
Reinforcement Learning by Policy Search

Leonid Peshkin

B. S., Moscow Technical University (1993)
M.Sc., Weizmann Institute, Israel (1995)

Submitted to the Department of Computer Science in
partial ful�llment of the requirements for the degree of

Doctor of Philosophy, Computer Science

November 2001

c Leonid Peshkin, 2002. All rights reserved.

The author hereby grants to MIT permission to reproduce
and distribute publicly paper and electronic copies of this

thesis document in whole or in part.

Supervisor: Leslie P. Kaelbling
Professor of Computer Science, MIT

Reader: John N. Tsitsiklis
Professor of Computer Science, MIT

Reader: Thomas L. Dean
Professor of Computer Science, Brown University

Reinforcement Learning by Policy Search

by
Leonid Peshkin

One objective of arti�cial intelligence is to model the behavior of an
intelligent agent interacting with its environment. The environment's
transformations can be modeled as a Markov chain, whose state is par-
tially observable to the agent and a�ected by its actions; such processes
are known as partially observable Markov decision processes (pomdps).
While the environment's dynamics are assumed to obey certain rules,
the agent does not know them and must learn.

In this dissertation we focus on the agent's adaptation as captured by
the reinforcement learning framework. This means learning a policy|
a mapping of observations into actions|based on feedback from the
environment. The learning can be viewed as browsing a set of policies
while evaluating them by trial through interaction with the environ-
ment.

The set of policies is constrained by the architecture of the agent's
controller. POMDPs require a controller to have a memory. We in-
vestigate controllers with memory, including controllers with external
memory, �nite state controllers and distributed controllers for multi-
agent systems. For these various controllers we work out the details
of the algorithms which learn by ascending the gradient of expected
cumulative reinforcement.

Building on statistical learning theory and experiment design theory,
a policy evaluation algorithm is developed for the case of experience
re-use. We address the question of su�cient experience for uniform
convergence of policy evaluation and obtain sample complexity bounds
for various estimators. Finally, we demonstrate the performance of the
proposed algorithms on several domains, the most complex of which is
simulated adaptive packet routing in a telecommunication network.

Keywords: POMDP, policy search, gradient methods, reinforcement
learning, adaptive systems, stochastic control, adaptive behavior.

Contents

Introduction 1

1 Reinforcement Learning 7
1.1 Markov Decision Processes 7
1.2 Solving Markov Decision Processes 13
1.3 Optimization in Policy Space 17
1.4 Related Gradient Methods 19

2 Policies with Memory 21
2.1 Gradient Ascent for Policy Search 21
2.2 gaps with a Lookup Table 24
2.3 Controller with External Memory 27
2.4 Experiments with Stigmergic Controllers 29
2.5 Finite State Controllers 33
2.6 gaps with �nite state controllers 36
2.7 Empirical Study of fscs 38

3 Policy Search in Multiagent Environments 44
3.1 Cooperative Identical Payo� Games 44
3.2 gaps in Multiagent Environments 47
3.3 Relating Local Optima in Policy Space to Nash Equilibria 50
3.4 Experiments with Cooperative Games 52
3.5 Related Work . 59
3.6 Discussion . 60

4 Adaptive Routing 61
4.1 Description of Routing Domain 61
4.2 Algorithmic Details . 63
4.3 Empirical Results . 65

v

4.4 Related Work . 68
4.5 Discussion . 71

5 Policy Evaluation with Data Reuse 72
5.1 Introduction . 72
5.2 Likelihood Ratio Estimation 75
5.3 Policy Evaluation Algorithm 81
5.4 Empirical Studies of Likelihood Ratios for Exploration . 86
5.5 Discussion . 91

6 Sample Complexity of Policy Evaluation 93
6.1 Introduction . 93
6.2 Bounds for is Estimator 95
6.3 Bounds for wis Estimator 98
6.4 Comparison to vc Bound 101
6.5 Bounding the Likelihood Ratio 102
6.6 Discussion and Open Problems 105

7 Conclusions 108

List of Figures . 113
List of Tables . 115
Abstract in Russian . 117
Abstract in Italian . 119
Bibliography . 121
Notation . 133
Index . 135

Preface

This dissertation presents work started at Brown University and com-
pleted at the Arti�cial Intelligence Laboratory, MIT over the course
of several years. A signi�cant part of the research presented in this
dissertation has been previously published elsewhere.

The work on learning with memory, presented in Chapter 2 con-
stitutes common work with Nicolas Meuleau and signi�cantly overlaps
with presentation in Proceedings of the Sixteenth International Con-
ference on Machine Learning [122] and in Proceedings of the Fifteenth
Conference on Uncertainty in Arti�cial Intelligence [104].

A material on cooperation in games from Chapter 3 constitutes
common work with Nicolas Meuleau, Kee-Eung Kim and Leslie Kael-
bling and was published in Proceedings of the Sixteenth Conference on
Uncertainty in Arti�cial Intelligence [123].

Finally, the results in Chapters 6 and 5 appear in several publica-
tions. In particular in the joint work with Sayan Mukherjee, published
in the proceedings of the Fourteenth Annual Conference on Compu-
tational Learning Theory [124]; joint work with Nicolas Meuleau and
Kee-Eung Kim from the MIT technical report [103]; joint work with
Christian Shelton [126] to be published in the proceedings of the Nine-
teenth International Conference on Machine Learning.

This is a large document of 135 pages which means I might have to
make corrections even after it has been published. I will maintain the
errata list and provide an updated copy of this document on my cur-
rent internet page. The best way to locate it is to query your favorite
Internet search engine with \Leon Peshkin thesis Reinforcement Learn-
ing Policy Search". Please make sure you are reading the most recent
copy. Currently it is at http://www.ai.mit.edu/~pesha/disser.html

vii

viii

Acknowledgments could have taken as much space and time as the
rest of the document. Without some people, this entire work would
have not been possible, while others gave a brief but important sup-
port and encouragement. It would be di�cult to describe everyone's
contribution, to prioritize or to categorize people into mentors, com-
rades, inuences and inspirations. Perhaps instead of the exercise in
self-decomposition into elementary inuenceicals I can contribute to a
genre of acknowledgments by actually naming everyone to whom I am
grateful.

Dear Justin Boyan, Misha & Natalia Chechelnitsky, Abram Cherkis,
Tom Dean, Ikka Delamer, Abram & Sofa Dorfman, Max Eigel, John
Eng-Wong, Theos Eugeniou, Mikhail Gelfand, Sergei & Galya Gelfand,
Stuart Geman, Ambarish Ghosh, Matteo Golfarelli, Polina Golland,
Lisa Gordon, Vladimir Gurevich, Samuel Heath, Susan Howe, Yuri
Ivanov, Grigorii Kabatyansky, Erin Khaiser, Eo-Jean Kim, Kee-Eung
Kim, Max Kovalenko, Serg & Rada Landar, Sonia Leach, Geesi Leier,
Eugene Levin, Serg Levitin, Michael Littman, Arnaldo Maccarone,
Lada Mamedova, Nicolas & Talia Meuleau, Leonid et al. Mirnys,
Louise Mondon, Sayan Mukherjee, Luis Ortiz, Donald et al. Peshkins,
Avi Pfe�er, Claude & Henry Presset, Yuri Pryadkin, Ida Rawnitzky,
Boris & Tonia Reizis, Luba & Michael Roitman, Smil Ruhman, Vir-
ginia Savova, Michael Schwarz, Ehud Shapiro, Christian Shelton, Bill
Smart, Rich Sutton, Mike Szydlo, John Tsitsiklis, Shimon Ullman,
Paulina Varshavskaia, Peter Wegner, Michael Yudin: I remember and
value what you have done for me.

I feel very fortunate to have worked with Leslie Kaelbling. She gen-
erously devoted knowledge and e�orts when I required attention, yet
patiently allowed me to pursue various interests or to wonder around
for motivation. She will always be my role model for her curiosity and
discipline, jolliness and seriousness, courage and compassion, princi-
pality and liberalism.

I would like to acknowledge that my parents, Miron and Claudia,
have heroically accepted my choice to be away from the family in or-
der to continue my education; and gave me all their love and support
throughout years of separation. Finally, I would like to dedicate this
dissertation to the memory of my grandparents: Rebeka Levintal from
Sabile, Latvia; Aaron Peshkin from Slonim, Belarus; Boruh Logwinsky
and Sarah Kazadoi from Uman, Ukraine.

Introduction

\The world we live in today is much more a man-made or arti�cial
world than it is a natural world" [154]. In such a world there are
many systems and environments, both real and virtual, which can be
very well described by formal models. This creates an opportunity for
developing a \synthetic intelligence"|arti�cial systems which cohabit
these environments with human beings and carry out some useful func-
tion. In this work we address some aspects of this development in
the framework of reinforcement learning [167]. Reinforcement learning
is learning what to do|how to map sensations to actions|from feed-
back. In other words, how to behave so as to maximize a numerical
reward signal (see �gure 1). Unlike in other forms of machine learning,
the learner is not told which actions to take, but rather must discover
which actions yield the most reward by trying them. In some challeng-
ing cases, actions may a�ect not only the immediate reward, but also
the next sensation and, through that, all subsequent rewards. These
two characteristics|search by trial-and-error and delayed reward|are
the two most important distinguishing features of reinforcement learn-
ing.

Reinforcement learning is not de�ned by specifying some particular
method of learning or a set of learning algorithms. Rather, any algo-
rithm that is suited to solve a characteristic learning problem is con-
sidered a reinforcement learning algorithm. A full speci�cation of the
reinforcement learning problem in terms of optimal control of Markov
decision processes is given in Chapter 1, but the basic idea is to cap-
ture the most important aspects of a learning agent interacting with its
environment to achieve a goal. Clearly such an agent must be able to
sense the state of the environment to some extent and to take actions
that a�ect that state. The agent must also have a goal or goals relating

1

2

to the state of the environment.
A variety of decision making and stochastic control challenges can

be formulated and tackled in the context of rl. Among the successes
of rl are the self-improving backgammon player [173]; a scheduler ad-
justing performance of multi-elevator complex [40, 41]; a space-shuttle
scheduling algorithm [191] and channel allocation and control for cellu-
lar telephone systems [156]. In our opinion the most impressive appli-
cation of rl algorithms to robotics is due to Dr. Hajime Kimura et al.
for mechanical systems learning to crawl and walk [74, 75].

Fig. 1: The paradigm of a learning system.

Decision making is
a very important aspect
of intelligence. Under-
standing how to build
decision making algo-
rithms would not only
enable new technologies,
but bene�t cognitive the-
ories of natural intelli-
gence. It is to a large
extent an open question
whether any reinforce-
ment learning algorithm
constitutes a biologically
plausible way of learn-

ing. There are two separate issues here. One is to establish the principal
possibility for a reinforcement learning algorithm to be implemented
in biological hardware|in a system assembled from living cells (for
discussion of related issues see [140]). Another is to identify this hard-
ware in a living organism as well as the details of the implementation of
the algorithm. The actor-critic class of algorithms [80, 79] is examined
in this light, in particular by Dayan and Abbott [44](Chapter 9) and
Dayan et al. [71, 106, 150]. Policy search algorithms considered in this
dissertation also lend themselves to arguments of biological plausibility
(see, e.g., [11, 125]).

The problem formulation itself is however very intuitive and relates
closely to everyday practice of acting and making decisions under un-
certainty. Very often there is feedback available which corresponds to
how well one acts, while generally it is expected from the individual to
perform poorly at initial stages, then learn from experience assuming

3

that there are some regularities and statistical structure to the task.
There is rarely time to examine all possible choices and outcomes and
decide upon a sequence of actions|a plan. Commonly in stochastic
environments human decision makers formulate a policy|a set of im-
mediate initial responses to the circumstances.

It is important to get one common confusion out of the way. The
general setup of the decision making under uncertainty is very similar
to the one investigated for decades in the �eld of Operations Research.
Indeed, reinforcement learning has grown out of this �eld and builds
upon its techniques. The essential di�erence is that in reinforcement
learning no knowledge of the environment's organization and dynamics
is assumed, which turns a planning into learning problem. Littman's
dissertation [88] provides a good in-depth description of relations be-
tween or and rl. Naturally, what could already be a di�cult planning
problem, becomes even harder when decision making is made on-line
without the environment's model at hand.

In this work we put forward the thesis that the general task of
reinforcement learning stated in a traditional way seems to be unrea-
sonably ambitious for complex domains. Di�erent ways of leveraging
information about the problem at hand are considered. We investigate
general ways of breaking the task of designing a controller down to
more feasible sub-tasks which are solved independently. We propose to
consider both taking advantage of past experience by reusing parts of
other systems, and facilitating the learning phase by employing a bias
in initial con�guration.

In reinforcement learning, the main challenges often consist in the
need to operate under conditions of incomplete information about the
environment. One case of incomplete information is when the agent
does not observe all aspects of the environment, or observes some trans-
formation of the environment state, which makes things look ambigu-
ous. This is the case of so-called partial observability. Another case of
incomplete information arises when parts of the system are controlled
independently and therefore one part is not necessarily aware of other
parts' decision or sensations. This is the case of distributed control.
We present learning algorithms for these cases.

One set of reinforcement-learning techniques that have been applied
to learning both in cooperative games and under partial observability
conditions in single-agent systems are value-based. They rely on es-
timating a value or utility of occupying particular states of the envi-

4

ronment or taking particular actions in response to being in a state.
Unfortunately, application of these techniques is only justi�ed when the
environment state is completely observable to the agents and therefore
the notion of cumulative reinforcement called value makes sense.

Policy search methods are a reasonable alternative to value-based
methods for the case of partially observable environments. The general
idea behind these methods is to search for optima in space of all possible
policies (behaviors) by directly examining di�erent policy parameter-
izations, bypassing the assignment of the value. There is no general
way to solve this global optimization problem, so our only option is to
explore di�erent approaches to �nding local optima.

Facing the dilemma of having to solve hard optimization in a
\global" sense, while being capable rather of doing optimization in
a \local" sense both spatially and temporally is paralleled by human
behavior and is present in various engineering considerations. Genetic
algorithms and genetic programming constitute an example of direct
policy search methods, but are completely outside of the scope of re-
search presented here. In this work we focus on gradient-based methods
for �nding local optima. In brief, we perform a stochastic gradient as-
cent in the policy-parameter space, by moving along the direction of the
steepest ascent of the \goodness" function, which is being estimated
through experience. This principle developed in a variety of controller
architectures turns out to be surprisingly successful. Ultimately, each
learning algorithm presented in this dissertation consists of evaluating
the current course of actions by trial and error, assigning some credit
to every part of the controller's mechanism for what was experienced,
making an adjustment and reevaluating. This natural learning proce-
dure turns out to have a rigorous mathematical justi�cation.

5

Organization

The rest of this text is organized as follows. Chapter 1 presents the
model of sequential decision making and establishes the notation. A
brief introduction to the �eld of reinforcement learning consists of the
de�nitions of Markov decision processes with complete and partial ob-
servability and other concepts necessary for the setup of reinforcement
learning. We consider the notion of optimality and ways of learning
optimal decision strategies, which depend on the concept of value at-
tributed to a particular episode. Methods applicable for the completely
observable case turn out not to extend well for the partially observable
setting. In this setting, a learning problem could be formulated and
solved as a stochastic optimization problem or a policy search problem.
Policy search methods are the focus of this dissertation. The chapter
concludes with an overview of policy search methods in general and
related work on gradient methods in policy search in particular.

In order for an agent to perform well in partially observable do-
mains, it is usually necessary for actions to depend on the history of
observations. Therefore, optimal control requires the use of memory
to store some information about the past. Chapter 2 describes how
to build a controller with memory. It begins by developing in detail
the gradient ascent algorithm for the case of memoryless policies. This
simple controller is combined with memory in various ways. First a
stigmergic approach is explored, in which the agent's actions include
the ability to set and clear bits in an external memory, and the exter-
nal memory is included as part of the input to the agent. Then, the
algorithm for the case of �nite state controllers is developed, in which
memory is a part of the controller. The advantages of both architec-
tures are illustrated and performance is contrasted with other existing
approaches on empirical results for several domains.

At this point the discussion turns to a multi-agent setting. Chap-
ter 3 examines the extension of previously introduced gradient-based
algorithms to learning in cooperative games. Cooperative games are
those in which all agents share the same payo� structure. For such a
setting, there is a close correspondence between learning in a centrally
controlled distributed system and in a system where components are
controlled separately. A resulting policy learned by the distributed
policy-search method for cooperative games is analyzed from the stand-
point of both local optimum and Nash equilibrium|game-theoretic

6

notions of optimality for strategies. The e�ectiveness of distributed
learning is demonstrated empirically in a small, partially observable
simulated soccer domain.

In chapter 4 we validate the rl algorithm developed earlier in a
complex domain of network routing. Successful telecommunications
require e�cient resource allocation which can be achieved by develop-
ing adaptive control policies. Reinforcement learning presents a natural
framework for the development of such policies by trial and error in the
process of interaction with the environment. E�ective network routing
means selecting the optimal communication paths. It can be modeled
as a multi-agent rl problem and solved using the distributed gradient
ascent algorithm. Performance of this method is compared to that of
other algorithms widely accepted in the �eld. Conditions in which our
method is superior are presented.

Stochastic optimization algorithms used in reinforcement learning
rely on estimates of the value of a policy. Typically, the value of a
policy is estimated from results of simulating that very policy in the
environment. This approach requires a large amount of simulation
as di�erent points in the policy space are considered. In chapter 5,
we develop value estimators that use data gathered when using one
policy to estimate the value of using another policy, for some domains
resulting in much more data-e�cient algorithms.

Chapter 6 addresses the question of accumulating su�cient experi-
ence for uniform convergence of policy evaluation as related to various
parameters of environment and controller. We derive sample complex-
ity bounds analogous to these used in statistical learning theory for
the case of supervised learning. Finally, chapter 7 summarizes the
work presented in this dissertation. It draws conclusions, outlines con-
tributions and suggests several directions for further development of
this research.

Chapter 1

Reinforcement Learning

Summary This chapter presents the model of sequential decision
making and establishes the notation. A brief introduction to the �eld
of reinforcement learning consists of the de�nitions of Markov decision
processes with complete and partial observability and other concepts
necessary for the setup of reinforcement learning. We consider the
notion of optimality and ways of learning optimal decision strategies,
which depend on the concept of value attributed to a particular episode.
Methods applicable for the completely observable case turn out not to
extend well for the partially observable setting. In this setting, a learn-
ing problem could be formulated and solved as a stochastic optimiza-
tion problem or a policy search problem. Policy search methods are the
focus of this dissertation. The chapter concludes with an overview of
policy search methods in general and related work on gradient methods
in policy search in particular.

1.1 Markov Decision Processes

Reinforcement learning is the process of learning to behave optimally
with respect to some scalar feedback value over a period of time. The
learning system does not get to know the correct behavior, or the
true model of the environment it interacts with. Once given the sen-
sation of the environment state s(t) at time t as an input (see �g-
ure 1.1), the agent chooses the action a(t) according to some rule,

7

CHAPTER 1. REINFORCEMENT LEARNING 8

T

a

s

r

B
ο

µ

environment

ρ

Fig. 1.1: The architecture of a learning system.

often called a policy,
denoted µ. This ac-
tion constitutes the out-
put. The e�ective-
ness of the action taken
and its e�ect on the
environment is commu-
nicated to the agent
through a scalar value
r(t), called the rein-
forcement signal, some-
times described as re-
ward, cost or feedback.

The environment un-
dergoes some transfor-
mation described by the
process T and changes
current state s(t) into
the new state s(t+1). A
few important assump-

tions about the environment are made. In particular, the so-called
Markov property is assumed: given the most recent events, the next
state is independent of the history. Usually we assume a non-
deterministic environment, which means that taking the same action
in the same state could lead to a di�erent next state and generate dif-
ferent feedback signal. Also, mostly for the purpose of the theoretical
analysis of learning algorithms, we assume that the environment is sta-
tionary: i.e., that the probabilities of the next state and reinforcement,
given the current state and action, do not change with time.

MDP The class of problems described above can be modeled as
Markov decision processes (mdps). An mdp is a 4-tuple 〈S,A, T , ρ〉,
where:

� S is the set of states;

� A is the set of actions;

� T :S×A→P(S) is a mapping from states of the environment and

CHAPTER 1. REINFORCEMENT LEARNING 9

actions of the agent to probability distributions1 over states of
the environment; and

� ρ :S×A → R is the payo� function2, mapping states of the en-
vironment and actions of the agent to immediate reward. We
assume that the reward ρ(s, a) is bounded by some �xed value
rmax for any s and a.

POMDP The more complex case is when the agent is no longer
able to reliably determine which state of the mdp it is currently in.
This situation is sometimes called perceptual aliasing, since several
states of the environment induce the same observation. The process of

a (t)

s(t+1)s(t)

o (t)

r(t+1)

Fig. 1.2: An inuence diagram for
an agent in a pomdp.

generating an observation is mod-
eled by an observation function
B(s(t)). The resulting model is a
partially observable Markov deci-
sion process (pomdp). In a pomdp,
at each time step (see Figure 1.2):
the agent observes o(t) correspond-
ing to B(s(t)) and performs an ac-
tion a(t) according to its strategy,
inducing a state transition of the en-
vironment; then receives the reward
r(t). Obviously, an mdp is a trivial
case of a pomdp with the degener-
ate observation function.

Formally, a pomdp is de�ned as a tuple 〈S, O,A, B, T , ρ〉 where:

� S is the set of states;

� O is the set of observations;

� A is the set of actions;

� B is the observation function B : S → P(O);

� T :S×A→P(S) is a mapping from states of the environment and
actions of the agent to probability distributions over states of the
environment;

1Let P(
) denote the set of probability distributions de�ned on some space
.
2it is sometimes called reinforcement or feedback

CHAPTER 1. REINFORCEMENT LEARNING 10

� ρ :S×A → R is the payo� function, mapping states of the envi-
ronment and actions of the agent to immediate reward.

Experience A cycle of interaction between the agent and the en-
vironment results in a sequence of events. These events, which are
observable by an agent, constitute its experience. We denote by Ht

the set of all possible experiences of length t:

Ht = {〈o(1), a(1), r(1), . . . , o(t), a(t), r(t), o(t + 1)〉} ,

where o(t) ∈ O is the observation of the agent at time t; a(t) ∈ A is the
action the agent has chosen to take at time t; and r(t) ∈ ρ is the reward
received by the agent at time t. In order to specify that some element
is a part of the experience h at time τ, we write, for example, r(τ, h)

and a(τ, h) for the τth reward and action in the experience h. We will
also use hτ to denote a pre�x of the sequence h ∈ Ht truncated at time
τ≤ t: hτ def

= 〈o(1), a(1), r(1), . . . , o(τ), a(τ), r(τ), o(τ + 1)〉. Sometimes
we would want to discuss a set of events which includes but is not
limited to the experience, e.g. actual state of the environment s(t).
This augmented sequence of events will be called a history.

Return An experience h:〈r(1) . . . r(i) . . .〉 includes several immediate
rewards, that can be combined to form a return R(h). There are dif-
ferent ways to quantify the optimality of the agent's behavior in the
underlying Markov decision process (S,A, T , ρ). We present three pos-
sibilities here, and will mostly concentrate on the last one. Also, we
focus on returns that may be computed (or approximated) using the
�rst N steps, and are bounded in absolute value by Rmax.

The simplest �nite horizon criterion takes into account the ex-
pected reward for the next N steps to form the undiscounted �nite
horizon return: R(h) =

∑N
t=0 r(t, h). In this case Rmax = Trmax. This

criterion often is not appropriate, since in most cases an agent does not
know the length of its life.

The average reward criterion considers the average reward over an
in�nite life span to form the undiscounted in�nite horizon return:

R(h) = lim
N!1 1

T

N∑

t=0

r(t, h) .

CHAPTER 1. REINFORCEMENT LEARNING 11

One problem with this criterion is that an agent's extremely ine�ective
early behavior could be overlooked due to the averaging with the long-
run reward.

In the in�nite horizon discounted reward criterion, behavior is
optimized in the following way [65, 133]: the aim is to maximize the
long-run reward, but rewards that are received in the future are geo-
metrically discounted by the discount factor γ ∈ (0, 1):

R(h) =

1∑
t=0

γtr(t, h) .

The discount factor γ could be interpreted as the probability of ex-
isting for another step, or as an ination rate. It is quite intuitive to
value a payo� received a year from now less than an immediate pay-
o� even if they amount to the same quantity. In this case we can
approximate R using the �rst Tε = logγ

ε
Rmax

immediate rewards. Us-
ing Tε steps we can approximate R within ε since Rmax = rmax

1−γ and∑1
t=0 γtr(t) −

∑Tε

t=0 γtr(t) < ε. It is important that we are able to ap-
proximate the return in T steps, since the length of the horizon comes
up as an important parameter in our calculations.

In some cases reward signal is assigned only at the end of experience.
For example robot could be wondering around the maze receiving a
reward only if the exit is found. These cases are usually harder to
solve, but easier to analyze. We call this kind of situation an episodic
problem.

Policies A policy is a rule specifying the behaviour of an agent. We
identify a policy µ by a vector of parameters θ. Policy class Θ is
some constrained set of policies parametrized by θ ∈ Θ. Sometimes,
we call a policy with parameterization θ simply a \policy θ". Generally
speaking, in a pomdp, a policy µ : H×A → [0, 1] is a rule specifying the
probability of performing the action at each time step t as a function
of the whole previous experience ht, i.e., the complete sequence of
observation-action pairs since time 0. This kind of policy is only of
theoretical interest and is not feasible, since the number of possible
experiences grows exponentially with time.

We will consider two simpli�cations. The �rst is a reactive pol-
icy (rp), sometimes called state-free or memoryless, which chooses
an action based only on the last observation. Reactive policies can be

CHAPTER 1. REINFORCEMENT LEARNING 12

deterministic or stochastic, mapping the last observation into an ac-
tion or a probability distribution over actions, respectively. Formally,
stochastic policy µ(a, o, θ) speci�es a probability of taking an action
a, while deterministic reactive policy µd(s, θ) actually speci�es which
action to take. The second is to use a memory, or an internal state
of the controller to remember some crucial features of previous experi-
ence, or perhaps to simply remember a few previous observations and
actions. Such a policy takes into account both the new observation
and the internal state of the controller when choosing an action. Most
of this work is concerned with stochastic policies. It is assumed that
for any stochastic policy the probability of choosing any action a is
bounded away from zero: 0 ≤ c ≤ Pr(a|h, θ), for any h ∈ H and θ ∈ Θ.

Value Any policy θ ∈ Θ de�nes a conditional distribution Pr(h|θ)

on the set of all experiences H. The value of policy θ is the expected
return according to the probability distribution induced by this policy
on the space of experiences:

V(θ) = Eθ [R(h)] =
∑

h∈H

(
R(h) Pr(h|θ)

)
, (1.1)

where for brevity we introduce the notation Eθ for EPr(h|θ). We assume
that the policy value is bounded by Vmax. That means of course that
returns are also bounded by Vmax since value is a weighted sum of
returns. Another implicit assumption here is that there is some given
starting state of the environment or alternatively a distribution over
initial states which is factored into the expectation. Sometimes it makes
sense to de�ne a value of some policy θ at a given state s, denoted
V(θ, s). This value corresponds to the return accumulated if the agent
starts in state s and executes the policy θ.

Optimality It is the agent's objective to �nd a behavior which op-
timizes some long-run measure of feedback. Formally, it means to �nd
a policy θ∗ with optimal value: θ∗ = argmaxθV(θ). It is a remarkable
property of mdps [133] that there exists an optimal deterministic re-
active policy θ∗ : S → A. Unfortunately, this kind of policy cannot be
used in the partially observable framework, because of the uncertainty
in the current state of the process. The optimal deterministic policy in
pomdps might have to be represented using an in�nitely large internal
state.

CHAPTER 1. REINFORCEMENT LEARNING 13

1.2 Solving Markov Decision Processes

Bellman equation It is important for the development of formalism
to �rst consider the case of �nding the optimal policy for an mdp in
the case when the agent hypothetically knows the model of the en-
vironment, which means the knowledge of the reward and transition
functions ρ and T . If the agent starts in some state s and executes
the optimal policy θ∗, the in�nite discounted sum of collected reward
V(s, θ∗) = maxθ Eθ [

∑1
t=0 γtr(t)], which we call the optimal value of

the state s. It can be shown [133] that this function is the unique
solution to the Bellman equation:

V(s, θ∗) = max
a∈A

(
ρ(s, a) + γ

∑

s ′∈S

T(s, a, s ′)V(s ′, θ∗)

)
, ∀s ∈ S. (1.2)

The intuition behind this equation is that the optimal value of the
state is the sum of the immediate reward for the optimal action in this
state and the expected discounted value of the next step. Note that if
the agent was given the optimal value function, it would retrieve the
optimal policy µd(s, θ∗) by:

µd(s, θ∗)=arg max
a∈A

(
ρ(s, a)+γ

∑

s ′∈S

T(s, a, s ′)V(s ′, θ∗)

)
, ∀s ∈ S. (1.3)

However, the model of the environment is completely unknown to the
agent in most problems considered in reinforcement learning. There
are two general directions in �nding the optimal policy without the
model: learning a model and using it to derive an optimal policy
(model-based); and learning an optimal policy without learning a
model (model-free).

Q-learning Q-learning by Watkins [183, 184] is an example of a
model-free algorithm, which is very popular in machine learning. Anal-
ogous to the optimal state value, we de�ne the optimal state-action
value Q∗(s, a) as expected discounted reinforcement received by start-
ing at state s and taking an optimal action a, then continuing according
to the optimal policy µd(s, θ∗). The optimal state-action value is a so-
lution to the following equation, which is a restatement of the original
Bellman equation:

Q∗(s, a)=ρ(s, a) + γ
∑

s ′∈S

T(s, a, s ′)max
a ′∈A

Q∗(s ′, a ′),∀a∈A, s∈S. (1.4)

CHAPTER 1. REINFORCEMENT LEARNING 14

Note that V(s, θ∗) = maxa∈A Q∗(s, a) and therefore an optimal
policy is given by µd(s, θ∗) = arg maxa∈A Q∗(s, a), so we can compute
µd(s, θ∗) from Q∗ without knowing ρ and T .

The basic idea of the algorithms is that we maintain the set of
value estimates for state-action pairs, which represent the forecast of
cumulative reinforcement the agent would get starting at a given state
by performing a given action, and following a particular policy from
there on. These values guide the behavior, providing an opportunity
to do a feasible local optimization at every step.

Given an experience in the world, characterized by starting state
s, action a, reward r, resulting state s ′ and next action a ′, the state-
action pair update rule for Q-learning is

Q(s, a) ← Q(s, a) + α

[
r + γ max

a ′∈A
Q(s ′, a ′) − Q(s, a)

]
. (1.5)

While learning, any policy can be executed, as long as on an in-
�nitely long run each action is guaranteed to be taken in�nitely often
at each state, and the learning rate α is decreased appropriately. Un-
der those conditions the estimates Q(s, a) will converge to the optimal
values Q∗(s, a) with probability one [175, 183].

SARSA The sarsa algorithm3 di�ers from the classical Q-learning
algorithm [183] in that, rather than using the maximum Q-value from
the resulting state as an estimate of that state's value, it uses the Q-
value of the resulting state and the action that was actually chosen in
that state. Thus, the values learned are sensitive to the policy being
executed.

Given an experience in the world, characterized by starting state
s, action a, reward r, resulting state s ′ and next action a ′, the state-
action pair update rule for sarsa(0) is

Q(s, a) ← Q(s, a) + α [r + γQ(s ′, a ′) − Q(s, a)] . (1.6)

In truly Markov domains, Q-learning is usually the algorithm of
choice. In fact, Q-learning (ql) can be shown to fail to converge on
very simple non-Markov domains [158]. Policy-sensitivity is often seen
as a liability, because it makes issues of exploration more complicated.

3sarsa is an on-policy temporal-di�erence control learning algorithm [167].

CHAPTER 1. REINFORCEMENT LEARNING 15

However, in non-Markov domains, policy-sensitivity is actually an as-
set. Because observations do not uniquely correspond to underlying
states, the value of a policy depends on the distribution of underlying
states given a particular observation. But this distribution generally
depends on the policy. So, the value of a state, given a policy, can only
be evaluated while executing that policy. Note that when sarsa is
used in a non-Markovian environment, the symbols s and s ′ in equa-
tion (1.6) represent sensations, which usually can correspond to several
states.

The sarsa algorithm can be augmented by an eligibility trace, to
yield the so-called sarsa(λ) algorithm (see Sutton and Barto [167] for
details). sarsa(λ) describes a class of algorithms, where appropriate
choice of λ is made depending on the problem. With the parameter λ

set to 0, sarsa(λ) becomes regular sarsa. With λ set to 1, it becomes
a pure Monte-Carlo method, in which, at the end of every trial, each
state-action pair is adjusted toward the cumulative reward received on
this trial after the state-action pair occurred. Pure Monte-Carlo algo-
rithm makes no attempt to satisfy Bellman equation relating the values
of subsequent states. Since it is often impossible to satisfy the Bellman
equation in partially observable domains, Monte-Carlo is a reasonable
choice. Generally, sarsa(λ) with a large value of λ seems to be the most
appropriate among the conventional reinforcement-learning algorithms
for solving partially observable problems.

Learning in pomdps There are many approaches to learning to be-
have in partially observable domains. They fall roughly into three
classes: optimal memoryless, �nite memory, and model-based.

The �rst strategy is to search for the best possible memoryless pol-
icy. In many partially observable domains, memoryless policies can
actually perform fairly well. Basic reinforcement-learning techniques,
such as Q-learning [184], often perform poorly in partially observable
domains, due to a very strong Markov assumption. Littman showed [86]
that �nding the optimal memoryless policy is NP-hard. However,
Loch and Singh [89] e�ectively demonstrated that techniques, such
as sarsa(λ), that are more oriented toward optimizing total reward,
rather than Bellman residual, often perform very well. In addition,
Jaakkola, Jordan, and Singh [67] have developed an algorithm for �nd-
ing stochastic memoryless policies, which can perform signi�cantly bet-
ter than deterministic ones [157].

CHAPTER 1. REINFORCEMENT LEARNING 16

One class of �nite memory methods are the �nite-horizon memory
methods, which can choose actions based on a �nite window of previous
observations. For many problems this can be quite e�ective [98, 136].
More generally, we may use a �nite-size memory, which can possibly
be in�nite-horizon (the systems remembers only a �nite number of
events, but these events can be arbitrarily far in the past). Wiering
and Schmidhuber [185] proposed such an approach, involving learning
a policy that is a �nite sequence of memoryless policies.

Another class of approaches assumes complete knowledge of the un-
derlying process, modeled as a pomdp. Given a model, it is possible
to attempt optimal solution [68], or to search for approximations in a
variety of ways [58, 59, 60, 104]. The classical|Bayesian|approach
is based on updating the distribution of probabilities for the environ-
ment to be in a particular state (or the so-called belief) at each time
step, using the most recent observations [33, 60, 32, 68]. The prob-
lem is reformulated as a new mdp using belief-states instead of the
original states. Unfortunately, the Bayesian calculation is highly in-
tractable as it searches the continuous space of beliefs and considers
multitude of possible sequence of observations. These methods can, in
principle, be coupled with techniques, such as variations of the Baum-
Welch algorithm [134, 135] for learning the model, to yield model-based
reinforcement-learning systems.

To conclude, there are many e�cient algorithms for the case when
the agent has perfect information about the environment. An optimal
policy is described by mapping the last observation into an action and
can be computed in polynomial time in the size of the state and action
spaces and the e�ective time horizon [18]. However in many cases
the environment state is described by a vector of several variables,
which makes the environment state size exponential in the number of
variables. Also, under more realistic assumptions, when a model of
environment dynamics is unknown and the environment's state is not
observable, many problems arise. The optimal policy could potentially
depend on the whole history of interactions and for the undiscounted
�nite horizon case �nding it is pspace-complete [119].

CHAPTER 1. REINFORCEMENT LEARNING 17

1.3 Optimization in Policy Space

Policy search is a family of methods which perform direct search in
policy space. Powell [129] describes many direct search methods. The
general philosophy behind these methods is reminiscent of Vapnik's
motto for support vector machines [179]: \Do not try to solve a complex
problem as a step towards solving a simpler one". For reinforcement
learning, it essentially means abandoning the hope of estimating the
model of the environment or Markov chain's transition matrix. Nether
do we intend to estimate state or state-action values with certain se-
mantics as de�ned earlier in section 1.2. Instead the encoding of policy
is chosen, which constrains a search space and optimal or near-optimal
elements of this space are sought.

Policy is understood in a very broad, \black-box" sense { as far
as it de�nes how to choose actions given a complete history, it is a
policy. In this section we will review several ways of policy encoding
and corresponding policy search methods guided by some bias in search,
even though these methods might have not been necessarily classi�ed
as policy search methods by their authors. Policy search methods could
for example search the space of programs in some language [143, 147,
146, 14, 15], space of encodings of the structure of neural networks [107,
108, 109, 127] or simply parameters in a look-up table or stochastic
�nite state controller [68, 122, 104].

Constraint on the search space could constitute just speci�cation
of a policy encoding language, or speci�cation of a particular range
of parameters, or a �xed connection in some part of a neural network.
Orthogonal to the way policy is represented, the approach for searching
the space of policies could also be chosen from a wide variety of op-
timization methods. An application of evolutionary algorithms to the
reinforcement learning problem, emphasizing alternative policy repre-
sentations, credit assignment methods, and problem-speci�c genetic
operators [109].

Baum argues that the mind should be viewed as an economy of
idiots [14, 15]. His \Hayek Machine" searches the space of programs
encoding behavior. Working with such scalable problems as a simulated
block world, this method begins by solving simple instances. Solutions
to these simpler problem instances are used to form a bias, which in
turn facilitates a search for solution of an larger instance of the same
problem. The search is done in a way reminiscent of evolutionary

CHAPTER 1. REINFORCEMENT LEARNING 18

Po
lic

y
va

lu
e

Policy parameters

Fig. 1.3: Learning as optimization problem.

programming and genetic algorithms [39] while the notion of �tness
is given a monetary interpretation and \conservation of money" along
with other economics analogies are employed.

The goal of rl is essentially �nding policy parameters that max-
imize a noisy objective function. The Pegasus method converts this
stochastic optimization problem into a deterministic one, by using �xed
start states and �xed random number sequences for comparing poli-
cies [111]. Strens and Moore[164] developed this method using paird
tests. By adapting the number of trials used for each policy comparison
they accelerate learning.

One way to search the policy space is to try out all possibilities.
Traversing the space has to have a particular order, or bias, reect-
ing some knowledge or assumptions regarding solutions in the search
space. E.g. one might assume that low complexity solutions are more
likely, according to some measure of the policy's complexity. Using
a complexity measure derived from both Kolmogorov complexity and
computational complexity is the basis of Levin search [147].

Littman [87] introduced branch-and-bound methods to rl. Branch-
and-bound acts by constructing partial solutions and using these to
exclude parts of the search space from consideration as containing only
inferior options. A partial solution could be a policy speci�ed for only a
part of the state space. It is sometimes possible to establish a minimal
performance for such policy independent of the remaining part of it. If
such minimal performance level is higher that an upper performance
level for some other partial policy, this second branch could be excluded

CHAPTER 1. REINFORCEMENT LEARNING 19

from further consideration. A set of branch-and-bound heuristics is
used to decide which branches of search process to pursue and how
to establish upper bounds which allow exclusion of bigger parts of a
search space quicker.

In this dissertation we focus on policy search by following the gra-
dient. The general idea behind policy search by gradient is to start
with some policy, evaluate it and make an adjustment in the direction
of the gradient of a policy's value function as illustrated by �gure 1.3.
Very di�erent optimization methods can be applied such as genetic al-
gorithms or simulated annealing. In the following section we review
related work in the �eld of gradient methods. Detail of the method of
gradient ascent for policy search is left for the next chapter.

1.4 Related Gradient Methods

The gradient approach to reinforcement learning was introduced by
Williams [187, 188, 189] in the reinforce algorithm, which estimates
the gradient of expected cumulative reward in episodic tasks. For such
tasks there is an identi�ed target state of the environment, such that,
upon encountering that state, the algorithm returns an estimate of the
gradient based on the trace of the reinforcement signal accumulated
during the episode.

Williams' reinforce was generalized to optimize the average re-
ward criterion in mdps based on a single sample path by Marbach and
Tsitsiklis [95, 92]. Parameters can be updated either during visits to
a certain recurrent state or on every time step. Their algorithm has
the established convergence of the performance metric with probabil-
ity one. Baird and Moore [8, 9] presented an algorithm called vaps,
which combines value-function with policy gradient approaches. vaps
relies on the existence of a recurrent state to guarantee convergence.
Algorithms considered in the rest of this work were motivated by vaps.
Therefore it receives a special attention elsewhere in this document.

Recently there was parallel work by Tsitsiklis and Konda [79] and
Sutton, et al. [168] which analyzes gradient ascent algorithms in the
framework of \Actor-Critic" methods (introduced by Barto [13]). Due
to the \critic" part, which makes sense mostly under conditions of
complete observability, that work applies to mdps with function ap-
proximation. They show that since the number of parameters in the

CHAPTER 1. REINFORCEMENT LEARNING 20

representation of a policy (\actor") is often small compared to the
number of states, the value-function (\critic") must not be represented
in a high-dimensional space, but rather in a lower dimensional space
spanned by the basis, which is determined by the representation of the
policy. Using this result they analyze and prove convergence to the
locally optimal policy.

Bartlett and Baxter [16] introduce their version of estimating the
gradient, called gpomdp. They also make an assumption that every
state is recurrent, and estimate the gradient in one (in�nitely long)
trial. The speci�cs of their approach is in using a conjugate gradient
algorithm which utilizes estimates made by gpomdp and a line search
instead of decreasing learning rate. The local convergence of gpomdp
with probability one is proven. For the sake of theoretical guarantees,
both methods mentioned use an average (undiscounted) reward cri-
terion, whose gradient is estimated through the estimate of the state
occupancy distribution. One of the issues with algorithms estimating
the gradient is that estimates tend to have high variance resulting in
a slow convergence. Tsitsiklis and Marbach [96] propose the solution
with discounting, which introduces bias into the estimate, and establish
bounds for the convergence properties of this method.

Grudic and Ungar [57, 56] extend methods by Tsitsiklis and
Konda [79] and Sutton, et al. [168]. They provide an interesting exam-
ple of leveraging the knowledge of the domain by choosing an appropri-
ate low-dimensional policy representation. They present a Boundary
Localized Reinforcement Learning (blrl) method which is very ef-
fective for cases of completely observable mdps with continuous state
spaces and a few actions, such that in the optimal policy large regions
of the state space correspond to the same action. In the Action Tran-
sition Policy Gradient they are estimating relative values of actions
and show that performance could be orders of magnitude better than
that of algorithms employing a more naive representation. This idea
can be also viewed in light of learning feature extraction.

Ascending along the direction of the gradient requires choosing a
step size. Amari [2] revolutionized the �eld of optimization by gradient
methods, introducing geometric considerations for calculating the gra-
dient. Sham Kakade [70] developed a pioneering approach of applying
natural gradient methods to policy search in reinforcement learning.
He gives empirical evidence of learning acceleration when the \natu-
ral" policy gradient is contrasted with the regular policy gradient.

Chapter 2

Policies with Memory

Summary In order for an agent to perform well in partially observ-
able domains, it is usually necessary for actions to depend on the his-
tory of observations. In this chapter we present a controller based on
the gaps algorithm combined with memory. We �rst explore a stig-
mergic approach, in which the agent's actions include the ability to
set and clear bits in an external memory, and the external memory is
included as part of the input to the agent. We also consider the devel-
opment of the gaps algorithm for the case of �nite state controllers, in
which memory is a part of the controller. We illustrate advantages of
both architectures as compared to other existing approaches by empir-
ical results for several domains.

2.1 Gradient Ascent for Policy Search

Here we consider the case of a single agent interacting with a pomdp.
For now, we will not make any further commitment to details of the
policy's architecture, as long as it de�nes the probability Pr(a, ht, θ) of
action a given past experience ht as a continuous di�erentiable function
of some vector of parameters θ. Later, we will consider various archi-
tectures of the controller, which factor additional information into the
expression for this probability; e.g., the agent's policy µ could depend
on some �nite internal state.

The objective of an agent is to choose a strategy that maximizes the
expected cumulative reward. We will assume a single starting state,
since for the case of the distribution over initial state, one can introduce

21

CHAPTER 2. POLICIES WITH MEMORY 22

an extra starting state and have an initial transition from this state
according to this distribution. Remember that value of a strategy θ

(see equation 1.1) is

V(θ) = Eθ [R(h)] =
∑

h∈H

(
R(h) Pr(h|θ)

)
.

Note that the policy is parametrized by a vector θ= {θ1, . . . , θn}. If we
could calculate the derivative of V(θ) for each θk, it would be possible
to do exact gradient ascent (see a paper by Meuleau et al. [104]) on
value V() by making updates

∆θk = α
∂

∂θk
V(θ) .

Since R(h) does not depend on θ,

∂

∂θk
V(θ) =

∑

h∈H

(
R(h)

∂

∂θk
Pr(h|θ)

)
.

Let us examine the expression for Pr(h|θ). The Markov assumption
in pomdps warrants that Pr

(
h|θ

)

= Pr
(
s(0)

) T∏

t=1

Pr
(
o(t)|s(t)

)
Pr

(
a(t)|o(t), θ

)
Pr

(
s(t+1)|s(t), a(t)

)

=

[
Pr

(
s(0)

) T∏

t=1

Pr
(
o(t)

∣∣s(t)) Pr
(
s(t+1)

∣∣s(t), a(t)
)
][

T∏

t=1

Pr
(
a(t)

∣∣o(t), θ
)
]

= Φ
(
h
)
Ψ

(
θ, h

)
.

Φ(h) is the factor in the probability related to the part of the experience
dependent on the environment, that is unknown to the agent and can
only be sampled. Ψ(θ, h) is the factor in the probability related to the
part of the experience, dependent on the agent, that is known to the
agent and can be computed (and di�erentiated). Note that Pr

(
h|θ

)
can be broken up this way both when controller executes a reactive
policy and a policy with internal state (see for example the derivation
for internal state sequences in Shelton's dissertation [151]). Taking into
account this decomposition, we get:

∂

∂θk
V(θ) =

∑

h∈H

(
R(h)Φ(h)

∂

∂θk
Ψ(θ, h)

)
.

CHAPTER 2. POLICIES WITH MEMORY 23

Rewriting Ψ
(
θ, h

)
as a product of policy terms µ

(
a(t), o(t), θ

)
and

taking into account that in a course of some experience h, the same
observation o and same observation-action pair (o, a) could be encoun-
tered several times, reected by counter variables Nh

o and Nh
oa respec-

tively, we have

Ψ
(
θ, h

)
=

T∏

t=1

Pr
(
a(t)

∣∣o(t), θ
)

=
∏

o∈O,a∈A

µ(a, o, θ)Nh
oa .

Let us consider the case when for some parameter θk and j 6= k we
have ∂

∂θj
µ(a, o, θ) = 0, e.g. when there is one parameter θoa for each

observation-action pair (o, a). For this case ∂
∂θoa

Ψ
(
θ, h

)

=

(
∂µ(a, o, θ)

∂θoa

)
Nh

oaµ(a, o, θ)Nh
oa−1 ×

∏

o ′ 6=o,a ′ 6=a

µ(a ′, o ′, θ)Nh
o ′a ′

=

(
∂µ(a, o, θ)

∂θoa

)
Nh

oa

µ(a, o, θ)Nh
oa

µ(a, o, θ)
×

∏

o ′ 6=o,a ′ 6=a

µ(a ′, o ′, θ)Nh
o ′a ′

=Nh
oa

(
∂µ(a, o, θ)

∂θoa

)
1

µ(a, o, θ)
×

∏

o ′∈O,a ′∈A

µ(a ′, o ′, θ)Nh
o ′a ′

=Nh
oa

(
∂µ(a, o, θ)

∂θoa

)
1

µ(a, o, θ)
× Ψ

(
θ, h

)

=Nh
oa

(
∂ ln µ(a, o, θ)

∂θoa

)
× Ψ

(
θ, h

)
.

Note the presence of µ() in the denominator, which requires an as-
sumption of non-zero probability of any action under any encoding θ.
We can �nally express the derivative as

∂

∂θoa
V(θ) =

∑

h∈H

R(h)

(
Pr(h|θ)Nh

oa

∂

∂θoa
ln µ(a, o, θ)

)
.

However in the spirit of reinforcement learning, we cannot assume the
knowledge of a world model that would allow us to calculate Ψ(h)

and subsequently Pr(h | θ), neither are we able to perform summation
over all possible experiences h ∈ H. Henceforth we must retreat to
stochastic gradient ascent instead.

Remark 2.1.1 We have worked with the return function R(h), not
taking into account speci�cs of how rewards are assembled into

CHAPTER 2. POLICIES WITH MEMORY 24

return. For the case of episodic tasks (see p. 11), there is no im-
provement possible. In some other cases, a reward is received at in-
termediate steps, so an algorithm with better credit assignment can
be obtained (also see technical report [103]). For the case of in�nite
horizon discounted criterion with discount factor γ ∈ [0, 1) and a
strategy θ, the value (see equation 1.1) is V(θ) =

∑1
t=1 γtEθ [r(t)].

Following the derivation by Baird and Moore [9] this value can be
rewritten as V(θ) =

∑1
t=1 γt

∑
h∈Ht

Pr(h | θ)r(t, h). Let us examine
the derivative ∂V(θ)

∂θk

=

1∑
t=1

γt
∑

h∈Ht

[
r(t, h)

∂

∂θk
Pr(h | θ)

]

=

1∑
t=1

γt

[∑

h∈Ht

Pr(h | θ)r(t, h)×
t∑

τ=1

∂ ln Pr
(
a(τ, h) |hτ−1, θ

)

∂θk

]
.

(2.1)

We sample from the distribution of histories by interacting with
the environment, and calculate during each trial an estimate of
the gradient, for all t accumulating the quantities:

γtr(t, h)

t∑

τ=1

∂ ln Pr
(
a(τ, h) | hτ−1, θ

)

∂θk
. (2.2)

For a particular policy architecture, this can be readily translated into
a gradient ascent algorithm that is guaranteed to converge to a local op-
timum of V(). We refer to this algorithm as gaps, for gradient ascent
policy search. The rest of the work presented in this thesis mainly
concerns the application of gradient ascent algorithms to various archi-
tectures of the controller. In particular we will explore the performance
of controllers with external memory, the stochastic �nite state machine
and distributed controllers of cooperating agents. We will present the
resulting formulae as we describe architectures in further chapters.

2.2 gaps with a Lookup Table

In this section, we present gaps, for the case in which policy parameters
are stored in a look-up table. That is, there is one parameter θoa for
each observation-action pair (o, a). Note that it is not necessary to
use the sequence-based gradient in a look-up table implementation of

CHAPTER 2. POLICIES WITH MEMORY 25

ql or sarsa, as long as it is con�ned to a Markovian environment.
However, it makes sense to use it in the context of pomdps. Under this
hypothesis, the exploration trace associated with each parameter θoa

will be written E(o, a, t).
We will also focus on a very popular rule for randomly selecting

actions as a function of their θ-parameter, namely the Boltzmann law
(also known as soft-max), where ζ is a temperature parameter:1

µ(a, o, θ)=Pr
(
a(t) = a

∣∣o(t) = o, θ
)
=

exp (θoa/ζ)∑
a ′ exp (θoa ′/ζ)

>0. (2.3)

Under this policy encoding we get:

∂ ln µ(a, o, θ)

∂θo ′a ′
=

0 if o ′ 6= o,

−1
ζµ (a ′, o, θ) if o ′ = o and a ′ 6= a,

1
ζ [1 − µ(a, o, θ)] if o ′ = o and a ′ = a.

Let us also assume that the problem is an episodic task, i.e., the reward
is always zero except when we reach an absorbing goal state. Then the
exploration trace E(o, a, t) takes a very simple form:

E(o, a, t) =

h
Nh

oa(t)−Nh
o(t)µ

(
a,o,θ

)i
ζ =

[
Nh

oa(t)−E[Nh
oa(t)]

]
ζ , (2.4)

where Nh
oa(t) is the number of times that action a has been executed

given an observation o up until time t, Nh
o(t) is the number of times

that observation o has been obtained up until time t, and E[Nh
oa(t)]

represents the expected number of times one should have performed
action a given an observation o, knowing the exploration policy and
previous experience.

As a result of equation (2.4), gaps using look-up tables and Boltz-
mann exploration reduces to a very simple algorithm, presented in
table 2.1. At each time-step where the current trial does not complete,
we just increment the counter Noa of the current observation-action
pair. When the trial completes, this trace is used to update all the
parameters, as described above.

Remark 2.2.1 It is interesting to try to understand the properties
and implications of this simple rule. First, a direct consequence

1Note that Baird and Moore [9] use an unusual version of the Boltzmann law,
with 1 + ex in place of ex in both the numerator and the denominator. We have
found that it complicates the mathematics and worsens the performance, so we will
use the standard Boltzmann law throughout.

CHAPTER 2. POLICIES WITH MEMORY 26

Tab. 2.1: The gaps algorithm for rp with a look-up table.

Initialize policy: For all (o, a): θoa ← 0

For i = 1 to n: (make n trials)
• Beginning of the trial:

R ← 0

for all (o, a):
No ← 0, Noa ← 0

• At each time step t of the trial:
Get observation o(t)

inc(No)

Draw next a(t) from µ(a(t), o(t), θ)

inc(Noa)

Execute a(t), get reward r(t)

R ← R + γtr(t)

• End of the trial-update:
for all (o, a):

θoa ← θoa + αR (Noa − µ(a, o, θ)No)

is that when something surprising happens, the algorithm adjusts
the unlikely actions more than the likely ones. In other words,
this simple procedure is very intuitive, since it assigns credit to
observation-action pairs proportional to the deviation from the ex-
pected behavior, which we call \surprise". In principle, this is sim-
ilar to the way dopamine bonuses are generated in the brain as
suggested by Schultz (see [150, 149]). Note that sarsa(λ) is not
capable of such a discrimination. This di�erence in behavior is
illustrated in the simulation results.

A second interesting property is that the parameter updates for
observation-action pair tend to 0 as the length of the trial tends to
in�nity. This also makes sense, since the longer the trial, the less the
�nal information received (the �nal reward) is relevant in evaluating
each particular action. Alternatively, we could say that when too many
actions have been performed, there is no reason to attribute the �nal
result more to one of them than to others. Finally, unlike with Baird

CHAPTER 2. POLICIES WITH MEMORY 27

and Moore's version of the Boltzmann law, the sum of the updates to
the parameters on every step is zero. This makes it more likely that
the parameters will stay bounded.

2.3 Controller with External Memory

Stigmergy In this work, we pursue an approach based on stigmergy.
The term is de�ned in the Oxford English Dictionary [155] as \The
process by which the results of an insect's activity act as a stimulus
to further activity," and is used in the mobile robotics literature [17]
to describe activity in which an agent's changes to the world a�ect
its future behavior, usually in a useful way. One form of stigmergy

RL
State-free

observation
x

action
a

Memory

Fig. 2.1: The stigmergic architecture.

is the use of external mem-
ory devices. We are all fa-
miliar with practices such
as making grocery lists, ty-
ing a string around a �n-
ger, or putting a book by
the door at home so you
will remember to take it
to work. In each case, an
agent needs to remember
something about the past

and does so by modifying its external perceptions in such a way that
a memoryless policy will perform well.

We can apply this approach to the general problem of learning to
behave in partially observable environments. Figure 2.1 shows the ar-
chitectural idea. We think of the agent as having two components: one
is a set of memory bits; the other is a reinforcement-learning agent. The
reinforcement-learning agent has as input the observation that comes
from the environment, augmented by the memory bits. Its output con-
sists of the original actions in the environment, augmented by actions
that change the state of the memory. If there are su�cient memory
bits, then the optimal memoryless policy for the internal agent will
cause the entire agent to behave optimally in its partially observable
domain.

There are two alternatives for designing an architecture with exter-
nal memory. The �rst is to augment the action space with actions that

CHAPTER 2. POLICIES WITH MEMORY 28

change the content of one of the memory bits (adds L new actions if
there are L memory bits); changing the state of the memory may re-
quire multiple steps. The second is to compose the action space with
the set of all possible values for the memory (the size of the action
space is then multiplied by 2L, if there are L bits of memory). In this
case, changing the external memory is an instantaneous action that
can be done at each time step in parallel with a primitive action, and
hence we can reproduce the optimal policy of some domains without
taking additional memory-manipulation steps. Complexity considera-
tions usually lead us to take the �rst option. It introduces a bias, since
we have to lose at least one time-step each time we want to change the
content of the memory. However, it can be �xed in most algorithms by
not discounting memory-setting actions.

The external-memory architecture has been pursued in the context
of classi�er systems [23] and in the context of reinforcement learning
by Littman [86] and by Mart��n [97]. Littman's work was model-based;
it assumed that the model was completely known and did a branch-
and-bound search in policy space. Mart��n worked in the model-free
reinforcement-learning domain; his algorithms were very successful at
�nding good policies for very complex domains, including some simu-
lated visual search and block-stacking tasks. However, he made a num-
ber of strong assumptions and restrictions: task domains are strictly
goal-oriented; it is assumed that there is a deterministic policy that
achieves the goal within some speci�ed number of steps from every
initial state; and there is no desire for optimality in path length.

The success of Mart��n's algorithm on a set of di�cult problems
is inspiring. However it has restrictions and a number of details of
the algorithm seem relatively ad hoc. At the same time, Baird and
Moore's work on vaps [9], a general method for gradient descent in
reinforcement learning, appealed to us on theoretical grounds. This
work is the result of attempting to apply vaps algorithms to stigmergic
policies, and understanding how it relates to Mart��n's algorithm. In
this process, we have derived a much simpler version of vaps for the
case of highly non-Markovian domains: we calculate the same gradient
as vaps, but with much less computational e�ort. We call the new
algorithm gaps.

CHAPTER 2. POLICIES WITH MEMORY 29

2.4 Experiments with Stigmergic Controllers

Load-unload Consider the load-unload problem represented in Fig-
ure 2.2. In this problem, the agent is a cart that must drive from an
Unload location to a Load location, and then back to Unload. This
problem is a simple pomdp with a one-bit hidden variable that makes
it partially observable (the agent cannot see whether it is loaded or
not; aliased states, which have the same observation, are grouped by
dashed boxes on �gure 2.2). It can be solved using a one-bit external
memory: we set the bit when we make the Unload observation, and
we go right as long as it is set to this value and we do not make the
Load observation. When we do make the Load observation, we clear
the bit and we go left as long as it stays cleared, until we reach state
9, getting a reward.

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

789

1 2 4

2 3 4

5

6

3

5 = Load1 = Unload

R=1

Start

Fig. 2.2: The state-transition diagram of the load-unload problem.

We have experimented with sarsa and gaps on several sim-
ple domains. Two are illustrative problems previously used in the
reinforcement-learning literature: Baird and Moore's problem [9], cre-
ated to illustrate the behaviour of vaps, and McCallum's 11-state
maze [98], which has only six observations. The third domain is an
instance of a �ve-location load-unload problem (�g. 2.2). The last do-

CHAPTER 2. POLICIES WITH MEMORY 30

main is a variant of load-unload designed speci�cally to demonstrate
a situation in which gaps might outperform sarsa. In this variant
of the load-unload problem a second loading location has been added,
and the agent is punished instead of rewarded if it gets loaded at the
wrong location. The state space is shown in �gure 2.3; states contained
in a dashed box are observationally indistinguishable to the agent. The
idea here is that there is a single action that, if chosen, ruins the agent's
long-term prospects. If this action is chosen due to exploration, then
sarsa(λ) will punish all of the action choices along the chain but
gaps will punish only that action.

Algorithmic Details and Experimental Protocol

All domains have a single starting state, except McCallum's problem,
where the starting state is chosen uniformly at random. For each prob-
lem, we ran two algorithms: gaps and sarsa(1). The optimal policy
for Baird's problem is memoryless, so the algorithms were applied di-
rectly in that case. For the other problems, we augmented the input
space with an additional memory bit, and added two actions: one for
setting the bit and one for clearing it. We employed gaps using look-up
tables and the Boltzmann rule.

The learning rate α was determined by a parameter, α0; the actual
learning rate has an added factor that decays to zero over time: α =

α0 + 1
10N , where N is trial number. The temperature was also decayed

in an ad hoc way, from ζmax down to ζmin with an increment of ∆ζ =(
ζmin

ζmax

)1/(N−1)

on each trial. In order to guarantee convergence of
sarsa in mdps, it is necessary to decay the temperature in a way that is
dependent on the θ-parameters themselves [159]; in the pomdp setting
it is much less clear what the correct decay strategy is. We have found
that performance of the algorithm is not particularly sensitive to the
temperature decay schedule.

Each learning algorithm was executed for 50 runs; each run con-
sisted of N trials, which began at the start state and executed until a
terminal state was reached or M steps were taken. The run terminated
after M steps was given a reward of -1; M was chosen, in each case, to
be 4 times the length of the optimal solution. At the beginning of each
run, the parameters were randomly reinitialized to small values.

CHAPTER 2. POLICIES WITH MEMORY 31

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

789

2 3 41 = Unload

Wrong

Right

R=-1

R=1

1 2 4

Start

3

6

5

10

11121314

= Load5

Fig. 2.3: The state-transition diagram of the problem with two loading locations.

Experimental Results

It was easy to make both algorithms work well on Baird's and McCal-
lum's domains. The algorithms typically converged in fewer than a
hundred trials to an optimal policy. Curiously enough we found that
gaps, which uses the true Boltzmann exploration distribution rather
than the one described by Baird and Moore for vaps, seems to perform
signi�cantly better, according to results presented in their paper [9].

Things were somewhat more complex with the last two problems
(5 location load-unload with one or two loading locations). We ex-
perimented with parameters over a broad range and determined the
following: Original vaps requires a value of β equal or very nearly
equal to 1; these problems are highly non-Markovian, so the Bellman
error is not at all useful as a criterion; for similar reasons, λ = 1 is
best for sarsa(λ); empirically, ζmax = 1.0 and ζmin = 0.2 worked well
for gaps in both problems, and ζmax = 0.2, ζmin = 0.1 worked well
for sarsa(λ); a base learning rate of α0 = 0.5 worked well for both
algorithms in both domains. Figure 2.4 shows learning curves for both
algorithms, averaged over 50 runs, on the load-unload problem with
one or two loading locations. Each run consisted of 1, 000 trials. The

CHAPTER 2. POLICIES WITH MEMORY 32

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 tr
ia

l l
en

gt
h

�

Number of iterations

SARSA

GAPS

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 tr
ia

l l
en

gt
h

�

Number of iterations

SARSA

GAPS

Fig. 2.4: Learning curves for a regular (top) and a modi�ed (bottom) \load-unload".

CHAPTER 2. POLICIES WITH MEMORY 33

vertical axis shows the number of steps required to reach the goal, with
the terminated trials considered to have taken M steps.

On the original load-unload problem, the algorithms perform essen-
tially equivalently. Most runs of the algorithm converge to the optimal
trial length of 9 and stay there; occasionally, however it reaches 9 and
then diverges. This can probably be avoided by decreasing the learning
rate more steeply. When we add the second loading location, however,
there is a signi�cant di�erence. gaps consistently converges to a near-
optimal policy, but sarsa(1) does not. The idea is that sometimes,
even when the policy is pretty good, the agent is going to pick up the
wrong load due to exploration and get punished for it. sarsa will
punish all the observation-action pairs equally; gaps will punish the
bad observation-action pair more due to the di�erent principle of credit
assignment.

As Mart��n and Littman showed, small pomdps can be solved ef-
fectively using stigmergic policies. Learning reactive policies in highly
non-Markovian domains is not yet well-understood. We have demon-
strated that the gaps algorithm can solve a collection of small pomdps,
and that although sarsa(λ) performs well on some pomdps, it is pos-
sible to construct cases on which it fails. One could expect that the
approach of augmenting controller with memory does not scale well,
which is addressed further in section 2.5 for the application of the
gaps algorithm to the problem of learning general �nite-state con-
trollers (which encompass external-memory policies) for pomdps.

2.5 Finite State Controllers

We limit our consideration in this chapter to cases in which the agent's
actions may depend only on the current observation, or in which the
agent has a �nite internal memory. In general, to optimally control
pomdps one needs policies with memory. It could be necessary to have
an in�nite memory to remember all of the history [161, 160, 162]. Alter-
natively the essential information from the entire history of pomdps can
be summarized in a belief state [32] (a distribution over environment
states), which is updated using the current observation and constitutes
a su�cient statistic for the history [170]. In general this requires
memory to store the belief state with an arbitrary precision. It can
be shown [161, 160, 162] that in some cases, the belief state leads to

CHAPTER 2. POLICIES WITH MEMORY 34

representation of the optimal policy by a policy graph or �nite state
controller, where representing a policy requires �nite memory.

There are many possibilities for constructing policies with mem-
ory. We have considered external memory in section 2.3 (also in our
papers [122, 104]). In principle a policy could be represented by a neu-
ral network. However, feed-forward neural networks would not su�ce
since the optimal controller needs to be capable of retaining some infor-
mation from the past history in its memory; i.e., to have internal state.
This could be only achieved by a recurrent neural network. Such a
recurrent network would have to output a probability distribution over
actions and could be considered as a di�erent encoding of a stochas-
tic �nite state controller. Choosing between recurrent neural networks
and fscs becomes a matter of aesthetics of representation. An extra
argument for fscs is that it is easier to analyze a policy or to construct
an objective (sub)-optimal policy since fscs have a clearer semantic
explanation.

A �nite state controller (fsc) for an agent with action space
A and observation space O is a tuple 〈M,µa, µm〉, where M is
a �nite set of internal controller states, µm : M × O → P(M)

is the internal state transition function that maps an internal
state and observation into a probability distribution over inter-
nal states, and µa : M → P(A) is the action function that
maps an internal state into a probability distribution over actions.

� � � � � �� � � �

� � � � � � � � � �

� � � � � � � � � �

� � � �

Fig. 2.5: An inuence diagram for agent
with fscs in pomdp.

Note that we assume both the
internal state transition func-
tion and the action function
are stochastic and their deriva-
tives exist and are bounded
away from zero. Figure 2.5 de-
picts an inuence diagram for
an agent controlled by fscs.
Compare it to �gure 1.2 where
we did not have any de�nition
of a policy. A fsc with a sin-
gle state would constitute a de-
generate case, corresponding to
a memoryless policy (rp), or a

direct link from o(t) to a(t).

CHAPTER 2. POLICIES WITH MEMORY 35

Tab. 2.2: The sequence of events in agent-environment interaction.

Initialize environment state s(0), controller state m(0)

At each time step t of the trial:
• Generate observation o(t) from s(t) according to pomdp

observation function B(.)

• Draw new controller state m(t) based on the current observation
o(t) and controller state m(t − 1) from µm(m(t), o(t),m(t − 1), θ)

• Draw next action a(t) based on the current controller state
m(t) from µa(a(t),m(t), θ)

• Execute action a(t) and get reward r(t)

Remark 2.5.1 We avoid specifying the initial state or the distribu-
tion over initial states since it is always possible to augment the
given set of states with one extra state which is the starting state
and from which a transition happens to one of the primary states.
We also avoid de�ning the set of terminal or �nal states since the
end of a control loop usually depends on a particular domain.

Remark 2.5.2 It is possible to de�ne fscs so that the action func-
tion depends on both the internal state and the current observation,
but that alternative formulation would be expressively equivalent.
An example of an expressively weaker formulation would be a ac-
tion function which depends only on the current internal state,
which in turn depends only on the current observation. This pol-
icy would be a kind of reactive policy where observations are �rst
classi�ed into a few categories.

In partially observable environments, agents controlled by fscs
might not have enough memory to even represent an optimal policy
which could, in general, require in�nite state [162]. In this work,
we concentrate on the problem of �nding the (locally) optimal con-
troller from the class of fscs with some �xed size of memory. Table 2.2
presents the sequence of events in agent-environment interaction. In
comparison to the de�nition of experience h (see section 1.1 on page 10)
there is a new event occurring at each time step t: the controller
enters some state m(t). Let us assemble these events into a se-

CHAPTER 2. POLICIES WITH MEMORY 36

quence hm = 〈m(0), . . . , m(t)〉. There are two ways to handle this
extra information regarding the agent's experience: disregard it all
together or use it in the derivation of the gradient of expected re-
turn. It is important to see that Pr(a|h, θ) 6= Pr(a|h, hm, θ) since
the former probability includes all possible ways in which controller
could have chosen to perform action a via various internal states m:
µ ′(a, o, θ) =

∑
m Pr(a,m|h, hm, θ) =

∑
m Pr(a|h, θ) × Pr(m|hm, θ),

while the latter corresponds to the one particular internal state:
µ(a, o, θ) = µa(a,m, θ) × µm(m,o,m ′, θ). Learning the controller's
parameters θ in the former case is reminiscent of learning a hidden
Markov model (hmm) [135, 134] and is covered in the dissertation by
Christian Shelton [151]. Here we consider the latter case when the
agent keeps a record of the internal state.

2.6 gaps with finite state controllers

In this section we derive the algorithm for learning fscs via gradient
ascent policy search. If we use look-up tables to store the parameters
of the fscs, then there is one parameter, denoted θma corresponding
to each possible internal state-action pair (m,a) and one parameter
θmom ′ corresponding to each possible internal state transition given
each observation (m,o, m ′). Using Boltzmann law with a temperature
parameter ζ (compare to equation (2.3)) we obtain:

µa(a,m, θ) = Pr
(
a(t) = a

∣∣m(t) = m,θ
)

=
exp (θma/ζ)∑
a ′ exp (θma ′/ζ)

> 0 ,

µm(m,o, m ′, θ) = Pr
(
m(t + 1) = m ′∣∣m(t) = m,a(t) = a, θ

)

=
exp (θmom ′/ζ)∑

m ′′ exp (θmom ′′/ζ)
> 0 .

Since the encoding of action and internal state transition functions is
independent, partial derivatives factor into separate terms:

∂µ(a, o, θ)

∂θma
=

∂µa(a,m, θ)

∂θma
,

∂µ(a, o, θ)

∂θmom ′
=

∂µm(m,o, m ′, θ)

∂θmom ′
.

(2.5)

The derivation of the parameter update becomes identical to that of
section 2.2. The resulting algorithm2 is given in table 2.3 (compare to

CHAPTER 2. POLICIES WITH MEMORY 37

Tab. 2.3: The gaps algorithm for fsc with a look-up table.

Initialize policy: For all (o, a): θoa ← 0, θmom ′ ← 0

For i = 1 to n: (make n trials)
• Beginning of the trial:

R ← 0

Initialize controller state m(0)

for all (o, a, m,m ′):
Nm ← 0, Nma ← 0, Nmom ′ ← 0, Nmo ← 0

• At each time step t of the trial:
inc(Nm)

Get observation o(t), inc(Nmo)

Draw next m(t) from µm(m(t), o(t), m(t − 1), θ)

inc(Nmom ′)

Draw next a(t) from µa(a(t),m(t), θ)

inc(Nma)

Execute a(t), get reward r(t)

R ← R + γtr(t)

• End of the trial-update:
for all (o, a, m,m ′):

θma ← θma + αR (Nma − µa(a,m, θ)Nm)

θmom ′ ← θmom ′ + αR (Nmom ′ − µm(m, o,m ′, θ)Nmo)

table 2.2) and is based on following update equations:

∆θma(t) = −
α

ζ
γtrt (Nma − µa(a,m, θ)Nm) ,

∆θmom ′(t) = −
α

ζ
γtrt (Nmom ′ − µm(m, o,m ′, θ)Nmo) ,

where the agent maintains the following counters of events up until
time t: Nm is the number of times the controller has been in state
m; Nma is the number of times that action a has been executed while
the controller has been in state m; Nmo is the number of times that
observation o has been made while the controller has been in state m;
Nmom ′ is the number of times that the controller moved from state m

to state m ′ after observation o.

CHAPTER 2. POLICIES WITH MEMORY 38

Remark 2.6.1 A lookup table with Boltzmann law is not the only
option in the policy encoding. A simpler representation would be
such that µa(m,a) = θma and µm(m,o, m ′) = θmom ′ . Then the
contribution to the update of each parameter at each time-step in
the sequence can be expressed through same counters as:

∆θma(t) = −αγtrt Nma(t)

θma
,

∆θmom ′(t) = −αγtrt Nmom ′(t)

θmom ′
.

Despite its simplicity, this straightforward look-up table represen-
tation has several drawbacks. First, the parameters θ represent
probabilities, and thus they should belong to [0, 1] interval and add
up to 1. However nothing guarantees that these constraints will re-
main satis�ed as the agent applies the update rule described above.
One way around this problem is forcing parameters back onto sim-
plex by projecting the gradient onto the simplex before applying up-
dates. Another issue is that some parameters could be set to zero
and there will be no way to correct this, since the corresponding
action will never be sampled. Studying how to express the gradient
in such cases falls beyond the scope of this work (see [104]).

The following section illustrates the performance of the gaps algo-
rithm with memory as fsc, outlined in table 2.3 by empirical results
for partially observable pole balancing domain, in which the optimal
policy requires several internal states.

2.7 Empirical Study of fscs

In our experiments, we use the Boltzmann law (see equation 2.3) to
represent the parameters of the graphs. This representation avoids
both problems of look-up tables mentioned in remark 2.6.1: the weights
can take any real values, and the induced policy never gives probability
0 to any choice. Note that the use of the Boltzmann law may alter the
landscape of the function on which we perform gradient descent.

2 This algorithm follows the credit assignment of non-episodic task as discussed
in remark 2.1.1. It corresponds to using the immediate reward (error epolicy in
vaps [104]).

CHAPTER 2. POLICIES WITH MEMORY 39

��

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � � � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

x0

θ

Fig. 2.6: The pole and cart balancing system.

Pole balancing We ran a number of experiments with the pole bal-
ancing problem [4, 167] illustrated in �gure 2.6. The goal in this prob-
lem is to learn to avoid the cart hitting the ends of the track or the
angle of the pole exceeding twelve degrees from the vertical. The
speci�cations for the simulated pole and cart are: length of the track:
4.8 m; mass of the cart: mc = 1.0 kg; the pole is 1 meter long and
weights mp = .1 kg; distance of pole's centre of mass from pivot:
l = 0.5m; the applied control force F = +10 or −10 N. Let us denote
by y the pole's angle (in radians), by x the cart's position on the track,
by m = mc + mp the mass of cart and pole together, by g = 9.8 m

s2 the
gravity acceleration. The equations of motion were derived by Ander-
son [4]:

�y =
mg sin y − cos y(F + mpl _y2 sin y)

(4/3)ml − mplcos2y

�x =
[F + mpl(_y2 sin y − �y cos y)]

m
,

Control actions are applied at the rate of 50Hz, e.g. 3000 con-
secutive control actions correspond to one minute of balancing time.
Other parameters of the cart and pole balancing problem were taken
as described in the supplementary www page for Sutton & Barto's
book [167]. This well known problem is known to be solvable by a
reactive policy (rp), if the observation at each time-step is composed
of four elements: the cart position x and velocity _x, and the pole angle
y and angular velocity _y.

CHAPTER 2. POLICIES WITH MEMORY 40

The performance of learning algorithms was measured in two dif-
ferent settings. In a completely observable setting all four relevant
variables x, _x, y and _y were provided as the input to algorithms at
each time-step. In a partially observable setting both _x and _y were
hidden. Three algorithms applied in these two settings were: sarsa,
Baird and Moore's original vaps (learning an rp) and gaps on fscs
with varying number of internal states.

sarsa and the original vaps can be expected to succeed in the
completely observable setting, and to fail in the partially observable
one where there is no reactive policy that performs the task. These
two algorithms di�er radically. On one hand we use vaps with the
immediate error epolicy which makes it equivalent to td(1); Baird and
Moore would call this a pure policy search. On the other hand sarsa
is basically a value-search similar to td(0). The gaps algorithm can
be expected to succeed in both settings, provided that we use a su�-
ciently large fsc, and that the algorithm does not get stuck on a local
optimum.

Two internal states should be enough in the completely observable
setting, since every reactive policy using only two actions (as it is the
case here) can be represented by a two-state fsc. In the partially
observable framework, more internal states must be added to allow the
algorithm to remember past observations.

In all experiments the discount factor γ was set to .99 and increased
gradually as learning progressed. The learning rate α was optimized
independently for each algorithm. The performance of the algorithm
was measured by �xing the policy and executing 200 trials, measuring
the length of each trial in terms of control decisions, and averaging
these measures. The value intervals of cart position and pole position
were partitioned into 6 and 3 unequal parts (smaller size of partition
towards the center) in the completely observable setting, and into 8
and 6 parts in the partially observable setting, correspondingly. We
were making decisions at the rate of 50 Hz, meaning, for example, that
the actual physical time of learning to balance a pole for 500 sequential
ticks corresponds to 10 seconds of balancing.

Figure 2.7 presents the learning curves obtained in the completely
observable framework. The horizontal axis represents the number of
trials, which corresponds to the number of times we have dropped the
pole. The vertical axis represents the performance of the algorithm,
measured as explained above. \rp" stands for the original vaps al-

CHAPTER 2. POLICIES WITH MEMORY 41

0

1000

2000

3000

4000

5000

0 20 40 60 80 100

A
ve

ra
ge

 p
er

fo
rm

an
ce

�

Number of trials (in thousands)

SARSA

RP

2NPG

Fig. 2.7: Learning curves for the completely observable pole-balancing domain.

0

100

200

300

400

500

600

700

0 100 200 300 400 500

A
ve

ra
ge

 p
er

fo
rm

an
ce

�

Number of trials (in thousands)

SARSA

2NPG

3NPG

4NPG

10NPG

RP

Fig. 2.8: Learning curves for the partially observable pole-balancing domain.

CHAPTER 2. POLICIES WITH MEMORY 42

gorithm; \2npg" represents gaps used with N = 2. We see that:
sarsa learns much faster than the original vaps3, showing that value
search is much more e�cient that policy search for this control prob-
lem; gaps with 2-state fsc learns more slowly than the original vaps.
This phenomenon can be explained by the fact that the space of 2-state
fscs is bigger than the space of rps.

Figure 2.8 presents the results obtained in the partially observable
framework. \RP" stands for the original vaps algorithm; \2NPG",
\3NPG" , \4NPG" and \10NPG"represent gaps using 2, 3, 4 and 10

internal states respectively. Note the di�erence in scales of these two
�gures. These results con�rm our expectation that algorithms limited
to reactive policies will fail. In contrast, our algorithm increases its
performance gradually, showing it is able to compensate for the lack of
observability. The more internal states are given to the algorithm, the
better it performs. It is also striking to see that the performance of the
algorithm seems to improve in steps, which makes di�cult to predict
where learning will stop.

We did not continue the experiments beyond 500,000 iterations, so
we do not know whether the performance would continue to increase
until the system could balance in�nitely long. The most signi�cant
current result is that we can learn the structure of the fsc that extracts
some useful information contained in the string of past observations,
to compensate, at least partially, for the lack of observability.

Pole balancing is a widely accepted benchmark problem for dy-
namic system control and to the best of our knowledge it has not
been learned with partial information with the exception of work by
Mikkulainen et al. [107, 55]. Their work di�ers from ours in several
principal aspects which make it impossible to compare results. Their
approach is to look for the optimal controller in the space of recurrent
neural networks, by means of evolution of the network parameters. The
controller outputs a continuous value of force applied to a cart which
supports two poles of di�erent length. Experiments result in the size
of maintained population and number of generations and o�spring.

3Corresponds to a barely noticeable dashed line right next to the vertical axis.

CHAPTER 2. POLICIES WITH MEMORY 43

Discussion

We have considered various ways of combining the basic gradient as-
cent algorithm for policy search with memory structures, necessary to
act optimally in partially observable environments. Empirical results
suggest that these algorithms are capable of learning small pomdps,
but they might not scale well. A possible direction for further research
would be to develop memory structure and learning algorithms in order
to take advantage of hierarchical structure in the domain and enable
generalization. One way to do that would be to separate learning into
distinct stages of learning reactive policies on small instances of do-
mains and keeping these as a basis for learning in larger instances of
same or similar domains. Admittedly, learning in this domain is very
slow. It seems that these algorithms do not make good use of the in-
formation available since every experience is used only once to make
an update, after which it is discarded. In certain constrained classes of
domains and policies experience can be reused as we will demonstrate
in chapter 5.

Chapter 3

Policy Search in
Multiagent
Environments

Summary At this point we turn a discussion to a multi-agent set-
ting. This chapter examines the extension of previously introduced
gradient-based algorithms to learning in cooperative games. Coopera-
tive games are those in which all agents share the same payo� structure.
For such a setting, there is a close correspondence between learning in
a centrally controlled distributed system and in a system where com-
ponents are controlled separately. A resulting policy learned by the
distributed policy-search method for cooperative games is analyzed
from the standpoint of both local optimum and Nash equilibrium|
game-theoretic notions of optimality for strategies. The e�ectiveness
of distributed learning is demonstrated empirically in a small, partially
observable simulated soccer domain.

3.1 Cooperative Identical Payoff Games

The interaction of decision makers who share an environment is a com-
plex issue that is traditionally studied by game theory and economics.
The game theoretic formalism is very general, and analyzes the prob-
lem in terms of solution concepts such as Nash equilibrium [118], but
usually works under the assumption that the environment is perfectly

44

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 45

known to the agents.
In this chapter we describe a gradient-ascent policy-search algo-

rithm for cooperative multi-agent domains. In this setting, after each
agent performs its action given its observation according to some indi-
vidual strategy, they all receive the same payo�. Our objective is to
�nd a learning algorithm that makes each agent independently �nd a
strategy that enables the group of agents to receive the optimal payo�.
Although this will not be possible in general, we present a distributed
algorithm that �nds local optima in the space of the agents' policies.

An identical payo� stochastic game (ipsg) [110] describes the inter-
action of a set of agents with a Markov environment. That is, the state
of the environment at time t depends only on its previous state and
the actions of the agents. Formally, an identical payo� stochastic
game (ipsg)1 is a tuple

〈
S, πS

0 , G, T, ρ
〉
, where

� S is a discrete state space;

� πS
0 is a probability distribution over the initial state;

� G is a collection of agents, where an agent i is a 3-tuple of〈
Ai, Oi, Bi

〉

– its discrete action space Ai,

– discrete observation space Oi, and

– observation function Bi : S → P(Oi);

� T :S×A→P(S) is a mapping from states of the environment and
actions of the agents to probability distributions over states of
the environment; and

� ρ :S×A → R is the payo� function, where A =
∏

i Ai is the joint
action space of the agents.

Because all players receive the same payo�s, it is called an identical
payo� game.

When all agents in G have the identity observation function B(s) =

s for all s ∈ S, the game is completely observable. Otherwise, it is a
partially observable ipsg (poipsg). poipsgs are often a natural model

1ipsg's are also called stochastic games [66], Markov games [87] and multi-agent
Markov decision processes [24].

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 46

for multi-agent systems in which the agents are in di�erent physical lo-
cations, observing only part of the system state, dependent on their lo-
cation. Figure 3.1 depicts an inuence diagram for variables describing
two agents controlled by fscs interacting with an environment. In a

1
a (t)

2n (t)

a (t)

n (t)

2

n(t+1)
1

o(t+1)
1

s(t+1)s(t)

o (t)

o (t)

2

1

1

2

n(t+1)
2

o(t+1)

Fig. 3.1: An inuence diagram for
two agents with fscs in pomdp.

poipsg, at each time step:

� each agent i ∈ (1..k) ob-
serves oi(t) correspond-
ing to Bi(s(t)) and se-
lects an action ak(t) ac-
cording to its strategy;

� a compound action
~a(t) = (a1(t), . . . , ak(t))

from the joint action
space A is performed, in-
ducing a state transition
of the environment; and

� the identical reward r(t)

is received by all agents.

The objective of each agent is
to choose a strategy that max-
imizes the value of the game.
For a discount factor γ ∈ [0, 1)

and a set of strategies ~θ =

(θ1, . . . , θk), given the distri-
bution over initial state of the environment πS

0 , the value of the game
is

V(~θ, πS
0) =

1∑
t=0

γtE(r(t) | ~θ, πS
0).

Note that in a completely observable ipsg, reactive policies are su�-
cient to implement the best possible joint strategy. This follows directly
from the fact that every mdp has an optimal deterministic reactive
policy [133]. Therefore an mdp with the product action space

∏
i Ai

corresponding to a completely observable ipsg also has one. This de-
terministic reactive policy is representable by deterministic reactive
policies for each agent. Moreover, it has been shown that in partially
observable environments, the best memoryless policy can be arbitrar-
ily worse than the best policy using memory [157]. This statement

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 47

can also be easily extended to ipsgs. There are many possibilities for
constructing policies with memory [122, 104]. In this work we use a
�nite state controller (fsc) for each agent. A description of fscs is
given in Section 2.5 (also see the paper by Meuleau et al. [104]).

To better understand ipsgs, let us consider an example illustrated
in �gure 3.2 (adopted from Boutilier [24]). There are two agents, a1 and
a2, each of which has a choice of two actions, a and b, at any of three

s6

s5

s4

s2

s3

s1 (a,b)(b,a)

(a,a)(b,b)

+5

-10

+10

(a,)

(b,)

(*,*)

*

*

Fig. 3.2: A coordination problem in a com-
pletely observable identical payo� game.

states. All transitions are
deterministic and are labeled
by the joint action that cor-
responds to the transition.
For instance, the joint ac-
tion (a, b) corresponds to the
�rst agent performing action
a and the second agent per-
forming action b. Here, ∗
refers to any action taken
by the corresponding agent.
The starting state is s1,
where the �rst agent alone

decides whether to move the environment to state s2 by performing
action a or to state s3 by performing action b. In state s3, no matter
what both agents do as the next step, they receive a reward of +5 in
state s6 risk-free. In state s2, the agents have a choice of cooperating|
choosing the same action, whether (a, a) or (b, b)|with reward +10 in
state s4, or not|choosing di�erent actions, whether (a, b) or (b, a)|
and getting −10 in state s5. We will represent a joint policy with
parameters p

Agent
State , denoting the probability that an agent will per-

form action a in the corresponding state. Only three parameters are
important for the outcome: {p1

1, p1
2;p2

2}. The optimal joint policies are
{1, 1; 1} or {1, 0; 0}, which are deterministic reactive policies.

3.2 gaps in Multiagent Environments

In this section, we show how to apply a general method for using gra-
dient ascent in policy spaces to multi-agent problems. We compare the
case of centralized control of a system with distributed observations
and actions to that of distributed control.

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 48

Central control of factored actions

Let us consider the case in which the action is factored, meaning that
each action ~a consists of several components ~a=(a1, . . . , ak). We can
consider two kinds of controllers: a joint controller is a policy map-
ping observations to the complete joint distribution P(~a); a factored
controller is made up of independent sub-policies θai

: Oi → P(ai)

(possibly with a dependence on individual internal state) for each ac-
tion component.

Factored controllers can represent only a subset of the policies rep-
resented by joint controllers. Obviously, any product of policies for the
factored controller

∏
i θai

can be represented by a joint controller θ~a,
for which Pr(~a) =

∏k
i=1 Pr(ai). However, there are some stochastic

joint controllers that cannot be represented by any factored controller,
because they require coordination of probabilistic choice across action
components, which we illustrate by the following example.

Remark 3.2.1 The �rst action component controls the liquid com-
ponent of a meal a1 ∈ {vodka, milk} and the second controls the solid
one a2 ∈ {pickles, cereal}. Let us assume that that for a healthy diet,
we sometimes want to eat milk with cereal, other times vodka with
pickles. The optimal policy is randomized, say 10% of the time
~a = (vodka, pickles) and 90% of the time ~a = (milk, cereal). But
when the liquid and solid components are controlled independently,
one cannot represent this policy. With randomization, we are oc-
casionally forced to have vodka with cereal or milk with pickles.

Because we are interested in individual agents learning independent
policies, we concentrate on learning the best factored controller for a
domain, even if it is suboptimal in a global sense. Requiring a con-
troller to be factored simply puts constraints on the class of policies,
and therefore distributions P(a | θ, h), that can be represented. The
stochastic gradient ascent techniques of the previous section can still
be applied directly in this case to �nd local optima in the factored con-
troller space. We will call this method joint gradient ascent. For the
case of fscs we are going to assume a disjoint encoding of the action
function and the internal state transition function. A particular case
would be a look-up table encoding (see equations (2.5)).

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 49

Distributed control of factored actions

The next step is to learn to choose action components not centrally,
but under the distributed control of multiple agents. One obvious
strategy would be to have each agent perform the same gradient-ascent
algorithm in parallel to adapt the parameters of its own local policy θai

.
Perhaps surprisingly, this distributed gradient ascent policy search
(dgaps) method is very e�ective.

Theorem 3.1 In partially observable identical payo� stochastic
game, for factored controllers, distributed gradient ascent is equiv-
alent to joint gradient ascent.

Proof: We will show that for both controllers the algorithm will be
stepwise the same, so starting from the same point in the search space,
on the same data sequence, the algorithms will converge to the same
locally optimal parameter setting. For a factored controller, a joint
experience ~h can be described as

〈m1(0), ...mk(0), o1(1), ...ok(1), m1(1), ...mk(1), a1(1), ...ak(1), r(1), ...〉

and the corresponding experience hi for an individual agent i is

〈mi(0), oi(1),mi(1), ai(1), r(1), ...〉 .

It is clear that a collection h1...hk of individual experiences, one for
each agent, speci�es the joint experience ~h. In what follows, we are
going to present analysis for parameters θma and leave out identical
analysis for θmom. The joint gradient ascent algorithm requires that
we draw sample experiences from Pr(~h |πS

0 ,~θ) and that we do gradient
ascent on ~θ with a sample of the gradient (see equation (2.2)) at each
time step t in the experience h equal to

γtr(t, h)

t∑

τ=1

∂ ln Pr(a(τ, h) | πS
0 , ~hτ−1, θ)

∂θma
.

Whether a factored controller is being executed by a single agent,
or it is implemented by agents individually executing policies θai

in
parallel, joint experiences are generated from the same distribution
Pr(~h | πS

0 , 〈θa1
, ..., θak

〉). So the distributed algorithm is sampling
from the correct distribution.

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 50

Now, we must show that the weight updates are the same in the
distributed algorithm as in the joint one. Let ~θw = (θ0

w, . . . , θMw
w) be

the set of parameters controlling action component aw. Then

∂

∂θ
j
w

ln(Pr(al(τ) | πS
0 , ~hτ−1

l , θl)) = 0 for all w 6= l;

that is, the action probabilities of agent l are independent of the pa-
rameters in other agents' policies. With this in mind, for factored
controllers, the derivative in expression 2.2 becomes

∂

∂θ
j
w

ln Pr
(
~a(τ, h) | πS

0 , ~hτ−1,~θ
)

=
∂

∂θ
j
w

ln
k∏

i=1

Pr
(
ai(τ, h) | πS

0 , hτ−1
i , θi

)

=

k∑

i=1

∂

∂θ
j
w

ln Pr
(
ai(τ, h) | πS

0 , hτ−1
i , θi

)

=
∂

∂θ
j
w

ln Pr
(
aw(τ, h) | πS

0 , hτ−1
w , θw

)
.

Therefore, the same weight updates will be performed by distributed
gaps as by joint gradient ascent on a factored controller. ut

This theorem shows that policy learning and control over compo-
nent actions can be distributed among independent agents who are not
aware of each others' choice of actions. An important requirement,
though, is that agents perform simultaneous learning (which might be
naturally synchronized by the coming of the rewards).

3.3 Relating Local Optima in Policy Space
to Nash Equilibria

In game theory the Nash equilibrium is a common solution concept.
Because gradient ascent methods can often be guaranteed to converge
to local optima in the policy space, it is useful to understand how those
points are related to Nash equilibria. We will limit our discussion to
the two-agent case, but the results are generalizable to more agents.

A Nash equilibrium is a pair of strategies such that deviation by
one agent from its strategy, assuming the other agent's strategy is �xed,

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 51

cannot improve the overall performance. Formally, in an ipsg, a Nash
equilibrium point is a pair of strategies (θ∗1, θ∗2) such that:

V(〈θ∗1, θ∗2〉, πS
0) ≥ V(〈θ1, θ∗2〉, πS

0),

V(〈θ∗1, θ∗2〉, πS
0) ≥ V(〈θ∗1, θ2〉, πS

0)

for all 〈θ1, θ2〉. When the inequalities are strict, it is called a strict
Nash equilibrium.

Every discounted stochastic game has at least one Nash equilibrium
point [66]. It has been shown that under certain convexity assumptions
about the shape of payo� functions, the gradient ascent process con-
verges to an equilibrium point [6]. It is clear that the optimal Nash
equilibrium point (the Nash equilibrium with the highest value) in an
ipsg also is a possible point of convergence for the gradient ascent
algorithm, since it is the global optimum in the policy space.

Let us return to the game described in Figure 3.2. It has two
optimal strict Nash equilibria at {1, 1; 1} and {1, 0; 0}. It also has a set
of sub-optimal Nash equilibria {0, p1

2;p2
2}, where p2

2 can take on any
value in the interval (.25, .75) and p1

2 can take any value in the interval
[0, 1]. The sub-optimal Nash equilibria represent situations in which
the �rst agent always chooses the bottom branch and the second agent
acts moderately randomly in state s2. In such cases, it is strictly better
for the �rst agent to stay on the bottom branch with expected value
+5. For the second agent, the payo� is +5 no matter how it behaves, so
it has no incentive to commit to a particular action in state s2 (which
is necessary for the upper branch to be preferred).

In this problem, the Nash equilibria are also all local optima for the
gradient ascent algorithm. Unfortunately, this equivalence only holds
in one direction in the general case. We state this more precisely in the
following theorems.

Theorem 3.2 In partially observable identical payo� stochastic
game, every strict Nash equilibrium is a local optimum for gra-
dient ascent in the space of parameters of a factored controller.

Proof: Assume that we have two agents and denote the strategy at
the point of strict Nash equilibrium as (θ∗1, θ∗2) encoded by parame-
ter vector 〈θ1

1 . . . θG
1 , θ1

2 . . . θG
2〉. For simplicity, let us further assume

that (θ∗1, θ∗2) is not on the boundary of the parameter space, and each
weight is locally relevant: that is, that if the weight changes, the policy
changes, too.

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 52

By the de�nition of Nash equilibrium, any change in value of the
parameters of one agent without change in the other agent's param-
eters results in a decrease in the value V(). In other words, we have
that ∂V/∂θ

j
i ≤ 0 and −∂V/∂θ

j
i ≤ 0 for all j and i at the equilibrium

point. Thus, ∂V/∂θ
j
i = 0 for all θ

j
i at (θ∗1, θ∗2), which implies it is a sin-

gular point of V(). Furthermore, because the value decreases in every
direction, it must be a maximum.

In the case of a locally irrelevant parameter θ
j
i, V() will have a ridge

along its direction. All points on the ridge are singular and, although
they are not strict local optima, they are essentially local optima for
gradient ascent. ut

The problem of Nash equilibria on the boundary of the parame-
ter space is an interesting one. Whether or not they are convergence
points depends on the details of the method used to keep gradient as-
cent within the boundary. A particular problem comes up when the
equilibrium point occurs when one or more parameters have in�nite
value (this is not uncommon, as we shall see in section 3.4). In such
cases, the equilibrium cannot be reached, but it can usually be ap-
proached closely enough for practical purposes.

Theorem 3.3 For partially observable identical payo� stochastic
game, some local optima for gradient ascent in the space of pa-
rameters of a factored controller are not Nash equilibria.

Proof: From the point of view of a single agent, the theorem states
that a local optimum need not be a global one. Consider a situation
in which each agent's policy has a single parameter θi, so the policy
space can be described by 〈θ1, θ2〉. We can construct a value function
V(θ1, θ2) such that for some c, V(·, c) has two modes, one at V(a, c)

and the other at V(b, c), such that V(b, c) > V(a, c). Further assume
that V(a, ·) and V(b, ·) each have global maxima V(a, c) and V(b, c).
Then V(a, c) is a local optimum that is not a Nash equilibrium. ut

3.4 Experiments with Cooperative Games

According to our knowledge, there are no established benchmark prob-
lems for multi-agent learning. To illustrate our method we present
empirical results for two problems: the simple coordination problem
discussed earlier and illustrated in �gure 3.2 and for a small multi-
agent simulated soccer domain.

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 53

Simple coordination without communication

We originally discussed policies for this problem using three weights,
one corresponding to each of the p

Agent
State probabilities. However, to

force gradient ascent to respect the bounds of the simplex, we used the
standard Boltzmann encoding, so that for agent i in state s there are
two weights, θi

s,a and θi
s,b, one for each action. The action probability

is coded as a function of these weights as pi
s =

exp(θi
sa)

exp(θi
sa)+exp(θi

sb)
.

3

4

5

6

7

8

9

10

0 100 200 300 400 500

sample run Pa
yo

ff

�

Trials

average

Fig. 3.3: Learning curve for the 6-state coordination problem.

Figure 3.3 shows the result of running distributed gaps with a
learning rate of α = .003 and a discount factor of γ = .99. The graph
of a sample run illustrates how the agents typically initially move to-
wards a sub-optimal policy. The policy in which the �rst agent always
takes action b and the second agent acts fairly randomly is a Nash equi-
librium, as we saw in section 3.3. However, this policy is not exactly
representable in the Boltzmann parameterization because it requires
one of the weights to be in�nite to drive a probability to either 0 or 1.
So, although the algorithm moves toward this policy, it never reaches
it exactly. This means that there is an advantage for the second agent

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 54

to drive its parameter toward 0 or 1, resulting in eventual convergence
toward a global optimum (note that, in this parameterization, these
optima cannot be reached exactly, either). The average of ten runs
shows that the algorithm always converges to a pair of policies with
value very close to the maximum value of 10.

Soccer Domain

We have conducted experiments on a small soccer domain adapted from
Littman [87]. The game is played on a 6×5 grid as shown in Figure 3.4.
There are two learning agents on one team and a single opponent with

V1

V2

O

G
O

A
L

G
O

A
L

Fig. 3.4: The soccer �eld with two learning
agents (V1 and V2) and the opponent (O).

a �xed strategy on the
other. Every time the
game begins, the learn-
ing agents are randomly
placed in the right half
of the �eld, and the op-
ponent in the left half of
the �eld. Each cell in
the grid contains at most
one player. Every player
on the �eld (including the
opponent) has an equal
chance of initially possess-

ing the ball. At each time step, one of the six actions:
{North, South, East,West, Stay, Pass} is executed by a player. When
an agent passes, the ball is transferred to the other agent on its team
on the next time step. Once all players have selected actions, they are
executed in a random order. When a player executes an action that
would move it into the cell occupied by some other player, possession
of the ball goes to the stationary player and the move does not occur.
When the ball falls into one of the goals, the game ends and a reward
of ±1 is given.

We made a partially observable version of the domain to test the
e�ectiveness of dgaps: each agent can only obtain information about
which player possesses the ball and the status of cells to the north,
south, east and west of its location. There are three possible observa-
tions for each cell: whether it is open, out of the �eld, or occupied by
someone.

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 55

Results for Soccer Domain

In �gures 3.5, 3.6, 3.7 and 3.8 we compare the learning curves of dgaps
to those of Q-learning with a central controller for both the completely
observable and the partially observable cases. We also show learning
curves of dgaps without the action Pass in order to measure the coop-
erativeness of the learned policies. The graphs summarize simulations
of the game against three di�erent �xed-strategy opponents:

� Random: Executes actions uniformly at random.

� Greedy: Moves toward the player possessing the ball and stays
there. Whenever it has the ball, it rushes to the goal.

� Defensive: Rushes to the front of its own goal, and stays or moves
at random, but never leaves the goal area.

We show the average performance over 10 runs. The learning rate was
0.05 for distributed gaps and 0.1 for Q-learning, and the discount factor
was 0.999, throughout the experiments. Each agent in the dgaps team
learned a four-state �nite-state controller. The controller parameters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400

A
ve

ra
ge

 D
is

co
un

te
d

R
ew

ar
d

�

Trials (in thousands)

Q-learning/Completely Observable
Q-learning/Partially Observable

DGAPS/Partially Observable
DGAPS/No Pass/Partially Observable

Fig. 3.5: Learning curve for a defensive opponent.

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 56

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

A
ve

ra
ge

 D
is

co
un

te
d

R
ew

ar
d

�

Trials (in thousands)

Q-learning/Completely Observable
Q-learning/Partially Observable

DGAPS/Partially Observable
DGAPS/No Pass/Partially Observable

Fig. 3.6: Learning curve for a greedy opponent.

were initialized by drawing uniformly at random from the appropriate
domains. We used ε-greedy exploration with ε = .04 for Q-learning.
The performance in the graph is reported by evaluating the greedy
policy derived from the look-up table by picking the maximal Q-value.

Because, in the completely observable case, this domain is an
mdp (the opponent's strategy is �xed, so it is not really an adversarial
game), Q-learning can be expected to learn the optimal joint policy,
which it seems to do. It is interesting to note the slow convergence of
completely observable Q-learning against the random opponent. We
conjecture that this is because, against a random opponent, a much
larger part of the state space is visited. The table-based value function
o�ers no opportunity for generalization, so it requires a great deal of
experience to converge.

As soon as observability is restricted, Q-learning no longer reliably
converges to the best strategy. The joint Q-learner now has as its
input the two local observations of the individual players. It behaves
quite erratically, with extremely high variance because it sometimes
converges to a good policy and sometimes to a bad one. This unreliable

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 57

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

A
ve

ra
ge

 D
is

co
un

te
d

R
ew

ar
d

�

Trials (in thousands)

Q-learning/Completely Observable
Q-learning/Partially Observable

DGAPS/Partially Observable
DGAPS/No Pass/Partially Observable

Fig. 3.7: Learning curve for a random opponent.

behavior can be attributed to the well-known problems of using value-
function approaches, and especially Q-learning, in pomdps.

The individual dgaps agents have internal state as well as stochas-
ticity in their action choices, which gives them some representational
abilities unavailable to the Q-learner. However, because they have only
four internal states, they are not able to represent a complete reactive
policy, with a di�erent action for each possible observation. This re-
striction forces generalization, but also has the potential to make it
impossible to represent a good strategy.

Despite the fact that they learn independently, the combination
of policy search plus a di�erent policy class allows them to gain con-
siderably improved performance. We cannot tell how close this perfor-
mance is to the optimal performance with partial observability, because
it would be computationally impractical to solve the poipsg exactly.
Bernstein et al. [19] show that in the �nite-horizon case, two-agent
poipsgs are harder to solve than pomdps (in the worst-case complex-
ity sense).

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 58

-0.1

0

0.1

0.2

0.3

0.4

0 100 200 300 400

A
ve

ra
ge

 D
is

co
un

te
d

R
ew

ar
d

�

Trials (in thousands)

Q-learning/Partially Observable
DGAPS/Partially Observable

Fig. 3.8: Learning curve for a team of two agents.

It is also important to see that the two dgaps agents have learned to
cooperate in some sense: when the same algorithm is run in a domain
without the \pass" action, which allows one agent to give the ball to
its teammate, performance deteriorates signi�cantly against both de-
fensive and greedy opponents. Against a completely random opponent,
both strategies do equally well. It is probably su�cient, in this case,
to simply run straight for the goal, so cooperation is not necessary.

We performed some additional experiments in a two-on-two domain
in which one opponent behaved greedily and the other defensively. In
this domain, the completely observable state space is so large that it
is di�cult to even store the Q table, let alone populate it with reason-
able values. Thus, we just compare two four-state dgaps agents with
a limited-view centrally controlled Q-learning algorithm. Not surpris-
ingly, we �nd that the dgaps agents are considerably more successful.

Finally, we performed informal experiments with an increasing
number of opponents. The opponent team was made up of one de-
fensive agent and an increasing number of greedy agents. For all cases
in which the opponent team had more than two greedy agents, dgaps

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 59

led to a defensive strategy in which, most of the time, all agents rushed
to the front of their goal and remained there.

3.5 Related Work

There is a wide interest in applying reinforcement learning algorithms
to multi-agent environments. For example, Littman [87] describes and
analyzes a Q-learning-like algorithm for �nding optimal policies in
the framework of zero-sum Markov games, in which two players have
strictly opposite interests. Hu and Wellman [66] propose a di�erent
multi-agent Q-learning algorithm for general-sum games, and argue
that it converges to a Nash equilibrium.

A simpler, but still interesting case, is when multiple agents share
the same objectives. A study of the behavior of agents employing Q-
learning individually was made by Claus and Boutilier [37], focusing on
the inuence of game structure and exploration strategies on conver-
gence to Nash equilibria. In Boutilier's later work [24], an extension of
value iteration was developed that allows each agent to reason explicitly
about the state of coordination.

However, all of this research uses value search methods that are
appropriate in completely observable Markov environments, but not
necessarily useful in partially observable environments. It is quite nat-
ural in multi-agent systems to assume that when the di�erent agents
are in di�erent physical locations, they do not observe each others'
states.

Assuming that parts of the distributed system are able to com-
municate locally and that the reinforcement signal can be somehow
apportioned to local components, Schneider et al. [148] proposed a
value learning rule which was empirically found to be e�ective for some
applications, but in general produces a solution with uncertain prop-
erties. Bartlett and Baxter [11] have independantly arrived to conclu-
sions very similar to ours [123, 125] for distributed gradient ascent for
poliy search. They stress biological plausibility of this algorithms for
synaptic update rule in spiking neurons that involves only local quan-
tities and reward signal, as opposed to e.g. back-propagation of error
algorithms [140, 139].

CHAPTER 3. POLICY SEARCH IN MULTIAGENT ENVIRONMENTS 60

3.6 Discussion

We have presented an algorithm for distributed learning in cooperative
multi-agent domains. It is guaranteed to �nd local optima in the space
of factored policies. We cannot show, however, that it always converges
to a Nash equilibrium, because there are local optima in policy space
that are not Nash equilibria. The algorithm performed well in a small
simulated soccer domain. It is not guaranteed that in more complex
domains the gradient remains strong enough to drive the search ef-
fectively and numerous local optima are not problematic. Chapter 4
presents an application of distributed gaps to a complex domain of
adaptive routing.

An interesting extension of this work would be to allow the agents
to perform explicit communication actions with one another to see if
they are exploited to improve performance in the domain. The perfor-
mance of the algorithm itself might be improved through more careful
exploration strategies coupled with the methods for experience reuse,
described in chapter 5. It seems that care must be taken to ensure that
only one agent is exploring at a time. Finally, there may be more inter-
esting connections to establish with game theory, especially in relation
to solution concepts other than Nash equilibrium, which may be more
appropriate in cooperative games.

Chapter 4

Adaptive Routing

Summary In this chapter, we will apply the rl algorithm developed
earlier to network routing. Successful telecommunications require e�-
cient resource allocation which can be achieved by developing adaptive
control policies. Reinforcement learning presents a natural framework
for the development of such policies by trial and error in the process
of interaction with the environment. E�ective network routing means
selecting the optimal communication paths. It can be modeled as a
multi-agent rl problem and solved using the distributed gradient as-
cent algorithm. Performance of this method is compared to that of
other algorithms widely accepted in the �eld. Conditions in which our
method is superior are presented.

4.1 Description of Routing Domain

Successful telecommunications requires e�cient resource allocation
which can be achieved by developing adaptive control policies. Rein-
forcement learning presents a natural framework for the development
of such policies by trial and error in the process of interaction with the
environment. In a sense, learning an optimal controller for network
routing can be thought of as learning in some episodic task of a kind
we have seen in earlier chapters, like maze searching or pole balancing,
but repeating trials many times in parallel with interaction among tri-
als. Under this interpretation, an individual router is an agent which
makes its routing decisions according to an individual policy. The pa-
rameters of this policy are adjusted according to some measure of the

61

CHAPTER 4. ADAPTIVE ROUTING 62

global performance of the network, while control is determined by local
observations.

The approach described in chapter 3 allows to update the local poli-
cies, avoiding the necessity for centralized control or global knowledge
of the networks structure. The only global information required by
the learning algorithm is the network utility expressed as a reward sig-
nal distributed once an epoch (corresponding to the successful delivery
of some prede�ned number of packets) and dependent on the average
routing time.

We test our algorithm on a domain adopted from Boyan and
Littman [25]. It is a discrete time simulator of communication net-
works with various topologies and dynamic structure. A communica-
tion network is an abstract representation of real-life systems such as
the Internet or a transport network. It consists of a homogeneous set
of nodes and edges between them representing links (see Figure 4.1).
Nodes linked to each other are called neighbors. Links may be active
(\up") or inactive (\down"). Each node can be the origin or the �nal
destination of packets, or serve as a router.

Packets are periodically introduced into the network with a uni-
formly random node of origin and destination. They travel to their
destination node by hopping between intermediate nodes. No packets
are generated being destined to the node of origin. Sending a packet
down a link incurs a cost that can be thought of as time in transition.
There is an added cost to waiting in the queue of a particular node
in order to access the router's computational resource|a queue delay.
Both costs are assumed to be uniform throughout the network. In our
experiments, each is set to be a unit cost. The level of network tra�c
is determined by the number of packets in the network. Once a packet
reaches its destination, it is removed. If a packet has made signi�cantly
more hops than the total number of nodes in the network, it is also
removed as a hopeless case. Multiple packets line up at nodes in an
fifo (�rst in �rst out) queue limited in size. The node must forward
the top packet in the fifo queue to one of its neighbors.

In the terminology of rl, the network is the environment whose
state is determined by the number and relative position of nodes, the
status of links between them, and the dynamics of packets. The des-
tination of the packet and the status of local links form the node's
observation. Each node is an agent who has a choice of actions. It
decides where to send the packet according to a policy. Just like any

CHAPTER 4. ADAPTIVE ROUTING 63

policy, a routing policy could be deterministic or stochastic. A pol-
icy computed by our algorithm is stochastic, which means it sends a
packet to the same destination down di�erent links according to some
distribution. The policy considered in our experiments does not decide
whether or not to accept a packet (admission control), how many pack-
ets to accept from each neighbor, or which packets should be assigned
priority.

The node updates the parameters of its policy based on the reward.
Its reward comes in the form of a signal distributed through the network
once the packet has reached its �nal destination. The reward depends
on the total delivery time for the packet. We measure the performance
of the algorithm by the average delivery time for packets once the
system has settled on a policy.

Each packet is assumed to carry some elements of its routing his-
tory in adition to obvious destination and origin information. They
include the time when the packet was generated, the time the packet
last received attention from some router, the trace of recently visited
nodes and the number of hops performed so far. In case a packet is
detected to have spent too much time in the network failing to reach
its destination, such packet is discarded and the network is penalized
accordingly. Thus, a de�ning factor in our simulation is whether the
number of hops performed by a packet is more than the total number
of nodes in the network.

4.2 Algorithmic Details

We compare the performance of our distributed gaps algorithm to
three others, as follows. \Best" is a static routing scheme, based on
the shortest path counting each link as a single unit of routing cost.
We include this algorithm because it provides the basis for most cur-
rent industry routing heuristics [18, 45]. \Bestload"performs routing
according to the shortest path while taking into account queue sizes
at each node. It is close to the theoretical optimum among determin-
istic routing algorithms even though the actual best possible routing
scheme requires not simply computing the shortest path based on net-
work loads, but also analyzing how loads change over time according
to routing decisions. Since calculating the shortest path at every sin-
gle step of the simulation would be prohibitively costly in terms of

CHAPTER 4. ADAPTIVE ROUTING 64

computational resources, we implemented \Bestload" by readjusting
the routing policy only after a notable change of loads in the network.
We consider 50 successfully delivered packets to constitute a notable
load change. Finally, \Q-routing" is a distributed rl algorithm ap-
plied speci�cally to this domain by Littman and Boyan [25]. While
our algorithm is stochastic and performs policy search, Q-routing is a
deterministic, value search algorithm. Note that our implementation
of the network routing simulation is based on the software Littman and
Boyan used to test Q-routing. Even so, the results of our simulation
of \Q-routing" and \Best" on the \6x6" network di�er slightly from
Littman and Boyan's due to certain modi�cations in tra�c modeling
conventions. For instance, we consider a packet delivered and ready
for removal only after it has passed through the queue of the desti-
nation node and accessed its computational resources, and not merely
when the packet is successfully routed to the destination node by an
immediate neighbor, as in the original simulation.

We undertake the comparison between gaps and the aforemen-
tioned algorithms with one important caveat. The gaps algorithm
explores the class of stochastic policies while all other methods pick
deterministic routing policies. Consequently, it is natural to expect
gaps to be superior for certain types of network topologies and loads,
where the optimal policy is stochastic. Later, we show that our exper-
iments con�rm this expectation.

We implement the distributed gaps in pomdp. In particular, we
represent each router as a pomdp, where the state contains the sizes
of all queues, the destinations of all packets, the state of links (up or
down); the environment state transition function is a law of the dy-
namics of network tra�c; an observation o consists of the destination
of the packet; an action a corresponds to sending the packet down a
link to an adjacent node; and �nally, the reward signal is the average
number of packets delivered per unit of time. A routing policy in gaps
is represented by a look-up table. Each agent uses a gaps rl algorithm
to move parameterization values down the gradient of the average re-
ward. It has been shown [123] that an application of distributed gaps
causes the system as a whole to converge to a local optimum under sta-
tionarity assumptions. This algorithm is essentially the one described
in chapter 3.

Policies were initialized in two di�erent ways: randomly and based
on shortest paths. We tried initialization with random policies uni-

CHAPTER 4. ADAPTIVE ROUTING 65

formly chosen over the parameter space. With such initialization re-
sults are very sensitive to the learning rate.A high learning rate often
causes the network to stick in local optima in combined policy space,
with very poor performance. A low learning rate results in slow con-
vergence. What constitutes high or low learning rate depends on the
speci�cs of each network and we did not �nd any satisfactory heuristics
to set it. Obviously, such features as average number of hops necessary
to deliver a packet under the optimal policy as well as learning speed
crucially depend on the particular characteristics of each network, such
as number of nodes, connectivity and modularity.

These considerations led us to a di�erent way of initializing con-
trollers. Namely, we begin by computing the shortest path and set the
controllers to route most of the tra�c down the shortest path, while
occasionally sending a packet to explore an alternative link. We call
this \ε-greedy routing". In our experiments, ε is set to .01. We be-
lieve that this parameter would not qualitatively change the outcome
of our experiments since it only inuences exploratory behaviour in the
beginning.

The exploration capacity of the algorithm is regulated in a dif-
ferent way as well. Temperature and learning rate are simply kept
constant both for considerations of simplicity and for maintaining the
controllers' ability to adjust to changes in the network, such as links
failure. However, our experiments indicate that having a schedule for
reducing learning rate after a key initial period of learning would im-
prove performance. Alternatively, it would be interesting to explore
di�erent learning rates for the routing parameters on one hand, and
the encoding of topological features on the other.

4.3 Empirical Results

We compared the routing algorithms on several networks with various
number of nodes and degrees of connectivity and modularity, includ-
ing the 116-node \lata" telephone network. On all networks, the
gaps algorithm performed comparably or better than other routing
algorithms. To illustrate the principal di�erences in the behavior of al-
gorithms and the key advantages of distributed gaps, we concentrate
on the analysis of two routing problems on networks which di�er in a
single link location.

CHAPTER 4. ADAPTIVE ROUTING 66

20

30 32

25 26

1918

24

12 13 14

876

0 1 2 3 4 5

11109

15 16 17

232221

28 2927

35343331 30 32

25 26

18

24

12

7

0 1 2 3 4 5

11109

15 16 17

232221

28 2927

35343331

20

1413

6 8

19

Fig. 4.1: The irregular grid topology.

Figure 4.1.left presents the irregular 6x6 grid network topology used
by Boyan and Littman [25] in their experiments. The network consists
of two well connected components with a bottleneck of tra�c falling on
two bridging links. The resulting dependence of network performance
on the load is depicted in �gure 4.2(top). All graphs represent per-
formance after the policy has converged, averaged over �ve runs. We
tested the network on loads ranging from .5 to 3.5, to compare with the
results obtained by Littman and Boyan. The load corresponds to the
average number of packets injected per time unit. This is Poisson ar-
rival process and the time till injection of the next packet is distributed
exponentially. On this network topology, gaps is slightly inferior to
other algorithms on lower loads, but does at least as well as Bestload
on higher loads, outperforming both Q-routing and Best. The slightly
inferior performance on low loads is due to exploratory behaviour of
gaps|some fraction of packets is always sent down random link.

To illustrate the di�erence between the algorithms more explic-
itly, we altered the network by moving just one link from connecting
nodes 32 and 33, to connecting nodes 20 and 27 as illustrated by �g-
ure 4.1.right. Since node 20 obviously represents a bottleneck in this
con�guration, the optimal routing policy is bound to be stochastic. The
resulting dependence of network performance on the load is presented
in �gure 4.2(bottom). gaps is clearly superior to other algorithms at
high loads. It even outperforms \Bestload" that has all the global in-
formation in choosing a policy, but is bound to deterministic policies.
Notice how the deterministic algorithms get frustrated at much lower
loads in this network con�guration than in the previous one since from

CHAPTER 4. ADAPTIVE ROUTING 67

0.5 1 1.5 2 2.5 3 3.5 4
5

8

11

14

17

20

Load

A
v
e
r
a
g
e

d
e
l
i
v
e
r
y

t
i
m
e

Q−route
Best
BestLoad
GAPS

0.5 1 1.5 2 2.5 3
5

8

11

14

17

20

Load

A
v
e
r
a
g
e

d
e
l
i
v
e
r
y

t
i
m
e

Q−route
Best
BestLoad
GAPS

Fig. 4.2: Performance of adaptive routing algorithms on the irregular grid network.

CHAPTER 4. ADAPTIVE ROUTING 68

their perspective, the bridge between highly connected components
gets twice thinner (compare top and bottom of Figure 4.2).

The gaps algorithm successfully adapts to changes in the network
con�guration. Under increased load, the preferred route from the left
part of the network to the right becomes evenly split between the two
\bridges" at node 20. By using link 20 − 27, the algorithm has to
pay a penalty of making a few extra hops compared to link 20 − 21,
but as the size of the queue at node 21 grows, this penalty becomes
negligible compared to the waiting time. Exploratory behavior helps
gaps discover when links go down and adjust the policy accordingly.
We have experimented with giving each router a few bits of memory in
�nite state controller [121, 104] but found that this does not improve
performance and slows down the learning somewhat.

4.4 Related Work

The application of machine learning techniques to the domain of
telecommunications is a rapidly growing area. The bulk of problems
�t into the category of resource allocation; e.g., bandwidth allocation,
network routing, call admission control (cac) and power management.
rl appears promising in attacking all of these problems, separately or
simultaneously.

While we focus exclusively on routing, Marbach, Mihatsch and Tsit-
siklis [93, 94] have applied an actor-critic (value-search) algorithm to
tackle both routing and call admission control for calls that di�er in
value and resource requirements. Their approach is decompositional,
representing the network as consisting of link processes, each with its
own di�erential reward. The empirical results on relatively small net-
works of 4 and 16 nodes show that learning algorithm �nds sophis-
ticated policies which are di�cult to obtain through heuristics and
outperforms these with regard to relative lost reward by 25% to 70%.

Others have addressed admission control as a separate control prob-
lem. Carlstr�om [30] introduces predictive gain scheduling, a rl strategy
based on a time-series prediction of near-future call arrival rates and
precomputation of control policies for Poisson call arrival processes.
This approach results in faster learning without performance loss. The
online convergence rate increases 50 times on a simulated link with
capacity 24 units/sec.

CHAPTER 4. ADAPTIVE ROUTING 69

Generally speaking, value-search algorithms have been more exten-
sively investigated than policy search in the domain of communications.
Value-search (Q-learning) algorithms have arrived at promising results.
Boyan and Littman's [25] algorithm, Q-routing, proves superior to non-
adaptive techniques based on shortest paths, and robust with respect to
dynamic variations in the simulation on a variety of network topologies,
including an irregular 6 × 6 grid and 116-node lata phone network.
It regulates the trade-o� between the number of nodes a packet has to
traverse and the possibility of congestion.

Wolpert, Tumer and Frank [190] construct a formalism for the so-
called Collective Intelligence (coin) neural net applied to Internet traf-
�c routing. Their approach involves automatically initializing and up-
dating the local utility functions of individual rl agents (nodes) from
the global utility and observed local dynamics. Their simulation out-
performs a Full Knowledge Shortest Path Algorithm on a sample net-
work of seven nodes. coin networks employ a method similar in spirit
to the research presented here. They rely on a distributed rl algorithm
that converges on local optima without endowing each agent node with
explicit knowledge of network topology. However, coin di�ers form our
approach in requiring the introduction of preliminary structure into the
network by dividing it into semi-autonomous neighborhoods that share
a local utility function and encourage cooperation. In contrast, all the
nodes in our network update their algorithms directly from the global
reward.

The work presented in this paper focuses on packet routing using
policy search. It resembles the work of Tao, Baxter and Weaver [172],
who apply a policy-gradient algorithm to induce cooperation among the
nodes of a packet switched network in order to minimize the average
packet delay. While their algorithm performs well in several network
types, it takes many (tens of millions) trials to converge on a network
of just a few nodes. The di�erence between their results and ours
lies in the credit assignment procedure. In our setup, the network is
homogeneous, with each link incurring the same cost as any other. In
contrast, their experiments reect a more complex relationship beween
network structure and reward.

Applying reinforcement learning to communication often involves
optimizing performance with respect to multiple criteria. For a recent
discussion on this challenging issue see Shelton [151]. In the context of
wireless communication it was addressed by Brown [27] who considers

CHAPTER 4. ADAPTIVE ROUTING 70

the problem of �nding a power management policy that simultaneously
maximizes the revenue earned by providing communication while min-
imizing battery usage. The problem is de�ned as a stochastic shortest
path with discounted in�nite horizon, where the discount factor varies
to model power loss. This approach resulted in signi�cant (50%) im-
provement in power usage.

One direction of research seeks to optimize routing decisions by e�-
ciently propagating information about the current state of the network
obtained by the traveling packets.Gelenbe et al. [49] divide packets into
three types: \smart", \dumb" and \acknowledgment". A small num-
ber of smart packets learn the most e�cient ways of navigating through
the network, dumb packets simply follow the route taken by the smart
packets, while acknowledgment packets travel on the inverse route of
smart packets to provide source routing information to dumb packets.
The division between smart and dumb packets is an explicit representa-
tion of the explore/exploit dilemma. Smart packets allow the network
to adapt to structural changes while the dumb packets exploit the rel-
ative stability between those changes. Promising results are obtained
both on a simulation network of 100 nodes and on a physical network
of 6 computers.

Subramanian, Druschel and Chen [165] adopt an approach from
ant colonies that is very similar in spirit. The individual hosts in
their network keep routing tables with the associated costs of sending
a packet to other hosts (such as which routers it has to traverse and
how expensive they are). These tables are periodically updated by
\ants"-messages whose function is to assess the cost of traversing links
between hosts. The ants are directed probabilistically along available
paths. They inform the hosts along the way of the costs associated with
their travel. The hosts use this information to alter their routing tables
according to an update rule. There are two types of ants. Regular ants
use the routing tables of the hosts to alter the probability of being
directed along a certain path. After a number of trials, all regular
ants bound to the same destination start using the same routes. Their
function is to allow the host tables to converge on the correct cost �gure
in case the network is stable. Uniform ants take any path with equal
probability. They are the ones who continue exploring the network and
assure successful adaptation to changes in link status or link cost.

CHAPTER 4. ADAPTIVE ROUTING 71

4.5 Discussion

Admittedly, the simulation of the network routing process presented
here is far from being realistic. A more realistic model could include
such factors as non-homogeneous networks with regard to link band-
width and routing-node bu�er size limits, collisions of packets, packet
ordering constraints, various costs associated with say, particular links
chosen from commercial versus government subnetworks, and minimal
Quality of Service requirements. Introducing priorities for individual
packets brings up yet another set of optimization issues. However,
the learning algorithm we applied shows promise in handling adaptive
telecommunication protocols and there are several obvious ways to de-
velop this research. Incorporating domain knowledge into controller
structure is one such direction. It would involve classifying nodes into
sub-networks and routing packets in a hierarchical fashion. One step
further down this line is employing learning algorithms for routing in
ad-hoc networks. Ad-hoc networks are networks where nodes are be-
ing dynamically introduced and terminated from the system, as well as
existing active nodes are moving about, losing some connections and
establishing new ones. Under the realistic assumption that physical
variations in the network are slower than tra�c routing and evolution,
adaptive routing protocols should de�nitely outperform any heuristic
pre-de�ned routines. We are currently pursuing this line of research.

Chapter 5

Policy Evaluation with
Data Reuse

Summary Stochastic optimization algorithms used in reinforcement
learning rely on estimates of the value of a policy. Typically, the value
of a policy is estimated from results of simulating that very policy in
the environment. This approach requires a large amount of simulation
as di�erent points in the policy space are considered. In this chapter,
we develop value estimators that use data gathered when using one
policy to estimate the value of using another policy, resulting in much
more data-e�cient algorithms.

5.1 Introduction

So far, we have focused on designing algorithms for an agent interacting
with an environment, to adjust its behavior in such a way as to optimize
a long-term return. This means searching for an optimal behavior in a
class of behaviors. The success of learning algorithms therefore depends
both on the richness of information about various behaviors and on how
e�ectively it is used. While the latter aspect has been given a lot of
attention, the former aspect has not been addressed carefully. In this
chapter we adapt solutions developed for similar problems in the �eld
of statistical learning theory.

The process of interaction between the learning agent and the en-
vironment is costly in terms of time, money or both. Therefore, it is

72

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 73

important to carefully allocate available interactions, to use all avail-
able information e�ciently and to have an estimate of how informative
the experience overall is with respect to the class of possible behaviors.

In realistic settings, the class of policies is restricted and even among
the restricted set of policies, the absolute best policy is not expected
to be found due to the di�culty of solving a global multi-variate op-
timization problem. Rather, the only option is to explore di�erent
approaches to �nding near-optimal solutions among local optima.

The issue of �nding a near-optimal policy from a given class of
policies in reinforcement learning is analogous to a similar issue in su-
pervised learning. There we are looking for a near-optimal hypothesis
from a given class of hypotheses [179]. However, there are crucial dif-
ferences in these two settings. In supervised learning we assume that
there is some target function that labels the examples, generated ac-
cording to some distribution. This distribution is the same for all the
hypotheses. It implies both that the same set of samples can be evalu-
ated on any hypothesis, and that the observed error is a good estimate
of the true error.

In contrast, there is no �xed distribution generating experiences
in reinforcement learning. Each policy induces a di�erent distribution
over experiences. The choice of a policy de�nes both a \hypothesis"
and a distribution. This raises the question of how one can reuse the
experience obtained while following one policy to learn about another.
The other policy might generate a very di�erent set of samples (expe-
riences), and in the extreme case the support of the two distributions
might be disjoint.

We present a way of reusing all of the accumulated experience by
an agent that does not have a (generative) model of the environment
(see [73]). We make use of a technique known as \importance sam-
pling" [138] or \likelihood ratio estimation" [51] to di�erent communi-
ties in order to estimate the policy's value. We also discuss properties
of various estimators. The general idea is illustrated by Figure 5.1.
Our goal is to build a module that contains a non-parametric model
of the optimization surface. Given an arbitrary policy, such a module
outputs an estimate of its value, as if the policy had been tried out in
the environment. With such a module, guaranteed to provide good es-
timates of policy value across the policy class, we may use our favorite
optimization algorithm.

One realistic o�-line scenario in reinforcement learning is when

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 74

V(),V(),...,V()

AGENT

$

PROXY

V()θ
θ

θ θθ ,θ ,...,θ

ENVIRONMENT

1 2 n 2 nθ1

Fig. 5.1: An organization of the policy evaluation process.

the data processing and optimization (learning) module is separated
(physically) from the data acquisition module (agent). Say we have an
ultra-light micro-sensor connected to a central computer. The agent
then has to be instructed initially how to behave when given a chance
to interact with the environment for a limited number of times, then
bring/transmit the collected data back. Naturally, during such lim-
ited interaction only a few possible behaviors can be tried out. It is
extremely important to be able to generalize from this experience in
order to make a judgment about the quality of behaviors that were not
tried out. This is possible when some kind of similarity measure in the
policy class can be established. If the di�erence between the values of
two policies can be estimated, we can estimate the value of one policy
based on experience with the other.

The rest of this chapter is organized as follows. Section 5.2 presents
the necessary background in sampling theory and presents our way of
estimating the value of policies. The algorithm is described in Sec-
tion 5.3. Section 5.4 presents comparative empirical studies of likeli-
hood sampling combined with gradient descent in various implemen-
tations.

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 75

5.2 Likelihood Ratio Estimation

For the sake of clarity, we will review concepts from sampling theory
using relevant reinforcement learning concepts. Rubinstein [138] pro-
vides a good overview of this material. Note that for simplicity we use
hi to denote experience as both the random variable and its realisation.
We believe this does not introduce any confusion into the presentation.

“Crude” sampling If we need to estimate the value V(θ) of policy
θ, from independent, identically distributed (i.i.d.) samples induced
by this policy, after taking N samples hi, i ∈ (1..N) we have:

V̂(θ) =
1

N

∑

i

R(hi) . (5.1)

The expected value of this estimator is V(θ) and it has variance:

Var
[
V̂(θ)

]
=

1

N

∑

h∈H

R(h)2 Pr(h|θ) −
1

N

[∑

h∈H

R(h) Pr(h|θ)

]2

=
1

N
Eθ

[
R(h)2

]
−

1

N
V2(θ) .

Indirect sampling Imagine now that for some reason we are unable
to sample from the policy θ directly, but instead we can sample from
another policy θ′. The intuition is that if we knew how \similar" those
two policies were to one another, we could use samples drawn according
to the distribution Pr(h|θ ′) and make an adjustment according to the
similarity of the policies. Formally we have:

V(θ) =
∑

h∈H

R(h) Pr(h|θ) =
∑

h∈H

R(h)
Pr(h|θ ′)
Pr(h|θ ′)

Pr(h|θ)

=
∑

h∈H

R(h)
Pr(h|θ)

Pr(h|θ ′)
Pr(h|θ ′) = Eθ ′

[
R(h)

Pr(h|θ)

Pr(h|θ ′)

]
.

Note that the agent is not assumed to know the environment's dynam-
ics, which means that it might not be (and most often is not) able to
calculate Pr(h|θ). However, we can prove the following key result.

Theorem 5.1 For any pomdp and any policy space Θ, such that
the probability of having any experience h under any policy θ ∈ Θ

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 76

is bounded away from zero, it is possible for an agent to calculate
the ratio Pr(h|θ)

Pr(h|θ′) for any θ, θ ′ ∈ Θ and h ∈ H.

Proof: The Markov assumption in pomdps warrants that Pr
(
h|θ

)

= Pr
(
s(0)

) T∏

t=1

Pr
(
o(t)|s(t)

)
Pr

(
a(t)|o(t), θ

)
Pr

(
s(t+1)|s(t), a(t)

)

=

[
Pr(s(0))

T∏

t=1

Pr
(
o(t)|s(t)

)
Pr

(
s(t+1)

∣∣s(t), a(t)
)
][

T∏

t=1

Pr(a(t)|o(t), θ)

]

= Ψ
(
h
)
Φ

(
θ, h

)
.

Ψ(h) is the factor in the probability related to the part of the expe-
rience, dependent on the environment, that is unknown to the agent
and can only be sampled. Φ(θ, h) is the factor in the probability re-
lated to the part of the experience, dependent on the agent, that is
known to the agent and can be computed (and di�erentiated). Note
that Pr

(
h|θ

)
can be broken up this way both when the controller exe-

cutes a reactive policy and when it executes a policy with internal state
(see for example the derivation for internal state sequences in Shelton's
dissertation [151]). Therefore we can compute

Pr(h|θ)

Pr(h|θ ′)
=

Ψ(h)Φ(θ, h)

Ψ(h)Φ(θ ′, h)
=

Φ(θ, h)

Φ(θ′, h)
.

ut
We can now construct an indirect estimator V̂IS

θ ′(θ) of V(θ) from
i.i.d. samples hi, i ∈ (1..N) drawn according to the distribution
Pr(h|θ ′):

V̂IS
θ ′(θ) =

1

N

∑

i

R(hi)wθ(hi, θ
′) , (5.2)

where for convenience, we denote the fraction Pr(h|θ)
Pr(h|θ ′) by wθ(h, θ ′).

This is an unbiased estimator of V(θ) with variance

Var
[
V̂IS

θ ′(θ)
]

=
1

N

{∑

h∈H

(
R(h)wθ(h, θ ′)

)2 Pr(h|θ ′) − V(θ)
2

}

=
1

N

{∑

h∈H

(
R(h) Pr(h|θ)

)2

Pr(h|θ ′)
− V(θ)

2

}

=
1

N
Eθ

[
R(h)2wθ(h, θ ′)

]
−

1

N
V(θ)

2
.

(5.3)

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 77

This estimator V̂IS
θ ′(θ) is usually called in statistics [138] an im-

portance sampling (is) estimator because the probability Pr(h|θ ′) is
chosen to emphasize parts of the sampled space that are important
in estimating V . The technique of is was originally designed to in-
crease the accuracy of Monte Carlo estimates by reducing their vari-
ance [138]. Variance reduction is always a result of exploiting some
knowledge about the estimated quantity.

Optimal sampling policy It can be shown [69], for example by
optimizing expression 5.3 with Lagrange multipliers, that the optimal
sampling distribution is Pr(h|θ ′) =

R(h) Pr(h|θ)
V(θ) , which gives an esti-

mator with zero variance. Not surprisingly this distribution cannot
be used, since it depends on prior knowledge of a model of the envi-
ronment (transition probabilities, reward function), which contradicts
our assumptions, and on the value of the policy, which is what we
need to calculate. However all is not lost. There are techniques that
approximate the optimal distribution, by changing the sampling distri-
bution during the trial, while keeping the resulting estimates unbiased
via reweighting of samples, called \adaptive importance sampling" and
\e�ective importance sampling" (see, for example, [113, 192, 117]). In
the absence of any information about R(h) or evaluated policy, the
optimal sampling policy is the one that selects actions uniformly at
random.

On average, the weighting coe�cient wθ(h, θ ′) is equal to one, but
unfortunately the variance of this quantity can get arbitrary large. For-
mally,

Lemma 5.1 Eθ ′ [wθ(h, θ ′)] = 1.

Proof:

Eθ ′ [wθ(h, θ ′)] =
∑

h

Pr(h|θ)

Pr(h|θ ′)
Pr(h|θ ′) =

∑

h

Pr(h|θ) = 1.

ut

Lemma 5.2 σθ ′ [wθ(h, θ ′)] = Eθ[wθ(h, θ ′)] − 1.

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 78

Pr(h|)θ

θPr(h|)

hexperience

0

0

return R(h)

Fig. 5.2: Hypothetical return and probability functions.

Proof:

Varθ ′ [wθ(h, θ ′)] =E2
θ ′ [wθ(h, θ ′)] − Eθ ′ [(wθ(h, θ ′))2]

=E2
θ ′ [wθ(h, θ ′)] − 1

=
∑

h

(wθ(h, θ ′))2
Pr(h|θ ′) − 1

=
∑

h

(
Pr(h|θ)

Pr(h|θ ′)

)2

Pr(h|θ ′) − 1

=
∑

h

(
Pr(h|θ)

Pr(h|θ ′)

)
Pr(h|θ) − 1

=Eθ[wθ(h, θ ′)] − 1 .

(5.4)

ut
Intuitively, the higher Pr(h|θ), the higher is wθ(h, θ ′) and the more

likely it is to be encountered.
To get a further intuition we will need two de�nitions:

Definition 1 A KL-distance between two distributions is de�ned as

DKL(p, q) =
∑

x

ln
(

p(x)

q(x)

)
q(x);

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 79

Definition 2 (Jensen’s inequality) For any convex function f(x),
E [f(x)] ≥ f (E[x]) .

We can establish:

Eθ[wθ(h, θ ′)] =Eθ exp
(

− log
Pr(h|θ′)
Pr(h|θ)

)

≥ exp
(
−DKL

(
Pr(h|θ′), Pr(h|θ)

))
.

Remark 5.2.1 It is sometimes possible to get a better estimate of
V(θ) by following another policy θ ′, rather than the policy θ itself1.
Here is an illustrative example (see �gure 5.2): imagine that a re-
turn function R(h) is such that it is zero for all experiences in some
sub-space H0 of experience space H. At the same time the policy θ,
which we are trying to evaluate spends almost all the time there,
in H0. If we follow θ in our evaluation, we are wasting samples
and time! It makes sense to use another policy, which induces
experiences with non-zero return, and reweight the samples2.

Weighted indirect sampling Powell and Swann [130] introduced
weighted uniform sampling (also described by Rubinstein [138]).
It achieves a variance reduction by using the distribution Pr(h|θ ′)
for reweighting, while drawing samples from the original distribution
Pr(h|θ):

V̂θ ′(θ) =

∑
i R(hi)Pr(h|θ)∑

i Pr(h|θ ′)
. (5.5)

Estimator (5.5) is good for cases when it is easier to draw sam-
ples according to estimated θ than according to some other θ ′, which
however reects some knowledge about the returns.

The weighted uniform estimator was extended by Spanier [163] to
random walk processes and generalized to

V̂θ ′(θ) =

∑
i R(hi)

Pr(h|θ)
Pr(h|θ1)∑

i
Pr(h|θ2)
Pr(h|θ1)

. (5.6)

1This remark is due to Luis Ortiz [116] whose advise we would like to acknowl-
edge.

2In this case, we can really call what happens \importance sampling", unlike
usually when it is just \reweighting", not connected to \importance" per se. That
is why we advocate using the name \likelihood ratio" rather than \importance
sampling".

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 80

where we sample according to θ1, which reduces to estimator (5.5) upon
having uniform Pr(h|θ1), to estimator (5.2) upon having θ1 ≡ θ2, and
to estimator (5.1) upon having both Pr(h|θ1) and Pr(h|θ2) uniform.

The principal properties of the estimator (5.6) were established by
Spanier [163]. This is a biased but consistent estimator of V(θ), mean-
ing that its bias β tends to zero as number of samples increases. Fur-
thermore, under relatively mild assumptions, the mean square error
(MSE) of this estimator, which is the sum of the variance and the bias
squared (MSE = Var + β2) is

MSE
[
V̂θ ′(θ)

]
=

1

N

{∑

h∈H

((
R(h) − V(θ)

)
wθ(h, θ ′)

)2

Pr(h|θ ′)

}
+ O

(
1

N

)

=
1

N

{∑

h∈H

(
R(h)Pr(h|θ)

)2

Pr(h|θ ′)
−V(θ)

2

}
+ O

(
1

N

)
.

(5.7)

Finally, it turns out that a particular choice of θ2 ≡ θ has a remark-
ably small mean square error over a large range of problems encoun-
tered in the �eld of particle transform modeling [163]. This estimator
was also used in the recent work of Sutton and Precup [131] in the
context of exploration for the td(λ) family of on-line learning algo-
rithms. Let us call this estimator the weighted importance sampling
(wis) estimator.

V̂WIS
θ ′ (θ) =

∑
i R(hi)wθ(hi, θ

′)∑
i wθ(hi, θ ′)

. (5.8)

Remark 5.2.2 Let us try to understand the di�erence between
V̂IS

θ ′(θ) and V̂WIS
θ ′ (θ) estimators. Intuitively, the variance is high

for the sampling policy θ ′ if there are some trajectories with ex-
tremely low probabilities under θ ′, which have relatively signi�cant
probabilities under the estimated policy θ, because it causes the
value wθ(h, θ ′) to blow up. The wis estimator compensates for
that by normalizing by the sum of the weights.

Remark 5.2.3 Let's look at some assymptotics of the two estima-
tors. When the number of samples used is huge, bias of wis
tends to zero

(
β2

MSE = o
(

1
N

))
, so it is really on estimating with

just a few samples, when behavior is di�erent. is has a larger

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 81

variance, while wis has a smaller variance o�set by bias. That
means that we can have more certainty about the outcome of the
wis estimator. In the extreme, if we were to use only one sam-
ple, the wis gives us V̂WIS

θ ′,1 (θ) = V̂WIS
θ ′,1 (θ ′) with Eθ ′

[
V̂WIS

θ ′,1 (θ)
]

=

V(θ ′) and a variance Varθ ′
[
V̂WIS

θ ′,1 (θ)
]

= Eθ ′
[
R(h)2

]
− V(θ ′)2,

which is a quite well-behaved variance. For is Varθ ′
[
V̂IS

θ ′,1(θ)
]

=

Eθ ′

[
R(h)2

(
Pr(h|θ)
Pr(h|θ ′)

)2
]

− V(θ)2, which has the apparent danger of

having a probability in the denominator.

Multiple sampling policies So far, we talked about using a sin-
gle policy to collect all samples for estimation. We also made an as-
sumption that all considered distributions have equal support. In other
words, we assumed that any history has a non-zero probability to be in-
duced by any policy. Obviously it could be bene�cial to execute a few
di�erent sampling policies, which might have disjoint or overlapping
support. There is literature on this so-called strati�cation sampling
technique [138]. Here we just mention that it is possible to extend our
analysis by introducing a prior probability on choosing a policy out of
a set of sampling policies, then executing this sampling policy. Our
sampling probability will become: Pr(h) = Pr(θ ′) Pr(h|θ ′).

5.3 Policy Evaluation Algorithm

We have discussed various ways of evaluating a policy by combining
samples of the return function. In this section we describe how to turn
this estimation process into learning algorithm.

As illustrated by Figure 5.1, we wish to build a proxy environment
that contains a non-parametric model of the values of all policies. Given
an arbitrary policy, the proxy environment returns an estimate of its
value, as if the policy were tried out in the real environment. We assume
that obtaining a sample from the environment is costly, so we want
the proxy module to make only a small number of queries regarding
policies {θi}, i = 1..N and receive estimates {V̂(θi)}. These queries are
implemented by the sample() routine (Table 5.1). It requires memory
of size3 O(n|S||A|) and does not depend on the length of the horizon

3We have n records for trajectories, each of which contains: one number Ri, one
number �i, jSj counters Ns of visiting states and jSjjAj counters Nsa of performing

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 82

Tab. 5.1: The sample() routine.

Input: set of policies θi, i ∈ 1..n

For i = 1 to n: (record n trials)
• Beginning of the trial:

Φi ← 1, R ← 0

for all (o, a):
No ← 0, Noa ← 0

initialize the state s(0), observe o(0)

• At each time step t of the trial:
inc

(
Ni

o(t)

)

Draw next a(t) from µ(o(t), a(t), θi)

inc
(
Ni

o(t)a(t)

)

Execute a(t), moving environment into s(t)

Get reward r(t), new observation o(t)

Ri ← Ri + γtr(t)

Φi ← Φiµ
(
o(t), a(t), θi

)
Output: D =

〈
Ni

o,Ni
oa, Ri,Φi

〉

T , since all we keep are counters of events in the trajectory. We denote
by Φi, i ∈ 1..n, numbers calculated in procedure sample() according
to

∏T
t=1 Pr(a(t)|o(t), θi).

Any policy search algorithm can now be combined with this proxy
environment to learn from scarce experience. As an example we provide
the optimize() routine (Table 5.2), which calculates an estimate of
the gradient and performs a steepest descent update θoa ←θoa+α∆oa

when the policy is represented by a look-up table (see page 24) and
the Boltzmann law is used (see equation (2.3) in section 2.2). It is
possible to substitute for this update line a call to line-search [132],
which relies on value estimates and does not require a learning rate.
The optimize() routine computes an is estimate of the gradient from
an action a in state s. In case of non-stationary policies we also have to keep nT
numbers for n trajectories of horizon T . Rigorously speaking it has a logarithmic
dependence on the length of the horizon.

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 83

Tab. 5.2: The optimize() routine.

Input: initial policy θ, D =
〈
Ni

o, Ni
oa, Ri,Φi

〉
,

of optimization steps m

For j = 1 to m: (do m optimization steps)
Init: For all (o, a): ∆oa ← 0, κ ← 0

For i = 1 to n: (index recorded trials)
Initialize: Φ(θ) ← 1

For all (o, a):
Φ(θ) ← Φ(θ)µ(o, a, θ)Ni

oa

For all (o, a)

∆oa ←∆oa+Ri Φ(θ)
Φi

(
Ni

o − µ(o, a, θi)Ni
oa

)
κ ← κ + Φ(θ)/Φi

For all (o, a):
θoa ← θoa + α∆oa

1
κ

Output: hypothetical optimum θ

values

Φi =

T∏

t=1

µ(o(t), a(t), θ) =
∏

o∈O,a∈A

µ(o, a, θ)Ni
oa .

To compute a wis estimate we would do

∆WIS
oa =

1∑n
i=1

Φ(θ)
Φi

n∑

i=1

Ri Φ(θ)

Φi

(
Ni

o − µ(o, a, θi)Ni
oa

)
.

Remark 5.3.1 Note that it is possible to decide which estimator to
use a posteriori, based on the estimation of bias and variance.

How to sample? Di�erent approaches can be taken to learning, cor-
responding to di�erent combinations of the sample and optimize rou-
tines. One is to postpone optimization until all interaction with the
environment is completed, and combine all the available information
in order to estimate (o�-line) the whole \value surface" over the pol-
icy parameter space. Formally it is presented in Table 5.3.a. Another

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 84

Tab. 5.3: Various ways to combine sample() with optimize().

D ← 0, θ ← u;

D ← sample(θ, n);
θ∗ ← optimize(θ,D, ∞);

a. \O�-line"

θ ← θ0, D ← 0;
Loop:
D ← sample(θ, n);
θ ← optimize(θ,D, m);

b. \Forget"

D ← 0, θ ← θ0;
Loop:
D ← D ∪ sample(θ, n);
θ ← optimize(θ, D,m);

c. \Greedy"

approach involves using an algorithm, driven by newly generated pol-
icy value (and gradient thereof) estimates at each iteration, to update
the hypothesis about the optimal policy after each interaction (or few
interactions) with the environment. We will call this on-line or learn-
ing with greedy sampling. Table 5.3.c presents this brute-force way to
do on-line optimization while reusing all experience at every point of
time. The obvious drawback is of course that the size of dataset D

grows in�nitely with time. An alternative is to use the data from a few
runs to get an unbiased estimate of the gradient, use it to make a (few)
step(s) up the gradient, then forget it (table 5.3.b). The reinforce
algorithms [104] are an extreme case of \forget", in which each trial is
followed by one optimization step (n = m = 1).

Illustration: Bandit Problems Let us consider a trivial example
of a bandit problem to illustrate the algorithms from the previous sec-
tion. The environment has a degenerate state space of one state, in
which two actions a1 and a2 are available. The space of policies avail-
able is stochastic and encoded with one parameter p, the probability

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 85

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

trials

m
ea

n
ex

pe
ct

ed
 r

et
ur

n
off−line
greedy

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

trials

m
ea

n
ex

pe
ct

ed
 r

et
ur

n

off−line
greedy

Fig. 5.3: Empirical results for \hidden treasure" (top) and \hidden failure" (bot-
tom) problems.

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 86

of taking the �rst action, which is constrained to be in the interval
[c, c] = [.2, .8]. We consider two problems, called \HT" (hidden trea-
sure) and \HF" (hidden failure) both of which have the same expected
returns for actions: 1 for a1 and 0 for a2. In both HF and HT a1

always returns 1. In HF a2 returns 10 with probability .99 and −990

with probability .01. In HT, a2 always returns 0, while a1 returns −10

with probability .99 and +1090 with probability .01. We would expect
a greedy learning algorithm to sample near policies that look better
under scarce information, tending to choose the sub-optimal a2 in the
HT problem. This strategy is inferior to o�-line (or blind) sampling,
which samples uniformly from the policy space and will discover the
hidden treasure of a1 faster. This is indeed the behavior we observe in
simulations (see �gure 5.3.left)4. On the contrary, for the HF problem
(Figure 5.3.right) the greedy algorithm does better, by initially concen-
trating on a2, which looks better, but discovering the hidden failure
quite soon. In this problem, the o�-line sampling algorithm is slower
to discover the failure. Note that although greedy is somewhat better
in HF, it is much worse in HT. It illustrates why, without any prior
knowledge of the domain and given a limited number of samples, it is
important not to guide sampling solely by optimization.

5.4 Empirical Studies of Likelihood Ratios
for Exploration

In this section, we illustrate on a simple domain how importance sam-
pling may be used in gaps to enable e�cient exploration and thereby
dramatically speed up learning. We compare the performance of three
algorithms. The naive algorithm described in section 2 which we call
on-policy, and two versions of the o�-policy algorithm described in
this chapter, using both is and wis estimators, which we address as is
and wis algorithms correspondingly.

Since all we need to evaluate some policy θ from results of following
another policy5 θ ′ is to calculate the likelihood ratio, the exploratory
policy θ ′ may be arbitrary|it does not have to be stationary as does
θ. In particular, θ ′ can use any type of extra information such as
counters of state visits. The only requirement is that any trajectory

4All graphs represent an average result over 30 runs.
5That is what gives the name o�-policy to this class of algorithms.

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 87

possible under θ is still possible under θ ′. Hence we cannot use any
deterministic policy. But we can, for instance, mix such a policy with
the current policy using an exploration ratio λ; i.e., at each time step
we follow a deterministic policy with probability λ ∈ [0, 1), and the
current policy θ with probability (1 − λ) > 0. That enables e�cient
exploration strategies.

The o�-policy algorithm we use for these experiments is a \forget"
algorithm presented in table 5.3.b with n sampling trials followed by
one optimization step. During the trials, counters of visited states and
performed actions are maintained and a cumulative likelihood ratio is
computed. After n trials an update to the current policy is made ac-
cording to the gradient estimate computed by the is or wis estimator
correspondingly. Table 5.4 presents in detail the algorithm obtained if
we use wis estimator, look-up table policy representation and Boltz-
mann law. This algorithm actually achieved the best performance of
all the algorithms we compared.

The counter-based exploration policy gives such an advantage to the
o�-policy algorithm for the following reason. Depending on the way
the controller is initialized in the beginning of learning, the complexity
of the �rst trial(s) may be very bad due to the initial random walk
of the algorithm. Since the update resulting from a single trial may
not change the policy a lot, one may observe a very bad performance
during several trials in the beginning of learning. Changing the reward
model|as suggested by Koenig and Simmons [76] for ql algorithms
in mdp|may not reduce the expected length of gaps's very �rst trial
since there are no weight updates during a trial, and the length of the
�rst trial depends only on the initial controller.

The o�-policy implementations of gaps can be used with e�cient
directed exploration policies to avoid an initial random walk, with θ ′

set to many directed exploration policies (which are often determin-
istic and non stationary), including Thrun's counter-based [174] and
Meuleau and Bourgine's global exploration policy [101]. Moreover, the
algorithms can easily be adapted to stochastic exploration policies.

Numerical Simulations

We tested our o�-policy algorithms on a simple grid-world problem
consisting of an empty square room where the starting state and the
goal are two opposite corners (see �gure 5.4). Four variants of this

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 88

Tab. 5.4: An o�-policy implementation of gaps based on weighted is.

1. Initialize the controller weights θoa

2. Initialize variables:
• for all (o, a): ∆oa ← 0

• K ← 0

3. For i = 1 to n: (executes n learning trials)
• Beginning of a trial:

for all (o, a): No ← 0, Noa ← 0

R ← 0

K ← 1

h ← (o(0))

• At each time-step t of the trial:
inc

(
No(t)

)
with probability λ: a(t) ← µ(h, θ ′)

with prob. 1 − λ: draw a(t) at random following µ(o(t), ·, θ)

if a(t) = µ(h, θ ′): K ← Kµ(o(t), a(t))/(λ + (1 − λ)µ(o(t), a(t), θ))

else: K ← K/(1 − λ)

inc
(
No(t)a(t)

)
execute an action a(t), receive r(t), o(t + 1) from environment
R ← R + γtr(t)

append the triple (a(t), r(t), o(t + 1)) to h

• End of the trial:
for all (o, a): ∆oa ← ∆oa + KR(Noa − µ(o, a, θ)No)/ζ

K ← K + K

4. Update policy:
• for all (o, a): θoa ← θoa + α∆oa/K

5. Loop: return to 2.

problem were tried: there may or may not be a reset action, and the
problem can be fully observable or partially observable. The reset
action brings the agent back to the starting state. When the problem
is partially observable, the agent cannot perceive its true location, but
only the presence or absence of walls in its immediate proximity. This
perceptual aliasing is illustrated by shading on �gure 5.4. Each square
with the same shading looks the same to the agent. This problem

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 89

was not designed to be hard for the algorithms, and every version of
gaps converges easily to the global optimum. However, it allows us to
compare closely the di�erent variants in terms of learning speed.

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

S

G

Fig. 5.4: A simple grid-world problem.

Figure 5.5 present learning
curves obtained in the 15 ×
15 partially-observable no-reset
variant of the problem, using
Meuleau and Bourgine's [101]
global exploration policy with
γ = 0.95, α = 0.01, n = 3,
ζ = 1, averaged over 30 runs.
These graphs represent the evo-
lution of the quality of the policy
learned as a function of the total
number of time-steps of interac-
tions with the environment.

Controllers were initialized by the uniform distribution on actions
for all observations. We tried several parameter settings and envi-
ronments of di�erent sizes. In the choice of the sampling policy, we
focused on the objective of reducing the trial's length: we tried sev-
eral directed exploration policies as θ ′, including greedy counter-based,
Thrun's counter-based [174] and an indirect (ql) implementation of
a global counter-based exploration policy proposed by Meuleau and
Bourgine [101]. Exploration strategies designed for fully observable
environments were naively adapted by replacing states by observations
in the formulae, when dealing with the partially observable variant of
the problem.

The results of these experiments are qualitatively independent of
the variant and the size of the problem (although we were unable to
run experiments in reset problems of reasonable size, due to the ex-
ponential complexity of random walk in these problems). The best
performance was obtained using Meuleau and Bourgine's global explo-
ration policy [101].

In general, on-policy sampling is very stable and slow. With small
values of λ, simple is allows us to reduce the length of learning trials
without a�ecting the quality of policy learned. However the is algo-
rithm rapidly becomes unstable and systematically jumps to poor poli-
cies as the ratio λ increases. Compare �gure 5.5(top) which presents
results for λ = .1 with �gure 5.5(bottom) which presents results for

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 90

0

200

400

600

800

1000

1200

1400

1600

1800

0 50000 100000 150000 200000 250000 300000

L
en

gt
h

of
 th

e
le

ar
ne

d
pa

th

�

Number of time-steps of learning / 50

naive

IS

WIS

optimal

0

200

400

600

800

1000

1200

1400

1600

1800

0 50000 100000 150000 200000 250000 300000

L
en

gt
h

of
 th

e
le

ar
ne

d
pa

th

�

Number of time-steps of learning / 50

naive

IS

WIS

optimal

Fig. 5.5: Learning curves for partially observable room (exploration ratios are 0:1
(top) and 0:3 (bottom)).

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 91

λ = .3. This instability is a known drawback of is when the sampling
distribution (the strategy used during learning) di�ers a lot from the
target distribution (the current policy) [193]. In this case, very un-
likely events are associated with huge importance coe�cients. Hence,
whenever they happen, they induce devastating weight updates that
can push the algorithm to a very bad policy.

The wis algorithm is by far the most e�cient algorithm. It stays
stable when λ approaches 1, even with a relatively small number of
learning trials (n = 5). It can thus be used with high values of λ,
which allows dramatic reduction of the trials' length. This empirical
�ndings are in accordance with theoretical results of section 5.2.

5.5 Discussion

In this chapter, we developed value estimators that use data gathered
when using one policy to estimate the value of using another policy,
resulting in data-e�cient algorithms.

Stochastic gradient methods and likelihood ratios have been long
used for optimization problems (see work of Peter Glynn [50, 51, 52, 53]
and related fundamental texts [47, 48, 112, 29]). Recently, stochastic
gradient descent methods, in particular reinforce [189, 186, 187],
have been used in conjunction with policy classes constrained in vari-
ous ways; e.g., with external memory [122], �nite state controllers [104]
and in multi-agent settings [123]. Furthermore, the idea of using likeli-
hood ratios in reinforcement learning was initially suggested by Szepes-
vari [169] and developed for solving mdps with function approximation
by Precup et al. [131] and for gradient descent in �nite state controllers
by Meuleau et al. [103]. However only on-line optimization was con-
sidered. Shelton [152, 151] developed greedy algorithm for combining
samples from multiple policies in normalized estimators and demon-
strated a dramatic improvement in performance.

In some domains there is a natural distance between observations
and actions, which allows us to re-use experience without likelihood
ratio estimation. One such domain is �nancial planing and investments.
See the paper by Glynn et al. [115] for the description of kernel-based
rl algorithm.

There is room for employing various alternative sampling tech-
niques, in order to approximate the optimal sampling policy; for exam-

CHAPTER 5. POLICY EVALUATION WITH DATA REUSE 92

ple one might want to interrupt uninformative experiences, which do
not bring any return for a while. Another place for algorithm sophisti-
cation is sample pruning for the case when the set of experiences gets
large. A few most representative samples can reduce the computational
cost of estimation.

Similar sampling-related problems arise in various �elds; e.g., in
the �eld of computer graphics. For a discussion of various sampling
methods see dissertation of Eric Veach [181]. For a good guideline of
adaptive Monte Carlo methods see section 7.8 of \Numerical Recipes
in C" [132].

Chapter 6

Sample Complexity of
Policy Evaluation

Summary In this chapter, we consider the question of accumulat-
ing su�cient experience for uniform convergence of policy evaluation
as related to various parameters of environment and controller. We
derive sample complexity bounds analogous to these used in statistical
learning theory for the case of supervised learning.

6.1 Introduction

Policy search methods rely on estimating the value of policies (or the
gradient of the value) at various points in a policy class and attempt to
solve the optimization issue. Optimization algorithms work with an
estimate V̂() of the return surface, rather than with return surface V()

itself. Therefore it is important to have a good estimation, formally∣∣V̂ − V
∣∣ < ε, for some small ε and any policy. This point is illustrated

in �gure 6.1 (compare to �gure 1.3).
In this chapter we ignore the optimization issue and concentrate

on the estimation issue|how much and what kind of experience one
needs to generate in order to be able to construct uniformly good value
estimators over the whole policy class. In particular we would like to
know what the relation is between the number of sample experiences
and the con�dence of value estimates across the policy class. We pro-
vide bounds for the uniform convergence of estimates on the policy

93

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 94

Po
lic

y
va

lu
e

The space of policy parameters θ

ε<

V

V

Fig. 6.1: Revisiting a problem of learning as optimization.

class. We suggest a way of using these bounds to select among candi-
date classes of policies with various complexities, similar to structural
risk minimization [179].

To characterize the estimator we use so-called probably approxi-
mately correct (pac) setting. Intuitively it means that certain asser-
tion is likely to be close to a correct one. The pac paradigm was intro-
duced by Valiant [178] and developed for signi�cant statistical learning
cases by Haussler [61, 62]. For some very small values δ and ε, we wish
to guarantee that with probability more than (1 − δ) the error in the
estimate of the value function is less than ε, formally

Pr
(

sup
θ∈Θ

∣∣V(θ) − V̂(θ)
∣∣ ≤ ε

)
≥ 1 − δ .

We derive bounds on the necessary sample size N, which depend
on δ, ε, the complexity of the hypothesis class Θ expressed by the
covering number N (Θ), and an upper bound on the policy's absolute
value Vmax. We start by reciting several important facts.

Fact 1 (Bernstein [20]) Let ξ1, ξ2, . . . be independent random
variables with identical mean Eξ, bounded by some constant |ξi| ≤
a, a > 0 . Also let Var(MN) ≤ c. Then the partial sums
MN = ξ1 + . . . + ξN obey the following inequality for all ε > 0:

Pr
(∣∣∣∣

1

N
MN − Eξ

∣∣∣∣ > ε

)
≤ 2 exp

(
−

1

2

ε2N

c + aε

)
.

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 95

Fact 2 (McDiarmid [99]) Let X1, . . . , XN be independent random
variables taking values in a set ΩX, and assume that f : Ωn

X → R

satis�es

sup
x1,...,xn,
x ′i∈ΩX

∣∣∣f(x1, . . . , xn) − f(x1, . . . , xi−1, x ′i, xi+1, . . . , xn)
∣∣∣ ≤ ci , (6.1)

for 1 ≤ i ≤ n. Then for all ε > 0

Pr
(∣∣f(X1, . . . , Xn) − Ef(X1, . . . , Xn)

∣∣ ≥ ε
)
≤ 2 exp

(
−

2ε2

∑n
i=1 c2

i

)
.

Fact 3 (Devroye) Let X1, . . . , XN be independent random variables
taking values in a set ΩX, and assume that f : Ωn

X → R satis�es
the condition of equation (6.1). Then for all ε > 0

Var
{
f(X1, . . . , Xn)

} ≤ 1

4

n∑

i=1

c2
i .

Definition 3 Let Θ be a class of policies that form a metric space
and let ε > 0. The covering number is de�ned as the minimal inte-
ger number N (Θ, ε) of disks of radius ε covering Θ (see �gure 6.2).
If no such cover exists for some ε > 0 then the covering number is
in�nite. The metric entropy is de�ned as K(Θ, ε) = logN (Θ, ε)1.
When it does not bring ambiguity we will simply denote metric
entropy K.

The rest of this chapter is organized as follows. Sections 6.2 and 6.3
present the derivation of sample complexity bounds for is and wis esti-
mators correspondingly. Section 6.4 compares these bounds to similar
results for related learning algorithms. Section 6.5 presents an improve-
ment of sample complexity bounds obtained by bounding the likelihood
ratio from policy class complexity considerations. Section 6.6 states
open problems and provides discussion of results.

6.2 Bounds for is Estimator

We begin by deriving bounds on the deviation of the is estimator for
a single policy from its expectation using Bernstein's inequality.

1According to Dudley [46], the concept of metric entropy was introduced by
Kolmogorov [77, 78] as �-entropy.

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 96

θ

θ

1

1

2

θ

2θ

3θ

Θ

2

1

θ

θ

Θ

Fig. 6.2: Covering of policy space with two di�erent cover sizes.

Lemma 6.1 For any particular policy θ ∈ Θ and the upper bound
on likelihood ratio η, the estimated value V̂IS(θ) based on N samples
is closer than ε to the true value V(θ) with probability at least (1−δ)

if:

N > 2 log(2/δ)
(Vmax

ε

)2(
η − 1

)
.

Proof: In our setup, ξi = R(hi)wθ(hi, θ
′), and

Eξ = Eθ ′
[
R(hi)wθ(hi, θ

′)
]

= Eθ

[
R(hi)

]
= V(θ) ;

and a = Vmaxη. According to equation (5.3) we have c = Var(MN) =

VarV̂IS
θ ′(θ) ≤ N

V2
max

N (η − 1) = V2
max(η − 1). So we can use Bernstein's

inequality to get, for a policy θ, the following deviation bound:

Pr
(∣∣V(θ) − V̂IS(θ)

∣∣ > ε
)
≤ 2 exp

[
−

1

2

ε2N

V2
max(η−1) + Vmaxηε

]
=δ . (6.2)

After solving for N, we get the statement of Lemma 6.1. In more detail:

log(2/δ) =

[
1

2

ε2N

V2
max(η − 1) + Vmaxηε

]

N = 2 log(2/δ)
(Vmax

ε

)
η + 2 log(2/δ)

(Vmax

ε

)2

(η − 1) ,

ut

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 97

Note that this result is for a single policy. We need a convergence
result simultaneously for all policies in the class Θ. We proceed using
classical uniform convergence results for covering numbers as a measure
of complexity.

Theorem 6.1 Given a class of policies Θ with �nite covering num-
ber N (Θ, ε), the upper bound η on the likelihood ratio wθ(hi, θ

′),
and ε > 0, with probability at least 1−δ, the di�erence |V(θ)−V̂IS(θ)|

is less than ε simultaneously for all θ ∈ Θ for the sample size

N ≥ 128η
(Vmax

ε

)2(
log(8N/δ)

)
.

Proof: In this theorem we extend equation (6.2) of lemma 6.1 from
a single policy θ to the class Θ. This requires the sample size N to
increase accordingly to achieve the given con�dence level δ. It is ac-
counted for by the covering number N .

The derivation uses so-called symmetrisation and is similar to the
uniform convergence result of Pollard [128](see pages 24-27), using
Bernstein's inequality instead of Hoe�ding's [63]. See also Chapter
4 of Bartlett's book [5] (in particular, section 4.3 \Proof of Uniform
Convergence Result", pp 45-50).

Pr
(

sup
θ∈Θ

∣∣V(θ) − V̂IS(θ)
∣∣ >ε

)
≤ 8N

(
Θ,

ε

8

)
exp

[
−

1

128

ε2N

V2
max(η−1) + Vmaxηε

8

]
.

Solving for N yields the statement of the theorem.
In more detail, to solve for N, renaming ρ = log(8N/δ), we get

ρ =

[
1

128

ε2N

V2
max(η − 1) + 1

8Vmaxηε

]

N = 16
(Vmax

ε

)
ρη + 128

(Vmax

ε

)2

ρ(η − 1) .

This gives us the statement of the theorem. ut
Now we prove a slightly looser bound for the is estimator using

McDiarmid's theorem, with the purpose of later comparison to other
bounds.

The derivation is based on the fact that replacing one history hi in
the set of samples hi, i ∈ (1..N) for the estimator V̂IS

θ ′(θ) of equation 5.2,

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 98

cannot change the value of the estimator by more than Vmaxη
N .

f(h1, . . . , hN) = V̂IS
θ ′(θ) =

1

N

∑

i

R(hi)wθ(hi, θ
′).

sup
h1,...,hN,

h ′i∈H

∣∣∣f(h1, . . . , hN)−f(h1, . . . , hi−1, h ′i, hi+1 . . . , hN)
∣∣∣ ≤ 1

N
Vmaxη .

(6.3)
According to McDiarmid's theorem 2, we get

Pr
(∣∣V(θ) − V̂(θ)

∣∣ > ε
)
≤ 2 exp

(
−

2ε2N

V2
maxη2

)
, (6.4)

which gives us another bound,

N = O

((
Vmax

ε

)2

η2
(K + ρ

)
)

. (6.5)

6.3 Bounds for wis Estimator

In order to simplify the presentation, we begin by proving a lemma,
which yields the main result. This lemma states the upper bound for
the change in the value of the estimator V̂WIS

θ ′ (θ) after replacing one
experience hj by another experience h ′j in the set of sample experiences
hi, i ∈ (1..N).

Lemma 6.2 For functions wθ(hi, θ
′) and R(hi), such that 0 < a ≤

wθ(hi, θ
′) ≤ b and 0 ≤ R(hi) ≤ Vmax for all i ∈ (1..N + 1) and

f(h1, . . . , hN) = V̂WIS
θ ′ (θ) =

∑
i R(hi)wθ(hi, θ

′)∑
i wθ(hi, θ ′)

,

we have:

sup
h1,...,hN,
hj,h ′j∈H

∣∣∣f (h1, . . . , hN)− f(h1, . . . , hj−1, h ′j, hj+1 . . . , hN)
∣∣∣ ≤ Vmaxb

Na + b
.

(6.6)

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 99

Proof: Let's put an upper bound on the di�erence:∣∣∣f(h1, . . . , hN) − f(h1, . . . , hj−1, h ′j, hj+1 . . . , hN)
∣∣∣ =

=

∑
i6=j wθ(hi, θ

′)R(hi) + wθ(hj, θ
′)R(hj)∑

i6=j wθ(hi, θ ′) + wθ(hj, θ ′)

−

∑
i6=j wθ(hi, θ

′)R(hi) + wθ(h ′j, θ
′)R(h ′j)∑

i6=j wθ(hi, θ ′) + wθ(h ′j, θ ′)[
setting R(hj) to Vmax and R(h ′j) to zero

since they only appear once in the equation:

]

≤
∑

i6=j wθ(hi, θ
′)R(hi) + wθ(hj, θ

′)Vmax∑
i 6=j wθ(hi, θ ′) + wθ(hj, θ ′)

−

∑
i6=j wθ(hi, θ

′)R(hi)∑
i6=j wθ(hi, θ ′) + wθ(h ′j, θ ′)

,

[
the next step is clearly to set

wθ(h ′j, θ ′) = wθ(hj, θ ′) = b in denominator:

]

≤
∑

i6=j wθ(hi, θ
′)R(hi) + bVmax∑

i 6=j wθ(hi, θ ′) + b
−

∑
i 6=j wθ(hi, θ

′)R(hi)∑
i 6=j wθ(hi, θ ′) + b

=

∑
i6=j wθ(hi, θ

′)R(hi) + bVmax −
∑

i 6=j wθ(hi, θ
′)R(hi)∑

i6=j wθ(hi, θ ′) + b

=
bVmax∑

i6=j wθ(hi, θ ′) + b
[

which is clearly maximized at
wθ(hi, θ ′) = a

]

≤ Vmaxb

Na + b
.

ut

Lemma 6.3 Given the upper bound η on likelihood ratio wθ(hi, θ
′)

and the maximal value Vmax,

Pr
(

sup
θ∈Θ

∣∣∣V̂WIS(θ) − E
[
V̂WIS(θ)

] ∣∣∣ > ε

)
≤ 8N

(
Θ,

ε

8

)
exp

[
−

ε2(N + η2)2

32V2
maxη4N

]
.

Proof: We may recall that in lemma 6.2, wθ(hi, θ
′) are likelihood

ratios and R(hi) are the returns of corresponding experiences hi. For

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 100

the special case of wθ(hi, θ
′) range b = η, a = 1

η we get a bound:
Vmaxη2

N + η2
. Two inequalities follow from this fact. The variance of wis

estimator according to Devroye theorem is

Var
{
V̂WIS(θ)

} ≤ V2
maxη4N

4(N + η2)2
or Var

{
V̂WIS(θ)

} ≤ O

(
V2

max

N

)
.

McDiarmid's theorem gives, for any particular policy θ ∈ Θ:

Pr
(∣∣∣V̂WIS(θ) − E

[
V̂WIS(θ)

] ∣∣∣ > ε
)
≤ 2 exp

[
−

2ε2(N + η2)2

V2
maxη4N

]
.

Extending this from one policy to the class Θ, analogous to the theo-
rem 6.1 results in the statement of the lemma. ut
Theorem 6.2 Given a class of policies Θ with �nite covering num-
ber N (Θ, ε), the upper bound η on the likelihood ratio wθ(hi, θ

′),
ε > 0 and δ > 0,

N ≥ 32

(
Vmax

ε

)2

η4
(K(Θ) + log(8/δ)

)
.

Proof: Lemma 6.3 gives us an equation

8N (Θ,
ε

8
) exp

[
−

ε2(N + η2)2

32V2
maxη4N

]
=δ .

Let us denote ρ = log
(

8N
δ

)
and solve for N to get the sample complex-

ity bound,

ε2(N + η2)2

32V2
maxη4N

= ρ

ε2N2 + 2ε2η2N − 32V2
maxη4ρN + ε2η4 = 0 .

Solving the quadratic equation with respect to N,

N =
1

2ε2

(
− 2ε2η2 + 32V2

maxη4ρ+

+

√
4ε4η4 + 210V4

maxη8ρ2 − 27ε2η6ρ − 4ε4η4
)

=
1

ε2

(
−ε2η2 + 16V2

maxη4ρ + 4η3
√

(16V4
maxη2ρ − ε2) ρ

)

≥ 1

ε2

(
−ε2η2 + 32V2

maxη4ρ
)

≥32

(
Vmax

ε

)2

η4ρ .

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 101

Tab. 6.1: Comparison of sample complexity bounds.

Sample complexity N

is 128

(
Vmax

ε

)2

2T (1 − c)T
(
K(Θ) + log (8/δ)

)

wis 32

(
Vmax

ε

)2

24T (1 − c)4T
(
K(Θ) + log(8/δ)

)

vc
(

Vmax

ε

)2

22TVC(Θ)
(
T + log

(
Vmax

ε

)
+ log(1/δ)

)
log(T)

ut

6.4 Comparison to vc Bound

In the pioneering work by Kearns et al. [73], the issue of generating
enough information to determine the near-best policy is considered.
Let us compare our sample complexity results with a similar result
for their \reusable trajectories" algorithm. Using a random policy
(selecting actions uniformly at random), this algorithm generates a
set of history trees. This information is used to de�ne estimates that
uniformly converge to the true values. However, this work relies on
having a generative model of the environment, which allows simulation
of a reset of the environment to any state and the execution of any
action to sample an immediate reward. Also, the reuse of information
is partial|an estimate of a policy value is built only on a subset of
experiences, \consistent" with the estimated policy.

We will make a comparison based on a sampling policy that selects
one of two actions uniformly at random: Pr

(
a
∣∣h)

= 1
2 . For the horizon

T , this gives us an upper bound η on the likelihood ratio:

wθ(h, θ ′) ≤ 2T (1 − c)T = η . (6.7)

Substituting expression for η, we can compare our bounds to the bound
of Kearns et al. as presented in table 6.1. All bounds are exponential
in the horizon, however in the last case, the dependence on

(
Vmax

ε

)
has an extra logarithmic term rather than quadratic. Interestingly,
the same term comes out if we notice that covering a range of 0 to
Vmax by intervals of size ε gives a covering number N =

(Vmax
ε

)
and

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 102

a corresponding metric entropy K = log
(

Vmax
ε

)
. It is logical to expect

some reduction in sample size for IS algorithm compared to \reusable
trajectories", since the former uses all trajectories for evaluation of any
policy, while the latter uses just a subset of the trajectories. The factor
of reduction then has to do with the fraction of samples from the unique
sampling policy which could be reused for evaluating other policies|a
combinatorial quantity directly related to a dimension of policy space
VC(Θ). Contrary to our intuition, the bound for is is tighter than the
one for wis estimator. This could be attributed to using McDiarmid's
equation in the derivation. The metric entropy K(Θ) takes the place of
the VC-dimension VC(Θ) (like in Kearns et al. [73]) in terms of policy
class complexity. Metric entropy is a more re�ned measure of capacity
than vc-dimension since the vc-dimension is an upper bound on the
growth function which is an upper bound on the metric entropy [179].
We use metric entropy both in a union bound and as a parameter for
bounding the likelihood ratio in the next section.

6.5 Bounding the Likelihood Ratio

In this section we show that if we are working with a policy class
of a limited complexity, the likelihood ratio can be bounded above
through the covering number, due to the limit in combinatorial choices.
Remember that we are free to choose a sampling policy. The goal is
to �nd a sampling policy that minimizes sample complexity of policy
evaluation on a given policy class. We have discussed what it means for
one sampling policy to be optimal with respect to another (see page 77).
Here we would like to consider what it means for a sampling policy θ

to be optimal with respect to a policy class Θ. The intuition is that
we want to minimize the maximal possible di�erence in likelihoods of
any experience under our sampling policy and any other policy from a
given policy class. This means that the sampling policy is optimal in
the information-theoretic sense. Choosing the optimal sampling policy
allows us to improve bounds with regard to exponential dependence on
the horizon T .

The derivation is very similar to the one of an upper bound on the
minimax regret for predicting probabilities under logarithmic loss [34,
114]. The upper bounds on logarithmic loss we use were �rst obtained
by Opper and Haussler [114] and then generalized by Cesa-Bianchi

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 103

and Lugosi [34]. The result of Cesa-Bianchi and Lugosi is more directly
related to the reinforcement learning problem since it applies to the case
of arbitrary rather than static experts, which corresponds to learning
a policy. First, we describe the sequence prediction problem and result
of Cesa-Bianchi and Lugosi, then show how to use this result in our
setup.

Sequential Prediction Game

With some abuse of notation, we deliberately describe a sequential
prediction game in the same notation as reinforcement learning prob-
lem to make explicit semantic parallels. In a sequential prediction
game, T symbols hT

a = 〈a(1), . . . , a(T)〉 are observed sequentially.
After each observation a(t − 1), a learner is asked how likely it is
for each value a ∈ A to be the next observation. The learner's
goal is to assign a probability distribution Pr(a(t)|ht−1

a ; θ ′) based
on the previous values. When at the next time step t, the ac-
tual new observation a(t) is revealed, the learner su�ers a loss of
− log(Pr(a(t)|ht−1

a ; θ ′) . At the end of the game, the learner has suf-
fered a total loss of −

∑T
t=1 log Pr(a(t)|ht−1

a ; θ ′). Using the joint dis-
tribution Pr(hT

a|θ ′) =
∏T

t=1 Pr(a(t)|ht−1
a ; θ ′) we are going to write the

loss as − log Pr
(
hT

a|θ ′
)
.

When it is known that the sequences hT
a are generated by some

probability distribution θ from the class Θ, we might ask what is the
worst regret: the di�erence in the loss between the learner and the best
expert in the target class Θ on the worst sequence:

LT = inf
θ ′

sup
hT

a

{
− log Pr(hT

a|θ ′) + sup
θ∈Θ

log Pr(hT
a|θ)

}
.

Using the explicit solution to the minimax problem due to Shtarkov [153],
Cesa-Bianchi and Lugosi prove the following theorem.

Fact 4 (Cesa-Bianchi and Lugosi [34] (theorem 3)) For any
policy class Θ:

LT ≤ inf
ε>0

(
logN (Θ, ε) + 24

∫ε

0

√
logN (θ, τ)dτ

)
.

It is now easy to relate the problem of bounding the likelihood
ratio to the worst case regret. Intuitively, we are asking what is the

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 104

worst case likelihood ratio if we have the optimal sampling policy. Op-
timality means that our sampling policy will induce action sequences
with probabilities close to the policies, whose values we want to esti-
mate. Remember that the likelihood ratio depends only on the action
sequence ha in the history h (see Lemma 5.1). We need to provide
an upper bound on the maximum value of the ratio Pr(ha|θ)

Pr(ha|θ ′) , which

corresponds to infθ ′ supha

(
Pr(ha|θ)
Pr(ha|θ ′)

)
.

Lemma 6.4

inf
θ ′

sup
ha

(
Pr(ha|θ)

Pr(ha|θ ′)

)
≤ inf

θ ′
sup
ha

(
supθ∈Θ Pr(ha|θ)

Pr(ha|θ ′)

)
.

Proof: The statement of lemma immediately follows by the de�nition
of the maximum likelihood policy supθ∈Θ Pr(ha|θ). ut

Henceforth we can directly apply the results of Cesa-Bianchi and
Lugosi and get a bound of η = exp(LT). Note the logarithmic depen-
dence of the bound on LT with respect to the covering number N .
Moreover, since actions a belong to the �nite set of actions A, many
of the remarks of Cesa-Bianchi and Lugosi regarding �nite alphabets
apply [34]. In particular, for most \parametric" classes|which can be
parametrized by a bounded subset of Rn in some \smooth" way [34]|
the metric entropy scales as follows: for some positive constants k1 and
k2,

logN (Θ, ε) ≤ k1 log
k2

√
T

ε
.

For such policies the minimax regret can be bounded by

LT ≤ k1

2
log T + o(log T) ,

which makes the likelihood ratio bound of

η ≤ O
(
T

k1
2

)
.

The sample complexity bound for the is estimator becomes

N ≥ 128

(
Vmax

ε

)2

T
k1
2

(
log

(
Vmax

ε

)
+ log(8/δ)

)
.

To conclude, there are such policy classes for which an exponential
dependence of the sample complexity on the horizon is eliminated,

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 105

assuming we know how to �nd the corresponding optimal sampling
policy. However, it remains an open problem to estimate a constant
k1 and to obtain a constructive solution to the estimation problem.
Namely, to �nd a way of choosing a sampling policy which minimizes
the sample complexity.

6.6 Discussion and Open Problems

In this chapter, we considered the question of accumulating su�cient
experience and gave sample complexity bounds for policy evaluation
using likelihood ratio estimation. Note that for these bounds to be
meaningful, the covering number N (Θ) of the class of policies Θ should
be �nite. We also believe that with more rigorous analysis some con-
stants in our bounds could be improved.

We have already discussed the relation of this work to work by
Kearns et al. in section 6.4. Mansour [91] has addressed the issue of
computational complexity in the setting of Kearns et al. [73] by estab-
lishing a connection between mistake bounded algorithms (adversar-
ial on-line model [85]) and computing a near-best policy from a given
class with respect to a �nite-horizon return. Access to an algorithm
that learns the policy class with some maximal permissible number of
mistakes is assumed. This algorithm is used to generate \informative"
histories in the pomdp, following various policies in the class, and de-
termine a near-optimal policy. In this setting a few improvements in
bounds are made. Glynn et al. [54] provide the Hoe�ding like deviation
bound for ergodic Markov chain in undiscounted reward setup. Van-
Roy in his dissertation provides sample complexity bounds for uniform
convergence over the state space [137] for learning with value search
methods.

Sample complexity bounds (theorems 6.1 and 6.2) derived in this
chapter depend on the covering number. It remains an open prob-
lem to estimate and bound covering number for various controllers, in
particular for fscs. As has been suggested by Peter Bartlett the deriva-
tion is likely to follow similar work for recurrent neural networks [43].
Once the covering number has been established, we are ready to answer
a very important question of how to choose among several candidate
policy classes.

Our reasoning here is similar to that of the structural risk minimiza-

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 106

tion principal by Vapnik [179]. The intuition is that given very limited
data, one might prefer to work with a primitive class of hypotheses with
high con�dence, rather than getting lost in a sophisticated class of hy-
potheses due to low con�dence. Formally, we would have the following
method: given a set of policy classes Θ1, Θ2, . . . with corresponding
covering numbers N1,N2, . . ., a con�dence δ and a number of available
samples N, compare error bounds ε1, ε2, . . . according to theorem 6.1
or 6.2.

Another way to use sample complexity results is to �nd what is
the minimal experience necessary to be able to provide the estimate
for any policy in the class with a given con�dence. This also provides
insight for a new optimization technique. Given the value estimate, the
number of samples used, and the covering number of the policy class,
one can search for optimal policies in a class using a new cost function
V̂(θ) + Φ(N , δ, N) ≤ V(θ). This is similar in spirit to using structural
risk minimization instead of empirical risk minimization.

The capacity of the class of policies is measured by bounds on cov-
ering numbers in our work or by vc-dimension in the work of Kearns
et al. [73]. The worst case assumptions of these bounds often make
them far too loose for practical use. An alternative would be to use
more empirical or data dependent measures of capacity; e.g., the em-
pirical vc-dimension [180] or maximal discrepancy penalties on splits
of data [12], which tend to give more accurate results.

The fundamental idea behind reinforcement learning is that the
agent is only concerned with environment's dynamics as far as deter-
mined by reinforcement. Once we have chosen the policy space to
search in learning, we want to cover this space by trying various poli-
cies. But it is impossible to try out all policies in a continuous space.
Instead several policies would represent well all possibilities of control.

Rather than simply estimate the covering number for a particular
policy class, it would be desirable to �nd some kind of constructive
solution in a sense of universal prediction theory [100, 153]. That
would mean to solve a problem of which policies to try to cover the
space of policies with a minimal number of ε-disks (see �gure 6.2). One
can imagine that for a given covering number there are several ways to
construct the actual covering set.

For the distance D(θ, θ ′) .
= |V(θ) − V(θ ′)| and centers of the cov-

ering balls θ1...θN , make the cover set C. Let us de�ne the function
cov(θ, C) as a center of the cover ball closest to θ. For our application

CHAPTER 6. SAMPLE COMPLEXITY OF POLICY EVALUATION 107

we might require the cover that minimizes

min
C

∫

Θ

D
(
θ, cov(θ, C)

)
.

There might be other meaningful ways to quantify the complexity
of an rl problem. We want to characterize the complexity of the
policy space with regard to returns on experiences, policies from this
space could induce in the environment/agent interaction process. The
complexity of the environment dynamics could be de�ned as entropy
(see for example the paper by Crutch�eld [42]).

In his manuscript \Open theoretical questions in reinforcement
learning" Sutton suggests that \Recently, some progress has been made
by Kearns, Mansour and Ng [73] that seems to open up a whole range
of new possibilities for applying colt ideas to rl.". He further notes
that \the conventional de�nition of vc-dimension cannot be directly
applied to policy sets". Sutton proposed that �nding \some kind of
vc-dimension for reinforcement learning" is an interesting open prob-
lem [166]. We believe that this work constitutes a step in this direction
and provides a clearer formulation of this problem.

Es <eigt, es bli>t, es hauft si� an,
Im Augenbli� i< es getan.
Ein gro�er Vorsa> s�eint im Anfang to�;
Do� wo�en wir �s Zufa�s kunftig la�en,
Und so ein Hirn, �s tre�i� �nken so�,
Wird kunftig au� ein Denker ma�en.1

Chapter 7

Conclusions

Future Research: Symbiotic intelligence

This dissertation is in the �eld of reinforcement learning, which is a part
of statistical arti�cial intelligence. With apprehension or excitement,
people often ask when arti�cial intelligence will overpower natural in-
telligence. Forced to make a futuristic statement, I suggest there will
be no competition. Rather, I foresee the emergence of a \symbiotic
intelligence". This vision, while naive, has a serious counterpart which
underlies several projects on my future research agenda.

In nature, learning often happens by imitation rather than un-
derstanding. An ability to track the sensory input and to witness

1\It rises, ashes, gathers on; A moment, and the deed is done. A great design at
�rst seems mad; but we Henceforth will laugh at chance in procreation, And such a
brain that is to think transcendently Will be a thinker's own creation. Goethe [182].

108

CHAPTER 7. CONCLUSIONS 109

human reactive behavior opens an avenue for \arti�cial intelligence
by mimicking". The biology of modern man is routinely augmented
by various silicon-controlled devices. Whether smart cardiostimula-
tors, hearing aids, palm pilots or cellular phones, such devices share
our physical realm and enlarge the domain of the human Ego. How
could an embodied agent learn from instances of human behav-
iors? I would like to research how to form the initial behavior of
an agent using supervised learning techniques and later �ne-tune the
behavior by rl. When using classical value-search methods (based on
dynamic programming principles), an agent forgets the knowledge from
supervised learning stage [167], before proceeding to improvement via
reinforcement learning. This dissertation focuses on a set of novel tech-
niques [189, 9] which directly search the space of behaviors. For these
techniques, initiation of policy parameters via supervised learning is
an open problem.

Humans and computers interact on equal grounds in arti�cial
environments, such as Internet auctions, game servers and virtual
places [176]. In such environments we bypass the engineering com-
plexity of operating in physical reality with the risks of faulty motors
and imperfect sensors. Learning algorithms and data structures can
be veri�ed and mastered in a digital world still directly bearing on the
challenges of everyday applications and enabling electronic commerce.
For example, trade-bots act or assist in purchasing goods on the In-
ternet (see e.g. [171]). One challenge in the domain of �nancial appli-
cations is to extend the notion of risk-sensitive planning for Markov
environments [38, 35] to partially observable environments (pomdps).
Simply optimizing the expected return is not always appropriate in
such domains. Another challenge that attracts me to this application
is a necessity to learn in continuous state and action spaces (such as
price). It requires to answer one of the open questions in rl: how to
learn in conjunction with function approximation [166, 115].

Methods of re-using the experience for learning would address
the central issues in rl in general and in direct policy search methods
in particular: a vast amount of experience is necessary for learning, and
a high variance of estimates resulting in slow convergence. Establishing
bounds for the convergence properties of various learning algorithms
has been a recent focus in rl community [91, 73, 96, 16]. In this dis-
sertation we explored the use of likelihood ratio (importance sampling)
techniques [103, 124] adapted from stochastic optimization theory. An-

CHAPTER 7. CONCLUSIONS 110

other direction is in partitioning the state space into several domains
according to behavior [57, 56, 64] and then adjusting the borderlines.
This state grouping could be viewed in light of learning a feature ex-
traction mechanism.

Learning becomes easy once the right set of features is in place.
All problems computers are expected to solve, whether in digital or
physical realms, are formulated by humans and are solvable by humans.
This implies that there is a language or representation, which allows for
e�cient solutions. In nature, this key property is a result of millennia-
long selection by evolutionary process; which enables living systems
to learn within a short lifespan. It is necessary for human design-
ers to parallel the job of evolution|engineer and supply a set of
features. Ii is important to examine a process of feature design and dis-
covery from biological and computational points of view [140, 84, 144].
In particular, I would be interested in building on my experience in
computer vision and machine learning in order to work on learning for
visual control systems [26, 145] and active vision systems [1, 10, 7, 3].
These systems are used for visual search and scene analysis. A control
problem is to choose which of several visual routines [177] to invoke
under the constraint of limited computational and optical resources. A
similar exciting problem is modeling human linguistic behavior in an
e�ort to de-formalize the protocol of human-computer interaction [72].
It is important to research ways of incorporating the knowledge of the
syntactic structure of natural language into an ai agent, enabling it to
learn semantic features of text.

Statistical learning theory provides a uni�ed approach to image
and text processing [179] We have presented a step in the direction of
extension of computational learning theory to reinforcement learning
and hypothesis testing in rl. The ultimate goal is to devise a princi-
ple, similar to structural risk minimization [179], of choosing among
several possible architectures of controllers [124] according to the size
of the available experience. Particularly intriguing would be to derive
a covering number for the class of �nite state controllers [122, 104].

Learning in multi-agent systems has been a long standing goal
in rl [37, 24, 66]. It is related to a well established idea [105, 14]
that intelligent behavior is a result of cooperation in a society of (dis-
tributed) primitive agents. There is an excellent opportunity to extend
the part of this dissertation on learning to cooperate [123] and adaptive
routing in static network topologies onto adaptive control in wireless

CHAPTER 7. CONCLUSIONS 111

communication and ad-hoc networks, e.g. to simultaneously maximize
channel utility and battery life, maintain quality of service or connec-
tivity patterns in multi-hop add-hock networks. rl has already been
applied to �nd e�ective policies within the dynamics of telecommuni-
cation problems: e.g., channel allocation in wireless systems, network
routing, and admission control [25, 93, 156, 28, 30].

Potentially utilizing outcomes of all aforementioned research,
perhaps the most distant and ambitious project is to design principles
for a brain/machine interface, and to develop ideas about how the
nervous system dynamically organizes representations that may be used
to control neurosprosthetic interfaces [90]. This would be truly a step
on the path to symbiotic intelligence.

Contributions

The research presented in this dissertation constitutes a number of con-
tributions to the �eld of constructing an adaptive system which learns
from a feedback signal in partially observable environments. These
contributions2 are outlined below in the order in which they appear in
the dissertation.

The description of the reinforcement learning problem brings to-
gether methods from dynamic programming that are based on the
concept of state-action value with methods closely related to stochastic
optimization and control that are based on direct search in policy space.
The overview of existing work in the �eld of reinforcement learning by
policy search provides a uni�ed perspective on various directions in
constraining the search space and ways to direct the search.

The development of a gradient ascent algorithm for the case of
reactive policies working with the augmented observation and action
spaces is new. In particular we gave a clear semantic interpretation of
the portions of reinforcement assigned to each parameter responsible
for a particular observation-action pair in the policy encoding.

Original contributions are presented in the adaptation of policy
learning methods to the case of �nite-state controllers for partially
observed problems as well as testing on a number of domains including
partially observable pole balancing.

2Subject to the remarks made in the \Publication notes" (p. vii)

CHAPTER 7. CONCLUSIONS 112

In the area of multi-agent learning, contributions include: develop-
ing a gradient descent algorithm for multiple controllers with memory;
relating local optima in policy space to the game-theoretic solution
concept of Nash equilibrium; empirical results for a small simulated
soccer domain; an application to a packet routing problem.

Stochastic optimization algorithms used in reinforcement learning
rely on estimates of the value of a policy. Typically, the value of a
policy is estimated from results of simulating that very policy in the
environment. This approach requires a large amount of simulation as
di�erent points in the policy space are considered. The adaptation
of value estimators that use data gathered from following one policy
to estimate the value of another policy, for some domains resulting
in much more data-e�cient algorithms, is new. While likelihood-ratio
estimators are widely used in optimization problems, in policy search
methods for reinforcement learning they were introduced only recently.

The question of accumulating su�cient experience for uniform con-
vergence of policy evaluation as related to various parameters of en-
vironment and controller constitutes original research. The sample
complexity bounds derived here are an original contribution.

Finally, we regard as a valuable contribution the rigorous formula-
tion of problems in the area of quantifying the complexity of a policy
space as related to statistical learning theory results and the discussion
of other open problems and directions for further research, which will
serve as a solid starting point for forthcoming dissertations.

List of Figures

1 The paradigm of a learning system. 2

1.1 The architecture of a learning system. 8
1.2 An inuence diagram for an agent in a pomdp. 9
1.3 Learning as optimization problem. 18

2.1 The stigmergic architecture. 27
2.2 The state-transition diagram of the load-unload problem. 29
2.3 The state-transition diagram of the problem with two

loading locations. 31
2.4 Learning curves for a regular (top) and a modi�ed (bot-

tom) \load-unload". 32
2.5 An inuence diagram for agent with fscs in pomdp. . 34
2.6 The pole and cart balancing system. 39
2.7 Learning curves for the completely observable pole-

balancing domain. 41
2.8 Learning curves for the partially observable pole-balancing

domain. 41

3.1 An inuence diagram for two agents with fscs in
pomdp. 46

3.2 A coordination problem in a completely observable iden-
tical payo� game. 47

3.3 Learning curve for the 6-state coordination problem. . 53
3.4 The soccer �eld with two learning agents (V1 and V2)

and the opponent (O). 54
3.5 Learning curve for a defensive opponent. 55
3.6 Learning curve for a greedy opponent. 56
3.7 Learning curve for a random opponent. 57

113

LIST OF FIGURES 114

3.8 Learning curve for a team of two agents. 58

4.1 The irregular grid topology. 66
4.2 Performance of adaptive routing algorithms on the ir-

regular grid network. 67

5.1 An organization of the policy evaluation process. 74
5.2 Hypothetical return and probability functions. 78
5.3 Empirical results for \hidden treasure" (top) and \hid-

den failure" (bottom) problems. 85
5.4 A simple grid-world problem. 89
5.5 Learning curves for partially observable room (explo-

ration ratios are 0.1 (top) and 0.3 (bottom)). 90

6.1 Revisiting a problem of learning as optimization. 94
6.2 Covering of policy space with two di�erent cover sizes. . 96

List of Tables

2.1 The gaps algorithm for rp with a look-up table. 26
2.2 The sequence of events in agent-environment interac-

tion. 35
2.3 The gaps algorithm for fsc with a look-up table. . . . 37

5.1 The sample() routine. 82
5.2 The optimize() routine. 83
5.3 Various ways to combine sample() with optimize(). . 84
5.4 An o�-policy implementation of gaps based on weighted

is. 88

6.1 Comparison of sample complexity bounds. 101

115

Teori� Poiska Strategii v Komputernom
Obuqenii s Poowreniem

Refferat dissertacii Leonida Pexkina, 2002
Massaqusettski� Tehnologiqeski� Institut, SXA

Odno� iz osnovnyh zadaq v oblasti iskusstvennogo in-
tellekta �vl�ets� postroenie formal~no� modeli vzaimod-
e�stvi� intellektual~nogo agenta so sredo� ego obitani�.
Process preobrazovani� sosto�ni� sredy mo�et byt~ pred-
stavlen v vide cepi Markova. Sosto�nie cepi pri �tom
tol~ko qastiqno nabl�daemo agentom. De�stvi� agenta
vli��t na dinamiku perehodov sredy iz tekuxego sostoy-
ani� v sledu�xee. Dinamika sredy podqin�ets� opredelen-
nym pravilam, neizvestnym obuqa�xemus� agentu. �ta model~
poluqila nazvanie “process Prin�ti� Rexeni� v Qastiqno
nabl�daemo� cepi Markova” (PRQM).

Danna� dissertaci� predstavl�et vklad v oblast~ adapti-
ru�wihs� agentov v ramkah teorii obuqeni� s poowreniem.
Obuqenie s poowreniem �to obuqenie strategii povedeni�
— to est~ funkcii opredel��we� sootvetstvie deistvi�
nabl�deni�m — na osnove vnexnego poowritel~nogo sig-
nala. �to prome�utoqna� forma obuqeni� me�du “obuqe-
niem s uqitelem” i “obuqeniem bez uqitel�”. Obuqenie s
poowreniem mo�no predstavit~ kak poisk optimal~no� strate-
gii sredi mno�estva dostupnyh strategi�, proizvodimy�
putem nabl�deni� i vzaimode�stvi� so sredo�. Faktiqeski
– metodom prob i oxibok.

Mno�estvo strategi� agenta opredel�ec� arhetekturo�
regul�tora agenta. V rassmatrivaemo� modeli (PRQM) v reg-
ul�tore neobhodimo naliqie pam�ti. V danno� disertacii
issledu�c� razliqnye podhody k sozdani� regul�torov s
pam�t~�. Rassmotreny kak regul�tory s vnexne� pam�t~�,
tak i regul�tory – koneqnye avtomaty, i raspredelennye reg-
ul�tory multi-agentnyh sistem. Dl� rassmotrenyh tipov
regul�torov razrabotany detal~nye algoritmy obuqeni�, os-
novannye na metodah optimizacii putem gradientnogo spuska
na funcii usrednennogo signala poowreni�.

Krome togo, razrabotany metody ocenki strategii s pov-
tornym ispol~zovaniem poluqenogo opyta, osnovannye na
statistiqesko� teorii obuqeni� i teorii planirovani� eksper-
imentov. Rassmotren vopros o razmere vyborki dannyh neob-
hodimyh dl� odnorodno� shodimosti ocenok strategi� na vsem
dostupnom klasse. Dl� razliqnyh sposobov ocenki poluqena
forma zavisimosti trebuemogo razmera vyborki dannyh ot
parametrov konkretno� sredy. V zakl�qenie effektivnost~
razrabotannyh algoritmov prodemonstrirovana v prilo�enii
k r�du konkretnyh zadaq. V qastnosti k zadaqe adaptivno�
marxrutizacii paketov v simulirovano� srede peredaqi dan-
nyh.

Reinforcement Learning tramite ricerca di strategie

Tesi di dottorato di Leon Peshkin

Uno degli obiettivi dell'intelligenza arti�ciale consiste nel model-
lare il comportamento di un agente intelligente che interagisca con il
suo ambiente. Le trasformazioni dell'ambiente possono essere model-
late mediante una catena Markoviana i cui stati siano parzialmente
osservabili dall'agente e dipendenti dalle sue azioni; tali processi sono
noti come processi di decisione Markoviana parzialmente osservabili
(POMDP: partially observable Markov decision process). Si assume
che la dinamica dell'ambiente sia determinata da un insieme di regole
che l'agente non conosce e deve imparare. In questa tesi ci concentriamo
sullo studiare come modellare, mediante il meccanismo del reinforce-
ment learning, la capacit�a di adattamento dell'agente. Reinforcement
learning signi�ca imparare una strategia - associare azioni a osservazioni
- sulla base delle risposte ricevute dall'ambiente. L'apprendimento pu�o
essere visto come la scelta tra un insieme di strategie la cui bont�a
�e valutata basandosi su esperimenti fatti interagendo con l'ambiente.
L'insieme delle strategie possibili �e vincolato dall'architettura del con-
trollore dell'agente. I POMDP richiedono che il controllore sia dotato
di memoria. Tra le varie tipologie di controllori con memoria presi in
considerazioni si ricordano i controllori con memoria esterna, i con-
trollori a stati �niti e i controllori distribuiti per sistemi multi-agente.
Per ognuna di queste categorie forniremo i dettagli degli algoritmi che
permettono di imparare risalendo il gradiente del rinforzo cumulativo
atteso. Sulla base della teoria dell'apprendimento statistico e della teo-
ria di progettazione degli esperimenti viene sviluppato un algoritmo
di valutazione delle strategie nel caso di riutilizzo delle esperienze.
A�rontiamo inoltre il problema di determinare la quantit�a di esperienze
necessaria a garantire la convergenza uniforme nella valutazione delle
strategie ottenendo dei bound per diversi stimatori. In�ne, dimostri-
amo l'e�cienza degli algoritmi proposti in numerosi domini applicativi
il pi�u complesso dei quali �e il routing adattativo di pacchetti in una
rete di telecomunicazioni.

Parole chiave: MDP, POMDP, scelta di strategie, metodi con gra-
diente, reinforcement learning, sistemi adattativi, controllo stocastico,
comportamento adattativo.

Bibliography

[1] J.Y. Aloimonos, I. Weiss, and Dana A. Bandopadhay, Active vision, Interna-
tional Journal on Computer Vision (1987), 333{356.

[2] Shun-ichi Amari, Natural gradient works e�ciently in learning, Neural Com-
putation 10 (1998), 251{276.

[3] Claus Siggaard Andersen, A framework for control of a camera head, Ph.D.
thesis, Aalborg University, Uppsala, Sweden, January 1996.

[4] Charles W. Anderson, Learning to control an inverted pendilum using neural
networks, IEEE Control Systems Magazine 9 (1989), no. 3, 31{37.

[5] Martin Anthony and Peter Bartlett, Neural networks learning: Theoretical
foundations, Cambridge University Press, Cambridge, UK, 1999.

[6] Kenneth J. Arrow and Leonid Hurwicz, Stability of the gradient process in n-
person games, Journal of the Society for Industrial and Applied Mathematics
8 (1960), no. 2, 280{295.

[7] Minoru Asada, Takayuki Nakamura, and Koh Hosoda, Purposive behavior
acquisition for a real robot by vision-based reinforcement learning, Machine
Learning 23 (1996), 1{40.

[8] Leemon C. Baird, Reinforcement learning through gradient descent, Ph.D.
thesis, CMU, Pittsburgh, PA, 1999.

[9] Leemon C. Baird and Andrew W. Moore, Gradient descent for general re-
inforcement learning, Advances in Neural Information Processing Systems,
vol. 11, The MIT Press, 1999.

[10] Dana Ballard, Animate vision, Arti�cial Intelligence 48 (1991), no. 1, 1{27.

[11] Peter Bartlett and Jonathan Baxter, Hebbian synaptic modi�cations in spik-
ing neurons that learn, Tech. report, Australian National University, Sydney,
Australia, 1999.

[12] Peter Bartlett, S. Boucheron, and G�abor Lugosi, Model selection and error
estimation, Proceedings of the Thirteenth Annual Conf. on Computational
Learning Theory (New York, NY), ACM Press, 2000.

[13] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson, Neuronlike
adaptive elements that can solve di�cult learning control problems, IEEE
Transactions on Systems, Man, and Cybernetics SMC-13 (1983), no. 5, 834{
846.

121

[14] Eric Baum, Neural networks and machine learning, ch. Manifesto for an Evo-
lutionary Economics of Intelligence, pp. 285{344, Springer-Verlag, 1998.

[15] , Toward a model of intelligence as an economy of agents, Machine
Learning 35 (1999), 155{185.

[16] Jonathan Baxter and Peter Bartlett, Reinforcement learning in POMDP's via
direct gradient ascent, Proceedings of the Seventeenth International Conf. on
Machine Learning, Morgan Kaufmann, 2000.

[17] R. Beckers, Owen E. Holland, and J. L. Deneubourg, From local actions to
global tasks: Stigmergy and collective robotics, Arti�cial Life IV (Cambridge,
MA), The MIT Press, 1994.

[18] Richard Bellman, Dynamic programming, Princeton University Press, Prince-
ton, NJ, 1957.

[19] Daniel Bernstein, Shlomo Zilberstein, and Neil Immerman, The compplex-
ity of decentralized control of Markov decision processes, Proceedings of the
Sixteenth Conf. on Uncertainty in Arti�cial Intelligence, Morgan Kaufmann,
2000.

[20] Sergei Natanovich Bernstein, The theory of probability, Gostehizdat, Moscow,
Russia, 1946.

[21] Dimitri P. Bertsekas, Dynamic programming and optimal control, Athena
Scienti�c, Belmont, MA, 1995, Volumes 1 and 2.

[22] Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-dynamic programming,
Athena Scienti�c, Belmont, MA, 1996.

[23] Lashon B. Booker, D.E. Goldberg, and J.H. Holland, Classi�er systems and
genetic algorithms, Arti�cial Intelligence 40 (1989), 235{282.

[24] Craig Boutilier, Sequential optimality and coordination in multiagent sys-
tems, Proceedings of the Sixteenth International Joint Conf. on Arti�cial
Intelligence, 1999, pp. 478{485.

[25] Justin Boyan and Michael L. Littman, Packet routing in dynamically chang-
ing networks: A reinforcement learning approach, Advances in Neural Infor-
mation Processing Systems, vol. 7, The MIT Press, 1994, pp. 671{678.

[26] Rodney A. Brooks, Anita M. Flynn, and Thomas Marill, Self calibration of
motion and stereo vision for mobile robot navigation, Tech. Report AIM-984,
MIT Arti�cial Intelligence Laboratory, Cambridge, Massachusetts, 1987.

[27] Timothy X. Brown, Low power wireless communication via reinforcement
learning, Advances in Neural Information Processing Systems, vol. 12, The
MIT Press, 1999, pp. 893{9.

[28] Timothy X. Brown, H. Tong, and Satinder P. Singh, Optimizing admission
control while ensuring quality of service in multimedia networks via reinforce-
ment learning, Advances in Neural Information Processing Systems, vol. 12,
The MIT Press, 1999, pp. 982{8.

[29] J. Bucklew, Large deviation techniques in decision, simulation, and estima-
tion, John Wiley, New York, NY, 1990.

[30] Jakob Carlstrom, Reinforcement learning for admission control and routing,
Ph.D. thesis, Uppsala University, Uppsala, Sweden, 2000.

[31] G. Di Caro and M. Dorigo, Ant colonies for adaptive routing in packet-
switched communications networks, Proceedings of the Fifth International
Conference on Parallel Problem Solving From Nature, September 1998.

[32] Anthony R. Cassandra, Exact and approximate algorithms for partially ob-
servable Markov decision processes, Ph.D. thesis, Brown University, Provi-
dence, RI, 1998.

[33] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman, Act-
ing optimally in partially observable stochastic domains, Proceedings of the
Twelfth National Conf. on Arti�cial Intelligence (Seattle, WA), 1994.

[34] Nicol�o Cesa-Bianchi and G�abor Lugosi, Worst-case bounds for the logarithmic
loss of predictors, Machine Learning 43 (2001), no. 3, 247{264.

[35] Jay P. Chawla, Optimal risk sensitive control of semi-Markov decision pro-
cesses, Ph.D. thesis, The University of Maryland, Baltimore, MD, 2000.

[36] I. Cidon, S. Kutten, Y. Mansour, and D. Peleg, Greedy packet scheduling,
SIAM Journal on Computing 24 (1995), no. 1, 148{157.

[37] Caroline Claus and Craig Boutilier, The dynamics of reinforcement learn-
ing in cooperative multiagent systems, Proceedings of the Tenth Innovative
Applications of Arti�cial Intelligence Conference (Madison, WI), July 1998,
pp. 746{752.

[38] S.P. Coraluppi and S.I. Marcus, Risk-sensitive and minimax control of
discrete-time, �nite-state Markov decision processes, Automatica 35 (1999),
301{309.

[39] N. L. Cramer, A representation for the adaptive generation of simple se-
quential programs, Proceedings of an International Conference on Genetic
Algorithms and Their Applications (Hillsdale, NJ) (J.J. Grefenstette, ed.),
Lawrence Erlbaum Associates, 1985.

[40] Robert H. Crites and Andrew G. Barto, Improving elevator performance using
reinforcement learning, Advances in Neural Information Processing Systems,
vol. 9, The MIT Press, 1997.

[41] , Elevator group control using multiple reinforcement learning agents,
Machine Learning 33 (1998), 235{42.

[42] James P. Crutch�eld and David P. Feldman, Synchronizing to the
environment: Information theoretic constraints on agent learning,
http://www.santafe.edu/s�/publications/working-papers.html, 2001,
manuscript.

[43] Bhaskar Dasgupta and Eduardo D. Sontag, Sample complexity for learning
recurrent perceptron mappings, Advances in Neural Information Processing
Systems (David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo,
eds.), vol. 8, The MIT Press, 1996, pp. 204{210.

[44] Peter Dayan and L.F. Abbott, Theoretical neuroscience, The MIT Press,
Cambridge, MA, 2001.

[45] E. Dijkstra, A note on two problems in connection with graphs, Numerical
Mathematics 1 (1959), 269{271.

[46] Richard M. Dudley, Uniform central limit theorems, Cambridge University
Press, Cambridge, MA, 1999.

[47] S. Ermakov, The Monte Carlo method and related problems, Nauka, Moscow,
1971, (in Russian).

[48] S. Ermakov and G. Mikailov, Statisticheskoje modelirovanie, Nauka, Moscow,
1982, (in Russian).

[49] E. Gelenbe, Ricardo Lent, and Zhiguang Xu, Design and analysis of cognitive
packet networks, Performance Evaluation (2001), 155{76.

[50] Peter W. Glynn, Optimization of stochastic systems, Proceedings of the Win-
ter Simulation Conference, 1986.

[51] , Importance sampling for stochastic simulations, Management Sci-
ence 35 (1989), no. 11, 1367{92.

[52] , Likelihood ratio gradient estimation for stochastic systems, Commu-
nications of the ACM 33 (1990), no. 10, 75{84.

[53] , Importance sampling for Markov chains: Asymptotics for the vari-
ance, Commun. Statist. { Stochastic Models 10 (1994), no. 4, 701{717.

[54] Peter W. Glynn and Dirk Ormoneit, Hoe�ding's inequality for uniformly
ergodic Markov chains, Statistical Science 35 (2001), no. 11, 1367{92.

[55] Faustino Gomez and Risto Miikkulainen, 2-d pole balancing with recurrent
evolutionary networks, Proceedings of the Intl Conf on Arti�cial Neural Net-
works, Elsevier, 1998, pp. 758{763.

[56] G. Z. Grudic and L. H. Ungar, Localizing policy gradient estimates to action
transitions, Proceedings of the Seventeenth International Conf. on Machine
Learning, Morgan Kaufmann, 2000.

[57] , Localizing search in reinforcement learning, Proceedings of the Sev-
enteenth National Conf. on Arti�cial Intelligence, 2000.

[58] E.A. Hansen, Finite-memory control of partially observable systems, Ph.D.
thesis, University of Massachusetts at Amherst, Amherst, MA, 1998.

[59] , Solving POMDPs by searching in policy space, Proceedings of the
Fourteenth Conf. on Uncertainty in Arti�cial Intelligence, Morgan Kaufmann,
1998, pp. 211{219.

[60] Milos Hauskrecht, Planning and control in stochastic domains with imperfect
information, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1998.

[61] David Haussler, Decision theoretic generalizations of the PAC model, Infor-
mation and Computation 100 (1992), 78{150.

[62] , In Wolpert, D. (Ed.): The mathematics of generalization, vol. XX,
ch. Decision Theoretic Generalizations of the PAC Model for Neural Net and
Other Learning Applications, Addison{Wesley, 1995.

[63] Wassily Hoe�ding, Probability inequalities for sums of bounded random vari-
ables, Journal of the American Statistical Association 58 (1963), no. 301,
13{30.

[64] Dean F. Hougen, Maria Gini, and James Slagle, An integrated connectionist
approach to reinforcement learning for robotic control, Proceedings of the
Seventeenth International Conf. on Machine Learning, Morgan Kaufmann,
2000.

[65] Ronald A. Howard, Dynamic programming and Markov processes, The MIT
Press, Cambridge, MA, 1960.

[66] Junling Hu and Michael P. Wellman, Multiagent reinforcement learning: The-
oretical framework and an algorithm, Proceedings of the Fifteenth Interna-
tional Conf. on Machine Learning, Morgan Kaufmann, 1998, pp. 242{250.

[67] Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan, Reinforcement
learning algorithm for partially observable Markov problems, Advances in
Neural Information Processing Systems, vol. 7, The MIT Press, Cambridge,
MA, 1994.

[68] Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra, Planning
and acting in partially observable stochastic domains, Arti�cial Intelligence
101 (1998), 1{45.

[69] H. Kahn and A. Marshall, Methods of reducing sample size in Monte Carlo
computations, Journal of the Operations Research Society of America 1
(1953), 263{278.

[70] Sham Kakade, A natural policy gradient, Advances in Neural Information
Processing Systems, vol. 13, The MIT Press, 2001.

[71] Sham Kakade and Peter Dayan, Dopamine bonuses, Neural Networks (2001),
131{137.

[72] Boris Katz, Using English for indexing and retrieving, Arti�cial Intelligence
at MIT: Expanding Frontiers, vol. 1, The MIT Press, Cambridge, MA, 1990.

[73] Michael Kearns, Yishay Mansour, and Andrew Y. Ng, Approximate planning
in large POMDPs via reusable trajectories, Advances in Neural Information
Processing Systems, vol. 12, The MIT Press, 1999.

[74] Hajime Kimura and Shigenobu Kobayashi, An analysis of actor/critic algo-
rithms using eligibility traces: Reinforcement learning with imperfect value
functions, Proceedings of the Fifteenth International Conf. on Machine Learn-
ing, Morgan Kaufmann, 1998, pp. 278{286.

[75] , Reinforcement learning using stochastic gradient algorithm and its
application to robots, Tech. Report 8, The Transaction of the Institute of
Electrical Enginners of Japan, 1999.

[76] S. Koenig and R.G. Simmons, The e�ect of representation and knowledge
on goal-directed exploration with reinforcement learning alogrithms, Machine
Learning 22 (1996), 237{285.

[77] Andrey N. Kolmogorov, Bounds for the minimal number of elements of an
�-net in various classes of functions and their applications to the questions of
representability of functions of several variables by superposition of functions
of fewer variables, Uspekhi Mat. Nauk 10 (1955), no. 1, 192{194, (in Russian).

[78] Andrey N. Kolmogorov and V. M. Tikhomirov, �-entropy and �-capacity
of sets in function spaces, Amer. Math. Soc. Transls. 17 (1961), 277{364,
(Uspekhi Mat. Nauk, v.14, vyp. 2, 3-86).

[79] Vijay R. Konda and John N. Tsitsiklis, Actor-critic algorithms, Advances in
Neural Information Processing Systems, vol. 12, The MIT Press, 1999.

[80] , Actor-critic algorithms, SIAM Journal on Control and Optimization
(2001), 1008{14.

[81] Shailesh Kumar and Risto Miikkulainen, Con�dence-based Q-routing: An
on-line adaptive network routing algorithm, Proceedings of Arti�cial Neural
Networks in Engineering, 1998.

[82] , Con�dence based dual reinforcement Q-Routing: An adaptive online
network routing algorithm, Proceedings of the Sixteenth International Joint
Conf. on Arti�cial Intelligence, Morgan Kaufmann, 1999, pp. 758{763.

[83] Daniel D. Lee and H. Sebastian Seung, Algorithms for non-negative matrix
factorization, Advances in Neural Information Processing Systems, vol. 13,
The MIT Press, 2000.

[84] , The manifold ways of perception, Science 290 (2000), 2268{69.

[85] Nick Littlestone, Learning quickly when irrelevant attributes abound: A new
linear threshold algorithm, Machine Learning 2 (1988), no. 4, 245{318.

[86] Michael L. Littman, Markov games as a framework for multi-agent reinforce-
ment learning, Proceedings of the Eleventh International Conf. on Machine
Learning, Morgan Kaufmann, 1994, pp. 157{163.

[87] , Memoryless policies: Theoretical limitations and practical results,
From Animals to Animats 3 (Brighton, UK), 1994.

[88] , Algorithms for sequential decision making, Ph.D. thesis, Brown Uni-
versity, Providence, RI, 1996.

[89] John Loch and Satinder P. Singh, Using eligibility traces to �nd the best mem-
oryless policy in partially observable Markov decision processes, Proceedings
of the Fifteenth International Conf. on Machine Learning, Morgan Kaufmann,
1998.

[90] Gerry E. Loeb, Prosthetics, Handbook of Brain Theory and Neural Networks
(Michael Arbib, ed.), The MIT Press, 2 ed., 2001.

[91] Yishay Mansour, Reinforcement learning and mistake bounded algorithms,
Proceedings of the Twelfth Annual Conf. on Computational Learning Theory
(New York, NY), ACM Press, 1999, pp. 183{192.

[92] Peter Marbach, Simulation-based methods for Markov decision processes,
Ph.D. thesis, MIT, Cambridge, MA, 1998.

[93] Peter Marbach, O. Mihatsch, M. Schulte, and John N. Tsitsiklis, Reinforce-
ment learning for call admission control and routing in integrated service
networks, Advances in Neural Information Processing Systems, vol. 11, The
MIT Press, 1998.

[94] Peter Marbach, O. Mihatsch, and John N. Tsitsiklis, Call admission control
and routing in integrated service networks using neuro-dynamic program-
ming, IEEE Journal on Selected Areas in Communications 18 (2000), no. 2,
197{208.

[95] Peter Marbach and John N. Tsitsiklis, Simulation-based optimization of
Markov reward processes, Tech. report, MIT, Cambridge, MA, 1998.

[96] , Gradient-based optimization of Markov reward processes: Practical
variants, Machine Learning (2000), 1{25.

[97] Mario Mart��n, Reinforcement learning for embedded agents facing complex
tasks, Ph.D. thesis, Universitat Politecnica de Catalunya, Barcelona, Spain,
1998.

[98] Andrew K. McCallum, Reinforcement learning with selective perception and
hidden state, Ph.D. thesis, University of Rochester, Rochester, NY, 1996.

[99] C. McDiarmid, Surveys in combinatorics, ch. On the method of bounded
di�erences, pp. 148{188, Cambridge University Press, 1989.

[100] N. Merhav and M. Feder, Universal prediction, IEEE Transactions on Infor-
mation Theory 44 (1998), no. 6, 2124{47, (Invited paper).

[101] Nicolas Meuleau and Paul Bourgine, Exploration of multi-state environments:
Local measures and back-propagation of uncertainty, Machine Learning 35
(1999), 117{154.

[102] Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin,
Leslie Pack Kaelbling, Thomas Dean, and Craig Boutilier, Solving very large
weakly coupled Markov decision processes, Proceedings of the Fifteenth Na-
tional Conf. on Arti�cial Intelligence (Madison, WI), AAAI Press, 1998.

[103] Nicolas Meuleau, Leonid Peshkin, and Kee-Eung Kim, Exploration in
gradient-based reinforcement learning, Tech. Report 1713, MIT AI lab, Cam-
bridge, MA, 2000.

[104] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie P. Kaelbling,
Learning �nite-state controllers for partially observable environments, Pro-
ceedings of the Fifteenth Conf. on Uncertainty in Arti�cial Intelligence, Mor-
gan Kaufmann, 1999, pp. 427{436.

[105] Marvin L. Minsky, Society of mind, The MIT Press, Cambridge, MA, 1996.

[106] P.R. Montague, P. Dayan, and T.K. Sejnowski, A framework for mesen-
cephalic dopamine systems based on predictive Hebbian learning, Journal of
Neuroscience 16 (1996), 1936{47.

[107] David E. Moriarty and Risto Miikkulainen, E�cient reinforcement learning
through symbolic evolution, Machine Learning 22 (1996), 11{32.

[108] , Forming neural networks through e�cient and adaptive coevolution,
Evolutionary Computation 5 (1997), no. 4, 373{399.

[109] David E. Moriarty, Alan C. Schultz, and John J. Grefenstette, Evolutionary
Algorithms for Reinforcement Learning, Journal of AI Research 11 (1999),
199{229.

[110] Kumpati S. Narendra and Mandayam A.L. Thathachar, Learning automata,
Prentice Hall, 1989.

[111] Andrew Y. Ng and Michael I. Jordan, PEGASUS: A policy search method for
large MDPs and POMDPs, Proceedings of the Sixteenth Conf. on Uncertainty
in Arti�cial Intelligence, Morgan Kaufmann, 2000.

[112] S. Niemi and E. Nummelin, Central limit theorems for Markov random walks,
Societas Scientiarum Fennica, Helsinki, 1982.

[113] M. Oh and J. Berger, Adaptive importance sampling in Monte Carlo integra-
tion, Journal of Statistical Computing and Simulation. 41 (1992), 143{168.

[114] Manfred Opper and David Haussler, Worst case prediction over sequences
in under log loss, The Mathematics of Information Coding, Extraction, and
Distribution, Springer Verlag, 1997.

[115] Dirk Ormoneit and Peter W. Glynn, Kernel-based reinforcement learning in
average-cost problems: An application to optimal portfolio choice, Advances
in Neural Information Processing Systems, The MIT Press, 2000.

[116] Luis Ortiz, Selecting approximately-optimal actions in complex structural do-
mains, Ph.D. thesis, Brown University, Providence, RI, 2002.

[117] Luis Ortiz and Leslie P. Kaelbling, Adaptive importance sampling for esti-
mation in structured domains, Proceedings of the Sixteenth Conf. on Un-
certainty in Arti�cial Intelligence (San Francisco, CA), Morgan Kaufmann,
2000, pp. 446{454.

[118] Martin J. Osborne and Ariel Rubinstein, A course in game theory, The MIT
Press, 1994.

[119] Christos H. Papadimitriou and John N. Tsitsiklis, The complexity of Markov
decision processes, Mathematics of Operations Research 12 (1987), no. 3,
441{450.

[120] Leonid Peshkin, Statistical analysis of brain imaging data, Master's thesis,
Weizmann Institute of Science, Rehovot, Israel, Aug 1995.

[121] , Reinforcement learning by policy search, Ph.D. thesis, Brown Uni-
versity, Providence, RI, 2001.

[122] Leonid Peshkin, Nicolas Meuleau, and Leslie P. Kaelbling, Learning policies
with external memory, Proceedings of the Sixteenth International Conf. on
Machine Learning (I. Bratko and S. Dzeroski, eds.), Morgan Kaufmann, 1999,
pp. 307{314.

[123] , Learning to cooperate via policy search, Proceedings of the Sixteenth
Conf. on Uncertainty in Arti�cial Intelligence (San Francisco, CA), Morgan
Kaufmann, 2000, pp. 307{314.

[124] Leonid Peshkin and Sayan Mukherjee, Bounds on sample size for policy eval-
uation in Markov environments, Proceedings of the Fourteenth Annual Conf.
on Computational Learning Theory, 2001, pp. 608{15.

[125] Leonid Peshkin and Virginia Savova, On biological plausibility of policy
search, Proceedings of the Sixth International Conf. on Cognitive and Neural
Systems (Boston, MA), May 2002.

[126] Leonid Peshkin and Christian R. Shelton, Learning from scarse experience,
Proceedings of the Nineteenth International Conf. on Machine Learning, 2002.

[127] Daniel Polani and Risto Miikkulainen, Fast reinforcement learning through
eugenic neuro-evolution, Tech. Report AI99-277, University of Texas at
Austin, Austin, TX, 24 1999.

[128] David Pollard, Convergence of stochastic processes, Springer, 1984.

[129] M. Powell, Direct search algorithms for optimization calculations, Acta Nu-
merica (1998), 287{336.

[130] M. Powell and J. Swann, Weighted uniform sampling - a Monte Carlo tech-
nique for reducing variance, Journal of the Institute of Mathematics and
Applications 2 (1966), 228{236.

[131] Doina Precup, Richard S. Sutton, and Satinder P. Singh, Eligibility traces
for o�-policy policy evaluation, Proceedings of the Seventeenth International
Conf. on Machine Learning, Morgan Kaufmann, 2000.

[132] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, Numerical recipes in C: The art of scienti�c computing, Cambridge
University Press, 1993.

[133] M.L. Puterman, Markov decision processes, John Wiley & Sons, 1994.

[134] L. R. Rabiner, A tutorial on hidden Markov models and selected applications
in speech recognition, Proceedings of the IEEE 77 (1989), no. 2, 257{286.

[135] L. R. Rabiner and B. H. Juang, An introduction to hidden Markov models,
IEEE ASSP Magazine (1986), 4{15.

[136] Mark B. Ring, Continual learning in reinforcement environments, Ph.D. the-
sis, University of Texas at Austin, Austin, TX, 1994.

[137] Benjamin Van Roy, Learning and value function approximation in complex
decision processes, Ph.D. thesis, MIT, Cambridge, MA, 1998.

[138] R.Y. Rubinstein, Simulation and the Monte Carlo method, Wiley, New York,
NY, 1981.

[139] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal rep-
resentations by error propagation, Parallel Distributed Processing (David E.
Rumelhart and James L. McClelland, eds.), vol. 1, The MIT Press, Cam-
bridge, MA, 1986.

[140] D. E. Rumelhart and D. Zipser, Feature discovery by competetive learning,
Parallel Distributed Processing (David E. Rumelhart and James L. McClel-
land, eds.), vol. 1, The MIT Press, Cambridge, MA, 1986, pp. 151{193.

[141] Virginia Savova and Leonid Peshkin, How to compare common and rare
words, Proceedings of the Fifth International Conf. on Cognitive and Neural
Systems (Boston, MA), 2001.

[142] Juergen Schmidhuber, Learning factorial codes by predictability minimiza-
tion, Neural Computation 4 (1992), no. 6, 863{879.

[143] , On learning how to learn learning strategies, Tech. Report FKI-198-
94, IDSIA, Lugano, Swiss, 1994.

[144] Juergen Schmidhuber, M. Eldracher, and B. Foltin, Semilinear predictability
minimzation produces well-known feature detectors, Neural Computation 8
(1996), no. 4, 773{786.

[145] Juergen Schmidhuber and R. Huber, Learning to generate arti�cial fovea
trajectories for target detection, International Journal of Neural Systems 2
(1991), 135{141.

[146] Juergen Schmidhuber and Jieyu Zhao, Direct policy search and uncertain
policy evaluation, Tech. Report IDSIA-50-98, IDSIA, 1998.

[147] Juergen Schmidhuber, Jieyu Zhao, and Marco Wiering, Shifting inductive
bias with success-story algorithm, adaptive levin search, and incremental self-
improvement, Machine Learning 28 (1997), 105{130.

[148] Je� Schneider, Weng-Keen Wong, Andrew W. Moore, and Martin Riedmiller,
Distributed value functions, Proceedings of the Sixteenth International Conf.
on Machine Learning (I. Bratko and S. Dzeroski, eds.), Morgan Kaufmann,
1999, pp. 371{378.

[149] Wolfram Schultz, Predictive reward signal of dopamine neurons, Journal of
neurophysiology 80 (1998), 1{27.

[150] Wolfram Schultz, Peter Dayan, and P. Montague, A neural substrate of pre-
diction and reward, Science 275 (1997), 1593{1599.

[151] Christian R. Shelton, Importance sampling for reinforcement learning with
multiple objectives, Ph.D. thesis, MIT, Cambridge, MA, 2001.

[152] , Policy improvement for POMDPs using normalized importance sam-
pling, Proceedings of the Seventeenth Conf. on Uncertainty in Arti�cial In-
telligence, Morgan Kaufmann, 2001.

[153] Yuri M. Shtarkov, Universal sequential coding of single measures, Problems
of Information Transmission (1987), 175{185.

[154] Herbert A. Simon, The sciences of the arti�cial, The MIT Press, Cambridge,
MA, 1996.

[155] John Simpson and Edmund Weiner (eds.), Oxford English dictionary, second
ed., Oxford University Press, Oxford, UK, 1989.

[156] Satinder P. Singh and Dimitri P. Bertsekas, Reinforcement learning for dy-
namic channel allocation in cellular telephone systems, Advances in Neural
Information Processing Systems, vol. 10, The MIT Press, 1997, pp. 974{980.

[157] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan, Learning without
state-estimation in partially observable Markovian decision processes, Pro-
ceedings of the Eleventh International Conf. on Machine Learning, Morgan
Kaufmann, 1994.

[158] , Model-free reinforcement learning for non-Markovian decision prob-
lems, Proceedings of the Eleventh International Conf. on Machine Learning,
Morgan Kaufmann, 1994, pp. 284{292.

[159] Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepes-
vari, Convergence results for single-step on-policy reinforcement-learning al-
gorithms, Machine Learning 38 (2000), no. 3, 287{290.

[160] Richard D. Smallwood and Edward J. Sondik, The optimal control of partially
observable Markov processes over a �nite horizon, Operations Research 21
(1973), 1071{1088.

[161] Edward J. Sondik, The optimal control of partially observable Markov pro-
cesses, Ph.D. thesis, Stanford University, Stanford, CA, 1971.

[162] , The optimal control of partially observable Markov processes over
the in�nite horizon: Discounted costs, Operations Research 26 (1978), no. 2,
282{304.

[163] Jerome Spanier, A new family of estimators for random walk problems, Jour-
nal of the Institute of Mathematics and Applications 23 (1979), 1{31.

[164] Malcolm Strens and Andrew W. Moore, Direct policy search using paired
statistical tests, Proceedings of the Eighteenth International Conf. on Machine
Learning, Morgan Kaufmann, 2001.

[165] Devika Subramanian, Peter Druschel, and Johnny Chen, Ants and reinforce-
ment learning: A case study in routing in dynamic networks, Proceedings
of the Fifteenth International Joint Conf. on Arti�cial Intelligence, 1997,
pp. 832{839.

[166] Richard S. Sutton, Open theoretical questions in reinforcement learning,
http://www-anw.cs.umass.edu/~rich/publications.html, 1999, manuscript.

[167] Richard S. Sutton and Andrew G. Barto, Reinforcement learning: An intro-
duction, The MIT Press, Cambridge, MA, 1998.

[168] Richard S. Sutton, David McAllester, Satinder P. Singh, and Yishay Mansour,
Policy gradient methods for reinforcement learning with function approxima-
tion, Advances in Neural Information Processing Systems, vol. 12, The MIT
Press, 1999, pp. 1057{63.

[169] Csaba Szepesvari, personal communication, Aug 1999.

[170] Stribel C. T., Su�cient statistics in the optimal control of stochastic systems,
Journal of Mathematical Analysis and Applications 12 (1965), 576{592.

[171] TAC - the 2001 trading agent compeitition, ACM Conference on Electronic
Commerce, 10 2001, http://tac.eecs.umich.edu/.

[172] Nigel Tao, Jonathan Baxter, and Lex Weaver, A multi-agent, policy gradient
approach to network routing, Proceedings of the Eighteenth International
Conf. on Machine Learning, Morgan Kaufmann, 2001.

[173] Gerald J. Tesauro, Practical issues in temporal di�erence learning, Machine
Learning 8 (1992), 257{277.

[174] Sebastian Thrun, E�cient exploration in reinforcement learning, Tech. Re-
port CS-92-102, CMU, Pittsburgh, PA, 1992.

[175] John N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning,
Machine Learning 16 (1994), no. 3, 185{202.

[176] http://www.ubique.com/, 1995, Virtual Places.

[177] Shimon Ullman, High-level vision, The MIT Press, Cambridge, MA, 1996.

[178] L. G. Valiant, A theory of the learnable, Communications of the ACM 27
(1984), no. 11, 1134{1142.

[179] Vladimir Vapnik, Statistical learning theory, Wiley, 1998.

[180] Vladimir Vapnik, Esther Levin, and Yann Le Cun, Measuring the VC-
dimension of a learning machine, Neural Computation 6 (1994), no. 5, 851{
876.

[181] Eric Veach, Robust monte carlo methods for light transport simulation, Ph.D.
thesis, Stanford University, Palo Alto, CA, 1997.

[182] Johann Wolfgang von Goethe, Faust, vol. 2, 1833.

[183] Chris J. C. H. Watkins, Learning from delayed rewards, Ph.D. thesis, King's
College, Cambridge, UK, 1989.

[184] Chris J. C. H. Watkins and Peter Dayan, Q-learning, Machine Learning 8
(1992), no. 3, 279{292.

[185] Marco Wiering and Juergen Schmidhuber, HQ-learning, Adaptive Behavior
6 (1998), no. 2, 219{246.

[186] R. Williams and J. Peng, Function optimization using connectionist rein-
forcement learning algorithms, Connection Science 3 (1991), 241{268.

[187] Ronald J. Williams, Reinforcement learning in connectionist networks: A
mathematical analysis, Tech. Report ICS-8605, Institute for Cognitive Sci-
ence, University of California, San Diego, La Jolla, CA, 1986.

[188] , A class of gradient-estimating algorithms for reinforcement learning
in neural networks, Proceedings of the IEEE First International Conference
on Neural Networks (San Diego, CA), 1987.

[189] , Simple statistical gradient-following algorithms for connectionist re-
inforcement learning, Machine Learning 8 (1992), no. 3, 229{256.

[190] David H. Wolpert, Kagan Tumer, and Jeremy Frank, Using collective intel-
ligence to route internet tra�c, Advances in Neural Information Processing
Systems, vol. 11, The MIT Press, 1998, pp. 952{8.

[191] Wei Zhang and Thomas G. Dietterich, Solving combinatorial optimization
tasks by reinforcement learning: A general methodology applied to resource-
constrained scheduling, Journal of AI Research 1 (2000), 1{38.

[192] Y. Zhou, Adaptive importance sampling for integration, Ph.D. thesis, Stan-
ford University, Palo Alto, CA, 1998.

[193] M. Zlochin and Y. Baram, The bias-variance dilemma of the Monte Carlo
method, http://iridia.ulb.ac.be/~mzlochin, 2000, unpublished.

Notation

A the set of actions (p. 7)
a(t) an action at time t (p. 7)
B the observation function (p. 7)
c the minimal probability of action in stochastic policy (p. 11)
D the data set (p. 84)
E the exploration trace (p. 24)
G a collection of agents (p. 44)
H a set of experiences (p. 10)
h the experience (p. 10)
L a regret in sequential prediction game (p. 103)
M a �nite set of internal controller states (p. 34)
N counter of events (p. 23) and index size
N the covering number (p. 95)
O the set of observations (p. 7)
R(h) the return of the experience h (p. 10)
r(t) a feedback at time t (p. 7)
S the set of states (p. 7)
T the state transition function (p. 7)
t; � a time step (p. 7)
V(�) a value of the policy � (p. 12)
w a likelihood ratio
x; y cart and pole positions in a pole balancing domain (p. 39)
� a learning rate
� bias of an estimator
 the discount factor
� an update for policy parameter (p. 22)
� a con�dence value
� a small number
� the upper bound on likelihood ratio (p. 101)
� the space of policies (p. 11)
� the parameterization of a policy (p. 11)
� a register variable for likelihood ratio
� an exploration ratio (p. 87)
�; �d a policy function (p. 11)
� the feedback function (p. 7)
� standard deviation
� the temperature in Boltzmann process (p. 25)
�(h) environment-relted factor in the probability of the experience
	(h) agent-related factor in the probability of the experience h (p. 22)

Index

Abbott, 2
action, 7
actor, 19
algorithm

blrl, 20
branch-and-bound, 18
actor-critic, 19
Baum-Welch, 16
gaps, 24
gpomdp, 20
policy-search, 4
reinforce, 19
value-search, 3

Amari, 20
ants, 70

back-propagation, 59
backgammon, 2
Baird, 19
bandit problem, 84
Bartlett, 20
Baxter, 20, 69, 110
belief state, 16, 34
Bellman, 13, 31

equation, 13
bias, 17, 20, 28
Boltzmann law, 25
bound

is estimator, 95
wis estimator, 98
sample complexity, 93

Boutilier, 47, 59, 111
Boyan, viii, 68, 111

Cesa-Bianchi, 103
class of policies, 11
coin, 69
complexity

Kolmogorov, 18
metric, 95

controller
factored, 48
joint, 48
stigmergic, 27

convergence, 19, 51
points, 52

cost, 7
covering number, 95
criterion

discounted in�nite horizon,
11

�nite horizon, 10
in�nite horizon, 10

critic, 19

Dayan, Peter, 2
Dean, viii
dimension

vc, 102
distributed gradient ascent, 49

elevator scheduling, 2

135

entropy, 107
metric, 95

episodic task, 11, 23
error, 38, 73, 94

back-propogation, 59
Bellman, 31
bound, 106
observed, 73
true, 73

events counters, 23
evolutionary algorithms, 17
experience, 10
exploration, 24

ratio, 87
trace, 24

feedback, 7
�nite state controller, 34
fsc, 34
function approximation, 19, 91

games
identical payo�, 45
identical payo� stochastic, 45
partially observable ipsg, 46

gaps, 24
genetic algorithms, 4, 17
Glynn, 91, 109
gpomdp, 20
gradient ascent

distributed, 49
stochastic, 23

Haussler, 103
Hayek, 17
history, 10
horizon, 10, 101

�nite, 10
in�nite, 10

Howard, 11

immediate reward, 9, 38
importance sampling

weighted, 80
importance sampling, 76
intelligence

symbiotic, 108
synthetic, 1

ipg, 45
ipsg, 45, 47

Jaakkola, 15
Jensen's inequality, 79
Jordan, 15

Kaelbling, vii, viii, 16, 17
Kakade, 20
Kim, vii
Kimura, 2
kl-distance, 78
Konda, 19

learning
in pomdps, 15

learning rate, 14, 53
likelihood ratio estimation, 75
Littman, viii, 15, 28, 59, 68
look-up table, 24

Mansour, 105
Marbach, 19, 68
mdp, 8
memory

external memory, 27
metric entropy, 95
Meuleau, vii, 16, 47, 87, 89, 91
Miikkulainen, 17
Moore, 19
Moriarty, 17
multiple sampling policies, 81

Nash equilibrium, 50
strict, 50

natural gradient, 20
neural network, 17, 34

observation, 7
Opper, 103

pac, 94
Papadimitrou, 16
pegasus, 18
poipsg, 46
pole balancing, 38
policy, 7, 11

class, 11
memoryless, 11
reactive, 11
routing, 63
Policy Search, 17
value, 12

pomdp, 9
problem

6-state coordination, 53
bandit, 84
grid-world, 89
load-unload, 29
packet routing, 61
pole and cart, 38, 39
soccer, 54

Puterman, 11

q-learning, 13
q-routing, 68

Rabiner, 16
regret, 103
reinforce, 19
reinforcement learning, 1
return, 10

�nite horizon, 10

in�nite horizon, 10
reward, 7, 38
rl, 7
robotics, 2, 27
Rumelhart, 2

sampling policy
multiple, 81
optimal, 77

sarsa, 14
Schmidhuber, 16, 17, 110
sequential prediction game, 103
Shelton, vii
space-shuttle, 2
state

environment, 7
internal, 12

stationarity, 7, 64, 87
stigmergy, 27
Subramanian, 70
surprise, 26
Sutton, 1, 39, 109
symbiotic intelligence, 108
synthetic intelligence, 1

Tesauro, 2
trajectory, 10
Tsitsiklis, viii, 14, 19, 68

Ullman, 110
Ungar, 20, 110
update, 22
utility, 3, 69

value
policy, 12
state, 13
state-action, 13

vaps, 19
vc-dimension, 102

weighted IS, 80
Wellman, 59
Williams, 19, 91
Wolpert, 69
world

arti�cial, 1
model, 14, 23

