reps, OSSource (b.spons))”. Therefore, the next expression in

the execution trace becomes,

STRUCT (one: b.name, two: OSMapSieve (lgst cit ◦ reps, OSSource (b.spons))).

The last step of the trace inserts the field names of the struct (bill and schools) that

appeared in the original OQL query and that are retained by translation into KOLA:

STRUCT (bill: b.name,

schools: OSMapSieve (lgst cit ◦ reps, OSSource (b.spons))).

7.2.3 Extracting Results from the Nested Query

The result of calling next on the OSBasicSieve of Figure 7.6 itself generates a record

(STRUCT) whose second value (schools) is another query operator. As elements from this

inner query result can also be extracted via calls to next, this makes it possible for the

query rewriter to be called deeply within evaluation. In this case, the function argument

of the OSMapSieve is simple enough that the rewriter is not called. A call of next on the

OSMapSieve initiates a call of next on the OSSource iterator over b.spons. The result of

this latter call (either a Senator or a House Representative, l) results in the formulation of

the expression,

(lgst cit ◦ reps) ! JlK
whose parse tree representation is illustrated in Figure 7.9 (A). A call of obj on this tree

generates the KOLA tree of Figure 7.9 (B) as shown below:

((lgst cit ◦ reps) ! JlK) → obj ()

= (lgst cit ◦ reps) → invoke (JlK → obj ()) (by KOInvoke :: obj)

= (lgst cit ◦ reps) → invoke (JlK) (by KOWrapper :: obj)

= lgst cit → invoke (reps → invoke (JlK)) (by KFCompose :: invoke)

= lgst cit → invoke (reps ! JlK) (by KFAttr :: invoke)

= lgst cit ! (reps ! JlK) (by KFAttr :: invoke).

243

KOInvoke

KFIterate KOName
"Bills"

one two

one two

KPOPlus

KPCurry

KPEqual KOStr
"NSF"

one

one

two

two

"topic"

KFPair

KFCompose

KFSet KFCompose

KFIterate

KPConst KFCompose

one

one

one

one

one one

two

two

two

two

two

KFAttr
"spons"

"reps""lgst cit"
KBConst
true

KFAttr KFAttr

KFAttr
"name"

KFAttr

Figure 7.5: The Parse Tree Representation of NSF2k

244

OSSource

OSBasicSieve

Bills

KPOPlus

KPCurry

KPEqual KOStr
"NSF"

one

one

two

two

"topic"
KFAttr

p

f

i

i

KFPair

KFCompose

KFSet KFCompose

KFIterate

KPConst KFCompose

one

one

one

one

one one

two

two

two

two

two

KFAttr
"spons"

"reps""lgst cit"

KBConst
true

KFAttr KFAttr

"name"
KFAttr

Figure 7.6: The result of calling obj and res on the “NSF Query”

245

obj ()

res ()

KPOPlus

KPCurry

KPEqual KOStr

"NSF"

one

one

two

two

KBInvoke

KOWrapper

A

B

KPEqual

one two

KBInvoke

KOWrapper

KOPair

KOInvoke

one two

one

one

two

two

b

b

KFAttr
"topic"

KOStr
"NSF"

"topic"
KFAttr

one two

"NSF"

struct

C

b.topic

Figure 7.7: Calling query NSF2k’s predicate on a bill, b

246

obj ()

res ()

one two

one

one

two

two

two

KOInvoke

KFPair

KFCompose

KFSet KFCompose

KFIterate

KPConst KFCompose

one

one

one

one

one one

two

two

two

two

two

KOWrapper

KOPair

KOInvoke

KFIterate

KPConst KFCompose

one

one

two

twoone

KOInvoke

KOWrapper

b

b

KFAttr
"spons"

"reps""lgst cit"
KBConst
true

KBConst
true

"lgst cit"

"spons"

KFAttr KFAttr

KFAttr

KFAttr
"reps"

KFAttr

one

OSMapSieve

b.spons ()

struct

two

KFCompose

one two

"lgst cit"
"reps"

KFAttr
KFAttr

OSSource

"name"
KFAttr

one

two
KOInvoke

KOWrapper

"name"
KFAttr

b

OSStr
b.name

Figure 7.8: Calling NSF2f ’s data function on a House resolution, b

247

l.reps.lgst cit

KFCompose

one
two

KOInvoke

KOWrapper

one two

KOInvoke

KOInvoke

one two

KOWrapper

obj ()

res ()

KFAttr
"lgst cit" "reps"

"lgst cit"

"reps"

l

lKFAttr

KFAttr

KFAttr

Figure 7.9: Calling NSF2k’s inner query function on a House Representative, l

248

Calling res on this KOLA tree generates path expression

l.reps.lgst cit

as demonstrated below:

(lgst cit ! (reps ! JlK)) → res ()

= lgst cit → exec ((reps ! JlK) → res ()) (by KOInvoke :: res)

= lgst cit → exec (reps → exec (JlK → res ())) (by KOInvoke :: res)

= lgst cit → exec (reps → exec (l)) (by KOWrapper :: res)

= lgst cit → exec (l.reps) (by KFAttr :: exec)

= l.reps.lgst cit (by KFAttr :: exec)

7.3 Discussion

7.3.1 Cost Considerations

This chapter describes ongoing work and therefore inspires more questions than answers.

Dynamic query rewriting offers potentially enormous benefits for query evaluation given

that the wisdom or validity of some rewrites may depend on factors that cannot be de-

termined until run-time. In this chapter, we showed an example query (NSF2k) for which

dynamic query rewriting was beneficial. In processing this query, duplicate elimination

was avoided in many circumstances where it would have been required otherwise. If dupli-

cate elimination can be avoided multiple times in processing a query and avoided for large

collections, enormous savings in evaluation cost are likely.

On the other hand, dynamic query rewriting adds overhead to the cost of evaluating a

query. This cost arises because of the need to generate subplans during query evaluation.

For ad hoc querying (for which optimization and evaluation occur consecutively), this is

not an issue. But for queries that are compiled, an obvious question is whether or not the

costs of dynamic optimization outweigh its potential benefits.

Once our implementation is complete, this question will need to be addressed. But

there are reasons for optimism. First, dynamic query rewriting need not invoke the large

249

and expensive query rewrite routines that are likely to be invoked statically. Our present

design permits distinct COKO transformations to be associated with each KOLA query

operator. These rewriters could be quite simple, and perform only those rewrites that

offer large cost savings that justify the cost of dynamic rewriting. The rewrite to avoid

redundant duplicate elimination is one such example. The cost of the semantic reasoning

needed to decide whether duplicate elimination can be avoided is modest, but the potential

cost savings from avoiding duplicate elimination (especially for large collections) can be

enormous.

A second reason for optimism is that it may be possible to streamline the rewriting that

does occur dynamically. For example, memoization of the results of semantic queries could

greatly improve performance. Consider the example we presented in this chapter. For this

example, there are only two possibilities considered during semantic rewriting. Either a bill

is a House resolution for which duplicate elimination is avoidable, or it is a Senate resolution

for which duplicate elimination is required. Given the present design, the processing of each

bill results in one of two semantic queries being generated:

1. Is A a set given that it consists of sponsors of a House resolution, and is

lgst cit ◦ reps

injective given that it is a function over House Representatives?, or

2. Is A a set given that it consists of sponsors of a Senate resolution, and is

lgst cit ◦ reps

injective given that it is a function over Senators?

If the answers to these questions can be memoized when they are first answered, then

evaluation of semantic queries becomes trivial for all but the bills processed initially. In

fact, the use of a Prolog interpreter makes the implementation of memoization trivial. Prolog

facts (such as one that directly states that lgst cit ◦ reps is injective if reps ranges over

House Representatives) can be asserted as they are inferred.

The issues discussed in the Chapter 5 also are material here. Once our COKO compiler

generates more efficient code, and our semantic rewriter reasons directly over KOLA trees

instead of their Prolog interpretations, we believe that all rewrites (whether fired statically

or dynamically) will become more efficient.

Finally, dynamic query rewriting might be circumvented in some cases by allowing for

conditional plans (as in the Volcano dynamic optimization work of Graefe and Cole [25]).

250

Rather than deferring rewriting decisions until run-time, a conditional plan would statically

list multiple cases and associate plans to perform for each. Conditional plans could be useful

when the cases that will be considered dynamic query rewriter can be anticipated statically,

and when these cases are unlikely to change. We believe that dynamic query rewriting

should not be replaced by conditional plans in all cases because it can be hard to anticipate

all cases statically. For example, in this chapter we have shown that the subtype to which an

object belongs can be relevant to the choice of query evaluation strategy. New subtypes are

easily defined for object-oriented databases. Therefore, a conditional plan that is unaware

of changes to the schema can become obsolete.

7.3.2 The Advantage of KOLA

In previous chapters, we showed how KOLA’s combinator style facilitates the expression

of declarative rules. Term rewriting and semantic inference are similar in that both must

perform subexpression identification and query formulation. Expressed over KOLA queries,

neither of these tasks require supplemental code.

In this chapter, we have shown that subexpression identification and query formulation

have uses beyond the expression of a query rewrites. Dynamic query rewriting is query

rewriting that occurs during a query’s evaluation. Typically, dynamic query rewriting

requires a query evaluator to identify subexpressions of the query it is processing, and to

formulate new queries to dynamically submit to a query rewriter. We have shown that

the expression of these two tasks is simplified with the use of KOLA as the underlying

query representation. Therefore, dynamic query rewriting provides another example of how

KOLA benefits the development of query optimizers.

7.4 Chapter Summary

This chapter has described ongoing work in dynamic query rewriting. Query rewriting is

most effective when a rewriter has knowledge about the representations and contents of the

collections involved. Dynamic query rewriting is useful when this information is unavailable

until data is accessed, as in object-oriented databases, network databases and heterogeneous

databases.

We have confined our discussion in this chapter to potential benefits and design ap-

proaches for dynamic query rewriting over object-oriented databases. We showed an object-

oriented query (NSF2k) that could be evaluated efficiently with dynamic query rewriting.

251

Specifically, dynamic query rewriting makes it possible to evaluate this query without hav-

ing to perform duplicate elimination as many times as would be required otherwise. We

described the design of a dynamic query rewriter for ObjectStore for which an implemention

is under development. While the work in this area is incomplete, the ideas demonstrate an

exciting direction for query processing enabled by a combinator representation of queries.

Chapter 8

Related Work

In this chapter, we consider work related to the work presented in this thesis. The chapter is

divided into four sections that correspond to Chapters 3 (KOLA), 4 (COKO), 5 (Semantic

Query Rewriting) and 7 (Dynamic Query Rewriting) respectively.

8.1 KOLA

KOLA is both a query algebra and an internal data structure for query optimizers. The

association of data structure with algebra is deliberate, and reflects our goal of simplifying

both the operation and verification of query rewriting.

The best known query algebra is the relational algebra of Codd [24]. While used to de-

scribe logical query rewrites in many database texts (e.g., [66], [80]), the relational algebra

is not usually used as a data structure within query optimizer implementations.1 The Star-

burst query rewriter [79] for example, uses the Query Graph Model (QGM) as its internal

representation. QGM query representations resemble instances of the entity-relationship

data model. The entities (vertices) for this model are collections such as stored tables or

queries. Edges reveal relationships between collections that indicate that one is an input to

the other (the other being a query), or that a correlated predicate compares elements from

each.

Starburst query rewrite rules are written in C. In [79], it is argued that it is necessary

to code rules in this way because QGM is a C data structure. We dispute this conclu-

sion — rules could be expressed more declaratively and a compiler could generate C code
1Although Microsoft’s SQL Server does use a variation of the relational algebra in this way.

252

253

from these more abstract specifications. (For example, KOLA’s data structures are imple-

mented in C++ and COKO transformations and KOLA rewrite rules are compiled into

C++ code.) Instead, we believe that code is necessary to specify Starburst rules because

the close association between QGM and SQL makes QGM a variable-based representation.

8.1.1 KOLA and Query Algebras

KOLA joins the numerous object query algebras that have been proposed over the years,

including AQUA [70], EQUAL [87], EXTRA [99], OFL [40], GOM [61], Revelation [98],

LERA [35], ADL [91], and the unnamed algebra of Beeri and Kornatzky [7]. Despite the

lack of a standard, there is an encouraging overlap in the operators found in all of these

algebras. These operators include:

• generalizations of relational operators (e.g., (1) a mapping operator generalizing rela-

tional projection by mapping a function over all members of a collection, (2) a selection

operator generalizing relational selection by selecting elements of a collection satisfy-

ing a given predicate, and (3) a join operator generalizing relational joins by relating

elements drawn from multiple collections),

• aggregation operators (such as the fold operator of AQUA [70] and Revelation [98])

that give algebras expressive equivalence with standard query languages with opera-

tors such as SUM and COUNT, and

• conversion operators to convert back and forth between flat and non-flat collections

(including a grouping or nesting operator to convert a flat collection to a non-flat

collection, and a flattening or unnesting operator to flatten a non-flat collection).

KOLA defines operators in each of the above categories. Mapping and selection are cap-

tured by KOLA’s iterate and iter formers. Joins are expressed by a number of query

primitives and formers, including join, lsjoin, rsjoin and int. Grouping is captured by

njoin. Collection flattening is captured by unnest and flat. Thus, KOLA is equivalent

in spirit to other object query algebras. The uniqueness of KOLA is in form — KOLA is

a combinator-based representation specifically designed to simplify the operation and the

verification of the query rewriter.

The KOLA Heritage – The AQUA Family of Query Algebras: The direct ances-

tors of KOLA are AQUA [70], EQUAL [87], EXTRA [99] and Revelation [98]. AQUA [70]

was the immediate predecessor to KOLA. (KOLA was defined in response to difficulties

254

defining a formal specification for AQUA and expressing rewrite rules over AQUA queries.)

AQUA was designed by the inventors of EQUAL [87], EXCESS [99] and Revelation [98] who

attempted to integrate and reconcile the approaches taken with their predecessor algebras.

AQUA defines a very general set of query operators, each of which can be instantiated

with any data function or data predicate. For example, AQUA’s join operator can be

instantiated with a tuple concatenation function to express a relational join, or with a

function that uses a query operator to express a join over an object-oriented database. This

approach to query operators influenced the design of KOLA’s query formers.

Aside from its combinator style, KOLA’s primary distinction from AQUA concerns

how it integrates data and query functions and how it constrains the definition of equality

predicates. In AQUA, data functions are defined as lambda expressions whereas query

functions are not. In KOLA, all functions are defined uniformly. This approach simplifies

query formulation which need not massage query functions to make them data functions or

vice-versa. This is especially important in an object query algebra where the pervasiveness

of nesting means that query functions are often used as data functions.

AQUA allows arbitrary equivalence relations to act as equality predicates. Query op-

erators whose semantics depend on equality definitions (such as set and bag union) are

defined with equality predicate paramaters so that the semantics of these operators can

be configured according to their intended use. KOLA demands that equality definitions

be confluences (as in CLU [72]): predicates that determine two objects to be equal only

if they are indistinguishable. For mutable object types, equality predicates must compare

immutable object identifiers. For immutable object types, equality predicates must be keys.

KOLA has a more rigid policy with respect to equality predicates because substituting ar-

bitrary equivalence relations for equality predicates can result in unintuitive query results.

For example, a query that is instantiated with a non-confluent equality predicate can be is-

sued twice over the same data and return two collections with distinct cardinalities (making

these collections unequal by any reasonable interpretation of equality). As well, equality

definitions that determine two distinct objects to be equal (perhaps because at the time

of comparison, their states were identical) can result in a collection whose cardinality can

change as a result of mutating one of its elements. These issues are discussed at length in

our DBPL ’95 paper [23].

OFL: Like KOLA, OFL [40] is inspired by functional programming languages [34]. OFL

is an algebra intended to simplify the generation of graph representations of queries. The

strategy taken to evaluate the query varies according to how this graph representation is

255

traversed.

OFL is an alternative intermediate representation to parse structures of standard ob-

ject algebras. These algebras, it is argued, unnecessarily constrain the choice of execution

algorithms. For example, the algebraic representation of path expressions demands eval-

uation by an inefficient object-at-a-time navigation. On the other hand, the graph-based

representation espoused by this work enables the same query to be mapped to a plan that

evaluates the query using joins. This then is an alternative approach to solving the nor-

malization problem addressed by query rewriting. The usual example used to motivate

query rewriting involves nested queries that force optimizers to choose nested loop evalua-

tion strategies. Rewriting transforms nested queries into equivalent join queries that offer

optimizers more algorithmic choice. In Chapter 6, we showed how query rewriting could

also normalize queries with path expressions to ensure the consideration of evaluation plans

involving joins.

The OFL language consists of both functional and imperative constructs (such as a

sequencing operator). The imperative flavor makes OFL more of a plan language than an

algebra, as algebraic equivalences are hard to establish and verify when expressions are

described by the algorithms that generate them. But we find the alternative to query

rewriting proposed by this work intriguing. In short, this approach generates multiple

evaluation alternatives by fixing, rather than rewriting, a query’s representation and instead

varying traversal orders over it. Therefore OFL has some commonality with COKO which

is also concerned about the order in which a given query representation is visited, though

in the context of rewriting rather than evaluation.

LERA, GOM and ADL: Object query algebras LERA [35, 36], ADL [91] and GOM [61]

are generalizations of the relational algebra. All of these algebras support tuple operators

such as tuple concatenation (used in joins, unnests and nests). The KOLA data model

includes pairs rather than tuples because the fixed number of fields in a pair simplifies

its formal specification. Translation of OQL queries into KOLA maps tuples (structs)

into (nested) pairs with tuple references replaced by compositions of projections that make

appropriate extractions. (Our translator implementation keeps track of field names so that

KOLA pair results can be translated back into tuples before they are stored.)

Like KOLA, LERA avoids direct references to variables within queries. But rather

then using a combinator notation, LERA uses a numbering scheme to replace a variable

reference with an index indicating the collection over which the variable ranges. Therefore,

LERA’s scheme is similar to the deBruijn [30] scheme (see Chapter 6), but is static. That

256

is, collections appearing in a query are numbered from left to right rather than according

to their relative positions within environments. The purpose of this notation is to avoid

ambiguity (e.g., if the same collection appears twice in a join). With respect to rewrite

rules, this approach still suffers from the same problems that make rewrite rules over query

expressions require code. In particular, subexpression identification over such expressions

requires code because a variable’s index does not indicate whether or not it is free. As

well, query formulation requires code because a variable index may have to be adjusted if

rewriting results in changes to the collections that appear in a query’s FROM clause (e.g., as

in a nested query → join query normalization).

GOM [61] and ADL [91] contain semijoin and nested join operators that inspired equiv-

alent operators in KOLA. Specifically, KOLA’s njoin former was inspired by ADL’s njoin

and GOM’s djoin operators. ADL also defines semijoin and antijoin operators that are

semantically equivalent to instantiations of KOLA’s left semi-join former. (The function,

lsjoin (ex (p), id)

is equivalent to ADL’s semijoin operator with respect to predicate p, and

lsjoin (fa (∼ (p)), id)

is equivalent to ADL’s antijoin operator with respect to predicate p.) GOM defines a left

outer join operator that performs a union on the result of these two functions, but applying

different functions (f and g) to the results of the semijoin and antijoin. Left outer-joins are

also expressible in KOLA. For any pair of collections A and B, the left outer-join of A with

respect to B is:

uni ! [lsjoin (ex (p), f) ! [A, B], lsjoin (fa (∼ (p)), g) ! [A, B]].

8.1.2 KOLA and Combinators

KOLA’s combinator style was inspired by Backus’ functional language, FP. Like FP, KOLA

was initially intended to be a user-level language. But we abandoned this approach when

it became clear that combinators make languages difficult for users to use.

The use of combinators as internal representations of functional programs originated

with Turner’s seminal work [93]. Ever since, combinators have been used within strict

functional language compilers (e.g., Miranda [94]) as internal representations of lambda

expressions. The use of combinators in this way makes evaluation by graph reduction more

efficient, as lambda expressions with free variables force unnecessary copying of potentially

257

large function bodies [34]. Approaches to combinator translations can be classified according

to whether the combinator set is fixed or variable. Fixed combinator sets consist of a finite set

of combinators that are used as the target for all lambda expression translations. The best

known of the fixed sets of combinators is the SKI combinator set introduced by Schönfinkel

[82]. It has been shown that this small set is sufficient to translate all of the lambda calculus

(in fact I is superfluous), but the size of the resulting code is too large to be of practical use

[57]. Variations of the SKI combinator sets add additional, redundant combinators (e.g. B

and Y) to reduce the size of the translated code. Curien [27] proposed a set of combinators

inspired by Category Theory, which he used to provide an alternative semantics for the

lambda calculus. Of all of the combinator translations we found described in the literature,

KOLA most closely resembles Curien’s combinator set, but adjusted to account for sets and

bags rather than lists, and avoiding the overly powerful combinators (App and Λ) that are

expressive but difficult to optimize prior to their application to arguments.

Lambda lifting [56] and supercombinators [52] are translation techniques that use vari-

able sets of combinators. These techniques construct new combinators during each trans-

lation. The goal of this technique is to keep the number of combinators in the result small

(the combinators generated tend to be fairly complicated). Thus, the goal of removing

free variables from lambda expressions is achieved without an explosion in the size of the

resulting code.

Despite the wide-spread use of supercombinators in functional language compilers, we

settled on a fixed set of combinators for KOLA for the following reasons:

• query optimization (which relies on a set of known rewrite rules) must reference a

known (i.e., fixed) set of operators, and

• query optimization can tolerate query representations that are larger (within reason)

than queries because queries tend to be small compared with functional programs.

KOLA is not the first combinator query algebra or query language. ADAPLAN [31]

was proposed as a combinator-style query language, but combinators are difficult for users

to master and ill-suited as query languages. FQL [12], NRL [10] and the unnamed algebra

of Beeri and Kornatzky [7] are combinator-based query algebras. FQL was an early effort

and limited to relational databases. The algebra of Beeri and Kornatzky and NRL are

mathematical formalisms rather than optimizer data structures. That is, the purpose of

both of these algebras is to simplify the correctness of rules expressing query rewrites. Both

algebras are minimal in that they include no redundant operators. A minimal algebra

258

simplifies proof obligations, but is less effective as an optimizer data structure. Redundant

operators (such as join operators) are necessary in optimizer implementations because they

are highly suggestive of the kinds of algorithms that a plan generator should consider. This

redundancy is exactly what query rewriting normalizations exploit — rewriting queries into

alternative forms that use operators to suggest alternative evaluation strategies.

8.1.3 KOLA and Query Calculii

A query calculus differs from a query algebra in that it specifies a query in a more declar-

ative way (i.e., by describing the result of the query rather than the sequence of operators

that generate it). The declarative flavor of query expressions can make it easier for a plan

generator to generate multiple execution plans, and therefore calculus-based query represen-

tations have advantages over query algebras for which plan generation is more constrained.

Put another way, the translation of queries into a declarative calculus is another way to

achieve the normalization goal of query rewriting. But the declarative nature of query cal-

culii makes it difficult to express heuristics that are easily expressed over a query algebra.

For example, it is not clear how one would express a rewrite that reorders filter predicates

over queries with a calculus-based representation.

As was the case for algebras, a standard for object query calculii has yet to emerge.

But perhaps the most common calculus for object queries stems from the monoid homo-

morphism work of Tannen et al [9]. That work describes structural recursion: a simple

and highly expressive formalism for specifying both queries and data types, but requiring

that functional inputs to homomorphisms satisfy certain undecidable algebraic properties

(commutativity, associativity and idempotence). Later work from this group [10] proposed

specific instantiations of these homomorphisms that were known to satisfy these properties

(e.g., instantiations with set union), but at the expense of expressivity. Further, while en-

suring a clean mathematics the idempotence restriction makes it difficult to express certain

query operations such as aggregations. For example, SQL’s SUM operator cannot be simu-

lated with a homomorphism instantiated with addition (‘+’), because ‘+’ is not idempotent.

The Monoid Comprehension calculus of Fegaras and Maier [33] is defined in terms of

monoid homomorphisms, but restricts the homomorphisms that can be expressed. In this

way, the problem of deciding algebraic properties of functions is avoided, as are other

problems inherent in the structural recursion model such as whether or not a given monoid

homomorphism instantiation can be evaluated in polynomial time. (All queries expressed

in the Monoid Comprehension calculus can be evaluated in polynomial time.) We consider

259

the Monoid Comprehension calculus to be complementary to object query algebras such as

KOLA, much as the relational calculus is complementary to the relational algebra. However,

unlike the relational calculus and algebra, the Monoid Comprehension calculus is not able

to express certain operators found in most object algebras. For example, operators based on

OQL’s bag intersection and bag difference operators cannot be expressed as homomorphisms

and are therefore inexpressible in the Monoid Comprehension calculus.

8.2 COKO

In Chapter 4, we introduced a language (COKO) for expressing complex query rewrites.

Other rule-based systems express complex query rewrites in one of two ways:

• as individual rewrite rules (usually supplemented with code), or

• as groups of rules.

8.2.1 Systems that Express Complex Query Rewrites With Single Rules

Most rule-based systems express complex query rewrites with individual rules. However, the

rules of these systems are not declarative rewrite rules that get fired by pattern matching.

Some systems (e.g., Exodus/Volcano [13, 43], EDS [36] and OGL [84]) allow rewrite rules

to be supplemented with code. Other systems (e.g., Starburst [79], and Opt++ [58]) allow

rules to be expressed completely in code, thus avoiding pattern matching altogether. Still

other systems (e.g., OGL [84] and Gral [6]) employ a variation of pattern matching to make

its effects more drastic. One rule-based optimizer generator (Cascades [42]) does all of these

things.

Starburst: Starburst [79] fires production rules (as in expert systems such as [11]) during

query rewriting. These rules consist of two code routines (loosely corresponding to the head

and body patterns of a rewrite rule) that are both written in C. Because they are written in

C, Starburst’s query rewrite rules can express a wide variety of transformations including

view merging, nested query unnesting (both discussed in [79]) and magic sets transforma-

tions ([74, 86]). However, Starburst rules are difficult to understand and verify, requiring a

detailed understanding of the underlying graph-based query representation (QGM).

Opt++ and Epoq: Opt++ [58] is not a rule-based system per se, but does permit

the modular expression of query rewrites. Opt++ is a C++-based framework for the

260

development of optimizers. This framework includes a family of classes from which optimizer

developers can inherit. One of these classes (Tree2Tree) defines objects that transform

tree representations of queries. Query rewrite rules would be implemented as instances of

subclasses of Tree2Tree. Thus, rules in this system would be code-based. Epoq [73] also

defines a framework for building optimizers. The modules for this framework (regions) are

special purpose optimizers that may or may not be rule-based. Epoq is intended to be

flexible enough to support any conception of rule including those defined with code.

Exodus/Volcano/Cascades: Exodus [13] and its successors, Volcano [43] and Cascades

[42] use rules that resemble rewrite rules, but that can have code supplements. Cascades

goes so far as to allow rewrite rules to be replaced by code altogether (such rules are called

“function rules”2). Cascades also uses a variation on pattern matching. (Cascade rules fire

fire on sets of query expressions and returns sets of modified query expressions as a result.)

Complex rewrites not expressible in this way would have to be expressed with function

rules.

EDS and OGL: Like the Exodus family of optimizer generators, EDS [36] and OGL [84]

permit code supplements to rules. EDS rules can have the form,

if <term0> under <constraint> then execute <method list> rewrite <term1 >

such that term0 is a head pattern, term1 is a tail pattern, and <constraint> and <method

list> contain calls to supplemental code written in C or C++. OGL rewrite rules can

include condition code (code supplements to head patterns) and can use meta-patterns

to circumvent standard pattern matching (e.g., “*V ” is a multivariable that “matches”

multiple terms at once). While multivariables make some rules more general (an example

shown in [84] demonstrates how a pattern with a multivariable could be reused to reassociate

a conjunction expression with any number of conjuncts), other rules that require separating

the terms that collectively matched the multivariable become inexpressible. In general, the

use of rewrite rules makes the rules of all of these systems simpler to understand and verify

than those that are expressed completely with code. However, the code supplements to

these rules which enhance their expressive power offset their gains in verifiability.

Gral: Of the rule-based systems we looked at, Gral [6] comes closest to ours in its effort

to make rules declarative by avoiding code. Gral also expands the expressive power of a
2In fact, a Cascades paper [42] cites a query rewrite analagous to SNF of Chapter 4 as an example rewrite
that would be encoded as a function rule.

261

rewrite rule, but not by adding code supplements as in Exodus of EDS. Instead, Gral uses a

variation of pattern matching to recognize rules that have multiple tail patterns. Each tail

pattern of a rule is associated with a declarative condition on the queried data. A query

that matches a head pattern and satisfies some set of conditions is then rewritten according

to the associated tail pattern.

The conditions associated with tail patterns analyze the data that is queried such as its

representation, the existence of indices, cardinality etc. Therefore, Gral rules have expres-

sive power above and beyond traditional rewrite rules because they incorporate semantic

reasoning into the decision as to whether or not to fire a rule. But a Gral rule resembles a

conditional rewrite rule in KOLA rather than a COKO transformation. While useful for ex-

pressing semantic rewrites, such rules cannot express the traversal strategies and controlled

rule firing that a complex query rewrite requires. Instead, such rewrites must be expressed

using the Gral meta-rule language as discussed below.

8.2.2 Systems that Express Complex Query Rewrites With Rule Groups

Many systems (e.g., Starburst [79], Gral [6], EDS [36], GOM [61] and OGL [84]) provide

some form of meta-control language for rules that includes rule grouping and sometimes

sequencing. Rule groups can be associated with search strategies that indicate how the rules

in a group should be fired.

It is tempting to view COKO as a meta-rule language in this style, and to compare

COKO transformations with rule groups and firing algorithms with search strategies and

sequencing control. But this analogy is misleading. Firstly, the “rules” that are grouped by

these systems are more analagous to COKO transformations than KOLA rules. Secondly,

the purpose of rule grouping in these systems is to control the search for a “best” (according

to some cost model) alternative to a given query expression. Typically, rules in a rule group

will be fired on a query (or set of queries) exhaustively,3 with each successful firing generating

a new candidate query expression. The set of all candidate query expressions is then pruned

for those that are considered to be efficient to evaluate. This approach reflects a competitive

use for rule grouping – group all rules that contribute to some cost-based objective and let

the best sequence of rule firings reveal itself through attrition.

Given the competitive model, an exhaustive approach to firing is guaranteed to find an

optimal expression relative to some cost-model. Therefore, all of these systems allow rule
3Exhaustive firing of rule groups resembles exhaustive firing of individual rules — every rule in the rule
group is fired on every subexpression on the query repeatedly until rule firing no longer has any effect.

262

firing to be exhaustive, though many also provide other competitive strategies that are more

efficient than exhaustive searches. For example, EDS allows a parameter to be set that limits

the number of rule firing passes made of a query. Other systems provide pruning strategies

so that only some alternatives are generated (e.g, OGL provide search strategies such as

branch-and-bound and simulated annealing). Other systems permit rules (Starburst, GOM

and Exodus) or algebraic operators (Gral) to be ranked to help the optimizer decide which

rule to fire next thereby reducing the likelihood that poor alternatives are generated.

The purpose of rule grouping in COKO is not to generate alternatives but to modularize

the expression of a complex query rewrite. Rules are fired cooperatively rather than com-

petetively, and according to a firing algorithm tailored to a specific set of rules, rather than

to a search strategy that is defined independently. There is no search involved. Rewriting

is blind to the data and is concerned with the syntax of the result rather than its expected

cost. Therefore, firing algorithms operate differently from search strategies. Of the search

strategies listed above, the exhaustive strategy can work as a firing algorithm, but only

in restricted cases (rewrite rules must form a confluent set) and usually sacrificing perfor-

mance in the process (as with CNF). Firing algorithms needn’t be generic nor exhaustive

and instead can be customized to specific, fixed sets of rules. By avoiding exhaustive firing

in these cases, rewriting is made more efficient.

In short, rule grouping can be either competitive and cooperative. Competitive rule

grouping is supported by many existing rule-based systems, and is complementary to COKO

which simply provides a means of specifying the rules that are to be grouped. Cooperative

rule grouping is unique to COKO and is a technique for defining complex query rewrites

that are efficient to fire and verifiable with a theorem prover.

8.2.3 Theorem Provers

Whereas KOLA was designed to enable query rewrites to be verified with LP, COKO was

inspired by the use of LP itself. As we showed in Chapter 3, LP proofs are accompanied

by proof scripts that tell the theorem prover how to complete the proof.4 Proof scripts

resemble handwritten proofs, except that proof methods are interpreted operationally to

make the proof executable.

In many ways, a COKO transformation resembles a theorem prover proof script. Both

query rewrite and proof rely on the existence of some set of simpler rewrite rules (derived
4Scripts with similar purposes are found in other theorem provers. For example, tacticals in Isabelle [78]
are analagous to LP proof scripts.

263

from specification axioms in the case of proofs). In some cases, exhaustive firing of these

rewrite rules would complete the rewrite or proof. But in other cases, this could lead to

nonterminating derivations and in most cases, the rewrite and proof could be performed

more efficiently. Both proof script and COKO transformation control when rewrite rules

get fired to ensure efficient rewriting and ensure termination.

That having been said, there are of course many differences between LP and COKO.

LP includes instructions that correspond to proof techniques such as induction, contradic-

tion and proof by cases. COKO “proofs” are far more straightforward, requiring only the

rewriting of terms through successive rule firings. There is no need to rewrite the same

term to the same result multiple times with different sets of rewrite rules as is done when

an LP proof proceeds by cases or induction. There is no need find inconsistencies in an

augmented set of rewrite rules as is done when an LP proof proceeds by contradiction. But

COKO provides fine-gained control of rule firing not provided with LP by controlling the

order and the subtrees on which rules are fired. This form of firing control ensures that a

COKO rewrite is efficient compared to a theorem prover, which would be far too slow to

be a query rewriter.

8.3 Semantic Query Rewriting

Related work in semantic query rewriting and semantic query optimization5 either describes

specific semantic optimization strategies, or describes frameworks within which strategies

can be expressed.

8.3.1 Semantic Optimization Strategies

Most semantic optimization strategies exploit knowledge of integrity constraints. Integrity

constraints are assertions that get evaluated during database updates to guard against

data corruption. Because integrity constraints guard updates, they are constraints on data

values and are expressed primarily by describing data dependencies. For example, a domain

constraint ensures that specified columns have no values in common. Referential integrity

constraints ensure that values appearing in one column of a relation also appear as values

in a column of another relation. Functional dependency constraints ensure that tuples that

share values for some columns share values for other columns also.
5The latter term is more commonly used in the literature.

264

The very early semantic optimization papers [48, 64, 15] propose rewrites that ex-

ploit knowledge about integrity constraints to generate alternative expressions of relational

queries. Hammer and Zdonik [48] use inclusion dependencies to substitute smaller collec-

tions for larger ones as inputs to queries (domain refinement). Many systems (such as

Starburst) use key dependencies to determine when duplicate elimination is unnecessary

(as described in Chapter 5). Predicate Move-Around [71] exploits knowledge of functional

dependencies to generate new filtering predicates for collections used as inputs to joins.

Order optimization [89] exploits functional dependencies to determine when sorting can be

performed early during evaluation or avoided altogether.

Semantic optimization strategies for object databases [1, 45, 16] exploit not only the

semantics of data (i.e., integrity constraints), but the semantics of the functions that appear

in queries as well. Aberer and Fischer [1] correctly point out that object query optimizers

require semantic capabilities to avoid (when possible) invoking expensive methods that

can dominate the cost of query processing. They suggest a number of ways that method

semantics can be expressed (e.g., by declaring that one chain of method calls equals another)

and used by rewrites over the queries that invoke them. The work of Chaudhuri and

Shim [16] and Grant et al. [45] also permit equivalent method expressions to be declared.

The latter work also supports the expresssion of more algebraic descriptions of functions

(e.g., that a function is monotonic). Beeri and Kornatzky [7] also define rewrites over

object queries that depend on algebraic conditions (such as the idempotence of a function).

KOLA’s semantic capabilities permit expression of integrity constraints as well as function

equivalences and algebraic properties of functions. KOLA’s uniqueness is in expressing

these properties in a manner that allows them to be inferred, and permitting the inference

of properties to be easily extended and verified.

8.3.2 Semantic Optimization Frameworks

As discussed in Chapter 5, the contribution of our work is not in presenting new semantic

query optimization strategies but in introducing a framework for their expression that their

ensures verifiability with a theorem prover. Optimization frameworks that incorporate

semantic query optimization strategies can be divided into three categories:

• Category 1: systems that support operator-specific rewrites,

• Category 2: systems that support conditional rewrites, and

• Category 3: systems that support both conditional rewrites and semantic inference.

265

As we move from the first to the third category, systems get more succinct in describing

semantic rewrites and hence more scalable. To illustrate, a category (1) system might

permit the expression of a rule such as

clip (blur (i)) →= blur (clip (i))

which says that the result of clipping a blurred image is the same as the result of blurring

a clipped image. (The latter is likely more efficient to perform given that blurring tends

to be an expensive operation, and clipping results in a smaller image to blur.) For other

functions that commute (e.g., an image inversion function (invert) and clip), a similar

rule would have to be defined:

clip (invert (i)) →= invert (clip (i)).

A category (2) system would permit the expression of the more general rule,

commutes (f, g) :: f(g(i)) →= g(f(i)),

which establishes that any functions f and g can be reordered provided that they commute,

and then permit metadata to identify pairs of commuting functions (e.g., commute (clip, blur)

and commute (clip, invert)). Category (2) systems provide a more succinct way to ex-

press a semantic rewrite because one rule can be defined to account for all commuting

functions, rather that one rule per pair of commuting functions as would be required in

a Category (1) system. This difference becomes even more pronounced if other rules are

defined that are also conditioned on the commutativity of pairs of functions. These rules

can use the same set of metadata facts used by the previous rule.

A category (3) system would allow the commutativity of pairs of functions to be in-

ferred. For example, a category (3) system might infer that a function f commutes with

a composition of functions, (g ◦ h) if f commutes with each of g and h. Category (3)

systems would allow a rewriter to infer that image clipping commutes with a function that

first blurs an image and then inverts it given that clip commutes with each of blur and

invert. A category (3) system is more succinct than a category (2) system at expressing

semantic rewrites, as a category (2) system would have to list all functions that commute

(including clip and (blur ◦ invert)). Below we consider related work in semantic query

optimization frameworks, classifying each in terms of these categories.

266

Category (1)

Chaudhuri and Shim’s work [16] involves optimizations of SQL queries that contain foreign

functions. They incorporate rewrite rules over foreign functions to express equivalent ex-

pressions. Each equivalence must be captured in a separate rule. These rules are always

valid, therefore they perform no inference nor conditional rewrites and fall under category

(1).

The work on E-ADT’s in the Predator Database System [88] also falls under category

(1). One of the goals of this work is to localize semantic optimizations to optimization

components that are responsible only for queries involving the associated abstract data

types. The rule facility defined for Predator demands that rules be operator-specific. But

in fairness, the primary contribution of Predator is architectural. There is no reason that

a category (3) semantic rewriting system could not be incorporated into their framework.

Schema-specific properties (e.g., establishing that reps is a key) could be localized to E-

ADT’s, and inference rules could be maintained globally.

Category (2)

Beeri and Kornatsky [7] present several rewrite rules that are conditioned on function prop-

erties. For example, several of their rules are conditioned on the idempotence of a function.

However, they do not define a mechanism to define how properties such as idempotence are

inferred. Therefore the semantic rewriting proposed in this work falls under category (2).

More recent work in the context of object models has looked at semantic rewriting in

the presence of methods. Aberer and Fischer [1] consider semantic rewrites that depend on

method equivalences, and predicate implications derived from method semantics. Method

equivalences are conditioned on the domain of free variables appearing within the expres-

sions, and are used to rewrite query expressions according to a fixed set of rules. For

example, an equivalence can establish that two functions, f(x) and g(x) are equivalent for

all x in some collection C. The system uses this equivalence to infer that mapping f over

C is equivalent to mapping g over C.

The work of Aberer and Fischer falls short of other category (2) systems because the

rewrites that can depend on semantic conditions are limited to those provided by the system.

Equivalence relationships are only used to rewrite queries involving mapping and selection.

Predicate implication (which resembles predicate strength) is used in a rule that rewrites

selections (presumably with expensive predicates) to natural joins of collections filtered with

the cheaper predicates. No other rewrites that exploit these conditions can be added, and

267

no other conditions can be defined.

Category (3)

Grant et al [45] propose a framework for semantic query optimization (SQO) by which object

queries expressed in query languages such as OQL get translated into Datalog for semantic

processing. Semantic information about the underlying object schema (e.g., subtyping

information and methods) get expressed as Datalog rules that infer new integrity constraints

to attach to these queries. Various checks are then made of the resulting predicates (e.g., to

see if the new predicates introduce inconsistencies thereby eliminating the need to evaluate

the query) before the Datalog queries are then translated back into the language in which

they were posed.

This work falls under category (3) because of the use of inference to generate new

integrity constraints. But the inference performed by SQO is less general in its application

than that performed by COKO. SQO performs inference to generate predicates that get

attached to queries. COKO properties can infer any condition that guards the firing of a

rewrite rule, and not just predicate strength. Moreover, inferred conditions can guard the

firing of any conditional rewrite rule, and not just a rule that adds weaker predicates to

existing predicates. Effectively, this rule is the only conditional rule invoked by SQO. Its

KOLA equivalent is captured by rewrite rule str2 of Figure 5.6.

SQO improves upon our work in its use of a more powerful inference technique (partial

subsumption) to generate new predicates. We are interested in studying this inference

technique to see if it could be used to strengthen our inference capabilities and thereby

make our semantic rewriting component a better approximation of a complete system.

In summary, related work in semantic query optimization describes strategies and/or

frameworks for expressing semantic query rewrites. Semantic optimizations for relational

queries primarily use integrity (i.e., data) constraints. Semantic optimizations for object

databases reason about the semantics of functions also. This is appropriate given that

functions appearing in object queries are not limited to trivial extractions of values from

columns, and can dominate the cost of evaluating the query.

Frameworks for semantic query optimization can be classified into three categories that

are successively more succinct in expressing classes of query rewrites. Systems in category

(1) permit the expression of operator-specific rewrites. Systems in category (2) permit the

expression of more general conditional rewrites. Systems in category (3) permit the expres-

sion of conditional rewrites and techniques for inferring the conditions that are not explicitly

268

stated. Our work is unique in how it captures data and function-based semantic rewrites

within a category (3) framework in a manner supporting extensibility and verification with

a theorem prover.

8.4 Dynamic Query Rewriting

In this section, we describe work related to our dynamic query rewriting work that is

ongoing and presented in Chapter 7. Because our work is ongoing, we do not yet have

experimental results to justify or refute our intuitions. Therefore, the comparisons made to

other work in the area are confined primarily to approach rather than to a relative analysis

of performance.

The dynamic query optimization strategies that have been proposed in the literature

have exclusively concerned plan generation. Dynamic plan generation defers the generation

of complete execution plans until cost-related factors can be observed at run-time. Such fac-

tors can include availability of resources [53], run-time values for host variables in embedded

queries [25], or selectivity estimations [5].

The systems discussed here differ primarily by when alternative plans are generated.

The first category of systems (described in Section 8.4.1) use dyanmic plan selection rather

than dynamic plan generation. That is, what these approaches have in common is that

compile-time optimization produces a fixed set of alternative plans from which a choice is

made at run-time. Work falling in this category includes the dynamic optimization work

for Volcano of Graefe and Cole [25], parametric query optimization [53] and the dynamic

optimization performed by Oracle RDB [5]. The second category of systems (described

in Section 8.4.2) perform adaptive query optimization. These systems generate complete

execution plans at compile-time but permit all or portions of these plans to be replaced

during query evaluation. Proposals in this category include the query scrambling work out

of the University of Maryland [4] and the mid-query reoptimization work for Paradise of

Kabra and DeWitt [59]. Dynamic query rewriting more closely resembles systems in the

latter category, but generating partial plans rather than complete plans at compile-time.

Dynamic query rewriting is closely related to partial evaluation [26], as it reduces

compile-time query optimization to partial plan generation. We consider this relationship

more fully in Section 8.4.3.

269

8.4.1 Dynamic Plan Selection

We classify systems that choose plans dynamically from a fixed set of alternatives generated

at compile-time as dynamic plan selection strategies. The work of Graefe and Ward [44] and

later, Graefe and Cole [25] for Volcano was among the first dynamic plan selection strategies

proposed. This work proposes a plan language that includes a choose-plan operator that

makes it possible to express conditional plans. All subplans appearing below a choose-plan

operator are alternative plans that compute the same result. The execution of this operator

performs a cost analysis at run-time to determine which of these alternative plans should

be executed.

Graefe and Cole rule out dynamic invocations of the query optimizer, arguing that the

overhead involved would offset the performace gains from dynamically generated plans.

This is undoubtedly true in certain cases, but ignores certain factors that make dynamic

calls to an optimizer (and rewriter) of potential benefit:

• It assumes that a call to a dynamic query optimizer is a call to the same query

optimizer that performed compile-time optimization. In fact, there is no reason not

to define more streamlined optimizers and rewriters specifically defined to perform

optimizations that are quick and most likely to have cost benefit (such as query

rewrites). This is the approach taken in Oracle RDB [5] (which has separate optimizer

components for their query compiler and query executor)

The Volcano solution can be viewed as dynamically invoking an optimizer that is as

streamlined as an optimizer can be, deciding between a fixed set of plans according

to a fixed set of metrics. We believe that the optimizers that are invoked dynamically

could fall anywhere on a complexity scale, depending on the costs of the optimizations

they perform and the potential benefits that they offer to the query being evaluated.

• The more sophistated the reasoning performed by a conditional Volcano plan (i.e.,

the more choose-plan operators that appear in the conditional plan) the larger the

generated plan will be. Large plans can end up using resources (e.g., buffer space)

that would otherwise be used in evaluating the query. Less sophisticated reasoning

will produce smaller plans but are less likely to be effective in general. No study is

made in [25] of the sizes of conditional plans and the impact of plan size on evaluation

performance.

In short, this work was pioneering in suggesting how to implement a limited form of

dynamic query optimization. But the results presented here can be generalized in two ways:

270

1. The complexity of the optimizer invoked dynamically can vary and not be just one

that chooses between a fixed set of plans on the basis of a fixed set of cost factors.

2. Dynamically invoked optimizers need not be cost-based plan generators/selectors but

could be heuristic-based query rewriters that perform semantic inference. In fact,

query rewrites typically involve far simpler reasoning than do plan generators and can

have far greater impact on performance. This makes them ideal as candidate dynamic

optimizations where the cost : benefits ratio is of utmost concern.

Oracle RDB [5] justifies the dynamic optimization it performs by noting that the reli-

ability of compile-time cost (specifically, selectivity) estimation degenerates quickly in the

presence of complex predicates (e.g. p AND q). The problem is that the commonly held

assumption of predicate independence (i.e., the assumption that the correlation between

p and q has value 0) is overly simplistic — in fact correlation between predicates can fall

anywhere between -1 (meaning that for all x, p(x) ⇒ ¬q(x)) and 1 (meaning that for all x,

p(x) ⇒ q(x)). When correlation factors are assumed to be non-zero, selectivity estimation

of complex predicates such as “p AND q” fall in a (Zipfean) distribution that is relatively

constant independent of the individual selectivities of p and q. Therefore, cost estimation

provides little guidance to the plan generator which is likely to generate the same plan

independently of selectivities associated with specific predicates appearing in the query.

The Oracle RDB optimization strategy chooses multiple plans that are ideal assuming

different selectivity scenarios. Evaluation then runs all of these plans in parallel for a short

period of time. Zipfean selectivity distributions make it likely that one of these plans will

produce a complete result quickly. Dynamic optimization chooses which of these multiple

plans to continue in the unlikely event that all plans fail to return a complete result in the

small window of time they were given to run.

This solution does not eliminate the need to make better compile-time cost estimations,

as these would eliminate the need to perform dynamic optimization and parallel plan exe-

cution in some cases (thereby reducing the evaluation overhead of the queries involved). We

are interested in determining if knowledge of underlying semantics might help in compile-

time cost estimations. For example, predicate strength inferences could potentially be

generalized to infer other correlation factors between predicates (predicate strength infers

only correlation factors of -1 or 1). Defining inference rules to infer correlation factors in

some cases would not be of use in our semantic rewrite scheme where semantic conditions

determine the validity of a rewrite. However, it is possible that inferences such as these

could be attached to query representations that are passed down to plan generation.

271

The goal of parametric query optimization [53] is to generate a plan-producing func-

tion as a result of optimizing a query. This function accepts a vector describing run-time

parameters (e.g., available buffers) and produces a plan customized to those conditions.

Compile-time optimization divides the k-dimensional space of run-time parameters (k is

the length of the vector) into partitions that share the same optimal plan. Run-time op-

timization finds the partition in which an input vector resides to determine the plan to

execute.

This work complements the work of Graefe and Cole [25] by demonstrating a technique

for deciding where choose-plan operators go in a conditional plan and how to generate the

plans from which a dynamic choice is made. As with [25], this work describes dynamic plan

selection rather than dynamic plan generation and says nothing about query rewriting.

8.4.2 Adaptive Query Optimization

Adaptive query optimization is distinct from dynamic plan selection in that it involves

generating and comparing alternative plans dynamically, and not just selecting from a fixed

set of plans generated at compile-time. Query scrambling [4] is one example of adaptive

query optimization. The context for this work is widely distributed databases (e.g., web

databases). Dynamic optimization is triggered in this setting by the unavailablity of queried

data sources. Specifically concerned with the orderings of multiple joins, query scrambling

dynamically alters a chosen join ordering when processing delays occur due to unavailable

data. This affects the plan generated at compile-time (the “join tree”) in two phases:

• Phase 1: During this phase, scrambling alters the traversal of the join tree (say from

a preorder traversal) so that intermediate results from other parts of the tree can be

generated.

• Phase 2: This phases makes changes to the join tree by reordering joins, so that

intermediate results can be generated from available data sources.

Kabra and DeWitt also propose a technique for reoptimizing queries during evalua-

tion [59]. Unlike query scrambling for which dynamic reoptimization is triggered by data

unavailability, reoptimization in this setting is triggered by recognition of errors in compile-

time cost estimates. An execution plan is generated at compile-time that is annotated with

the cost estimates used to generate the plan. Inserted at select positions in the plan are

instances of a plan operator that triggers statistical analysis (e.g., cardinality measures).

The execution of this plan then performs the indicated statistical analysis when these op-

erators are executed on the basis of data that has been processed. The costs measured at

272

this time are then compared to the statically estimated costs that annotate the tree. Then,

depending on factors such as the cost of the query, the error in static cost estimations and

so on, reoptimization may be initiated.

Both adaptive query optimization schemes described here differ from dynamic query

rewriting in that both involve the reoptimization of queries. That is, both of these ap-

proaches generate complete plans at compile-time and then dynamically replace these plans

as run-time circumstances warrant. On the other hand, dynamic query rewiting gener-

ates only partial plans at compile-time, leaving the holes in these plans to fill at run-time.

Thus, the goal of dynamic query rewriting is not to reoptimize but to delay optimization.

This approach is appropriate in the context of rewriting, which applies heuristics that are

independent of physical properties of the environment and underlying database. That is,

dynamic query rewriting is triggered, not by the recognition of cost factors that make cer-

tain evaluation strategies inappropriate, but by semantic properties of objects and functions

that make certain rewrites invalid.

In short, dynamic query optimization resembles dynamic query rewriting in that it in-

volves making decisions affecting evaluation strategies at run-time. But dynamic query op-

timization involves making cost-based decisions about evaluation plans at run-time, whereas

dynamic query rewriting involves heuristically rewriting query representations depending

on their validity established by identifying properties of objects recognized at run-time.

Rather than being competitive, in fact the two techniques are complementary — dynamic

query rewriting necessarily would precede dynamic query optimization.

8.4.3 Partial Evaluation

Partial evaluation is a technique for generating a program by specializing another with

respect to some of its inputs [26]. Essentially, the technique requires decoupling the control

flow of a program from its inputs. This can be done by unfolding, which replaces references

to expressions with the code that computes them (as in inlining) or by specializing, which

generates a program that has performed portions of the overall computation given knowledge

of certain inputs. Typically, specialization uses symbolic computation to partially evaluate

the expression computed by the more general program.

Partial evaluation techniques have been used in many areas of computer science including

compiler generation [55, 8] and pattern matching [65]. Recently, compiler technology has

adopted partial evaluation techniques to provide run-time code generation [69]. Dynamic

query optimization and dynamic query rewriting similarly incorporate partial evaluation

273

into code generation for queries.

Dynamic query rewriting and optimization necessitates that certain decisions about

plan generation be deferred until run-time. This transforms the static query rewriter and

optimizer into system components that produce partial results. If one looks at a generated

execution plan as a result of evaluation, then the partial plans generated by static optimizers

in this context are produced as a result of partial evaluation.6

On the other hand, dynamic query rewriting is in many ways the dual of partial evalua-

tion. The purpose of partial evaluation is to move certain steps of a run-time computation

(evaluation) into compile-time to achieve speed-up. But the purpose of dynamic query

rewriting is to move certain steps of a compile-time computation (query optimization) into

run-time to achieve greater flexibility. Note the essential difference here: query rewriting

is made no more efficient as a result of dynamic rewriting. The goal instead is for query

rewriting to be more flexible and therefore for the generated plans to be more efficient.

6Of the approaches described in this section, adaptive query optimization least resembles partial evalua-
tion because static optimization produces a complete plan (and not a partial plan) that can get replaced
dynamically.

Chapter 9

Conclusions and Future Work

Query optimizers are perhaps the most complex and error-prone components of databases.

The query rewriter is especially difficult to design and implement correctly. A query rewriter

is correct if it preserves the semantics of the queries it transforms. Errors in query rewriting

have been identified in both in research [63] and practice [41]. To this day, query rewriting

techniques are often published with handwaving correctness proofs or worse, without proofs

at all. This approach to correctness undermines confidence in the query processors that

incorporate these techniques.

This thesis addresses the correctness issue for query rewriting. Our goal was to build

query rewriters that could be verified with an automated theorem prover. Theorem provers

have been adopted by the software engineering community as tools for reasoning about

formal specifications and verifying implementations relative to those specifications. Com-

monly used for complex and safety-critical systems, query rewriting is yet another natural

application of this technology.

The key contribution of this thesis is to define methodologies and tools for meeting this

correctness goal. We have introduced COKO-KOLA: a novel framework for the specification

and generation of query rewrite rules for rule-based query rewriters. Query rewrite rules

generated within this framework are verifiable with the theorem prover LP. The foundation

of this work is KOLA, a combinator-based (i.e., variable-free) algebra and internal query

representation. Combinators are unintuitive to read and hence ill-suited as query languages.

However, combinators are ideal query representations for rule-based query rewriters because

combinator representations make it straightforward to declaratively (i.e., without code)

specify subexpression identification and query formulation. Subexpression identification

distinguishes the relevant subexpressions of queries that are being rewritten. Successful

274

275

identification of these subexpressions indicates that rewriting should proceed and defines a

bank of subexpressions that can be used during query formulation. Query formulation uses

identified subexpressions to construct new query expressions that are returned as the result

of rewriting.

Combinator representations make it possible to express subexpression identification and

query formulation with declarative rewrite rules that get fired according to standard pat-

tern matching. This is because combinator expressions, being variable free, contain no

occurences of free variables which can make syntactically identical expressions have distinct

semantics. Code supplements to rules are required when underlying representations are

variable-based. Supplements used for subexpression identification analyze the context of

identified subexpressions containing free variables. Supplements used for query formulation

massage identified subexpressions to ensure that their semantics are preserved when used

in new contexts. These code supplements are unnecessary when variables are removed from

the underlying query representation.

KOLA is a fully expressive object query algebra over sets and bags. It contains similar

operators as other object algebras, but differs from these algebras in its combinator founda-

tion and its uniform treatment of query and data functions. Because KOLA rewrite rules

are expressible without code supplements, they can be verified with an automated theorem

prover. We have verified several hundred KOLA rewrite rules with the theorem prover LP

[46]. The motivation for KOLA, its semantics and several examples of its use in expressing

queries and rewrite rules were presented in Chapter 3.

Rewrite rules are inherently simple. On the other hand, query rewrites can be complex.

Therefore, KOLA is insufficient for expressing many of the query rewrites that get used

in practice. In Chapters 4 and 5 we proposed techniques for expressing query rewrites

that are too general and too specific respectively, to be expressed as rewrite rules. Query

rewrites that are too general for rewrite rules include such complex normalizations as CNF

— a rewrite to convert query predicates into conjunctive normal form. CNF cannot be

expressed as a single rewrite rule because no pair of patterns is both general enough to

capture all expressions that can be rewritten into CNF (i.e., all Boolean expressions) and

specific enough to express their CNF equivalents. Put another way, any rewrite rule that

expresses a predicate and its CNF equivalent will not be general enough to successfully fire

on all predicates. To express complex and general rewrites such as this, we introduced the

language COKO in Chapter 4.

COKO transformations specify and generate complex query rewrites. Transformations

are both extensions and generalizations of KOLA rules. Transformations generalize KOLA

276

rules because they can be fired and succeed or fail as a result. Transformations extend

KOLA rules because they supplement sets of KOLA rewrite rules with a firing algorithm

that controls the manner in which they are fired. COKO’s firing algorithm language sup-

ports explicit control of rule firing, traversal control over query representation trees, con-

ditional rule firing, and selective firing over subtrees. COKO makes it possible to express

efficient query rewrites as we demonstrated in Chapter 4 with CNF. But while firing algo-

rithms control when and where rules get fired, only rewrite rule firings can modify query

representations. Therefore, COKO transformations are correct if the KOLA rewrite rules

they fire are correct, and by implication, COKO transformations can be verified with a

theorem prover. The motivation for COKO, the semantics of its firing algorithm language,

and several applications of COKO that rewrite query expressions into CNF or SNF, push

predicates, reorder joins and apply magic sets techniques were presented in Chapter 4.

In Chapter 5, we addressed an expressivity issue that is complementary to that addressed

by COKO. This issue concerns query rewrites that are too specific to be expressed as rewrite

rules. The validity of such rewrites depends on the semantics and not just the syntax of

the queries on which they are fired. To express such rewrites, we added conditional rewrite

rules and inference rules to COKO-KOLA. Conditional rewrite rules get fired like (uncon-

ditional) rewrite rules, except that identified subexpressions must also satisfy declaratively

expressed conditions. These conditions are specified with properties: collections of declar-

ative inference rules that our compiler compiles into code that gets executed during rule

firing. Both conditional rewrite rules and inference rules are expressed without code and

hence are verifiable with a theorem prover. The motivation and implementation of semantic

extensions to COKO-KOLA were presented with examples of their use in Chapter 5.

An example application of the COKO-KOLA framework was presented in Chapter 6. In

this chapter, we described and assessed our experience building a query rewriting component

for the San Francisco project of IBM. We learned from this experience that the COKO-

KOLA framework, while in need of refinement and an industrial strength implementation,

makes it possible to express “real” query rewrites succinctly and with confidence.

What is common to KOLA, COKO and the semantic extensions to COKO-KOLA is

the need to identify subexpressions and formulate new queries. KOLA’s conditional and

unconditional rewrite rules identify subexpressions and formulate new queries when they

successfully fire. COKO transformations must frequently identify subexpressions of queries

on which to fire rules (using the GIVEN statement). Inference rules identify subexpressions

of query expressions so that properties of these expressions can be inferred of the expres-

sions that contain them. We showed in Chapter 3 that combinators simplify the expression

277

of these tasks and make them verifiable with a theorem prover. Therefore, the high-level

contribution of this work is the recognition of the impact of query representations in general

and combinator-based representations in particular on the design, implementation and ver-

ification of a query optimizer. When built with combinators, query rewriters can be verified

with a theorem prover, thereby achieving the goal we set out at the onset to address the

inherent difficulty in building query rewriters correctly.

In Chapter 7, we identified another potential benefit of combinator-based query repre-

sentations. Whereas previous chapters considered how combinators simplify how rewrites

get expressed, in this chapter we showed how combinators could be used to change when

they get fired. Dynamic query rewriting proposes that some query rewriting take place

during the evaluation of a query. Dynamic query rewriting would be beneficial in settings

where the information that justifies the firing of a rewrite rules is unavailable until queried

data is retrieved. Such settings include object databases, whose queries may be invoked on

anonmymous embedded collections; network databases, whose queries may join collections

whose availabilitymay be unknown until runtime; and heterogenous databases whose queries

may reference collections that are represented with data structures known only to the local

databases they oversee. Dynamic query rewriting requires identifying relevant subqueries

and formulating new queries by packaging these subqueries with accessed data. Therefore,

dynamic query rewriting also benefits from combinator-based query representations.

9.1 Future Directions

Unlike the work presented in previous chapters, dynamic query rewriting is work in progress.

Therefore, future directions for this thesis work are primarily concentrated in this area. A

design for a dynamic query rewriter and query evaluator for ObjectStore [67] is complete

and an implementation is ongoing. Once complete, it will be necessary to run a performance

study to determine when (and if) the benefits of dynamic query rewriting outweigh its costs.

We plan to construct and populate the Thomas database described in Chapter 2 according

to the guidelines described in Section 7.1.1. Thereafter, a testbed of OQL queries will be

formulated to query this database. A variety of query rewriters will be generated using the

COKO compiler, varying in the degree and kinds of semantic and dynamic query rewriting

that each performs. That is, the COKO routines compared will include ones that:

• fire no rewrites,

• fire rewrites, but neither semantic nor dynamic rewrites,

278

• fire semantic but not dynamic rewrites, and

• fire both semantic and dynamic rewrites.

It should be straightforward to come up with examples (such as the “NSF” Query) for

which semantic and dynamic rewriting will prove useful. But the cost of performing dynamic

rewriting must be weighed relative to the improved performance of query evaluation. Much

of the cost of query processing is incurred when elements are retrieved from the iterators

returned as the results of queries. Therefore, these comparisons should include ones that

measure the time to retrieve all elements contained in a collection returned by the query.

Our study of dynamic query rewriting has been confined thus far to object databases.

We are also interested in the potential benefits of dynamic query rewriting in other settings

such as network databases and heterogeneous databases. With respect to the former, we

are interested in exploring the potential benefits of this technique to queries posed over

dissemination-based data delivery systems [2, 37]. Efficient evaluation of queries posed

in these settings will require knowledge of how data has been scheduled for delivery. As

schedules are sometimes formulated online and subject to modification, this may require

query strategies to be reformulated on-the-fly. We believe this to be a promising application

for dynamic query rewriting strategies which provide the processing flexibility required to

do this. Heterogeneous database queries typically get posed in higher-order query languages

such as SchemaLog [47] that permit queries to be posed over collections of relations. As

these relations can vary in representation, sort order, duplicate status and so on, dynamic

query rewriting could well prove beneficial here also.

Future directions for KOLA, COKO and semantic extensions to COKO and KOLA will

involve refining their designs and implementations. Eventually, we would like KOLA to

be an algebra with the same expressivity as OQL and adjust the translator to translate

all of OQL to KOLA. This work will require extending the formal specification of KOLA

to include lists, arrays and mutable objects. The impact of mutable objects on KOLA

and query rewriting correctness was described in a white paper resulting from our joint

discussions with the Thor group of MIT [18].

Once an OQL → KOLA translator is complete, we will need to prove its correctness.

We proved the correctness of an early version of this translator (see [17]) that translated a

set-based subset of OQL into KOLA. This result required a denotational semantics for this

subset of OQL and an operational semantics for KOLA in terms of OQL (i.e., each KOLA

construct was associated with its OQL equivalent). We then used structural induction to

prove that the denotational semantics of any OQL expression e that is well-formed with

279

respect to some environment ρ (Eval JeK ρ) is equivalent to the denotational semantics

of the OQL expression resulting from first translating of e into a KOLA function that is

invoked on the nested pair equivalent of ρ, and then translating this expression back into

OQL (Eval JT JeK ! ρK ()). The final translator will be verified in the same way.

Future work for COKO will involve refinements to the firing algorithm language, a new

design and implementation for the COKO compiler and the development of a debugging

facility. Refinements to the firing algorithm language will be motivated by the experiences

of users of the language. (Some refinements based on our experiences were proposed in

Chapter 6.) We intend to rethink our decision to associate success values with all statements

in the language and determine if a more traditional control language might make COKO

simpler to use.

The existing COKO compiler was designed for simplicity rather than efficiency. The

compiler produces code that generates a parse tree corresponding to the COKO transfor-

mation’s firing algorithm, and then invokes a recursive method (exec) on the root of this

tree. This design made it straightforward to modify COKO and therefore was an appro-

priate design for a prototype. However, generated COKO parse trees can be large and

unwieldy and therefore, an alternative design is required for industrial use.

Finally, the programming of firing algorithms is. not an easy task. Part of the problem

is due to deficiencies in the firing algorithm language. For example, in the discussion

section of Chapter 6, we noted the difficulties introduced by associative KOLA formers

such as function composition. The problem is that a given KOLA rewrite rule might fail

to fire due to the manner in which a composition is associated. While addressing these

deficiencies in the language design should make programming somewhat easier, in the long

term we envision the development of a debugging environment to support transformation

development. Such a debugger could provide standard debugging tools such as breakpoints

and stepping through the execution of statements. Ideally, it also will permit the actions of

a COKO transformation to be visualized in terms of a graphical representation of a KOLA

tree.

Future work for semantic extensions to COKO-KOLA also will involve revisiting the

implementation. The current implementation invokes a Prolog interpreter to answer se-

mantic queries. This design has a performance overhead from invoking a foreign interpreter

(the rest of the rule firing engine was programmed in C++), and from translating KOLA

parse trees to and from Prolog. We intend to replace this design with one that performs

reasoning over KOLA trees directly, perhaps replacing the inference algorithm (currently

unification-based [81]) with more powerful inference techniques such as those described in

280

the work of Grant et al [45].

9.2 Conclusions

This thesis has addressed the correctness problem for query rewriters. We have defined

a framework for generating query rewriters that can be verified with a theorem prover.

We have identified the impact of query representations on query optimizer design, showing

with several examples how combinator-based query representations simplify the expression

of query rewrites. We introduced a novel query algebra (KOLA), a novel language for

expressing complex query rewrites (COKO) and novel semantic extensions to the query

rewriting process. As well, we have constructed several proofs of concept that include a for-

mal specification of KOLA, several hundred proof scripts verifying KOLA rewrite rules and

COKO transformations, a translator mapping OQL queries into their KOLA equivalents,

a compiler to map COKO transformations into executable query rewrites, and an example

query rewriter for a real database system. In addressing the correctness problem, we have

contributed methodology and tools that impose a discipline on the design and implementa-

tion of query rewriters. In adhering to this discipline, the “COUNT bug” and its kin should

become relics of the past.

Appendix A

A Larch Specification of KOLA

A.1 Functions and Predicates

%%

Function (T, U): trait

% Class of Invokable Functions.

introduces

% Invocation Operator.

% --------------------

! : fun [T, U], T → U

asserts

∀ f, g: fun [T, U], x: T

% When are two functions equal?

% -----------------------------

f = g ⇔ ∀ x ((f ! x) = (g ! x))

%%

281

282

%%

Predicate (T): trait

% Class of Invokable Predicates.

introduces

% Invocation Operator

% -------------------

? : pred [T], T → Bool

asserts

∀ p, q: pred [T], x: T

% When are two predicates equal?

% ------------------------------

% p is rewritable to q if they are evaluate to the same result

% for all objects

p = q ⇔ ∀ x (p ? x ⇔ q ? x)

%%

A.2 Objects

%%

BagBasics (T): trait

% The trait of Generic KOLA bags (i.e., not mutable or immutable).

includes

283

InsertGenerated (� for empty, T for E, bag [T] for C)

introduces

�: → bag [T]

insert: T, bag [T] → bag [T]

{ }: T → bag [T]

∈ : T, bag [T] → Bool

- : bag [T], T → bag [T]

asserts

∀ A, B: bag [T], x, y: T

∼(insert (x, A) = �)
insert (x, insert (y, A)) == insert (y, insert (x, A))

x ∈ � == false

x ∈ insert (y, A) == (x = y) ∨ x ∈ A

{x} == insert (x, �)

� - x == �
∼ (x = y) ⇒ insert (x, A) - y = insert (x, A - y)

implies

∀ A, B: bag [T], x, y: T

∼ (x ∈ A) ⇒ (A - x) = A

x ∈ (A - y) ⇒ x ∈ A

A = insert (x, B) ⇒ (A - x) = B

((x ∈ A) ∧ ((A - x) = B)) ⇒ A = insert (x, B)

284

%%

%%

Bag (T): trait

includes

BagBasics (T)

introduces

∪ : bag [T], bag [T] → bag [T]

∩ : bag [T], bag [T] → bag [T]

- : bag [T], bag [T] → bag [T]

asserts

∀ x, y: T, A, B: bag [T]

� ∪ B == B

insert (x, A) ∪ B == insert (x, A ∪ B)

� ∩ B == �
(x ∈ B) ⇒ insert (x, A) ∩ B = insert (x, A ∩ (B - x))

∼ (x ∈ B) ⇒ insert (x, A) ∩ B = (A ∩ B)

� - A == �
(x ∈ B) ⇒ insert (x, A) - B = A - (B - x)

∼ (x ∈ B) ⇒ insert (x, A) - B = insert (x, A - B)

% All Bags are empty or of form, insert (e, B)

% --

285

(A = �) ∨ ∃ x ∃ B (A = insert (x, B))

(x ∈ A) ⇒ ∃ B (A = insert (x, B))

implies

∀ x, y: T, A, B: bag [T]

A ∪ � == A

A ∪ insert (y, B) == insert (y, A ∪ B)

A ∩ � == �
(y ∈ A) ⇒ (A ∩ insert (y, B) = insert (y, (A - y) ∩ B))

∼ (y ∈ A) ⇒ (A ∩ insert (y, B) = (A ∩ B))

A - � == A

(y ∈ A) ⇒ (A - insert (y, B) = (A - y) - B)

∼ (y ∈ A) ⇒ (A - insert (y, B) = A - B)

x ∈ (A ∪ B) == (x ∈ A) ∨ (x ∈ B)

x ∈ (A ∩ B) == (x ∈ A) ∧ (x ∈ B)

x ∈ (A - B) == (x ∈ A) ∧ ∼(x ∈ B)

%%

%%

Pairs (T1, T2): trait

% Trait specifying pairs of objects.

introduces

% The Pairing Constructor

286

% -----------------------

[,]: T1, T2 → pair [T1, T2]

asserts

∀ pr: pair [T1, T2], x, x′: T1, y, y′: T2

% All pairs are of form [,]

% ---------------------------

∃ x ∃ y (pr = [x, y])

% Equality of Pairs

% -----------------

[x, y] = [x′, y′] == ((x = x′) ∧ (y = y′))

%%

%%

%

% Nulls

%

%%

Null (T): trait

% Trait of that awful value, NULL

introduces

Null: → T

%%

287

A.3 Primitives (Table 3.1)

%%

Id (T): trait

% Trait of the Polymorphic, Invokable Identity Function, id

includes

Function (T, T)

introduces

id : → fun [T, T]

asserts

∀ x: T

% Semantics of id

% ---------------

id ! x == x

%%

%%

Projection (T1, T2): trait

% Trait of the Polymorphic, Invokable Projection Functions, π1 and π2

%

288

% a. properties of these functions

% b. semantics of these functions

assumes

Pairs (T1, T2)

includes

Function (pair [T1, T2], T1),

Function (pair [T1, T2], T2)

introduces

π1: → fun [pair [T1, T2], T1]

π2: → fun [pair [T1, T2], T2]

asserts

∀ x: T1, y: T2

% Semantics of π1, π2

% ---------------------

π1 ! [x, y] == x

π2 ! [x, y] == y

%%

%%

Shifts (T, U, V): trait

% Trait of the Polymorphic, Left and Right Pair Shifting

% Functions shl and shr

289

assumes

Pairs (T, U),

Pairs (U, V),

Pairs (pair[T, U], V),

Pairs (T, pair[U, V])

includes

Function (pair [pair [T, U], V], pair [T, pair [U, V]]),

Function (pair [T, pair [U, V]], pair [pair [T, U], V])

introduces

shl : → fun [pair [T, pair [U, V]], pair [pair [T, U], V]]

shr : → fun [pair [pair [T, U], V], pair [T, pair [U, V]]]

asserts

∀ t: T, u: U, v: V

% Semantics of shl, shr

% ---------------------------

shl ! [t, [u, v]] == [[t, u], v]

shr ! [[t, u], v] == [t, [u, v]]

%%

%%

IntegerPrimitives: trait

290

% Trait of primitive functions and predicates on Integers

assumes

Integer,

Pairs (Int, Int)

includes

Function (Int, Int),

Function (pair [Int, Int], Int),

Predicate (pair [Int, Int])

introduces

% Unary Functions

% ---------------

abs: → fun [Int, Int]

% Binary Functions

% ----------------

add: → fun [pair [Int, Int], Int]

sub: → fun [pair [Int, Int], Int]

mul: → fun [pair [Int, Int], Int]

div: → fun [pair [Int, Int], Int]

mod: → fun [pair [Int, Int], Int]

% Binary Predicates

% -----------------

lt: → pred [pair [Int, Int]]

leq: → pred [pair [Int, Int]]

gt: → pred [pair [Int, Int]]

geq: → pred [pair [Int, Int]]

asserts

291

∀ i, j: Int

% Semantics of Integer Function Primitives

% --

abs ! i == abs (i)

add ! [i, j] == i + j

sub ! [i, j] == i - j

mul ! [i, j] == i * j

div ! [i, j] == div (i, j)

mod ! [i, j] == mod (i, j)

% Semantics of Integer Predicate Primitives

% ---

lt ? [i, j] == i < j

leq ? [i, j] == i <= j

gt ? [i, j] == i > j

geq ? [i, j] == i >= j

%%

%%

FloatPrimitives: trait

% Trait of primitive functions and predicates on Floats

assumes

FloatingPoint (Float for F),

Pairs (Float, Float)

includes

292

Function (Float, Float),

Function (pair [Float, Float], Float),

Predicate (pair [Float, Float])

introduces

% Unary Functions

% ---------------

abs: → fun [Float, Float]

% Binary Functions

% ----------------

add: → fun [pair [Float, Float], Float]

sub: → fun [pair [Float, Float], Float]

mul: → fun [pair [Float, Float], Float]

div: → fun [pair [Float, Float], Float]

% Binary Predicates

% -----------------

lt: → pred [pair [Float, Float]]

leq: → pred [pair [Float, Float]]

gt: → pred [pair [Float, Float]]

geq: → pred [pair [Float, Float]]

asserts

∀ f1, f2: Float

% Semantics of Float Function Primitives

% --

abs ! f1 == abs (f1)

add ! [f1, f2] == f1 + f2

sub ! [f1, f2] == f1 - f2

293

mul ! [f1, f2] == f1 * f2

div ! [f1, f2] == f1 / f2

% Semantics of Float Predicate Primitives

% ---

lt ? [f1, f2] == f1 < f2

leq ? [f1, f2] == f1 <= f2

gt ? [f1, f2] == f1 > f2

geq ? [f1, f2] == f1 >= f2

%%

%%

StringPrimitives: trait

% Trait of primitive functions on Strings

assumes

Integer,

String (Char, Str),

Pairs (Str, Str),

Pairs (Str, Int)

includes

Function (pair [Str, Int], Char),

Function (pair [Str, Str], Str),

Function (pair [Str, Int], Str)

introduces

at: → fun [pair [Str, Int], Char]

294

concat: → fun [pair [Str, Str], Str]

length: Str → Int

asserts

∀ i: Int, s, s′: Str

% Semantics of String Primitives

% ------------------------------

length (empty) == 0

∼ (s = empty) ⇒ (length (s) = 1 + (length (tail (s))))

at ! [s, i] == s [i]

(i < length (s)) ⇒
(at ! [concat ! [s, s′], i] = at ! [s, i])

(i >= length (s)) ⇒
(at ! [concat ! [s, s′], i] = at ! [s′, i - length (s)])

%%

%%

BagPrimitives (T): trait

% Trait of primitive functions on Bags

assumes

Bag (T),

Bag (U),

Pairs (T, T),

Pairs (bag [T], bag [T]),

295

Pairs (bag [T], bag [U]),

Pairs (T, bag [U]),

Pairs (T, U),

Bag (bag [T])

includes

Function (bag [T], T),

Function (T, bag [T]),

Function (bag [T], bag [T]),

Function (bag [bag [T]], bag [T]),

Function (pair [T, bag [U]], bag [pair [T, U]]),

Function (pair [bag [T], bag [U]], bag [pair [T, U]]),

Function (pair [bag [T], bag [T]], bag [T])

introduces

% Unary Functions

% ---------------

single: → fun [T, bag [T]]

elt: → fun [bag [T], T]

set: → fun [bag [T], bag [T]]

flat: → fun [bag [bag [T]], bag [T]]

% Binary Functions

% ----------------

uni: → fun [pair [bag [T], bag [T]], bag [T]]

int: → fun [pair [bag [T], bag [T]], bag [T]]

dif: → fun [pair [bag [T], bag [T]], bag [T]]

ins: → fun [pair [T, bag [T]], bag [T]]

asserts

296

∀ x, y: T, A, B: bag [T], X: bag [bag [T]], U: bag [U], u, v: U

% Semantics of Unary Function Primitives

% --------------------------------------

single ! x = {x}
elt ! {x} = x

ins ! [x, A] = insert (x, A)

set ! � == �
set ! insert (x, A) ==

if (x ∈ A) then set ! A else insert (x, set ! A)

flat ! � == �
flat ! insert (A, X) == A ∪ (flat ! X)

% Semantics of Binary Function Primitives

% --------------------------------------

uni ! [A, B] == A ∪ B

int ! [A, B] == A ∩ B

dif ! [A, B] == A - B

implies

∀ x, y: T, A, B: bag [T], X: bag [bag [T]],

U: bag [U], u, v: U, e: T, z: pair [T, U]

(set ! A) = (set ! B) == ∀ x:T (x ∈ A ⇔ x ∈ B)

e ∈ (set ! A) == e ∈ A

e ∈ (flat ! X) == ∃ A (A ∈ X ∧ e ∈ A)

e ∈ (A ∪ B) == (e ∈ A) ∨ (e ∈ B)

e ∈ (A ∩ B) == (e ∈ A) ∧ (e ∈ B)

e ∈ (A - B) == (e ∈ A) ∧ ∼ (e ∈ B)

297

%%

%%

Avg: trait

% Trait of the primitive, avg, which averages the

% elements in a bag. Bag elements must be integers

% or floats.

assumes

Integer,

FloatingPoint (Float for F),

Bag (Int),

Bag (Float),

Count (Int),

Count (Float),

Sum (Int),

Sum (Float)

includes

Function (bag [Int], Float),

Function (bag [Float], Float)

introduces

avg : → fun[bag [Int], Float]

avg : → fun[bag [Float], Float]

asserts

∀ A: bag [Int], B: bag [Float]

298

% Semantics of avg

% ----------------

∼(A = �) ⇒
(avg ! A = (float ((sum ! A) / 1) / float ((count ! A) / 1)))

∼(B = �) ⇒
(avg ! B = ((sum ! B) / float ((count ! B) / 1)))

%%

%%

Count (T): trait

% Trait of the primitive, cnt, which counts the

% number of elements in a bag

assumes

Bag (T),

Integer

includes

Function (bag [T], Int)

introduces

cnt : → fun [bag [T], Int]

asserts

∀ x: T, A: bag [T]

299

% Semantics of count

% -----------------

cnt ! � == 0

cnt ! insert (x, A) == 1 + (cnt ! A)

%%

%%

Max (T): trait

% Trait of the primitive, max finds the largest

% element in a bag

assumes

Bag (T),

TotalOrder (T) % T is ok as long as it has a max and min

includes

Function (bag [T], T)

introduces

max : → fun[bag [T], T]

asserts

∀ x: T, A: bag [T]

% Semantics of max

300

% ----------------

max ! {x} == x

max ! insert (x, A) == if (x > (max ! A)) then x else (max ! A)

%%

%%

Min (T): trait

% Trait of the primitive, min finds the smallest

% element in a bag

assumes

Bag (T),

TotalOrder (T) % T is ok as long as it has a max and min

includes

Function (bag [T], T)

introduces

min : → fun[bag [T], T]

asserts

∀ x: T, A: bag [T]

% Semantics of min

% ----------------

min ! {x} == x

301

min ! insert (x, A) == if (x < (min ! A)) then x else (min ! A)

%%

%%

Sum (U): trait

% Trait of the primitive, sum, which sums the

% elements in a bag

assumes

Bag (U),

AbelianGroup (U for T, + for ◦, 0 for unit)

% U is ok as long as it has a commutative, associative +

% with identity, 0

includes

Function (bag [U], U)

introduces

sum : → fun[bag [U], U]

asserts

∀ x: U, A: bag [U]

% Semantics of sum

% ----------------

sum ! � == 0

302

sum ! insert (x, A) == x + (sum ! A)

%%

%%

Equal (T): trait

% Trait of the Polymorphic, Invokable equality and

% inequality predicates

includes

Pairs (T, T),

Predicate (pair [T, T])

introduces

eq: → pred [pair [T, T]]

neq: → pred [pair [T, T]]

asserts

∀ x, y: T

% Semantics of eq, neq

% --------------------

eq ? [x, y] == x = y

neq ? [x, y] == ∼(x = y)

%%

303

A.4 Basic Formers (Table 3.2)

%%

Composition (T, X, U): trait

% Trait of the Polymorphic, Composition Function former, ◦

assumes

Function (T, X), % for g

Function (X, U) % for f

includes

Function (T, U) % for f ◦ g

introduces

◦ : fun [X, U], fun [T, X] → fun [T, U]

asserts

∀ x: T, f: fun [X, U], g: fun [T, X]

% Semantics of ◦
% ------------------

(f ◦ g) ! x == f ! (g ! x)

%%

%%

Pairing (T, U1, U2): trait

% Trait of the Polymorphic, Pairing Function former, < , >

304

assumes

Function (T, U2), % for g

Function (T, U1) % for f

includes

Pairs (U1, U2),

Function (T, pair [U1, U2]) % for f + g

introduces

〈 , 〉: fun [T, U1], fun [T, U2] → fun [T, pair [U1, U2]]

asserts

∀ x: T, f: fun [T, U1], g: fun [T, U2]

% Semantics of < >

% ----------------

〈f, g〉 ! x == [f ! x, g ! x]

%%

%%

ProductsF (T1, U1, T2, U2): trait

% Trait of the Polymorphic, Product Function former, x

assumes

Function (T2, U2), % for g

Function (T1, U1) % for f

305

includes

Pairs (T1, T2),

Pairs (U1, U2),

Function (pair [T1, T2], pair [U1, U2]) % for f x g

introduces

× : fun [T1, U1], fun [T2, U2] →
fun [pair [T1, T2], pair [U1, U2]]

asserts

∀ x: T1, y: T2, f: fun [T1, U1], g: fun [T2, U2]

% Semantics of ×
% -------------------

(f × g) ! [x, y] == [f ! x, g ! y]

%%

%%

ConstantF (T, U): trait

% Trait of Constant function former Kf ()

includes

Function (T, U) % for Kf (e)

introduces

Kf : U → fun [T, U]

306

asserts

∀ y: U, x: T

% Semantics of Kf

% --------------

Kf (y) ! x == y

%%

%%

CurryingF (T1, T2, U): trait

% Trait of Curried function, Cf (,)

assumes

Pairs (T1, T2), % for domain of f

Function (pair [T1, T2], U)

includes

Function (T2, U) % for Cf (f, e)

introduces

Cf : fun [pair [T1, T2], U], T1 → fun [T2, U]

asserts

∀ f: fun [pair [T1, T2], U], x: T1, y: T2

% Semantics of C

307

% --------------

Cf (f, x) ! y == f ! [x, y]

%%

%%

Conditionals (T, U): trait

% Trait of the Polymorphic, Conditional Function former, con

assumes

Predicate (T)

includes

Function (T, U)

introduces

con: pred [T], fun [T, U], fun [T, U] → fun [T, U]

asserts

∀ x: T, p: pred [T], f, g: fun [T, U]

% Semantics of con

% ----------------

con (p, f, g) ! x == (if p ? x then f ! x else g ! x)

%%

%%

308

Combination (T, U): trait

% Trait of the Polymorphic, Combining Predicate former, ⊕

assumes

Function (T, U),

Predicate (U)

includes

Predicate (T)

introduces

⊕ : pred [U], fun [T, U] → pred [T]

asserts

∀ x: T, f: fun [T, U], p: pred [U]

% Semantics of ⊕
% -------------------

(p ⊕ f) ? x == p ? (f ! x)

%%

%%

Conjunction (T): trait

% Trait of the Polymorphic, Conjunction Predicate former, &

assumes

309

Predicate (T)

introduces

& : pred [T], pred [T] → pred [T]

asserts

∀ x: T, p, q: pred [T]

% Semantics of &

% --------------

(p & q) ? x == (p ? x ∧ q ? x)

%%

%%

Disjunction (D): trait

% Trait of the Polymorphic, Disjunction Predicate former, |

%

assumes

Predicate (D)

introduces

| : pred [D], pred [D] → pred [D]

asserts

∀ e: D, p, q: pred [D]

310

% Semantics of p & q

% ------------------

(p | q) ? e == (p ? e ∨ q ? e)

%%

%%

Negation (D): trait

% Trait of the Polymorphic, Negation Predicate former, ∼
%

assumes

Predicate (D)

introduces

∼ : pred [D] → pred [D]

asserts

∀ e: D, p: pred [D]

% Semantics of p & q

% ------------------

(∼ p) ? e == ∼ (p ? e)

%%

%%

InverseP (T1, T2): trait

311

% Trait of Inverse Predicate Former p−1

assumes

Pairs (T1, T2),

Predicate (pair [T1, T2])

includes

Pairs (T2, T1),

Predicate (pair [T2, T1])

introduces

−1 : pred [pair[T1, T2]] → pred [pair [T2, T1]]

asserts

∀ x: T1, y: T2, p: pred [pair [T1, T2]]

% Semantics of −1

% -----------------

(p −1) ? [y, x] == p ? [x, y]

%%

%%

ProductsP (DL, DR): trait

% Trait of the Polymorphic, Predicate Product former, ×

assumes

312

Predicate (DL),

Predicate (DR),

Pairs (DL, DR)

includes

Predicate (pair [DL, DR])

introduces

× : pred [DL], pred [DR] → pred [pair [DL, DR]]

asserts

∀ e: DL, e′: DR, p: pred [DL], q: pred [DR]

% Semantics of p x q

% ------------------

(p × q) ? [e, e′] == p ? e ∧ q ? e′

%%

%%

ConstantP (T): trait

% Trait of Constant Predicate Kp ()

includes

Predicate (T) % for Kp (b)

introduces

Kp : Bool → pred [T]

313

asserts

∀ x: T, b: Bool

% Semantics of Kp

% --------------

Kp (b) ? x == b

%%

%%

CurryingP (T1, T2): trait

% Trait of Curried predicate, Cp (,)

assumes

Pairs (T1, T2), % for domain of p

Predicate (pair [T1, T2])

includes

Predicate (T2) % for Cp (p, x)

introduces

Cp : pred [pair [T1, T2]], T1 → pred [T2]

asserts

∀ p: pred [pair [T1, T2]], x: T1, y: T2

% Semantics of Cp

314

% --------------

Cp (p, x) ? y == Cp ? [x, y]

%%

A.5 Query Formers (Table 3.3)

%%

Iterate (T, U): trait

% Former that emulates SELECT--FROM--WHERE. General Unary

% Iterator

assumes

Function (T, U),

Predicate (T),

Bag (T)

includes

Bag (U),

Function (bag [T], bag [U])

introduces

iterate: pred [T], fun [T, U] → fun [bag [T], bag [U]]

asserts

∀ p: pred [T], f: fun [T, U], A: bag [T], x: T

% Semantics of iterate

% --------------------

315

iterate (p, f) ! � == �
(p ? x) ⇒

iterate (p, f) ! insert (x, A) = insert (f ! x, iterate (p, f) ! A)

∼ (p ? x) ⇒
iterate (p, f) ! insert (x, A) = iterate (p, f) ! A

implies

∀ p: pred [T], f: fun [T, U], A: bag [T], x: T, e: U

e ∈ (iterate (p, f) ! A) == ∃ x (x ∈ A ∧ (p ? x) ∧ e = (f ! x))

%%

%%

Iter (T, U): trait

% Binary Iterator.

assumes

Pairs (T, U),

Pairs (T, bag [U]),

Bag (T),

Pairs (bag [T], U),

Function (pair [T, U], V),

Predicate (pair [T, U])

includes

Bag (V),

Function (pair [T, bag [U]], bag [V]),

CurryingP (T, U),

CurryingF (T, U, V),

Iterate (U, V)

316

introduces

iter: pred [pair [T, U]], fun [pair [T, U], V] →
fun [pair [T, bag [U]], bag [V]]

asserts

∀ p: pred [pair [T, U]], f: fun [pair [T, U], V], A: bag [U], x: T

% Semantics of Iter

% -----------------

iter (p, f) ! [x, A] == iterate (Cp (p, x), Cf (f, x)) ! A

implies

∀ p: pred [pair [T, U]], f: fun [pair [T, U], V],

A: bag [U], x: T, e: V, u: U

e ∈ (iter (p, f) ! [x, A]) ==

∃ u (u ∈ A ∧ (p ? [x, u]) ∧ e = (f ! [x, u]))

%%

%%

Unnest (T, U, V): trait

% Trait of the unnesting former, unnest, which pairs

% T elements (t) with each member of some bag that is

% generated by invoking a function on t.

assumes

Bag (T),

317

Bag (U),

Pairs (T, U),

Function (pair [T, U], V),

Function (T, bag [U])

includes

Bag (V),

Function (bag [T], bag [V]),

ConstantP (U),

CurryingF (T, U, V),

Iterate (U, V)

introduces

unnest: fun [pair [T, U], V], fun [T, bag [U]] →
fun [bag [T], bag [V]]

asserts

∀ f: fun [pair [T, U], V], g: fun [T, bag [U]], x: T, A: bag [T]

% Semantics of unnest

% -------------------

unnest (f, g) ! � == �
unnest (f, g) ! insert (x, A) ==

(iterate (Kp (true), Cf (f, x)) ! (g ! x)) ∪ (unnest (f, g) ! A)

implies

∀ f: fun [pair [T, U], V],

g: fun [T, bag [U]], x: T, y: U, A: bag [T], e: V

318

e ∈ (unnest (f, g) ! A) ==

(∃ x ∃ y (x ∈ A ∧ (e = f ! [x, y]) ∧ y ∈ (g ! x)))

%%

%%

Join (T1, T2, U): trait

% General Binary Iterator

assumes

Pairs (T1, T2),

Function (pair [T1, T2], U),

Predicate (pair [T1, T2]),

Bag (T1),

Bag (T2),

Pairs (bag [T1], bag [T2])

includes

Bag (U),

Function (pair [bag [T1], bag [T2]], bag [U]),

CurryingP (T1, T2),

CurryingF (T1, T2, U),

Iterate (T2, U),

InverseP (T1, T2),

Pairs (T2, T1),

Projection (T2, T1),

CurryingP (T2, T1),

CurryingF (T2, T1, U),

Pairing (pair [T2, T1], T1, T2),

Composition (pair [T2, T1], pair [T1, T2], U),

319

Iterate (T1, U)

introduces

join: pred [pair [T1, T2]], fun[pair [T1, T2], U] →
fun [pair [bag [T1], bag [T2]], bag [U]]

asserts

∀ p: pred [pair [T1, T2]], f: fun[pair [T1, T2], U],

A: bag [T1], B: bag [T2], x: T1, y: T2

% Semantics of Join

% -----------------

join (p, f) ! [�, B] == �
join (p, f) ! [insert (x, A), B] ==

(iterate (Cp (p, x), Cf (f, x)) ! B) ∪ (join (p, f) ! [A, B])

implies

∀ p: pred [pair [T1, T2]], f: fun[pair [T1, T2], U],

A: bag [T1], B: bag [T2], x: T1, y: T2, e: U

join (p, f) ! [A, �] == �
join (p, f) ! [A, insert (y, B)] ==

(iterate (Cp (p−1, y), Cf (f ◦ 〈snd, fst〉, y)) ! A) ∪
(join (p, f) ! [A, B])

e ∈ (join (p, f) ! [A, B]) ==

∃ x ∃ y (x ∈ A ∧ y ∈ B ∧ (p ? [x, y]) ∧ e = (f ! [x, y]))

%%

%%

320

LSJoin (T1, T2, U): trait

% Left semi-join

assumes

Bag (T1),

Bag (T2),

Pairs (bag [T1], bag [T2]),

Pairs (T1, bag [T2]),

Predicate (pair [T1, bag [T2]]),

Function (T1, U)

includes

Bag (U),

Function (pair [bag [T1], bag [T2]], bag [U])

introduces

lsjoin: pred [pair [T1, bag [T2]]], fun[T1, U] →
fun [pair [bag [T1], bag [T2]], bag [U]]

asserts

∀ p: pred [pair [T1, bag [T2]]],

f: fun[T1, U], A: bag [T1], B: bag [T2], x: T1

% Semantics of lsjoin

% -----------------

lsjoin (p, f) ! [�, B] == �
lsjoin (p, f) ! [insert (x, A), B] ==

(if p ? [x, B] then

insert (f ! x, lsjoin (p, f) ! [A, B]) else

lsjoin (p, f) ! [A, B])

321

implies

∀ p: pred [pair [T1, bag [T2]]], f: fun[T1, U],

A: bag [T1], B: bag [T2], e: U, x: T1

e ∈ (lsjoin (p, f) ! [A, B]) == ∃ x (x ∈ A ∧ p ? [x, B] ∧ e = (f ! x))

%%

%%

RSJoin (T1, T2, U): trait

% Right semi-join

assumes

Bag (T1),

Bag (T2),

Pairs (bag [T1], bag [T2]),

Pairs (T2, bag [T1]),

Predicate (pair [T2, bag [T1]]),

Function (T2, U)

includes

Bag (U),

Function (pair [bag [T1], bag [T2]], bag [U])

introduces

rjoin: pred [pair [T2, bag [T1]]], fun[T2, U] →
fun [pair [bag [T1], bag [T2]], bag [U]]

322

asserts

∀ p: pred [pair [T2, bag [T1]]],

f: fun[T2, U], A: bag [T1], B: bag [T2], y: T2

% Semantics of rjoin

% -----------------

rjoin (p, f) ! [A, �] == �
rjoin (p, f) ! [A, insert (y, B)] ==

(if p ? [y, A] then

insert (f ! y, rjoin (p, f) ! [A, B]) else

rjoin (p, f) ! [A, B])

implies

∀ p: pred [pair [T2, bag [T1]]], f: fun[T2, U],

A: bag [T1], B: bag [T2], e: U, y: T2

e ∈ (rjoin (p, f) ! [A, B]) == ∃ y (y ∈ B ∧ p ? [y, A] ∧ e = (f ! y))

%%

%%

NJoin (T1, T2, U, V): trait

% Trait of the nested-join former, njoin, which is applied

% to a pair of bags (of T1 and T2 elements respectively)

% and returns a bag of [T1, V] pairs such that

% the first member is some element, t of the first bag

% input, and the second member is the result of applying

% a function (g: bag [U] → V) to the bag resulting

% from applying another function (f: T2 → U) to elements

% in the second bag input that are related by a predicate

% (p: [T1, T2] → Bool) to t

323

assumes

Bag (T1),

Bag (T2),

Bag (U),

Function (T2, U),

Function (bag [U], V),

Predicate (pair [T1, T2]),

Pairs (T1, T2),

Pairs (bag [T1], bag [T2])

includes

Pairs (T1, V),

Bag (pair [T1, V]),

Function (pair [bag [T1], bag [T2]], bag [pair [T1, V]]),

CurryingP (T1, T2),

Iterate (T2, U)

introduces

njoin: pred [pair [T1, T2]] , fun [T2, U], fun [bag [U], V] →
fun [pair [bag [T1], bag [T2]], bag [pair [T1, V]]]

asserts

∀ A:bag[T1], B:bag[T2], p: pred [pair [T1, T2]],

f: fun[T2, U], g: fun [bag [U], V], x: T1

% Semantics of njoin

% ------------------

njoin (p, f, g) ! [�, B] == �

(x ∈ A) ⇒

324

(njoin (p, f, g) ! [insert (x, A), B] = njoin (p, f, g) ! [A, B])

∼(x ∈ A) ⇒
(njoin (p, f, g) ! [insert (x, A), B] =

insert ([x, g ! (iterate (Cf (p, x), f) ! B)],

njoin (p, f, g) ! [A, B]))

implies

∀ A:bag[T1], B:bag[T2], p: pred [pair [T1, T2]], f: fun[T2, U],

g: fun [bag [U], V], x: T1, Bs: bag [U], e: pair [T1, V]

e ∈ (njoin (p, f, g) ! [A, B]) ==

∃ x ∃ Bs (x ∈ A ∧ Bs = (iterate (Cp (p, x), f) ! B) ∧ e = [x, g ! Bs])

%%

%%

Ex (T1, T2): trait

% Trait of the general binary quantifier former, ex which forms

% binary quantifier formers on pairs.

assumes

Bag (T2),

Pairs (T1, T2),

Predicate (pair [T1, T2])

includes

Pairs (T1, bag [T2]),

Predicate (pair [T1, bag [T2]])

325

introduces

ex : pred [pair [T1, T2]] → pred [pair [T1, bag [T2]]]

asserts

∀ y: T2, x: T1, p: pred [pair [T1, T2]], A: bag [T2]

% Semantics of ex

% ---------------

ex (p) ? [x, A] == ∃ y (y ∈ A ∧ p ? [x, y])

%%

%%

Fa (T1, T2): trait

% Trait of the general binary quantifier former, fa which forms

% binary quantifier formers on pairs.

assumes

Bag (T2),

Pairs (T1, T2),

Predicate (pair [T1, T2])

includes

Pairs (T1, bag [T2]),

Predicate (pair [T1, bag [T2]])

introduces

326

fa : pred [pair [T1, T2]] → pred [pair [T1, bag [T2]]]

asserts

∀ y: T2, x: T1, p: pred [pair [T1, T2]], A: bag [T2]

% Semantics of ex

% ---------------

fa (p) ? [x, A] == ∀ y (y ∈ A ⇒ p ? [x, y])

%%

%%

Exists (T): trait

% Trait of the general quantifier iterator former, exists

% form quantifier style predicates on bags of T.

assumes

Bag (T),

Predicate (T)

includes

Predicate (bag [T])

introduces

exists : pred [T] → pred [bag [T]]

asserts

327

∀ p: pred [T], A: bag [T], x: T

% Semantics of exists

% -------------------

exists (p) ? A == ∃ x (x ∈ A ∧ p ? x)

%%

%%

ForAll (T): trait

% Trait of the general quantifier iterator former, forall

% form quantifier style predicates on bags of T.

assumes

Bag (T),

Predicate (T)

includes

Predicate (bag [T])

introduces

forall : pred [T] → pred [bag [T]]

asserts

∀ p: pred [T], A: bag [T], x: T

% Semantics of exists

328

% -------------------

forall (p) ? A == ∀ x (x ∈ A ⇒ p ? x)

%%

Appendix B

LP Proof Scripts

B.1 Proof Scripts for CNF

Available from ftp://wilma.cs.brown.edu/u/mfc/cnf-scripts.lp.

B.2 Proof Scripts for SNF

Available from ftp://wilma.cs.brown.edu/u/mfc/snf-scripts.lp.

B.3 Proof Scripts for Predicate Pushdown

Available from ftp://wilma.cs.brown.edu/u/mfc/pushdown-scripts.lp.

B.4 Proof Scripts for Magic Sets

Available from ftp://wilma.cs.brown.edu/u/mfc/magic-scripts.lp.

B.5 Proof Scripts for Rules of Chapter 5

Available from ftp://wilma.cs.brown.edu/u/mfc/vldb-scripts.lp.

B.6 Proof Scripts for Rules of Chapter 6

Available from ftp://wilma.cs.brown.edu/u/mfc/exp-scripts.lp.

329

Bibliography

[1] Karl Aberer and Gisela Fischer. Semantic query optimization for methods in object-

oriented database systems. In P. S. Yu and A. L. P. Chen, editors, Proceedings of

the 11th International Conference on Data Engineering, pages 70–79, Taipei, Taiwan,

1995.

[2] Swarup Acharya, Michael J. Franklin, and Stan Zdonik. Balancing push and pull for

data broadcast. In ACM SIGMOD International Conference on Management of Data

(SIGMOD 97), Tucson, AZ, May 1997.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1988.

[4] Laurent Amsaleg, Michael J. Franklin, Anthony Tomasic, and Tolga Urhan. Scrambling

query plans to cope with unexpected delays. In 4th International Conference on Parallel

and Distributed Information Systems (PDIS 96), Miami Beach, FL, December 1996.

[5] Gennady Antoshenkov and Mohamed Ziauddin. Query processing and optimization in

Oracle Rdb. VLDB Journal, 5(4):229–237, December 1996.

[6] Ludger Becker and Ralf Hartmut Güting. Rule-based optimization and query pro-

cessing in an extensible geometric database system. ACM Transactions on Database

Systems, 17(2):247–303, June 1992.

[7] Catriel Beeri and Yoram Kornatzky. Algebraic optimization of object-oriented query

languages. In S. Abiteboul and P. C. Kanellakis, editors, Proceedings of the Third In-

ternational Conference on Database Theory, number 470 in Lecture Notes in Computer

Science, pages 72–88, Paris, France, December 1990. EATCS, Springer-Verlag.

[8] Kurt M. Bischoff. Ox: An attribute-grammar compiling system based on yacc, lex and

c: User reference manual. User Manual, 1993.

330

331

[9] Val Breazu-Tannen, Peter Buneman, and Shamim Naqvi. Structural recursion as a

query language. In Paris Kanellakis and Joachim W. Schmidt, editors, Bulk Types &

Persistent Data: The Third International Workshop on Database Programming Lan-

guages, pages 9–19, Nafplion, Greece, August 1991. Morgan Kaufmann Publishers,

Inc.

[10] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded query

languages. In J. Biskup and R. Hull, editors, Database Theory - ICDT’92, 4th Inter-

national Conference, volume 646 of LNCS. Springer Verlag, 1992.

[11] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming Expert

Systems in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley, 1985.

[12] Peter Buneman and Robert E. Frankel. FQL – a functional query language. In Proc.

ACM SIGMOD Int’l Conference on Management of Data, 1979.

[13] Michael J. Carey, David J. DeWitt, Goetz Graefe, David M. Haight, Joel E. Richardson,

Daniel T. Schuh, Eugene J. Shekita, and Scott L. Vandenberg. The EXODUS extensible

DBMS project: An overview. In Stanley B. Zdonik and David Maier, editors, Readings

in Object-Oriented Database Systems, pages 474–499. Morgan Kaufmann Publishers,

Inc., Los Altos, California, 1990.

[14] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan-Kaufman,

1993.

[15] U. Chakravathy, J. Grant, and J. Minker. Semantic query optimization: Additional

constraints and control strategies. In Proceedings of Expert Database Systems Confer-

ence, pages 259–269, Charleston, SC, April 1986.

[16] Surajit Chaudhuri and Kyuseok Shim. Query optimization in the presence of for-

eign functions. In Proceedings of the 19th VLDB Conference, pages 529–542, Dublin,

Ireland, August 1993.

[17] Mitch Cherniack. Translating queries into combinators. Unpublished white paper.,

September 1996.

[18] Mitch Cherniack and Eui-Suk Chung. The effects of mutability on querying. Brown

University and M.I.T., November 1996.

332

[19] Mitch Cherniack, Ashok Malhotra, and Stan Zdonik. Experiences with query transla-

tion: Object queries meet DB2. Submitted to SIGMOD ’99, 1998.

[20] Mitch Cherniack and Stan Zdonik. Changing the rules: Transformations for rule-based

optimizers. In Proc. ACM SIGMOD Int’l Conference on Management of Data, pages

61–72, Seattle, WA, June 1998.

[21] Mitch Cherniack and Stan Zdonik. Inferring function semantics to optimize queries. In

Proc. 24th Int’l Conference on Very Large Data Bases, New York, NY, August 1998.

[22] Mitch Cherniack and Stanley B. Zdonik. Rule languages and internal algebras for rule-

based optimizers. In Proc. ACM SIGMOD Int’l Conference on Management of Data,

Montréal, Québec, Canada, June 1996.

[23] Mitch Cherniack, Stanley B. Zdonik, and Marian H. Nodine. To form a more perfect

union (intersection, difference). In Proc. 5th Int’l Workshop on Database Programming

Languages, Gubbio, Italy, September 1995. Springer-Verlag.

[24] E.F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377–387, 1970.

[25] Richard L. Cole and Goetz Graefe. Optimization of dynamic query execution plans. In

Proceedings of the ACM SIGMOD International Conference on Management of Data,

pages 150–160, Minneapolis, MN, 1994.

[26] Charles Consel and Olivier Danvy. Partial Evaluation: Principles and Perspectives,

1993.

[27] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional

Programming. Birkhäuser, 1993.

[28] C.J. Date and Hugh Darwen. A Guide to the SQL Standard. Addison-Wesley, 3rd

edition, 1993.

[29] Umeshwar Dayal. Of nests and trees: A unified approach to processing queries that

contain nested subqueries, aggregates and quantifiers. In Peter M. Stocker, William

Kent, and Peter Hammersley, editors, Proceedings if the 13th International Conference

on Very Large Databases, pages 197–208, Brighton, England, September 1987. Morgan-

Kaufman.

333

[30] N.G. DeBruijn. Lambda calculus notation with nameless dummies. Indagationes Math-

ematicae, 34:381–392, 1972.

[31] Martin Erwig and Udo W. Lipeck. A functional DBPL revealing high level optimiza-

tions. In Paris Kanellakis and Joachim W. Schmidt, editors, Bulk Types & Persistent

Data: The Third International Workshop on Database Programming Languages, pages

306–, Nafplion, Greece, August 1991. Morgan Kaufmann Publishers, Inc.

[32] Leonidas Fegaras. Query unnesting in Object-Oriented Databases. In Proc. ACM

SIGMOD Int’l Conference on Management of Data, Seattle, WA, June 1998.

[33] Leonidas Fegaras and David Maier. Towards an effective calculus for object query

languages. In Proc. ACM SIGMOD Int’l Conference on Management of Data, pages

47–58, 1995.

[34] Anthony J. Field and Peter G. Harrison. Functional Programming. International

Computer Science Press. Addison-Wesley, 1988.

[35] Beatrice Finance and Georges Gardarin. A rule-based query rewriter in an extensible

dbms. In Proceedings of the Seventh International Conference on Data Engineering,

pages 248–256, Kobe, Japan, April 1991. IEEE.

[36] Beatrice Finance and Georges Gardarin. A rule-based query optimizer with multiple

search strategies. Data and Knowledge Engineering, 13:1–29, 1994.

[37] Michael Franklin and Stan Zdonik. Dissemination-based information systems. In IEEE

Data Engineering Bulletin, volume 19 (3), September 1996.

[38] Johann Christoph Freytag. A rule-based view of query optimization. In Umeshwar

Dayal and Irv Traiger, editors, Proceedings of the SIGMOD International Conference

on Management of Data, pages 173–180, San Francisco, California, May 1987. ACM

Special Interest Group on Management of Data, ACM Press.

[39] Richard A. Ganski and Harry K. T. Wong. Optimization of nested SQL queries re-

visited. In Umeshwar Dayal and Irv Traiger, editors, Proceedings of the SIGMOD

International Conference on Management of Data, pages 23–33, San Francisco, Cali-

fornia, May 1987. ACM Special Interest Group on Management of Data, ACM Press.

[40] Georges Gardarin, Fernando Machuca, and Phillipe Pucheral. OFL: A functional exe-

cution model for object query languages. In Proc. ACM SIGMOD Int’l Conference on

Management of Data, pages 59–70, 1995.

334

[41] Bill Gates, June 1998. Keynote Address at SIGMOD ’98.

[42] Goetz Graefe. The Cascades framework for query optimization. Data Engineering

Bulletin, 18(3):19–29, September 1995.

[43] Goetz Graefe and Willam J. McKenna. The Volcano optimizer generator: Extensibility

and efficient search. In Proceedings of the Ninth International Conference on Data

Engineering, pages 209–218, Vienna, Austria, April 1993. IEEE.

[44] Goetz Graefe and Karen Ward. Dynamic query evaluation plans. In James Clifford,

Bruce Lindsay, and David Maier, editors, Proceedings of the SIGMOD International

Conference on Management of Data, pages 358–366, Portland, Oregon, June 1989.

ACM Special Interest Group on Management of Data, ACM Press.

[45] John Grant, Jarek Gryz, Jack Minker, and Louiqa Raschid. Semantic query optimiza-

tion for object databases. In Proceedings of the 13th ICDE Conference, pages 444–454,

Birmingham, UK, April 1997.

[46] J.V. Guttag, J.J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing. Larch:

Languages and Tools for Formal Specifications. Springer-Verlag, 1992.

[47] Marc Gyssens, Laks V.S. Lakshmanan, and Iyer N. Subramanian. Tables as a paradigm

for querying and restructuring. In Proceedings of the ACM Symposium on Principles

of Database Systems (PODS’96), Montreal, Canada, June 1996.

[48] M. Hammer and S. B. Zdonik. Knowledge-based query processing. In Proceedings if

the 6th International Conference on Very Large Databases, Montreal, Canada, October

1980. Morgan-Kaufman.

[49] Joe Hellerstein, June 1997. Personal Correspondence.

[50] Andreas Heuer and Joachim Krger. Query optimization in the CROQUE project.

In Proceedings of the 7th International Conference on Database and Expert Systems

Applications (DEXA 96), LNCS 1134, pages 489–499, Zurich, Switzerland, September

1996.

[51] Jieh Hsiang, Hélène Kirchner, and Pierre Lescanne. The term rewriting approach to

automated theorem proving. Journal of Logic Programming, 4:71–99, 1992.

[52] R. J. M. Hughes. The design and implementation of programming languages. PhD

thesis, University of Oxford, 1984.

335

[53] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. Parametric

query optimization. In Proceedings if the 18th International Conference on Very Large

Databases, pages 103–114, 1992.

[54] C. Norris Ip and David L. Dill. Better verification through symmetry. Formal Methods

in System Design, 9(1/2):41–75, August 1996.

[55] S. C. Johnson. Yacc — yet another compiler compiler. Computing Science Technical

Report 32, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

[56] T. Johnsson. Lambda lifting: transforming programs to recursive equations. In Con-

ference on Functional Programming Languages and Computer Architecture, LNCS.

Springer Verlag, 1985.

[57] M.S. Joy, V.J. Rayward-Smith, and F.W. Burton. Efficient combinator code. Computer

Languages, 10:211–224, 1985.

[58] Navin Kabra and David DeWitt. Opt++: An object-oriented design for extensible

database query optimization. Submitted to VLDB Journal.

[59] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub-optimal

execution plans. In Proc. ACM SIGMOD Int’l Conference on Management of Data,

pages 106–117, Seattle, WA, June 1998.

[60] Alfons Kemper and Guido Moerkotte. Access support in object bases. In Proc. ACM

SIGMOD Int’l Conference on Management of Data, pages 364–374, 1990.

[61] Alfons Kemper, Guido Moerkotte, and Klaus Peithner. A blackboard architecture for

query optimization in object bases. In Rakesh Agrawal, Sean Baker, and David Bell,

editors, Proceedings if the 19th International Conference on Very Large Databases,

pages 543–554, Dublin, Ireland, August 1987. Morgan-Kaufman.

[62] W. Kiessling. SQL-like and QUEL-like correlation queries with aggregates revisited.

UCB/ERL Memo 84/75, Electronics Research Laboratory, Univ. California, Berkeley,

1984.

[63] Won Kim. On optimizing an SQL-like nested query. ACM Transactions on Database

Systems, 7(3):443–469, September 1982.

336

[64] J. King. A system for semantic query optimization in relational databases. In Pro-

ceedings of the 7th International Conference on Very Large Databases, pages 510–517,

September 1981.

[65] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM,

6(2):323–350, 1977.

[66] Henry F. Korth and Abraham Silberschatz. Database System Concepts. Computer

Science Series. McGraw-Hill, 1986.

[67] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The ObjectStore

database system. Communications of the ACM, 34(10):50–63, October 1991.

[68] Joon-Suk Lee, Kee-Eung Kim, and Mitch Cherniack. A COKO compiler. Available at

http://www.cs.brown.edu/software/cokokola/coko.tar.Z, 1996.

[69] Mark Leone and Peter Lee. A Declarative Approach to Run-Time Code Generation.

In Workshop on Compiler Support for System Software (WCSSS), February 1996.

[70] Theodore W. Leung, Gail Mitchell, Bharathi Subramanian, Bennet Vance, Scott L.

Vandenberg, and Stanley B. Zdonik. The AQUA data model and algebra. In Proc. 4th

Int’l Workshop on Database Programming Languages, New York, New York, August

1993. Springer-Verlag.

[71] Alon Y. Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. Query optimization by

predicate move-around. In Proceedings of the 20th VLDB Conference, pages 96–107,

Santiago, Chile, September 1994.

[72] Barbara Liskov and John Guttag. Abstraction and Specification in Program Develop-

ment. MIT Press, 1986.

[73] Gail Mitchell, Umeshwar Dayal, and Stanley B. Zdonik. Control of and extensible

query optimizer: A planning-based approach. In Proc. 19th Int’l Conference on Very

Large Data Bases, August 1993.

[74] Inderpal Singh Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu Ramakr-

ishnan. Magic is relevant. In Proc. ACM SIGMOD Int’l Conference on Management

of Data, pages 247–258, 1990.

[75] M. Muralikrishna. Optimization and dataflow algorithms for nested tree queries. In

Peter M. G. Apers and Gio Wiederhold, editors, Proceedings iof the 15th International

337

Conference on Very Large Databases, pages 77–85, Amsterdam, the Netherlands, Au-

gust 1989. Morgan-Kaufman.

[76] M. Muralikrishna. Improving unnesting algorithms for join aggregate SQL queries.

In Yuan, editor, Proceedings of the 18th Int’l Conference on Very Large Databases,

Vancouver, Canada, August 1992.

[77] J. Ostroff. Formal methods for the specification and design of real-time safety-critical

systems. Journal of Systems and Software, 18(1):33–60, April 1992.

[78] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS

828, 1994.

[79] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule based

query rewrite optimization in Starburst. In Proc. ACM SIGMOD Int’l Conference on

Management of Data, pages 39–48, San Diego, CA, June 1992.

[80] Raghu Ramakrishnan. Database Management Systems. McGraw-Hill, 1996.

[81] J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal of

the ACM, 12:23–41, 1965.

[82] M. Schönfinkel. Über die bausteine der mathematischen logik. Math. Annalen, 92:305–

316, 1924.

[83] Swedish Institute Of Computer Science. SICStus prolog user’s manual. Release 3, #

5, 1996.

[84] Edward Sciore and John Sieg Jr. A modular query optimizer generator. In Proceedings

of the 6th International Conference on Data Engineering, pages 146–153, Los Angeles,

USA, 1990.

[85] P. Griffiths Selinger, M.M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In Proc. ACM

SIGMOD Int’l Conference on Management of Data, pages 23–34, 1979.

[86] Praveen Seshadri, Hamid Pirahesh, and T.Y. Cliff Leung. Complex query decorrelation.

In Stanley Y. W. Su, editor, Twelfth International Conference on Data Engineering,

pages 450–458, New Orleans, LA, February 1996. IEEE, IEEE Computer Science Press.

338

[87] Gail M. Shaw and Stanley B. Zdonik. A query algebra for object-oriented databases. In

Proceedings of 6th International Conference on Data Engineering (ICDE), Los Angeles,

CA, 1990.

[88] P. Sheshadri, M. Livny, and R. Ramakrishnan. The case for enhanced abstract data

types. In Proceedings of the 23rd Conference on Very Large Databases (VLDB), Athens,

Greece, September 1997.

[89] David Simmen, Eugene Shekita, and Timothy Malkemus. Fundamental techniques for

order optimization. In Proc. ACM SIGMOD Int’l Conference on Management of Data,

Montréal, Québec, Canada, June 1996.

[90] Ian Somerville. Software Engineering. Addison-Wesley, 1989.

[91] Hennie J. Steenhagen, Peter M.G. Apers, Henk M. Blanken, and Rolf A. deBy. From

nested-loop to join queries in OODB. In 20th International Conference on Very Large

Data Bases, pages 618–629, Santago, Chile, September 1994.

[92] Michael Stonebraker, Eugene Wong, Peter Kreps, and Gerald Held. The design and im-

plementation of INGRES. Transactions on Database Systems, 1(3):140–173, September

1976.

[93] D. A. Turner. A new implementation technique for applicative languages. Software -

Practice and Experience, 9:31–49, 1979.

[94] D. A. Turner. Miranda — a non-strict functional language with polymorphic types. In

Conference on Functional Programming Languages and Computer Architecture, pages

1–16, Nancy, Fr, 1985.

[95] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1.

Computer Sciene Press, 1988.

[96] United States Census Bureau. United States Census Bureau web site. Located at

http://www.census.gov.

[97] United States Federal Government. THOMAS: United States Congressional web site.

Located at http://thomas.loc.gov.

[98] Bennet Vance. An abstract object-oriented query execution language. In Database

Programming Languages (DBPL-4), Proceedings of the Fourth International Workshop

339

on Database Programming Languages - Object Models and Languages, pages 176–199,

New York City, NY, 1993.

[99] Scott L. Vandenberg and David J. DeWitt. Algebraic support for complex objects

with arrays, identity, and inheritance. In James Clifford and Roger King, editors,

Proceedings of the SIGMOD International Conference on Management of Data, pages

158–167, Denver, Colorado, May 1991. ACM Special Interest Group on Management

of Data, ACM Press.

