Parallel Adaptive Unstructured Computation

by

José Gabriel Castatnos

Analista de Systemas,

Facultad de Ciencias Fisicomatematicas e Ingenieria
Universidad Catdlica Argentina, 1988
Licenciado en Investigaciéon Operativa,

Facultad de Ciencias Fisicomatemadticas e Ingenieria
Universidad Catélica Argentina, 1989

Sc. M. in Computer Science, Brown University, 1996

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
May 2000

(© Copyright 2000 by José Gabriel Castanos

This dissertation by José Gabriel Castanos is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date

John E. Savage, Director

Recommended to the Graduate Council

Date

Paul E. Fischer, Reader

Argonne National Laboratories

Date

Maurice Herlihy, Reader
Date

Franco Preparata, Reader

Approved by the Graduate Council

Date

Dean of the Graduate School and Research

iii

Vita

Vitals

Education

José Gabriel Castanos was born in Buenos Aires, Argentina, on
March 12, 1967. He studied Systems Analysis and Operations Re-
search at the Universidad Catoélica Argentina where he graduated
in 1988. He entered the Sc.M. program at the Department of Com-
puter Science at Brown University in 1993 and joined its Ph.D.
program in 1996.

Ph.D. in Computer Science, May 2000.

Brown University, Providence, RI.

Sc.M. in Computer Science, May 1996.

Brown University, Providence, RI.

Licenciado en Investigacion Operativa, December 1989.
Facultad de Ciencias Fisicomatematicas e Ingenieria.

Universidad Catoélica Argentina, Buenos Aires, Argentina.

Analista de Systemas, December 1988.
Facultad de Ciencias Fisicomatematicas e Ingenieria.

Universidad Catoélica Argentina, Buenos Aires, Argentina.

v

Acknowledgements

This thesis is the most important accomplishment of my first 33 years of being a student.
During this time I have been surrounded by a number of people that have helped to make
this process fruitful and enjoyable. I will always be in debt with them because that have
had direct or indirect influence in my work and that have helped shape and discover the

person that I am today.

I am deeply thankful to my advisor Prof. John Savage for encouraging me to pursue
this Ph.D. and teaching me to do research. John had the vision to find a project that
perfectly suited my skills and interests. During these years we had the best student-advisor
interaction that I can dream of, something I wish every graduate student had the chance
to experience. Although I have been many times on the verge of quitting due to stress and
frustration, John always found the right words to keep me going. In the following pages you
will read the work that we did together. This thesis is the outcome of our many meetings

and discussions in which I always found his wisdom priceless. I owe this Ph.D. to him.

My deepest gratitude goes to Paul Fischer, Maurice Herlihy and Franco Preparata for
reviewing and evaluating both my Sc.M. and Ph.D. theses. They represent an incredible
source of knowledge which was never been more than an e-mail or door knock away. They
always found time to answer my questions and to help me solve my problems. I do really

cherish their support and guidance.

This thesis would have not been completed without the help of Vaso Chatzi. Our joint
work was fundamental on understanding the complex mathematics and numerical analysis

required for this work.

While at Brown I have been very fortunate to work with many professors that I deeply
respect. I am very grateful to Tom Doeppner for allowing me to assist in his operating
systems course. This was a personal challenge for myself and being able to pull through

felt like a little victory. I will always treasure my early interactions with Tom Dean and

I am very thankful giving me the responsibility to teach one of our introductory courses.
I greatly regret that I did I did not have the opportunity to spend more time with Paris
Kanellakis. I am one of the last students that he are left at Brown but I am sure that his

example is never forgotten.

My coming to Brown and to a new country could have not been a more pleasant experi-
ence thanks to the great gang of Room 402: Al Mamdani, Andy Foersberg, Dawn Garneau,
Jon Metzger, Laura Paglione, Madhu Jalan, Rob Mason and especially Sonal Jha who were
always finding new ways of keeping me away from the CIT. For two wonderful years they
manage to make our office the funniest windowless spot in Providence. All my officemates
Sonia Leach, Michael Littman, Song Zhang and David Tucker had to bear my insatiable
demands for computing power. Thanks also to my friends Laurent Michel and Michael

Benjamin.

Finally, I would like to dedicate this thesis to my family. Without their love and en-

couragement I would have not been able to come to the USA to pursue my goals.

vi

Contents

List of Tables xi
List of Figures xiii
1 Introduction 1
1.1 Motivation L e 1

1.2 The Challenge of Parallel Adaptive Computation 3

1.3 Contributions of This Thesis 4

1.4 Related Work oL 6
1.41 DIME e 6

1.4.2 Scalable Unstructured Mesh Computation (Summa3D) 6

1.43 PMDB. e 7

2 The FEM Adaptive Process 8
2.1 A Short Introduction to the Finite Element Method 8
2.2 Selection of the Mesh Type 11
2.3 Qualities of Unstructured FEM Meshes 11
2.4 Local Adaptation of FEM meshes 12

3 PARED: An Overview 13
3.1 What is PARED? 13
3.2 FEM Mesh Representation in Pared 16
3.2.1 Refinement Treeso 16

3.2.2 TImplementing a Parallel Mesh With Remote References 18

vii

3.3 Using PARED to Solve PDEs oo

Local Adaptation of Unstructured Meshes
4.1 Rivara’s Longest Edge Bisection in Two Dimensions
4.2 Rivara’s Longest Edge Bisection in Three Dimensions
4.3 Parallel Refinement of Unstructured Meshes
4.3.1 The Challenge of Refining in Parallel
4.3.2 The Message Model for Refinement
4.4 Properties of Parallel Refined Meshes
4.5 Mesh Coarsening L L e
4.6 Parallel Refinement of Unstructured Meshes: Experimental Results
4.6.1 Global Refinement of Regular Meshes
4.6.2 Global Refinement of Irregular Meshes

Mesh Partitioning and Repartitioning
5.1 Introduction. L e
5.2 Partitioning Finite Element Meshes
5.2.1 Review of Graph Partitioning Methods
5.3 The Repartitioning Problem 0.
5.4 The Parallel Nested Repartitioning Method (PNR)
5.4.1 Repartitioning the Adapted Mesh
5.5 Quality of the Partitions Obtained from PNR
5.5.1 Competitive Analysisof PNR
5.6 The High Migration Cost of RSB and Multilevel- KL
5.7 Bounding the Migration Cost
5.8 Minimizing the Migration Cost
5.9 A Transient Problem L oL oo

Mesh Migration
6.1 Introduction. e e

6.2 Overview of the Migration Algorithm

viii

22
22
23
24
27
29
32
36
36
37
42

45
45
46
48
51
52
53
55
57
64
67
69
72

6.3

The
7.1
7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9

The
8.1
8.2

8.3

The Mesh Migration Procedure used in PARED 83
6.3.1 Element and Vertex Transfer Phase 86
6.3.2 Remote Reference Update Phase 89
6.3.3 Element Deletion, Removal of Remote Vertices, and Vertex Deletion 90
Engineering of PARED 94
Introduction oL 94
Mesh Data Structures L 95
721 Mesh Classes o i il 96
7.2.2 Element Classes e 97
7.2.3 Vertex Classes 0 it 99
7.2.4 Parallel Meshes L 101
Classes Controlling the Refinement of Meshes 101
Partitioning of Meshes L L oL 103
Classes Controlling Mesh Migration 103
Console Classes o i i e 106
Representing Systems of Equations, 107
Higher Order Polynomials, 110
Specifying Problems in PARED oL L. 110
7.9.1 Defining New Problems in PARED 112
7.9.2 Predefined Differential Equations 113
7.9.3 Problemand PARED 114
7.9.4 Future Improvements to the Problemclass 115
Communications Library of PARED 116
Motivation L e e e e 116
New Classes in Our Communications Library 117
8.2.1 Communicators and Ports 117
822 Buffers. 120
8.23 Stream Classes e 120
Using Our Library to Exchange Messages 121

ix

8.4 Performance Analysis L oL o

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5

Introduction
Point-to-Point Communication
Ping-Pong Communication
All-to-All Communication

Ring Communication.o oL

9 Experimental Results
9.1 Putting it All Together. L Lo
9.2 A Laplace Example oL e
9.2.1 ExperimentsonanIBMSP
9.2.2 Experiments on Sun Workstations
9.3 A Navier-Stokes Problem 0.
9.3.1 Problem Formulation
9.3.2 Solution Strategy L Lo
9.3.3 Numerical Results

10 Future Work

Bibliography

136
136
136
139
142
142
142
145
147

159

162

List of Tables

4.1

4.2

4.3

4.4

4.5

5.1
5.2

5.3

Number of elements and vertices of meshes obtained by the repeated refine-

ment of regular two- and three-dimensional meshes.

Largest number of edge refinements sent by a processor to other processors

in each refinement level obtained by performing successive refinements on a

regular 2D mesh partitioned randomly and with the Multilevel-KL algorithm.

Largest number of edge refinements sent by a processor to other processors

in each refinement level obtained by performing successive refinements on a

regular 3D mesh partitioned randomly and with the Multilevel-KL algorithm.

Number of elements and vertices that result from successive refinement of

irregular two- and three-dimensional meshes.

Largest number of new edge refinements sent by a processor to other pro-
cessors in each refinement phase by performing successive refinements on an

irregular 2D and 3D meshes (Multilevel-KL partitions).

Mesh sizes of the locally adapted 2D and 3D meshes at each refinement level.

Comparison of the quality of the partitions produced by Multilevel-KL and
PNR. The tables show the number of shared vertices obtained by partitioning
a sequence of locally adapted meshes with Multilevel-KL. and PNR into 4 to
128 subsets. L e e e

Migration cost resulting from repartitioning a series of two-dimensional un-
structured meshes of increasing size using the RSB algorithm. M1 is the
mesh before refinement and distributed according a balanced partition IT'?
obtained from RSB. M! is the refined mesh. II* is a new balanced partition
of M also produced by the RSB algorithm and I is a permutation of it

that minimizes data movement.

xi

39

40

40

43

44

57

58

5.4

9.5

5.6

Migration cost resulting from repartitioning a series of three-dimensional un-
structured meshes of increasing size using the RSB algorithm. M?~! is the
mesh before refinement and distributed according a balanced partition IT*~!
obtained from RSB. M! is the refined mesh. II* is a new balanced partition
of M also produced by the RSB algorithm and I is a permutation of ft

that minimizes data movement.

Migration cost resulting from repartitioning a series of two-dimensional un-
structured meshes of increasing size using the PNR algorithm. M?~1 is the
mesh before refinement and distributed according a balanced partition IT*~1
obtained from PNR. M? is the refined mesh. II' is a new balanced partition
of M also produced by the PNR algorithm and II* is a permutation of II’.

Migration cost resulting from repartitioning a series of three-dimensional un-
structured meshes of increasing size using the PNR algorithm. M® ! is the
mesh before refinement and distributed according a balanced partition IT¢?
obtained from PNR. M? is the refined mesh. II* is a new balanced partition
of M? also produced by the PNR algorithm and I is a permutation of g

xii

66

73

74

List of Figures

2.1

3.1
3.2

3.3

3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Decomposition of a two-dimensional domain into a triangular mesh.

A snapshot of PARED’s graphical user interface.

The refinement of the mesh in (a) using a nested refinement algorithm creates
a forest of trees as shown in (b) and (c¢). The dotted lines identify the leaf

triangles.o L L e

Mesh representation in a distributed memory machine using remote refer-

CIICES. . . . o o o e i e

Outline of the different procedures executed by PARED to adaptively compute
the solution of PDEs. o

Longest edge (Rivara) bisection algorithm on triangular mesh.
Rivara’s longest edge bisection in two dimensions..
Rivara’s longest edge bisection in three dimensions.
Parallel longest edge bisection.
Parallel adaptation collision.
The messaging algorithm executed by the coordinator Po.
Message model for refinement by processor P;.
Termination detection of the refinement phase.

A cyclic propagation using the parallel longest edge bisection algorithm. . .

4.10 General longest-edge bisection (GLB) algorithm.

4.11 Initial two- and three-dimensional regular meshes.

xiii

17

19

4.12

4.13

4.14

4.15
4.16

5.1

5.2

5.3

5.4
5.5

5.6

5.7

5.8

Regular two- and three-dimensional regular meshes partitioned between 32
processors using a partition provided by Multilevel-KL (left) and a random
partition (right). L.
Refinement time for the global successive refinements of a regular two dimen-
sional mesh with a (a) Multilevel-KL partition and (b) random partition. (c)
and (d) show the same times for the refinement of a regular three-dimensional
mesh.
Relative speedups for the refinement of a regular mesh using Multilevel-KL
and random partition for a (a) two-dimensional regular mesh of 262,144 ele-
ments and (b) three-dimensional regular mesh of 98,304 elements.

Initial two- and three-dimensional irregular meshes on a square and a cube.

Refinement time for the global successive refinements of a irregular (a) two-
dimensional mesh and (b) three-dimensional irregular mesh when Multilevel-
KLisused. e

Outline of the Parallel Nested Repartitioning Algorithm.

Irregular two- and three-dimensional regular meshes adaptively refined to
solve Laplace’s equation of a problem that exhibits high physical activity in

one of its corners. e e e e e

Algorithm to convert a partition II* of G with balance B to a partition IT°
of G withbalance B+y. e

An 6-level uniform refinement of a triangle.

Outline of PNR’s procedure to repartition the dual graph G in the coordina-
tor Po. . . o e e e e e e e e
(a) and (b) show the computed solution u with t = —0.5 and ¢t = 0.5. (¢) and
(d) illustrate the adapted mesh at these two different time steps.

Quality of the partitions measured by the number of shared vertices produced
by RSB and PNR for 4, 8, 16 and 32 processors for each of the 100 time steps
between t = —0.5t0t=0.5.

Elements moved between time steps of partitions produced by RSB, permuted
RSB and PNR for 4, 8, 16 and 32 processors.

xiv

39

41

42
43

44

54

57

60
61

72

76

7

78

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

A simple migration example. (a) shows the initial mesh. The goal is to move
Q, from Py to P,. (b) We first copy €, to P» and (c¢) update the references.
(d) We finally delete the element Q, in Py.

The mesh shown in (a) has shared vertex V2 between Py and P;. (b) Py sends
the vertex to P, while P; sends the element to P3. (c) shows an incorrect
mesh because there are no references between the copies of V5 located in P

and P3. (d) shows the correct final mesh.

Migration of elements from an initial partition II* (a) to a target partition

[1*+1 (b) showing the multiple copies and remote references.

Initial distribution of the mesh between four processors for example in Figure
6.3 (@) -« - e

Element and vertex transfer phase: procedure executed by processor P; to

send a selected set of elements and vertices to a destination processor P;.

Element and vertex transfer phase: state of the mesh after creating the new
copies in the destination processors. We highlight the new elements vertices
created in this phase in each processor. We only show the references between

the multiple copies of vertex V7 to reduce the complexity of this figure.

Element and vertex transfer phase: procedure executed by each processor P;
to receive a transfer message from processor P; and to create the elements

and vertices indicated in the message.,

Remote reference update phase: outline of the algorithm executed by each

processor P; to update the references of new shared vertices.

Remote reference update phase: state of the mesh at the end of this phase.
The elements that will be deleted in each processor in the next phase are
highlighted

Element Deletion: state of the mesh after deleting the elements from the
source processors but before removing the unnecessary vertices. We only
include the references for vertices that are going to be removed in the next

phase

Procedure executed by each processor P; in the three phases of the migration

algorithm.o

A migration example: internal representation of the mesh at the end of the

migration phase. L L

XV

82

84

85

86

87

88

89

89

90

91

92

7.1

7.2

7.3

7.4

7.5
7.6

7.7

7.8

7.9

7.10
7.11

8.1
8.2

8.3

FEMesh classes. FEMeshCommon is an actual mesh or a portion of the mesh
located in a processor. The concrete classes are FEMesh2D for 2D meshes and
FEMesh3D for 3D ones. To simplify the use of parallel meshes we created the
class FEMeshStub that implements the same interface (or public methods) as

FEMeshCommon. i i i i i e e e e e e e e e e e e e

The Element class hierarchy supports two- and three-dimensional elements.

The RootElement classes store references to the elements in the initial mesh.

The Vertex class hierarchy. PARED defines classes for two and three dimen-
sional vertices (Vertex2D and Vertex3D). Vertices in the boundary of the
domain (of type BoundaryVertex2D and BoundaryVertex3D) contain refer-

ences to the Boundary objects.

Mesh refinement classes. RefineMgr uses the classes SharedVertexInfo and

SharedVertexNum to manage the parallel refinement of meshes.
Class diagram of the classes used to compute partitions of the mesh.

Mesh migration classes. The manager class MigrateMgr uses a variety of

auxiliary classes such as AddRef and DeleteRef.

Users interact with PARED through Console objects. The ConsoleMaster
class is used in serial systems. In parallel mode a ConsoleMaster is lo-
cated in the coordinator processor, while the remaining processors contain a

ConsoleSlave object. Lo

Matrix class diagram. PARED supports one- two- and three-dimensional ma-

trices using a variety of storage methods.

The system class combines AbsMatrix2D, AbsMatrix1D and Precondition

and provides methods for solving linear systems.
Diagram of the classes used to define higher order approximations.

The Problem class hierarchy defines the equation to solve.

Class diagram of PARED’s communications library.

A simple example that communicates a vector of doubles between two pro-

cessors using our library. Lo L Lo Lo

To communicate user defined objects the user must provide an implementa-

tion to the input and output stream operators.

xvi

97

98

100

102
104

104

106

108

109
111
112

118

122

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

9.1

9.2

9.3

Point-to-Point MPI Communication. Bandwidth obtained by sending vectors
of 1 to 256K doubles using MPI’s blocking, non-blocking and packing function
callsina NOW and IBM SP.

Point-to-Point Stream Communication. Bandwidth obtained by sending vec-
tors of 1 to 256K doubles using the MPI0Stream and MPIIStream with buffers
of 4K, 16K and 64K bytes in a NOW and IBM SP.

Point-to-Point MultiStream Communication. Bandwidth obtained by send-
ing vectors of 1 to 256K doubles with the classes MPIMultiOStream and
MPIMultiIStream with buffers of 4K, 16K and 64K bytes in a NOW and
IBM SP. . . e

Ping-Pong MPI Communication. Bandwidth obtained by sending vectors of
1 to 256K doubles using MPI’s blocking, non-blocking and packing function
callsina NOW and IBM SP.

Ping-Pong Stream Communication. Bandwidth obtained by sending vectors
of 1 to 256K doubles using the MPI0Stream and MPIIStream with buffers of
4K, 16K and 64K bytes in a NOW and IBM SP.

Ping-Pong MultiStream Communication. Bandwidth obtained by sending
vectors of 1 to 256K doubles with the MPIMulti0Streamand MPIMultiIStream
classes with buffers of 4K, 16K and 64K bytes in a NOW and IBM SP.

All-to-All communication. Bandwidth obtained by exchanging between all
the processors in a NOW and IBM SP for 4 to 32 processors sending and
receiving of 1 to 256K doubles to and from all the other processors in a NOW
and IBM SP.

Ring communication. Bandwidth obtained by first sending and receiving of
1 to 256K doubles to the next and previous processor respectively in a NOW
and IBM SP. e e

Number of elements and vertices that result from successive local refinements

of irregular two- and three-dimensional meshes.

Times for each refinement phases of the locally adapted two-dimensional

problem on 4, 8, 16, 32 and 64 processors of an IBM SP parallel computer.

Times for each refinement phases of the locally adapted three-dimensional

problem on 4, 8, 16, 32 and 64 processors of an IBM SP parallel computer.

xvil

126

128

129

130

132

134

135

138

140

141

9.4 Times for each refinement phases of the locally adapted two-dimensional

problem on 4, 8, 16, 32 and 64 processors of a network of workstations. . . 143

9.5 Times for each refinement phases of the locally adapted three-dimensional

problem on 4, 8, 16, 32 and 64 processors of a network of workstations. . . 144

9.6 Procedure for adaptively solving the incompressible Navier-Stokes equations. 146

9.7 Initial 2D mesh used to study the flow past a cylinder. 148
9.8 Refined mesh at time ¢ = 0.5 secs. (top) and ¢ = 1.25 secs. (bottom). . . . 149
9.9 Refined mesh at time ¢ = 2.5 secs. (top) and ¢ = 5 secs. (bottom). 150
9.10 Refined mesh at time ¢ = 7.5 secs. (top) and ¢ = 10 secs. (bottom). 151
9.11 Refined mesh at time ¢ = 12.5 secs. (top) and ¢ = 15 secs. (bottom). 152
9.12 Refined mesh at time ¢ = 17.5 secs. (top) and ¢ = 20 secs. (bottom). ... 153
9.13 Refined mesh at time ¢ = 22.5 secs. (top) and ¢ = 25 secs. (bottom). 154
9.14 Refined mesh at time ¢ = 27.5 secs. (top) and ¢ = 30 secs. (bottom). ... 155
9.15 Number of elements, vertices and shared vertices for time step ¢, 0 < ¢t <

15,000, in the adapted meshes used to simulate a turbulent flow. 156
9.16 Fraction of the total time used to compute i, solve p, solve u, select elements

for refinement and coarsening using higher order polynomials, adapt the mesh

and partition and migrate the mesh for all 15,000 time steps of a turbulent

flow simulation. oL o 157

xviil

Chapter 1

Introduction

1.1 Motivation

The finite element method (FEM) is a powerful and successful collection of techniques for
the numerical solution of partial differential equations (PDEs). The FEM was originally
developed to solve structural problems but it is now used to approximate the solution
of PDEs in all areas of engineering and applied mathematics. Many static problems have
regions of high physical activity embedded in large domains in which the solution is smooth.
In transient problems, the regions of interest can appear or vanish, and modify their size,
shape or location, as occurs in the study of turbulence in fluid flows. In all cases, it
is necessary to adapt the mesh to follow the physical anomalies so that regions of high

gradients are not under-resolved while maintaining a coarser mesh everywhere else.

Adaptive computation offers the potential to provide large storage and computational
savings on problems with dissimilar scales by focusing the available computational resources
on the regions where the solution changes rapidly. Adaptive computation can be applied
to a wide variety of problems and has been successfully implemented on a wide variety of
meshes for finite-difference, finite-element, finite-volume and spectral methods, providing
exponential rates of convergence. An overview of problems and relevant adaptation strate-
gies is given by Powell, Roe and Quirk [69]. Unfortunately, adaptivity significantly increases
the complexity of algorithms and software. Nevertheless, the gains produced by adaptive
schemes greatly justify their extra overhead and the challenging programming task. To
cope with this complexity, new design techniques based on object-oriented technology are

needed.

In this thesis we study the problems that arise when adaptive schemes are used in a
parallel computing environment. We discuss the difficulties of designing parallel adaptation
methods and we introduce a new parallel refinement algorithm based on Rivara’s bisection
algorithm for triangular and tetrahedral meshes [72, 73]. By representing the adapted mesh
as a forest of trees of elements we avoid the synchronization problems for which Jones and

Plassman [54] use randomization.

The local adaptation of a mesh produces imbalances in the work assigned to processors.
Thus, adaptive finite element methods are an excellent example for the study of dynamic
load balancing schemes on distributed memory parallel computers. We propose a new
Parallel Nested Repartition (PNR) algorithm that has its roots in the multilevel algorithms
by Barnard and Simon [10] and by Hendrickson and Leland [47]. Our method produces high
quality partitions at a low cost, a very important requirement for recomputing partitions
at runtime. It has a very natural parallel implementation that allows us to repartition
adapted meshes of arbitrary size. The collapsing of the elements is performed locally in
each processor using the refinement history and avoiding the communication overhead of
other partitioning methods [56]. We have also designed a migration procedure to rebalance

the mesh after repartitioning.

The work presented in this thesis assumes the LogP [27] model of computation in which
a parallel computer consists of few (much smaller than the problem size) coarse grained
processing nodes that communicate by exchanging messages across a high latency network.
The LogP model is an accurate characterization of current parallel computers that have a

relatively high message startup cost.

To evaluate these ideas we have developed and implemented a parallel object-oriented
system called PARED [21]. Earlier work on this system was described in [16, 17, 18]. The
constant advances in computer architectures has allowed researchers to increase the range of
the problems that can be studied and to improve the quality of their simulations. Massively
parallel computers can deliver impressive peak performances but many more gains are still
possible by making better use of the current technology. The most salient characteristic
of adaptive codes is the high sophistication of their code and data structures. The use
of object oriented techniques allowed us to reduce the complexity of the implementation

without significantly affecting the performance.

1.2 The Challenge of Parallel Adaptive Computation

A system for the parallel adaptive solution of PDEs must integrate subsystems for solv-
ing equations, estimating errors, adapting a mesh, finding a good assignment of work to
processors, migrating portions of a mesh according to a new assignment, and handling
interprocessor communication. Each of these systems offer challenging problems of their

OwWIl.

Adaptive schemes start by computing a solution on an initial coarse grid. Based on
local and global error estimates, the mesh is locally adapted so that high gradient regions
are not under-resolved and low gradient regions are not over-resolved. In many refinement
algorithms the refinement of a mesh element might cause the refinement of adjacent elements
to maintain the conformality of the mesh. In a parallel environment, where a portion of the
given mesh and its corresponding equations and unknowns is assigned to each processor,
this propagation of refinement requires synchronization between two or more neighboring

Processors.

One of the most difficult tasks of parallelizing a refinement algorithm that propagates
the refinement is to determine the termination of the refinement phase. A processor might
have no more local elements to refine, but it needs to wait for possible propagations from
neighbor processors. Only when all the processors agree on the termination of the refinement

phase can they proceed to the next phase.

Mesh adaptation produces imbalances in the work assigned to the processors. Because
of the irregular load requirements of parallel adaptive computation, a mesh must also be dy-
namically repartitioned and migrated between processors at runtime. Repartitioning must
be interleaved with the numerical simulation. Thus, we cannot afford expensive algorithms
that recompute partitions from scratch after each refinement or coarsening. While we have
developed partitioning algorithms that run fast in parallel, these algorithms must avoid the
movement of large regions of the mesh in response to small changes, which is typical of

standard partitioning algorithms.

Finally, we want our project to execute on distributed memory machines that do not
share a common address space. Our system must provide support for global data struc-
tures that are distributed between processors so that different objects can migrate between

Processors.

1.3 Contributions of This Thesis

Rather than studying the problems of mesh adaptation, mesh repartitioning and mesh mi-
gration independently, in this thesis we put special emphasis on investigating how these
different components interact. By considering adaptivity as a whole we obtain new results
that are not available when these problems are studied separately. For example, there is
extensive literature on graph partitioning methods, but there is almost no work on parti-
tioning, and in particular repartitioning, of adapted meshes. By maintaining the adaptation
history of the mesh we can easily cluster adjacent elements, thereby reducing the complexity

of partitioning large meshes.

The most important contributions of the work presented in this thesis are the following:

e We have designed a parallel refinement algorithm for unstructured two- and three-
dimensional meshes based on the longest edge bisection of triangles and tetrahedra.
We have studied the properties of the meshes generated by this parallel algorithm and
we have shown the resulting meshes and the ones generated by the serial longest edge

algorithm are the same.

e We have developed a new partitioning algorithm for adapted meshes called Parallel
Nested Repartitioning (PNR). The quality of the partitions obtained using this method
is similar to the ones produced by the widely used Recursive Spectral Bisection (RSB)
and Multilevel-KL from the Chaco [48] graph partitioning library. Our algorithm
takes as an input previously computed partitions and generates partitions that have
a much smaller migration cost compared to the ones obtained from standard methods

for problems on which the mesh is already allocated to processors.

e We have created new data structures for parallel adaptive meshes. Our environment
supports the creation and destruction of mesh structures at runtime in individual
processors and the reassignment of portions of the mesh between the processors, all
while maintaining a consistent global mesh. In our meshes, the assignment of elements
and vertices to processors is not fixed throughout the computation. Instead our design
supports dynamically changing connectivity information where references to remote
objects are updated as new elements are created, deleted or moved to a new processor
to rebalance the work. The complexity of this approach is hidden by the use of a
global object space where remote object communication is facilitated by the use of

proxies. Cached proxies are also used to reduce latency and communication overhead.

e We have designed and implemented PARED, a system for the parallel adaptive solution
of partial differential equations. In [16, 18] we presented an early prototype that
supported the parallel manipulation of unstructured two-dimensional meshes. This
prototype introduced some of the ideas that were later included in PARED such as

refinement trees and remote references but did not include any FEM analysis.

PARED is based on a serial adaptive project developed in conjunction with Vasiliki
Chatzi. This system supports a variety of mesh types, including the use of Crystalline

Meshes proposed by Chatzi and Preparata [25, 26].

PARED is an integrated system that includes modules for adapting the mesh, partition-
ing and repartitioning the work between processors, mesh migration, error estimation
and solution of systems of equations. It runs on distributed memory machines such

as the IBM SP and networks of workstations.

e We have designed a high performance library to communicate irregular data structures
between processors. This library uses a standard C++ stream interface. Therefore

exchanging objects between processors is similar to reading and writing files.

e We have evaluated these ideas in a variety of static and dynamic partial differential
equations in an IBM SP and a network of workstations. We have shown that our
system can handle very large meshes and can solve complex problems such as the
incompressible Navier-Stokes equations at high Reynolds numbers. In this example
we have shown that our dynamic meshes can be 4.75 to 18.63 times smaller than

equivalent static meshes that achieve the same desired error.

Chapters 2 and 3 present a short introduction to the FEM and an overview of PARED.
The parallel mesh refinement algorithm is described in Chapter 4. Chapter 5 provides an
overview of graph partitioning algorithms and introduces our new repartitioning heuristics.
Dynamic meshes and the parallel mesh migration procedure are the subjects of Chapter
6. Chapter 7 describes the classes that form PARED and Chapter 8 presents a new com-
munications library for object migration between processors. Finally, Chapter 9 shows the
solution obtained by our adaptive system to two typical problems: a static problem with a

region of high errors and a transient fluid flow.

1.4 Related Work

Due to its importance, parallel adaptive computation has been the subject of several
projects. Although all these systems have a common goal, each system proposes differ-
ent strategies for each phase of the adaptive process. Among the most important projects
that are based on unstructured triangular or tetrahedral meshes (such as the ones used in
PARED), we mention DIME, Summa3D and PMDB.

1.4.1 DIME

Pared follows in the spirit of the Distributed Irregular Mesh Environment (DIME) [94], an
early system developed by Roy Williams at the California Institute of Technology. DIME
executes in the Cubix server [1], an old parallel environment system that is not supported

by current parallel computers.

The original version of DIME works on 2D unstructured meshes. DIME does not support
mesh coarsening so it cannot be used in fluid dynamic problems. DIME uses a variety
of mesh partitioning algorithms such as Simulated Annealing and Orthogonal Recursive

Bisection (ORB) that do not minimize the movement of data between repartitions.

DIME uses a database of voxels with hash functions to maintain the identity of each
mesh structure. The migration procedure implemented in DIME is inefficient because every
processor must receive every migration message in order to update references to shared data

structures.

1.4.2 Scalable Unstructured Mesh Computation (Summa3D)

In [53, 54], Jones and Plassman describe a method for the parallel refinement of triangular
meshes. In this method, the mesh is partitioned by vertices rather than by elements (unlike
PARED), although each element is owned by only one processor. To avoid the synchroniza-
tion problem of refining adjacent elements owned by neighboring processors, the authors
rely on the use of heuristics. They first compute an independent set of the elements of
the mesh. Elements in the same subset are refined in the same phase so no two adjacent

elements can be refined at the same time.

The independent set is approximated by the assignment of random numbers to the
elements of the mesh. The authors also propose a strategy on which elements are assigned

to subsets according to a graph coloring of the dual graph of the mesh. In a bounded

degree graph, as it is the case in the dual graph, the maximum number of colors, and also
the number of subsets, is independent of the graph size. Nevertheless, the greedy algorithm
proposed to compute the graph coloring still requires an initial random assignment of colors

to mesh elements.

Its partitioning heuristic is based on a variation of ORB which is called Unbalanced Re-
cursive Bisection (URB). It is well known that methods that rely on coordinate information
of the mesh such as ORB and URB often produce partitions with a high bisection width,

that is, they contain many more interprocessor links than is necessary.

1.4.3 PMDB

In [83] an adaptive environment for unstructured problems called PMDB is presented.
PMDB refines tetrahedra using a variety of different subdivision patterns. PMDB first
marks a set edges for refinement. Then each element is refined into two or more tetrahedra
depending on which of its edges are marked. In the case that this procedure creates a
tetrahedron with very sharp angles, then some adjacent tetrahedra might be additionally
refined but only if they are located in the same processor. PMDB does not propagate the
refinement across processor boundaries. Therefore, multiple runs of the same program in

different number of processors can generate different results.

PMDB offers several partitioning heuristics. Its diffusion-based method, which moves
boundary elements between processors, is slow; it requires multiple iterations to converge to
a balanced distribution. Its octree graph partitioning algorithm does not guarantee small

bisection widths because it can produce many small disconnected subsets.

Chapter 2

The FEM Adaptive Process

2.1 A Short Introduction to the Finite Element Method

The finite element method (FEM) is used to approximate the solution to a wide range of
differential equations. Although the FEM is more difficult to implement than competing
techniques such as finite differences, it easily applies to problems with irregular domains,
general boundary conditions and non-uniform grids. In this section we present a short
overview of the FEM and introduce some of the notation and procedures that we use in the
following chapters. For a more extensive treatment of the FEM see [4, 23, 52, 80, 81, 96].
The FEM is actually a class of methods that seek an approximation of an unknown
function u from a finite dimensional space Sy,,. This space (also known the trial space) is
defined by a set of basis functions {¢1, ..., ¢, }. One important property of basis functions
is that any function in the space S,, can be expressed by a unique linear combination of

them. Therefore, an approximation @ in the space Sj, to a partial differential equation
Lu=q

can be expressed in the form

m
uR U= g a;p;
i=1
where L is a differential operator and the coefficients a; are unknowns.

For example, consider the two-dimensional Poisson problem

Pu *u)
- (W + 8—142) = q(z,y) in {2 (2.1)
u = 0 on 02

where € is a region in the plane and 09 is its boundary.

Multiplying equation 2.1 by an arbitrary smooth function v that satisfies v = 0 on 92

and integrating in the domain results in the following equation.

02u 0%u
_ gu o) g0 = Q
/g“(fw * ay2> a /Q“qd

Using Green’s formula to integrate by parts we obtain

OovOou Ovou
/Q(%% + a—ya—y) dQ = /QquQ. (2.2)

This equation is almost equivalent to the original equation but contains lower order

derivatives than the original formulation.

The weak formulation of Equation 2.2 is: find u € H{ such that for all v € Hj the

equation holds with

0
v dS =0 (2.3)
aa On
The first step in the FEM is to divide the domain 2 into a set of non-overlapping cells
{Q4,1 < a < n} or elements of regular shape such as triangles and quadrilaterals in 2D and

tetrahedra and hexahedra in 3D, as suggested in Figure 2.1.

We then define the trial space S,, which is usually chosen from a finite-dimensional
subspace H|, consisting of piecewise polynomials of bases 1. To every node j in the mesh
we associate a basis function ¢;. For triangular linear elements, these are polynomials of

linear order in = and y of the form:
di(z,y) =a+ bz + cy.

These functions ¢; are continuous in 2 and piecewise linear. If (z;,y;) are the coordinates

of node j, then ¢; also satisfies the following condition:

0 ifij
bj(xi,ys) = 0sj =
1 ifi=j

and the basis coefficients a; correspond to the nodal point values.

To make an approximation to u from equation 2.2 we put a set of weighting functions
wj, 1 < j < m, in place of v such that the number of equations is equal to m, the number

of unknowns a;,1 < i < m. There are several choices of w; that result in the different

10

Figure 2.1: Decomposition of a two-dimensional domain into a triangular mesh.

variations of the method of the weighted residuals, a general class of methods that include
the FEM. One of its most popular forms, known as the Garlekin method, chooses w; = ¢;

and results in the system of equations of m unknowns

Ka=f (2.4)
where
[(999 | 0¢; 0¢i
ki = /Q(o or ' dy Oy) d (2:5)
fi= [draan.

The coefficient matrix K (usually referred as the stiffness matriz) and the force vector f

are easily obtained by summing the contributions of the individual elements.

The matrix K in equation 2.5 is sparse because k;; = 0 unless there is an overlap on
the regions in which ¢; and ¢; are nonzero. K is also symmetric and positive definite so
the linear systems of equations 2.4 has a unique solution. On meshes composed of triangles
or tetrahedra its non-zero structure is usually irregular. The system of equations can be
solved using Gaussian elimination without pivoting or by most iterative methods, such as

Conjugate Gradient.

11

2.2 Selection of the Mesh Type

The selection of the mesh type depends on the problem to be studied since there is no
strategy that is considered best for every problem. Most finite element meshes belong to

two categories:

e Structured meshes: there is a mapping from the physical space to the computational
space. In the computational space the elements appear as squares (in two dimensions)
or cubes (in three dimensions). Each vertex of the mesh, except the boundary vertices,
has an isotropic neighborhood. The neighbors and vertices of an element are easily
calculated using array based data structures. For example, the neighbors of a grid
point (i,7) in a two dimensional space using a natural ordering are (i — 1,7), (¢ +
1,7),(i,5 —1),(i,7 + 1). Elements are also defined using a similar ordering. Thus,
it is not necessary to reserve additional storage to hold the identity of neighbors and

vertices of any particular element.

e Unstructured meshes: in this case the elements store explicit connectivity information
to determine their neighbors and vertices. The data structures in this case are more

complex than in structured meshes but it is easier to represent irregular geometries.

Each type of mesh has its advantages and disadvantages. Structured meshes require
simpler codes with less overhead but are more limited in the representation of complex
domains. Although a number of techniques have been developed to find appropriate map-
pings from the physical domain to the computational domain [22, 90, 91], it is generally
not possible to find a transformation that fits irregular domains. Unstructured meshes,
such as the ones used in PARED, are more complex, require more storage and overhead per
element but can easily represent arbitrary domains. For that reason, unstructured meshes
are usually used on problems with complex geometries, such as wings or machine parts.
Some techniques implement the meshes as a combination of both approaches [95, 44]. For
example, block structured or semistructured methods, decompose the domain into a set of

unstructured super-elements, where each super-element is a structured grid.

2.3 Qualities of Unstructured FEM Meshes

The compatibility of a mesh to a problem topology and correct treatment of the boundaries

are not the only requirements for high-quality meshes. In addition, the mesh must also

12

satisfy element size and shape constraints, which vary over the domain.

The rate of convergence and quality of the solutions provided by the FEM depends
heavily on the number, size and shape of the mesh elements. For a given shape, the
approximation error increases with element size (h), which is usually measured by the length
of the longest edge of an element. Smaller elements result in larger systems of equations

which increase the complexity of the method.

The condition number of the matrices used in the FEM and the approximation error
are related to the minimum and maximum angle of all the elements in the mesh [7]. In
three dimensions, the solid angle of all tetrahedra and their ratio of the radius of the
circumsphere to the inscribed sphere (which implies a bounded minimum angle) are usually
used as measures of the quality of the mesh [60, 67]. For some flow problems, the orientation

of the elements is also important.

In addition, the basis functions must satisfy certain continuity conditions at the element
boundaries. A mesh is conforming if neighbor elements intersect at a common vertex, edge
or face. The mathematical formulation only admits conforming meshes. Although the FEM
has also been applied to non-conforming meshes, conformality is a property that greatly

simplifies the method. It is also assumed to be a requirement in this thesis.

2.4 Local Adaptation of FEM meshes

The goal of adaptive computation is to optimize the computational resources used in a
simulation which can be achieved by refining a mesh to increase its resolution on regions
of high relative error in static problems or by refining and coarsening the mesh to follow

physical anomalies in transient problems [95].

If a numerical method that has an accuracy of order O(h?), where h is a measure of
the element size and p is the order of the polynomials used in the approximation, the
convergence to the exact solution u can be obtained by decreasing h or by increasing p. In
an optimal mesh, every element should have the same error. Thus, every element in which

the local error condition is not satisfied is a candidate for refinement.

The adaptation of a mesh can be performed by changing the order of the polynomi-
als used in the approximation (p-refinement), by modifying the structure of the mesh (h-
refinement), or a combination of both (hp-refinement). p-refinement can be thought as
increasing the amount of information associated with an element without changing the

geometry of the mesh, where p is the polynomial order of the basis functions.

Chapter 3

PARED: An Overview

3.1 What is PARED?

PARED [21] is a system for the parallel adaptive solution of PDEs. This system is a contin-
uation of earlier work on parallel meshes presented in [16, 18]. PARED supports the local
refinement and coarsening of unstructured two- and three-dimensional meshes, and the dy-
namic repartitioning and load balancing of the work. Our design supports a dynamically
changing environment. Elements and vertices (and associated equations and unknowns)
migrate between processors to balance the workload. References to remote elements and
vertices are updated as new elements or vertices are created, deleted or moved to a new
processor. Although all the support code (more than 100,000 lines) is written in C++, our
system relies on Fortran libraries such as BLAS [59, 30] and Lapack [5] that are optimized

for each particular architecture for numerically intensive procedures.

PARED runs on serial machines and parallel computers. The serial version was developed
in conjunction with the Crystalline Meshes project by Chatzi and Preparata at Brown
University [25, 26]. On parallel machines, PARED runs on distributed memory computers in
which processing nodes communicate by exchanging messages using MPI (Message Passing
Interface)[37, 46, 87], which is the standard for message passing libraries. These machines
consist of coarse-grained processing nodes connected through a high latency network. Each
processing node cannot directly address a memory location in another node. Because each
message has a high startup cost, efficient message passing algorithms must minimize the
number of messages delivered. Thus, it is better to send a few large messages rather than
many small ones. This is a very important constraint and has a significant impact on the

design of message passing algorithms.

13

14

O | Motif Interiace

File Command Settings Parallel

Adaplive Refinement

[Refing Hethod —Error Hetric ——
- Regular “ Infinity Morm
w Crystalline wr L2 Norm
4 Rivara + Second Norm

[Error Estimate

“ From Real Solution
s From Higher Order Polunomial Solution

~ From Aproximation to Higher Order Polynomial Solution

+ From Coarse Mesh Solution

Hepcimum Errors | 0,008
Tterationst |8
Polynonials |1

I¥ Coarsening

i Use Nunerically Integrated Matrices

+ List of loeal Mo

Hatrices————— —Precor\dnwr\mg—‘

4 fasenbled sparce || 4 Jacehi

 fssenbled full ‘

Refine and Solve Cancel

Figure 3.1: A snapshot of PARED’s graphical user interface.

We have evaluated our system in two different parallel architectures: an IBM SP and
a network of workstations (NOW). Each processing node of the SP contains four PowerPC
604e processors running at 333 Mhz in SMP mode with 1GB of common main memory.
Processing nodes are connected through the SP switch, which is similar to an inverted
butterfly, and provides relatively fast communication. The version of MPI used in this
machine is the standard IBM MPI. The NOW consists of a variable number Sun Ultra-
1 workstations, each having 128MB of memory and connected via a 100Mbps Ethernet
network. For communication, the NOW uses MPICH (version 1.1.2), a freely available

implementation of MPI from Argonne National Lab.

PARED has two modes of operation: interactive or batch. The interactive mode allows
the user to visualize the changes in the mesh that results from its adaptation, partitioning
and migration. The user controls the system through a GUI, as suggested in Figure 3.1,
via a distinguished processor called the coordinator, P, which collects information from
all the other processors. PARED uses OpenGL [39] to permit the user to view 3D meshes
from different angles. Through the coordinator, the user can also give instructions to all
processors such as specifying when and how to adapt the mesh or which strategy to use

when repartitioning the mesh. The batch mode is used for production runs.

15

PARED uses remote references and smart pointers, two ideas commonly found in object
oriented programming, to provide a simple replication mechanism that is tightly integrated
with our mesh data structures. In adaptive computation, the structure of the mesh evolves
during the computation as elements and vertices are created, destroyed or assigned to
different processors. The use of remote references and smart pointers have greatly simplified

the creation of dynamic parallel meshes.

When implemented in C++, a remote reference is just an object that consists of a
processor number and memory address. A processor can use a remote reference to invoke
methods on objects located in a remote processor. Method invocations and arguments
destined for remote processors are marshaled into a few messages that contain memory
addresses of the remote objects. In the destination processor(s), each address is converted
to a pointer to an object of the corresponding type through which the method is invoked.
Because the different processors are inherently trusted and MPI guarantees reliable com-
munication, PARED does not incur the overhead traditionally associated with distributed

object systems.

Smart pointers are used so that proxy objects can be destroyed when there are no more
references to them. For example, in PARED vertices are associated with multiple elements.
When the reference count of a vertex proxy reaches zero, the proxy is no longer attached to
an element located in the processor and can be destroyed. If a vertex proxy is located in an
internal boundary between processors, then some processor might have a remote reference
to it. In that case, before a proxy is destroyed, it informs the copies in other processors to
delete their references to it. This procedure insures that the shared vertex can then be safely

destroyed without leaving dangerous dangling pointers referring to it in other processors.

Finally, PARED uses streamed non-blocking communication to hide the complexity and
overhead of message passing where each object marshals and unmarshals itself onto a stream.
The refinement and migration algorithm have a communication pattern that is different
from most scientific code such as a parallel matrix-vector product in which the same set
of memory locations are repeatedly exchanged between processors. In the refinement and
migration algorithms, it is also difficult for the destination processors to estimate the size of
the receiving buffers and the messages can become very large in the migration algorithm if
a lot of data movement is required. To overcome these problems, our system uses automatic

buffering that divides very large messages into smaller ones.

16

3.2 FEM Mesh Representation in Pared

All the different subsystems of PARED use a common mesh representation. This framework
is based on two basic concepts: refinement trees and remote references between the copies
of shared vertices located in different processors. The refinement (or adaptation) trees
maintain the refinement history of the mesh and simplify tasks such as coarsening of the
mesh. The remote references between shared vertices are used to maintain a consistent

global data structure as the mesh evolves throughout the computation.

3.2.1 Refinement Trees

To support the dynamic adaptation of meshes we designed a hierarchical data structure of
nested meshes. We assume that the user supplies an initial coarse mesh MY called the 0-level
mesh. Starting from M? the adaptation procedure constructs a family of nested meshes
MO MY, ... M!. Let M'(D!, V*) be the mesh at time step ¢t where D* = {Qy,...,Q,} is a
set of elements that approximate the domain Q of interest and V? = {V1,..., V;,} is the set

of vertices in the mesh. Every element in D! at time step ¢ is an unrefined element.

Let M**! be the new adapted mesh that results from refining a set of elements R C D?
and coarsening another set of elements C C D! such that RNC = (). For each refined element
Q, € R we define Children(2g) = {Qa;, Qas, - - -, R, } to be the elements resulting from the
refinement of Q,, and let Parent(,,) = Q, for 1 < k < d. Although different refinement

methods produce different numbers of children, d is assumed to be a small integer.

We also define the Level of an element €, so that Level(2,) = 0 if Q, is in the initial
mesh and Level(S,) =Level(Parent(§,)) + 1 otherwise. The elements §,, can also be
refined, and become the parents of elements. In PARED, when an element is refined, it does
not get destroyed. Instead, the refined element inserts itself into a tree. The refined mesh
forms a forest of refinement trees, one per initial mesh element. Thus, for every element
Q, in the initial mesh PARED maintains a refinement history tree 7, where every element
except a leaf element is the parent of two or more elements. The leaf elements of these
trees form the most refined mesh M? on which the numerical simulation is based at time t.
These trees are used in many of our algorithms. For example, in PARED a mesh is coarsened
by replacing all the children of a refined element by their parent. Thus, MU is the coarsest
mesh that our system can manipulate. Our repartitioning algorithm also takes advantage
of these trees. When an element is migrated to another processor all its descendants are

migrated as well.

17

@) (b) ©

Figure 3.2: The refinement of the mesh in (a) using a nested refinement algorithm creates
a forest of trees as shown in (b) and (c). The dotted lines identify the leaf triangles.

The multilevel representation of the mesh has the following properties:

e An element that has no parents has level 0 and belongs to the coarse (initial) mesh

MP°. No coarsening is done above this level.

e An element with no children belongs to the fine mesh M. The numerical simulations
are always based on the fine mesh, although coarser meshes are sometimes used (for

example, in multigrid methods).

e An element could be at the same time in both the coarse mesh M° and the fine mesh

M? (for example before any refinement is done) or in any intermediate mesh.

e Only elements that are in the fine mesh M? can be selected for refinement or coars-

ening. The hierarchy of elements is only modified at its leaves.

e As the elements are individually selected for refinement or coarsening the hierarchy

can have different depths in different regions of the mesh.

e When an element (), is refined it is replaced by its children in the new fine mesh
M1, To coarsen an element all its children must be selected for coarsening. In
this case the children in the new fine mesh M'T! are replaced by their parent and

destroyed.

18

3.2.2 Implementing a Parallel Mesh With Remote References

One of the most common uses of remote references in PARED is to maintain the connectivity
information between adjacent regions of the mesh that are located in different processors.
PARED partitions the mesh by elements. Partitioning the mesh by elements has several
advantages over partitioning it by nodes, as we will show in Chapter 5. In PARED every
element is assigned to only one processor and mesh vertices are shared if they are adjacent
to elements located in different processors. Proxies for vertices that are common to mesh

elements on different processors are held in each of them.

Definition 1 Let V;j be the copy of vertex V), € V't located in processor i at time step ¢.
We define Ref (V)}) = {(P, Vi) | V{ is a copy of V}, in processor j}.

This relation is symmetric so that if (P;, V) € Ref (V) then (P, V) € Ref (V). ItV is
a node internal to a processor P, then Ref (sz) = . A node in an internal boundary can be
shared by more than two processors. Hence if V,, is a shared node then 1 < |Ref (V,))| < P—1
where P is the number of processors. In general, we expect that |Ref (V)| < P — 1. Mesh
quality requirements guarantee that the elements do not contain sharp angles. Thus, the
number of elements adjacent to any vertex is small, which results in few shared copies.

Good partitions of the mesh also reduce the total number of references.

Ref (sz') is a dynamic structure that is implemented as a list. Its content varies through
the simulation as vertices are moved between processors because it is possible that a new
partition of the mesh converts an internal node into a shared node and vice versa or that
it modifies the contents Ref (V;f) The example in Figure 3.3 shows a mesh with 5 elements
and 7 nodes. The nodes V3 and Vj are shared by two processors P;, and P; so Ref (V3) =
{(P2, V§)} while Ref (Vi) = {(P1, V3)}-

There is no need to have more than one copy per node in each processor. Suppose that
a processor ¢ has two copies of the same node V;f and V;Di’ so that (P, V;Dil) € Ref(VIf). We
can detect this condition because the reference points to a node in the same processor i. We
then remove the copy V;fl after updating all the references in other processors that point
to VZD"I to point to sz’_ For a similar reason we do not need or allow duplicate references in
Ref (V).

We also define Adj(Q2,) = {V,|V, is a vertex of Q,} and ElemAdj(V,) = {Q,]V, is a
vertex of the element Q,}. The Adj(£2,) of an element €, is the set formed by the vertices

of Q4. In the case of triangular elements |Adj(2,)| = 3, and in the case of tetrahedral

19

Figure 3.3: Mesh representation in a distributed memory machine using remote references.

elements |Adj(%)| = 4. ElemAdj(Vp) of a node V, is the set formed by the elements
containing V. In an unstructured mesh |ElemAdj(V})| is not a constant. Although in
theory we can construct meshes where |ElemAdj(V},)| can have arbitrary values, if the mesh
is non-degenerate (the interior angles are not close to 0) we expect that |ElemAdj(V,)|
be bounded above by a constant k. In a mesh partitioned by elements we can define
ElemAdj(V;) = {Qq | Q, € ElemAdj(V,) and Q, is located in processor P;}.

3.3 Using PARED to Solve PDEs

The flowchart shown in Figure 3.4 provides an overview of the adaptive process used by
PARED. Although PARED supports several mesh types with different element shapes, in
this thesis we concentrate on two- and three- dimensional meshes composed of triangles

and tetrahedra.

To start a simulation PARED loads the initial mesh M°(S, V) into a distinguished pro-
cessor called the coordinator Pc. As we mentioned in Section 3.2.2, PARED partition the
mesh by elements. The coordinator creates a weighted dual graph G(W, E) of the mesh,
that is, a graph with one vertex w, € V for every element €2, € S and an edge (w,,wp) € E
if two elements 2, and €2 in the initial mesh are adjacent. PARED computes a partition II
of the elements of the mesh by elements by first obtaining a partition of the vertices of G.
In general, we assume that the graph G is small enough to be partitioned using a variety of

serial graph partitioning algorithms on a single processor. Our system includes an interface

Yes

Initial Mesh

Partition

Distribution

Compute Solution

Estimate Errors

Terminate?

balanced Mesh

Balanced Mesh o
Migration
Repartition
New Un
No .
Adaptation

20

Figure 3.4: Outline of the different procedures executed by PARED to adaptively compute

the solution of PDEs.

21

with the Chaco [48] library. In Chapter 5 we describe a new algorithm for partitioning

adapted meshes.

The coordinator then distributes the mesh according to II. In this phase, each processor
initializes the references between their shared copies of vertices located in the internal
boundaries between partitions. Pg maintains the dual graph during the simulation. G is
a coarse approximation of a refined mesh M*. Each vertex w, € W has a corresponding
element Q, in M?. The weight of w, is equal to the number of leaf elements in the refinement
tree described in Section 3.2.1 rooted by €2,. Similarly, edge weights correspond to the
communication required between two adjacent elements and are equal to the number of
shared vertices, edges or faces between the leaf elements of two adjacent refinement trees.

This weighted graph G is later used to repartition the mesh.

In the adaptive phase, a mesh is modified typically by first solving a linear system of
equations Az = f associated with the current mesh and computing an error function that
identifies elements that need to be refined and coarsened. PARED provides several iterative
[6, 76] and direct solvers. In the FEM the matrix A is usually sparse and, on triangular
or tetrahedral meshes, its non-zero structure is not regular. Our methods of choice are
CG [49, 58, 84] on symmetric problems and GMRES [93] on non-symmetric ones, with and
without preconditioning. Our solvers support an abstract representation of the system of

equations so we can eagsily experiment with different sparse matrix representations.

On static problems, the mesh is typically refined until a desired error is obtained. Dy-
namic problems usually execute for a fixed number of iterations. When these termination
conditions are not achieved, the mesh is locally adapted and the work rebalanced between
processors. PARED uses the parallel h refinement algorithm presented in Chapter 4, which

is based on longest edge bisection of triangular and tetrahedral unstructured meshes.

After the adaptation phase, PARED determines if a workload imbalance exists due to
variations in the number of elements on individual processors. If so, it invokes the procedure
described in Chapter 5 to decide how to repartition mesh elements between processors. Each
processor sends to Po the changes on the weights associated with the elements in the initial
mesh. The coordinator updates the weights of the graph G, which it then uses to compute
a new partition of the adapted mesh. Pc then informs each processor of the coarse elements

and their refinement trees that need to be migrated and their destination.

These elements and the corresponding vertices are migrated between the processors
according to the procedure explained in Chapter 6. PARED is then ready to resume another

round of equation solving, mesh adaptation, mesh repartitioning, and work migration.

Chapter 4

Local Adaptation of Unstructured
Meshes

4.1 Rivara’s Longest Edge Bisection in Two Dimensions

Many h-refinement techniques [8] have been proposed to serially refine triangular and tetra-
hedral meshes. One widely used method is the longest-edge bisection algorithm proposed
by Rivara [71, 72]. In its simplest form this recursive procedure (see Figure 4.1) splits each
triangle €, from a selected set of triangles R by adding an edge between the midpoint V;
of its longest side to the opposite vertex, creating two new triangles with equal area. This
refinement method (as well as several other adaptation schemes) propagate the refinement
to neighboring mesh elements so that an element €, ¢ R might also be refined to maintain
the conformality of the mesh, as illustrated in Figure 4.2. The refinement of the shaded
element in (a) creates a non-conforming vertex (black) on its longest edge. Because of con-
tinuity requirements of the basis functions used in the approximation the shaded triangle
in (b) must now be refined to maintain a conforming mesh. There are several variations of
this algorithm but in its simplest form it recursively bisects the non-conforming triangle by
its longest edge. This process creates a new non-conforming vertices shown in (¢) and (d).

(g9) shows the final conforming mesh.

The refinement of an element may propagate throughout the mesh (in the previous
example only one element was initially in R but required the refinement of 6 elements).
Nevertheless, this procedure is guaranteed to terminate because the edges it bisects increase

in length. Building on the work of Rosenberg and Stenger [74] on bisection of triangles,

22

23

Bisect(;)
let V,, V; and V; be vertices of the triangle €2;
let (Vp,Vy) be the longest side of ; and let V; be the midpoint of (V,,V,)
bisect §2; by the edge (V;,V;), generating two new triangles ;, and €,
while V; is a non-conforming vertex do
find a non-conforming triangle 2; adjacent to the edge (V,,V;)
Bisect(2;)
end while

Figure 4.1: Longest edge (Rivara) bisection algorithm on triangular mesh.

R
Py

Figure 4.2: The refinement of the shaded triangle (a) propagates through the mesh creating
three (black) non-conforming vertices (b)-(f). Non-conforming elements adjacent to these
vertices are recursively refined until all the mesh is conforming (g).

Rivara [71, 72] shows that this refinement procedure provably produces two dimensional
meshes in which the smallest angle of the refined mesh is no less than half of the smallest
angle of the original mesh. The resulting mesh is conforming and the transition between

large and small elements is smooth.

4.2 Rivara’s Longest Edge Bisection in Three Dimensions

The longest-edge bisection algorithm can be generalized to three dimensions [73] where a

tetrahedron is bisected into two tetrahedra (Figure 4.3) by inserting a triangle between the

24

2 2
@) (b)

Figure 4.3: Refinement of a tetrahedron (a) by its longest edge (3,4) into two tetrahedra
(b). The refinement propagates to all the tetrahedra adjacent to the edge (3,4).

midpoint of its longest edge and the two vertices not included in this edge. The refinement
propagates to neighboring tetrahedra in a similar way. This procedure is also guaranteed to
terminate, but unlike the two dimensional case, there is no known bound on the size of the
smallest angle. This lower bound for the three dimensional case is unlikely to exist because
the sum of the interior angles of a tetrahedron is not a constant and its longest edge is not
necessarily opposite the largest angle [66]. Nevertheless, experiments conducted by Rivara
[73] suggest that this method does not produce degenerate meshes in which the same angle

is repeatedly divided.

In two dimensions there are several variations on the algorithm. For example a triangle
can initially be bisected by the longest edge, but then its children are bisected by the non-
conforming edge, even if it is that is not their longest edge [71]. In three dimensions, the
bisection is always performed by the longest edge so that matching faces in neighboring

tetrahedra are always bisected by the same common edge.

4.3 Parallel Refinement of Unstructured Meshes

In PARED the initial coarse mesh M0 is assumed small enough so it can be stored in one
processor and refined there using the serial refinement algorithms outlined in the previous
sections. Nevertheless, as the number of elements and vertices increases in refined meshes,
it is necessary to distribute the mesh between processors and perform its refinement in

parallel.

Because the adaptation procedure is used to refine the mesh in regions of high relative

error, when the mesh is distributed between processors it is likely that such regions are

25

located in only one or few processors. The longest edge bisection algorithm and many
other mesh refinement algorithms that propagate the refinement to guarantee conformality
of the mesh are not local. The refinement of one particular triangle or tetrahedron 2, can
propagate through the mesh and potentially cause changes in regions far removed from €Q,,.
If neighboring elements are located in different processors, it is necessary to propagate this

refinement across processor boundaries to maintain the conformality of the mesh.

In our parallel longest edge bisection algorithm each processor P; iterates between a
serial phase, in which there is no communication, and a parallel phase, in which each
processor sends and receives messages from other processors. Let R be a global set of
elements selected for refinement and let R; be a subset of the elements of R assigned to
processor P;. In this case R = UR; and R; N R; = () for i # j because each element is

assigned to only one processor.

In the serial phase, processor P; refines the elements in R; using the serial longest
edge bisection algorithms outlined earlier. The refinement often creates shared vertices in
the boundary between adjacent processors. F; maintains a list for each of its neighboring
processors P; of the vertices shared with that processor that were created during the serial
phase. To minimize the number of messages exchanged between P; and P;, P; delays the

propagation of refinement to P; until P; has refined all the elements in its processor.

The serial phase terminates when P; has no more elements to refine. When this happens,
P; sends one message to every adjacent processor P; on whose shared boundary it created
one or more shared vertices. This message contains all the shared vertices that were created
as a result of refining the elements in R;. After sending these messages P; listens for messages

from other processors.

A processor P; informs an adjacent processor P; that some of its elements need to be
refined by sending a message from P; to P; containing the non-conforming edges and the
vertices to be inserted at their midpoint. Each edge is identified by its endpoints V,, and
V, and its remote references (see Figure 4.4 (a)). If V,, and V, are shared vertices, then P;
has a remote reference to copies of V), and V, located in processor P;. These references are
included in the message, so that P; can identify the non-conforming edge e and insert the
new vertex V;. A similar strategy is used when the edge is refined several times during the

refinement phase, but in this case, the vertex V; is not located at the midpoint of e.

Different processors can be in different phases during the refinement. For example, at any
given time a processor can be refining some of its elements (serial phase) while neighboring

processors have refined all their elements and are waiting for propagation messages (parallel

26

- - -
- — —

-
- - =
- — —
-
- - =

@ (b) ©

Figure 4.4: (a) In the parallel longest edge bisection algorithm some elements (shaded) are
initially selected for refinement. (b) If the refinement creates a new (black) vertex on a
processor boundary, the refinement propagates to neighbors. (¢) Finally the references are
updated accordingly.

phase) from adjacent processors. P; waits until it has no elements to refine before receiving
a message from P;. For every nonconforming edge e included in a message to P;, P;
creates its shared copy of the midpoint V; (unless it already exists) and inserts the new
non-conforming elements adjacent to V; into a new set R;- of elements to be refined. In this
way the refinement propagates across the internal boundary between P; and P; to maintain
the conformality of the global mesh. The remote references of the new vertices are updated
accordingly. The copy of V; in P; must also have a remote reference to the copy of V; in F;.
For this reason, when P; propagates the refinement to P; it also includes in the message a
reference to its copies of shared vertices. These steps are illustrated in Figure 4.4. P; then

enters the serial phase again, where the elements in R;- are refined.

The parallel algorithm is essentially the same for two- and three-dimensional meshes. In
both cases triangles and tetrahedra are refined by their longest edge. The only difference is
that in 2D, every triangle can have only one neighboring triangle over a shared edge so it
needs to propagate the refinement to only one processor. Because a tetrahedron can have
more than one neighboring tetrahedron over an edge and these tetrahedra can be located
in different processors, the creation of a shared vertex in a 3D mesh might occur between

one processor and several other processors.

27

4.3.1 The Challenge of Refining in Parallel

The description of the parallel refinement algorithm is not complete because refinement
propagation across processor boundaries can create two synchronization problems. The
first problem, adaptation collision, occurs when two (or more) processors decide to refine
adjacent elements (one in each processor) during the serial phase, creating two (or more)
vertex copies over a shared edge, one in each processor. It is important that all copies refer
to the same logical vertex because in a numerical simulation each vertex must include the

contribution of all the elements around it.

The second problem that arises, termination detection, is the determination that a re-
finement phase is complete. The serial refinement algorithm terminates when the processor
has no more elements to refine. In the parallel version, a processor might have no elements
to refine but it might still be waiting for refinement propagations from adjacent processors.
Therefore, termination is a global decision that cannot be determined by an individual pro-
cessor and requires a collaborative effort of all the processors involved in the refinement.

We now describe these two problems and our solutions.

Adaptation collision

During the serial phase, every processor P; refines a selected set R; of its elements in parallel
(these elements are shaded in the Figure 4.5). In the event that two or more processors
P; and P; both refine an edge e that is shared between mesh elements located in different
processors, they create a vertex over the shared edge before propagating the refinement to
the others. In this case it is important that these processors do not consider these vertices

to be distinct.

When a message arrives at P; with the instruction to create a vertex V, at the midpoint
of a shared edge e, P; can detect if the edge was already refined by using e to check the
elements in P; that contain it. If any of those elements was refined over e then P; already
has a copy of the vertex V,. In that case, P; does not create another copy of the same vertex
but instead it adds to it a reference to the remote copy in P;. As we mentioned earlier, this
reference is included in the message from P; to P;. Otherwise, P; creates the vertex V. and
then refines the non-conforming elements adjacent to it after which it adds a reference to

that remote copy in F;.

28

- - -
- — —

-
- - =
- — —
-
- - =

@ (b) ©

Figure 4.5: (a) Both processors select (shaded) mesh elements for refinement. The refine-
ment propagates to a neighboring processor (b) resulting in more elements being refined
(¢). The refinement process is complete when each new shared vertex has a reference to its
proxy on a neighboring processor.

Termination detection

The other problem mentioned earlier is the detection of the termination of refinement.
Termination of refinement cannot be determined by individual processors because, although
a processor P; may have adapted all of its mesh elements in R;, it cannot determine whether
this condition holds for all other processors. For example, at any given time, no processor
might have any more elements to refine. Nevertheless, the refinement cannot terminate

because there might be some propagation messages in transit.

The algorithm for detecting the termination of parallel refinement is based on Dijkstra’s
general distributed termination algorithm [28, 11]. A global termination condition is reached
when no element is selected for refinement. Hence if R is the set of all elements in the mesh

currently marked for refinement, then the algorithm finishes when R = {).

The termination detection procedure uses message acknowledgments. For every prop-
agation message that P; receives, it maintains the identity of its source (P;) and to which
processors P it propagated refinements. Each propagation message is acknowledged. P;
acknowledges to P; after it has refined all the non-conforming elements created by P;’s mes-
sage and has also received acknowledgments from all the processors to which it propagated

refinements.

A processor P; can be in two states: an inactive state is one in which P; has no elements

to refine (it cannot send new propagation messages to other processors) but can receive

29

messages. If P; receives a propagation message from a neighboring processor, it moves from
an inactive state to an active state, selects the elements for refinement as specified in the
message and proceeds to refine them. Let R; be the set of elements in P; needing refinement.

A processor P; becomes inactive when:

e P; has received an acknowledgment for every propagation message it has sent.
e P; has acknowledged every propagation message it has received.

L Rizw.

Using this definition, a processor P; might have no more elements to refine (R; = () but
it might still be in an active state waiting for acknowledgments from adjacent processors.
When a processor becomes inactive, P; sends an acknowledgment to the processors whose

propagation message caused F; to move from an inactive state to an active state.

We assume that the refinement is started by the coordinator processor, Pc (see Figure
4.6). At this stage, Pc is in the active state while all the processors are in the inactive
state. P¢ initiates the refinement by sending the appropriate messages to other processors.
This message also specifies the adaptation criterion to use to select the elements R; for

refinement in FP;.

When a processor P; receives a message from Pg, it changes to an active state, selects
some elements for refinement either explicitly or by using the specified adaptation criterion,
and then refines them using the serial bisection algorithm, keeping track of the vertices
created over shared edges as described earlier. When it finishes refining its elements, P;
sends a message to each processor P; on whose shared edges P; created a shared vertex. P;

then listens for messages.

Only when F; has refined all the elements specified by Pc and is not waiting for any
acknowledgment message from other processors does it send an acknowledgment to Pc.
Global termination is detected when the coordinator becomes inactive. When Po receives
an acknowledgment from every processor this implies that no processor is refining an element
and that no processor is waiting for an acknowledgment. Hence it is safe to terminate the

refinement. Pg then broadcasts this fact to all the other processors.

4.3.2 The Message Model for Refinement

The parallel refinement algorithm described above uses three different types of message:

30

for each processor P; do
P¢ sends a RefineMsg to P; specifying elements to refine and/or an adaptation criterion
end for
for each processor P; do
Pc waits for a DoneMsg from P;
end for
for each processor P; do
Pc sends a FinishMsg to P; to indicate the termination of the refinement
end for

Figure 4.6: The messaging algorithm executed by the coordinator Pc.

e A RefineMsg received by FP; indicates that some elements in P; must be refined. At
the beginning of the refinement phase, Po sends a RefineMsg to all the processors.
The processors select their elements to refine according to the specified refinement
criterion. This message is also used when the refinement propagates between the
processors. In this case, the message indicates which edges to refine and a reference

to the new vertices.

e A DoneMsg is used to acknowledge each RefineMsg received by P; from another

processor P; (including the coordinator).

e A FinishMsg from Pg to each processors signals the end of the refinement phase.

The steps executed by the coordinator Pg and by the other processors P; are different.
Figure 4.6 shows the algorithm executed by the coordinator. Pg initially broadcasts a
RefineMsg to all the other processors to start the refinement phase which identifies the
initial elements to refine. Py then waits until it receives a DoneMsg from all the other

processors. At this point, Po broadcasts a FinishMsg.

Every other processor P; is in a loop waiting for messages (Figure 4.7). P; does not
know which type of message it is going to receive next, so it has to be able to receive any
of them. This algorithm is nondeterministic because at any given time P, can receive a
message from any of its neighbors or the coordinator. In MPI, messages received from the
same source are received in order, but there is no guarantee about the order of messages
from different sources. Therefore in different executions the sequence in which messages are

received can be different.

If P; receives a message whose type is a RefineMsg from the coordinator, then P; selects
a set of its elements for refinement and refines them using the serial bisection algorithm. If

the RefineMsg is from another processor P;, then for each edge specified in the message, P;

31

while true do
P; waits for a message msg from other processors (including Pr)
if msg type = FinalizeMsg then
break
else if msg type = RefineMsg then
refine the specified elements using a serial refinement algorithm
if refinement does not propagate to other processors then
send a DoneMsg to the source processor of msg
else
send a RefineMsg to every processor to which the refinement propagates
end if
else if msg type = DoneMsg then
let msg be a response to a previous RefineMsg from P; to P;. Assume that the
refinement that propagated to P; was caused by a message received by P; from P
if P; is waiting for no more responses to RefineMsg then
send a DoneMsg to Py
end if
end if
end while

Figure 4.7: Message model for refinement by processor P;.

creates or updates the reference to the corresponding vertex of that edge and then refines
the adjacent non-conforming elements. If the refinement of the elements specified in the
RefineMsg creates vertices over edges shared with adjacent processors, then P; sends a
corresponding RefineMsg to every such processor. Otherwise it sends a DoneMsg to the

source of the RefineMsg.

As mentioned earlier, every RefineMsg must be acknowledged by a DoneMsg which is
returned to the source of the RefineMsg when P; has completed all the propagations caused

by that message. This is true when

e P; has refined all its local elements specified in the RefineMsg message, and

e P; has also received a DoneMsg from every other processor to which each refinement

has propagated.

P; stops waiting for messages when it receives a FinalizeMsg from Pc. As suggested in
Figure 4.8 (b), a processor might have returned a DoneMsg to the coordinator but might
still have more elements to refine because it received a RefineMsg from an adjacent processor

(P2 in this case).

32

@ (b) © (d)

RefineMsg

Figure 4.8: (a) Pc sends a RefineMsg to all processors. (b) Because Py and P; do not
propagate the refinement to other processors they return a DoneMsg to Po. P> propagates
the refinement to P;. (¢) P; refines the nonconforming elements in P; without propagating
the refinement to other processors and then sends a DoneMsg to P,. (d) A DoneMsg is
sent from P to Pg.

When F; propagates refinements to P;, F; does not block while waiting for an acknowl-
edgment from P;. Instead it waits in a loop accepting messages from other processors. A
deadlock is very likely to occur if P; were to block. This scheme, propagating the refinement
and listening for messages, allows us to handle cases like the one shown in Figure 4.9 in
which the refinement initiated in P; propagates back to the same processor. In this example,

the processors denoted P; and Py in Figure 4.7 are actually the same.

4.4 Properties of Parallel Refined Meshes

Our parallel refinement algorithm is guaranteed to terminate. In every serial phase the
longest edge bisection algorithm is used. In this algorithm the refinement propagates to-
wards progressively longer edges and will eventually reach the longest edge in each pro-
cessor. Between processors the refinement also propagates towards longer edges. Global
termination is detected by using the global termination detection procedure described in
the previous section. The resulting mesh is conforming. Every time a new vertex is created
over a shared edge, the refinement propagates to adjacent processors. Because every ele-
ment is always bisected by its longest edge, for triangular meshes the results by Rosenberg

and Stenger on the size of the minimum angle of two-dimensional meshes also hold.

33

- = - : i

-l : -

<J : : : : <;¢ = - -@
(a (b)
P -~ P
i]
(©) (d

Figure 4.9: A cyclic propagation using the parallel longest edge bisection algorithm. (a)
The refinement of an element (shaded) in P; propagates to P; in (b) and back to P; in (c).
When the procedure terminates the mesh is conforming as shown in (d).

34

It is not immediately obvious if the resulting meshes obtained by the serial and parallel
longest edge bisection algorithms are the same or if different partitions of the mesh generate
the same refined mesh. As we mentioned earlier, messages can arrive from different sources

in different orders and elements may be selected for refinement in different sequences.

We now show that the meshes that result from refining a set of elements R from a
given mesh M using the serial algorithms described in Sections 4.1 and 4.2 and the parallel
algorithm presented in Section 4.3, respectively, are the same. In this proof we use the
general longest-edge bisection (GLB) algorithm outlined in Figure 4.10 where the order in
which elements are refined is not specified. In a parallel environment, this order depends
on the partition of the mesh between processors. After showing that the resulting refined
mesh is independent of the order in which the elements are refined using the serial GLB
algorithm, we show that every possible distribution of elements between processors and
every order of parallel refinement yields the same mesh as would be produced by the serial

algorithm.

Theorem 1 The mesh that results from the refinement of a selected set of elements R of a
given mesh M using the GLB algorithm is independent of the order in which the elements

are refined.

Proof An element €, is refined using the GLB algorithm if it is in the initial
set R or refinement propagates to it. An element Q, ¢€ R is refined if one
of its neighbors creates a non-conforming vertex at the midpoint of one of its
edges. The refinement of €, by its longest edge divides the element into two
nested sub-elements €2,, and €, called the children of €2,. These children are
in turn refined by their longest edge if one of their edges is non-conforming. The
refinement procedure creates a forest of trees of nested elements where the root
of each tree is an element in the initial mesh M and the leaves are unrefined
elements. For every element Q, € M, let 7, be the refinement tree of nested

elements rooted at €2, when the refinement procedure terminates.

Using the GLB procedure elements can be selected for refinement in different
orders, creating possible different refinement histories. To show that this can-
not happen we assume the converse, namely, that two refinement histories Hy
and Hs generate different refined meshes, and establish a contradiction. Thus,
assume that there is an element 2, € M such that the refinement trees 7! and

a

s

i, associated with the refinement histories Hy and Hy of (), respectively, are

35

Let R be a set of elements to be refined
while there is an element ; € R do

bisect €25 by its longest edge

insert any non-conforming element €2 into R
end while

Figure 4.10: General longest-edge bisection (GLB) algorithm.

different. Because the root of 7! and 72 is the same in both refinement histories,
there is a place where both trees first differ. That is, starting at the root, there
is an element) that is common to both trees but for some reason, its children
are different. Because € is always bisected by the longest edge, the children of
Qp are different only when €23 is refined in one refinement history and it is not
refined in the other. In other words, in only one of the histories does €2 have

children.

Because () is refined in only one refinement history, then 2 € R, the initial set
of elements to refine. This implies that €2, must have been refined because one
of its edges became non-conforming during one of the refinement histories. Let
D4 be the set of elements that are present in both refinement histories, but are

refined in Hy and not in Hs. We define D5 in a similar way.

For each refinement history, every time an element is refined, it is assigned an
increasing number. Select an element (2, from either D; or Ds that has the
lowest number. Assume that we choose €, from D; so that €, is refined in H;
but not in Hy. In Hy,), is refined because a neighboring element 2, created a
non-conforming vertex at the midpoint of their shared edge e. Therefore €2 is
refined in H; but not in Hs because otherwise it would cause €2, to be refined
in both sequences. This implies that € is also in D, and has a lower refinement
number than Q, contradicting the definition of §2,. It follows that the refinement

histories are the same. O

Consider now the parallel refinement algorithm described in Section 4.3. Although it
refines elements on individual processors serially, these processors refine their elements in
parallel. As shown below, the resultant mesh is the same as would be produced in the serial

case.

Corollary 1 Given a mesh M and a set of elements R to refine, for every partition of the

36

elements between processors, the parallel GLB algorithm generates the same refined mesh

as does the serial GLB algorithm.

Proof For every partition of the elements and every order of refinement within
processors that is consistent with the GLB algorithm, there is a linear order
that can be established of element refinements. From Theorem 1 it follows that

the refined mesh associated with every linear ordering is the same. O

Clearly the result of Theorem 1 holds for any nested refinement algorithm in which
the refinement of elements occurs in an order that is independent of which side or face is

non-conforming.

4.5 Mesh Coarsening

Because in PARED refined elements are not destroyed in the refinement tree, the mesh can
be coarsened by replacing all the children of an element by their parent. If a parent element
Q, is selected for coarsening, it is important that all the elements 2, that are adjacent to
the longest edge of 2, are also selected for coarsening. If neighbors are located in different
processors then only a simple message exchange is necessary. This algorithm generates
conforming meshes: a vertex is removed only if all the elements that contain that vertex are
all coarsened. It does not propagate like the refinement algorithm and it is much simpler

to implement in parallel.

4.6 Parallel Refinement of Unstructured Meshes: Experi-

mental Results

In the previous section we have shown that the meshes obtained using the parallel refinement
algorithm described in this paper are the same as those obtained using the widely used serial
longest-edge bisection algorithm. Therefore the quality of the resulting meshes using any of

the measures mentioned in Chapter 2.3 is the same as that obtained using serial refinement.

To evaluate the performance of our parallel algorithm and to show that refinement does
not incur any significant overhead we performed a series of tests using a network of four to
thirty-two Sun Ultra-1 workstations. Using simple meshes with elements of regular shape

we demonstrate that the performance of the parallel refinement algorithm strongly depends

37

on the quality of the partition of the mesh between processors. If many adjacent elements
are located in different processors (for example, when elements are randomly assigned to
processors) the cost of communication is very high. However, for partitions of the mesh
with relatively short boundaries between subdomains there is a reasonable communication

overhead.

We also show the performance of the refinement algorithm on irregular unstructured
meshes is similar to that observed on the simpler regular ones defined below. In Chapter 9,
we examine the performance of our refinement algorithm when locally adapting unstructured

meshes and compare it with the other phases of the adaptation procedure.

4.6.1 Global Refinement of Regular Meshes

The performance of our parallel refinement algorithm is dependent on the quality of the
partition of the mesh. Starting from the regular two- and three-dimensional meshes defined
in the unit square and cube, as shown in Figure 4.11, we performed successive global parallel
refinements of all the elements of the mesh. In our two-dimensional example we start with a
mesh that contains 256 elements and 145 vertices and after 15 successive refinements of each
element we obtain a mesh with 4,194,304 elements and 2,099,201 vertices. The initial three-
dimensional mesh contains 1,536 elements and 426 vertices. After 12 refinements its number
of elements and vertices grows to 3,145,728 and 536,769, respectively. The total number of
elements and vertices in each fine mesh M! in each refinement phase is shown in Table 4.1.
The global refinement procedure on these regular meshes does not overrefine (where some
element not initially selected for refinement also get refined to obtain a conforming mesh)
as we will in future examples: at each level, the selected elements are refined once and the

size if the mesh is doubled.

After a mesh M? is refined, the resulting fine mesh M**! is repartitioned between
processors. PARED allows the user to choose from a large variety of partitioning algorithms.
One of these is Multilevel-KL,, a graph partitioning algorithm offered as part of Chaco
[48]. It generates high quality partitions of meshes but at the cost of an overhead that is
prohibitive for large meshes. Multilevel-KL: was used in the experiments described below
to provide good partitions for the initial assignment of elements to processors. Because
Multilevel-KL is a serial algorithm, an entire graph must be moved to one processor to
partition it. For very large refined meshes, the time required by Multilevel-KL is very large
(on the order of 20 minutes in some cases) and required the use of a Sun server with 2 GB of

memory. This is actually the limiting factor on the size of the meshes that we can handle.

38

Figure 4.11: Initial two- and three-dimensional regular meshes.

In this section we give examples that show that we cannot study the refinement algorithm
independently of the partition of the mesh. In these examples, every processor executes a
similar amount of work to refine the mesh. A close to optimal partition is obtained by
using the Multilevel-KL partition mentioned above. On the other hand, a balanced random
distribution of the mesh requires the same amount of serial work in each processor (every
element is refined once) but, because every new vertex is likely to be shared between two
Or more processors, it requires communication between them. A snapshot of the refined
regular meshes partitioned randomly and by Multilevel-KL from a random partition are

shown in Figure 4.12.

We used three different measures to evaluate the performance of the parallel refinement
algorithm. For every processor, we count the number of new edge refinements sent to other
processors during each of the successive global refinements of the mesh. This is a measure of
the amount of communication occurring in the parallel refinement algorithm. The maximum
number of edge refinements sent by any processor to all its neighbors in each level using
both partitioning strategies are shown in Table 4.2 for the regular two-dimensional mesh
and in Table 4.3 for the three-dimensional mesh. The amount of communication during
refinement required for a random distribution of the mesh is significantly larger than for
the mesh partitioned using Multilevel-KL. Also, the number of new shared edges using
Multilevel-KL does not necessarily increase with each level of refinement even on a regular
mesh because it depends on the actual partition of the mesh between processors. Therefore,
it is difficult to predict the amount of communication required by the refinement algorithm

even in these simple examples.

These differences in the amount of communication also have a great impact on the

refinement time as we increase the size of the mesh and the number of processors. For the

39

2D Regular Mesh 3D Regular Mesh
Level || Elements | Vertices | Elements | Vertices
1 256 145 1536 429
2 512 289 3072 729
3 1024 545 6144 1241
4 2048 1089 12288 2969
5 4096 2113 24576 4913
6 8192 4225 49152 9009
7 16384 8321 98304 22065
8 32768 16641 196608 35937
9 65536 33025 393216 68705
10 131072 66049 786432 170001
11 262144 131585 1572864 274625
12 524288 263169 3145728 536769
13 1048576 525313
14 2097152 | 1050625
15 4194304 | 2099201

Table 4.1: Number of elements and vertices of meshes obtained by the repeated refinement
of regular two- and three-dimensional meshes.

K0

4

)
P i 2

B

Figure 4.12: Regular two- and three-dimensional regular meshes partitioned between 32
processors using a partition provided by Multilevel-KL (left) and a random partition (right).

40

4 Processors 8 Processors || 16 Processors | 32 Processors
Level | M-KL | Rand | M-KL | Rand | M-KL | Rand | M-KL | Rand
1 6 64 6 39 6 20 4 12
2 4 120 6 90 5 43 6 26
3 0 237 0 170 3 89 3 55
4 13 504 11 320 9 167 9 84
5 4 1024 8 677 9 348 5 151
6 19 2075 24 1326 21 615 21 281
7 11 4129 10 2740 25 1233 13 504
8 43 8095 33 5314 32 2421 28 1003
9 25 | 16626 24 | 10800 30 4840 24 1964
10 66 | 32786 82 | 21307 70 9789 48 3910
11 48 | 66010 55 | 42844 83 | 19399 76 7899
12 99 158 | 85425 111 | 38291 100 | 15525
13 120 145 | 76806 89 | 30952
14 241 206 | 61452
15 207

Table 4.2: Largest number of edge refinements sent by a processor to other processors in
each refinement level obtained by performing successive refinements on a regular 2D mesh
partitioned randomly and with the Multilevel-KL algorithm.

4 Processors 8 Processors 16 Processors || 32 Processors
Level || M-KL | Rand | M-KL | Rand || M-KL | Rand | M-KL | Rand
1 23 422 21 559 21 521 15 302
2 41 644 30 890 32 958 16 606
3 0 1273 0 1952 0 2044 0 1569
4 78 3230 80 4265 51 3800 24 2482
5 90 4731 87 7393 66 7800 46 5669
6 7 | 10199 16 | 15755 18 | 16997 4| 12617
7 260 | 25778 229 | 34332 343 | 32578 191 | 20808
8 425 323 | 57350 302 | 65188 203 | 49028
9 141 125 98 | 139756 101 | 104314
10 1278 986 886 | 173428

Table 4.3: Largest number of edge refinements sent by a processor to other processors in
each refinement level obtained by performing successive refinements on a regular 3D mesh
partitioned randomly and with the Multilevel-KL algorithm.

41

Total Refinement Time Total Refinement Time

B 4Proc ¢ 8Proc Y 16 Proc 4 32 Proc‘ B 4Proc ® 8Proc Y 16 Proc 4 32 Proc‘

50

I/ w0
//]] 30 /
1 /a

o J
O-M o-ﬁ#l

1 23 456 7 8 9101112131415 1 2 3 456 7 8 91011121314

1
4

w

N

20

Time (sec.)
Time (sec.)

Refinement level Refinement level

(a) (b)

Total Refinement Time Total Refinement Time

B 4Proc ¢ 8Proc Y 16 Proc 4 32 Proc‘ B 4Proc ® 8Proc Y 16 Proc 4 32 Proc‘

) Il [
5 L i, LY

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9

Time (sec.)
Time (sec.)

Refinement level Refinement level

() (d)

Figure 4.13: Refinement time for the global successive refinements of a regular two dimen-
sional mesh with a (a) Multilevel-KL partition and (b) random partition. (c) and (d) show
the same times for the refinement of a regular three-dimensional mesh.

regular two-dimensional mesh, the total time for each parallel refinement phase of Multilevel-
KL and random derived partitions is shown in Figures 4.13 (a) and (b) respectively. For
the three- dimensional mesh, these times are shown in Figures 4.13 (c¢) and (d). These
figures illustrate that the refinement time for randomly distributed meshes is much larger
than that for the same meshes partitioned using Multilevel-KL. It is also possible to process
larger meshes with Multilevel-KL because it requires fewer shared copies of vertices and less

memory to store them.

42

2D Regular Mesh (11th level of refinement) 3D Regular Mesh (7th level of refinement)
" M-KL @ Random‘ " M-KL @ Random‘
40 40 /i
30 = 30

Speedup

o
5
S
20 g 20
o
/ 2 /./
10;{_‘//> 10/ /»
0+ T T T O+

4 8 16 32 4 8 16 32

of processors # of processors

(a) (b)

Figure 4.14: Relative speedups for the refinement of a regular mesh using Multilevel-KL
and random partition for a (a) two-dimensional regular mesh of 262,144 elements and (b)
three-dimensional regular mesh of 98,304 elements.

The speedup in the time to refine regular 2D and 3D meshes is shown in Figure 4.14
for random and Multilevel-KL-derived partitions. We show only the time to globally refine
all elements and propagate changes across processor boundaries. The time to repartition
a random mesh with Multilevel-KL and to migrate the mesh are not included. In both
the 2D and 3D cases the speedup that is obtained with the well partitioned mesh is much
higher than for the randomly partitioned mesh and almost linear. Also, we can report that
the refinement time is dominated by the time for local refinement of meshes on individual
processors, not the cost of interprocessor communication. The communication cost overhead
is an important factor in the total cost of the refinement algorithm as the meshes grow in
size for random partitions. This is due to the large number of new shared vertices created

in randomized partitions.

4.6.2 Global Refinement of Irregular Meshes

The repeated bisection of all the elements in the regular 2D and 3D meshes considered
above never creates a mesh whose smallest angle is less than 45 degrees in the the case
of two-dimensional meshes and a smallest solid angle less than 15 degrees in the case of
three-dimensional meshes. Also, it never refines an element more than once to maintain the

conformality of the mesh.

43

Figure 4.15: Initial two- and three-dimensional irregular meshes on a square and a cube.

2D Irregular Mesh | 3D Irregular Mesh
Level | Elements | Vertices | Elements | Vertices
1 2239 1171 3179 728
2 5094 2629 10166 2177
3 11110 5677 31935 6472
4 23749 12040 101051 19554
5 49915 25214 320424 60762
6 103585 52125 1007549 187599
7 212831 106941 3177713 585128
8 434119 217726
9 880745 441436
10 1779869 891269
11 3586501 | 1795390

Table 4.4: Number of elements and vertices that result from successive refinement of irreg-
ular two- and three-dimensional meshes.

Typical unstructured finite-element meshes are similar to those shown in Figure 4.15.
Successive refinement of these meshes more than doubles the size of the mesh, as shown in
Table 4.4. That is, an element might be refined more than once during the refinement phase

to maintain a conforming mesh, which is not the case in the previous regular examples.

Nevertheless, the performance of the algorithm using these irregular meshes is similar to
our previous results. Table 4.5 shows that the maximum number of new edge refinements
sent by any processor to another in each refinement is relatively small. The total refinement
time in the different steps of the refinement are comparable to those in the regular meshes,

as shown in Figure 4.16 for meshes of similar sizes.

2D Irregular Mesh 3D Irregular Mesh

Level | 4P | 8P |16 P |32P |4P 8P |16 P |32 P

1 21 22 17 15 51 | 52 51 48

2 14| 22 16 14 || 146 | 109 92 79

3 19| 31 17 23 || 213 | 162 187 153

4 26 | 29 31 20 || 433 | 383 336 307

5 31 36 36 33 811 744 613

6 37| 47 35 41 1613 | 1221

7 87| 56 65 62

8 73 | 131 83 74

9 129 143 101

10 190 143

11 206

44

Table 4.5: Largest number of new edge refinements sent by a processor to other processors
in each refinement phase by performing successive refinements on an irregular 2D and 3D

meshes (Multilevel-KL partitions).

Total Refinement Time

B 4Proc ¢ 8Proc Y 16 Proc 4 32 Proc‘

~
o

1

Time (sec.)

N

:)

285

1 2 3 4 5 6 7 8 9 10 11

Refinement level

(a)

Total Refinement Time

B 4Proc ® 8Proc Y 16 Proc 4 32 Proc‘

10

Time (sec.)

)Y

[ee]

/

7

s/

2 3

4 5

Refinement level

(b)

Figure 4.16: Refinement time for the global successive refinements of a irregular (a) two-
dimensional mesh and (b) three-dimensional irregular mesh when Multilevel-KL is used.

Chapter 5

Mesh Partitioning and

Repartitioning

5.1 Introduction

In this chapter we describe Parallel Nested Repartitioning (PNR), a new partitioning al-
gorithm sketched in [18], that has its roots in multilevel partitioning algorithms [10, 47].
Our method quickly produces low cost, high quality partitions that minimize the amount of
data that needs to be moved to rebalance a workload after a mesh adaptation. It has a very
natural parallel implementation that allows us to repartition adapted meshes of arbitrary

size. We demonstrate the effectiveness of PNR both analytically and empirically.

Starting with a coarse initial mesh, PARED locally adapts the mesh using an h-refinement
algorithm until an error criterion is met. Attached to each coarse element is a refinement
history tree whose leaves are the most refined elements into which the coarse element has
been refined. PARED partitions the mesh by elements. A partition is obtained by PNR
from the dual graph G of the coarse mesh.

Although G has much less information than is available in the adapted mesh M, we
demonstrate through experiment and analysis that partitioning M using G gives balanced
partitions with cut sizes comparable to those provided by standard partitioning algorithms
[10, 47]. Unfortunately, as we show, small changes in M can produce very different partitions
of it using either our initial version of PNR or standard partitioning algorithms. This mesh
migration problem has also been addressed by others [12, 15, 78]. Biswas [12] permutes

the subsets produced by a standard algorithm to minimize data movement. We show that

45

46

this heuristic can still require that half the elements be migrated. Walshaw et al [15]
and Schloegel, Karypis and Kumar [78] determine the number of elements that must move
between processors to rebalance them using a technique of Hu and Blake [50] and then try to
keep the cut size small by migrating elements on the boundaries between processors. Their
heuristics require several iterations in which the same regions of the mesh are repeatedly

migrated.

Our approach to mesh migration uses a modified version of PNR, which we show through
experiment and analysis very quickly produces balanced partitions with low cut size and
low migration cost. Our approach is to use a multilevel partitioning algorithm to partition
G without repartitioning the coarsest graph but using a variation of the Kernighan-Lin

heuristic as contracted graphs are expanded.

In this chapter we show the power of PNR through an experiment with PARED in which
we track a disturbance through space over time. We show that PNR migrates a very small
number of elements while maintaining a partition quality comparable to that produced by
RSB [10].

5.2 Partitioning Finite Element Meshes

Parallel implementations of the FEM allocate a portion of the mesh M(D,V) to each
processor, where D is a set of elements and V is a set of vertices. For efficiency reasons,
the partition of M should assign a similar amount of work to each processor while at the

same time minimizing the communication needed between processors.

Two standard methods are used to partition a mesh M between p processors. The
first removes a subset of its edges leaving p connected components of vertices which are
then mapped to the processors. In this partitioning by vertices of the mesh, each vertex is
assigned to a unique processor. PARED uses a second method. Each element is assigned to
a unique processor and mesh vertices are shared if they are adjacent to elements assigned to
different processors. This results in the partition IT = {7y, ..., 7} of the mesh by elements,
where 7; is the set of elements assigned to processor P;. Communication is then performed
across the edges (in two-dimensional problems) or faces (in three-dimensional problems)
that separate two elements of the mesh [79].

The most complex procedure in the FEM is the solution of linear systems of equations
Az = y which, on large problems, can contain millions of unknowns. Sparse matrix-vector

products, inner products and vector operations are the basic operations of most iterative

47

solvers such as Conjugate Gradient and GMRES. When these operations are executed on
a parallel computer, the most communication intensive procedure is the multiplication of a
sparse matrix by a vector. In the FEM, the matrix A is the result of an assembly process of
the local square matrix L(€,) obtained from every element €,. The size of L(f2,) depends
on the order of the polynomial of the basis functions used in the approximation. The global
matrix A is equal to ZQa ep TL(,) where T is a projection operator that maps the local

indices in the matrix L(€,) to the global indices in A.

In a parallel environment the matrix A and vectors z and y are also partitioned between
processors. If row k of A corresponds to a node that lies on a boundary between two or
more processors, P; and P;, then the entries in A;, the partition of matrix A associated
with processor P;, contains the contributions of the elements €2, € m; and the entries in
Aj incorporates the contributions of the elements €, € 7;. The matrix A; is partially
assembled since it only considers the contributions of the elements assigned to FP;. The
fully assembled matrix is A = Zlgigp A;. In a mesh partitioned by elements a parallel
matrix-vector product requires communication across the common mesh edges and faces of
elements assigned to different processors. The matrix-vector product Az = y is performed
in two phases. In the first phase each processor computes A;z = y;. The resulting vectors
y; are partially assembled. In the second phase we communicate the individual vectors y;
to compute y =), <i<p¥i globally. In this second phase it is only necessary to exchange

the entries in y; between nodes located on the internal boundaries between subdomains.

A partition IT of a mesh M (D, V') by elements is obtained from the dual graph G(W, E)
of the mesh where W is a set of graph vertices and E is a set of graph vertices. Each
element €2, € D has a corresponding graph vertex w, € W. Two elements Q,,; € D are
adjacent if they share a common edge (in 2D) or face (in 3D). For every pair of adjacent

elements Q,, Q, € D there is a corresponding edge (wgy,wp) in E.

A partition II(G) of a mesh M with dual graph G is e—balanced if for every processor
P;, |m;| < (|]II|/p)(1+e€), where |m;| is the number of elements assigned to P; and |II| = |D]| is
the total number of elements in the mesh and € is small. On a mesh partitioned by elements,
the communication cost is a function of the size of the boundary of the subdomains and, on
machines with a high latency network, on the number of adjacent subdomains. A common
measure of the quality of a partition of the mesh is the number of shared nodes which is
equal to the number of entries of the vector y that are exchanged during the second phase of
a parallel matrix-vector product when using linear approximations. This measure is usually

approximated in the dual graph G by the number of edges whose endpoints are in different

48

subsets (the cut). If w, and wy are vertices in G that correspond to elements Q, and € in

the mesh respectively, then
Cout(II(G)) = {(wq, ws) | (we,ws) € E,wg € mj,wpy € Tj,1 7 5}

Because there is a one to one relation between a partition II(M) of the elements of a mesh
M and a partition of the vertices II(G) of its dual graph G, we do not make a distinction
between II(M) and II(G).

5.2.1 Review of Graph Partitioning Methods

The problem of partitioning a graph into p subgraphs of approximately equal size while
minimizing the number of edges joining vertices in different subgraphs is known as the

p-way graph partitioning problem.

Definition 2 Given an undirected graph G(W, E) the p-way graph partitioning problem
is to find a partition IT of the vertices W into subsets 7y, 72, ..., 7, such that W = |Jm;,
mi (7, =0 for i # j, |m| < (JII|/p)(1 + €) and IT minimizes the number of edges in E that

are incident on vertices located in different subsets.

This problem is NP-hard even in the simple case of bisecting a graph between two processors

[41]. As a result many heuristics have been proposed for it.

One of the most successful heuristics for partitioning unstructured FEM meshes is Re-
cursive Spectral Bisection (RSB) [68]. RSB is based on the computation of the eigenvector
u (called the Fiedler vector[34, 35]) associated with the second smallest eigenvalue, \g, of
the Laplacian matrix L(G) = D — A, where D is a diagonal matrix of vertex degrees and
A is the adjacency matrix of the graph. RSB first partitions the graph into two subgraphs
according to the entries of the corresponding vertices in the Fiedler vector. The vertices
associated with the largest half of the entries in uy are placed in one subset; the remain-
ing vertices are placed in the second subset. These two subgraphs are in turn recursively

bisected.

Local heuristics, such as the Kernighan-Lin algorithm (KL) [57], complement spectral
methods by further improving the quality of a partition. Roughly speaking, KL is a local
search algorithm that swaps vertices between two sets if that reduces the number of edges
crossing the partition. The gain associated with a pair of vertices is the net reduction in the
number of edges crossing the partition when they are swapped. While a swap with positive

gain clearly reduces the the partition cut, KL also considers negative gains to escape local

49

minima. When all vertices have been swapped and frozen, it backs up to the last swap that

had the net largest gain.
RSB produces high quality partitions but, because of the high cost of computing eigen-

vectors of a large matrix, it is usually restricted to relatively small graphs. For large graphs,
multilevel methods such as Multilevel-KL [48] provide a better tradeoff between quality and

speed. Multilevel methods usually consist of three phases:

e Graph contraction phase. Starting from a initial graph G (which in our case is the
dual graph G) a sequence of increasingly coarser graphs Go, Gy, ... Gk is constructed
until the number of vertices in G g is less than some specified constant. In Multilevel-
KL, the coarsening of the mesh is implemented using an edge contraction operation.
To construct G, from Gj_1 pairs of unmatched adjacent vertices in Gj_1 are matched
and each pair is collapsed into one supervertex in Gy, whose weight is equal to the
sum of the weights of the original vertices. The coarser graph G}, also inherits the
unmatched vertices in G_1. Gy also preserves the edges and edge weights. If two
matched vertices in G;_; are adjacent to a common vertex, the weight of the cor-
responding edge in G is equal set to the sum of the weights of the original edges
in Gg_1. In this way, the resulting reduced graph G maintains the global structure
of Gj_1. Multilevel-KL randomly selects the vertices to match, but other multilevel
schemes select highly connected vertices [55] or construct coarser graphs from a max-

imal independent set [10].

o (Coarse graph partitioning phase. The coarse graph G is partitioned using any of a
number of different heuristics. Because the number of vertices in G is usually much
smaller than in Gy, spectral partitioners are commonly used. Multilevel-KL uses RSB

to partition Gg.

e Projection and improvement phase. The partition found for G; is projected to G;_1 for
1 <4 < K. In most methods, a partition of Gy naturally corresponds to a partition
of G_1. For example, if the coarser graph is constructed by contracting edges, the
matched vertices in Gi_1 are assigned to the same subset as their super vertex. Other
methods, such as ML [10], rather than projecting partitions transfer the Fiedler vector

between graphs.

After the projection local heuristics are used to improve the quality of the partition.

Multilevel-KL and [55] use the optimized version of KL based on the work of Fiduccia

50

and Matthesyses [33]. Their linear cost heuristic, rather than swapping vertices be-
tween two partitions, performs a sequence of individual vertex moves that minimizes
the cost of a partition cut. The traditional KL heuristic is extended to multiway
partitions as follows: the gain(w,,j) associated with any vertex w, in Gy assigned
to m; is the reduction in the partition cut obtained by moving w, from m; to ;.
This heuristic selects the moves that produce the largest gains and, like KL, freezes
moved vertices so they are not repeatedly moved between subsets; it also considers
movements with negative gains with the expectation that they might result later in

an overall improvement in the cut size.

In many physical problems in which the adaptive process is used to adjust the resolution
of the mesh as the simulation evolves, the number of elements in the refined mesh M? at
time ¢ is much larger than the number of elements in the initial mesh M°. Thus, although
it is possible to use a serial graph partitioning algorithm to partition and distribute M?, it
is not always feasible to use the same serial partitioning algorithm to rebalance the work of

large refined meshes.

Unfortunately, many of the best serial graph partitioning heuristics do not easily accom-
modate parallel implementation. In [9] Barnard and Simon present a parallel implementa-
tion of their spectral algorithm. In their method each processor bisects the subgraphs that
result from the recursive step of the bisection (for a small number of processor its speedup
is very limited).

The Kernighan-Lin heuristic used in the projection phase of many multilevel schemes is
P-complete [77] and does not parallelize well. Some approaches [77, 56] overcome this prob-
lem by moving or swapping clusters of vertices rather than individual vertices. Nevertheless,
this parallel process is communication intensive, it is difficult to obtain good performance

on loosely-coupled machines where it is not efficient on relatively small graphs.

Geometric graph partitioning methods[63, 64] rely on coordinate information, which in
the case of finite element meshes, is usually readily available. For example, Recursive Coor-
dinate Bisection (RCB) [85] recursively bisects a graph by first determining the coordinate
of its longest dimension, then sorting the vertices according to this coordinate and finally
dividing the vertices into two subsets with values below and above the median. Geomet-
ric heuristics are scalable but it is shown in [85] that they produce worse partitions than

spectral methods.

51

5.3 The Repartitioning Problem

Traditional parallel FEM systems partition the mesh in a preprocessing step. The mesh
is then mapped to processors and the simulation starts. This static approach to mesh
partitioning is not sufficient for methods that dynamically modify the mesh as is the case
in adaptive schemes. Also, in a parallel environment performance is severely impacted if
processors do not execute nearly equal amounts of work. Consequently, it is necessary to

dynamically repartition an adapted mesh as the simulation progresses.

The mesh repartitioning problem [94, 15, 29, 78, 12] is not as widely studied as the stan-
dard graph partitioning problem. In addition to the traditional goals of balanced partitions
and minimum edge cut, the repartitioning of a graph must satisfy a new set of require-
ments that arise from its dynamic nature. Load balancing is embedded in the adaptive
process. Therefore, the graph repartitioning must have a low cost relative to the solution
time so it does not outweigh its possible benefits. Second, repartitioning of the mesh must
be performed in parallel. It is inefficient to move the complete mesh to one processor to
repartition it. Finally, the algorithm should use the current assignment of the mesh, so that

1t moves the smallest number of mesh elements to restore the workload balance.

Definition 3 Let G(W, E) be an undirected graph and let its vertices W be partitioned
into p subsets IT = {71,...,m,} such that W = |Jm; and mj N 7w; = 0 for ¢ # j. Let e >0
be small. Then IT is unbalanced if for some 7, 1 < i < p, |7 > (|JII|/p)(1 + €). Given
an unbalanced partition II, the p-way graph repartitioning problem is to find a balanced

partition II that minimizes the following function:
Crepartition (ﬁ7 II, Oé) = Ceut (H) + aCmigrate(Ha H)-

Here Ccut(ﬁ) is the size of the cut associated with ﬁ, a > 0 is a constant that measures of
the relative migration and solution times, and Chjgrate(I1, ﬁ), defined below, is the number
of vertices that must migrate between partitions to restore balance, namely, to insure that
7l < (T /p)(1 + o).

Chigrate(II, IT) = [{wy, | wy, € mj, wy, & i}

The parameter « is used to penalize partitions that would only provide a marginal

improvement in Ccut(ﬁ) but require significant movement of data between processors.

The graph partitioning problem is a special case of the graph repartitioning problem

in which @ = 0. Thus, graph repartitioning is also NP-hard. Otherwise we can obtain an

52

optimal partition of any arbitrary graph G(W, E) through a sequence of graph repartitions

as follows:

e Start with a graph with W vertices and no edges and assign the vertices to subsets

such that each subset m; has |II|/p vertices.

e Add edges to the graph one by one and repartition the resulting graphs after each
addition.

This procedure requires |E| repartitions and computes an optimal partition of G. If each
step could be done in polynomial time, G could also be partitioned in polynomial time.

Thus, this apparently simpler problem is actually equally difficult.

Because the repartitioning problem is NP-hard, heuristics are needed for it. A natural
one to use is the Kernighan-Lin algorithm with a gain function that reflects changes in the
cost C’repartition(ﬁ, I1, o) defined above. This idea is the basis for the heuristic introduced in

Section 5.8.

5.4 The Parallel Nested Repartitioning Method (PNR)

PARED uses an alternative procedure for repartitioning adapted meshes that was originally
outlined in [16, 17]. This algorithm operates on the graph G described above associated
with the initial coarse mesh M°(D,V) and incorporates the idea that the refined mesh M*
at time ¢ was obtained as a sequence of nested refinements from an initial coarse mesh
M?O. Rather than computing directly a partition of M?, PNR computes a partition of M°
using an associated weighted dual graph G (which is described below) and then projects
the partition to M*. Thus, in PNR every element is moved at most once in each repartition
of the mesh.

PNR has aspects that are common to and different from multilevel partitioning algo-
rithms. Although both partition a coarse graph, the coarse graph is not constructed in
PNR; it is given initially.

In order to contract the refined mesh M! into the small graph G associated with
MO (D° V°) while preserving its global structure we define the function Elem Weight(Q,)
on an element Q, € D° to be the total number of leaf elements in the refinement tree 7,

associates with the element €2,. We also define the function Edge Weight(€Q,,$2) on two

53

adjacent elements Q,,Q, € D° to be the total number of common mesh edges (in two-
dimensional meshes) or common mesh faces (in three-dimensional meshes) between the leaf

elements of the two refinement trees 7, and 73, of Q, and Qp, respectively.

To start the simulation, PARED loads the initial mesh M? into the coordinator processor
P¢ from which it creates a dual graph G(W, E), as described in Section 5.2. In PARED G is a
weighted graph in which initially every edge and vertex has unit weight. For every vertex w,
in the dual graph let weight(w,) = ElemWeight(€,) where element , € D corresponds to
w,. Similarly, each edge (w,,wp) € E is assigned a weight(wg, wp) = Edge Weight(Qq, Q).
Dual graph vertex and edge weights represent computational intensity and communication
cost respectively. We also define weight(m;) of the subset II to be the sum of the weights of
all the vertices in the subset and weight(II) to be the sum of the weights of all the subsets
m; € I1.

PNR invokes a serial graph partitioning algorithm to compute an initial partition II° of
G. The mesh MY is then distributed between the processors according to this assignment.
The processor P maintains a copy of the dual graph G that is later used to obtain new

partitions of adapted meshes M?.

5.4.1 Repartitioning the Adapted Mesh

In this section we describe the procedure used by PNR to dynamically repartition adapted
meshes. Assume that M?~! has been distributed between p processors and that the weights
of the edges and vertices in the graph G(W, E) located in the coordinator are consistent
with M1,

The local adaptation of M*~1 into a new mesh M?* using a nested adaptation algorithm
creates a set of new leaf elements in a region R of the mesh defined by a set of elements
of the original mesh M?(D° V) such that R C D°. This region includes not only the
areas initially selected for refinement but also the regions that get refined to maintain the
conformality of the mesh. The adaptation procedure can also coarsen a region C C DO by
replacing some elements of M?~! by their parents. In both cases, the adaptation of the
mesh usually results in imbalances of the work allocated to processors. Thus, if IT*~1 is the
distribution of the mesh M*~! and IT? is an unbalanced distribution of the refined mesh M?
then it is necessary to obtain a new partition Tt of the current mesh that rebalances the

work.

The PNR algorithm allows for a very natural parallel implementation. New values

54

Let M%(D°,V?) be an initial mesh.
Let M! be mesh that results from ¢ adaptations of M.
Let R C D and C C DO be the refined and coarsened regions respectively at time ¢.
In parallel, compute Elemn Weight($2,) and Edge Weight (2, %) for Q, € RUC and © €
D.
Each processor sends its new weights to Pc.
P updates the graph G and computes a partition It = {z,.... 7}
for each processor P; do
for each vertex w, € mi *,w, € ﬁ;,i # j do
P¢ informs P; that the element €2, and its refinement tree 7, must move to P;.
P; executes the move.
end for
end for

Figure 5.1: Outline of the Parallel Nested Repartitioning Algorithm.

for ElemWeight and Edge Weight are computed in parallel using only local information.
Changes in these weights are sent to the common processor Po which, after updating G,
repartitions the graph into p subsets. At this point, all other processors wait until Po sends
back a message informing them of which elements to migrate. Finally, the migration is
performed by moving fully refined subtrees 7,. It is assumed that if P; sends 2, to another
processor P; it also sends all its descendants. The pseudocode for the PNR algorithm is

shown in Figure 5.1.

As explained earlier, the PNR algorithm can be divided into three phases:

e In parallel each processor P; computes the new ElemWeight(Q,) for Q, € R; U 5,-,
where R; and C; are the subsets of the refinement region R and coarsening region C
located in processor P;. In the same way it computes the Edge Weight between two
adjacent elements (€,, ;) where €2, or Q are in R;UC;. P; then sends these weights
to P¢.

e Once P¢ receives a message from each processor F; it partitions the reduced graph
G using a serial partitioning algorithm that allows for weights on vertices and edges.
Because G is assumed to be relatively small, we can use algorithms that would be

considered too expensive to apply to the refined mesh.

o Finally we resume the parallel phase. Pc sends a message to each processor F; telling

them which elements to migrate.

The first phase requires no communication to compute the new weights. Each processor

55

P; can obtain the number of leaf children of an element €2, because the full refinement tree
74 is located in P;. Even if the elements €, and €2, are located in different processors,
each processor has a full copy of the shared vertices and can compute Edge Weight (2, Qp).
Therefore in this phase, the communication cost depends on the size of the region RUC
because only the changes in the weights are sent to Po. The communication cost of the last
phase is proportional to the difference between the current partition IT* and the balanced
partition IIt.

Our method does not require that the complete mesh M? be in one processor in order
to compute a partition. It is sufficient that the coarse initial mesh be small enough to fit
into one processor; the refined mesh can be of arbitrary size. In PARED the dual graph
G is also a dynamic graph that, although initially created from the mesh M, can evolve
over time. The local refinement of the mesh can create vertices in G that have very high
weight relative to other vertices which might lead to the impossibility of creating balanced
partitions. PARED can detect this condition (i.e. Elem Weight(£2,) > 6|II|) and allow the
graph G to be expanded by replacing some coarse vertices by subgraphs. These dynamic
graphs also allow PARED to handle problems such as the study of fractures in materials

that require the modification of the structure of a mesh.

Many of the heuristics designed for graph partitioning can also be used to repartition
the updated graph G. Unfortunately, when these heuristics are applied to slightly different
problems they can generate very different results. For example, standard graph partitioning
algorithms such as Multilevel-KL or RSB usually compute a new distribution of the adapted
mesh that is very different from the current one and require a large movement of elements
and vertices between processors. In Section 5.6 we discuss the sensitivity of heuristics to

the repartition of G.

5.5 Quality of the Partitions Obtained from PNR

Because there are many more ways to partition the adapted mesh M! than to partition
MY, a good partition of G does not necessarily imply a good partition of M?. Recall that
Mt is a finer graph than M. For this reason, there is more freedom to partition M? than
to partition M°. However, the experiments reported in this section comparing partitions
of M against those obtained by partitioning G' and then projecting these partitions to M?

show that the resulting partitions obtained by both methods are of similar quality.

To test the effectiveness of PNR we compared the partitions it provides with those

56

produced by Chaco’s Multilevel-KL on adaptively refined unstructured two- and three-
dimensional meshes. Our goal was to compute a solution to Laplace’s equation Au = 0

defined in Q2 = (—1,1)2 with the following Dirichlet boundary conditions:

sinh(2n(z + y + 2))
sinh(87)

g(z,y) = cos(2m(z —y))

The analytical solution of this problem is known to be u(z,y) = g(z,y) at every point of
the domain Q. This solution is smooth but changes rapidly close the corner (1,1). A similar

problem has been defined in three dimensions.

Our initial two-dimensional mesh has 12,498 triangles while the three-dimensional initial
mesh has 9,540 tetrahedra of similar size. The adaptation of the mesh according the Lo
norm (maximum error between real solution and computed solution) creates a large number
of elements in the region of rapid change in the solution, as shown in Figure 5.2. The total
number of elements and vertices in each refined mesh is shown in Table 5.1. After each
refinement, we compute a new partition of the adapted mesh using both Multilevel-KL, and
PNR with a = 0.1. Chaco’s Multilevel-KL always partitions the mesh using a dual graph
G obtained from the refined mesh M?. This graph has one vertex for every element in M?®.
On the other hand PNR partitions the mesh using only the weighted graph G constructed
from MP.

In this problem, the local refinement of M? is not uniform. In regions of high relative
error, the corresponding vertices of G have much larger weights in adapted meshes than
those associated with unrefined elements. These problems, which result in a high variation
of vertex weights in the graph G, are one of the most difficult cases to handle by a scheme
like PNR. Recall that the weights of the vertices of G correspond to the number of elements
in the fine mesh. After 8 levels of recursive refinement, the graph vertices that are close to
the region of high activity have a weight larger than 256 while the vertices on smooth regions
have unitary weight. As the weights of the vertices in G close to the corner approach the
average subset weight |II|/p, it becomes increasingly difficult to obtain balanced partitions
with small internal boundaries. In the larger meshes, the resulting balance is within 3% of
the average weight of a subset. Beyond this point it is necessary to modify the graph G
to include more vertices in this region and allow for more freedom to compute partitions
as explained in the previous section to obtain reasonably good and balanced partitions.
PARED provides methods for modifying the structure of G, but these methods were not

used in these tests.

57

Figure 5.2: Irregular two- and three-dimensional regular meshes adaptively refined to solve
Laplace’s equation of a problem that exhibits high physical activity in one of its corners.

2D Mesh 3D Mesh

Level | Elem | Vert | Elem | Vert

0 12498 | 6394 9540 | 2013

1 14425 | 7384 || 10066 | 2118

2 22715 | 11532 || 12148 2525

3 30698 | 15544 || 17691 | 3580

4 43262 | 21858 || 30833 | 6051

5 56055 | 28279 || 70185 | 13262

6 76981 | 38776

7 || 101737 | 51176

8 || 135371 | 68031

Table 5.1: Mesh sizes of the locally adapted 2D and 3D meshes at each refinement level.

The experiments reported in Table 5.2 demonstrate that very high quality partitions can

be produced using PARED’s refinement history trees, thereby greatly parallelizing the mesh

partitioning problem. This data shows the number of shared vertices between processors

in the partitions produced by Multilevel-KL. and PNR for the two- and three-dimensional

meshes described above. Although PNR partitions relatively small weighted graphs, it

often produces partitions with smaller boundaries between subsets than those generated by

Multilevel-KL.

5.5.1 Competitive Analysis of PNR

In this section we show that PNR can provide 2D mesh partitions that are competitive, that

is, whose cut sizes are within a small constant factor of the best partitioning algorithm at

the expense of a small additive change in the balance of mesh elements between processors.

58

2D Mesh
Multilevel-KL PNR

L 4 8 16 32 64 | 128 4 8 16 32 64 | 128
01 179 | 333 | 525 | 792 | 1141 | 1614 || 157 | 297 | 465 | 739 | 1043 | 1523
1202|335 | 534 | 801 | 1167 | 1702 || 197 | 343 | 521 | 773 | 1164 | 1633
2| 263 | 445 | 674 | 1023 | 1500 | 2118 || 245 | 437 | 675 | 996 | 1458 | 2076
3270 | 473 | 775 | 1194 | 1748 | 2456 || 305 | 471 | 745 | 1120 | 1609 | 2316
4 | 350 | 571 | 895 | 1400 | 2080 | 2906 || 363 | 571 | 932 | 1352 | 1995 | 2809
5 | 388 | 642 | 1061 | 1595 | 2324 | 3341 || 350 | 624 | 980 | 1495 | 2179 | 3134
6 || 448 | 749 | 1202 | 1829 | 2706 | 3945 || 444 | 733 | 1175 | 1775 | 2620 | 3699
7| 493 | 830 | 1357 | 2111 | 3112 | 4503 || 563 | 808 | 1351 | 2048 | 2971 | 4315
8 || 554 | 950 | 1547 | 2337 | 3544 | 5151 || 539 | 994 | 1557 | 2360 | 3595 | 5152
3D Mesh
Multilevel-KL PNR
4 8 16 32 64 | 128 4 8 16 32 64 | 128

334 | 489 | 674 | 935 | 1174 | 1437 || 372 | 536 | 737 | 931 | 1193 | 1458
321 | 478 | 729 | 975 | 1230 | 1495 382 | 517 | 682 | 979 | 1226 | 1483
366 | 559 | 785 | 1046 | 1350 | 1667 || 364 | 572 | 819 | 1088 | 1406 | 1695
398 | 681 | 979 | 1349 | 1717 | 2120 | 406 | 698 | 975 | 1302 | 1716 | 2038
631 | 1020 | 1453 | 1893 | 2441 | 3024 | 618 | 999 | 1481 | 1935 | 2410 | 2761
1243 | 1742 | 2561 | 3380 | 4374 | 5446 | 1377 | 1895 | 2551 | 3374 | 4306 | 5225

CUl o~ o

Table 5.2: Comparison of the quality of the partitions produced by Multilevel-KL, and PNR.
The tables show the number of shared vertices obtained by partitioning a sequence of locally
adapted meshes with Multilevel-KL and PNR into 4 to 128 subsets.

59

The 3D case is unresolved.

PNR is a procedure that partitions the leaves of the mesh M?(D,V) at time ¢ among
p processors by partitioning the vertices of a weighted graph G and then replacing each
vertex w, of G by its corresponding refinement history tree 7, whose leaves are leaves of
M!(D,V). Vertex w, has a weight equal to the number of leaves of 7,; the weight of an
edge between vertices w, and w; of G is equal to the number of edges between leaf elements
in 7, and 7.

A p-processor partition has an e-balance, € > 0, if the number of mesh elements assigned
to each processor is less than or equal to (|G|/p) (1+¢€) where |G| is the weight of the vertices
of G. A balance is good if € is small because the maximum number of mesh elements assigned

to any processor cannot be less than (|G|/p).

Let G* denote the dual graph of the most refined mesh defined by the leaves of M*(D, V).
It has one vertex for every mesh element and one edge for every pair of mesh elements that

share an edge or face. Each vertex and edge have unit-weight.

Our goal is to show that from a good partition II* of G*, that is, one that has an -
balance for small € and a small cut size C, we can construct a nearly equally good partition
I1° of G, that is, one that when projected to a partition of IT° of M*(D, V) has an €-balance
and cut size C’ such that ¢ and C' are at most constant multiples of € and C, respectively.
From this we conclude that PNR, which projects a partition of G to one of M*(D,V),
is capable of producing partitions of M?*(D, V') that are nearly as good as those obtained

without requiring that cuts follow the boundaries of coarse mesh elements.

We derive this result by converting a partition IT! to a partition II°. We move the
boundaries between processors so that they pass along the periphery of the initial coarse
mesh elements, edges in the case of triangles and faces in the case of tetrahedra. Because
the boundaries can be moved in ways that affect the balance and cut size, it is important

to move the boundaries carefully.

Note that a cut defined by II* can pass through a coarse mesh element €2, once or more
than once. If the latter case holds, we order the segments of the cuts passing through each
element so that the first cut divides 2 into two pieces and subsequent segments divide one
of the two pieces. This reduces the problem to the first case, namely, when the cut divides

Q, into two pieces.

We now consider the first case, when a cut passes through a coarse mesh element ()

once. Let € be the coarse mesh element that overlaps processors p; and p;. The cut

60

Let B; ; be the set of coarse mesh elements split between p; and p;.
Let «; be the number of fine mesh elements assigned to p; by II¢.
Let ; be the current number of fine mesh elements in p;.
Let v be the largest number of fine mesh elements in any coarse mesh element.
fori=1top—1do
for j=i+1topdo
for €2}, the next coarse element in B; ; do
Unless 8; — a; > 7y or 8 — aj > 1y, move
the boundary splitting Q. to x’s shorter periphery.
Otherwise, move the boundary to €;’s longer periphery.
end for
end for
end for

Figure 5.3: Algorithm to convert a partition IT" of G* with balance B to a partition IT°
of G with balance B + 7.

divides €2, into two sets. When the boundary is moved to the periphery of)i, both sets are

assigned either to p; or p;. Either move may change the size of the cut and/or the balance.

The code shown in Algorithm 5.3 describes a greedy algorithm that we use to create
the partition I1° from the partition II*. It moves the boundary between p; and p; passing
through coarse mesh element €2 to the shorter periphery of 2 unless this increases or
decreases the number of fine mesh elements assigned to one of the processors to differ by
more than v from the number assigned by IT!. Here v is the maximum number of fine mesh
elements in the most refined coarse mesh element. We shall show that under reasonable
assumptions this condition insures that the cut size does not increase by more than a

constant factor. We now discuss these assumptions.

Assumptions

When a mesh is refined, coarse elements are generally not all refined uniformly. A mesh
element is refined uniformly to depth d if it satisfies the following conditions: a) if d = 0, the
mesh element is unrefined, and b) otherwise, the two elements produced by a refinement

are themselves recursively refined uniformly to depth d — 1.

Note that it is not a given that coarse elements can be uniformly refined to an arbitrary
depth. This follows because when elements are refined, we require that the refined elements
be conformal. Thus, it may be necessary to refine an element more than once to make it

conform to a neighboring element that has been refined previously.

61

Figure 5.4: An 6-level uniform refinement of a triangle.

Our experience with 2D triangular meshes is that they are frequently refined uniformly.

This is not as common with 3D tetrahedral meshes.

Since 7 is the maximum number of fine mesh elements in the most refined coarse mesh

element, if such elements are refined uniformly to depth d, v = 2¢.

Analysis of the Greedy Algorithm

We now introduce several definitions that will be useful in our analysis of the cut size and

balance of the partition II° produced from II* by Algorithm 5.3.

Definition 4 Let Qf be a depth-d uniformly refined coarse mesh element and let ¢ be length
of a cut through Q. The cut expansion function of Q, cut_exp(d,c), is the maximum value
for the ratio of the length of the shorter periphery of € defined by a cut of Qj to ¢, the
size of the cut. The weight function of Qy, weight(d,c), is the maximum number of fine
mesh elements that can be contained between a cut through € of size ¢ and the shorter

periphery of .

Lemma 1 In 2D let d be even. Then, cut_exp(d,c) = 3 and, if ¢ < 2%/2~1 then weight(d,c) =

202.

Proof Consider the 2D case in which each mesh element is a triangle €. € is refined
into two triangles by the first level of refinement. The edge of 2 that is split by its first

refinement is called its base. The two other edges are called slopes. Call the vertex at which

62

the two slopes meet the aper. (See Figure 5.4 where the base is the bottom edge of the
triangle).

Consider a cut that enters {2 by one boundary edge and exits by another. If the cut
has size ¢ < 2%/271 the places where a such cut enters and exits are constrained. A cut
either enters one slope and exits from the other or it enters one slope and exits from the
base without passing through the triangle defined by the vertical through the apex and the
other slope. The latter condition holds because the length of such a path would necessarily

exceed 24/2-1 in length.

Suppose the cut enters one slope and exits the other. Let it enter at the ath vertex from
the apex (a = 0 at the apex) on one slope and exit from the bth vertex on the other. The
shorter periphery defined by the cut has length a+ b. The shortest cut connecting the entry
and exit vertices is the maximum of ¢ and b. Thus, the ratio of the shorter periphery, a + b,
to the cut ¢ (which is at least max(a,b)) is at most 2. When the cut enters one slope and
exits from the base, the cut that maximizes this ratio is a “vertical” cut , a vertical edge in
Figure 5.4. This cut defines a periphery in which the base and slope portions have sizes ¢

and 2¢, respectively. Thus, cut_exzp(d,c) = 3.

We now obtain the weight function. Given a cut of size ¢ we maximize the number
of triangles contained between the cut and the boundary of € defined by the shorter
periphery. Obviously this cut is a shortest cut between two boundary edges of ;. Since
a cut of size at most 2%/271 is assumed, either a) the cut enters from one slope and exits
from the other, or b) it enters from one slope and exits from the base. By inspection it is
easy to see the larger number of elements is contained in the region defined by a vertical

and that this region contains at most 2¢? elements. Thus, weight(d,c) = 2¢2. O
We now analyze the performance of our greedy Algorithm.

Theorem 2 Let the partition IT! of M*(D, V) have have an e-balance and cut size C. Under
the assumption that each coarse mesh element is refined uniformly to depth d, Algorithm 5.3
produces from IT* a partition IT° of M*(D,V) with cut size at most 9C' that respects the
boundaries of elements in M°(D, V) and for which each processor has at most (|G|/p) (1 +
€) + (p — 1)d? mesh elements.

Proof Let’s follow the steps taken by Algorithm 5.3. (Note that v = 29.) Let ¢ be such
that the cut through the first ¢ coarse mesh elements are moved to their shorter peripheries

but on the (¢ + 1)st element the cut is moved to the longer periphery. It follows that the

63

number of elements that change sides as a result of moving the first g elements exceeds .

Let the lengths of those portions of the original cut defined by IT* that pass through the
first ¢+ 1 mesh elements processed by Algorithm 5.3 be ¢;, 1 <14 < g+ 1. Let the lengths of
the peripheries to which these cuts are moved be b;, 1 <1 < g+ 1. Because the first q cuts
are moved to the shorter peripheries, it follows from Lemma 1 that 23:1 b < 32?:1 Ci-
The (¢ + 1)st cut is moved to the longer periphery and is replaced by a cut of length
bg+1 <3 (2d/ 2), the length of the boundary of the most highly refined coarse mesh element.

We now bound the expansion in the cut length that occurs during the first ¢ + 1 steps
of Algorithm 5.3. We consider two cases, namely, a) when one or more of the first ¢ cuts is
long, namely, when ¢;, > 24/2-1 for some 1 < iy < ¢, or b) when each of the first ¢ cuts is
small, namely, when ¢; < 24271 for all 1 < i < q.

Since bgy1 < 3 (2d/2), in the first case 24/2-1 < ¢i, from which it follows that by 1 < 6¢;,.

In this case we have the following bound on the expansion in the cut length:

q+1 q+1

q q
be§< bi>+bq§3Zci+66¢OSQZci
i=1 1 i=1 i=1

1=
In the second case, namely, when ¢; < 2%/2-1 for all 1 < i < ¢, we use Lemma 1 to bound the
number of elements that change processors. Since at most 2(c;)? elements change processors
when moving the cut through the ith element, it follows that at most 2 7_,(c;)? elements
change processors during the first ¢ steps. Since this number must be at least v = 2¢, we

have the following relationship.

q q 2
21<2) (a)’ <2 (Zci)
i=1 i=1
It follows that .
b <3 (277) <3v2) e

i=1

and
q+1 q+1

sz S 3(1+ \/i)ZCZ
i=1 i=1

Thus, the cut size expands by at worst a factor of 9 on the first ¢+ 1 boundary movements.
Repeating the same argument on the remaining elements, we have the desired bound on

the cut size.
Since the number of elements assigned to any processor changes by at most v elements
when moving elements between any two processors, it changes by at most (p — 1)y when

moving elements between all p processors. O

64

We see that in 2D if (p — 1)d? is at most (|G|/p)e, the partition TI° derived from the
e-balanced partition II* with cut size C is a 2e-balanced partition with a cut size at most
9C.

5.6 The High Migration Cost of RSB and Multilevel-KL

RSB and Multilevel-KL are very effective methods for partitioning unstructured meshes.
Nevertheless, when applied to the repartitioning of adapted meshes, their resulting parti-
tions require a large movement of data between processors which is usually proportional
to the size of the mesh, as we now demonstrate. Tables 5.3 and 5.4 show the results of
repartitioning a series of unstructured two- and three-dimensional meshes using the RSB
algorithm, respectively. Starting from unstructured meshes with elements of similar size we
perform successive global refinements (each coarse mesh elements is refined the same num-
ber of times) to obtain a family of meshes of increasing size. These meshes contain between
5094 and 103585 triangles in the 2D example and between 3179 and 101051 tetrahedra in
the 3D case.

Each mesh M?~1 is then partitioned between 4 to 64 processors using RSB bisection.
The quality of the resulting balanced partitions IT*~! measured by number of shared vertices
is shown in the third column of the tables. We then locally adapted each mesh M?~! in
one of the corners using the Laplace problem introduced in Section 5.5 which generates in a
new refined mesh M*. This adaptation procedure creates very few elements (less than 380)
relative to the size of the mesh. Because of its localized nature all the new elements are
created in only one or two processors. Let IT~! be the balanced partition of the mesh A1
before its local adaptation and let IT* be the unbalanced distribution of the mesh after its

refinement.

We then compute a new partition It using the same RSB algorithm used to partition
M'=1. Even when the meshes M*~! and M" are very similar and only differ in one of their
corners the migration cost between the current unbalanced distribution ITI* and the target
partition ﬁt, Chmigrate (IT¢, ﬁt), can be almost equal to the number of elements of the mesh, as
shown in the sixth column of Tables 5.3 and 5.4. Although spectral methods are invariant
with respect to node numbering or coordinate transformations, almost all the elements of
the mesh need to be moved to a new processor. The results obtained from Multilevel-KL

are similar.

We have also explored a method [12] for reducing the migration cost of these algorithms

65

Mt ! (before ref) | M! (after ref)

Proc | Elem | Ceu(IT'™) || Elem | Ceyt(ITY) || Crigrate (I, i) Cmigrate (IT",)
4 5094 99 5269 95 2627 2627
8 168 159 3341 831

16 273 274 4458 1551
32 421 421 5046 2270
64 615 629 5129 2354
4 11110 137 11411 152 9192 2010
8 249 250 9696 3383
16 405 410 10444 4747
32 633 647 11061 5684
64 926 960 11230 5284
4 23749 311 23902 291 16477 14519
8 488 480 19182 13117
16 700 670 22620 11104
32 1000 980 23441 11374
64 1463 1425 23530 11711
4 49915 331 50072 410 35601 23152
8 569 680 49190 18507
16 920 977 49264 22147
32 1408 1431 49776 21972
64 2067 2159 50050 23639
4 || 103585 788 || 103786 863 38433 38433
8 1121 1193 77099 43272
16 1690 1728 93892 51125
32 2380 2403 99397 50264
64 3297 3310 102277 50278

Table 5.3: Migration cost resulting from repartitioning a series of two-dimensional un-
structured meshes of increasing size using the RSB algorithm. AM?~! is the mesh before
refinement and distributed according a balanced partition II*~! obtained from RSB. M? is
the refined mesh. TI? is a new balanced partition of M* also produced by the RSB algorithm
and I is a permutation of fI* that minimizes data movement.

66

M! ! (before ref) | M! (after ref)

Proc | Elem | Coy(T' 1) || Elem | Coue(TlY) | Crnigrate (T, T) | Crnigrate (ITF, IT)
4 3179 157 | 3427 156 3129 1324
8 221 223 3134 1809

16 301 313 3263 1595
32 387 401 3316 1688
64 470 488 3327 1783
4 | 10166 312 || 10543 346 9390 6242
8 456 468 10089 4878
16 633 663 10387 5199
32 838 869 10500 5821
64 1075 1114 10530 5418
4 31935 651 32314 672 26365 16114
8 946 1006 29867 15230
16 1352 1385 31619 18055
32 1828 1838 32145 17357
64 2373 2381 32196 17725
4 | 101051 1282 || 101381 1426 38148 38148
8 1847 2074 69142 33930
16 2860 2987 77465 46124
32 4020 4121 87328 41955
64 5330 5402 94344 49232

Table 5.4: Migration cost resulting from repartitioning a series of three-dimensional un-
structured meshes of increasing size using the RSB algorithm. AM?~! is the mesh before
refinement and distributed according a balanced partition II*~! obtained from RSB. M? is
the refined mesh. IIt is a new balanced partition of M* also produced by the RSB algorithm
and IT? is a permutation of fI* that minimizes data movement.

67

by permuting the partition Tt generated by RSB to minimize Cyigrate (I, ﬁt) The task of
finding a permutation It of TI is equivalent to computing the maximum bipartite graph
matching problem, where the weight of an edge (3, j) of the graph corresponds to the weights

of the elements located in processor ¢ and assigned to subset ﬁ; e IIt.

In these examples we use a simple incremental algorithm to approximate the optimal
permutation. We first generate a p X p matrix B where row ¢ corresponds to processor
P; and column j corresponds to the subset ?; € II*. The entry B;; is equal the sum of
the weights of the elements currently in processor P; that are assigned to ?F; This is the
number of elements that have to be migrated from processor P; to processor P; according
to the newly computed partition TI*. We then search for the maximum value in this matrix.
Assume this is the B; ; entry. This value corresponds to the maximum movement of data
between a processor P; to another processor P;. We then assign the subset 5?;- to P;, remove
row ¢ and column j from B and repeat this processor until all the subsets in TI* have been

assigned to processors.

The value of Cyigrate (IT, IT*) is shown in the last column of Tables 5.3 and 5.4. The
total migration cost for I is approximately half of the migration cost for I but it is still

proportional to the size of the mesh.

5.7 Bounding the Migration Cost

In the previous section we have shown that standard graph partitioning algorithms, when
applied to the repartitioning problem, often require significant movement of data between
processors which creates serious contention for an interprocessor network. In this section we
derive a lower bound for the migration cost under certain reasonable assumptions. In the
next section we present a new repartitioning heuristic. The migration cost for this heuristic

is close to the lower bound derived in this section.

Assume that IT~! is a balanced distribution of a mesh between p processors and that m
new elements are created in the refinement phase in only one processor, say P,, resulting in
an unbalanced partition IIf. Also assume that the goal is to minimize the cost of migration
subject to the requirement that the distribution of elements between processors is balanced.
That is, we do not impose the additional requirement that the number of nodes that are

shared by elements located in different processors is minimized.

Under the above conditions P, only needs to send (p — 1)(m/p) of its elements to

other processors and every processor should have m/p more elements after the migration is

68

complete. This could be done by moving p — 1 sets of m/p elements from P, to every other

processor with the migration cost shown below.

~ m 1
Cmigmte(nt,nt) = (- 1)5 =m(l - }—))

Unfortunately, this reallocation of elements generates disconnected sets of elements in
every processor. A more realistic bound can be obtained by restricting the migration of
elements to be between adjacent processors. Let H! be the processor connectivity graph
at time ¢ using the current distribution IT*. H? has one vertex for every processor and an
undirected edge between two processors that have adjacent elements. To obtain a balanced
distribution TIt processor P, must send m/p elements to every other processor P;, but only
along the edges of H'. This procedure effectively shifts the boundaries of the mesh and

reduces the probability of creating disconnected subsets of elements in each processor.

Let the minimum distance between processors P; and P; in H t be d; ;. The movement
of m/p elements from P, to P; has a migration cost of d, j(m/p) if only edges of H' are

used giving the following total migration cost:

szgmte H Ht Zd J(>

Jj#o

For example, if processors in the graph H? form a two-dimensional \/P X y/p mesh and P,
is located in one of its corners, d,; < 2(,/p — 1) and the total migration cost required to

rebalance the mesh after creating m new elements in P; is

~ m
Cmigmte(nta Ht) < 2(\/5 - 1)(p)5

2/pm.

Under these assumptions, the total migration cost Ciigrate (Ht,ﬁt) only depends on the
number of processors p and the number of new elements m and is independent of the
mesh size. For example, when p = 64 the bound is 16m. The heuristic described in
the following section gives a better migration cost than this bound primarily because the

minimum distances do ; are smaller than predicted by a square grid.

69

5.8 Minimizing the Migration Cost

In this section we introduce a new heuristic that we have developed to repartition the
weighted graph G located in the coordinator that greatly reduces the number of mesh

elements that need to move in order to repartition a good unbalanced partition.

The critical step in PNR is the selection of the graph partitioning algorithm to partition
and repartition the dual weighted graph G in the coordinator. PARED can use a variety
of algorithms to partition G, including Chaco’s implementation of RSB and Multilevel-KL.
Although traditional graph partitions can rebalance the work and generate partitions with
small cuts, they do not consider migration cost. As we have shown in Section 5.6, RSB and
Multilevel-KL when applied to G usually require the movement of half of the elements of
the adapted mesh, even on examples where there is relatively little adaptation. We have
also observed that these methods do not perform well when there is great variation of vertex
weights and usually produce partitions with disconnected sets of elements assigned to the

salmme processor.

At the beginning of a simulation the coordinator P partitions the initial mesh MY
using our implementation of the Multilevel-KL [47] algorithm. As described in Section
5.2.1 this algorithm creates a sequence of smaller graphs Gy, ..., Gk by collapsing adjacent
vertices, where G is the dual graph G of the initial mesh M°%. The coarsest graph G
is then partitioned using Chaco’s RSB [48]. This partition is then projected to the finer
graphs. As in Multilevel-KL, our implementation uses a variation of the KL heuristic
between projections to improve the partition quality. This heuristic selects one by one the
movements of vertices between subsets that result in the largest reduction in the partition
cut. Moved vertices are not examined again in the same iteration and negative movements
are also considered but, rather than evaluating every possible vertex like traditional KL
heuristics, it terminates if no improvements have been observed for some time (around 100
movements). Finally, we restore the best partition obtained in this process by reversing the

subsequent vertex movements.

Assuming that there is a small change between meshes M*~! and M?, (for example, in a
time dependent problem that slowly moves a highly refined region) the current unbalanced
distribution IT* can be used as the starting point for a local search heuristics to compute
a new partition fI*. The standard Kernighan-Lin heuristic is designed to work between
balanced partitions. When it swaps two vertices assigned to different subsets, the relative

work assigned to each processor is maintained. To insure that processors have similar

70

amounts of work, the standard Multilevel-KL only considers movements from subsets that
have at least the average number of vertices to subsets that have less than the average.
Therefore, both heuristics require that the initial distribution be balanced. None of these
heuristics would move or swap vertices that increases the cut size but improves the balance

between processors.

As explained in Section 5.2.1, to repartition the graph G with PNR, P¢ first receives the
new weights from every processor P; and uses these weights to update Gy and the coarser
graphs G1,...,Gk. This is a recursive procedure. If the adaptation of the mesh modifies
the weight of a vertex w, or an edge (wp, w.) in Gy, then we propagate these changes to
the corresponding parents of w,, wy and w, in G1. These changes propagate to the coarser

meshes. This procedure does not modify the connectivity of the sequence of graphs.

Our new heuristics that prevents small changes in a mesh from producing a large migra-
tion cost consists of Multilevel-KL in which we do not use RSB to repartition the coarsest
graph Gg. The resulting algorithm is outlined in Figure 5.5. The selection of vertices and
evaluation of partitions is not only based on the cut size. Instead, we use the cost function
Clrepartition defined below between IT¢, an unbalanced distribution of the mesh, and ﬁt, the

goal partition where o, 8 > 0 are constants.

Crepartition (Hta ﬁt, a, B) - Ccut (ﬁt) + acmigmte (Hta ﬁt) + IBCbalance (ﬁt) (51)

Here

p
Chalance (Ht) = Z (weight(%f) -

i

weight (TIt)) 2
p

where 7t is the ith subset in the partition fi*. The first term in Clrepartition, namely Ceyy, se-
lects for partitions with small boundaries between subdomains. The second term minimizes
data movement. The last term balances the subsets. Here o and (8 are parameters that
represent the relative importance of these three values. We have obtained the best results
when (3 is allowed to vary between the graphs, allowing slightly unbalanced partitions in G g
while enforcing balanced partitions in Gy. In this way, the task of rebalancing the subsets

does not rely only on the coarser graphs.

We now describe our local search procedure. Let T} be a partition of the vertices of Gy
at time ¢, where Gy a graph in the sequence Gy, ...,Gg. The gain(w,,1,j, o, 3) associated
with moving vertex w, in subset 7; to subset m;, where m;, w; € H}i, is the net reduction in

the function Chepartition-

71

gain(wa,i,j, 0476) = (Z weight(waawb) - Z weight(waawc))

Wy ET; WeET;
+ a(mweight(wg, j) — mweight (wq, 1))
+ 20 (weight (w,) (weight (7;) — weight (7)) — weight® (w,))

The migration weight mweight(wq, j) is equal to the number of elements €2, in the fine mesh
M? of the tree rooted at w, that are located in processor P; at time ¢ and weight(m;) is the
weight of the vertices in subset ;. Before starting the local improvement at each level, we

compute the cut gain > weight (wq, wp) — D2, cr, weight(we, we) for every vertex w,

WpETj
with respect to an adjacen: 51]1bset J, the migration gain (mweight(wg, j) — mweight(wq, 1))
and the balance gain (weight(w,)(weight(m;) — weight(m;)) — weight?(w,)). Since we only
allow movements of vertices that are adjacent to other subsets, only these vertices need to
be considered. A movement modifies the cut gain of adjacent vertices but the migration

gain is constant. On the other hand, the balance gain depends on pairs of subsets.

As in Multilevel-KL, we maintain a square table with an entry for each pair of subsets
consisting of priority queues based on gains. That is, the possible movements between a
pair of subsets is sorted by potential gain. To implement the local heuristic, we select the
vertex movement with largest gain from this table, move the vertex between subsets and
update the entries in the table corresponding to adjacent vertices. The moved vertex is
marked so it is not inserted in the table again. This process iterates through the heads of
the P? priority queues. In FEM meshes the number of adjacent vertices is relatively small.
In dual graphs of 2D triangular meshes and 3D tetrahedral meshes each graph vertex has
at most three or four neighbors respectively. The time to remove the maximum gain from
a priority queue and updating the neighbors is bounded by O(logn), where n is the number
of boundary elements in a subdomain ;. A vertex move between m; and m; modifies the
difference weight(m;) — weight(m;). Rebuilding these priority queues requires O(n) steps.

We performed the tests described in Section 5.6 using our new PNR algorithm to par-
tition and repartition the coarse mesh. These results are shown in Tables 5.5 and 5.6 for
the same two- and three-dimensional meshes respectively. In these tests we used a = 0.1
and # = 0.8, obtaining partitions with € < 0.01. The quality of the partitions measured by
the number of shared vertices generated by PNR and RSB (shown in Tables 5.3 and 5.4) is
very similar. On the other hand, the total migration cost Chigrate (ITY, ﬁt) is much smaller
than those measured previously and does not significantly increase with mesh size. These

results are close to the estimates derived in Section 5.7. On the other hand, if the number

72

for every processor P; do
P¢ receives the new weights weight (w,) and weight(w,,wy) and updates the graph Gy
end for
for k=1 to K do
Pc updates the weights of Gy, from Gp_q
end for
for k = K down to 1 do
P improves the current partition
P¢ projects the partition from G to Gg_1
end for

Figure 5.5: Outline of PNR’s procedure to repartition the dual graph G in the coordinator
Pc.

of new elements created in the refinement phase is large and proportional to the size of the

mesh, any of the previous heuristics is likely to provide similar results.

5.9 A Transient Problem

In the previous section we have shown that on locally adapted meshes PNR produces
partitions with a cut size similar to the ones produces by standard graph partitioning
methods but requires a much smaller data movement. In this section we use our method
to follow a disturbance across a domain. We show that the repeated use of our heuristic
maintains the quality of the partitions while retaining its small migration cost. In Section 5.6
we have shown that RSB and Multilevel-KL can require migrating about half of the mesh
elements between partitions. While this does not imply that every repartition of the mesh
with these methods results in such high migration costs, it very frequently does, as our
experiments reported below show.

To study these issues we solve Poisson’s equation Au = f over the domain Q2 = (—1,1)?2

where the solution u(z,y,t) is the known function

1
~ 14+100(z +)2 + 100(y + t)?

u(z,y,t)

and compare the partitions produced by RSB and PNR. We solved this problem for 100
time steps in which ¢ varies from —0.5 to 0.5. This function is smooth with a peak of 1 at
the coordinates x = y = —t and close to zero almost everywhere else. Thus, as t varies from
—0.5 to 0.5, the peak moves along a diagonal from (0.5,0.5) to (—0.5,—0.5). The computed

solution 4 at the initial and final iterations are shown in Figure 5.6(a) and (b), respectively.

Mt ! (before ref) | M?' (after ref)

Proc | Elem | Ceu(IT'™!) || Elem | Ceyt(I1) || Crigrate (I, i)
4 5094 89 5269 91 132
8 154 162 280

16 261 290 430
32 394 442 483
64 591 642 681
4 11110 151 11411 151 226
8 260 262 489
16 400 415 773
32 601 659 967
64 866 935 1146
4 23749 197 23902 199 115
8 347 352 245
16 564 578 332
32 883 932 415
64 1302 1351 512
4 49915 291 50072 289 156
8 547 549 251
16 885 899 373
32 1346 1368 531
64 1995 2038 581
4 || 103585 426 || 103786 429 151
8 802 789 321
16 1314 1319 469
32 1970 1971 623
64 2982 3042 731

Table 5.5: Migration cost resulting from repartitioning a series of two-dimensional un-
structured meshes of increasing size using the PNR algorithm. M?~! is the mesh before
refinement and distributed according a balanced partition II*~! obtained from PNR. M? is
the refined mesh. TI* is a new balanced partition of M? also produced by the PNR algorithm

and I is a permutation of fit.

73

74

Mt 1 (before ref) | M! (after ref)

Proc | Elem | Copy(TI' 1) || Elem | Coot(TTY) | Crnigrate (I, TI)
4 3179 132 3427 135 178
8 184 195 303

16 278 303 394
32 362 404 492
64 448 486 538
4 10166 313 10543 329 298
8 409 428 437
16 628 639 662
32 806 851 856
64 1042 1105 877
4 31935 574 32314 568 311
8 867 869 456
16 1332 1317 852
32 1760 1802 940
64 2344 2360 1060
4 || 101051 1249 || 101381 1244 282
8 1797 1819 406
16 3042 3044 672
32 4315 4279 904
64 5424 5391 1271

Table 5.6: Migration cost resulting from repartitioning a series of three-dimensional un-
structured meshes of increasing size using the PNR algorithm. M!~! is the mesh before
refinement and distributed according a balanced partition II*~! obtained from PNR. M? is
the refined mesh. fI* is a new balanced partition of M? also produced by the PNR algorithm
and IT? is a permutation of fit.

75

Our initial mesh is the same 2D unstructured mesh used in Section 5.5 with 12,498
triangles of nearly similar size. When the Ls and Lo, norms are used, the number of mesh
elements needed to maintain a fixed error varies with ¢. Since this risks confusing the
amount of data that must migrate and the comparative advantage of our repartitioning
technique over RSB and Multilevel-KL, we refined the mesh to maintain about a constant
number (45,000 to 50,000) of mesh elements in the adapted meshes. As t increases: a) we
compute a new solution, @, using the old mesh; b) to each mesh element is assigned a value
equal to the largest computed solution at its vertices; c) an element is marked for one two
or three refinements depending on whether the new value is in the range 0 to 0.02, 0.02.
to 0.04, or 0.04 to 0.06; d) if by the previous value the element was marked for a different
number of refinements, the element is either coarsened or refined by the appropriate number
of steps. The initial and final adapted meshes are shown in Figure 5.6(c) and (d), where it
is possible to identify the three concentric circles given by the increasing refinement value
#. In each of the 100 time steps, after the solution and adaptation of the mesh we also

compute a new partition It using RSB and PNR.

Figure 5.7 shows the number of shared vertices of each partition of fI* obtained by RSB
and PNR for 4, 8, 16 and 32 processors. In PNR we used the parameters & = 0.1 and 8 = 0.8
in Equation 5.1. The resulting partitions have less than 0.01 imbalance between subsets.
Even though PNR is a local heuristic, in these examples the cut size of the partitions that
it produces does not deteriorate over time and is similar to the ones produced by RSB, a

very successful graph partitioning method.

Figure 5.8 shows the number of elements migrated by the three methods, a) RSB,
b) RSB after computing a permutation It of TIt that reduces migration, as explained in
Section 5.6, and c¢) PNR. RSB usually migrates between 50% and 100% of the total number
of elements between repartitions. Although not reported here, the results for Multilevel-KL
are similar. The total movement significantly decreases with the permutation I of the
subsets to processors but we still observe peaks of more than 46% of the total elements
and an average movement of 21% for 32 processors. This method is characterized by sharp
peaks, where some repartitions resulted in small migrations while others require a significant

movement of data.

The total migration cost resulting from PNR is small compared with the other meth-
ods (on the average it is between 1.2% of the elements for 4 processors and 5.5% for 32
processors) and is smooth. PNR resulted in only two peaks with more than 10% data move-

ment between iterations. The total data movement produced by PNR over all iterations

76

() (d)

Figure 5.6: (a) and (b) show the computed solution u with t = —0.5 and ¢ = 0.5. (¢) and
(d) illustrate the adapted mesh at these two different time steps.

Number of shared vertices

Number of shared vertices

Partition Quality (4 Proc.)

RSB . PNR

600

500

Al -
A__A 'I\A\IA’:/—T‘I’J .\XUNM ;‘/\:\:

400

,_/,‘FI" Saon? g

300

200

100

B e L B e o e B
O~ O S M 4 O O~ O %
A N M < O © © N~ 0 O

Iteration step

Partition Quality (16 Proc.)

N\ RSB "*.PNR

1250
1000 et Ahr o
750
500
250
O
O O~ ©O < MO 4 O O N~ O <
- N MO < I © © ~ 0 O

Iteration step

Number of shared vertices

Number of shared vertices

7

Partition Quality (8 Proc.)

RSB "*.PNR

1000

750

500

250

T
o o~ © I M o
— N

L e L B e e o e e L B
o o N~ O <
M < O © O© N~ 0 O

Iteration step

Partition Quality (32 Proc.)

RSB "*.PNR

2000
PR T e T o o
1500” Ml_‘-.
1000
500
0 T T T T T T T T T T T
O o~ O© ¥ M 4 0 O N~ O %
A N M 0O © © N~ 0 O

Iteration step

Figure 5.7: Quality of the partitions measured by the number of shared vertices produced
by RSB and PNR for 4, 8, 16 and 32 processors for
t=—-0.5tot=0.5.

each of the 100 time steps between

78

Data Movement (4 Proc.) Data Movement (8 Proc.)
[\.RsB "+ RSB (pem) “-. PNR| RSB *+. RSB (perm) “, PNR|
100% 100%
< 15% o 75%]
3 3 i
E E 50% I
I 8
: 2 o LI
= P 25wt o — ot)
TR R RN A e
QO [Py
o N O S MO 4 O O~ O <
I N MO < IO © © N~ 0 O
Iteration step Iteration step
Data Movement (16 Proc.) Data Movement (32 Proc.)
\ RSB *+. RSB (perm) ™, PNR \ \\ RSB *+. RSB (perm) ., PNR \
100% A Www 100%
o 75%] 1 o 75%]
%] %]
; A :
E sootiit — E 509
[. [
5 A 5
g 25% 50 e Y] “ e e] = 25%
N :—".‘,u’ \"] !..:'r" ,!lf ‘.‘,v v (O
o"uu“uwuur"‘mm“' 0%+
O O~ © ¥ M 4 O O o o
- N O < 1O © ©

Iteration step Iteration step

Figure 5.8: Elements moved between time steps of partitions produced by RSB, permuted
RSB and PNR for 4, 8, 16 and 32 processors.

was between 12% and 27% of the total number of elements moved by the permuted RSB

heuristic.

Chapter 6

Mesh Migration

Although we demonstrated in the previous chapter how to compute a new partition I that
balances the work, at this stage of the computation the mesh is still distributed according
to an unbalanced distribution IT* of the mesh. In this chapter we present a procedure to
migrate elements and nodes between the processors of a distributed memory machine. We
use the same notation introduced in the previous chapters: II' is the current (probably
unbalanced) distribution of the mesh between processors, m! € II' is the set of elements
assigned to processor P; according to the partition IT¢, V;f is the copy of vertex V,, located
in P, (Pj, V}f) is a reference to the copy of vertex V), located in processor P;, Ref (V;}) is
the set references {(P;, ij)} such that V;f has a reference to its copy V})j in processor P;,
Adj(Q4) = {Vp,,---, Vp, } is the set of vertices contained in element Q, and ElemAdj(V;}) =
{Q1,...,Qy} is the set of elements adjacent to V}, in P;.

6.1 Introduction

Let I = {7, ... ,m,} be a goal distribution of the mesh. If II* # TI*, then there is at least
one element), such that Q, € 7T§ € IT* and Q, € %; ¢ It where i # j. Remember that
we assume that the mesh is partitioned by elements so that the m; and w; partitions are
disjoint, Q, & 7r§- and Q, & 7. To adjust the mesh to the it partition we need to move (2,
from P; to P;.

Assume that we need to move an element 2, from P; to P;, that is , € 7rf and Q, € %;
and that Adj(Q,) = {Vpy,---,Vp,} is the set of vertices of €2,. We first send a message
from P; to P;. If V, is a vertex of (2, that is shared between P; and P; we only include a
reference in the message. Otherwise, P; creates the new copy V},j and it initializes Ref (ij) =

79

80

Ref (V;}) U (P, VZU"), so that the new copy has references to the original copy of V,, and all its

other copies in other processors. Using Vz,,j processor P; creates the element),.

We then update the references to the new vertex copies. If Vz,,j is a new copy of vertex
created as a result of a message from P;, then P; sends a message to each processor Py. P;
finally deletes its element ,. It can happen that 2, was the only element that pointed
to V, in P;. In this case we wish to remove the unnecessary copy of sz' located in P;.
Processor P; sends a message to each processor P; such (Pj, VH) € Ref(Vpi). Once all the
other processors remove their references to V;;i we can delete the vertex. This guarantees

that other processors do not maintain references to nonexistent vertices.

Our algorithm considers several cases that assume that either P; has a local copy of the

vertices or they are included in the message to P;:

e For each vertex V,, € Adj(Q,), if (Pj,V},j) g Ref(V;f) (so V, is not a shared node
between P; and P; at time ¢) then we need to send V, from P; to P; along with
element €,. P; uses this information to create its copy of vertex V},j which it then

uses to initialize the element €, in P;.

e Otherwise, if (P;, Vi) e Ref (V}}) (so V, is a shared node between P; and P; at time
t and P; has a local copy ij) then we should not create the V},j vertex copy again.
When P; sends the element €2, to P;, it also includes the reference (P;, V;?) instead
of the complete vertex V,,. Then P; can use V},j to create €,. This condition has an
important implication: processor P; cannot delete its copy of V},j until it has received
all its new elements, even if processor P; has already sent the only element €2 that
points to ij to another processor P, because some other processor P; might expect

P; to have a copy of V.

e If processor P; sends two or more elements {2, and {2 to P; and there is a common
vertex V, € Adj(Qq) N Adj(2) (so Vj is a vertex of both Q, and €2) then only one
copy V},j should be created in P; and both elements €2, and €2 should refer to it in

the destination processor.

e If two processors P; and P, send the elements €, and € to the same processor P;
where elements €2, and 2, are adjacent elements and there is a shared vertex V), €
Adj(Q4) N Adj(), ie. (Pr,V,F) € Ref(V)) and (P;, V) € Ref(V,F), then P;j should
detect that sz' and V;,k are actually two copies of the same vertex. In this case P;

should create only one copy VE,,j for both elements €, and .

81

e Finally, if ©Q, and €, are adjacent elements that share a common vertex V, and
processor P; sends €2, to another processor P; and P sends {2 to P, then we should
insure that (PZ,V;Dl) € Ref(Vpk) and (Pk,V},k) € Ref(V;,l) (so the two copies Vp’C and V}Dl

refer to each other).
The migration algorithm uses three different kinds of messages:

e A move message MoveMsq(i,j) sent from a source processor P; to a destination pro-
cessor P; is used to migrate one or more elements 2, and their associated vertices
from P; to P;. We assume that this message has two other fields. The first field
MoveMsg(i, j).vertices is a set such that MoveMsg(i, j).vertices(§),) contains the ver-
tices of element €2,. For each vertex V), € Adj(Q,), if P; has a local copy of ij then
only the reference (Pj, ij) is included in the message. Otherwise we send the com-
plete vertex V,, including its coordinates, boundary location, etc. The second field,
MoveMsg(i, j).ref is also a set that has one entry for every vertex Vj, not located in P;.

MoveMsg(i, j).ref (V,), contains the references of V), to its copies in other processors.

e An add reference message AddRefMsg(i,j) = {(V;f, V},])} sent from a source processor
P; to a destination processor P; is used to add a reference to vertex V},j in processor
P;. In this case the source processor must have a reference to the remote copy. When

P; receives this message, it sets Ref (V) = Ref (V) U (B, ') on processor P;.

e A delete reference message DelRefMsg(i,j) = {(V;,i, ij)} sent from a source processor
P; to a destination processor P; is used to remove a reference from the vertex V}Jj in P;
SO Ref(V},j) = Ref(V},j) — (B, V}}) Again, the source processor must have a reference
to the remote vertex copy.

6.2 Overview of the Migration Algorithm

Our migration algorithm can be divided into five phases that are executed by each processor

in sequence:

o Element and vertex transfer: involves sending the selected elements and vertices from
P; to P; such that 7! N %\;- # 0.

e Remote reference update: updates the references to the new vertex copies.

82

© (d)

Figure 6.1: A simple migration example. (a) shows the initial mesh. The goal is to move

Q, from Py to P5. (b) We first copy €2, to P, and (c) update the references. (d) We finally
delete the element 2, in F.

e Element deletion: removes the element Q, € 7!, Q, & 7! in each processor P;. Some

vertices are no longer used and are also removed.

e Remouwal of remote references: before deleting a shared vertex we insure that there

are no remote references to it.

o Verter deletion: removes the unnecessary vertices from the source processors.

83

A simple illustration of this algorithm is shown in Figure 6.1. In this example we show
a mesh with two elements partitioned between three processors Py, P; and P». Our goal
is to move the element Q, form Py to P». We initially send a MoveMsg(0,2) = {Q,}
from processor Py to processor P that includes Vy, Vi and Va. We initialize Ref (V@) =
{(P1, V), (P, V)}. We also initialize Ref (Vi) and Ref (V). P, then sends an AddRefMsg
to Py and P; to update the references to the new copies of Vy and V5 located in P,. Py then
deletes its element €2,. Since it can also remove V|, V;? and Vi, Py also sends a DelRefMsg

to the two other processors.

There is one more condition that we need to enforce which is illustrated in Figure 6.2.
If two different processors P; and P; send a shared vertex V, to two other processors Py
and P, k # [, we must guarantee that the two new copies of V], also refer to each other.
Figure 6.2 (c) is not an acceptable mesh because we lost some connectivity information.

This information is not lost in the final mesh shown in Figure 6.2 (d)

6.3 The Mesh Migration Procedure used in PARED

We will explain the algorithm in more detail using the example in Figure 6.3. There we show
a mesh composed of 8 elements (£2,,...,Q;) and 9 nodes (Vg, ..., Vs) partitioned between
4 processors (Py, Py, P3, P3). In the top half Figure 6.3 we show the initial partition IT* and
in its bottom half we show the target partition fi*. Our goal is to move the elements from
the initial distribution of the mesh II* to the destination partition fI*. This can be done by

executing the commands:

e Py: move Q, to Ps.

e P;: move Q4 to Ps.

e P»: move . to P3 and Q; to Fy.

e P3: move Qg to P, and Q, to Ps.

The example used in this section shows a complicated migration sequence where there
is no intention of improving the quality of the partition. In fact, the target distribution
has a larger number of shared nodes and references than the original one. The initial

representation of the mesh showing the references between multiple copies of the same

vertex is illustrated in Figure 6.4.

84

@ (b)

s

0
7 l
<
o

© (d)

Figure 6.2: The mesh shown in (a) has shared vertex V5 between Py and P;. (b) Py sends
the vertex to P, while P; sends the element to Ps. (¢) shows an incorrect mesh because
there are no references between the copies of V5 located in P, and Ps. (d) shows the correct
final mesh.

85

(b)

Figure 6.3: Migration of elements from an initial partition IT* (a) to a target partition IT¢+?
(b) showing the multiple copies and remote references.

86

Figure 6.4: Initial distribution of the mesh between four processors for example in Figure
6.3 (a).

6.3.1 Element and Vertex Transfer Phase

In the first phase of the migration procedure we send the elements and vertices to the
destination processors. If there is an element 2, located in P; and Q, € ﬁ; then we send
a MoveMsg(i,j) = {Q,} message from P; to P;. If an element Q, refers to a vertex V! of
which P; has no local copy then P; must also include the vertex in the message. Determining
if P; has a local copy of V}, is easy: we only need to look at the references to remote copies of
V) (is (P, Vi) e Ref (V;})?) in the sending processor P;. If we find that P; has a local copy
V; then we use that copy to create the element 2, in P;. When we send a vertex in the
message we also include all the references to other copies. This way the receiving processor
can create its local copy and then send a message to the other processors to update their
references to it. Also when we are sending multiple elements to a processor we need to be
careful to include only one copy of the vertices. The description of the first part of this
phase is shown in Figure 6.5. Note that this phase, as well as the remaining ones in this
chapter, is independent of the mesh type and can be used for two- and three-dimensional

meshes. The initial messages sent by each processor for the previous example are:

e Py: move Q, to P3 by sending the message MoveMsg(0,3) = {Q,}. Include in the
message the nodes Vy and V3 and a reference to V43. In P5 use these two nodes and

the existing copy of Vy to create the element €Q,.

87

for each element), such that Q, € 7}, Q, € %;-,i # 7 do
insert €2, into MoveMsg(i,)
for each node V,, € Adj(Q,) do
if (P],V;,J) € Ref(V,) then
insert (P, ij) into MoveMsq(i, j).vertices(£2,)
else

insert V, into MoveMsg(i, j).vertices(€2,)

insert (P;, sz) into MoveMsg(i,7).ref (Vp)

for each reference (Py,V,F) € Ref(V}) do
insert (P, Vpk) into MoveMsg(i, j).ref (Vp)
end for
end if
end for
end for
for each processor P; do
if i # j and MoveMsg(i,j) # 0 then
send MoveMsg (i, j)
end if
end for

Figure 6.5: Element and vertex transfer phase: procedure executed by processor P; to send
a selected set of elements and vertices to a destination processor P;.

e Pi: send Q4 to P5 by sending the message MoveMsg(1,2) = {4} with the nodes V7,
V2 and V5.

e P»: send Q. to P3 (with V3 and Vg and a reference to V2?) and {2 7 to Py (with V7 and
reference to Vi and V,?) using the MoveMsg(0,3) = {Q.} and MoveMsg(2,0) = {2}

respectively.

e Ps: send Qg4 to Py (with V7 and Vg and references to V14 and V72) and send Q, to P
(with V5 and V3 with references to V2 and V;!) using the MoveMsg(1,1) = {Q,} and
MoveMsg(3,2) = {Q} respectively.

Once a processor P; receives a message MoveMsg(i,j) it first creates the new vertices
as specified in the message and then constructs the elements. If V), is a vertex of an
element Q, such that Q, € MoveMsg(i,j) and V,, € MoveMsg(, j).vertices(€2,) such that
Vp is not located in P; then a new copy V},j is created in P; and Ref (V},]) is initialized to
MoveMsg(i,j).ref (V) (remember that this also includes a reference to the sending processor
copy of V, in the source processor P;). At this point the new copy contains a reference to the

original vertex but not vice versa. It is responsibility of P; to inform the other processors

88

B

Figure 6.6: Element and vertex transfer phase: state of the mesh after creating the new
copies in the destination processors. We highlight the new elements vertices created in this
phase in each processor. We only show the references between the multiple copies of vertex
V7 to reduce the complexity of this figure.

of the newly created copy.

Continuing with the example, when P, sends ¢ to Fy it should also include a copy of
V7. Before Py constructs the element (1; it should first create the vertex V. Using that
vertex and the local copies V30 and V40 processor P, can then create the element (2;. When
P receives the element (), it also creates a copy of V7 but the copies in P and P; of that

vertex know nothing about each other at this moment.

There is another problem: P» receives 24 from P; and €} from P; and both messages
include the vertex Vj (a similar problem happens in P3 with V3). We will explain later
how to handle these situations. Figure 6.6 shows the mesh at this stage that highlights the
new elements and vertices in each processor. For simplicity, we only include the references

between the multiple copies of V7. Figure 6.7 presents an outline of this receiving phase.

89

for each message MoveMsg(i, j) sent from other processor P; to P; do
receive MoveMsq(i, j)
for each element Q, € MoveMsq(i,j) do
for each node V,, € MoveMsg(i, j).vertices(§,) do
if V), does not exist in P; then
create the vertex V), and initialize Ref(ij) =MoveMsg(i, j).ref (V})
end if
end for
create the element €,
end for
end for

Figure 6.7: Element and vertex transfer phase: procedure executed by each processor P;
to receive a transfer message from processor P; and to create the elements and vertices
indicated in the message.

for each new node V;f do
for each reference (P, V},]) € Ref (sz) do
insert (Vzl,i, ij) into AddRefMsg(i, j)
end for
end for
for each processor P; do
if ¢ # j and AddRefMsg(i,7) # 0 then
send AddRefMsg (i, j)
end if
end for
for each message AddRefMsg(k,i) sent from other processor Py to P; do
receive AddRefMsg(k,1)
for each reference (V},k,Vpi) € AddRefMsg(k,i) do
insert (Pk,V;,k) into Ref(V},i)
end for
end for

Figure 6.8: Remote reference update phase: outline of the algorithm executed by each
processor P; to update the references of new shared vertices.

6.3.2 Remote Reference Update Phase

In the next phase we update the references to the new nodes. Assume that V},j is a node
created in P; in the previous phase as the result of a MoveMsg(i, j). P; needs to inform P;
and all the other processors P, that have a copy of V,, about the location of the new copy V},j
in memory so they can create a reference to it. Using Ref (V},j), P; sends a AddRefMsg(j, k)
for each reference (P, V;Jk) € Ref(V},j). This procedure is outlined in Figure 6.8.

90

R

Figure 6.9: Remote reference update phase: state of the mesh at the end of this phase. The
elements that will be deleted in each processor in the next phase are highlighted

In the previous example Py sends a message to P» and P3 to update their references to
V70. P, also sends a message to P> and P5 so they can update the reference of Vol. P> knows
that there is a copy of Vj in processor Py because it included that copy in the MoveMsg(2,0)
of the previous phase When P» receives a message from P;, P> detects that there is more
than one new copy of V7 so it informs Py to update the reference from V2 to V. The same
thing happens in Ps.

At this stage we also detect that there are two copies of V5 in P, and two copies of V3 in
Pj3 because they try to update references to vertices located in the same processor. One of
the copies is destroyed and the corresponding elements are updated accordingly. The state

of the mesh at the end of this phase is shown in Figure 6.9.

6.3.3 Element Deletion, Removal of Remote Vertices, and Vertex Dele-

tion

We now remove the elements Q, € 7! N ﬁ;,i = 4 from the source processors P;. The state of

the mesh after this step is shown in Figure 6.10. Moreover, if there is some vertex V}, such

91

Figure 6.10: Element Deletion: state of the mesh after deleting the elements from the source
processors but before removing the unnecessary vertices. We only include the references for
vertices that are going to be removed in the next phase

that ElemAdj(V;f) = () we delete the vertex to free memory. For every vertex copy V;f such
that ElemAdj (V;}) = () processor P; sends a DeleteMsg message to every processor P; such
that (P;,V)) € Ref(V}}). When P; receives this message, it removes the reference (P;, V)
from Ref(Vz,,j). P; can now delete its copy sz‘_ The deletion is now safe because sz' is not
contained by any element in P; and no other processors have references to it. Figure 6.11

shows the procedure for this three last phases.

In our example the destruction of €2, and € in processor P causes the deletion of V2,

V2 and V2. Note that the node V/? is referenced by the new element (2, so it is not deleted.

Finally we destroy the nodes when the number of references to them is zero. The

representation of the mesh at the end of the migration is shown in Figure 6.12.

92

for each element €2, in P; that has been moved to P;, i # j do
delete €2,
for each vertex V;j € Adj(Q,) do
remove), from ElemAdj(V})
if ElemAdj(Vp’) = & then
for each reference (P;, V},]) € Ref(Vpi) do
insert (Vpi, V;?) into DelRefMsg(i,)
end for
end if
end for
end for
for each processor P; do
if DelRefMsg(i,j) # @ then
send DelRefMsg (i, j)
end if
end for
for each message DelRefMsg(k, i) sent from other processor P, to P; do
receive DelRefMsqg(k, 1)
for each reference (V;)k, V;}) in the message DelRefMsg(k,i) do
remove (Pk,V;)k) from Ref(V;}')
end for
end for
delete the vertices V,, from P; such that ElemAdj (V}D’) =0

Figure 6.11: Procedure executed by each processor P; in the three phases of the migration
algorithm.

93

Figure 6.12: A migration example: internal representation of the mesh at the end of the
migration phase.

Chapter 7

The Engineering of PARED

7.1 Introduction

In this chapter we present a description of the main classes that constitute PARED and their
corresponding relations. PARED is a system that adaptively computes solutions of PDEs for
a variety of mesh types and differential equations. In Chapter 3 we present a short overview

of PARED and explained how to use our system to solve PDEs.

PARED can execute on serial and parallel computers. The serial version, which is based
in earlier work [17, 18] and was implemented in conjunction with Chatzi, was also used
for the Crystalline meshes project [25] by Chatzi and Preparata. In parallel computers,
the adaptive solution involves several phases of solving systems of linear equations, error
estimation, mesh refinement and coarsening, computing new distributions of the mesh and

migrating mesh data structures and associated equations and unknowns between processors.

One of the most powerful ideas in PARED is the notion of dynamic meshes. PARED allows
the easy creation and destruction of mesh objects in each individual processor while, at the
same time, it maintains a consistent global mesh distributed across multiple processors.
The mesh classes used to create our meshes are described in Section 7.2. Sections 7.3 and
7.5 present the classes that we have have designed to simplify the parallel refinement and
migration of the mesh. The partitioning of the mesh uses several graph classes, which is the
subject of Section 7.4. PARED also provides a graphical user interface to allow the user to
interact with the system. These classes, which also control the serial and parallel execution
of the system, are presented in Section 7.6. PARED provides several methods for computing

solutions to linear systems of equations as explained in Section 7.7. Finally, in Section 7.9

94

95

we explain how to extend our system to solve PDEs other than the predefined ones.

The figures in this chapter show Unified Modeling Language (UML) [13, 75] class di-
agrams and were obtained directly from the source code using Rational’s Rose software
modeling environment. UML is a standard language for object oriented design. In UML
a class is displayed as a rectangle, which includes its name and may include attributes
and methods. Relations between classes are represented with lines. Parent and children
classes (or “is-a” relationships) are joined with a solid line with an arrowhead pointing to
the parent class. Aggregations (or “has-a” relationships) model “whole/part” relationships
(e.g. a mesh has many elements) and are represented with lines with an open diamond at
the container (“whole”) end. Compositions are special kinds of aggregations with deeper
semantics: an object (the “whole”) is responsible for managing the parts. Parts can only
exist inside the whole and are created and destroyed by it. Compositions are represented
in UML with filled diamonds.

Many classes in PARED use reference counting [62], a commonly used concept in object-
oriented systems that provides a simple mechanism for handling dynamic objects and man-
aging memory. Objects that use reference counting are created from the heap and accessed
through special pointers called smart pointers. When a new smart pointer to an object is
created it increments the reference count of the pointed object. When the smart pointer
is destroyed, the reference counting is decremented. In the case that this count is zero the
object can be safely removed from memory because is not reachable by any smart pointer.
The only restriction is that the programmer must not create standard C pointers to that
object. In PARED classes that use reference counting extend the common 0bj class. Smart

pointers to a particular object of type T are created from the templated class Ptr<T>.

7.2 Mesh Data Structures

The basic data structures in PARED are the mesh, element and vertex classes. A mesh
can be seen as a complex container for elements and vertices. Elements and vertices are
stored in the mesh in two intrusive lists [88] which are implemented using templates. One
important property of intrusive lists is that both inserting and removing objects from the
list can be done in constant time. Every class that uses intrusive lists in PARED extends
a common ITtem class that includes pointers to the next and previous element in the list.
Therefore, every object can be inserted in at most one intrusive list at the same time.

In PARED when a new element or vertex is created it automatically inserts itself into the

96

corresponding list of elements and vertices in the current mesh. Similarly, when an element
or vertex is destroyed because it is no longer referenced, it automatically removes itself from

the corresponding list.

PARED is an adaptive system in which elements and vertices are continuously created
and deleted. In Chapter 3 we explained that these adaptive meshes are represented as a
forest of trees. In our system, every element has a pointer to its parent element and a list of
references to its children elements, which is empty in the case of unrefined elements. Every

mesh also contains a root element whose children are the elements in the initial mesh.

The intrusive list of vertices in the mesh contains all the vertices in the mesh. On the
other hand, the intrusive of elements only contains the elements in the most refined mesh.
This mesh is used in the simulation. When an element is refined, the refined element is
removed from the list of elements and its children are inserted into it. The new vertices
created in the refinement of the element are always inserted in the vertex list. When an
element is coarsened, the children are removed from the list and replaced by their par-
ent. Any vertex that is no longer referenced by an element as a result of mesh coarsening

automatically removes itself from the vertex list before it gets destroyed.

7.2.1 Mesh Classes

The mesh classes consist of the abstract class FEMesh which is the parent of two classes
FEMeshCommon and FEMeshStub. These relationships are represented by the lines with an

arrow towards the parent class in Figure 7.1.

In the serial version of the system the current mesh is represented as an instance of the
concrete classes FEMesh2D and FEMesh3D that extend the FEMeshCommon class and implement
two- and three-dimensional meshes respectively. A fraction of the mesh is also a mesh.
Therefore in the parallel system the distributed mesh is represented as a set of FEMesh2D
and FEMesh3D objects, one in each processor. These objects in each processor contain only

the elements and vertices currently assigned to the processor.

FEMeshCommon contains most of the actual methods that operate on a mesh. FEMeshStub
is a class that is used in the parallel version of our system and that shares the same in-
terface as FEMeshCommon so the methods can be invoked on objects of the same class in a
similar way. In a parallel environment, the coordinator processor creates an instance of the
FEMeshStub class that receives commands from the console (Section 7.6). FEMeshStub does

not implement these methods directly but it broadcasts the commands it receives to the

97

FEMesh

7

FEMeshCommon FEMeshStub

A

FEMesh2D FEMesh3D

Figure 7.1: FEMesh classes. FEMeshCommon is an actual mesh or a portion of the mesh
located in a processor. The concrete classes are FEMesh2D for 2D meshes and FEMesh3D
for 3D ones. To simplify the use of parallel meshes we created the class FEMeshStub that
implements the same interface (or public methods) as FEMeshCommon.

processors. All the processors receive these commands through another console class which

invokes the corresponding methods in their instances of FEMesh2D or FEMesh3D.

7.2.2 Element Classes

PARED supports a variety of mesh types that can consist of different element shapes. For this
reason, we provide a hierarchy of element classes that is rooted by the class RealElement
and extended by the classes RealElement2D and RealElement3D for 2D and 3D meshes
respectively as shown in Figure 7.2. We further extend this classes to create elements of
type Triangle or Quadrilateral and Tetrahedron or Hexahedron. To support Crystalline
meshes [25] we also allow elements of type Pentahedron and Heptaheron, which are not
shown in Figure 7.2. In PARED it is not required that all the elements are of the same type

and we can mix two- or three-dimensional shapes in the same mesh.

Every real element contains a vector of smart pointers to the vertices that define the

Element

0.
#parent_

71

RealElement2D

£

98

Quadrilateral

RootElement3D

1
RealElement RootElement
RealElement3D RootElement2D
Triangle Hexahedron Tetrahedron

Figure 7.2: The Element class hierarchy supports two- and three-dimensional elements.
The RootElement classes store references to the elements in the initial mesh.

99

element. The number of entries in this vector depends on the element type. To support the
structure of refinement trees, every element maintains a pointer to its parent (the element
that was refined to create this element) and a list of smart pointers to its children (the
nested elements into which the element is refined). The pointer to the parent is used to
simplify the coarsening phase. By using a list, we allow for arbitrary refinement strategies

that have different numbers of children.

The reference count in the elements is from the parents to the children. The root element
has a list of smart pointers to the elements of the initial mesh while the elements have a list
of smart pointers to their children. On the other hand, the pointer from a child to its parent
is a simple C pointer. One of the difficulties of using smart pointers in C++ is the necessity
of avoiding circular structures. For example, an object that points to another object which
in turn point to the first object. These structures can have very complicated shapes and be
unreachable but they are not deleted because their count never becomes zero. These errors

are avoided by having only one direction for smart pointers.

Besides the elements that are part of the mesh, PARED supports another type of el-
ement that we call RootElement. This class is also extended into RootElement2D and
RootElement3D for 2D and 3D meshes respectively. Every mesh contains only one root
element. The parent of an element of the initial mesh (which is not obtained as a result of
refinement) is the root element and the children of the root are the elements in the initial
mesh. We created the superclass Element that is the parent class of both RealElement and
RootElement. The pointer to the parent element is of type Element so that the elements
of the initial mesh and the elements created as a result of refinement can be handled in the

same way.

In PARED, to delete a whole refinement tree (for example, after migrating a subtree to
another processor), we only need to remove the parent element from the children list of the
root element. This process automatically deletes all the children of that element as their
reference count becomes zero. In turn most vertices in a refinement tree will be destroyed
because they are not longer referenced by any element. Also, to delete a mesh, we only
need to delete the root element which in turn will delete the mesh, level by level, and the

vertices.

7.2.3 Vertex Classes

A vertex is defined by its coordinates in two and three dimensions. In PARED there is a

common class Vertex that is specialized into the classes Vertex2D and Vertex3D as shown

100

Boundary (List< VertexRef >)
Vertex #reflList—
0.1
-boundary_ 1 1
1 (List< RealElement2D* >) (List< RealElement3D* >)
Surface Vertex2D L #etemList_ Vertex3D
D a—
#elemList_ 1 1l

(List< SurfacePtr >)
1

-surfacellist_ 1 BoundaryVertex3D

BoundaryVertex2D

-surfaceList_

1 1

Figure 7.3: The Vertex class hierarchy. PARED defines classes for two and three dimen-
sional vertices (Vertex2D and Vertex3D). Vertices in the boundary of the domain (of type
BoundaryVertex2D and BoundaryVertex3D) contain references to the Boundary objects.

in Figure 7.3.

In many cases it is necessary to find the elements that are adjacent to a particular vertex.
For that reason every vertex maintains a list of pointers to the elements that contain it.
Again, to avoid the problem of circular smart pointers, the list of elements in the vertices
is of standard C pointer of type RealElement2D and RealElement3D. When an element is

created or destroyed it inserts or removes itself into the lists of its associated vertices.

One particular type of vertex is the boundary vertex: a vertex located on the bound-
ary of a domain. In PARED a mesh boundary contains several Surfaces. A set of sur-
faces with common boundary conditions form a Boundary object. PARED provides two
classes, BoundaryVertex2D and BoundaryVertex3D, that extend the classes Vertex2D and

Vertex3D respectively.

PARED does not explicitly store edges and faces. Every edge is defined by references to
two vertices. Faces are defined by three or more vertices. Nevertheless, the vertices, edges
and faces of every element are ordered and it possible to create temporary instances of the

classes Edge or Face as needed.

101

7.2.4 Parallel Meshes

In PARED the meshes used in the serial and parallel version of the system are very similar.
We use a partition of the mesh between processors by elements, where elements are located
in only on processor and vertices are shared if they are are adjacent to elements located
in different processors. Every one of these processors contains a copy of the shared vertex.
During the simulation vertices that are not shared can become shared as adjacent elements

are moved between processors. Similarly, shared vertices can become non-shared.

To maintain the consistency of the global mesh it is important to identify the multiple
copies of the same vertex located in different processors. In the systems of equations used
to solve the partial differential equations, every unknown corresponds to a node that might
be located in a boundary between processors. In this case, it is important that the node

includes the contributions of all the elements around that node.

In PARED each vertex has a list of VertexRef objects associated with it that is empty in
the case of non-shared vertices. VertexRef is a remote reference, consisting of a processor
number and a memory address in the remote address of each a copy of the associated vertex.
Using this address, a processor can send a message to another processor to invoke a method
on the remote copy. In the destination processor, the reference is converted to a pointer of

type Vertex2D or Vertex3D through which the method is invoked.

7.3 Classes Controlling the Refinement of Meshes

The procedure for refining serial and parallel meshes using the longest-edge bisection method
[19, 20] is very similar. In both cases we iterate through a list of references to selected
triangular or tetrahedral elements, invoking the refineRivara method in each of them.
In this section we outline the additional classes used for the parallel refinement of meshes

using the longest-edge bisection algorithm.

The parallel refinement procedure is controlled by an object of the class RefineMgr
(Figure 7.4). This class is a singleton class [40] (at most one instance of the class can
exist in each process at any time) that handles all the synchronization steps explained in
Chapter 4. Every processor, including the coordinator, creates an instance of RefineMgr

by executing its static method start before refining any element.

In parallel meshes the refinement of triangle or tetrahedron can create a new vertex on

an internal boundary between processors. As we have explained in Chapter 4 we delay the

102

(Vector< List< SharedVertexInfo > >) (Vector< List< SharedVertexNum > >) SharedVertexNum

=
[

#sharedVertices_ #sharedNum SharedVertexInfo

RefineMgr #$instance_

Figure 7.4: Mesh refinement classes. RefineMgr uses the classes SharedVertexInfo and
SharedVertexNum to manage the parallel refinement of meshes.

propagation of refinement across processor boundaries. When processor F; creates a new
vertex in a boundary between one or more processors P; it creates one or more instances
of the auxiliary class SharedVertexInfo (one for each adjacent processor) which it inserts
in RefineMgr. Therefore, RefineMgr is also a container for all the newly created shared
vertices and in the current implementation it contains a vector of lists of SharedVertexInfo.
This class includes all the information required to create the shared vertex in the adjacent

processor P; and to return to processor F; the address of the new vertex.

After each processor has completed the refinement of the initial elements it calls the wait
method of the RefineMgr class. In this method every processor sends the SharedVertexInfo
objects in the RefineMgr object created during the refinement phase to the adjacent pro-
cessors and then listens for messages. If it receives a new refinement message, it creates the
vertices as specified in the message and proceeds to refine the unrefined adjacent elements if
necessary using their refineRivara method. In the case the element is already refined by

the edge including in the message, it just updates the remote references to the new vertex.

The RefineMgr object also keeps track of the acknowledgment messages. Every refine
message is acknowledged as explained in Chapter 4. The coordinator waits until it receives
an acknowledgment from every processor involved in the refinement and it then signals
the termination of the refinement phase by broadcasting a message. When a processor

other than the coordinator receives a message from the coordinator, it stops listening from

103

messages and exits the wait method.

7.4 Partitioning of Meshes

In PARED the graph classes have the responsibility of computing partitions of the mesh.
The partitions of the mesh using PNR are obtained from a sequence of K coarser graphs
Go,...Gg. For that reason, the Graph in PARED is represented as a vector of K of
GraphLevel objects, where each level corresponds to one of the K graphs. Each GraphLevel
contains a vector of instances of GraphPartition. The GraphPartition class contains an
intrusive list of GraphVertex. Adjacent GraphVertex in each graph are joined by vari-
able number of GraphEdge objects. Therefore, the GraphPartition p entry of the the
GraphLevel [object of the Graph class contains all the graph vertices of the graph G
assigned to subset p. To compute new partitions GraphVertex objects move between
GraphPartition objects in the same graph level. A graph diagram of these classes are

shown in Figure 7.5.

The first GraphLevel of the Graph object contains one GraphVertex for every element
in the mesh and graph vertices are joined by a GraphEdge if the corresponding elements are
adjacent. GraphElement and GraphVertex include an integer weight that represents the
computation and communication cost respectively. From this first fine graph we construct
the sequence of coarser graphs using an edge contraction operation until the number of
vertices in the coarser graph is less than some specified constant. The edge contraction
operation maintains the relation between the vertices in two adjacent levels so a partition
of a coarser graph can easily be projected to the next level. To partition a graph we move
or swap graph vertices between instances GraphPartition objects of a given level.

Finally a GraphAssignment object represents a current assignment of graph vertices

(or their corresponding mesh elements) to processors. This class is used to compute the

migration cost and to tell the processors which elements to migrate.

7.5 Classes Controlling Mesh Migration

As in mesh refinement, PARED provides a class called MigrateMgr (Figure 7.6) that handles
the synchronization required for the migration of meshes between processors. MigratelMgr

is also a singleton class and contains methods for the different steps outlined in Chapter 6.

104

(List< GraphEdge >)

(List< GraphVertex* >)

(Vector< GraphLevelPtr >)

(Vector< GraphVertexPtr >)

(Vector< GraphPartitionPtr >)

1
-neghList_ _hhatist Ldvelvec_ —vertexVdc 1 -partveh_ 1
1
Graph 1 1
GraphVerteli(Qodrent_ GraphAssignment GraphLevel
-to_A 011
- (IList< GraphVertex >) GraphVertexPtr
GraphFunction
1
GraphEdge 1 -
~véhedList_ -in/) 1
nchor_
1
1
GraphPartition GraphSwap

Figure 7.5: Class diagram of the classes used to compute partitions of the mesh.

(Vector< List< AddRefltem > >) | | (Vector< List< DeleteRefltem > >) (Vector< Matrix1D >) (Vector< MigVertexPtr >)| MigNodesPt
MigrateMgr‘ﬁsi”Stance—
0.1
1 1 1 g 1
R R i no 1
refVeq\ fVec_ solutio c’E vertexVec_
1 1 1 1
AddRef MigNodes B "
DeleteRef 9 MigElement
AddRefltem DeleteRefltem RepeatedRefltem

Figure 7.6: Mesh migration classes. The manager class MigrateMgr uses a variety of aux-
iliary classes such as AddRef and DeleteRef.

105

MigrateMgr uses several additional classes. The AddRefItem class represents that a
remote copy of the vertex should add a reference to a new copy of that vertex. Similarly
DeleteRefItem is used to remove references in remote processors so vertices can safely be
deleted. Several objects of the classes AddRefItem and DeleteRefItem destined for the
same processor are grouped into lists by the classes AddRef and DeleteRef of which there
is one list per processor. Finally, the class RepeatedRefItem stores references to repeated
vertices, for example, when the same vertex is received from two or more processors. In
that case all but one of the copies are destroyed to eliminate unnecessary storage and avoid
errors and the references and adjacent elements are updated to maintain only one copy of

the same vertex in each processor.

The migration procedure starts by creating the MigrateMgr object and providing a
vector of p lists (one for every processor) of references to RealElement. These lists contain
a reference to the elements in the initial mesh whose refinement trees must be migrated to
the other processors. The lists are then extended to include all the elements in the subtree.
If an element is in the list, we insert its children into the list, but with the condition that
the parent appears in the list before its children. Therefore, in the destination processor,
we can first construct the parent before its children which then is in turn used to create the

children.

The different methods of MigrateMgr that are required to migrate the mesh are in-
voked from the migrateAux method of the class FEMeshCommon. This method first calls
the methods sendElements and receiveElements of the MigrateMgr class to send and
receive elements (including the refinement trees), vertices, nodes and temporary solutions.
These methods use two additional classes called MigElement and MigVertex that roughly

correspond to mesh elements and vertices but are easier to serialize in a message.

After receiving and constructing the mesh objects we obtain an object of the class
AddRef that contains the references of the newly created vertices. We then send and receive
these references by calling the sendReferences and receiveReferences of the AddRef and
call the updateReferencesToShared of the MigrateMgr to update the older copies of the
vertices with the new references that we just received. We then find the repeated vertices in
the same processor. A vertex is repeated if it contains a reference to another vertex located
in the same processor, but before destroying it we instruct other processors to delete its

references to it by using the class DeleteRef.

We now delete the elements that were sent to other processors. This in turn automati-

cally deletes vertices than are no longer referenced by any element in the processor because

106

Console

i

ConsoleMaster ConsoleSlave

1
Figure 7.7: Users interact with PARED through Console objects. The ConsoleMaster class

is used in serial systems. In parallel mode a ConsoleMaster is located in the coordinator
processor, while the remaining processors contain a ConsoleSlave object.

their reference count becomes zero. Some of these vertices might have copies in other pro-
cessors so before deleting them we create an object of the class DeleteRef to remove the

references to them from other processors.

7.6 Console Classes

In PARED, a Console allows the user to communicate with the system. The console receives
the commands invoked by the user and delivers these instructions to the mesh classes where

they are executed.

Console is also a singleton class. In serial systems, PARED creates at startup an object
of the class ConsoleMaster that subclasses Console (Figure 7.7). The parent class contains

a pointer of type FEMesh to the active mesh which is an instance of FEMesh2D or FEMesh3D.

The ConsoleMaster object receives all the instructions from the user such as how
to refine the mesh or compute a solution. These instructions can come from our Motif
graphical user interface or through a test file that automates repeated commands. The
ConsoleMaster object is also used to provide information to the user. To render the mesh,
the mesh classes do not call OpenGL [39] commands directly. Instead they render the mesh

through the console.

On parallel systems, only the coordinator processor (or processor number 0) creates an

107

instance of ConsoleMaster. All the other processors creates an instance of ConsoleSlave
that also extends the class Console and contain a pointer to the FEMesh object located
in the processor. The ConsoleMaster object in the coordinator receives the commands
for the user, but rather than invoking methods on FEMesh2D or FEMesh3D objects directly,
it invokes a method on an object of type FEMeshStub. This class also inherits from the
class FEMesh and shares the same interface with FEMesh2D and FEMesh3D. Nevertheless,
rather than executing the mesh methods directly, FEMeshStub marhalls the methods and

parameters into messages that it then broadcasts to the other processors.

A1l the remaining processors wait until they receive a message from the coordinator in a
method of the ConsoleSlave object. They then decode the message and parameters in the
ConsoleSlave object and invoke the method in their corresponding FEMesh2D or FEmesh3D
object.

To render the mesh in parallel, the process is inverted. Each processor renders its region
of the mesh by calling methods on their ConsoleSlave object. These objects capture these
instructions that they marshal and send to the coordinator. The ConsoleMaster object in
the coordinator receives these messages and invokes the respective OpenGL commands to

render the mesh.

7.7 Representing Systems of Equations

PARED provides a hierarchy of classes for creating vectors and arrays of double precision
values. This hierarchy is rooted by the abstract class AbsMatrix which is the parent of
the classes AbsMatrix1D, AbsMatrix2D and AbsMatrix3D for 1, 2 and 3 dimensional arrays

respectively as shown in Figure 7.8.

Matrix1D is a concrete class that extends the class AbsMatrixi1D and stores one dimen-
sional vectors. Matrix2D is used to store full two-dimensional matrices. In finite element
analysis most of the matrices are sparse and full matrices can only be used in very small

problems. In many problems, the matrix is also symmetric.

There are several sparse matrix representations available in PARED. SmallMatrix2D is
a very common representation in finite element systems in which a full matrix is stored as
a list of small local matrices, one for each element in the mesh. With every local matrix
we associate an index vector that maps the entries in the local matrix to their rows and

columns in the full matrix.

SparseMatrix2D uses a matrix storage that is optimized for multiplying the matrix by

108

AbsMatrix
AbsMatrix1D AbsMatrix2D AbsMatrix3D
ix1D HA%a 1 - - — - - X
| Matrix1D 752 SparseMatrix2D Matrix2D DirichletMatrix2D SmallMatrix2D Matrix3D
#o /N 1
1 PSparseMatrix2D
System

ParallelSystem

Figure 7.8: Matrix class diagram. PARED supports one- two- and three-dimensional matrices
using a variety of storage methods.

109

Precondition

|_JacobiPrecondition | SchwarzPrecondition

Figure 7.9: The system class combines AbsMatrix2D, AbsMatrix1D and Precondition and
provides methods for solving linear systems.

a vector. This sparse matrix is known as Row Indexed Sparse Storage [70, 31, 32]. The
nonzero entries in the matrix are stored row by row in a vector of values. The corresponding
columns are stored in a vector of indices. The diagonal entries in the matrix are commonly
used in many linear solvers and for that reason they are assigned to the first entries in the
vector of values. PSparseMatrix2D is a permuted SparseMatrix2D that is used in direct

solvers.

We are experimenting with a storage for sparse matrices that we call DirichletMatrix2D.
In this representation, a matrix is stored as a vector of SparseMatrix2D objects. The first
matrix of the vector contains the internal nodes. The remaining matrices correspond to the
boundaries of the domain. On problems with multiple dimensions and multiple matrices
with different boundary conditions we can use the same entries and reduce the amount of

storage required.

To solve systems of equations PARED uses direct and iterative solvers such as Conjugate
Gradient [58], GMRES [93] and their preconditioned versions. These solvers are imple-
mented as methods of the class System. The System class contains a pointer to a matrix
(of type AbsMatrix2D) and a right hand side vector (of type AbsMatrix1D) and its solvers
take as a parameter a solution vector (also of type AbsMatrix1D). Our two dimensional

matrices provide the mult method that multiplies the matrix by a vector.

Preconditioned solvers (Figure 7.9) require the use a concrete class that extends the
abstract class Precondition, such as JacobiPrecondition or SchwarzPrecondition (both
additive and multiplicative). These classes provide the abstract method apply that applies

the preconditioner in the solution of the system of equations.

The procedure for parallel solvers is very similar. In this case, we construct an instance

110

of the class ParallelSystem that extends the class System. The only difference in the
iterative solvers is the way the matrix-vector products and inner-products are computed. In
the parallel solver, after calling the mult of the sparse matrix, it is necessary to accumulate
the results that correspond to unknowns located on processor boundaries (see Section 5).

Parallel inner-products also compute a global sum of all the processor inner-products.

7.8 Higher Order Polynomials

One of the extensions that we added to our original system is the ability to compute solutions
of PDEs using higher-order basis functions. In our original system, each mesh vertex had

an associated set of basis functions, one for each degree of freedom.

We now describe the classes used to support higher order polynomials (see Figure 7.10).
A Node is associated with a basis function. A mesh element contains a variable number of
nodes depending on the degree of the approximation, which are of type Node2D or Node3D for
2D or 3D meshes respectively. Nodes that are located in a mesh vertex, edge or face include
the contributions of all the elements around it, and roughly correspond to an equation and

an unknown in a system of linear equations.

It is not necessary to actually create the nodes. It is sufficient to be able to deter-
mine the corresponding node indices so that the local element matrices can be correctly
assembled in a global matrix and the corresponding node coordinates to create the local
element matrices. For that reason, we created the NodeIndex hierarchy. This parent class
is specialized into NodeIndex2D and NodeIndex3D. Finally, every element shape (triangles,
quadrilaterals, tetrahedra, hexahedra) provides a class for each polynomial that can be used
in the simulation. For example, the class NodeIndexTetrahedron TET10 defines quadratic
basis functions in a tetrahedron. Each tetrahedron using this basis function contains 10
nodes, that are located in the four vertices and at the midpoint of the six edges of the
tetrahedron. Similarly, we can define new node index classes to support a variety of basis

functions in each element.

7.9 Specifying Problems in PARED

The Problem class provides a flexible mechanism for customizing PARED. By extending
the Problem hierarchy the user can define and solve her own partial differential equations

besides the ones already predefined in the system. In this section explain the steps that

Nodelndex

-

Nodelndex2D

£

NodelndexQuadrilateral

£

NodelndexTriangle

Nodelndex_Q4

Nodelndex_Q9

Nodelndex_T3

Nodelndex_T6

Node

111

Node2D

Node3D

Nodelndex3D

B

NodelndexHexahedron

?

NodelndexTetrahedron

Nodelndex_HEX27

Nodelndex_HEX8

Nodelndex_TET10

Nodelndex_TET4

Figure 7.10: Diagram of the classes used to define higher order approximations.

112

Problem2D
CircularProblem2D CornerProblem2D NacaProblem2D SmoothProblem2D UndefinedProblem2D
CylinderProblem2D ExponentialProblem2D PipeProblem2D RandomProblem2D
Problem3D
ExponentialProblem3D SmoothProblem3D

CylinderProblem3D

PipeProblem3D RandomProblem3D CornerProblem3D

Figure 7.11: The Problem class hierarchy defines the equation to solve.

are necessary for defining new differential equations in PARED and we discuss possible

improvements to this process.

7.9.1 Defining New Problems in PARED

The Problem class (Figure 7.11) and its two subclasses Problem2D and Problem3D encap-
sulate the concepts that define a partial differential equation, such as its right hand side,
number and type of boundary conditions, initial values and temporary or computed solu-

tions.

To define a new differential equation the user must provide a new class that extends

either the Problem2D or Problem3D classes and that provide a definition to five of the

113

abstract methods declared in Problem. For example:

class RandomProblem3D : public Problem3D {

private:

public:
RandomProblem3D() : Problem3D(RANDOMPROBLEM3D, 2, 1, 1) {}

virtual double exactSolution(int degree, double x, double y, double
z = 0);

virtual double rhs(int degree, double x, double y, double z = 0);
virtual double dirichletValue(int degree, int num, double x, double
y, double z = 0);

virtual double neumannValue(int num, int degree = 0);

virtual boundary_t boundaryType(int num, int degree = 0);

};

which is defined in the files Problem.H and Problem.C. In this class, degree refers to
the degree of the unknowns (e.g. u, v, w or p) and num to a boundary number. The
method exactSolution returns the value of the functions at any point of the domain (if
known) and the rhs method returns the right hand side function. Our system supports
two different types of boundaries (of type boundary_t): NEUMANN and DIRICHLET. Each
surface in the boundary of the domain has a boundary number and the boundary vertices
in the mesh must specify their corresponding surfaces. The parameters in the constructor
of the Problem class specify the problem type (of type problem t; i.e. RANDOMPROBLEM3D),
the number of different boundaries, the number of solutions and the number of temporary
vectors (including the solutions). This last parameter is used to migrate the temporary
vectors between processors along with the solutions in the parallel solution of the partial

differential equations.

To select a particular differential equation to solve the user must invoke the method

ConsoleMaster: :setProblem, which initializes a data member of the Console class.

7.9.2 Predefined Differential Equations

PARED provides several predefined partial differential equations:

114

e CornerProblem2D and CornerProblem3D defines the equation —Awu = 0 with Dirichlet

boundary conditions

sinh(27(z + y + 2))
sinh(8)

g(x,y) = cos(2m(z —y))

in 9Q. For the 2D problem this function is defined in the domain Q = (—1,1)2. In
the 3D case the domain is the cube = (—1,1)3. The solution u = g is known. These

solutions are smooth with a high activity peak close to the corner (1,1) and (1,1,1).

¢ RandomProblem2D and RandomProblem3D defines the equations —Au = g with g(z,y) =
sin(1000.0cos(1000.0zy)) and g(z, y, z) = sin(1000.0cos(1000.0zyz)) in the unit square

and cube with Dirichlet boundary conditions v = 0 in 92.

e SmoothProblem2D and SmoothProblem3D are the two equations —Au = g with g(z,y) =
272sin(7x)sin(ry) and g(z,y,z) = 3n2sin(rz)sin(ry)sin(7z) in the unit square and

cube.

e PipeProblem2D and PipeProblem3D solves the Navier-Stokes equation for incompress-

ible flow in a 2D and 3D pipe respectively.

e CylinderProblem2D and CylinderProblem3D also solve the Navier-Stokes equation
for incompressible flow, but in this case, the domain is interrupted by a circle (in 2D)

or a sphere (in 3D).

e ExponentialProblem2D and ExponentialProblem3D define the equation —Au = g
for

1
~ 1+100(z +t)2 + 100(y + t)2

g(z,y,t)

and

1
t) =
gl@,y, 2, t) = 7+ 100(z +)2 + 100(y + £)2 + 100(z + 1)2

in the square (1,—1)? and cube (1, —1)3 with Dirichlet boundary conditions v = g in
o90.

7.9.3 Problem and PARED

Besides the facility to extend it to solve new differential equations, the class Problem also

stores the computed solutions and a user defined number of temporary vectors used during

115

the solution. The number of these vectors is defined by the user and their size corresponds
to the number of unknowns. In the parallel version of PARED, when the system migrates
regions of the mesh between processors, along with the elements and vertices it also mi-
grates the entries in the vectors of the Problem object that correspond to these regions.
To store and retrieve solutions Problem provides methods such as getComputedSolution,

storeSolution and invalidateSolution.

We assume that there is always one active problem which is defined in the Console
class. Problem also contains a static method getProblem that returns an instance of the

concrete classes that extend Problem.

7.9.4 Future Improvements to the Problem class

Ideally it should not be necessary to modify the code to solve new differential equations.
Instead the user would provide a data file with a problem description. The main difficulty
with this approach is to define a file format and to provide a parser that would accept

arithmetic expressions.

The predefined problems defined above solve Poisson and Navier-Stokes equations.
PARED also supports other differential equations such the Helmholtz equation v + Au = f.
Besides the Navier-Stokes problems, we have not experimented on solving systems of partial
differential equations. These aspects need to be resolved to create a complete and flexible

parallel simulation system.

Chapter 8

The Communications Library of

PARED

8.1 Motivation

The communication patterns in many subsystems of PARED are different from most sci-
entific code in which the same vectors of uniform type are repeatedly exchanged between
processors. In PARED the mesh refinement, mesh repartition and mesh migration phases
involve the communication of complex objects usually referred through pointers. Although
there is limited support for user-defined data types in communication libraries such as MPI
[37], which are called derived data types, this approach does not extend well for objects of
variable size and there is no support for class inheritance. In our system objects can have a
variable size, are usually referenced by virtual pointers and are scattered around memory.
MPI has significant performance penalties if the data is discontinuous or not separated by

a constant stride.

For these reasons we have developed a new library on top of the MPI library. All the
code in PARED communicates through this library so it is easy to replace lower level function
calls by another communications library such as PVM [42]. Our library was designed to
simulate a standard C++ stream interface [89, 51]. In fact, our original implementation
extended the standard C++ iostream class hierarchy but this approach was later dropped
for performance reasons. From the point of view of an individual processor sending an object
to another processor using our library is equivalent to writing that object to a file while

receiving an object is similar to reading the object from a file. The library synchronizes the

116

117

communication between processors. If a destination processor wants to receive an object
from a stream, it waits until the object is inserted by the source processor into the stream.
A processor can also block if there is no available space in the sending processor. In this

case, objects need to be removed from the stream before new objects can be inserted.

The design of our library goes beyond the goal of providing C++ bindings to the C
function calls of MPI (which has been addressed in latest versions of the standard [38]) or
providing a set of classes that are wrappers to the MPI APT such as OOMPI [61]. Instead,
our goal is to provide a mechanism to communicate a large and unspecified number of
relatively small objects without significantly affecting the raw MPI performance and without

requiring that a message be delivered for every simple object or remote method invocation.

At the lower level our library uses the standard MPT interface to exchange data. We have
investigated several variations that use the blocking and non-blocking primitives of MPIL.
Although we have designed our library to simplify the exchange the complex and irregular
data, we pay no performance penalty to communicate vectors of objects of similar type. In
this chapter we describe the different classes that compose our library and their relations.
We then compare the performance of our library against IBM’s implementation of MPI,
LAM [24] from the Ohio State University and MPICH from Argonne National Laboratories
and Mississippi State University [45] on an IBM SP and a network of SUN workstations.

8.2 New Classes in Our Communications Library

The basic components of our library are communicators and ports, buffers (where the objects
are temporarily marshaled and unmarshaled into messages) and streams that use ports and
buffers to exchange objects. In this section we provide an overview of these concepts, and
describe the corresponding C++ classes. An UML diagram of the classes that form our

library and their relations is shown in Figure 8.1.

8.2.1 Communicators and Ports

The simplest class in our library is the MPICommunicator class that is a wrapper around
the communicator concept of MPI. In MPI a communicator is a group of processes with
an associated context. This opaque object (it can only be accessed through handles) is
used in all global and point-to-point MPI communication primitives. Each communicator
has a size which is the number of processes that form the group and every process in the

group has a unique rank which is its position in the group. By default MPI provides a

1

MPICommunicator

1 mm_
1
MPIPort
#por 1
1

MPICommonBuffer

0.1

MPICommonStream

3

#buf_Z>

118

MPIBuffer

MPIMultiBuffer

MPICommonlIStream

;

MPIIStream MPIMultilStream

Figure 8.1: Class diagram of PARED’s communications library.

MPICommonOStream

MPIMultiOStream

MPIOStream

119

MPI_COMM_WORLD which contains all the processes that started the computation.

The MPICommunicator class supports global communications primitives for computing
global maximums, minimums and sums of elementary data types by calling MPT_Allreduce.
The MPICommunicator class can also be used to create barriers in the execution of the code

by invoking its method barrier.

MPI provides four different methods to exchange messages, where the blocking (MPI_Send
and MPI Recv) and non-blocking (MPI_Isend and MPI_Irecv) ones are the two most widely
used. After a blocking send or receive returns from its function call, the buffer used in the
call is ready to be reused (in the case of the send) or the buffer contains the message (in a

receive).

For the blocking primitives the MPI standard states the following:

It is up to MPI to decide whether outgoing messages will be buffered. MPI may
buffer outgoing messages. In such case, the send call may complete before a
matching receive is invoked. On the other hand, buffer space may be unavailable,
or MPI may choose not to buffer outgoing messages, for performance reasons.
In this case, the send call will not complete until a matching receive has been

posted, and the data has been moved to the receiver.

This statement implies that even very simple codes can deadlock and that some codes
successfully terminate in some machine architectures while it might deadlock in others. This
situation became apparent when we moved our code from the network of workstations. Al-
though our system was running fine using MPICH and LAM in the network of workstations,

it required the reordering of some message exchanges in the SP to solve large problems.

To allow the overlap of communication and computation, or to allow overlap of multiple
messages our library also uses the non-blocking primitives. A non-blocking send and receive
only indicate the beginning of communication and it is necessary to test its completion with

a wait before the buffers are modified.

An MPIPort is a pair of MPICommunicator and rank (or process number within the
communicator) to and from where messages are sent or received. MPIPort can also include
an optional tag so messages can be marked. Therefore the receiving processor can specify
not only the source but also the type of message to receive. MPIPort provides methods for
sending and receiving simple primitive data types and for sending and receiving buffers of
a sequence of bytes of a specified length through the port. These methods in turn call the
standard blocking and non-blocking MPI function calls.

120

8.2.2 Buffers

The abstract class MPICommonBuffer behaves like the buffer class used in the C++ iostream
class hierarchy. In PARED a buffer has a length, a data region from which to insert and
remove data and a port. The same buffers can be used for sending and receiving messages.
This current mode is identified by a flag. Like the iostream buffers, our class has three

pointers:

e sptr indicates the beginning of the buffer.
e eptr indicates the end of the buffer or the end of the read part.

e pptr indicates where to put the next character or from where it can be obtained.

It is possible to insert objects in the output buffers with the method put that takes as
a parameter the size of the object and returns a pointer to the location where the object
should be copied. In the case that the buffer is full, the put method calls the virtual method
send which in turn calls an MPI send function to send the buffer to the processor indicated
in the port associated with the buffer. Input buffers use a similar process. The get method
of the MPICommonBuffer returns a memory location of a specified size and also calls the

pure virtual method recv to receive data using MPI function calls.

The implementation of send and recv is in the classes MPIBuffer and MPIMultiBuffer.
MPIBuffer contains a buffer of characters of a specific size and only uses blocking communi-
cation. On the other hand, the class MPIMultiBuffer accepts a vector of character arrays
as buffers and accepts both blocking and non-blocking primitives. The most important
feature of class MPIMultiBuffer is that it is possible to insert and remove objects from one

of its buffers while the class is sending and receiving messages on the other ones.

8.2.3 Stream Classes

The library is completed with the stream classes. The abstract class MPICommonStream
contains a pointer to a MPICommonBuffer. Qutput streams inherit from MPICommon0Stream
while input streams extend the class MPICommonIStream which are both subclasses of
MPICommonBuffer. These two classes contain methods for sending and receiving vectors

of objects.

Finally, the concrete stream classes create buffers of the appropriate type. The classes

MPIOstream and MPIIStream use blocking MPIBuffer while the classes MPIMultiOStream

121

and MPIMultiIStream use the more complex MPIMultiBuffer. It is possible to interchange
the stream types. For example, our system accepts sending a message with MPI0stream
while receiving it in another processor using a MPIMultiIStream. The only restriction is
that they use the same buffer length so the MPI messages at the lower level do not get

corrupted.

We also provide operator<< and operator>> procedures that use MPICommonOStream

and MPICommonIStream and take as a parameter primitive data types.

8.3 Using Our Library to Exchange Messages

Figure 8.2 shows a sample use of the library that sends a vector of doubles from processor

0 to processor 1:

e line 1: the file MPI.H contains all our class declarations.

e lines 2-3: we define the vector and buffer sizes.

e line 7: MPICommunicator: :init is a static method that initializes the library.

e line 10: this example uses the default communicator that includes the two processors.
e line 11: a barrier synchronizes the processors.

e line 13: rank returns the processor number. Processor 0 executes the true part of the

if, while processor 1 executes the else.
e line 15: processor 0 creates a port to processor 1.

e line 17: using the port, processor 0 creates an output stream that uses one buffer with

blocking communication.

e lines 18-20: processor 0 sends the vector to processor 1 by invoking the stream
operator<< in each of the elements of the vector. The vector size is 8192 bytes
while the buffer size is 256 bytes. Therefore, sending the vector requires 32 MPI

message sends inside the library.
e line 21: a flush sends any remaining data in the stream to the receiving processor.

e line 23: processor 1 creates a port to processor 0.

122

1: #include "MPI.H"

2: const long vecsize = 1024;

3: const long bufsize = 256;

4:

5: int main (int argc, char **argv)

6: {

7: MPICommunicator::init (&argc, &argv);
8: long i;

9: double *myvector = new double[vecsize];
10: MPICommunicator comm;

11: comm.barrier();

12:

13: if (comm.rank() == 0) {

14: fillvector (myvector, vecsize);
15: MPIPort port(1l);

16: // sending the vector

17: MPIOStream ostr(port, bufsize);
18: for (i = 0; i < vecsize; i++) {
19: ostr << myvector[i];
20: }
21: ostr.flush();
22: } else {
23: MPIPort port(0);
24: // receiving the vector
25: MPIMultiIStream istr(port, O, bufsize, 0, 3);
26: for (i = 0; i < vecsize; i++) {
27: istr >> myvector[i];
28: }
29: }
30: MPICommunicator: :finalize() ;
31: delete [] myvector;
32: return O;
33: }

Figure 8.2: A simple example that communicates a vector of doubles between two processors
using our library.

123

e line 25: using the port, processor 1 creates an input stream that uses three buffers

with non-blocking communication.
e line 26-28: processor 1 receives the vector using the stream.

e line 30: we terminate MPI with the static method MPICommunicator: :finalize.

The loops in lines 18-20 and 26-28 are inefficient because they require a function call
to operator<< and operator>> for every element in the vector. To improve the perfor-
mance we can replace these loops by the lines ostr.vecwrite(myvector, vecsize); and
istr.vecread(myvector, vecsize); respectively to send and receive vectors of doubles

or other data types.

As it can be observed in the previous example our library does not require the program-
mer to directly manage the allocation and deallocation of buffers, one of the most difficult
and error prone tasks in message passing codes. Also, we do not require that the receiving
processor knows in advance the size of the vector. For example, we can modify the program
to send the size of the vector before sending its contents. The receiving processor can use
this size to allocate a vector of the appropriate size. We can also modify the buffer size to
allow optimal performance.

The process for communicating user defined objects is similar to the one used to read
and write objects in C+4. For every class that we want to communicate we define the
functions code operator<< and operator>>. This procedure is shown in Figure 8.3.

We can now use the operator<< and operator>> on input and output streams as in
the previous example to exchange objects of type MPITestClass. A similar process can be

used to exchange more complex data types such as lists, trees or graphs.

8.4 Performance Analysis

8.4.1 Introduction

In this section we evaluate the performance of our library in two different architectures: a
network of SUN workstations and an IBM-SP.

The network of workstations (NOW) is located in the Center for Information and Tech-
nology at Brown University and consists of approximately 200 Sun Ultra-10 workstations

that are connected through a 100 Mb/sec. Fast Ethernet network. Each workstation con-
tains a 440 Mhz. UltraSPARC processor and 256 MB of local memory and runs Sun’s Solaris

124

class MPITestClass {
friend MPICommonOStream &operator<<(MPICommonOStream& os,
const MPITestClass& t);
friend MPICommonIStream &operator>>(MPICommonIStream& is,
MPITestClass& t);
private:
long index_;
char buf_[256];
long n_;
char ch_;
double f_;
public:
MPITestClass() {...}
};

MPICommonOStream &operator<<(MPICommonOStream& os, const MPITestClass& t)

{
0s << t.index_ << t.buf_ << t.n_ << t.ch_ << t.f_;
return os;

}

MPICommonIStream &operator>>(MPICommonIStream& is, MPITestClass& t)

{
is >> t.index_ >> t.buf_ >> t.n_ >> t.ch_ >> t.f_;
return is;

}

Figure 8.3: To communicate user defined objects the user must provide an implementation
to the input and output stream operators.

125

2.7 operating system. The latency required to send a message between two machines de-
pends on the relative distance between these machines. On workstations connected to the
same subnetwork we measured the latency to be 158 usecs. while in machines connected to

different subnetworks the latency is 260 psecs.

We tested the library in the NOW using two MPI implementations. MPICH [45] (version
1.1.2) is a version of MPI developed by the Argonne National Laboratories and Mississippi
State University. This implementation executes on a wide variety of architectures and in
our network of workstations uses a lower level library called P4 [14]. Another widely used
MPI library is LAM [24] that was originally developed by the the Ohio State University

and it is now maintained by the University of Notre Dame.

The IBM RS/6000 SP contains 24 Model F50 (Silver) nodes and is located at the Tech-
nology Center for Advanced Scientific Computation and Visualization at Brown University.
Each computing node consists of four 332 Mhz. 604e Power-PC processors that share 1 GB.
of main memory and running IBM AIX 4.3 operating system. The nodes are connected
through an SP switch with an MX adapter that has a hardware limit of 150 MB/sec. Send-
ing a message using IBM’s implementation of MPI between two nodes has a latency of 30

1Secs.

All the MPI implementations are optimized to exchange vectors of contiguous data. In
the tests discussed in the following subsections we exchanged vectors of 1 to 256K double
precision floating point numbers between two or more processors. We use this simple data
type to compare the performance that we achieve using our library against the optimal

performance that can be obtained in the system.

8.4.2 Point-to-Point Communication

Figure 8.4 shows the bandwidth in Mb/sec. by sending vectors of sizes ranging between
1 to 256K doubles from a source processor to a destination processor in the NOW (using
MPICH and LAM) and the IBM SP. In the NOW, both processors are located in the same
subnetwork while in the IBM SP the processors are located in different nodes so actual

network communication (rather than shared memory) takes place.

The Block data series corresponds to the MPI blocking function calls (MPI_Send and
MPI Recv) while the No Block series use the non-blocking primitives of MPI (MPI_ISend and
MPI_TRecv). Although the non-blocking calls allow to overlap computation and communi-

cation, in these tests there is no computation and both methods achieve similar bandwidth.

126

Point-to—Point MPI (NOW)

B LAM Block

¢ LAM No Block ¥ LAM Pack

A Mpich Block

Point-to—Point MPI (SP)

‘l Block

@ No Block ¥ Pack‘

B Mpich No Block < Mpich Pack 700

100 600

P /A__’-n-——l- 500 _/.,
75 7 3] /l-/-
o — ‘kx g 400 /.\
2 . re)
£ 50 - - — £ 300 7 o
= 200 /
100

T T T T T T T T T T T
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144

Vector size Vector size

Figure 8.4: Point-to-Point MPI Communication. Bandwidth obtained by sending vectors
of 1 to 256K doubles using MPI’s blocking, non-blocking and packing function calls in a
NOW and IBM SP.

In the NOW, the bandwidth increases rapidly with vector size but it stabilizes in vectors
of 256 doubles at around 88 Mb/sec. using LAM and around 83 Mb/sec. with MPICH. In
the IBM SP the performance also increases with element size but there is a slight decrease
in vectors of 1024 doubles because the SP uses two methods for exchanging messages. Small
messages are immediately delivered while long messages are sent only when the receiving

processor is ready to receive.

The final data series show the result of packing the vectors using MPI. As we have
explained earlier, in PARED the data to send to other processors is almost never contiguous.
Therefore it is necessary to either send many messages of very small size (with the cor-
responding communication cost that results from very high message latencies) or combine
the data into one contiguous message. This process in MPI is called packing and, in these
examples, involves looping through all the elements in the vector calling the MPI functions
MPI _Pack and MPI Unpack for every element in the array in the sending and receiving pro-
cessor respectively. This process creates a buffer that can then be sent and received using
the same blocking and non-blocking function calls described before. Looping through all
the elements of the vector and calling the MPI_Pack and MPI Unpack functions is a very
expensive process. As we can see in these figures, the bandwidth drops to less than 50
Mb/sec. in the NOW and to 66 Mb/sec. in the SP.

Figure 8.5 shows the result of using our MPI0Stream and MPIIStream classes with buffer
sizes of 4K, 16K, and 64K in the NOW (with LAM and MPICH) and in the IBM SP. These

classes use blocking MPI function calls at the lower level to exchange messages. The top

127

two figures show the bandwidth that we achieve by looping through all the elements in
the vector and calling the corresponding operator<< and operator>> for each double in
the array. The total number of messages depends on the vector and buffer size, but for
large vectors (256K doubles), the total memory requirements are much smaller (4K to 64K
bytes) than the one required in the previous MPI examples (256K*8 bytes). In the NOW,
again we rapidly reach the communication limit determined by the speed of the Ethernet
network. In this example, LAM also has an advantage over MPICH. Using LAM all the
buffer sizes result in similar bandwidth. This is not the case with MPI where the buffers of
size for 4K have the best performance while buffers of 16K bytes have the worst. In the SP,
the bandwidth is between 175 Mb/sec. (for 16K byte buffers) to 215-240 Mb/sec. (for 4K
byte buffers). This is between 30% to 50% the raw MPI performance in the SP observed in
the previous figure but is 3 to 4 times larger than the one that we would have obtained if

we have used MPI to pack the messages.

The two bottom figures show the performance obtained by calling the vecwrite and
vecread methods of the stream classes, rather than calling stream input and output oper-
ators for each element of the vector. The buffer size also varies between 4K bytes and 64K
bytes, so every vector read and write is also decomposed into several MPI messages. In the
NOW there is no significant advantage by calling the vector read and writes because the
whole communication is limited by the network speed and not by processor speed. On the
other hand, in the SP the vector operators double the bandwidth.

Figure 8.6 shows the results for MPIMultiOStream and MPIMultilIStream, where each
stream contains 2 buffers of 4K 16K and 64K bytes and uses non-blocking MPI primitives.
The results in these figures are very similar to the ones shown in Figure 8.5. Neverthe-
less, the MPIMultiOStream and MPIMultilIStream allow the overlap of computation and

communication.

8.4.3 Ping-Pong Communication

Another common test of point-to-point communication between two processors is the Ping-
Pong test where a source processor first sends and then receives a vector of doubles, while
the other processor first receives the vector and then sends it back. These results are shown
in Figures 8.7, 8.8 and 8.9 operators for the raw MPI function calls, stream and multistream

methods respectively.

As expected, these tests confirm the results presented in the the previous section. The

bandwidth in all cases increases with vector size, although more slowly than in the previous

128

Point-to—Point Stream (NOW) Point-to—Point Stream (SP)
B LAM (4096) © LAM (16384) VY LAM (65536) A MPICH (4096) ‘- (4096) © (16384) ¥ (65536)‘
> MPICH (16384) < MPICH (65536) 300
100 250 /">("-____
75 & 200 v 2
o 2 //M‘\—‘\’—"‘
] g 150
s ¥ s /
= 100 //
> 50
0 T T T T () T T T
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size
Point-to—Point StreamVector (NOW) Point-to—Point Stream Vector (SP)
B LAM (4096) ® LAM (16384) ¥ LAM (65536) A MPICH (4096) ‘l (4096) ¢ (16384) V (65536)‘
> MPICH (16384) < MPICH (65536) 500
100 /.—"\-\
=3 — 400
7 < < B $ 300 /\VW
g I Ra——
£ 50 =
o S 200
= /
257 100
0 T T T () T T T
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size

Figure 8.5: Point-to-Point Stream Communication. Bandwidth obtained by sending vectors
of 1 to 256K doubles using the MPI0Stream and MPIIStream with buffers of 4K, 16K and
64K bytes in a NOW and IBM SP.

129

Point-to—Point Multistream (NOW) Point-to—Point Multistream (SP)
B |LAM (4096) © LAM (16384) ¥ LAM (65536) 4 MPICH (4096) ‘- (4096) @ (16384) ¥ (65536)‘
> MPICH (16384) < MPICH (65536) 250
100
B—f———————— 200
751 9 a0 M /v/
g _/y— e ﬁ / N—
£ 50 2
100
s // 2 /
2 / 50
() T T T T () T T T
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size
Point-to—Point Multistram Vector (NOW) Ping—Pong Multistream Vector (SP)
B LAM (4096) ® LAM (16384) ¥ LAM (65536) A MPICH (4096) ‘l (4096) ¢ (16384) V (65536)‘
P> MPICH (16384) < MPICH (65536) 400
100 r’f
300
757 [5)
8 % 200
5 100
() T T T T () T T T
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size

Figure 8.6: Point-to-Point MultiStream Communication. Bandwidth obtained by sending
vectors of 1 to 256K doubles with the classes MPIMultiOStream and MPIMultiIStream with
buffers of 4K, 16K and 64K bytes in a NOW and IBM SP.

130

Ping—Pong MPI (NOW) Ping—Pong MPI (SP)
B LAM Block ¢ LAM No Block VY LAM Pack A MPICH Block ‘l Block ® No Block V Pack‘
> MPICH No Block < MPICH Pack 700
100 600 //
%:E—_—.: 500
75
o S 400 /
b3 3 /
£ 50 £ 300
2 =
= 2l M 200 /
< N 100
() T T T T T T () T T T T T T
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size

Figure 8.7: Ping-Pong MPI Communication. Bandwidth obtained by sending vectors of 1
to 256K doubles using MPT’s blocking, non-blocking and packing function calls in a NOW
and IBM SP.

examples, and requires vectors of 16K doubles to achieve maximum bandwidth in the NOW
and reach the network limit. The bandwidth using MPI packing is slightly lower: 36 Mb/sec.
in the NOW and 23 Mb/sec. in the SP.

Although in the point-to-point examples we synchronize the processors in a barrier
before beginning each test, the ping-pong test explicitly synchronizes the two processors at
every exchange and smoothes some of the variations that we have observed before. In these
tests, the advantage of using smaller buffers of approximately 4K bytes in the SP is clearer

for both stream and multistream communication.

8.4.4 All-to-All Communication

The most demanding communication pattern in parallel FFTs and parallel Spectral Navier-
Stokes solvers is the all-to-all communication where each processor sends a vector to the
remaining processors and also receives a vector from each other processor. This communi-
cation pattern easily swamps a network, specially on the NOW where all the workstations

share a common wire.

MPI supplies function calls for all-to-all (MPI_Alltoall) communication that require a
very large amount of memory. In the tests shown in this section, we evaluate a complete
exchange using the point-to-point communications using the following procedure: each
processor iterates through i phases, from 1 to P—1 where P is the total number of processors.
In each phase ¢, each processor p exchanges a vector with processor p X0R i. In this way,

we avoid potential deadlocks in the IBM SP and each processor does not maintain many

131

Ping—Pong Stream (NOW)

¥ LAM (65536) & MPICH (4096)

B AM (4096) © LAM (16384)

Ping—Pong Stream (SP)

‘- (4096) © (16384) Y (65536)‘

T
1 256 1024 4096 16384 65536 262144

Vector size

> MPICH (16384) < MPICH (65536) 250
100 I
200
75 e . ///ﬁ
w
g 50 /": < § 100 /
. \\/ 1 s
() T T T () T T T
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size
Ping—Pong Stream Vector (NOW) Ping—Pong Stream Vector (SP)
B LAM (4096) @ LAM (16384) VY LAM (65536) A MPICH (4096) ‘l (4096) ¢ (16384) ¥ (65536)‘
> MPICH (16384) < MPICH (65536) 400
300 [
g /)%""
o Q
2 £ 200
e e
100
0 T T T 0 T T T

256 1024 4096 16384 65536 262144

Vector size

Figure 8.8: Ping-Pong Stream Communication. Bandwidth obtained by sending vectors of
1 to 256K doubles using the MPI0Stream and MPIIStream with buffers of 4K, 16K and 64K

bytes in a NOW and IBM SP.

132

Ping—Pong Multistream (NOW) Ping—Pong Multistream (SP)
B L AM (4096) © LAM (16384) ¥ LAM (65536) A MPICH (4096) ‘- (4096) © (16384) ¥ (65536)‘
> MPICH (16384) < MPICH (65536) 250
100
200 —a—F
75+ © 1so]
8 7 14
3 3 ///_4/
s < 100
= K
25 / 50
0% ! 0 . . .
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size
Ping—Pong Multistream Vector (NOW) Ping—Pong Multistream Vector (SP)
B LAM (4096) ® LAM (16384) VY LAM (65536) A MPICH (4096) ‘I (4096) © (16384) ¥V (65536)‘
> MPICH (16384) < MPICH (65536) 200
100 r’f
1 300
75
3) g ////
2 200
é 50 .§ /
5 100
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size

Figure 8.9: Ping-Pong MultiStream Communication. Bandwidth obtained by sending vec-
tors of 1 to 256K doubles with the MPIMultiOStream and MPIMultiIStream classes with
buffers of 4K, 16K and 64K bytes in a NOW and IBM SP.

133

pending receives as would be the case in other all-to-all methods.

The results for this test are shown in Figure 8.10 for NOW (4 to 16 processors) and the
IBM SP (4 to 32 processors) for the MPI libraries and for our stream libraries. In the NOW,
the blocking MPI has a per processor bandwidth of a little bit more than 40 Mb/sec. while
the packing primitives have a maximum bandwidth of less than 20 Mb/sec, but there is no
significant performance penalty for increasing to a relatively small number of a processors.
Our stream libraries use LAM MPI in the NOW at a lower level and slowly increase until
reaching 40 Mb/sec. for large vectors. In this case, there is a small penalty to pay for 16
processors. Trying to run this test for 32 or more processors in the NOW was extremely

difficult and we usually obtain a less than 10Mb/sec.

The blocking MPI bandwidth in the SP slowly decreases as we increase the number of
processors, from 307 Mb/sec. for 4 processors to 122 Mb/sec. for 32 processors in the case
of vectors of 256K doubles. The packing MPI calls have a bandwidth of 17 Mb/sec. Our
libraries loop through all the elements in the vector calling the respective operator<< and
operator>> and achieve slightly more than 100 Mb/sec. for 4 processors and 87 Mb/sec.
for 32 processors. In this case, there is a slight advantage on using the multistream version

of our streams.

8.4.5 Ring Communication

Fortunately, PARED requires all-to-all communication only when the mesh is randomly
distributed between the processors because in this case each processor is adjacent to every

other processor.

A more common situation is that processors exchange messages with a relatively small
number of adjacent processors but with several processor sending messages at the same
time. We evaluate this situation using a ring test where every processor p first sends a
vector to processor p+ 1 and then receives a vector from p— 1. The first and last processors
also exchange messages to complete the ring. The results for this test for the NOW and the
SP are shown in Figure 8.11 and are comparable to the ones in the previous section. The
number of messages exchanged in each phase for the all-to-all communication and for the
ring communication is the same (p — 1). The only difference is that the ring test executes

only two phases while the all-to-all test requires p — 1 communication phases.

134

Complete Exchange MPI (NOW)

‘l 4P Block ¢ 8P Block Y 16P Block & 4P Pack ™ 8P Pack < 16P Pack‘ ® 4P Block @ 8P Block Y 16P Block 4 32P Block ™ 4P Pack < 8P Pack
50 M 16P Pack X 32P Pack
P i — 400
40 /
o /// V 300
30
g / M g 4-//‘—.//'
S 7]
S 20 = 5 200
=
et
107 100
0 : : : : : : 0 —s =% % % % ¥
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size
Complete Exchange (NOW) Complete Exchange (SP)
B 4P Stream < 8P Stream V 16P Stream A 4P Multistream B 4P Stream < 8P Stream ¥V 16P Stream A 32P Stream

> 8P Multistream < 16P Multistream

50 125

40 100 e S =
o - —] o =
o 307 B ——— & 75 N/f7’—¢
2 8] 2
£ 20 < £ 0 &

104 & 251

0 ! ! ! 0 ! ! !

1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144

Vector size

Complete Exchange MPI (SP)

> 4P Multistream < 8P Multisteam X 16P Multistream X 32P Multistream

Vector size

Figure 8.10: All-to-All communication. Bandwidth obtained by exchanging between all the
processors in a NOW and IBM SP for 4 to 32 processors sending and receiving of 1 to 256K
doubles to and from all the other processors in a NOW and IBM SP.

135

Ring MPI (NOW) Ring MPI (SP)
B 4P Block @ 8P Block Y 16P Block A 4P Pack ™ 8P Pack < 16P Pack B 4P Block ¢ 8P Block VY 16P Block & 32P Block ™ 4P Pack < 8P Pack
50 M 16P Pack X 32P Pack
— 400

40
/V 300
30

o
b / 3
@
2 » /____—d
S 20 — 2 200
/ P — & =
o — : : : ‘ o= — =
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size
Ring (NOW) Ring (SP)
B 4P Stream < 8P Stream V 16P Stream A 4P Multistream B 4P Stream < 8P Stream V 16P Stream A 32P Stream
> 8P Multistream < 16P Multistream > 4P Multistream < 8P Multisteam X 16P Multistream X 32P Multistream
50 125
40 4 100 i
1%} N 1%} =
o 30 Q 757 ==
2 2
o o al
S 207 s 50 -
101 £ 251 —
0 T T T () T T T
1 256 1024 4096 16384 65536 262144 1 256 1024 4096 16384 65536 262144
Vector size Vector size

Figure 8.11: Ring communication. Bandwidth obtained by first sending and receiving of 1
to 256K doubles to the next and previous processor respectively in a NOW and IBM SP.

Chapter 9

Experimental Results

9.1 Putting it All Together

In this chapter we study two different problems using PARED. The first experiment shows
the adaptive solution of a Poisson equation using two- and three-dimensional meshes. This
test demonstrates that our system can rapidly generate and manipulate very large locally
adapted meshes that contain more than 6,000,000 elements. In this static problem, the
total time is dominated by the migration time because there is a relatively large change of
the mesh in each adaptation phase. This example emphasizes the importance of reducing

the migration cost.

Later we use PARED to simulate an unsteady flow past a cylinder. This is a very
important scientific problem and involves the solution of nonlinear Navier-Stokes partial
differential equations. In this transient example, the mesh is refined and coarsened to

follow the vortices that appear behind the cylinder.

Both examples in this chapter adapt the mesh according to local error estimates using
the longest edge bisection algorithm described in Chapter 4, repartition the mesh using the

PNR algorithm (Chapter 5), and migrate the mesh to rebalance the work load (Chapter 6).

9.2 A Laplace Example

A good static test for our framework is the two-dimensional problem defined by Laplace’s

equation Ay = 0 in the square Q = (—1,1)? with the following Dirichlet boundary condition:

136

137

sinh(2n(z + y + 2))
sinh(87)

9(x,y) = cos(2m(z —y))

This is the same problem used to compare repartitioning algorithms in Chapter 5.5. As we
mentioned earlier, the analytical solution to this problem is known to be u(z,y) = g(z,y)
at every point of the domain 2. This solution is smooth but changes rapidly close to the
corner (1,1).

To solve this problem adaptively we generated an unstructured initial mesh with 6394
vertices and 12498 triangles of similar size using our own Delaunay mesh generator. We
defined a similar problem in 3D, starting from an unstructured mesh that contains 2013
vertices and 9540 tetrahedra. We first loaded these initial meshes into the coordinator.
This processor computed an initial partition of the mesh using the PNR heuristic (which
is outlined in Chapter 5) and distributed the meshes between p processors, 4 < p < 64,

according to this partition.

We then performed a sequence of local adaptations of the mesh. In each of these ¢ mesh
adaptation levels or phases, we first computed a solution using the current mesh. Based
on error estimates, we selected a new set of elements that we refined by their longest edge,
as explained in Chapter 4. In this example of a static problem, only refinement was used.

Finally, in each level the mesh is partitioned and migrated using PNR.

Because the analytical solution of these problems is known, it was possible to select the
elements to refine using the L., norm between the computed solution @' at level ¢ and the
real solution u. At every level ¢ we defined the error e; = |u; — ﬁ;| of every node j where
the maximum error e;,, = max(e;) is the maximum error of all the nodes. We then refined

all the elements that contained a node k such that e; > aenmq, with o = 0.5.

The FEM solutions are valid at every point of the domain. Therefore, the computed

t=1 can be used as a good initial guess to compute a new solution ul. At every

solution
time step these tests required the solution a linear system of equations Ku! = f. Rather
than solving for u' at every time step, we defined u* = u'~! + Au and then we solved

KAu = f — Ku'™! using a Conjugate Gradient solver with a Jacobi preconditioner.

Figure 9.1 shows the number of elements and vertices in M* as a function of successive
local adaptations for the 2D and 3D problems. After 24 refinement levels the 2D mesh con-
tained 6,658,350 elements and 3,329,802 vertices and after 36 refinement levels the 3D mesh
contained 6,303,346 elements and 1,164,782 vertices. These meshes are 532 and 660 times

larger than the initial meshes respectively. The ratio of the area of the largest triangle to

Local Adaptation (2D Mesh)

\ Elements . Vertices

7000000
6000000

5000000

4000000

3000000

2000000
1000000

0=

T
01 2 3 4 56789111111111122222
012345678901234

Refinement level

Local Adaptation (3D Mesh)

\ Elements . Vertices

7000000

6000000
5000000

—7

4000000

/

3000000

’_/-’

_/

2000000

__/-’_/

1000000

O

T
0 12 34—56 78911111111122222222223333333
01234567901234567890123456

Refinement level

138

Figure 9.1: Number of elements and vertices that result from successive local refinements
of irregular two- and three-dimensional meshes.

the smallest triangle in the original 2D mesh was 6.88. This same ratio was 22,028,735.25 in

the most refined 2D mesh. For 3D meshes, the ratio of the volume of the largest tetrahedron

to the smallest one was 13.04 and 17,930,689.01 for the initial and final meshes respectively.

The adaptation of the mesh reduces the maximum error (L norm) from 0.001922 in the

initial 2D mesh to 4.7107° in the finer meshes. On the 3D problem, the error is reduced

from 0.0756 in the initial mesh to 0.000529 in the locally refined meshes.

139

9.2.1 Experiments on an IBM SP

We compare the times spent by PARED in each of its four phases of partition, migration,
solution and refinement on the 2D and 3D versions of Laplace’s equation described above
on an IBM SP [3, 82] parallel computer containing four to 64 processors. These times for
each adaptation levels are presented in Figures 9.2 and 9.3 for the 2D and 3D problems,

respectively.

Computing a solution for Au rather than for 4! at every time step significantly reduced
the solution time. In earlier tests [21], obtaining a solution for u' required more than 2,300
CG iterations for large 2D meshes. A solution for Au required fewer than 160 CG iterations
to reduce the residual by 1076 in the 2D examples. The only drawback of this strategy is

=1 must be migrated between processors along the elements

that the previous solutions u
and vertices. The solution A on large 3D meshes converged in as little as 20 CG iterations

compared to the 100 iterations reported in our earlier work.

In these problems with small regions of high gradients most of the refined elements are
located on one or a few processors. Most of the refinement time is spent refining elements
that are local to a processor; there is very little communication overhead. Therefore, these
results confirm the ones obtained in Chapter 4.6. The refinement time does not necessarily
increase with increasing refinement levels. Also, it is slightly more expensive to refine 3D
meshes than 2D ones for meshes of similar sizes. For example, to create 655,436 new
triangles at level 22 required 4.88 sec. on 64 processors. To create 294,899 new tetrahedra

at level 17 requires 5.45 sec. on 64 processors.

The repartitioning time remains almost constant in both problems as the number of ele-
ments increases because a partition is computed from the small weighted graph G obtained
from the initial mesh. The partition time slowly increases with the number of processors

and varies between 0.45 sec. and 1.99 sec.

As explained in Chapter 6 the use of standard partitioning algorithms to repartition
G generally causes half of the elements to move to a new processor. In that chapter we
have also derived a lower bound for problems that perform very localized refinement in one
of the corners of the domain. This lower bound depended in the number of new elements
created and on the number of processors. With only 4 processors, the migration cost on
the partitions derived with PNR is small (in 2D meshes) or similar (in 3D meshes) to the
solution time but, as expected, it becomes increasingly important for a large number of

processors. These synthetic problems are not a good test for the performance of PNR

140

01234567891111111111
0123456789

Local Adaptation (SP - 4 proc.) Local Adaptation (SP - 8 proc.)
‘D Solution [rRefinement &4 Partition [| Migration ‘ ‘D Solution [rRefinement &4 Partition [| Migration ‘
125 125
100 100
S S
@ 75 @ 75
Py Py
£ 50 £ 50
[ﬂ ﬂ [
25 5
[‘===‘==F=Mf=“’_“ﬁ‘ﬁ‘ﬁ‘ AL ob=m = ‘—‘”""""""‘Hﬁﬁﬂ‘ : I
012 3 4546 7 8 911111111 012345678 91111111111
0 1 2 3 4 5 6 7 012 3 4567829
Refinement level Refinement level
Local Adaptation (SP - 16 proc.) Local Adaptation (SP - 32 proc.)
‘D Solution [Refinement A Partition [| Migration ‘ ‘D Solution [Refinement A Partition [| Migration ‘
100 125
80 100 1
3 3 |
Q60 e 75 i
(] (]
£ 40 £ SO—I—H
[[n i
20 5
olermrmemmmimimm e mm AT O Y TLLL L L
0123456789111 111111122 012345678911111111112222
012345678901 01234567890123
Refinement level Refinement level
Local Adaptation (SP - 64 proc.)
‘D Solution [Refinement &4 Partition Wl migration ‘
100
80 i
§ 60 1—B
i il
o JUHH
L LLLLLLA ik
22 2
01 3

[N

Refinement level

Figure 9.2: Times for each refinement phases of the locally adapted two-dimensional problem
on 4, 8, 16, 32 and 64 processors of an IBM SP parallel computer.

141

Local Adaptation (SP - 4 proc.) Local Adaptation (SP - 8 proc.)
‘D Solution [Refinement 4 Partition [| Migration ‘ ‘D Solution [Refinement & Partition | Migration ‘
5 20
17.5
o ~ 15
Q Q 5
:3’ 15 @ 12.5
° P 10 m
E 10 £ 75 f
= ! L = 5 2 | AFﬁF:;ifiii
54 L EH i 4
H 2.5 L L Iy Sy B
ofwﬁﬁﬁa‘ ‘HHT‘ M LT, NIETLLTLYYL:ELEN ‘TﬂT‘ S,
01234567891111111111222 01234567891111111111222222
0123456789012 0123456789012345
Refinement level Refinement level
Local Adaptation (SP - 16 proc.) Local Adaptation (SP - 32 proc.)
‘D Solution [Refinement & Partition [| Migration ‘ ‘D Solution [Refinement & Partition [| Migration ‘
5 80
70
2 —~ 60
13} 13}
815 8 50
° ° 40
£ 109 T EEEREE N RE] E 30
[= [=
= [LA 20
5 ! H H o T
MIFEERLRELRESLEERARARSRANEERANE] SCFLLLLELEEEYEESSES SN LS.
0123456789111111111122222222223 11111111112222222222333333
012345678901234567890 01234567890123456789012345
Refinement level Refinement level
Local Adaptation (SP - 64 proc.)
‘D Solution [Refinement & Partition [| Migration ‘
100
80
13}
i}i 60
[}
£ 40
£
20 gl
UPTTIRILLILILILILIRLLINI

11111111112222222222333333
01234567890123456789012345

Refinement level

Figure 9.3: Times for each refinement phases of the locally adapted three-dimensional
problem on 4, 8, 16, 32 and 64 processors of an IBM SP parallel computer.

142

because our goal was to generate large locally adapted meshes in a relatively short period
of time and show that our system can manipulate these meshes. In these tests at every
time step we create a large number of new elements relative to the size of the mesh and we

migrate approximately 20 % of the total number of elements.

9.2.2 Experiments on Sun Workstations

We conducted the same experiments using the LAM [24] communications library on a net-
work of four to 64 Sun Ultra-10 workstations, each having 256 MB of memory and connected
via a 100Mb/s Ethernet network. Although, the network of workstations (NOW) is not a
controlled environment and does not have the benefit of a fast switch, both of which are
characteristic of the SP, the performance achieved on our test problems is not very different
from that obtained on the SP.

The NOW has a higher latency which mainly affects smaller messages, such as the global
sums for the Conjugate Gradient. For that reason it is more difficult to obtain speedups in
the solution time in the NOW than on the SP. Also, on the NOW there is a larger potential
for network congestion because all the processors communicate through the Ethernet.

Figures 9.4 and 9.5 shows the solution and total times for the 64-processor Sun NOW.
These results apply to the two- and three-dimensional problem described in Chapter 9.2
respectively. The relative solution time for small problems on the NOW is much larger than
it is for large problems. This is due to the higher latency of the NOW. On the other hand,
we have not observed a significant increase of the migration time on large meshes, which

will indicate a network saturation.

9.3 A Navier-Stokes Problem

9.3.1 Problem Formulation

The motion of incompressible Newtonian fluid with constant density p and constant viscosity

u is governed by the Navier-Stokes equations

1
a—u+(u-V)u = —;Vp—l—uvzu—Fg inQ (9.1)

ot
V-u = 0 inQ

143

Local Adaptation (NOW - 4 proc.) Local Adaptation (NOW - 8 proc.)
‘D Solution [Refinement@APartiton M Migration ‘ ‘D Solution []Refinement A Partition Il Migration ‘
80 100
70
- 60 8
§ 50 § 60
g o i 9
£ 30 = M E 40
= aukkkl: o
10 H H
Jmmmmmmmma AL dmmmrmrmmmmm e AR TN

0123 4586 789111111 11 01234567 891111111111
0 1 2 3 45 6 7 01234567809
Refinement level Refinement level
Local Adaptation (NOW - 16 proc.) Local Adaptation (NOW - 32 proc.)
‘D Solution [Refinement 4 Partition [| Migration ‘ ‘D Solution [Refinement 4 Partition [| Migration ‘
125 150
100 N 125 i
- g 100 I
k2) L
[[>
£ 50 £ 5 I
[[I
25 25 s A p-
ol=== ‘”""""‘”‘”"—“”‘Hﬂﬂﬂﬂ‘ L 0 "‘f""""“"“”‘H‘H‘H‘H‘H‘H‘H‘H‘H‘H‘H‘ ‘ﬂ‘ ik f‘H
012345678911111111112?2 012345678911111111112222
012345678901 01234567890123
Refinement level Refinement level
Local Adaptation (NOW - 64 proc.)
‘D Solution [Refinement & Partition [| Migration ‘
70
60
< 50
(8]
g M |
@ 40 i
& A HH
= 20 HHAHHH

T T
012345678911111111112222
01234567890123

Refinement level

Figure 9.4: Times for each refinement phases of the locally adapted two-dimensional problem
on 4, 8, 16, 32 and 64 processors of a network of workstations.

144

Local Adaptation (NOW - 4 proc.) Local Adaptation (NOW - 8 proc.)
‘D Solution [Refinement 4 Partition [| Migration ‘ ‘D Solution [Refinement & Partition | Migration ‘
15 125
12.5 10
S 10 | H S i
& . 2] g s |
o B o 8
£ 5 LA L Ly £ 5 Am BEmEAn| Il
S = Bafl U1l
2.5 L H H LY 2.5 ?ﬂ»; ﬂ>; ﬂ, L HH HE
0 Q‘E‘”F‘E‘%H‘H‘aﬂﬂﬁ7‘ AL LT 0 RF‘HF%E‘&‘H‘%HH‘E‘ AL TR L
01234567891111111111222 01234567891111111111222222
0123456789012 0123456789012345
Refinement level Refinement level
Local Adaptation (NOW - 16 proc.) Local Adaptation (NOW - 32 proc.)
‘D Solution [Refinement & Partition [| Migration ‘ ‘D Solution [Refinement & Partition [| Migration ‘
15 40
1255 35
— —~ 30
Q 10 2 25
3 . 3
> 5 o 20
£ La 4 E 15
[SE =
2.5 1 HHHAAAHHS 127 PR Ny amnny i
NITETERRLRARRRARANAARAANRAREANEY e e

0123456789111111111122222222223 11111111112222222222333333
012345678901234567890 01234567890123456789012345
Refinement level Refinement level

Local Adaptation (NOW - 64 proc.)

‘D Solution [Refinement & Partition [| Migration ‘

60

50

840

&30

£

":20 l

SRR

O e e L e e e
11111111112222222222333333
01234567890123456789012345

Refinement level

Figure 9.5: Times for each refinement phases of the locally adapted three-dimensional
problem on 4, 8, 16, 32 and 64 processors of a network of workstations.

145

where u = (u,v,w)T is the velocity vector, p is the pressure, and v is the kinematic viscosity
v = u/p. For example, at 15°C the air has a kinematic viscosity of 0.15cms™! while
water has v = 0.0lcms™!. vV?u is a viscous term where V? is the Laplace operator
0?/02% + 02 /0y? + 8% /922%. The derivation of these equations from first principles is shown
in 2, 96].

The Reynolds number

L
Re:U—

v

is a parameter of the typical flow speed U and the characteristic scale of the flow L. Fluid
flows with high and low Reynolds numbers show different behavior. Steady flows at high
Reynolds numbers are unstable and become turbulent, a phenomenon that is not observed

at low Reynolds numbers.

In the example shown in this section we study the formation of vortices past a cylinder
of unit diameter at high Reynolds numbers. The fluid is initially at rest and is suddenly
accelerated with speed U perpendicular to its axis. During a very short initial phase the
flow is irrotational after which two eddies appear at the back of the cylinder. These eddies
first grow in size and later became asymmetric. In later stages the flow becomes unsteady
shedding vortices alternatively from the two sides of the cylinder in a phenomena that is

known as the Von Karman vortex street [92].

9.3.2 Solution Strategy

The method used in this example is based on the formulation presented by Patera and
Fischer in [36] which is based on the fractional step method of Orszag and Kells [65].
This method approximates the non-linear Navier-Stokes problem by iteratively computing

solutions to simpler Helmholtz and Poisson equations.

The solution of the transient system given at Equation 9.1 is obtained by a semi-implicit
scheme using a temporal discretization, where the solution at every time step ¢ consists of

t—17 ut—2 and ut—3

three computational steps. Based on the previously computed solution u
we first compute u from the convective term

B t—1 \
A - ¢

where C! is given by a 3rd order Adams-Bashforth discretization

Ct = %ut—l .Vut! — %ut—2 Va2 + 15_2ut—3 . Vul~3.

146

a’=0,5"=0
fort=1toT do
Mua=f
solve KAp = 1/(At)QTa — Kp'—!
=5+ Ap
Ma=g ~
solve Muttl — At/ReKut+! = M1
if n is an adaptive step then
compute a new solution u} and p
estimate errors and adapt the mesh
obtain a new partition and rebalance the work
end if
end for

Figure 9.6: Procedure for adaptively solving the incompressible Navier-Stokes equations.

We then compute the pressure pfusing the newly computed 1
1
V= —V- i
P=a’ "

Finally, we use the viscous term to obtain u’

ul — fl 1
At Re

where

—u

At

=33

= —th.

The procedure for adaptively computing a solution to this transient problem is summa-

rized in Figure 9.6. @ = (@', 9%, ") is an approximation to the components of the velocity

vector u’ and 7' is an approximation to the pressure p’ at time ¢, M is the mass matrix

and K is the stiffness matrix.

We first specify the initial values for i° and $° and we then iterate through a specified
number T of iterations. The first step of each iteration is to obtain Ma = f, where
f=AtCt —a' L.

We can now obtain a solution for the pressure 5'. We define
p=p""+Ap
and compute a solution to

1
KAp=—0QTa— Kptt 2
p= Q@ 0 Kp (9.2)

147

where Q = (Qg, Qy, Q) is the asymmetric matrix obtained from the FEM discretization of
the term V - ti. We then use Ap to update p' which then use to compute .

Finally we solve the three independent systems of equations
Hial = Mu (9.3)

where H = M — (1/Re) K is the Helmholtz matrix.

The linear system in Equation 9.2 is the worse conditioned system in this discretization.
Therefore, in this problem we compute its solution using an Overlapping Schwarz precon-
ditioning method. On the other hand, the systems of equations in Equation 9.3 converge

in very few iterations.

Every few time steps we adapt (refine and coarsen) the mesh. Unfortunately, the real
solutions u’ and p’ are not known as in the example shown in Section 9.2. Nevertheless,
we can approximate these functions by computing solutions using meshes with different
resolutions [96] (e.g. by varying the orders of the polynomials or by using a coarser or finer
mesh). We can then select the regions where the difference between the solutions is the

largest.

Thus, if ﬁ? is the approximation described above using basis functions of order ¢ we
can now compute a new solution ﬁ;, i # j, using polynomials of order j. Then we can
efine every element where |[at — @1f|| > emax where ||e|| an error norm and emay iS our
r J i
desired maximum error in each element. Similarly, we can coarsen the elements where
St ot
||uj — 0;|| < emax-

In a parallel environment it is necessary to rebalance the work between the processors
after adapting the mesh. As in the previous examples, we compute a new partition of the

t ~t—1’ ﬁt—2

mesh which we then migrate along with the solutions @*, u and p'. We are now

ready to begin a new iteration step.

9.3.3 Numerical Results

Figure 9.7 shows our initial 2D mesh consisting of 6026 triangles and 3144 vertices. Figures
9.8 to 9.14 show the adapted meshes at different time steps using Re = 250 where the mesh
is distributed between 8 processors. These figures show the formation of unsteady vortices

that we have mentioned earlier.

We performed a complete simulation with linear basis functions of 30 seconds of real time
in 32 processors of the IBM SP. We specified a time step At = 0.002 seconds and Re = 250,

148

O | Motif Interface X

File Command Settings Parallel

Figure 9.7: Initial 2D mesh used to study the flow past a cylinder.

149

Figure 9.8: Refined mesh at time ¢ = 0.5 secs. (top) and ¢t = 1.25 secs. (bottom).

150

Figure 9.9: Refined mesh at time ¢ = 2.5 secs. (top) and ¢ = 5 secs. (bottom).

151

Figure 9.10: Refined mesh at time ¢ = 7.5 secs. (top) and ¢ = 10 secs. (bottom).

152

Figure 9.11: Refined mesh at time ¢ = 12.5 secs. (top) and ¢ = 15 secs. (bottom).

153

Figure 9.12: Refined mesh at time ¢ = 17.5 secs. (top) and ¢ = 20 secs. (bottom).

154

Figure 9.13: Refined mesh at time ¢ = 22.5 secs. (top) and ¢ = 25 secs. (bottom).

155

Figure 9.14: Refined mesh at time ¢ = 27.5 secs. (top) and ¢ = 30 secs. (bottom).

156

Mesh Size (2D flow)

‘\ Elements “ Vertices N Shared ‘

100000
80000 W VS
60000
31 APy, oy, s N rrernag®
40000 ¢ CLETL PR T AT, LT PP P FHPIY arteiny, o
20000 Jf
G \—\ _\ —\ \— \—\‘—\“—_-\ “\ *\ \—' \— \—_\-\
Time step

Figure 9.15: Number of elements, vertices and shared vertices for time step ¢, 0 < t <
15,000, in the adapted meshes used to simulate a turbulent flow.

requiring a total of 15,000 iterations. Every 50 iterations we also compute a solution for
u and v with quadratic basis functions. The solution of these systems of equations do not

impose any significant overhead because the corresponding matrices are well conditioned.

We defined the errors e, = i} — @} and e, = 94 — %! and the error norm

llew]| = Mey + Key,
lles]| = Mey + Ke,.

After specifying the desired error em,x = 0.001 we refined every element 2, by its longest
edge if either ||ey||q, > €max OF ||€y||a, > €max- On the other hand, if both errors were less

than e,y the element was selected for coarsening.

Figure 9.15 shows the number of elements, vertices, and shared vertices of the mesh
as a function of the iteration step. Starting from our initial mesh shown in Figure 9.7
the adaptive procedure rapidly creates a refined mesh containing 81,047.05 elements and

40,859.25 vertices on average with a maximum of 91,885 elements and 46,375 vertices.

Figure 9.16 shows the fraction of the total time spent in each of the steps of the procedure

presented in Figure 9.6. The largest fraction corresponds to the solution of Ap which is

157

Total Times (2D flow)

Uhat

Op

Mu

M sclect

[J Refinement
B Migration

Figure 9.16: Fraction of the total time used to compute 1, solve p, solve u, select elements
for refinement and coarsening using higher order polynomials, adapt the mesh and partition
and migrate the mesh for all 15,000 time steps of a turbulent flow simulation.

computed using the Conjugate Gradient method with a Schwartz precondition [86] and an
overlap of 1. The solution of each subdomain (one per processor) is obtained with a LUP
decomposition and we used reverse Cuthill-McKee [43] ordering of the matrices to minimize
the filling. The solutions for Ap requires approximately 170 iterations on the largest meshes
(as opposed to more than 1000 iterations if a Jacobi preconditioner was used). On average,

the solution for Ap required 4.04 secs. at every time step with a maximum of 7.63 secs.

The computation for @ and the solution of @’ using linear basis functions are obtained
in 0.3 secs. and 0.18 secs. on average respectively. The solution to each of the systems
Hu = M and Hv = M% using a Conjugate Gradient solver with a Jacobi preconditioner
can be computed in parallel where the iterations of both solvers are interleaved. In this way

we reduce by half the number of messages and global sums computed in this phase.

The solution @’

using quadratic basis functions (which also include the creation of the
new systems of equations and the estimation of errors), the refinement and coarsening of
the selected elements and the partitioning and migration of the mesh using PNR require
an average of 14.74 secs., 0.1 secs. and 5.28 secs. every 50 time steps. Therefore, the
procedures to select, adapt and rebalance the work only take a small fraction (around 8%)
of the total time. This fraction can be modified by changing the frequency of the adaptation

steps.

158

Adaptive meshes are near optimal for the solution of steady and transient flows. One
important question we can ask is how large a static mesh must be in order to achieve the
same results presented in this section as the vortices move through the domain. We can
obtain a lower bound on the size of this mesh by storing the maximum number of leaf
elements that each adaptation tree creates in the course of the simulation. This is a lower
bound on the size of the static mesh because the tree might, for example, be refined in its
left branch and later in its right branch and still maintain the same maximum weight. In
this test, this lower bound is 384,639 elements which is 4.75 times larger than our average

mesh.

We can also obtain an upper bound on the size of the static mesh by computing the
maximum depth of each refinement tree and then use that number to estimate the number
of elements. The upper bound for this problem is 1,509,768 elements with is 18.63 times

larger than our average dynamic mesh.

Chapter 10

Future Work

We are happy to report that most of the original goals of PARED have been achieved. When
we started this project our ideal scenario included the solution of transient problems such as
the Navier-Stokes equation shown in Chapter 9. In these examples, the mesh is repeatedly
refined and coarsened in parallel and the different pieces of the mesh move between address
spaces as the system follows the regions with high errors. Therefore, we have shown that
PARED can also be used to solve complex problems besides our commonly used “corner”

example.

Nevertheless, more extensive testing and fine tuning of the system is needed. Our sys-
tem is flexible and can be used to solve other problems besides the ones already defined. On
the numerical side we can always take advantage of improved preconditioners and solvers
and more accurate error estimation. For problems like Navier-Stokes we need to use better
solvers. We have developed a parallel overlapping Schwarz preconditioner (which is used in
the examples) for the Conjugate Gradient method, but we still do not obtain the perfor-
mance that we expected. We have not implemented a coarse grid accelerator, which again
is basically a problem of interpolating solutions (in particular, when using higher order
approximations). We have also developed a parallel 3D Navier-Stokes solver but we have

not extensively tested it.

There is also some work remaining in the refinement, repartitioning and migration pro-
cedures. The longest edge refinement bisection assumes that there is only one longest edge
in each element, but what happens if more than two edges have the same longest length? In
triangular meshes, the resulting meshes might be different but maintain all the desired mesh
properties. In three dimensions, if two adjacent tetrahedra are bisected by different edges

of a common face, the faces of their children will not match. This problem has never been

159

160

discussed in the literature before and is particularly difficult to solve in parallel meshes.
We have developed an adaptation procedure that breaks ties based on relative “age” of the
edges and seems to guarantee surface conformality even on parallel meshes, but we are still

not able to assure that this procedure is correct.

Our system already includes classes to represent complex domains and boundaries which
are part of a mesh generator for unstructured meshes that we have implemented. The
refinement procedure can be improved to use these classes so that it inserts new points in
domain boundaries and not only at the midpoint of an element edge. Therefore the resulting
refined meshes can better fit the boundaries than the original coarser meshes. The major
difficulty of this approach is that we loose the theoretical guarantees regarding the smallest
angle of the refined meshes. There are several special cases that we must also consider that
are common in computational geometry (such as “does the new edge intersect another edge

or boundary?”)

The PNR heuristic uses several magic numbers (such as the a and § parameters that
specify the move and unbalance costs) that provide an indication of the relative costs and
benefits of small interprocessor boundaries, balanced subsets and low data movement. We
do not have an easy way to estimate this parameters based on the current mesh and the

machine architecture.

In our system it is easy to move pieces of the mesh between processors. When running in
an undedicated network of workstations it should be possible to add all the idle workstations
to our computation. When a user logs into the workstation, we should repartition the mesh
or move the work to another idle processor. All the functionality to use a dynamic set of

processors is already in our system but we have not extensively evaluated it.

Finally, it would also be highly desirable that the partitioning system and the commu-
nications library be developed into two separate libraries that can be used independently
of PARED. Both subsystems were originally developed independently and have well defined

interfaces with the rest of PARED.

This thesis extensively uses the concept of dynamic distributed data structures. For
example, the mesh is a container whose elements are distributed across many address spaces.
These distributions have very different costs and for performance reasons some of these
elements might be replicated in several processors. At runtime new elements are dynamically
created and destroyed requiring the computation of new distributions of the elements in the
distributed container. The most interesting question from a computer science point of view

is how to extend these ideas to other problem domains. Our system took advantage of the

161

fact that we have a restricted domain and a large knowledge of what are good mappings of
elements to processors. We would like to investigate is this knowledge can be automatically

obtained from the system.

Bibliography

[1]
2]
[3]

[10]

[11]

Programming parallel computers without programming hosts.
D. J. Acheson. Elementary Fluid Dynamics. Oxford University Press, 1990.

T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M. Snir. SP2
system architecture. IBM Systems Journal, 38:414-446, 1999.

J. E. Akin. Finite Elements for Analysis and Design. Academic Press, 1994.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. Lapack Users’ Guide.
SIAM, Philadelphia, 2nd. edition, 1995.

O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

I. Babuska and A. Aziz. On the angle condition in the Finite Element Method. Int. J.
Numer. Meth. Eng., 12, 1978.

R. E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data structures

for regular local mesh refinement. Scientific Computing, 1983.

S. T Barnard and H. Simon. A parallel implementation of multilevel recursive spectral
bisection for application to adaptive unstructured meshes. In Proceedings of the seventh

SIAM conference on Parallel Processing for Scientific Computing, 1995.

S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spec-
tral bisection for partitioning unstructured problems. In Proceedings of the 6th SIAM
conference on Parallel Processing for Scientific Computing, pages 711-718, 1993.

Dimitri P. Bertsekas and John N. Tsisiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice Hall, 1989.

162

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

163

Rupak Biswas and Leonid Oliker. Load balancing unstructured adaptive grids for CFD.
In SIAM 7th Symposium on Parallel and Scientific Computation, 1997.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel
programming system. Parallel Computing, 20:547-564, April 1994. (Also Argonne
National Laboratory Mathematics and Computer Science Division preprint P362-0493).

M. Cross C. Walshaw and M. G. Everett. Parallel dynamic graph partitioning for adap-
tive unstructured meshes. Journal of Parallel Processing and Distributed Computing,
47:102-108, 1997.

José G. Castanos. The dynamic adaptation of parallel mesh-based computation. Mas-

ter’s thesis, Brown University, May 1996.

José G. Castanos and John E. Savage. The dynamic adaptation of parallel mesh-based
computation. Technical Report CS-96-31, Department of Computer Science, Brown
University, October 1996.

José G. Castanios and John E. Savage. The dynamic adaptation of parallel mesh-based
computation. In STAM 7th Symposium on Parallel and Scientific Computation, 1997.

José G. Castanos and John E. Savage. Parallel refinement of unstructured meshes.
Technical Report 99-10, Brown University, 1999.

José G. Castanos and John E. Savage. Parallel refinement of unstructured meshes.
In TASTED International Conference on Parallel and Distributed Computing and Sys-
tems, 1999.

José G. Castanos and John E. Savage. Pared: a framework for the adaptive solu-
tion of PDEs. In Proceedings of the Eighth IEEE International Symposium on High
Performance Distributed Computing, 1999.

J. E. Castillo, editor. Mathematical Aspects of Numerical Grid Generation. STAM,
1991.

Michael A. Celia and William G. Gray. Numerical methods for Differential Equations.
Prentice Hall, 1992.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

164

Ohio Supercomputer Center:. MPI primer: Developing with LAM, 1996.

V. Chatzi and F. P. Preparata. Integer-coordinate crystalline meshes. In Proceedings
of the Swiss Conference on CAD/CAM, 1999.

V. Chatzi and F. P. Preparata. Introduction to integer-coordinate crystalline meshes.
Technical Report CS-99-01, Brown University, 1999.

D. E. Culler, R. M. Karp, D. Patterson, S. Sahay, E. E. Santos, K. E. Schauser,
R. Subramonian, and T. von Eicken. LogP: A practical model of parallel computation.
Comm. ACM, 39:78-85, 1996.

E. W. Dijkstra and C. S. Sholten. Termination detection for diffusing computations.
Inf. Proc. Lett., 11, 1980.

P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland. Parallel algorithms for dynam-
ically partitioning unstructured grids. In D. Bailey et al., editor, Parallel Processing
for Scientific Computing, pages 615—620. STAM, 1995.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of
FORTRAN basic linear algebra subprograms. ACM Transactions on Mathematical
Software, 14:1-17, 1988. get this.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale sparse matrix
package. Technical Report 112, Department of Computer Science, Yale University,
1977.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale sparse matrix
package. Technical Report 114, Department of Computer Science, Yale University,
1977.

C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network
partitions. In Proceedings of the 19th IEEE Design Automation Conference, 1992.

M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23:298-305, 1973.

M. Fiedler. A property of eigenvectors of non-negative symmetric matrices and its

application to graph theory. Czechoslovak Mathematical Journal, 25:619-633, 1975.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

165

Paul F. Fischer and Anthony T. Patera. Parallel spectral element solutions of eddy-
protmoter channel flow. Technical Report CRPC-90-13, Center for Research on Parallel
Computation, California Institute of Technology, 1990.

Message Passing Interface Forum:. MPI: A message passing interface standard, 1994.

Message Passing Interface Forum:. MPI-2: Extensions to the message-passing interface,
1997.

Chris Frazier, editor. OpenGL Reference Manual: The Official Reference Document to
OpenGL, Version 1.1. Addison-Wesley, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, John Vissides, and Grady Booch. Design
Patterns : Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

M. Garey, D. Hohnson, and L. Stockmeyer. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1:237-267, 1976.

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy
Sunderam. PVM: A Users’ Guide and Tutorial for Networked Parallel Computing.
MIT Press, 1994.

A. George. Computer implementation of the finite element method. Technical Report

STAN-CS-208, Stanford University, Department of Computer Science, 1971.

P. L. George. Automatic mesh generation: application to the finite element method.
Wiley and Sons, Ltd., 1991.

W. Gropp and E. Lusk. User’s Guide for MPICH: A portable Implementation of MPL
Argonne National Lab and Mississippi State University.

W. Gropp, E. Lusk, and A. Skellum. Using MPI: Portable parallel programming with
the Message Passing Interface. MIT Press, 1994.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. Tech-
nical Report SAND93-1301, Sandia National Laboratories, 1993.

B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Technical Report
SAND94-2692, Sandia National Laboratories, 1995.

M. R. Hestenes and E. L. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of research of the National Bureau of Standards, 49:409-436, 1952.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

166

Y.F. Hu and R.J. Blake. An optimal dynamic load balancing algorithm. Technical
Report Preprint DL-P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK,
1995.

Cameron Hughes, Thomas Hamilton, and Tracey Hughes. Object Oriented 1/0 Using
C++ Iostreams. John Wiley and Sons, 1995.

Claes Johnson. Numerical solution of partial differential equations by the finite element

method. Cambridge University Press, 1995.

Mark T. Jones and Paul E. Plassmann. Parallel algorithms for the adaptive refine-
ment and partitioning of unstructured meshes. In Proceedings of the Scalable High-

Performance Computing Conference, 1994.

Mark T. Jones and Paul E. Plassmann. Parallel algorithms for the adaptive refinement.
SIAM J. on Scientific Computing, 18:686-708, 1997.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. Technical Report CORR 95-035, University of Minnesota, Dept. of
Computer Science, 1995.

G. Karypis and V. Kumar. Parallel multilevel graph partitioning. Technical Report
CORR 95-036, University of Minnesota, Dept. of Computer Science, 1995.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal, 29:291-307, 1970.

C. Lanczos. Solution of systems of linear equations by minimized iterations. Journal
of research of the National Bureau of Standards, 49:33-53, 1952.

C. L. Lawson, R. J. Hanson, D. Lincaid, and F. T. Krogh. Basic linear algebra subpro-
grams for FORTRAN usage. ACM Transactions on Mathematical Software, 5:308-323,
1979. get this.

A. Liu and B. Joe. Relationship between tetrahedron shape measures. BIT, 34, 1994.

Anderes Lumsdaine, Jeffrey M. Squyres, and Brian C. McCandless. Object oriented
MPI (OOMPI): A C++ class library for mpi version 1.0. In Parallel Object-Oriented
methods and Applications Conference , POOMA’96, 1996.

Scott Meyers. Effective C++. Addison-Wesley, 1992.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

167

G. L. Miller, S.H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partition-
ing. In A. George, J. Gilbert, and J. Liu, editors, Sparse Matriz Computations:Graph
Theory Issues and Algorithms, pages 57-84. New York, 1993.

Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric approach
to graph separators. In Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, pages 538-547, 1991.

S. A. Orszag and L. C. Kells. Transition to turbulence in plane poiseuille flow and

plane couette flow. Journal of Fluid Mechanics, pages 159-205, 1996.

C. Ozturan, H.L. deCougny, M. S. Shephard, and J. E. Flaherty. Parallel adaptive mesh
refinement and redistribution on distributed memory computers. Technical Report

TR93-26, Department of Computer Science, Rensselaer Polytechnic Institute, 1993.

V.N. Parthasarathy, C.M. Graichen, and A.F. Hathaway. A comparison of tetrahedron
quality measures. Finite Elements in Analysis and Design, 15:255-261, 1993.

Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal of Matriz Analysis, 11(3):430-452, 1990.

Kenneth G. Powell, Philip L. Roe, and James Quirk. Adaptive-mesh algorithms for
computational fluid dynamics. In Algorithmic Trends in Computational Fluid Dynam-

ics. Springer-Verlag, 1991.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C. Cambridge University Press, 1992.

Maria Cecilia Rivara. Algorithms for refining triangular grids suitable for adaptive and
multigrid techniques. International Journal for Numerical Methods in Engineering,
20:745-756, 1984.

Maria Cecilia Rivara. Selective refinement/derefinement algorithms for sequences of
nested triangulations. International Journal for Numerical Methods in Engineering,
28:2889-2906, 1989.

Maria Cecilia Rivara. A 3-D refinement algorithm suitable for adaptive and multi-grid

techniques. Communications in Applied Numerical Methods, 8:281-290, 1992.

I. G. Rosenberg and F. Stenger. A lower bound on the angle of triangles constructed
by bisecting the longest side. Mathematics of Computation, 29(130):390-395, 1975.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

168

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1998.

Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company,
1996.

J. E. Savage and M. Wloka. Parallelism in graph partitioning. Journal of Parallel and
Distributed Computing, 13:257-272, 1991.

Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusing schemes for
repartitioning of adaptive meshes. Journal of Parallel Processing and Distributed Com-
puting, 47:109-124, 1997.

E. J. Schwabe, G. E. Blelloch, A. Feldmann, O. Ghattas, J. R. Gilbert, G. L. Miller,
D. R. O’Hallaron, J. R. Shewchuck, and S. Teng. A separator-based framework for
automated partitioning and mapping of parallel algorithms for numerical. In Proc.
1992 DAGS Symposium, 1992.

H. R. Schwarz. Finite Element Methods. Academic Press, 1988.

Granville Sewell. The Numerical Solution of Ordinary and Partial Differential Equa-

tions. Academic Press, 1988.

Xianneng Shen and David Klepacki. Message passing on the RS 6000 SP. AIXpert,
December 1997.

M. S. Shephard, J. E. Flaherty, H. L. DeCougny, C. Ozturan, C. L. Bottasso, and
M. Beall. Parallel automated adaptive procedures for unstructured meshes. In Parallel
Computing in CFD. AGARD, 1995.

Jonathan Richard Shewchuck. An introduction to the conjugate gradient method with-
out the agonizing pain. Technical Report CMU-CS-94-125, School of Computer Science,
Carnegie Mellon University, 1994.

H. D. Simon. Partitioning of unstructured meshes for parallel processing. Computing
Systems Eng., 1991.

Barry Smith, Peter Bjorstad, and William Gropp. Domain Decomposition: parallel
multilevel methods for elliptic partial differential equations. Cambride University Press,
1996.

[87]

[88]
[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

169
M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The complete
reference. MIT Press, 1996.
Bjarne Stroustrup. The C++ programming Language. Addison-Wesley, 1991.
Steve Teale. C++ I0Streams Handbook. Addison-Wesley, 1993.
J. F. Thompson, editor. Numerical Grid Generation. North-Holland, 1982.

J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation:
Foundations and Applications. North-Holland, 1985.

T. von Karman. Aerodynamics: selected topics in the light of their historical develop-

ment. Cornell University Press, 1954.

H. F. Walker. Implementation of the GMRES method using householder transforma-
tions. SIAM Journal of Scientific Computing, 9:152-163, 1988.

R. D. Williams. DIME: A user’s manual. Technical Report C3P 861, Caltech Concur-
rent Computation, 1990.

Roy Williams. Adaptive parallel meshes with complex geometry. Numerical Grid

Generation in Computational Fluid Dynamics and Related Fields, 1991.

O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. McGraw-Hill, 4th
edition, 1994.

