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Abstract

Sequencing by Hybridization (SBH) is a potentially powerful method for sequenc-
ing unknown DNA. An information-theoretic argument indicates that SBH can be
used to sequence DNA fragments orders of magnitude longer than existing methods.
Although originally proposed in 1988, SBH was unable to fulfill its promise until
recently, with the invention of gapped probes containing biochemical wildcard nu-
cleotides called universal bases. Using gapped probes and novel algorithms exploiting
their structure, SBH performance has been able to formally approach the theoretic
bound. This research is concerned with the development, analysis and refinement of
algorithms which push performance closer to the bound, for randomly generated and
natural DNA sequences.

We present a novel analysis of the branching behaviour of the gapped SBH algo-
rithm, and of the two failures modes of the sequencing algorithm. We also present
several enhancements to the basic gapped SBH algorithm. Two of these enhance-
ments improve performance on random DNA, and a third is designed to identify and
recover from failures which occur only in natural sequences. The aggregate result of
the improvements presented is to push the overall effectiveness of the algorithm on
random data to almost 2/3 of the proven theoretic bound, and to significantly reduce

the gap between random and natural sequence reconstruction.

v
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Chapter 1

Background and Introduction

DNA carries all of the information needed by every organism to guide it from con-
ception through its entire life. From minor variations which distinguish individuals of
a species, to the differences between bacteria, houseplants, insects and humans, ev-
erything comes down to changes in the sequence of DNA. Responses to diseases (and
the causes of many diseases) are encoded in DNA. The ﬁrst step in understanding
the processes of life, disease and death is to read the sequence of DNA ourselves: this
is DNA sequencing.

Traditional methods of DNA sequencing are labour-intensive, allowing DNA frag-
ments of only about 600 base pairs to be processed in a single experiment. Each
experiment requires the time and expertise of a trained lab technician, and the results
of the experiments can contain errors. DNA Sequencing by Hybridization or SBH, is a
relatively new method for performing de novo DNA sequencing. It was originally pro-
posed over ten years ago by four different research groups [BS91, L+88, D89, P89, P91]
to solve some of the problems inherent in traditional sequencing methods. It attempts
to reconstruct a fragment of DNA from the complete family (or set) of the fragment’s
subsequences. SBH consists of two steps: the first is biochemical and allows the ac-
quisition of the complete family of a fragment’s subsequences. Following this initial
step, the computational process of reconstructing the sequence itself begins.

This dissertation describes an advanced method for DNA Sequencing by Hy-
bridization which is orders of magnitude faster than current techniques. In 2000,
Preparata, Frieze & Upfal [PU00] developed the basic SBH method, which achieved
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asymptotically optimal performance. However, the potential applications of this tech-
nique are important enough that incremental increases in effectiveness can be very
valuable. The current work describes several improvements to the basic SBH algo-
rithm which improve overall performance by nearly 50%.

SBH is a process which relies first on the physical resource of a DNA microarray
and the expertise of a wet-lab technician to conduct an initial biochemical experi-
ment. After the initial (and only) laboratory experiment, the SBH process is entirely
computational. The primary aim of the research described in this dissertation is to
maximize the length of sequences which may be unambiguously reconstructed us-
ing fixed physical resources, while minimizing the computational resources required.
When a complete and unambiguous reconstruction proves to be impossible, we at-
tempt to maximize the proportion of the sequence which can be produced, while

minimizing potential errors.

1.1 Chapter List & Overview

This document contains the following chapters:

e Chapter 1 - Background and Introduction. The current chapter contains a
brief introduction to DNA, and three processes for manipulating it: hybridiza-
tion, amplification and fragmentation. After discussing electrophoresis-based
sequencing, Sequencing by Hybridization is introduced with a discussion of the
original ungapped-SBH method. The chapter concludes with a non-technical
discussion of gapped-SBH and its advantages over the ungapped method.

e Chapter 2 - Implementation of the Gapped SBH Algorithm. This
chapter describes the specific implementation of the gapped SBH algorithm
which was used to conduct simulations of the method. The data structures
used to represent individual probes and the sequence as it is reconstructed, and
the container used to hold the spectrum are discussed. The different failure
modes of the EXTEND algorithm are described along with the method by which
they are detected. The chapter concludes with a short survey of sequencing

results from simulations.
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e Chapter 3 - Analysis of the Gapped SBH Algorithm. This chapter
analyzes the complexity and performance of the SBH algorithm using gapped
probes. It contains a detailed discussion of the effects of various parameters
on sequencing, specifically the probing pattern used and the breadth (B) and
depth (H) limits in the branching EXTEND algorithm.

e Chapter 4 - Failure Modes of the Gapped SBH Algorithm. The two
primary types of failure (Mode 1 and Mode 2) encountered while sequencing
uniform random sequences are explored, and compared with the failures typi-

cally encountered while sequencing natural DNA.

e Chapter 5 - Recovering from Failures by Polling the Spectrum. This is
the first of three chapters dealing with failure-recovery: methods of continuing
sequencing when the branching EXTEND algorithm fails. Chapter 5 describes
a POLLING algorithm which exploits the information available in the spectrum
during sequence reconstruction to recover Mode 1 and Mode 2 failures, which
represent the vast majority of failures which occur in artificial maximum-entropy
sequences. A numerical analysis is presented, along with experimental simula-

tion results.

e Chapter 6 - Identifying and Escaping from Repeating Segments. Nat-
ural DNA contains many instances of short repeating segments (tandem repeats
and microsatellites are two examples) which cause SBH to fail. This chapter
describes an algorithm for identifying such repeating segments as they are en-
countered, and continuing sequencing beyond them. Experimental results of its

effectiveness are also inciuded.

e Chapter 7 - Pooling Information from Multiple Spectra. The perfor-
mance of SBH can be improved by using information from two or more indepen-
dent spectra. This chapter contains a description and analysis of an algorithm

which performs SBH using multiple spectra.

e Chapter 8 - Constructing a Seed. This chapter describes a method for
constructing a seed from the information contained in the spectrum of a se-

quence, allowing SBH to be used even in the absence of manually attached
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primer sequences.

e Chapter 9 - Conclusion and Future Work. This chapter contains a sum-
mary of the performance increases afforded by the various algorithmic improve-
ments presented herein. We also summarize the effectiveness of SBH on natural
DNA, and present some possible solutions to the unique problems encountered

when sequencing non-random sequences.

The rest of this chapter contains an introduction to DNA, traditional methods of

sequencing, and SBH. We begin with a discussion of DNA.

1.2 What is DNA?

The genetic information of every cellular living organism is stored in its chromosomes.
Each chromosome is a large double-stranded molecule of deoxyribonucleic acid—
DNA—compacted by coiling and supercoiling into a protein matrix'. Chromosomal
DNA consists of two long, paired strands of nucleotide bases. These strands form
the famous double-helix configuration (see Figure 1.1) of the DNA molecule. There
are only four of these bases, and their sequence encodes the entirety of an organism’s

genetic information: adenosine (A), cytosine (C), thymine (T) and guanine (G).

Figure 1.1: Stylized rendering of the DNA double-helix.

IThis is true for eukaryotes. Prokaryotic chromosomes lack the protein matrix, but still contain
the huge DNA molecules.
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Although chromosomal DNA is always double stranded, single strands of nu-
cleotides also exist in nature. During the process of cell division, the two strands of
the helix are separated so that the chromosomes may be duplicated. In the laboratory,
double-stranded DNA may be denatured: a process which separates the two strands
of the helix by heating it to nearly 100 degrees Celsius; this is an important step
in many wet-lab processes. Also, there is another form of nucleic acid called RNA
(ribonucleic acid) which accomplishes various functions in the body, and is naturally
single stranded?. The nucleotides which comprise any single-stranded nucleic acid
may occur in any order, and the exact sequence of nucleotides in such a sequence can
be neatly represented using the 4-character alphabet {A, C, T, G}.

While individual strands of nucleic acids can be created from arbitrary configu-
rations of the four bases, pairwise bonds between bases in two different strands are
essentially restricted to only two combinations: A forms cross-strand bonds only with
T and C with G. These two pairs are Watson-Crick complementary. Mismatches are
very rare, and are one of the primary causes of genetic mutations. We define the

complement of a nucleotide sequence in terms of Watson-Crick base pairing.

Definition 1.1. Two single-stranded nucleotide sequences are complementary if and
only if every base in the first strand is the Watson-Crick complement of the corre-

sponding base in the second strand.

Example 1.1. The nucleotide sequence A-C-T-T-G is complementary to T-G-A-A-C
because the bases at each position are complementary. From left to right, A pairs

with T, C pairs with G, T pairs with A, and so on, as shown in the following table:

A|C|IT|T|G

RERNREEN
T|G|A[A|C

Complementary single-stranded sequences naturally form double-stranded

molecules when they are brought together in solution. This phenomenon is called

2In RNA molecules, the nucleotide uracil (U) replaces thymine (T), but for the purposes of this
thesis, the two nucleotides are functionally identical; all of the rules which govern thymine apply
also to uracil.
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hybridization, and is (unsurprisingly) the basis for SBH. We say that a sequence s

hybridizes another sequence r if s is complementary to r.

1.2.1 Amplification and Fragmentation

Most biochemical procedures which measure or manipulate DNA, such as sequenc-
ing and genetic fingerprinting, require a large sample of identical DNA molecules
in order to function. The process of taking a single sequence of DNA and produc-
ing a sufficiently large sample is called amplification. The primary method of DNA
amplification used today is polymerase chain reaction, or PCR.

PCR is a process which is conducted entirely in vitro. Using PCR, a single target
DNA sequence may be amplified by the repeated application of a few simple steps.
Amplification occurs exponentially by repeatedly heating a DNA sample to denature
the two strands, then stimulating the polymerization of the second strand comple-
mentary to each of the denatured originals from a solution of free nucleotides. Each
time these steps are repeated, the size of the DNA sample doubles. In this way, only
twenty steps suffice to amplify a single sequence more than a million (2%°) times.
PCR depends on foreknowledge of the exact sequence of short primers—sequences of
about 20 bases—at both ends of the target sequence. |

Once a sample has been sufficiently amplified, it is often useful to be able to break
it into smaller pieces, or fragments, in a process called fragmentation. The process
of DNA fingerprinting, for instance, uniquely identifies individuals by the length of
fragments resulting from such a process. Fragmentation also allows large molecules of
DNA to be broken down into more manageable pieces for the purposes of sequencing.

Amplified DNA may be fragmented by introducing chemicals or restriction en-
zymes to the sample. Chemical fragmentation produces probabilistic breaks at specific
bases (a chemical might have a 1% chance to disrupt all bonds with thymine), whereas
restriction enzymes deterministically cleave a molecule, but only at the location of a
specific subsequence. A particular restriction enzyme might cleave a DNA sequence
wherever it finds the string ATTAG, for instance. The means of fragmentation are
secondary to the effects of fragmentation, however. The lengths of the fragments

which result from enzymatic cleaving are used to determine a genetic fingerprint.
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1.3 DNA Sequencing

DNA sequencing is the fundamental tool of molecular biology (and, of course, of
bioinformatics). It allows the determination of the exact order of nucleotides along
a segment of DNA, letting us ‘read’ a previously unknown sequence. Once read, a
DNA sequence can be studied, measured, compared with other sequences, searched
for potential genes, and stored in databases for later retrieval. Without the knowledge
of the order of nucleotides along a sequence, bioinformaticians would essentially be
blind. _

The standard method of DNA sequencing currently used is electrophoresis, using
either a gel medium or capillaries. In either case, the process results in a separation of
molecules based on their size. DNA and RNA molecules have a natural charge, which
allows them to be manipulated by an electric field. When molecules of different sizes
are placed in a medium which impedes their movement—either the gel or capillaries—
and exposed to an electric field, the smaller molecules are drawn more quickly through
the medium than the larger ones. When the electric field is removed, the molecules
are arranged in sequence according to size, with the smallest molecules having moved
the farthest from their starting point.

It is possible to construct a set of all possible prefixes of a DNA sequence S using
radioactively or fluorescently-labeled dideoxy terminator molecules. There are four
such terminators: one for each of the natural bases. When inserted into a DNA
sequence in place of a standard nucleotide, a terminator nucleotide prevents further
biochemical extension of the sequence. The prefix-construction process is similar
to a single PCR amplifcation step. A DNA sequence must first be amplified and
then divided into four separate, but identical, samples. A small proportion (about
ﬁ of the natural bases present) of a single dideoxy- terminator nucleotide is then
introduced into of the four each sample. One sample contains dideoxy-thymine, one
contains dideoxy-adenosine, etc... Each sample is denatured by heating, and then
polymerization of the complementary strand is initiated.

In the sample containing dideoxy-thymine, there is a small chance (approximately
1%) that the terminator molecule replaces any particular occurrence of the standard
thymine, and ends the polymerization process of a sequence. Since hundreds of thou-

sands of copies of the target sequence are being simultaneously extended, the final
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sample will contain sequences which—with very high probability—have been termi-
nated at every possible location (after each thymine). Analogous processes occur in

the other three samples.

Example 1.2. The sequence AGATAAGGCTAGTG is amplified and divided into
four separate samples. The set of sequence fragments produced from the sample con-
taining dideoxy-thymine is {AGAT, AGATAAGGCT, AGATAAGGCTAGT}. There

is only a single sequence fragment produced from the sample containing dideoxy-
cytosine: AGATAAGGC. [ |

The four samples are then subjected to electrophoresis. The smaller fragments
move farther through the gel or capillaries, so the increasing size of the fragments
along the medium corresponds to longer and longer prefixes of the original sequence
S. The radioactive or fluorescent labeling of the terminating molecules allows the
last base in each sequence to be identified; fragments of the same size cluster together
in a visible spot in the medium. Since all of the fragments are prefixes of the target
sequence, the identity of each of the terminal bases, ordered from shortest to longest

along the gel, gives the sequence of the string (S).

Example 1.3. The sequence complete set of prefixes of the fragment AGGCATAGA
consists of the following sequences in order of increasing size: { A, AG, AGG, AGGC,
AGGCA, AGGCAT, AGGCATA, AGGCATAG, AGGGCATAGA }. This is the same
order in which they are arranged once electrophoresis has been completed (see Fig-
ure 1.2). Only the final base—the base which is radioactively or chemically dyed—of
each prefix can be identified in the electrophoresis medium. The final bases of each
of the prefix fragments, from smallest to largest, is: { A, G, A, T, A, C, G, G, A }.
This sequence of nucleotides is identical to the order of bases in the original sequence.
|

The nature of the electrophoresis process limits the maximum length of DNA
fragments to about 600bp. The identity of the labeled terminator bases can only

be read if the spots in the medium are sufficiently separated, and long sequences

3This document adopts bp as the standard abbreviation for base pairs. One thousand (kilo) base
pairs is written Kbp, and one million (mega) base pairs Mbp.
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Figure 1.2: Simplified example of electrophoresis sequencing gel for the sequence
AGGCATAGA, showing all spots on the gel and the prefix corresponding to each
spot. The electric field pulls molecules down the gel, so the sequence is read from
bottom (shortest prefix) to top (longest prefix).

produce spots which tend to blur together. For the human genome, the sequenceable
fragments which have been used are only 543bp long.

Electrophoresis sequencing has become highly automated, with large machines
able to perform all of the required steps without human intervention. These machines
can sequence tens of thousands of bases per day with very few errors. However, the
high cost of automated sequencing machines keeps these high-throughput processes
out of reach for smaller research groups, which are still limited to single labour-

intensive experiments.

1.4 The Invention of Sequencing by Hybridization

Around 1988, four different research groups [BS91, L+88, D89, P89] independently
and simultaneously proposed a new method of DNA sequencing, hoping to solve some
of the problems inherent in electrophoresis-based methods. The new method, called
DNA Sequencing by Hybridization, or SBH, involves two steps: the first biochemical,
the second computational. The biochemical step relies on small optical chips called
DNA microarrays, which are also called DNA chips. SBH makes use of a single

microarray to reveal the complete set of fixed-length subsequences present in a target
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DNA sequence. The promise of SBH was that it would allow the sequencing of much
longer DNA fragments in a single experiment.

The algorithmic phase of SBH—the subject of this dissertation—is a method for
reconstructing a complete target sequence from its subsequences. This process is the
central focus of this dissertation. It will be described in detail in Chapter 2, while
Chapters 3 and 4 contain an analysis of its performance. The rest of this chapter
merely provides some history of the development of SBH and the tools it requires, as

well as a high-level overview of its function.

1.4.1 DNA Microarrays

Microarrays are small glass plates which contain thousands of short artificially syn-
thesized DNA sequences. These synthetic DNA sequences, called probes, all have the
same length &, and so are also referred to as x-mers*. The probes are arranged into
a regular grid of features on the chip, where each feature contains many copies of the
same k-mer sequence. Using such a chip, a single simple experiment suffices to reveal

whether each of the k-mer probes on the microarray are present in a DNA sequence.

GO @D

Figure 1.3: A microarray containing all 4> = 16 possible sequences of length 2. The
four features in the top-left quadrant begin with A, in the top right-quadrant with
C, in the bottom left with G and in the bottom right with T. Note that in this and
subsequent figures, we adopt the convention of labeling features with the sequence
which they will hybridize.

Although they were initially invented for the purpose of DNA sequencing, mi-
croarrays have many applications today. They are used to look for single-nucleotide

polymorphisms (SNPs), to search for potential cancer-causing genes, and to trace

4 An unbroken fragment of DNA is called an oligomer, from which x-mer is derived.
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the expression levels of different genes throughout the course of a disease. For these
applications, the set of probes contained on a single DNA chip is carefully designed to
yield results relevant to the problem being studied. Microarrays used for sequencing
must contain all possible k-mers (4% probes).

When they were first introduced, microarrays were technologically limited to a
maximum of less than 10° features, limiting probes to a maximum of about 7 or
8 bases (4% = 6.5 x 10%). Today, microarrays containing 10° features are common,
permitting complete families of 10-base (4! ~ 10°) oligonucleotides to be arrayed on a
single chip. In fact, by using the appropriate masks, a chip containing 4 features can
be produced in only 4 -  steps. Several companies produce microarrays commercially,
and there are bench-top devices similar to inkjet printers which allow the automated
creation of custom chips.

Once a microarry has been produced, the experimental procedure is simple. A
fluorescently labeled DNA fragment (the target sequence) is amplified, fragmented
and prepared in a solution. When the solution is brought into contact with a mi-
croarray, probes which are complementary to any subsequences of length x in the
target sequence will hybridize the fragments. An illustration of this process is shown
in Figure 1.4.

After the hybridization reaction has completed, the microarray is chemically treated
to highlight features where hybridization has occurred. The chip is then optically
scanned to reveal the locations of features where hybridization has taken place. Since
the identity and location of each of the synthetic probes on the chip is known, the lo-
cations on the chip where hybridization has occurred yields the identity of the probes
which hybridized a subsequence of the target.

The microarrays used for sequencing simply contain all possible probes of length «,
requiring 4" features: the target sequence is then stitched together from the complete
set of its k-base subsequences. The set of all probes of a given type is called a complete

family of probes, and formally defined here:

Definition 1.2. A complete family of probes is the set of all possible 4% probes of a
specific length k.

Example 1.4. The complete family of 2-nucleotide probes contains 42 = 16 probes:
{ AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT}. &
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AGATACGGA
AGTA GG GA
GG

1. Amplification

AGATACGGA
AGATACGGA 3. Hybridization
AGATACGGA
AGATACGGA / 2. Fragmentation
AGATACGGA in Solution
AGATACGGA
AGATACGGA z @

Figure 1.4: Illustration of the amplification, fragmentation and hybridization probes
of a short DNA sequence. A single-stranded DNA string is amplified (Step 1) thou-
sands of times, fragmented in solution (Step 2), and then placed in contact with a
microarray, where the fragments hybridize (Step 3) at the appropriate spots.

The results of a single experiment using a microarray containing a complete family
of k-nucleotide probes reveals the complete set of k-nucleotide subsequences of a target

sequence. This is called the spectrum of a target sequence.

Example 1.5. The sequence s = AAGCTGCTA is amplified, fragmented, and
brought into contact with a microarray containing a complete family of 4-nucleotide
probes. The spectrum of the sequence s is the set of probes {AAGC, AGCT, GCTG,
CTGC, TGCT, GCTA}. [ ]

Another microarry containing the spectrum of a longer, unknown sequence using
a family of 256 probes (for x = 4) is shown in Figure 1.5. Once the spectrum of a
target sequence has been revealed by hybridization with an appropriate microarray,

the computational work of SBH begins.

1.4.2 The SBH Algorithm

Sequencing by Hybridization is the process of completely reconstructing a target se-

quence from its spectrum. Microarrays are the hardware which permit the spectrum
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CA@\A ci@Ac

GCAA,

TGGG

Figure 1.5: The spectrum of an unknown sequence in a family of 4-nucleotide probes.
The features on the microarray where hybridization has occurred are shaded, and
some of these features are identified by the sequences which they hybridized.

of a target sequence to be determined, but the reconstruction itself is performed by
software. The promise of the SBH method was that it would allow DNA sequences
of length O(4%) to be sequenced by means of a single microarray experiment. Elec-
trophoresis sequencing methods are limited to fragments of only a few hundred bases
in length. Using a microarry containing all possible 8-mers (k = 8), SBH has the
theoretical potential for an increase of two orders of magnitude in’fragment length
over electrophoresis.

In 1989, Pevzner [P89] presented a graph-based algorithm which reconstructs a
DNA sequence from its spectrum in polynomial time. Pevzner’s method reduces the
reconstruction process to finding an Eulerian path through a graph, which is a well-

known and well-studied problem. The reconstruction algorithm does not actually
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construct and explicitly traverse a graph, but the sequencing process implicitly finds
an Eulerian path as it stitches a sequence together from its x-mers. We will first
describe the theoretical graph solution to the problem, and then describe an algorithm
which actually reconstructs a sequence from its spectrum.

Initially, the SBH reconstruction process appeared to be a Hamiltonian path prob-
lem, to which there are no known efficient solutions. The simplest graph-based ap-
proach to SBH would begin by constructing a graph with x-mers as nodes. Directed
edges would be added between nodes where the (kx — 1)-suffix of one node corresponds
to the (k — 1)-prefix of another. For instance, from a spectrum of 5-mers, the two
probes p; = GAGGT and p, = AGGTC would generate two nodes n; and ns with
an edge from n; to no, since the 4-suffix of node n; = AGGT matches the 4-prefix
of node ny = AGGT. A target sequence may be reconstructed from such a graph by
finding a Hamiltonian path which visits each node exactly once. Figure 1.6 shows

how a simple Hamiltonian path reconstruction would work.

N

AAG—=AGC—=GCT——=CTG——=TGC

CTA

Figure 1.6: The graph of the sequence AAGCTGCTA from a spectrum of 3-mers,
using 3-mers to label the nodes. There is only a single Hamiltonian path through all
nodes.

Pevzner recognized that the problem could be reformulated as an Eulerian path
problem by changing the structure of the underlying graph. Pevzner’s reconstruction
algorithm also begins with a spectrum of k-mers. However, the graph G is constructed
with nodes corresponding to (k—1)-mers; each probe in the spectrum yields two nodes
in the graph. The edges of the graph arc oriented to point from the (x — 1) prefix of
a k-mer probe to the (k — 1)-suffix of the same probe. For instance, if a spectrum
of 6-mers contains the probe AGGTAG, the graph G must contain two nodes ny; =
AGGTA and n, = GGTAG, with a directed edge e; from n; to ny. Using this graph,
the target sequence can be reconstructed by finding an Eulerian path which traverses

each edge in the graph exactly once, and there are well-known efficient algorithms for
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finding Eulerian paths. Figure 1.7 shows the Eulerian path version of the Hamiltonian

path reconstruction in Figure 1.6.

AA—=AG——=GC—CT—=TG
TA

Figure 1.7: The Eulerian-path graph of the sequence AAGCTGCTA from a spec-
trum of 3-mers. Although this graph is constructed from the same spectrum as the
Hamiltonian graph in Figure 1.6, the nodes in this graph are identified only by 2-mers.

In practice, it is infeasible to first construct a complete graph from the spectrum
of a target sequence and then perform a complete traversal. More to the point,
it is unnecessary to do so. The process of finding an Eulerian path through the
appropriate spectrum can be performed implicitly, beginning with an arbitrary x-
mer, and eztending the initial x-mer one character at a time. The basic process is
quite simple, although we assume (without loss of generality) that we know which
k-mer is located at the beginning (the first position) of the target sequence.

The following is a very conservative algorithm which performs SBH with stan-
dard k-mer probes. There are straightforward extensions that can be made to this
algorithm which allow longer sequences to be reconstructed, but these improvements
increase the maximum length of target sequences by only a factor of 2 or 3. We refer
to this SBH method as ‘ungapped SBH’, to differentiate it from the gapped-probe
algorithm which is the subject of this thesis. In the literature, it is commonly called

‘uniform,” or ‘standard’ SBH.

Ungapped Sequencing by Hybridization

1. Select the first k-mer (pg) of the target sequence from the spectrum, and let the

putative sequence be equal to py.

2. Search the spectrum for a probe (or probes) with a (x — 1)-prefix matching the

(k — 1)-suffix of the putative sequence.
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3. If there is exactly one such matching probe (denoted p;), extend the putative
sequence by appending the k' character of p;, and goto Step 2.

4. If there are more than one matching probes, the reconstruction fails.

5. If there are no matching probes, the reconstruction is complete.

|

If it impossible to uniquely identify py in the spectrum, then any probe may be
used as a starting point for sequencing. The only difference is that once the sequence
has been extended to the right until the reconstruction either fails or completes, it
must then be extended to the left. The process is virtually identical to rightward
extension, except that in Step 2, the spectrum must be searched for probes with a
(k — 1)-suffiz matching the (x — 1)-prefiz of the putative sequence and, in Step 3, the
first character of the matching probe must be prepended to the putative sequence.
A simple example of SBH using 5-mers (i.e. & = 5) to reconstruct a 23-character

sequence follows:

Example 1.6. Let the target sequence s = GGAGGCTATTATCGAATATCCCC.
The spectrum S of the string s is { AATAT, AGGCT, ATATC, ATATT, ATCCC,
ATCGA, ATTAT, GAATA, CGAAT, CTATT, GAGGC, GCTAT, GGAGG, GGCTA,
TATCC, TATCG, TATTA, TCCCC, TCGAA, TTATC }. We want to reconstruct
the target sequence s from its spectrum.

First, we select probe pg = GGAGG as the starting point for sequencing (Step 0).
Then we search the spectrum for a probe which has a 4-prefix matching the 4-suffix of
the putative sequence, GAGG. There is a single matching probe, so p; = GAGGC
The character C is appended to the putative sequence, giving us the 6-character
sequence GGAGGC.

Now Step 1 is repeated. Searching the spectrum for a probe which has a 4-prefix
matching the 4-suffix AGGC yields the single response AGGC T, so the character T
is appended to the putative sequence, resulting in GGAGGCT.

The next (third) extension step yields the probe GGCT A matching the 4-suffix
GGCT, so A is appended to the sequence. Contimiing in the same manner, the fourth
extension step yields the probe GCTAZ;&{ ® as the sole match to the 4-suffix GCTA,

and so a T is appended to the sequence.
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Each subsequent iteration is identical in process to the first: the spectrum is
searched for a probe which matches the 4-suffix of the putative sequence, and (since
this is an example of a successful reconstruction) there is a single matching probe.
The remaining 4-suffixes, the probes with 4-prefixes matching the 4-suffix, and the
character added to the putative sequence as a result of the successful search are

shown in the rows of the following table. Recall that the putative sequence thus far
is GGAGGCTAT.

Appended
4-suffix | Matching Probe | Character
CTAT CTATT T
TATT TATTA A
ATTA ATTAT T
TTAT TTATC C
TATC TATCG G
ATCG ATCGA A
TCGA TCGAA A
CGAA CGAAT T
GAAT GAATA A
AATA AATAT T
ATAT ATATC C
TATC TATCC C
ATCC ATCCC C
TCCC TCCCC C
CcccCC None -

Each character in the third column is appended, in turn, to the initial puta-
tive sequence (GGAGGCTAT). Thus, we arrive at the sequence GGAGGCTATT-
ATCGAATATCCCC. The final search of the spectrum attempts to find a probe
with a 4-prefix matching CCCC. There is no such probe in the spectrum, so the search

returns 0 matching probes, and the reconstruction process terminates successfully. W

The above example illustrated a successful sequencing attempt. It is possible to
construct a sequence which cannot be as easily reconstructed by making only a single-
character change to the target sequence s. If the 19*" character of s is changed to
T, the new target sequence s’ = GGAGGCTATTATCGAATAT T CCC is produced.
The spectrum of s' (with the changes highlighted in grey) is: { AATAT, AGGCT,
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, ATCGA, ATTAT,
TAT GGAGG GGCTA, TATCG,
This spectrum will be denoted S'.

, GAATA, CGAAT, CTATT, GAGGC, GC-
@, TATTA, TCGAA, TTATC ' (

Now, if sequencing again begins with probe py = GGAGG, the reconstruction
process proceeds as in the above example until the sequence has been extended to
GGAGGCTATT. The next extension step searches &' for probes with a 4-prefix
matching TATT. There are two matching probes in §": TATTA and TATTC. There
are two potential extensions to the putative sequence, and thus the reconstruction
process fails.

We generally refer to the case where there is more than a single probe matching
an extension query as an ambiguous extension. When an ambiguous extension occurs,
it is often possible to determine which extension (or which branch) is the correct one

by continuing to extend both possible sequences.

2 4

S 1 =A 3 =B > =E

Figure 1.8: A graph with only one Eulerian path. ‘A’ and ‘B’ are points where an
ambiguous extension occurs, but there is only one possible traversal of all 5 edges:
1-2-3-4-5. Thus, any target sequence which can be represented by a graph of this
type can be unambiguously reconstructed.

Let’s return to the case above, where the target sequence s' = GGAGGC TATT -
ATCGAA TATT CCC. The first ambiguous extension occurs at position 7 (the first
grey box). If both sequences are extended, the spurious sequence (the branch begin-
ning with the character C) will be extended by only three more characters before the
end of the sequence is reached. Conversely, the correct sequence (the branch begin-
ning with the character A) will be extended until position 17 (the lighter grey box),
at which point there is another identical ambiguous extension. We can construct a
graph G, representing the sequences which are consistent with this process. There
are vertices for the beginning of the sequence S, the end of sequencing E, and all

ambiguous extensions. The edges are labeled with the sequence fragments produced
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between vertices. The graph for s’ is of the form shown in Figure 1.8; it is trivial to
see that there is only one path from S to E which incorporates all of the edges (and

thus sequence fragments) in the graph.

' =

Figure 1.9: A graph with two Eulerian paths. ‘A’ and ‘B’ are points where an
ambiguous extension occurs, and there are two valid traversals of all 5 edges: 1-2-
3-4-5 and 1-4-3-2-5. Any target sequence which contains such a pair of interleaved
repeats cannot be unambiguously reconstructed.

In general, if there is a single Eulerian path from S to F in G for a sequence, then
we can unambiguously reconstruct the target sequence from its spectrum. However,
there exist quire simple graphs for which there is no unambiguous Eulerian path. Let
A and B denote two (k—1)-character strings. If A and B are each repeated within the
target sequence, in the relative order ABAB, there is no unambiguous path through
G, as shown in Figure 1.9. Pevzner showed in [P91] that there is no way of resolving
these interleaved duplicate strings, and that they are common enough to restrict SBH
to sequences of length O(2%), which compares very poorly with the promised O(4*)
information-theoretic limit.

While SBH initially seemed to be a promising technique, Pevzner’s work showed
that it was limited by the probing schemes available at the time: the length of se-
quences which can be unambiguously reconstructed using 8-mers is only a few hundred
bases—offering virtually no improvement over electrophoresis. Furthermore, increas-
ing k by 1 only doubles the length of feasible target sequences, at a cost of 4 times
as much chip area. At the time, the benefits of SBH seemed to be outweighed by the

problems it introduced, and it lost much of its original lustre.
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1.5 Universal Bases and Gapped Probes

When the initial burst of interest in SBH waned, research in the area nearly stopped
for several years. Then in 1999, Preparata, Frieze and Upfal [PFU99| presented a
novel approach to SBH which increased the power of the method nearly a hundred-
fold. The new technique makes use of wild-cards in the probing pattern, which
can possibly be realized with artificial nucleotides known as universal bases. When
initially discovered, they were thought to be nothing more than an annoyance to

researchers, but they allow a powerful improvement to be made to the SBH method.

Definition 1.3. A universal base is a nucleotide which forms a non-selective pairwise

bond with any of the four natural bases.

Two universal bases commonly in use today are 3-nitropyrrole 2’-deoxynucleoside
and 5-nitroindole 2’deoxynucleoside (5-nitroindole) [KB01]. These universal bases are
not perfect, as they still exhibit some selectivity in the bonds formed with natural
bases. An ideal universal base could be inserted into a single-stranded sequence
of natural bases, and have the same hybridization strength with adenine, cytosine,
guanine, or thymine.

Universal bases modify the rules of hybridization significantly. When considering
whether or not two sequences will hybridize, universal bases ‘match’ any natural base.
Usually, the character ‘*’ denotes a universal base. To improve the legibility of this
document, probing patterns will be shown using ‘N’s and ‘.’s to represent natural
and universal bases, respectively. Instances of probes will be displayed using the four
natural bases, A, C, G and T in place of the N character, while ‘.’ will still be used
to represent the universal bases.

For example, the string ATG . TC represents a sequence consisting of three natural
bases (ATG), followed by a universal base (.), followed by two more natural bases
(TC). This segment will hybridize any of the four sequences TACAAG, TACCAG,
TACGAG and TACTAG.

The model we adopt in this thesis assumes error-free hybridization between single-
stranded DNA fragments. Reality, of course, is more subtle, allowing for a range of
errors. Both false positive and false negative hybridizations may occur. False positives

take place when two sequences which are not complementary hybridize anyway. This
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results in an entry in the spectrum for a probe which is not present in the target
sequence. False negatives occur when a probe fails to hybridize its complementary
sequence. Some research has been done to perform SBH in the presence of errors
[DHO00, H+02], but we deal only with the noise-free case.

Definition 1.4. Two single-stranded nucleotide sequences are complementary if and
only if one of the following three conditions holds, for every position in the two aligned

sequences:
1. The first strand contains a universal base.
2. The second strand contains a universal base.

3. Both strands contain natural bases, and the nucleotide in the first strand is the

Watson-Crick complement of the nucleotide in the second strand.

Example 1.7. The sequence ‘AT.TTAG’ is complementary to the sequence
‘TAG.A.C’. The two sequences align as follows:

Position 11213145167

Sequence 1A |T|. |T|T|A|G
Sequence 2| T|A|G|.|A|.|C

At each position which contains a natural base in both sequences, the nucleotide in
the first sequence is Watson-Crick complementary to the nucleotide in the second. At
position 3, the first sequence contains a universal base; the second sequence contains

a universal base at positions 4 and 6. [ |

When only the four natural bases (A, C, T and G) are used to create probes,
the number of different probes on a microarray is determined solely by the length
of the probes used; a chip which contains a complete family of x-nucleotide probes
must contain 4% features. The addition of universal bases changes the calculation of
chip size, since universal bases allow longer probes to be used without increasing the
number of features on the DNA chip.

For example, consider a microarray containing the complete family of 4-nucleotide
probes (consisting of 41 = 256 probes), C, = { AAAA, AAAC, ..., TTTT }. Two
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universal bases may be inserted into the middle of each probe, creating a family of
probes C, = { AA..AA, AA. .AC, AA. AT, ..., TT..TT }. Note that this is
still a a complete family of probes; the addition of the two universal bases does not
require that any additional probes be added to the microarray. In fact, both chips
resolve four-character subsequences of a target sequence. In general, universal bases
(and groups of adjacent universal bases) simply act as gaps between natural bases.
Accordingly, Preparata & Upfal [PU00] make the following definition:

Definition 1.5. Probes which contain universal bases are called gapped probes.

In theory, universal bases allow microarrays to be constructed with arbitrarily long
probes, since an unlimited number may be inserted into ungapped probes without
increasing the chip size. Another ten universal bases may be inserted into the 6-base
gapped probes above to create probes of the form NN. .. ......... NN. Although
this probe has an overall length of 16 nucleotides, a total of 12 are universal bases,
and so a microarray containing a complete family of probes of this form contains only
4* = 256 features.

Universal bases may be inserted into an ungapped probe at more than one location
(creating gapped probes that contain more than one gap). For instance, probes of the
form NN. . .N. .N are perfectly valid. Note that probes always begin and terminate
with a natural base, since adding universal bases at the end of an ungapped probe
serves no useful purpose. In general, any configuration of natural and universal bases

defines a probing pattern, as follows:

Definition 1.6. A probing pattern (or probe pattern) beginning and ending with
N refers to a particular configuration of natural and universal bases. It can be rep-
resented as a binary string, with 1’s denoting natural bases and 0’s universal bases.
Probing patterns may be roughly described by two parameters: their length (\) and

the number of natural bases they contain (k).

Example 1.8. The binary probing pattern 1111 represents standard ungapped 4-

nucleotide probes. [ |

Example 1.9. The first gapped probes discussed above, created by inserting two
universal bases into 4-nucleotide ungapped probes, are represented by the pattern
110011. ]
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The positions in a probing pattern which contain natural bases are typically called
the specified positions. This is in contrast with the unspecified positions occupied by
the universal bases. In explanation, consider the gapped probe A. .T..GAA, chosen
at random from some spectrum. We know that the probe corresponds to a specific
subsequence of the target sequence, but out of the 9 bases contained within the span
of the probe, the specific identity of only x = 5 bases is known. These 5 positions are
said to be specified; the remaining 4 are left unspecified—their identities are unknown.

Using ungapped s-nucleotide probing patterns, each probe hybridizes a k-base
substring of the target. The location of each probe in the target string can be denoted
by the left-most character in the subsequence to which it hybridizes. For example, the
ungapped probe AGGC occurs at position 4 in the sequence TTAAGGCGA. Note

that two ungapped s-probes which occur at adjacent positions in the sequence always

have a xk — 1 base overlap; the last three bases in A

three bases in the probe A, which occurs at position 5 of the sequence.

The location of a A-nucleotide gapped probe can be defined analagously to the
location of an ungapped probe, except that gapped probes do not correspond to
specific A-substrings of the target, but rather x-subsequences, where the x natural

bases need not necessarily be adjacent:

Definition 1.7. A probe is said to occur at the ith position of a sequence if, when the
left-most position of the probe is aligned with the ith position of the sequence, all of

the natural bases in the probe match the corresponding bases in the aligned sequence.

Example 1.10. Consider the DNA sequence ACCCAGTAGCGTAGA and the prob-
ing pattern 111001001. The probe defined by aligning the left-most position of the
pattern with the first character of the sequence is ACC. .G. .G; we say that this
probe occurs at position 1 of the sequence. The probe which occurs at position 6 of
the sequence is defined by aligning the left-most position of the probing pattern with
the sixth character of the sequence, GTA. .G. .G. [ |

The binary string representing a probing pattern can be thought of as a sampling
filter which is applied to a DNA sequence. With the left-most position of the pattern
aligned to a particular position of the sequence, each position of the sequence which

aligns with a 1 in the pattern is ‘sampled’ by the pattern. Positions in the sequence
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which align with a 0 in the pattern are not sampled; they are effectively ignored.
For example, consider the string S = ATGTAAATA, and the probing pattern P =
1101001. One possible alignment of the P with s is:

Position 1 2 314 5 617 8 9

Sequence ATG|TAAATA
Probe Pattern 1 101 0|0 1

In this alignment, the pattern (P) samples 4 positions of the sequence: 2 (T), 3
(G), 5 (A) and 8 (T). The three other positions which are contained within the span
of the probe are not sampled, since they align with universal bases in the probing
pattern. Put another way, the characters sampled by a probing pattern aligned with
the ith position of a sequence define a probe; the probe defined by the above alignment
is TG.A..T. Formally, we define sampling as follows:

Definition 1.8. A probe is said to sample a character (c) in a sequence if one of the

specified positions in the probe aligns with c.

A probing pattern with x natural bases samples « of a sequence. Conversely, in a
the spectrum S of a target sequence, there are x probes which sample every position
(excluding the first and last A — 1 characters, which are sampled by fewer than x

probes).

Example 1.11. For example, consider the probing pattern 100100100111. If the
left-most position of the probe is aligned with the i-th character of the sequence, the
probe samples the six positions positions {i,7 + 3,4+ 6,7 + 9,7+ 10,4 + 11}. When
aligned with the third character in the following sequence, the pattern samples the
italicized characters: TTAAGCGGTGGAAG. [ ]

Alignments of a probing pattern with a sequence are only valid if the probing
sequence is completely contained within the span of the sequence. Consider again
the same probing pattern and sequence. There are only three valid ways of aligning
the probing pattern with the sequence: the left-most position of the pattern may be

aligned with the first, second, or third character of the sequence, as follows:
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Position |1 2 34 5 6|7 8 9
Sequence |[A T G|T A A|A T A
11 0|1 0 0|1
1 110 1 0(0 1
11 0 1{0 0 1

There are no further valid alignments of P with s, since all other potential align-
ments result in the pattern P extending one or more positions beyond the end (or
beginning ) of the sequence s. There are always m — A + 1 valid alignments of a
sequence of length m and a probe of length .

When a complete family of gapped probes are arrayed on a DNA chip, the spec-
trum resulting from hybridization with a target sequence does not reveal a complete
set of k-mers, since the x natural bases in a gapped probe are not adjacent to one
another. The spectrum resulting from such an experiment identifies instead the set
of all probes (k—subsequences) which hybridize with the target sequence. If there are
no duplicates, the spectrum of a sequence of length m contains m — A + 1 unique

probes.

Definition 1.9. The spectrum of a target sequence (s) of length m consists of every
probe which can be generated by all possible alignments of the probing pattern with the
sequence s. Given a probing pattern of length X, there are m — X + 1 probes in the

spectrum, assuming no duplication of probes.

Example 1.12. The spectrum of the target sequence ATGTAAATA using the prob-
ing pattern 1101001 (or N.N. .N) consists of the three probes which are generated
by the three valid alignments of p with s shown above: AT.T..A, TG.A..T, and
GT.A. .A. |

Now that we have described the nature of a gapped-probe spectrum, the algorithm

which reconstructs a sequence from such a spectrum must be discussed.

1.6 SBH with Gapped Probes

The gapped-SBH algorithm developed by Preparata, Frieze & Upfal begins with a
(A — 1)-nucleotide segment of known DNA (called a seed), and then extends that
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segment a single base at a time until the entire sequence has been reconstructed.
There are two modes of extension, called SIMPLE and SUPER. The SUPER mode of
extension is alternately referred to as the branching mode of extension, for reasons
which will shortly become clear.

The increased power of gapped-probe SBH is derived from one simple property.
Two adjacent ungapped x-mers always share a (x—1)-length subsequence; the (k—1)-
suffix of the probe at position i is identical to the (kx — 1)-prefix of the probe at i + 1.
Adjacent gapped probes, on the other hand, may share fewer than x — 1 nucleotides.
In fact, two adjacent gapped probes need not share any common subsequences. Two
adjacent probes (located at positions i and i + 1) with the pattern P = NN.N. .N
have only a single base in common. For instance, consider the probes of this form
ocurring at positions 1 and 2 in the sequence S = ATGTAATA: p; = AT.T. .A and
p2 = TG.A..T. The only position in the sequence which is sampled by both probes
is the second character (T) in the sequence S; it occurs at both the second position
in p; and the first position in p;. Furthermore, two adjacent probes of the pattern

N..N..N..N have absolutely no characters in common.

Definition 1.10. An (s,r)-probing pattern is a particular family of probing patterns.
They can be either direct or reverse patterns. A direct (s,r)-pattern has the form
1°(0°~'1)", while a reverse pattern has the form (10°~Y)"1°. They have length X =

s(r +1) and k = s + r natural bases.

It is interesting to note that the traditional ungapped probe is just a special case
of an (s, r)-probing pattern. Both (x,0) and (1, x — 1) probes resolve to a solid probe
of x natural bases, with no fooling bases interjected. Here are two more examples of

gapped probing patterns, both of which are somewhat more useful.

Example 1.13. A direct (4,4)-probing pattern has the form 11110001000100010001,
or NNNN...N...N...N...N. The corresponding reverse pattern has the form
10001000100010001111, or N...N...N...N...NNNN. [ |

Example 1.14. The spectrum S of the sequence ATAGCGATAGCGA using a re-
verse (3,2)-probe (N..N..NNN) pattern contains the following probes, listed in
the same order in which they are found in the sequence, from left to right: {
A..G..ATA,T..C..TAG, A..G. .AGC,G..A..GCG,C..T..CGA }. The
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sequence has length 13, the probing pattern is 9 characters long, and there are no
duplicate probes, so the spectrum contains m—A+1 = 13—9+1 = 5 distinct probes.
[

As mentioned before, we assume that the sequencing process begins with a short
known sequence of DNA—a seed, or primer string. This seed sequence needs merely
to have length at least (A — 1) and be an actual substring of the target sequence. The
seed can occur at any position in the target DNA sequence. The gapped-probe SBH
algorithm reconstructs the complete target sequence from the seed and the spectrum,
by extending the putative sequence character by character, beginning with the seed.
Note that when using ungapped probes, any probe meets the requirements for a seed,
since A = k, and each probe s a fully specified substring of the target sequence.

The simple mode of extension using gapped probes is nearly identical to the ex-
tension mode for ungapped probes. The primary difference between the gapped and
ungapped modes of operation for the sequencing algorithm occurs when there are
two or more probes which provide valid extensions to the current putative sequence.
When using ungapped probes, such an ambiguous extension can only be resolved by
an Bulerian path solving algorithm.

However, gapped probes allow an initially ambiguous extension to be resolved
quite simple. The first component of the disambiguation process requires the defi-
nition of the spectrum query operation. Recall that Definition 1.4 describes comple-

mentary sequences containing universal bases.

Definition 1.11. The spectrum query is the elementary operation of SBH. It pro-
duces the set of all probes in the spectrum that match a A-character query string q.

A probe p matches a query string q if, for ¢ = 1.\, p; is complementary to q;.

Of course, a universal base will hybridize any natural base, so any position which
contains a universal base in either p or ¢ automatically fits the criteria. The only
positions which can cause a mismatch between a query and a probe are those which

contain natural bases in both p and q.

Example 1.15. A spectrum constructed with a (3,2)-probe reverse pattern
(N..N..NNN) contains the probes A..A..CTC, A..G..TAC, A..T..TTA,
C..T..TAC, G..G..GTA, T..A..AGG. It is queried with the string
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‘AGG.A.T. .’ The following table helps illustrate how the characters in the query
string align with the probing pattern:

Position|1 2 3[4 5 6|7 8 9

Patternm (N . . |N . .|[N N N
Query |A G G|. A .|T

Only positions 1 and 7 contain natural bases in both the query string and the
probing pattern; all other positions have at least one universal base. Thus, any probe
in the spectrum which contains the natural base A in position 1 and T in position 7 is a

match to the query string. The resulting set contains the two probes A=, .G. .
T. . JETA.

and

All of the probes in a spectrum share the same pattern, so when a A-character
query ¢ is used to probe the spectrum, only the « positions in ¢ which contain natural
bases can affect the search results. If a ¢ contains natural bases in each of the specified
positions in the pattern, then the spectrum query merely determines whether or not
the exact probe which matches the query is present in the spectrum.

Every position in ¢ which contains a universal base that aligns with a natural
base in the probing pattern is called a free position, and increases the number of
potentially matching probes in the spectrum by a factor of 4. A query which contains
one free position matches at most 4 probes in the spectrum; a query which contains
n free positions may produce as many as 4™ matching probes. Of course, there can
be at most x free positions in a query string; if n = &, then the query string will
match every probe in the spectrum. The example above was a query with 3 (out of
a maximum 5) free positions. From here on, we will use the character ‘7’ to signify
the free positions in a query, to differentiate them from the other universal bases in
the probing pattern.

Step 2 in the sequence-extension process for ungapped probes, wherein the spec-
trum is searched for probes with a (k — 1)-prefix matching the (k — 1)-suffix of the
putative sequence, is equivalent to constructing a s-character query string consisting
of the (k — 1)-suffix of the putative sequence with a single universal base appended.
Such a query string always has the form N*~!? and matches probes which contain

the appropriate (k — 1)-prefix.
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Similar query strings are used in gapped-SBH sequence extension. They are con-
structed from the (A — 1)-suffix of the putative sequence, with a single universal base
appended. They have the form N*~1?. Since the last (right-most) position in a prob-
ing pattern is always a natural base, this implies that they always have a single free
position; and (k — 1) specified and non-free positions which align with the natural
bases in the probing pattern. (The right-most of the x specified position is free.)

Thus there are at most 4 probes in the spectrum which match any extension-query.

Example 1.16. Using (3,2)-direct probes (NNN. .N..N), which have A = 9 and
k = b5, the query strings consist of the 8-suffix of the putative sequence, with a
universal base appended. If the putative sequence is AGTCGTGAGC, the query
string is ‘TCGTGAGC?’. The query strings align with the probes as follows:

Position|1 2 3[4 5 617 &8 9

Pattermn I[N N N{. . N|. . N
Query (N N NIN N NIN N ?

A matching probe in the spectrum must contain the correct natural base in posi-
tions 1, 2, 3 and 6. [ |

Now that spectrum queries have been defined, we move on to the process for
gapped-probe sequencing. We assume here that the seed is the first A — 1 charac-
ters of the target sequence, although this need not be the case; a seed which occurs
elsewhere in the sequence can be extended in both directions until the reconstruc-
tion process has completed. This process is functionally identical to the ungapped
sequencing process, except that if there are two or more probes matching a query the
branching mode of extension is initiated, whereas the ungapped sequencing algorithm

simply fails.

Gapped Sequencing by Hybridization
1. Let the putative sequence be equal to the (A — 1)-character seed.

2. Query the spectrum with a query string constructed from the (A — 1)-suffix of

the putative sequence with a universal base appended.
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3. If there is exactly one probe (denoted p;) matching the query, append the A

character of p; to the putative sequence, and repeat Step 2.
4. If there are two or more matching probes, initiate the branching extend process.
5. If there are no matching probes, the reconstruction is complete.

|

If no ambiguous extensions are encountered during the sequencing process, then
the gapped-probe algorithm works the same as the ungapped version. The gaps in the
probing pattern have no effect on the probability of finding an ambiguous extension.
However, with gapped probes, it is possible to resolve ambiguous extensions by means
of the other probes which sample the ambiguous position: this is the branching extend
process.

The branching extend process is simple: just construct a separate sequence for
each of the possible extension characters, and continue extending each of these se-
quences breadth-first. This is somewhat similar to the Eulerian path resolution which
can be performed for ungapped SBH, except that a spurious sequence is typically
eliminated very quickly.

Using an ungapped k-mer probing pattern, there are k probes which sample each
position in the target sequence. This is also true when using a gapped probing pattern
with x natural (specified) positions. However, when using gapped probes, the set of
sampling probes have a high degree of independence. This is not the case for ungapped

probes.

A TCGAA TATTC CC. An

ambiguous extension occurs when the spectrum is queried with the string TATT?,

Consider once again the sequence GGAGGC

since there are two matches in the spectrum. Note that the two matching probes
correspond to two matches in the sequence. All of the (k — 1) characters in each
probe to the left of the ambiguous character are identical. The next probe that

samples the ambiguous character just samples a shorter (k — 2) substring to the left

of it. The next probe that samples the correct extension (A) i
next probe sampling the incorrect extension character (C) is ATT € C. Note that

both of these match exactly in all positions to the left of the spurious character.
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Now consider the spectrum S of (3,2)-direct probes (NNN. .N. .N) of the se-
quence CGG TAT CCT
queried with the string ‘TATCCTAG?’, there are again two matches in the spectrum:
TAT..T..A and TAT. .T. .C. However, the underlying sequences at the locations
of each probe are not the same (TATCCTAGA # TATGTTTTC). The next probe

that samples the ambiguous character samples an almost completely different set of

i B

characters to the left of the ambiguous position.

In fact, the next probe that samples the correct extension character (A) is

.48 . . T, whereas the next probe sampling the incorrect extension charac-

ter is GTT. @M” . A. These two probes have only one character to the left of the

ambiguous character in common, and this is what gives gapped probes an increased
power of resolution over ungapped probes.

Observe that when the initial ambiguous extension is encountered, the putative
sequence is s, = GGGTATCCTAG. The two potential sequences which are created
for the two potential extension characters are GGGTATCCTAG “
’ But while the next probe (CCT. A
position in the correct path is (guaranteed to be) present in the spectrum, the next
probe (CCT. . i

not present. There are no matches to the extension query for the spurious path, so

\ and GGGTATC-

. .'T) that samples the ambiguous

.. T) that samples the ambiguous position in the spurious path is

we know that the correct path is the one which can be extended.

A major failure mode in gapped-probe sequencing requires that x independent
probes be present in the spectrum, each of which is a x-character sequence, compared
with a single probe in ungapped SBH. This is the essential reason why gapped SBH
achieves performance of about 1/3 of the information theoretic bound. The next
chapter explores this in far more detail, and carefully describes the events which can
lead to sequencing failures. To conclude, we present a comparison of the performance

of ungapped SBH and gapped SBH in Figure 1.10.
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Figure 1.10: The gapped-probe method of SBH using (4,4)-probes can reconstruct
target sequences nearly two orders of magnitude longer than the standard method
using ungapped 8-mers. The gapped-SBH algorithm is represented by the gray curve.
The ungapped curve is visible only as a slight thickening of the vertical axis of the
plot.
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Chapter 2

Implementation of the
Gapped-SBH Algorithm

The basic gapped SBH algorithm was developed and described by Preparata and
Upfal in [PUO00]; the pseudo-code presented in this chapter implements a modified
version of that algorithm. The focus of this chapter is not to produce an alternate
method of reconstructing a sequence, but to describe an efficient implementation of
their algorithm. Careful design yields an algorithm which runs in seconds instead of

hours, and can be effectively used on much longer sequences.

2.1 C++ Pseudo-code Usage

The research described in this dissertation was conducted with a software simulation
implemented in C++ using the STL (Standard Template Library). The pseudo-code
snippets contained in this chapter describe both the data structures and algorithms
used to construct the full software system. C++ allows variables to be grouped
together in complex data structures—objects—which can also contain member func-
tions. Objects with member functions can be treated as standard complex data
structures: if a data structure object D contains a string s, an integer n and a list
of integers i-list, they can be individually denoted as D.s, D.n, and D.i-list. Member
functions work the same as traditional procedures, except that a member function

has access to all of the variables contained within the same object, as well as any

33
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parameters it accepts. For instance, the procedure Si1z(D.i-list) might return the
number of elements contained in i-list. Conversely, if object D contains the member
function LiSTSIZE, then a call to D.LisTSI1ZE() would produce the same result. While
this example is trivial, member functions in more complex data structures save us
from having to pass long lists of parameters, and increase the legibility of both the
pseudo-code and the C++ code itself.

The pseudo-code in this thesis follows a simplified C++ form, and has the follow-

ing form for objects and data structures:

DATASTRUCTURE
variable LocalVarl varType
variable LocalVar2
function MEMBERFUNCTION1(Argl, Arg2)
function MEMBERFUNCTION2(Argl)

In the object definition above, LocalVarl is a variable of type ‘varType’, which
might be an integer, string, array, or another data structure. The second variable
LocalVar2 does not have a specified type; the type of such variables will be obvious
from the context in which they appear. The two member functions (MEMBERF UNC-
TION1 and MEMBERFUNCTION2) accept two and one parameters, respectively. All
member functions will have full pseudo-code provided separate from the object def-
inition. When referring to an instance of DATASTRUCTURE called d, the member
variables and functions will be denoted d.LocalVar! and d. MEMBERFUNCTION1(a,
b), respectively. The pseudo-code for functions (including the member functions of a

data structure) will be written as:

MEMBERFUNCTION1(Argl, Arg2)

1 if Argl.Booll = true

2 then LocalVar2 < Arg2 +1

3 else LocalVar2 « Argl. FUNCTION1(Arg2 — 1)
4

return LocalVar2 x 2
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This pseudo-code describes an algorithm which takes two arguments: Argl and
Arg2. However, since MEMBERFUNCTION1 is a member of the object defined above,
it has access to the two local member variables in the data structure, LocalVar! and
LocalVar2, in addition to the two parameters it accepts. Data types of the parameters
accepted by functions will be explained in cases where not obvious. Here, Arg! is a
complex data structure containing (at least) a boolean local variable named Booll
and a member function FUNCTION1 which accepts a single integer as a parameter.
MEMBERFUNCTION1 performs two simple tasks: first, it sets the value of LocalVar2
on line 2 or 3 depending on the value of Argl.Booll. It then returns an integer equal
to twice LocalVar2 (line 4).

The standard notation that will be used for strings throughout this document is
defined as:

Definition 2.1. A string S has ¢ characters numbered 1...£. The ith character of
a string will be denoted as S;. A substring of S with length (k — j + 1) characters
beginning with the jth and ending with the kth will be denoted S;. k. The length of the
string is denoted |S)|.

Example 2.1. Consider the string S = A...CAGG...AA.T. The length ¢ of
the string |S| is 15 characters. The 5th character of the string, S;, is C and the
14th character of the string Sy4 is ‘.’. The substring of S denoted by S ;2 is the
7-character string AGG. . . A. |

The ‘+’ operator will indicate the concatenation of two strings. The operation
= b+c thus produces a string a with length |a| = |b|+|c|, consisting of the characters
in the string b followed immediately by the characters in the string c.

Arrays are defined similarly to strings, but have a slightly different notation:

Definition 2.2. An array A contains m elements numbered 1...m. The ith element
of an array is denoted Ali], and a range of (k — j) + 1 consecutive members from the
jth to the kth inclusive is denoted Alj ...k]. The number of elements in (the size of)
the array may be accessed by using the function SI1ZE(A), which returns the integer

value m.

Now that notation has been dealt with, Section 2.2 introduces the algorithm itself.
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2.2 Overview of the Sequencing Algorithm

The SBH algorithm is designed to completely and unambiguously reconstruct a se-
quence of DNA (called the target sequence) from its spectrum. It begins with a short
segment of known DNA (called the seed), such as the PCR primer. The algorithm
then proceeds to extend the seed one character at a time until either the entire se-
quence has been reconstructed, or the algorithm fails.

The process of sequence reconstruction is conducted by a simple algorithm called
EXTEND, which attempts to add a single character at a time to the putative sequence.
The EXTEND algorithm, in turn, calls the QUERY function, which interrogates the
spectrum to determine which probes match the (A — 1)-character suffix of the current
string.! Finally, the CHECK algorithm—which is used by QUERY to verify whether
one specific probe is present in the spectrum—is the elementary operation of SBH;
the complexity of the SBH algorithm overall will be analyzed in terms of the number
of spectrum checks performed.

It follows that the data structure used to represent the spectrum is the single most
important factor affecting the execution time of the algorithm. A spectrum check is
nothing more than a search for a particular probe in the spectrum, so the complexity
of the whole SBH method depends on an efficient spectrum object. In turn, the data
structure used to represent probes can guide the design of the spectrum, so the probe

data structure is developed in the next section.

2.2.1 Probe Structure

Probes are most obviously represented as fixed-length (A-character) strings over a 5-
character alphabet, {A,C,G, T, *}. If we excise the universal bases from the probes,
we can reduce the probes to x-character strings over the 4-character DNA alphabet.
The process of producing such a packed probe reduces the length of the probe from
A to k characters; a reduction of over 50% in length for all (s,r) gapped probing
patterns of interest. Since the probing pattern is constant for all of the probes in
a spectrum, a packed string (in the form of an integer) unambiguously represents a

single probe. Thus, it is not necessary to store more than one copy of the pattern in

1Recall from Chapter 1 that X is the length of the probing pattern used to generate the spectrum.
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the spectrum.

Example 2.2. The direct (4,4)-probe ATGG...A...T...G...Cis packed into
the k-character string ATGGATGC by removing all of the universal bases. The
probe requires a 20-character string in its unpacked form, and only 8 characters when
packed. [ |

There is another advantage of using the packed-string representation of probes.
Strings are typically represented internally as arrays of the internal character data
type; a 1-byte variable type. By reducing the alphabet to only 4 characters, strings
can be represented with only 2 bits per base using a simple binary coding. This can

also be viewed as an integer from 0 to 3, according to the following table:

character | A | C | G| T
binary 00{01]10 |11
integer 01 112]3

This binary coding of bases suggests a simple translation from k-character string
to a (2 - k)-bit numerical representation of the probe. By converting the character
representing each base to its 2-bit binary encoding and concatenating the binary codes
in sequence, any probe with x < 16 natural bases may be converted to a single 32-bit

integer.

Example 2.3. For example, the (4,3)-direct probe AACG...T...A...Gis first
packed into the string AACGTAG. The binary conversion of the 7-character string
AACGTAG yields the 14-bit sequence 00 00 01 10 11 00 10, corresponding to the
decimal number 434. ]

The complete unpacked string representation of a probe is easily recovered from
its decimal representation. First, the decimal number is converted back to a binary
notation, and padded with leading 0’s to have the correct length. The binary sequence
can then be trivially decoded into the packed-string representation of the probe, which

is then unpacked into the full A-character string representation.

Example 2.4. Consider the integer 1159, the decimal represention of a (3,4)-reverse

probe. To convert it back to its full string representation, we first convert it to the
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binary number 10010000111, and then rewrite it as 7 pairs of bits: 00 01 00 10 00 01 11.
The binary string can then be easily decoded as ACAGACT by referencing the above
table. Finally, universal bases are inserted at the appropriate positions to convert the
packed string to the full (3,4)-reverse probe A. .C. . A..G..ACT. [ |

The three potential representations for probes—unpacked string, packed string,
and decimal number—all contain the same information: namely, the identity and
order of the natural bases in a gapped probe. Two of the representations are most
convenient: the unpacked string, because it can be easily read by humans; and the
decimal number, because it is the most compact way of storing and manipulating the
probe internally to the program. No definitions of either structure are really required:
the decimal form of a probe can be held in an integer, and the string form can be
stored as a string, both of which are standard C++ data types. However, we do need
a way of converting between the two.

The PROBEPATTERN object was created to enable simple translation between
the two forms of probe representation (string and decimal). The object contains two
functions: PACK, which translates from an unpacked string to a decimal probe, and
UNPACK, which translates decimal probes back into unpacked strings. The object
also contains an internal representation of the probe pattern itself, so that the UN-
PACK function always produces a probe of the correct form. The exact structure
of the stored pattern is not important: it may be easily stored as a string (i. e.
NNN. .N..N..N for a direct (3,3)-probe), or an array of numerical indices identi-
fying the positions of the natural bases within the probe (i. e. {1, 2, 3, 6, 9, 12} for
same (3,3)-pattern. The full definitions for the object and its two member functions

follow:

PROBEPATTERN
variable Pattern
function PACK(ProbeString)
function UNPACK(ProbeDecimal)

By translating directly from the characters representing natural bases to integer

values, we can skip a step in the conversion from a string probe to decimal probe.
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This works as follows: let the integer translation of each natural base be denoted
Integer(c), and the reverse translation from integer to character notation be denoted
Character(n). Each character in the string from S; ... S, contributes an additive fac-

tor of 4 - Integer(S;) to the decimal representation of the probe.

PROBEPATTERN.PACK(S)
D+ 0
length = |S|
for + < 1 to length
do if S; # UniversalBase
then D + D + Integer (S;) - 2!

return D

S Ot s W NN

It is often useful to pack a string containing no universal bases as though it
were a standard probe. For example, the string AGGTTAGAGGGT can be treated
as though it were the (3,3)-direct probe AGG..A..G..T. Algorithmically, this is
accomplished by refining the PACK function, so that it only considers positions in the
ProbeString which correspond with natural bases in the probing pattern.

Note that the Pattern member variable of the PROBEPATTERN object must con-
tain the positions of the x natural bases within the probing pattern, as well as the
length of the pattern. In the following functions, the positions of the natural bases

from left to right are denoted as Pattern[1]... Pattern|x].

PROBEPATTERN.PACK(S)
1 D+0
for i <1 to k

D < D + Integer(S;) - 2*

2
3 do j «+ Pattern[i]
4
5 return D

Now that we have a way of easily computing the decimal representation of a probe

from a string, we must define the UNPACK function, which translates a decimal probe
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back into human-readable string form. The UNPACK function always returns a well-
formed probe matching the PROBEPATTERN; the positions in the pattern containing
universal bases will never contain any natural base. Recall that the character decod-

ing of the integer representation of a natural base is denoted Character(n).

PROBEPATTERN.UNPACK(D)

1 § « string of A universal bases
2 fori+ktol

3 do p < Pattern]i]

4 d< D mod 4

5 S[p] = Character(d)
6 D+ D/4

7 return S

Both the PACK and UNPACK algorithms require x multiplication or division op-
erations to convert a probe from one representation to another. They execute in
O(k) time, which remains constant for all microarrays of a particular size. Since & is
biochemically limited to values of 12 or less, the time required to convert from one
form of probe to another can be be considered to be constant. Nevertheless, the rest
of the SBH algorithm should be designed in such a way as to restrict the number of
conversions performed.

Now that we have defined the data structures used for probes, we can move on to

the spectrum.

2.2.2 Spectrum Structure

The SPECTRUM of a target sequence S contains all of the probes which successfully
hybridized with S. What data structure should be used to store them? We should
be able to check whether or not a particular probe is present in the spectrum in O(1)
time. We would also like to add probes to the spectrum in constant time, but since
each probe is added to the spectrum only once, and may be accessed multiple times,
the time taken to add a probe is not as important as the access time. Furthermore, no

additional probes will be added to or removed from the spectrum after it is created,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

so the number of probes in a spectrum remains constant.

For convenience, let n be the number of elements stored in a particular data
structure. We can eliminate lists (O(n) access time) and trees (O(logn) access time)
from consideration since they have non-constant access times for arbitrary elements.
Queues and stacks are more specialized containers which are not suited for our pur-
poses: the order in which probes are added to the spectrum is irrelevant, and probes
are never removed. Without bringing into consideration more obscure data structures,
this leaves only hash tables and fixed-size arrays as potential spectrum containers.

Hash tables are extremely useful data structures. They have amortized O(1)
access, insertion and deletion time, and they can be dynamically resized quite easily.
On the other hand, a fixed-size array is the simplest possible data structure we might
use to represent a spectrum. Since k is always very small, it is feasible to use such
an array. Rather than an amortized O(1) access time over all elements, it offers
constant-time random-access addressing of any member. And although it cannot be
expanded or contracted easily, spectra never change in size after construction.

A fixed-size array offers an additional advantage over a hash table. The decimal
representation of a probe can be used as an array index, so only a single bit is required
to indicate the presence or absence of each probe in the array. If the ith bit in the
array is set, it indicates that the decimal probe 2 is present. Thus, although an
array of 4" elements is required to hold any spectrum for a probing pattern with x
natural bases, each element in the array is only a single bit. Although microarrays
with over 1 million features can now be constructed, the required 1 Mbits is a trivial
amount of memory in a modern computer. It is far more likely that biochemical,
not computational constraints will prove to be the limiting factor in the size of the
spectrum.

Most of the simulations we ran were conducted using probing patterns with x = 8§,
requiring only 4% = 65536 bits, or 8 KBytes of space. Increasing « to 12 still requires
arrays only 4'? = 22* ~ 16 million bits (2 MBytes), less than half a percent of the

available memory on present-day commodity workstations.

Example 2.5. A sample spectrum for a (4,2)-reverse probing pattern (kx = 6) is

shown in the following table:
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Array Index | 012|345 |6]|7|---|4092 {4093 | 4094 | 4095
Probe Present? |0 |1 /0001001 --- 0 0 1 0

The three probes present are indicated by the ‘1’ entries in the second row. The
three entries shown (decimal values 1, 5, and 4095) correspond to the three probes
C...A...AAAA C...C...AAAA and G...T...TTTT. This array requires
only 512 bytes of space to store. [

In practice, arrays of bits were much slower to manipulate than arrays of the
built-in C++ boolean data type. In C++, booleans require between 1 and 4 bytes of
space, depending on the platform, but the additional memory required to store the
spectrum is not significant for probes with x < 12, and in exchange for using extra
space, the program runs nearly 4 times as fast.

In addition to an array of booleans, the SPECTRUM object must hold a few addi-
tional members. Each SPECTRUM includes a PROBEPATTERN object which holds the
spectrum’s associated probing pattern. A method to interrogate the spectrum is also
required, so the CHECK function is added. CHECK takes only one parameter—the
decimal representation of a probe—and returns true if the probe is present in the
spectrum and false otherwise. Another function—CHECK-S—is also included, which
accepts a string representation of a probe, but otherwise behaves identically to the
CHECK function.

Finally, for purposes of simulation, we need a way to construct the spectrum of a
target sequence—a software simulation of the biochemical step in the SBH process.
This is implemented in the member function BUILD, which accepts a string and con-

structs the corresponding spectrum. The basic SPECTRUM object is defined as follows:

SPECTRUM
variable ProbePattern
variable ProbeArray[l...4"]
function BUILD(TargetSequence)
function CHECK(DecimalProbe)
function CHECK-S(StringProbe)
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The SPECTRUM.BUILD function accepts only one parameter: the target sequence
S. It then constructs the spectrum of S by adding all of the probes which match the

target sequence to the spectrum. The pseudo-code is:

SPECTRUM.BUILD(S)

1 fori+1to (|S|—A)

2 do p < S;..isa

3 d < ProbePattern.PACK(p)
4 ProbeArray[d] < true

The pseudo-code for SPECTRUM.CHECK is very simple:

SPECTRUM.CHECK(p)
1 if ProbeArraylp] =1
2 then return true

3 else return false

The code for the SPECTRUM.CHECK-S function requires only a minor modifica-
tion to the code for CHECK:

SPECTRUM.CHECK-S(p)
1 d+ P.PAck(p)

2 if ProbeArray[p] =1
3 then return {rue
4

else return false

The SPECTRUM.CHECK algorithm executes a single array index operation, re-
quiring O(1)—with a very low constant—time to execute. The SPECTRUM.CHECK-S
algorithm also includes a call to the PAck function, which executes O(k) time; in-
creasing the execution time for the CHECK-S function merely by a larger constant.
(CHECK-S is really just a utility function which can be used in place of separate calls

to PACk and CHECK.) Now that the basic data structures used by the program have
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been defined, we can move on to the algorithms themselves.

2.3 The EXTEND Algorithm

The SBH reconstruction process works by making successive calls to EXTEND, each
time adding a short segment of one or more characters to the current sequence. The
process starts with a short segment of known DNA-—a primer for the reconstruction
process—called a seed. The seed segment can occur at any position in the target
sequence, but must be at least A — 1 characters in length. At any point during
sequencing, the portion of the sequence which has been reconstructed is called the
putative sequence. Beginning with the seed, the EXTEND algorithm searches the
spectrum for probes with a (A — 1)-prefix matching? the (A — 1)-suffix of the putative
sequence. If only a single match is found in the spectrum, the matching character is
appended to the end of the current putative sequence, and the reconstruction process
continues. If more than one matching probe is found in the spectrum, EXTEND
attempts to resolve the ambiguous extension by continuing all of the possible sequence
extensions until only one remains.

The spectrum-search process is implemented in a separate function named QUERY,
which accepts two parameters: the spectrum (S) and a A-character query string (q)
containing a single wild-card character (denoted with the ‘7’ character in the string
q). The location of the wild-card character in the string ¢ is called the free position
in the query string.

Let’s examine how the QUERY function is used by the EXTEND algorithm. Ex-
TEND first aims to find a single-character extension to the putative sequence. This
can be done by querying the spectrum with a A-character string composed of the
(A — 1)-suffix of the putative sequence (s) with a wild-card character (the character
‘?”) appended, or

g = S|s|-(r=1)..0s] + 7

The right-most character of any probe in the spectrum which matches the query is a

potential extension to the putative sequence. Consider the following example:

2 Matching was defined in Chapter 1.
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Example 2.6. The sequence reconstructed so far from a (3,2)-reverse spectrum is s =
AAGCGCATAGTAGAT. For (3,2)-probes, kK = 5 and A = 9. The query string con-
structed from the 8-suffix of s and an appended wildcard character is TAGTAGAT?.
This query string will match any probes in the spectrum with the form TAG. .G. .7.
|

The query strings used to extend the sequence character-by-character always have
a single free position. If the putative sequence is being extended to the right, the free
positions always corresponds to the rightmost character in the query string (g,). If
we wanted to extend the sequence to the left, we could use query strings with the
leftmost (g;) position free (i. e. 7AG..C. . A). In general, the free position could
occupy any of the positions of natural bases within the probing pattern, but such
queries have no purpose in SBH. (If the free position coincides with a universal base,
it is effectively ignored, since all of the natural bases in q are fixed, turning the QUERY
into a CHECK.)

The QUERY algorithm works by CHECKing the spectrum for each of the four pos-
sible matches to the query. For a query string ¢ with a free position g¢, four checks
are performed with ¢f = A, ¢ = C, ¢ =T, and g5 = G. The results yield the set of
characters which match the free position in the query string ¢, and hence the possi-

ble extensions to the putative sequence s. The pseudo-code for the QUERY function is:

1

2 [« the free position in ¢
3 for each cin {ACGT}

4 do g5 < ¢

5 if S.CHECK(q)

6 then e+ eUc

7

return e

If e contains only a single character, then that character is appended to the current

sequence, and the sequencing process continues—this is the simple mode of extension.
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When more than a single character is returned by QUERY the problem is more in-
teresting. We can picture the sequence as it is being reconstructed as a path through
the space of possible sequences. The process of extending the sequence by a single
character is equivalent to finding the next state in the path. When QUERY returns a
single extension character, the next state in the path may be chosen unambiguously.
However, multiple results to a QUERY, represent a branch in the search space (with
up to 4 possible choices for the next state in the path, one branch for each character
in e). This is the branching mode of extension. The correct path is the one which
corresponds to the original sequence; the other paths are termed spurious paths. Fig-
ure 2.1 shows a representation of this process, in which there is an initial [C][G] branch
in the sequencing process after the sequence GGCTAAGCGAGCGAT. Each of the
two potential paths is extended by 10 additional characters (AGGATTCCAG) before
another branch occurs in each of them. As the tree is extended, further branches

occur, and some paths are eliminated from the tree.

GAGGATTCCAG /
GGCTAAGCGAGCGAT N
N\ CAGGATTCCAG /

Figure 2.1: Diagram of a path tree created by the branching EXTEND algorithm with
the initial portion blown up. The putative sequence is to the left of an initial [C][G]
branch. Subsequent branches occur, and some potential paths are eliminated. Three
paths survive at the deepest level in the tree.

When a branch occurs, the EXTEND algorithm attempts to continue extending
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all of the possible paths pi,...,p,. At the point of the initial branch, n < 4, but
additional branches may occur as all possible sequences are extended. The maximum
number of potential paths after i characters (including the initial branch) is 4'. The
branches are extended breadth-first until all of the remaining paths share a common
non-empty prefix (corresponding to at least one edge in the tree), or the algorithm
fails. We will examine the different modes of failure shortly, but first we want to
discuss how branches are eliminated from the tree. We ignore the possibility of
additional branches in the extended paths for the moment, and explore a detailed
example.

Consider the putative sequence . . . AAACCCCCCTTTTT which has been recon-
structed so far by the SBH process from a reverse (3,3)-spectrum (with the structure
N..N..N..NNN and parameters k = 6 and A = 12). The QUERY function returns
the ambiguous result {4, G} to the query string CCCCCCTTTTT*, so the following

two paths are are created:

p1 = CCCCCCTTTTT A
= CCCCCCTTTTT

Assume that the correct sequence is . . . CCCCCTTTTT @ﬁAAAAG ..., corre-
sponding to p;. All of the probes necessary to continue extension of this path are, of
course, present in the spectrum. On the other hand, we might be able to eliminate
the path p, from consideration by continuing sequence extension for an additional
A — 1 characters, since the probes necessary to continue extension of path ps are not
guaranteed to be present. The probability of finding all of the necessary probes to
confirm a spurious extension will be discussed in detail in the next chapter, along
with a much more rigorous discussion of the various ways in which the reconstruction
process may fail. Here, we simply provide a brief overview.

The initial branch in the example above could occur in two different ways. First,
there may be two subsequences in the target sequence which match over A — 1 char-
acters (i. e. CCCCCCTTTTTA and CCCCCCTTTTTG). The second possibility is
that there are two (A — 1)-character subsequences in the target sequence which agree
in only the x — 1 of thelr posmons Wthh correspond to the natural bases in the
| "AG TTG. In the first case,
both paths will continue to be extended mdeﬁmtely The gapped SBH algorithm fails

query, 1. e. %}W

S
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in this case in the exact same manner and for the same reason that the ungapped
algorithm fails: all of the probes required to confirm both the correct and spurious

sequence are present in the spectrum.

Example 2.7. The sequence CC AGTAG ACAGC

o

'CTTATT contains a re-
peated subsequence (AGTAG) of length 5. When attempting to reconstruct this
sequence using (3,1)-direct probes (NNN. .N), the query string AGT. .? produces
the ambiguous result {A, C}.

The two probes in the spectrum which match the query string, AGT..A and
AGT. .C occur in the target sequence at the locations of the duplicated subsequence.
There are three subsequent spectrum queries which sample the ambiguous position.
However, all three queries of the queries produces an ambiguous result, since each
query matches two locations in the sequence. On the following lines, the probes
which confirm each ambiguous character are displayed at the location in the sequence

where they occur:

Sequence: CC AGTAG ACAGCAGTAG
Probes: AGT. A

AGA..G

GAG..C

This is just a simple example with a 5-character repeat and probes with length
A = 6. However, it illustrates the general case of a (A — 1)-character duplicated

subsequence causing a guaranteed sequencing failure for any probing pattern. ]

Fortunately, duplicate sequences of length A —1 are highly unlikely (for sufficiently
large A), since the likelihood of finding a duplicate sequence decreases by a factor of
1 with each additional character. The most likely reason for the initial ambiguous
result to QUERY is that there are two strings which match only over the x — 1
positions which affect the spectrum search. In this case, we can usually eliminate
the spurious branch by further extending both paths. This is is because—unlike
ungapped probes—gapped probes sample only « out of A positions within their span;

adjacent probes typically have fewer than  characters in common.
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In our running example, there are kK — 1 = 5 additional probes which sample the
ambiguous position after the initial ambiguous query. These probes correspond to 1-,
2-, 5-, 8-, and 11-character shifts with respect to the position of the ambiguity. The

character ‘X’ is used to represent any natural base.

Sequence: .. XXXXXXXXXXEXXXXXXXXXXXX...
Probes: N..N..N..NNN
N..N..N.. NNN
N..N..N..N NN
N..N..N..N NN
N..N..N..N NN

Again, assuming that there are no further ambiguous results to any calls to the
QUERY algorithm, the spurious path can be eliminated if and only if one of the
these five queries returns 0 results. As soon as a call to QUERY returns an empty
set of characters, that path is eliminated and the other path may be used as the
sequence extension. Note that once these 5 queries have been completed, there are no
subsequent spectrum queries which sample the ambiguous character. If all 5 queries
return at least a single result, there is no further chance of eliminating the false path.
When this occurs, the algorithm cannot reconstruct an unambiguous sequence from
the spectrum, and fails.

In practice, there is a chance that any of the paths (correct or spurious) may
branch again before the initial ambiguity is resolved. In fact, as the length of the
target sequence approaches the feasible limit for sequence reconstruction, the set of
paths being extended can grow quite large. However, it is not necessary to reduce
the set of paths to a single member; it suffices to eliminate all but one of the root
branches. When all of the paths remaining in the set agree in at least their first
position, the initial ambiguity is resolved, and sequencing can continue.

The actual circumstances which may result in sequencing failure are significantly
more complex than we have described. The different modes of failure will be discussed
later in this chapter, and the probability of each mode will be analyzed in Chapter 4.
For now, we describe only how the EXTEND algorithm decides to stop extending a tree
of paths. EXTEND has two bounding parameters: a depth-bound H and a breadth-

bound B, which are necessary to limit the running time and space of the algorithm
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when a failure occurs. If the tree of possible path extensions reaches either of these
bounds when attempting to resolve an ambiguous extension, the process fails.

In summary, there are two modes of extension possible within the EXTEND al-
gorithm. The simplest mode occurs only when there is only a single probe in the
spectrum which matches the (A — 1)-character suffix of the putative sequence. The
'branching mode of extension is initiated when there are two or more probes in the
spectrum which match the (A — 1)-character suffix of the putative sequence. In the
branching mode, all possible paths are extended until until all but one of the initial
branches is eliminated.

The pseudo-code for the EXTEND algorithm and a helper function called PATH-
SPLIT, is presented here. PATHSPLIT is a utility function which accepts a single path
string s (the string representing a possible path in the tree of potential paths) of
length ¢ and a set of 2 < n < 4 characters (e) as arguments. e contains the set of
possible extension characters to the putative sequence s. The function returns a set
of n path strings of length £ + 1 (one for each possible extension) by appending each

character in e to a copy of s in turn.

PATHSPLIT(s, €)
P+ N1L
for eachcine

1

2

3 dop=s+c
4 P+ PUp
)

return P

Finally, we reach the EXTEND function itself. It accepts two arguments: the spec-
trum S and the putative sequence s. It returns a (possibly empty) string containing

the extension to s.

EXTEND(S, $)
L g Sis—(a-1).js] + 7
2 e+ QUERY(S,q)
3 iflel=00R|e|=1
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4 then return e

5 P « PATHSPLIT(s,¢€)

6 () < NIL

7 while i < H and |P| < B

8 do for each p in P

9 do ¢ < ppj-(-1)..ppl + 7
10 e + QUERY(S,q)
11 Q + Q U PATHSPLIT(p, €)
12 P+Q
13 if |Prefiz(P)| >0 OR |P| =0
14 then return Prefiz(P)

15 error “failure”

The EXTEND algorithm is the heart of the SEQUENCE algorithm, which actually
stitches together all of the short segments produced by EXTEND. The SEQUENCE
algorithm will be defined in the next section.

When the spectrum is free of errors (noise), the reconstruction is guaranteed to
be error-free, with one notable exception. When a branch occurs within the depth
bound of H characters of the end of the sequence, it is possible that the final seg-
ment produced by the EXTEND algorithm contains one or more incorrect characters.

Consider the following example:

Example 2.8. A 10000-base target sequence is being reconstructed from its spectrum
of (4,4)-direct probes. When the putative sequence is 9991 characters in length, there
is an ambiguous query in EXTEND, and a branch occurs. EXTEND continues both the
correct and spurious path for 9 characters. At this point, the correct path contains
the characters necessary to complete the sequence reconstruction process, and the
spurious path contains at least one incorrect character. However, further extension
of the correct path is impossible, since it has reached the end of the target sequence.

If the putative path is .. .GGACCGTG then the correct and spurious paths (with
the ambiguous character highlighted) are:

...GGACCGTG A AAGAGTTCAC
...GGACCGTG T AAGAGTTCAC
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In order for either of these sequences to be extended by an additional character, there
must be a probe in the spectrum which matches ‘GGAC. . .G, .G...T...7
Note that since this probe doesn’t sample the ambiguous character, a single matching
probe suffices to extend both the correct and spurious paths.

If there is no probe in the spectrum which matches the query, both paths are
eliminated simultaneously, and the entire tree is eliminated. In this case, the Prefix
of the tree is empty, and EXTEND returns a O-character extension, signalling the
end of reconstruction. The last 9 characters of the sequence are lost, but the 9991-
character sequence which is successfully produced contains no errors. On the other
hand, if there is a probe in the spectrum which matches the query, then both paths
are extended. Probes that allow the extension of spurious paths are called fooling
probes, which are defined in Section 2.6 and discussed in detail in Section 3.1.

The next 1-character extension of the paths requires probes in the spectrum which
sample the ambiguous character. The correct path is extended if there is a probe in
the spectrum matching ‘GACC... A ...A...C...7, and the spurious path is ex-
tended if the spectrum contains a probe which matches ‘GACC...T ... A...C...7

There are four possible outcomes to this pair of queries:

1. Neither query produces a response; there are no fooling probes in the spectrum

which extend either path.

2. The correct path is extended by a fooling probe, and the spurious path is

eliminated.

3. The spurious path is extended by a fooling probe, but the correct path does not

get extended, and is eliminated.

4. There are fooling probes in the spectrum which confirm both paths, and they

are both extended by one more character.

We’ll consider the consequences of each potential result separately. If Option 1
occurs, both paths are eliminated simultaneously, and EXTEND returns an empty
segment. The reconstruction of the target sequence halts at 9991 characters, just as

though the previous query had produced no responses.
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When Option 2 takes place, then the spurious path is eliminated, and only the
correct path remains. EXTEND produces an 11-character segment: the first 9 char-
acters correspond to the last 9 bases of the target sequence, but the last 2 are just
algorithmic artifacts, produced by a pair of fooling probes in the spectrum. In the
software SBH simulation, we know the precise length of the target sequence, and so
we can discard these extra bases, but this is a luxury not afforded by real biological
data.

Option 3 is the worst case in terms of the number of errors added to the sequence,
and it is just as likely as Option 2 since either case results from a single fooling probe.
When there is a fooling probe which extends the false path, but no corresponding
probe which extends the correct path, then the correct path is eliminated. EXTEND
produces an 11-character sequence; but, in addition to the two extra characters be-
yond the end of the target sequence, the first character of the segment—the 999274
character of the target sequence—is also incorrect.

In the event that Option 4 occurs—this is the most unlikely result, since it requires
the co-occurrence of 2 different fooling probes—both paths are extended by a single
character. The next three queries do not sample the ambiguous position, so if either
path is extended then both paths are extended. If any one of the next three queries
produces no responses, then neither path is extended and EXTEND produces an empty
segment. The fourth query after this again samples the ambiguous character, so
potential outcomes of that extension attempt are the same as the four outcomes
described here. |

The preceding example shows how incorrect characters may be included in the
reconstructed sequence, as well as how the reconstructed sequence might end up a
few bases longer or shorter than the actual sequence. The extra (or missing) bases
at the ends of a reconstructed sequence are called the overflow (or underflow). While
none of these minor errors are very serious—they almost always occur within A bases
of the end of a sequence—it is possible to prevent them from occurring at all.

Recall that PCR requires that short primers at each end of the amplified sequence
(the target sequence) be known. If one of the PCR primers is used to begin the
sequencing process, the other PCR primer can be used as a terminating segment,

used to indicate that the sequencing should halt. PCR primers are typically at least
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20 bases in length and they are specifically chosen to be unique, so the probability
of finding one of the PCR primers in the middle of the target sequence is negligible
(and would cause problems during the amplification process before sequencing had
even begun). Therefore, we can assume that when sequencing begins from one of the
primers, it is finished when the other primer has been reached.

Alternately, since sequencing errors produced by fooling probes are limited to the
A characters at the end of the sequence, we can simply choose to ignore them if PCR
primers are not available. The reconstructed sequences are still guaranteed to be
correct over nearly their entire length; the last A characters produced by EXTEND
can simply be discarded or tagged to indicate the potential presence of an incorrect
base.

Using the second PCR. primer as a terminating segment requires that the EXTEND
algorithm continually compare the last n characters of each of the tree paths to the
terminating segment. If any of the paths matches the terminating segment (when
appended to the putative sequence), that path must be the correct extension: that
path can be selected as the correct path in the tree. The terminating segment must

of course be passed as an argument (term) to EXTEND:

EXTEND(S, s, term)

1 g4 Ssj=(r=1).4s] + 7

2 e+ QUERY(S,q)

3 ifle] =0 O0OR |e|=1

4 then return e

5 P < PATHSPLIT(s,€)

6 () < NIL

7 while 1 < H and |P| < B

8 do for each p in P

9 do ¢ ¢ Ppi-(r-1)..ipl + 7
10 e < QUERY(S, q)
11 Q@ + Q U PATHSPLIT(p, €)
12 P« @Q
13 for each p in P
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14 dot«s+p

15 if 2yt jterm)..;s) = term
16 then return p

17 if |Prefiz(P)| >0 OR |P| =0
18 then return Prefiz(P)

19 error “failure”

The EXTEND algorithm produces a segment which extends a given sequence; it
is left to another algorithm to stitch all of these segments together into a complete
sequence. The next section introduces exactly such a function, appropriately named

SEQUENCE.

2.4 The SEQUENCE Algorithm

The real sequencing work is performed by the EXTEND algorithm. Nonetheless, an-
other function is needed to assemble the segments returned by EXTEND into a com-
plete sequence. The following pseudo-code defines the SEQUENCE function, which
takes a spectrum S and a seed as its two parameters, and returns the completely
reconstructed target sequence. If a failure occurs within the EXTEND algorithm, the

entire sequencing process fails and no sequence is produced at all.

SEQUENCE(S, seed)
s« seed
e + EXTEND(S, s)
while |e| > 0

1

2

3

4 do s« s + e
5 e < EXTEND(S, s)
6

return s
Integrating the concept of a terminating segment requires only a pair of additional

lines in the code, to compare the n-suffix of the putative sequence to the terminator.

The EXTEND algorithm will catch all of the terminating segments which occur in the
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branching mode; the check in SEQUENCE is really only necessary after EXTEND has
produced a 1-character extension without branching. The terminating segment must

also be passed as an argument to SEQUENCE:

SEQUENCE(S, seed, term,)

1 s+ seed

2 e+ EXTEND(S, s)

3 while |e| >0

4 dos«s + e

5 if 8i5|—jterm..|s| = term
6 then return s

7 e < EXTEND(S, s)

8 return s

As presented, this algorithm can only extend a sequence to the right; this mode
of sequencing is called forward sequencing. There are several locations in the code
where the left-to-right order is enforced: whenever a query string is created with gy
as the free position, and whenever a character or segment is appended to an existing

sequence.

2.5 Changing Direction: Reverse Sequencing

We could modify the functions so that they perform reverse sequencing (right-to-left)
by making the appropriate algorithmic changes, but we can also use the existing
functions as-is to perform reverse sequencing by modifying the spectrum itself. We
will discuss both options in turn.

Algorithmic changes must be made to the EXTEND, PATHSPLIT and SEQUENCE
algorithms to allow them to perform reverse sequencing. First, the query strings used
in EXTEND must be modified so that the putative sequence is extended to the left
instead of to the right. The query string to extend a sequence s one character to the
left is ¢ =7 + s;._1. The set of characters resulting from a query performed with

such a string contains the set of possible extensions to the left of the current string.
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Second, wherever a character or segment of characters is appended to an exist-
ing sequence or path, the code must be modified to prepend the character instead.
The PATHSPLIT function must be modified to prepend possible extension characters
to existing path strings, and the SEQUENCE function must be modified to prepend
segments as they are produced by EXTEND.

The modified versions of PATHSPLIT, EXTEND, and SEQUENCE to perform reverse
sequencing are presented in that order. The only change made to the PATHSPLIT

function is on line 3, where the character ¢ is prepended instead of appended to s:

PATHSPLIT-REVERSE(S, €)
1 P« NIL

2 for each cine
3 dop=c+s

4 P+« Pup

5

return P

In the EXTEND-REVERSE algorithm, lines 1 and 9 have been modified to change
the position of the free character in the query string. Also, Suffiz(P) must be used in
place of Prefiz(P). That is, we must find the characters common to all strings in the
path tree starting at the right-most character of each of the string and moving to the
left, instead of left to right.

EXTEND-REVERSE(S, s)
1 g7 + sy

e < QUERY(S, q)

iflef=0O0R le|]=1
then return e

P + PATHSPLIT(s, €)

Q) + NIL

while i < H and |P| < B

do for each p in P

O o0~ O Ot o W N

do ¢ <7 + pia1
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10 e + QUERY(S, q')

11 Q@ + QU PATHSPLIT(p, €)
12 P+qQ

13 if |Suffizx(P)| >0 OR |P| =0

14 then return Suffiz(P)

15 error “failure”

The only change made to SEQUENCE is on line 4, where the extension segments
produced by EXTEND-REVERSE are added to the beginning of the putative sequence
instead of to the end:

SEQUENCE-REVERSE(S, seed)
1 s¢ seed

2 e+ EXTEND(S, s)
3 while |e| >0

4 dos<e + s
5 e +— EXTEND(S, s)
6

return s

With the addition of these three REVERSE functions, we can start from a seed
which occurs anywhere in the target sequence, and extend it in both directions until
the original sequence has been reconstructed. However, there is one implicit dif-
ference between the forward and reverse versions of the algorithms. If a spectrum
is constructed using a direct (s, r)-probing pattern, then forward sequencing is con-
ducted with the direct pattern. But reverse sequencing is effectively conducted with
the reverse of the pattern. Consider the following example:

The spectrum (S) of (3,3)-direct probes for the sequence s = GCGATGAG-
TATTGA contains the 6 probes {GCG..G..T, CGA..A..A, GAT..G..T,
ATG..T..T, TGA..A..G, GAG..T..A}. A reverse query of the spectrum
with the string ¢ = 7TGAGTATTG matches only the probe CGA. . A. . A.

The spectrum (8') constructed using (3,3)-reverse probes for the reverse of the
string s, 8 = AGTTATGAGTAGCG contains the 6 probes {A..T..GAG,
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G..A..AGT,T..T..GTA,T..G..TAG,A. .A. .AGC, T. .G. .GCG}. If this
spectrum is queried with the reverse of the query string ¢, ¢ = GTTATGAG?, there
is a single match in the spectrum: A..A..AGC. Note that probe matching this
query is the exact reverse of the probe which matched the forward query. In fact,
each of the probes in the spectrum &’ is the reverse of a probe in §. This means
that any query of the spectrum S a query string g can be functionally duplicated by
querying the spectrum S’ with the reverse of ¢: the set of characters which match

the free position in the forward and reverse versions of the query are identical.

Theorem 2.1. Reconstructing a target sequence s by means of reverse sequencing
with a direct probing pattern is equivalent to reconstructing the reverse of s (s') by

means of forward sequencing with the corresponding reverse probing pattern.

The equivalence of forward and reverse queries simplifies the implementation of
the SBH software simulation. Instead of including multiple versions of the PATH-
SPLIT, EXTEND and SEQUENCE algorithms, we simply construct forward and reverse
spectra for the target sequence. Forward reconstruction from a seed to the end of the
target sequence uses the forward spectrum. Similarly, the reverse spectrum is used
to perform reverse sequencing. (Of course, the final result of the reverse sequencing
process is the reverse target sequence s’, which must then be reverse again to yield
s.)

The only necessary changes to the pseudo-code is in the initial call to SEQUENCE.
If the forward and reverse spectra are denoted S and &', then forward sequencing
is initiated with the standard call SEQUENCE(S, seed). Reverse sequencing can be
started by calling SEQUENCE(S', Reverse(seed)).

The next section introduces the different failure modes of the algorithm.

2.6 Sequencing Failure Modes

We previously introduced the two bounding parameters B (the breadth bound) and
H (the depth bound) of the path tree. This section contains a discussion of the
circumstances in which these bounds are reached. Virtually all sequencing failures
occur because the depth-bound H is reached. As long as the breadth-bound B is

set to a sufficiently high value, it is never reached, although some probing patterns
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do result in wider (and therefore larger) path trees than others. Chapter 3 contains
an analysis of why this is the case. We will discuss the depth-failures first. These
failures may be divided into two different classes, which we will call Mode 1 and Mode
2 failures.

Mode 1 failures are characterised by a single ambiguous character, followed by

strings which are identical in each of the branches. For instance, the sequences

(GEGACCCAGTTAGGATGCAAAGCGT
and
.CGACCCAGTTAGGATGCAAAGCGT

differ in only a single position, after which there is a long sequence of identical char-
acters. Once A — 1 consecutive matching characters have been observed, there is no
possibility of resolving the ambiguity, since the query strings which extend both se-
quences are guaranteed to be identical subsequent to the ambiguous position. Mode
1 failures occur when there are k fooling probes in the spectrum which confirm the

spurious extension character. We now give a formal definition of a fooling probe:

Definition 2.3. A fooling probe matches a query over all kK — 1 specified positions in

a query at position i, but occurs at some other position j # @ in the target sequence.

Example 2. 9 If the correct extension to the putative sequence s = AAGGAG-

TATATC is (G, then the (3,3)-reverse probe which produces the correct extension

Example 2.10. When attempting to extend a putative sequence s = AGAGATT-
GAGGGT with (3,3)-direct probes, an ambiguous extension is produced: {A G}.
Assume that the correct sequence is ...AGAGATTGAGGGT.
first three probes which confirm the correct extension including the initial ambigu-
., AGG. .G and GT A . .G..T. Additional

extension-queries must be performed in order to extend both the correct and spu-

ous extension are TTG. .G.
rious path by 6 characters beyond the branch, however these additional queries do

not sample the ambiguous character: they contain a universal base in the ambiguous

posttion.
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The spurious sequence will only be extended further if there is a valid set of

W

foohng probes present in the spectrum, such as: { TTG..G.. G g‘,
G..Gg..T }. Note that each of these three fooling probes dlffers by only a single

character (highlighted in grey) from the corresponding correct probe. For instance,
the second query which samples the ambiguous character produces the correct probe
AGG. .G and the fooling probe AGG. . &

G . . G. These two probes confirm the
correct and spurious path, respectively, and differ only in the 6 position. ]

The set of fooling probes which confirm a spurious extension may be considered to
be independent of one another. They are typically scattered uniformly along complete
length of the target sequence, although there is a small chance that more than one
of them occurs in the same location [PUQ0]. This will be discussed in more detail in
the next chapter.

The other type of depth-bound failure (Mode 2) observed when reconstructing
sequences is characterized by two sequences which diverge completely at some point
within A characters of the initial ambiguous character. Divergence can be measured
by counting the positions which match between two sequences. Approximately ;11- of
the characters in two unrelated sequences can be expected to match. For example,

the sequences

appear to diverge after the AGTT block of characters, 10 characters past the initial
{G,T} ambiguity.

The simplest Mode 2 failure occurs when there is a (A — 1)-character string du-
plicated somewhere in the target sequence. In this case, a branch occurs and both
paths are extended indefinitely, since each extension is a valid subsequence of the
target. However, as we mentioned earlier, exact duplicates of A-character segments
are exceedingly unlikely to occur in random sequences.

In practice, for a Mode 2 failure to occur at position 7, two conditions must be
satisfied. First, there must be a (A — 1)-character subsequence of the target sequence

at position 7 # i which is very similar to the (A — 1)-character subsequence occurring
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at 7. We denote the number of differences between the two subsequences §, where
§ < A—1. If § =0, a Mode 2 failure is guaranteed to occur. However, when
A > 2 (s+7), this is extremely unlikely.

If § > 0, then a Mode 2 failure occurs only if there is a set of fooling probes in the
spectrum which compensate for the differences between the two subsequences. The
number of fooling probes required depends on the value of § and the placement of
the differences between the two similar subsequences. The analysis of the likelihood
of this type of failure is complex, as presented in [HP01]. The next chapter contains
a thorough exploration of the probability of Mode 2 failures.

Finally, we want to consider the possibility that the total number of paths being
extended from an ambiguous branch reaches the breadth-bound B. When recon-
structing maximum entropy random DNA sequences, this type of failure only occurs
with a particular class of probing pattern, and only when B is set to a relatively small
value (256 or lower). If we restrict our view to only (s, r)-probes, the two broad classes
of probing patterns are direct and reverse patterns. We find—perhaps unintuitively—
that breadth-bound failures occur only when using direct probing schemes. We now
explain why this is the case.

Preparata and Upfal [PU00] show that (4,4) and (5,3) direct and reverse prob-
ing patterns are all virtually identical in terms of expected sequencing performance.
Extensive simulations bear out their calculations when B is set sufficiently high
(B = 2048). However, when B is reduced to 256 (in the interests of algorithmic
efficiency), the direct probing patterns begin to encounter breadth-bound failures.
The reason for this is fairly simple.

When the tree of paths originating from an ambiguous extension is extended
further, there are only x — 1 probes which can eliminate a spurious path. Each of
these probes corresponds to a shift of ¢ characters with respect to the initial probe
position. The A — k shifts within A positions of the initial ambiguity which do not
sample the ambiguous position cannot eliminate a path from the tree, but they can
spawn additional branches.

The following example illustrates the difference between (4,3) direct and reverse
probing patterns. The putative path is displayed as a series of X’s, the ambiguous

character as a Y, and the characters after the ambiguous position as Z’s. Probes
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which may result in the elimination of the spurious branch are labeled with elim at
the beginning of the line. The first 4 probe shifts after an ambiguous branch are

shown for (4,3)-direct and reverse patterns. The forward pattern is shown first:

Sequence: XXXXXXXXXXXXXXXN 7777
elim XXXX...X...X...
XXXX...X...X..=

XXXX .o X Xogem. Z

XXXX. .. X' uo

elim XXXX...X..

And he first 4 shifts for the reverse (4,3)-pattern are:

Sequence: XXXXXXXXXXXXXXXY ZZZ7Z
elim X...X...
elim X.o.o
elim X..
elim X.o.o.

Let’s compare the difference between direct and reverse patterns over these initial
shifts. Using a reverse pattern, each of the first three shifts after the initial ambigu-
ous character has the potential to eliminate the spurious branch, since they do not
sample the ambiguous position. On the other hand, when direct probes are used, the
first three shifts after the ambiguity cannot possibly eliminate the spurious branch.
Moreover, if there is another branch in one of the paths, all of the paths in the tree
will split, resulting in at least a doubling in the number of paths in the tree, rather
than just an additive increase. (This will be explored in more detail in Chapter 3.)

Of course, once the paths in the tree have been extended by A = 16 characters,
there have been xk = 7 queries which could potentially eliminate any spurious paths.
The only difference between forward and reverse patterns is in the maximum width of
the path tree. While this affects execution time of the algorithm in a very significant
way, the difference between the direct and reverse versions of probing patterns has a

much more subtle effect on the length of sequence which can be reconstructed by the
SBH algorithm.
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In particular, direct and reverse (4,4) and (5,3) probing patterns are all approx-
imately equivalent in terms of sequencing performance. Conveniently, most of the
analysis and simulation results presented in this dissertation deal with (4,4) and (5,3)
probes, since they are the the optimal (s,7)-probes for x = 8. We provide a brief

survey of results from sequencing simulations in the next section.

2.7 Logging Algorithmic Behaviour

The algorithms and data structures presented thus far this are sufficient to conduct
the reconstruction of a target sequence from its spectrum. Theoretically, they are
complete. In practice, we would like to have a detailed record of the nature of the
work performed by SEQUENCE and related algorithms. This record serves a double
purpose: it can offer insight into the behaviour of the algorithms themselves, and
allow us to verify analytical predictions regarding their behaviour and performance.
To this end, we add more data members to the SPECTRUM data structure, introduce
a new SEGMENT structure for use by the EXTEND algorithm, and modify the existing
algorithms to make use of these changes. The modifications to the SPECTRUM object
are discussed first.

Each probe in the spectrum originates at a particular location in the target se-
quence, which can be identified by the position of the leftmost character in the probe
in the sequence. Probes may occur multiple times in the target sequence, and thus
be said to occur at a corresponding number of locations within it. It can be useful
to track the source locations of each of the probes in the spectrum. This allows us
to determine how many of the probes in the spectrum are duplicated (or triplicated,
or n-plicated) in the sequence. Since the number of locations matched by each probe
varies, a list (or similar data structure) must be used to store the source locations for
each probe. An array of lists is added to the SPECTRUM structure to track the probe
locations, and a function LOCATION is added to return the list of locations matched

by a probe. The new SPECTRUM object is:

SPECTRUM

variable ProbePattern
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variable ProbeArray|l...4"]
variable ProbeLocations|l...4"
function BUILD(TargetSequence)
function CHECK(DecimalProbe)
function CHECK-S(StringProbe)
function LOCATIONS(DecimalProbe)

The pseudo code for the new LOCATIONS function is only a minor modification

of the CHECK function; the only difference is the array which is accessed:

SPECTRUM.LOCATIONS(d)

1 return ProbeLocations|d)

And the SPECTRUM.BUILD function must also be modified to store the locations
of probes when the spectrum is constructed. There is one new bit of notation intro-
duced here: the PUusH-BAcK function. The STL offers a standard interface to most
standard containers, and PUSH-BACK adds an element to the end of most containers
(single and doubly-linked lists, arrays, stacks, etc...). We will used these functions in

our pseudo-code.

SPECTRUM.BUILD(S)

1 fori«1to (|S|—2A)

2 do p < Si.i+x

3 d < ProbePattern.PACK(p)

4 ProbeLocations[d).PUSH-BACK(4)
5 ProbeArray[d] < true

Later chapters introduce algorithms which require further modifications to the
spectrum. These changes will be introduced and described as needed, but in general
they require changes similar to those made to integrate the ProbeLocation array. In
contrast, the SEGMENT object requires significant changes to EXTEND.

The EXTEND algorithm is a fairly simple algorithm with complex behaviour. The
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analysis of SBH conducted in Chapters 3 and 4 depends largely on a detailed record
of EXTEND’s execution. Everything from the number of responses to the initial call
to QUERY to the ultimate size of the path tree can be of use in guiding and verifying
the algorithmic analysis, so virtually everything is recorded. Each call to EXTEND
produces a segment of one or more characters to be added to the putative sequence, so
the data describing the production of that segment is kept in an object also containing
the segment itself. The object is called a SEGMENT, and the data collected within is
listed here:

e String - The segment must at least contain the characters produced by EXTEND.

e Type - The SEGMENT object can be used for the initial seed segment, the ter-
minating (term) segment, and the single-character simple and multi-character
branch segments produced by EXTEND. This is an enum variable which holds
the type of the segment.

e Direction - Segments can be produced from either the forward or reverse spec-
trum. When sequencing begins in the middle of the target sequence, some
segments will be produced from each. This variable records the spectrum from

which a segment was produced.

e InitialQueryResponses - This is used to count the number of probes which match
the initial call to QUERY. It will always be 1 for simple segments, but will be

2, 3 or 4 for branching segments.

e TreeDepth - A number in the range 1... H which records the depth of the tree
created in the branching mode of EXTEND.

o TreeWidth - This is an array of TreeDepth integers, which records the width of
the tree at each depth from 1 to TreeDepth. The total size of the tree can be
calculated by adding the width of the tree at each level.

In later chapters, further data will be added to this list, but these values are the
most useful for Chapter 3’s analysis of SBH. The pseudo-code for the SEGMENT ob-

ject is simple:
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SEGMENT

variable String

variable Type

variable Direction

variable InitialQueryResponses

variable TreeDepth

variable Tree Width[l... TreeDepth)

function TREESIZE()

The EXTEND algorithm must be modified to set the appropriate values in the
SEGMENT it produces, and to return a segment, rather than a string. SEQUENCE
no longer tracks the putative sequence simply as a string of characters, but rather
as a linked-list of SEGMENT objects. The pseudo-code for the modified—and final—
EXTEND and SEQUENCE algorithms follows.

EXTEND(S, s, term)
1 seg ¢ new SEGMENT
2 g Ssl-0-n).dsl 7
3 e+ QUERY(S,q)
4  seg.InitialQueryResponses « e.SIZE()
5 iflej=0 OR |e|] =1
6  then seg.String « €[0]
7 seg. Type + simple
8 return seg
9 P <« PATHSPLIT(s,€)
10 @ < NIL
11 while:< H and |P| < B
12 do seg. TreeWidth.PusH-BACK(|P|)

13 for each p in P

14 do q < ppl—(a-1)..p| T 7

15 e + QUERY(S, q)

16 Q <+ Q U PATHSPLIT(p, €)
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25
26
27
28
29
30

(the first segment in the linked list forming the sequence). All subsequent segments

P+@Q
for each p in P
dot+«s+p

if Ly jterm)..|y = term
then seq.String < p
seg.TreeDepth < 1
seg. Type « term

return seg

if |Prefiz(P)| > 0 OR |P| =0
then seqg.String < Prefiz(P)

seg.TreeDepth < i

seq. Type < branching

return seg

error “failure”

68

In the SEQUENCE algorithm, the seed parameter must now be a seed SEGMENT

are appended to the list with the PusH-BAcCK function. For convenience, we as-

sume that the last n characters in the list/sequence can be accessed with a call to
SUFFIX(n).

SEQUENCE(S, seed, term,)

1

© 00 ~1 O Ut e W N

[
e}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s + newlistof SEGMENT
s.PUSH-BACK(seed)
e < EXTEND(S, s)
while |e.String| > 0
do s.Pusu-BAcCk(e)
if s.SUFFIX(|term|) = term
then return s
suffiz < s.SUFFIX(A)
e + EXTEND(S, suffiz)

return s
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A few additional steps take place after sequencing has been completed, to verify
that the reconstructed sequences do indeed match the original, count the overflow
or underflow if terminating segments are not used, and calculate some aggregate
statistics over the length of the sequence. The average length of the SEGMENT strings,
the average number of responses to EXTEND’s initial query, and other average values
are computed. All of this data is printed to an XML format file for later analysis.
In all, a single successful sequencing attempt for a 12Kbp string produces about
1.5MBytes of log data. Some of these logged results are presented in the last section
of this chapter.

2.8 Initial Performance Observations

The performance of any sequencing method is measured in terms of the longest se-
quences which may be reconstructed using the technique. Electrophoresis techniques
have inherent limitations which restrict their use to DNA fragments of about 600bp.
The nature of the SBH algorithm is such that it is possible to construct a very short
sequence which will cause the method to fail. On the other hand, SBH with gapped
probes can be used to reconstruct extremely long sequences. Consequently, we make

the following definition of sequencing performance:

Definition 2.4. The performance measure for the SBH algorithm is defined to be the
length of mazimum-entropy sequences which may be correctly reconstructed with some

constant confidence factor e.

Except where it is explicitly stated otherwise, the confidence factor used in this
dissertation is 0.9. Thus, when we say that a given technique is effective for sequences
up to 12Kbp in length, we mean that the technique has at least a 90% probability of
successfully reconstructing any given uniformly randomly-generated DNA sequence
of length 12Kbp or less. Experimental performance results were derived from at least
250 attempts to reconstruct different randomly generated sequences; the performance
is measured by the proportion of correct reconstructions. Analytical results, on the
other hand, are measured by the expected probability of successful reconstruction. In

either case, the performance of the SBH technique for sequences of a given length m
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can be stated as a fraction between 0 and 1, indicating the proportion of expected or
observed successes.

When the length of random target sequences is less than 10 Kbp, Mode 1 failures
dominate, accounting for well over 90% of all observed sequencing failures. As m
increases, the proportion of Mode 2 failures increases. For natural DNA sources,
Mode 2 failures dominate Mode 1 from the outset, due to a much higher frequency
of long repeats. The incidence of repeats in natural DNA was studied in some detail,

and a model of the repeat structure of natural DNA will be presented later in this

thesis.
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Figure 2.2: Observed proportion of sequences successfully reconstructed by the branc-
ing SBH algorithm using reverse (4,4) probes. The top curve is random DNA, the
remaining four are salmonella h. influenzae, human chromosome 3, and a. thaliana
respectively from right to left.

When running on random data, the Gapped-SBH algorithm can successfully re-

construct sequences of length m = 14000. This is nearly 1/2 of the information
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theoretic bound of 32768, and about 7 times the performance of the first gapped-
probe method introduced in [PFU99]. More impressively, it is nearly 50 times the
performance achieved by the oligonucleotide-based SBH method proposed in 1988
and over 20 times as long as electrophoresis methods currently in use.

Figure 2.2 displays the performance of the SBH algorithm on random data is
compared to its performance on a selection of natural DNA. It can be easily seen
that performance on natural DNA degrades gracefully on certain sequences (e. g.
salmonella, h. influenzae). When reconstructing other sequences (such as a. thaliana
and the human genome), a more catastrophic falloff is observed. Some of these
problems can be dealt with by additional algorithmic trickery. Others are probably
hopeless, although the hopeless cases by no means render this sequencing method
useless.

The approximate length m of sequences which may be reconstructed with confi-

dence € = 0.9 using reverse (4, 4)-probes is presented in the following table.

Sequence Source | Maximum m
Random DNA 13800
e. coly 3700
h. influenzae 2900
p. falciparum 200
h. sapiens chr. 3 400

In contrast to the failures observed for random data, the algorithm frequently fails
because the breadth-bound B is reached when attempting to reconstruct natural DNA
sequences. However, increasing B from 256 to 2048 or even 10240 generally results in
a negligible increase in performance: typically less than 2%. This indicates that the
failures accounting for the bulk of the performance difference are qualitatively different
from the two modes observed in random DNA. We will describe these failures and
introduce some methods to overcome them in subsequent chapters. The next chapter
contains a detailed analysis of the computational work performed by the gapped SBH

algorithm.
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Chapter 3

Analysis of the Gapped-SBH
Algorithm

This chapter is contains an analysus of the behaviour and performance of the gapped-
probe SBH algorithm. At the highest level, this can simply be the amount of compu-
tational work required to produce a complete sequence. However, the amount of work
performed depends on the structure of path trees which are explored while resolving
ambiguous extensions, which in turn depends on the probing pattern used.

When we discuss the behaviour of the SBH algorith, we include all of the steps
taken to completely reconstruct a target sequence from its spectrum. On the other
hand, when we discuss the performance of the algorithm, we also mean to consider
the method’s effectiveness at reconstructing DNA fragments. A sequencing tech-
nique’s usefulness can be measured in terms of the length of fragments which can be

sequenced. Thus, we make the following definition:

Definition 3.1. The performance metric used is the mazimum length of an m-
character mazimum-entropy target sequence which can be reconstructed with some
fized confidence, denoted €.

This definition allows gapped-SBH to be compared with other sequencing meth-
ods: traditional electophoresis, and ungapped-SBH, for instance. Typically, we set
e = 0.9, and this convention will be held throughout this chapter. Thus, the perfor-
mance of the method can be stated in terms of the longest DNA fragment which has

a 90% chance of being successfully reconstructed. Conversely, we could say that a
72
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sequencing method is effective for fragments up to the length where there is a 10%
chance of encountering a sequencing failure. An experimental way of obtaining this
value is to run thousands of simulated sequencing trials—several hundred for each
value of m—and count the number of successful and unsuccessful trials. This is the
method which was used to produce Figure 2.2 at the end of the previous chapter. It
shows that gapped-probe SBH with (4,4)-probes can be used to reconstruct randomly
generated sequences of up to length m = 13000. Beyond that length, the probability
of failure exceeds 10% and rapidly increases with m. However, a more mature un-
derstanding of the circumstances which cause sequencing failure can be reached only
with a much more detailed analysis, which is contained in Chapter 4.

In this chapter, we explore in detail the path trees which are explored by the
EXTEND algorithm as it attempts to resolve ambiguous extensions. Ambiguous ex-
tensions can occur very frequently during the reconstruction process, and virtually
all of them may be resolved sucessfully. By understanding the nature of the path
trees, we can develop a more mature understanding of the work performed by the
SBH algorithm, and the causes of sequencing failure. We begin, in Section 3.1 with
a a general discussion of fooling probes, and the likelihood of finding one in a target

sequence of a particular length.

3.1 Finding a Fooling Probe

First, we discuss the probability of finding a fooling probe in the spectrum of a target
sequence.

When using an (s, r)-probing pattern to reconstruct a sequence of length m, there
are at most m — s(r + 1) unique probes in the spectrum. Since m is typically much
greater than the length of the probing pattern, this can be approximated simply as
m. We want to define a parameter o ) which represents the probability of finding
a particular sequence of k symbols in an m-character random DNA string. Recall
from Chapter 1 that by ‘random,” we refer to a string which has been generated by
an i.i.d. memoryless process, where each symbol is chosen independently with equal
probability (i) Note that wildcard characters in a sequence just introduce ‘gaps’

between the non-wildcard characters. The number of non-wildcard characters in the
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sequence is the important parameter, so o m) is actually the probability of finding
a sequence with k specified characters in an m-character target sequence.

The probability of finding a k-character sequence at one particular position in
the sequence is 1/4%. In a randomly-generated m-character string, the probability of
finding the sequence at any position in the m-string is equal to 1 — (1 — Zl,;)m Note
that

]. m m
1—(1- le)‘*'“ZE ~ 1—e N (3.1)

This leads to the following definition:

Definition 3.2. The parameter o) denotes the probability of finding a particular
k-character subsequence in an m-character randomly generated DNA sequence and is

defined as:

Qkmy = 1 — e

Example 3.1. The probability that the 9-character sequence AGGATTTAC occurs
somewhere within a particular 19000 character randomly generated DNA string is
Qo 10000) = 1 — €719990/4° ~ 0.07. In this case, k = 9 and m = 19000. |

Example 3.2. The probability that the 7-character sequence A...G...C...TTAT
(or any other sequence with 7 specified characters) occurs somewhere in a random
target string of length 4000 is c74000) = 1 — e4000/4" ~ (.22, where k = 7 and
m = 4000. [ |

The probability of finding a particular fooling probe in the spectrum of a target
sequence is, of course, (s my; they are simply x-character sequences. The value of
Q(x,m) as a function of m for k = 6,7,8,9 is shown in Figure 3.1. Virtually all of the
simulations and analysis in this dissertation from this point on will deal with probes

having x = 8, which, in a sense, reflects the state-of-the-art of microarray technology.

3.2 Overlapping Probes

Typically, we make the assumption that all of the probes in a target sequence’s

spectrum are independent and disjoint. This is only a slight simplification, which will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



()

1_
///M"
0.8
sl S
s 1 /7
€ >
‘“ o
= P
= 2 ’
sl /-
s
0.2 ///
//I
S
’/’J _,..—__,-.-,..._.-__-a___..——-—,.__. et T T T
0 5000 10000 15000 20000 25000

Sequence Length (m)

Figure 3.1: () as a function of sequence length (m). The four curves correspond
to k =6,7,8,9, from top to bottom.

be dealt with in more detail below. Assuming that probes are independent, we can
also examine the likelihood of finding duplicate probes within a target sequence, as
well as fooling probes.

If a random k-character subsequence (b) is chosen from a randomly generated
m-character DNA string a, what is the probability of finding an identical k-character
subsequence at some other point in a? When m > k, there are m — k &~ m positions
at which b can occur within a. If we know that it occurs once, at location ¢, then
there are still m — k — 1 =~ m locations within the string a at which it may also occur.
If we ignore overlapping subsequences, the probability of finding another instance of a
k-character sequence in a, given that it occurs once in the sequence is approximately

a(k,m)-

Example 3.3. Assume that the direct (3,3)-probe p (AGA. .C..G. .Tislocated at
position 7 in a 1500-character target sequence and therefore present in the spectrum.
Given that p is present once in the sequence, the probability of finding p at another

point in the sequence is also og,1500) =~ 0.22. [ |

In practice, the probability of finding a second occurrence of a k-character sequence
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b within a is at least o my. While they are unlikely to occur in randomly generated
sequences, periodic sequences of DNA significantly increase the chance of finding a
second copy of a particular segment b. In such a case (i. e., b = ATG ATGATGATG),
the probability of finding a second copy of b can be dramatically higher than a m).

Consider the pathological case where b = AAAAAAAA (eight ‘A’ characters in a
row) occurs as a subsequence of a 8000-character target sequence at position 7. This
occurrence of b within the target sequence will be denoted b;. The likelihood of finding
another incidence of b within the target sequence is at least asgoo0) = 1 — P
0.11. However, if the character immediately to the left of b; (position (¢ —1)) is an ‘A’
then the sequence b is also found at position (i — 1) in the target sequence. Similarly,
if the character immediately to the right of b; (position (i + 8)) contains an ‘A’, then
the sequence b occurs at position (i + 1) in the target sequence. Each of ﬁhese events
occurs with probability i, so there is a probability of (1 — i)Z ~ (.56 that at least

one character adjacent to b; is also an ‘A’ which is much larger than os goo)-
J ) g ( ’ )

8_

20 —-10 0 10 20

Figure 3.2: Autocorrelation function for (4,4)-probing pattern.
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When considering subsequences with gaps, and specifically (s,r) gapped prob-
ing patterns, overlapping periodic subsequences are less of a concern. Take the 20-
character (4,4)-direct probe p = AAAA...A...A...A...A The autocorrelation
function for (4,4)-probes is shown in Figure 3.2. If p occurs at position ¢ in a target
sequence, only 3 (out of a possible 7) characters overlap with the adjacent probes at
position (i+1), and 2 characters at (i+2). The probes at positions (i+4) and (¢ —4),
have a 4-character overlap with the probe at 7. At positions (i+1), (:—1), (i+8) and
(¢ — 8), there is a 3-character overlap. At (¢ + 2) and (¢ — 2), it is only 2 characters.
Probes at any other location in the range [¢ — A+ 1,7+ A — 1] share only a single char-
acter overlap with the probe at . The probability of finding another instance of the
probe AAAA...A...A...A...A at one of the locations with more than a single
overlapping character is higher than at other locations in the target sequence, but not
nearly as great as for solid probes. The analysis of sequencing failures presented in
Sections 4.2 and 4.3 takes overlapping fooling probes into account. However, we ig-
nore the existence of fooling probes which overlap with the first A characters following
a branching: fooling probes are assumed to occur at locations in the target sequence
such that they do not intersect at all with the first A-characters of the correct path
following an ambiguous extension.

From this point on, the discussion of sequences and subsequences will be con-
cerned virtually entirely with probes having « specified bases, and m-character target
sequences. Thus, the parameter «, without any subscript, will be used to denote the
probability of finding a random x-probe within an m-character target sequence. If
the context is at all ambiguous, the full o,y notation will still be used. We make

the following slightly modified definition for o with no subscript:

Definition 3.3. The parameter a denotes the probability of finding a particular probe
with k specified positions in an m-character randomly generated DNA sequence. « 1s

defined as:

a=1-—e™"

With notational issues dealt with, we move on to the discussion of the work

performed by the sequencing algorithm as the putative sequence is extended.
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3.3 Tree Size and Work

In [PUOO], Preparata & Upfal demonstrate an O(m) running time for the branching
SBH reconstruction algorithm. While this bound holds for all probing patterns and
different H and B bounds on the tree size, the specific pattern and bounds used can
have a very significant effect on the constants affecting performance. The average size
of the tree explored in the branching mode of EXTEND determines the constants for
the O(m) execution time of the method.

The choice of probing pattern has the most significant effect on the size of path
trees. Before we continue, it is important to note that the probing pattern is implicitly
dependent on the sequencing direction. A ‘direct’ probe is effectively a ‘reverse’ probe
if sequencing is proceeding from right to left. When we discuss probing patterns in
this chapter, we assume that sequencing is proceeding from left to right.

With this in mind, the path trees constructed using direct and reverse (4,4)- and
(5,3)- probing patterns differ in size by an order of magnitude or more. Reverse
patterns have the advantage, producing smaller trees.

Before beginning a detailed analysis of the phenomenon, a quick overview is help-
ful. The most important difference between the direct and reverse (s,r)-probing
patterns is the speed with which false paths may be eliminated. Consider that for
any (s,r)-probing pattern, there are always x probes which sample any position of
the target sequence. This leaves (A — k) probes which contain the ambiguous position
within their span, yet do not sample that position. It is a reasonable first approxi-
mation to say that only the sampling probes can eliminate a path from the tree. A
query which is executed with such a probe will be called a constraining query. The
remaining (A — k) probes cannot possibly eliminate a spurious path from the tree, but
they can cause additional branches. The net result is that, for reverse probing pat-
terns, the first (s — 1) shifts after an ambiguous extension can potentially eliminate a
spurious path. On the other hand, using direct probes, the first (s —1) shifts are guar-
anteed to extend both the correct and spurious paths. Moreover, additional branches
in the path tree may be spawned by these non-constraining shifts, and if there are
additional branches, both the correct and spurious paths will branch simultaneously,
at least doubling the number of paths in the tree.

Consider the following two examples, comparing direct and reverse (3,3)-probes.
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Each example follows a specific case of an ambiguous extension from the initial branch

to the first shift after the branching which samples the ambiguous character.

Example 3.4. A 150-character sequence is being reconstructed with a reverse (3,2)-
probing pattern. The putative sequence S, is ... GCGGCATATGAGTT when an
ambiguous extension occurs, with 2 feasible extensions. (Ambiguous extensions are
expected with a probability of approximately o & 0.136.) The two feasible-extension
probes that match the query T..G..TT? are T..G..TT € and T..G..TT T

so two paths are spawned: GCGGCATATGAGTT € and GCGGCATATGAGTT,

An attempt is made to extend each of these paths, using the queries A. . A. .

o

~ 7. There is guaranteed to be a match to the query corresponding to
the correct path, whereas the query corresponding to the spurious path will produce
a response only with probability o = 0.136. If there is no response to the spurious-
path query, then the initial ambiguity is resolved—whether or not there is a spurious
match to the correct-path query.

If there is a match to the spurious-path query, then each path is extended by a
single character, and two more queries are made. Again, there must be a match to
the correct-path query, while the spurious-path query produces a response only with

probability a. [ |

Example 3.5. Direct (3,2)-probes are being used to reconstruct a 200-character se-
quence. At the point of an ambiguous extension, the putative sequence is S, =
TTGCGCGATGCCGGC. The two probes matching the extension query ATG. .G. .7
are ATG..G.. A and ATG..G.. %%”’; These two probes spawn two paths: TTGC-

The next extension query (for both the correct and spurious paths) is TGC. .G. .7
There must be a probe in the spectrum that will extend the correct path, and the

extension query is identical for both paths, so both paths are guaranteed to be ex-

tended. Let’s assume that the correct extension probe is TGC. .G. . A . In addition
to the guaranteed probe, there is also a chance that one of three spurious extensions
will be found; in this case, each spurious extension has probability a = 0.177. If such
a probe is found (e.g. TGC. .G..

both the correct and spurious paths, resulting in four paths which must be extended

then it spawns another spurious branch from

=

further. The four paths, with S, representing the putative sequence up to the point of
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the ambiguous branching, are S,AA, S,AG, S,TA, and S,TG. Of course, if there were
two or three spurious extension probes, then each path would spawn a corresponding
number of branches, tripling or quadrupling the number of paths in the tree.

The same rules govern the next shift: all four paths share a single extension
query (GCC. .C. .7?), and the probe which extends the correct path also extends the
spurious paths. And again, if there is one or more spurious matches to the query, then
each of the paths in the tree spawns additional branches, resulting in a corresponding
n-fold increase in the the number of paths in the tree.

It is not until the third shift after the initial branching that an extension query
samples the the ambiguous character. In this case, there are two extension queries:
CCG..A..?and CCG. .

exactly half of the paths in the tree. (Conversely, if there are no probes matching one

. 7. A single probe matching either query will extend

of the queries, then half of the paths in the tree are eliminated.) If only one of these
queries produces a response, then the ambiguous extension is resolved, since all of
the paths beginning with the spurious character will be eliminated at once. If both
queries produce responses from the spectrum, then extension of all paths continues.
In this case, the ambiguous extension cannot be resolved until the next query which

samples the branching position, requiring another s = 3 shifts. |

Note in Example 3.5 that there is only a probability of a ~ 0.177 chance that
the spurious paths will be extended past the 374 (or s't) character after the branch.
This is identical to the probability that an ambiguous path will be extended by more
than one character beyond the ambiguous extension for reverse probes. In each case,
the first probe that samples the ambiguous character provides an identical chance of
eliminating the false paths from the tree; the only difference is in the amount of work
performed—calculated by the number of spurious paths that are extended, and by
how many characters—before the ambiguous extension can be resolved.

Figure 3.3 shows a possible path tree constructed using (4,3)-direct probes. The
initial ambiguous branching is at depth 1, and represented by the right-most bar in
the image. The darker, hatched bars correspond to constraining queries during tree
contruction, and the lighter unhatched bars to queries which can freely extend the
spurious paths. Note that the deepest level in the tree is represented by the the
left-most bar in the figure, and the first level of the tree (the initial branching) is at
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{(4,3)-direct probe

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Tree Depth

Tree Width

Figure 3.3: An example path tree constructed with a (4,3)-direct probing pattern.
The height of the bars is merely a qualititative indication of the expected width of
the path tree. Constaining queries (including the initial branching) are shown shaded
and hatched.

the right.

In summary, an ambiguous extension during sequencing occurs at position ¢ when
there are two or more feasible-extension probes for the query at ¢. The initial fooling
probes are the first probes sampling £, they intersect ¢ in their right-most position.
To a first approximation, opportunities to resolve the ambiguity (by eliminating the
spurious path) occur when one of the probes used to extend the branching paths
also samples the initial ambiguous character. Such extension queries can be called
constraints on the branching extend process. The sooner the constraints occur after
an ambiguous extension, the smaller the trees are likely to be. Thus, reverse probes,
which follow the ambiguous extension with an additional (s — 1) constraining queries,

tend to allow faster sequence reconstruction, due to their smaller trees.

3.3.1 Branching Events

Before we begin a discussion of the exact nature of the path trees cosntructed using
direct and reverse probing patterns, it is useful to consider the different branching
events which may be encountered while constructing such trees. Branching events, are
classified by the number of descendants expected at depth ¢ in the tree for each path at
depth 2—1. There are five basic events, corresponding to different conditions occuring

during EXTEND’s breadth-first path extension. As we will see in the following two
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sections, these events are often mixed; some proportion of the paths at depth 7 will
be described by one branching event, while the remaining paths are described by
another. However, by introducing the basic branching events here, the analysis of the
trees themselves can be made much more elegant.

For each event a...e, we define a corresponding parameter f3,...J3, called the
maultiplier which denotes the number of descendants expected for each path. The
parameter [ essentially describes how much larger or smaller we expect the path tree
to be at depth ¢ than it was at depth ¢ — 1 of the tree.

Event a - Guaranteed Extension When the EXTEND algorithm makes its initial
call to QUERY to determine the next character in the sequence, we know (unless
sequencing has completed) that there is at least one match in the spectrum, and

there may be as many as three feasible-extension fooling probes.

Furthermore, when the EXTEND algorithm is attempting to resolve an ambigu-
ous extension by conducting the breadth-first expansion of the path tree, the
spurious paths in the tree may fall into this category. If the extension-query for
a spurious path p matches the extension-query for the correct path c , then the
same probes which extend ¢ also extend p. Since there must be an extension to

¢, p must be extended as well.

In both cases, a path is guaranteed to have at least one descendant. Each of
the three potential fooling probes is present in the spectrum with probability

a. Thus, we define the multiplier for event a to be

B =143

Event b - Probabilistic Extension When a spurious path in the path tree does
sample the initial branching position, it must be confirmed by a fooling probe
or be eliminated. There are potentially up to four probes in the spectrum which
will match the query, each of which is present with probability .. Therefore we

define the multiplier event b to be
By = 4a

Event ¢ - Branches from Correct Path The initial call to QUERY made by the

EXTEND algorithm is guaranteed to produce at least one response: the probe
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corresponding to the correct path. If we wish to count only the number of
spurious responses to the query, we count only the three potential fooling probes.

Each of these is present with probability «, so the multiplier for event c is

Be = 3

Event d - Branches from Correct Path, Given that a Branch Occurred
Event ¢ predicts the average number of fooling branches from the correct path,
including the possibility that there are no spurious branches. This event instead
covers the case where there may have been up to 3 spurious branches, and we
have observed at least one. This branching event applies to the initial branch
from the correct sequence: we want to predict the average number of spurious

extensions to the sequence, given that the extension was ambiguous.

There are four possible outcomes to a guaranteed-extension query, resulting in
0, 1, 2 and 3 fooling probes, respectively. The probability of each event is given
in the following table:

# of fooling probes | Probability
0 (1-a)d
1 3-a-(1—a)?
2 3-0%-(1—a)
3 o?

The event “there is at least one fooling probe which matches a guaranteed-
extension query” has probability 1 — (1 — ). There are 3 fooling probes which
may potentially match any query, each of which is present with probability
a. Thus, the expression ;-
which match a query, given that at least one fooling probe was found, which is

-‘—(:‘;—(ig)‘g yields the expected number of fooling probes

the multiplier for event d:
3a

5d=m

Event e - Probabilistic Extension, Given that a Fooling Probe was Found
Event b handles the case where up to four fooling probes may match a query,

and we don’t know whether or not there will be any matches. This event (e)
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handles the case where there may have been up to four fooling probes matching
a query (none of which were guaranteed in the spectrum), and we have observed
at least one matching probe. This branching event applies during the breadth-
first expansion of the path tree, at depths where the corresponding query was
a constraint. When we are estimating the size of the tree at depth ¢, we know
that the tree was extended to at least depth 4, so at least one spurious path

must have been extended by a fooling probe.

Similarly to event d, we need to exclude the event that 0 fooling probes were
found. The event “there is at least one fooling probe found which matches a
probabilistic extension query” has probability 1 — (1 — )*. There are poten-
tially 4 matching probes, each of which are present with probability «, so the

multiplier for event e is
4o

b= —ay

When the EXTEND algorithm is conducting the breadth-first expansion of the
path tree, the expansion of the tree is always governed by some combination of the
branching events listed above. To predict the size of the path tree at each level, all
that needs to be done is to determine which branching event (or mix of events) applies

at each level.

3.3.2 Reverse Probes

Recall from Definition 1.10 that reverse probes have the pattern (10°~1)"1%, where
‘1’ represents a natural base, and ‘0’ represents a universal base. For instance, a
(3,3)-reverse probe has the form 100100100111, or N. .N. .N. .NNN using ‘N’ and
“.” in place of ‘1’ and ‘0’. In this section, we wish to describe the trees produced
while resolving ambiguous extensions using reverse (s, 7)-probing patterns.
Specifically, we want to count the total number of paths, correct and spurious,
which exist at any depth in the path tree. This is not a trivial problem, so we break
it down into components. The first step is to count only the paths which contain a
spurious character at the position of the initial branching (we ignore the correct path,
and assume that there is only a single spurious extension at depth 1). This is a fairly

straightforward problem, requiring the following assumptions:
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1. Independence. We assume (as before) that individual fooling probes are com-
pletely independent. (This hypothesis is not rigorous, but acceptable with good

confidence.)

2. Single spurious character. We assume that the initial spurious branching
is always a two-character choice between the correct character and a single
spurious character. (e.g. A-T, G-T) We also count only the spurious paths
descended from the spurious character; the correct path is not counted. Thus,
the width of the path tree at depth 1 is always 1.

3. Only one root. We only want to count the number of paths originating at the
initial spurious character. Subsequent branches from the correct path (which

ultimately add to the overall size of the path tree) are ignored.

4. Guaranteed extension. We assume that spurious paths may only be elim-
inated by queries which sample the initial ambiguous position—such queries
are constraints on the further branching of the path tree. By this assumption,
non-constraining queries are guaranteed to extend all paths; such queries fall

into branching event a.

5. Indefinite extension. We ignore the possibility of the entire tree being elim-
inated (by the elimination of all paths in the tree). In reality, if the initial
ambiguous character is resolved, then the tree will no longer be extended. More-
over, an actual tree cannot contain a fractional number of elements at any level:
there must always be a positive, integral number of paths in the tree. We ignore
these two constraints, and allow trees which contain fractions of paths, even if

the fraction is less than 1.

Finally, we denote the root (depth 0) of the path tree as the last (unambiguous)
character of the putative sequence, so the initial branching position corresponds to
depth 1 in the tree. Given these assumptions, the width of the path tree at depth 4

is given by the following theorem:

Theorem 3.1. Let the probing pattern be denoted P, and the i position of the

pattern be P;. Let ¢ denote the number of natural bases in the probing pattern from
P_;...P\_;.
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Denoting the expected width of the path tree at depth i by (;, we have
G o= BB (3.2)

Proof. Since the initial ambiguous position is level 1 of the path tree, then the width ¢;
of the tree (by Assumption 2 above) is always 1. At depth 4, the (A —1)*™ character of
the probing pattern coincides with the initial branching position. Thus, the expected

width (; of the tree at depth ¢ is given by the following recursion:

1 ifi=1,
G =194 pBy-C-1 ifi>1and P,_; is a natural base, (3.3)

Ba - G-1 if1>1and P,_; is a universal base.

At depth 7 of the tree, position A — i of the probing pattern aligns with the
branching position?.

When a natural base in the probing pattern aligns with the initial ambiguous
character, then every spurious path in the tree must be confirmed by a fooling probe.
If there is only a single path in the tree at depth ¢ — 1, there are 4 fooling probes,
any one of which may confirm it at depth ¢. Each of these probes may be present
with probability « in the spectrum. Probabilistically, the single path spawns 4a = f,
children, so there are an expected f, paths in the tree at depth ¢ if (;_; = 1.

The same reasoning holds true for each path in the tree at depth ¢ — 1. Every
path in the tree spawns S, children, so the size of the tree at depth ¢ is {; = (;—1 - Bb,
if Py_; is a natural base.

Now we consider the case where a universal base in the probing pattern aligns
with the initial ambiguous character. We assume that because such queries do not
sample the spurious character, they cannot eliminate false paths from the tree. A
spurious path in the tree at depth ¢ — 1 is guaranteed to have at least one child at
depth i. Furthermore, there are three fooling probes which could spawn additional
branches at depth 7. Each of these probes is present with probability . Thus, a
single spurious path at depth ¢ — 1 spawns 1+ 3a = 3, children at depth 2. Since this
holds for all paths in the tree, the size of the tree at depth i is ; = (;_1 - Ba, if Py
is a universal base.

YFor example, using (3,3)-reverse probes (N. .N. .N. .NNN), with A = 12, at depth 3 of the
tree, the 12 — 3 = 9*P character of the pattern (N. . N. .z NNN) aligns with the branching.
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Note that the S-multipliers at each depth are independent. The width of the
tree at any depth ¢ is simply the product of the multipliers at depths 1,...,7. The
multiplier at depth ¢ depends only on whether P,_; is a universal base. If there are ¢
natural bases in the Py_; ... P\_;, then there are c—1 universal bases in the same span.
Each universal base contributes a factor of 3,, and each natural base contributes a

factor of 3, to the size of the tree, thus yielding Equation 3.2. O

(4,3)-direct probe - Multipliers
B, B, B, B, B, B, B, B, B, B, B, B, B, B, B, 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Tree Depth

Tree Width

Figure 3.4: Probabilistic path tree showing independent multipliers (8,, 05) at each
depth for a (4,3)-direct probing pattern. Constaining queries (including the initial
branching) are shown shaded and hatched.

Figure 3.4 illustrates the simple model of path tree expansion we have just ex-
plored. Level 1 in the tree contains a single element, and at each level 4, the size of
the tree is multiplied by B, or 8, depending on whether or not P,_; is a constraint
or not.

Unfortunately, our assumptions oversimplify things. We will consider each of the
assumptions in turn, and describe how the analysis changes as a result of eliminating
the assumption.

The first assumption—the independence of fooling probes—does not significantly
affect the analysis of tree size, since fooling probes are very nearly independent.

The second assumption—that there is a single spurious character—is simple to
eliminate. We want to account for the possibility of three- and four-way branches
(e.g. A-G-T or A-C-G-T) in the sequence. This is fairly simple, as it only requires

modifying the value of (;. Ambiguous extensions occur whenever there are one or
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more fooling probes at a particular position in the sequence. Since there are always
three potential fooling probes, and each fooling probe is present with probability c,
we expect to find an average of 3 - a fooling probes each time the EXTEND algorithm
queries the spectrum. This corresponds to branching event c¢. However, we are
considering only cases where we know that there was at least one fooling probe present.
Thus branching event d applies, and the expected size of the tree at depth 1 is
3o
G =pa= m

Assumption 3—that there is only one root—can also be eliminated in a straight-
forward manner. So far we have considered only a single path tree originating at a
single ambiguous position (z), which will be called the primary tree. However, the
correct sequence must also be extended along with the tree of spurious paths. At
every position j > 7, the correct path may produce a new spurious path tree, inde-
pendent of the first. We will call these trees secondary path trees, and denote the
width of a secondary tree at depth ¢ as ;. In the secondary trees, there are three
potential fooling probes at depth 1. Each of these three fooling probes is present with
probability a;, and none of them are guaranteed to be present, so (] = 3a = .. At
depths 7 > 1, the width of the tree can be calculated similarly to the primary tree.
Figure 3.5 shows an example of how the primary and secondary trees contribute to
the total number of spurious paths. It is important to remark that all such diagrams
are meant only to illustrate the width of trees qualitatively: the height of the bars do
not represent expected width, or even the relative width at different depths. Only
a general comparison (bigger or smaller) between consecutive levels in the tree is
intended.

When the EXTEND algorithm is resolving an ambiguous extension, the total num-
ber of spurious paths at depth 4 includes the correct path, the paths in primary tree,
and all of the paths in the ¢ — 1 secondary trees. Thus the total width of the complete
path tree at depth ¢ can be denoted as w;, where

-1
wi=1+G+Y
=1

The fourth and fifth assumptions are somewhat more complex to eliminate. We

want to consider more precisely when spurious paths in the primary and secondary
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Depth
1110 9 8 7 6 5 4 3 2 1

Primary Tree

Total Width

Figure 3.5: Primary and secondary path trees must be added to calculate the total
number of paths. Note that only the initial (right-most) component of the initial
tree is guaranteed to exist; the rest are all present only with some probability < 1.
The total width of the path tree at depth ¢ is equal to the width of the primary tree
at depth 7, plus the 7 — 1 secondary trees which may have been spawned up to that
depth.
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Depth
12 11 10 9 8 7 6 5 4 3 2 1

Primary Tree

Secondary Trees

Figure 3.6: Primary and secondary trees for (3,3)-reverse probes. The initial branch
in the primary tree is black, and is the only component of the tree which is guaranteed
to exist. The initial branch in each secondary tree is diagonally cross-hatched. The
queries which may resolve the initial ambiguity in the primary tree are darkly shaded,
and the constraining queries in the secondary trees are shown hatched.
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trees may be freely extended, and when they may be eliminated. Figure 3.6 shows
the composition of a path tree to depth 12 using (3,3)-reverse probes. The differences
between constraining and unconstraining queries in the primary and secondary trees—
four different classes of queries—can all be considered separately. Note that at any
level in the tree, several different branching events may apply.

First, we tackle the fourth assumption: that queries which do not sample the
initial branching position allow the guaranteed extension of false paths.

False paths are freely extended if and only if there are no sampled characters in
the false path which disagree with the correct path. Constraining queries—queries
which sample the initial branching—eliminate false paths if they are not confirmed by
a fooling probe. However, a disagreement between the correct path and the spurious
path at any sampled position must be confirmed by a fooling probe.

Consider a (4,3)-reverse probing pattern (N...N...N...NNNN). The first
s — 1 = 3 queries after an initial branching are constraining queries; the fourth
(N...N...N..»=NNNN) is not. If all of the false paths agree with the correct
path in each of the three characters subsequent to the initial branching, then they
are all guaranteed to be extended by this query. On the other hand, if any false
path differs from the correct path at any of the three positions subsequent to the
initial branching, that path may be eliminated. Put differently, the sth query after
the branching only allows the free extension of false paths that agree with the correct
path over the previous s — 1 characters. There are 4°~! possible combinations of
s — 1 characters; of these, only one combination agrees with the correct path. For
(4,3)-reverse probes, the probability of such an event is approximately 1/4% = 1/64.

Consider also the following specific example:

Example 3.6. The following path tree originates from a 3-way branching while re-
constructing a sequence using (4,3)-reverse probes. The path tree has been expanded
to depth 4, with the initial branch being depth 1.

Depth ¢ 0 1 2 3 4 5
.GGAATACGAGTI[]C(T GAGTG

[T] C (A) G

Gl C T G

The first row shows the correct sequence; the second and third rows contain false
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paths originating from the initial ambiguous character. The 3-way branching is indi-
cated in square brackets: [C][T][G]. Note that there is a second mismatch between the
correct (top) path and the false path on the second row. It is shown in parentheses,
at depth 3: (T)(A). The false path on the third row agrees with the correct path at
that location.

Using (4,3)-reverse probes, the queries which will extend each of the three paths
at depth 5 are:

Path

1 G...T...A..[]C(T G?7
2 G...T...A..[]C(A G?
3 G...T...A..[}]C(T G?7?

Note that the query strings for the first (correct) path and the third (spurious)
path are the same. Since there must be a probe which extends the correct sequence,
path 3 is guaranteed to be extended as well. However, the second path must be
supported by a fooling probe; if none is found, then it is eliminated even though the

query string did not sample the initial ambiguous position. |

In general, 1/4°7! of all spurious paths will be guaranteed extension at depth s.
The same proportion of paths (1 /4571) will be automatically extended by the next
two queries: (N...N...N.==.NNNN and N...N...Ng:..NNNN). If a path

S )W

does not agree with the actual sequence at all of the non-free positions in the query
(N...N...N... M

AN

o ), then that path must be supported by a fooling probe, or

N !

be eliminated. In general, if a query contains n natural bases to the right of the initial
ambiguous position, then there must be n — 1 matches between the false and correct
paths to guarantee free extension of a path. For reverse (s, r)-probing patterns, the
number of constrained positions can be calculated as a function of the depth in the
tree (recall that the initial branching position is depth 1). We denote the number of

constrained positions at depth ¢ as n;, calculated as follows:

71— 1 if i <s,
ni=4s+ -2 ifs(r+1)>i>s, (3.4)
s+r—1 ifi>s(r+1).
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Spurious paths that agree with the correct path in all of their constrained positions
are guaranteed to be extended, and thus fall into branching event a. The remaining
paths must be confirmed by fooling probes, and thus fall into branching event b.

Using Equation 3.4, we can calculate the size of the tree at depth ¢, when A — i is a

G=0G-1- (%) “Ba+ Gim1- (-Czlj:‘l‘) - Bp
n? n

% i

universal base, as

Finally, we consider the fifth assumption, which allows indefinite extension of all
trees. In practice, if the primary tree is completely eliminated, then the extension
of the entire path tree stops. There may still be spurious paths in secondary trees
(which diverge from the correct sequence at a point j > i), but as soon as the initial
ambiguity is resolved, the tree expansion stops. To calculate the expected size of the
path tree, we must take into account tree elimination: the average size of a tree at
depth 7 is calculated by including only trees which reached at least depth 7, and thus
had a non-zero width at that depth. If a tree is eliminated at a depth < i, it does
not contribute to the calculation of tree width at depth <.

The rules governing the extension of paths when P,_; is a natural base in the
primary tree are subtle. When a query samples the initial ambiguity, all spurious
paths in the primary branching must be confirmed by fooling probes, or be eliminated.
However, consider the case where the query at depth ¢+ — 1 is a constraining query.
Since we consider, at depth i, only those trees which were expanded to at least depth
7, we know that that at least one of the paths in the primary tree at depth z — 1
was confirmed by a fooling probe at depth ¢. That path, for which there was at least
one fooling probe, is governed by branching event e. Thus, the path at depth : — 1

4

which is known to have been extended has an expected §, = ﬁ children at

depth 7. The remaining paths, falling into branching event b, each produce 3, = 4«

descendants. Thus, if position A — ¢ is a natural base in the probing pattern, we have

(LY. Gz 1)
Cz—<<i‘1> ﬂe+< Ci-l ) 61)

We can now calculate the size of the primary tree more quite accurately:
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Ba ife=1,

G- () e ()

By
Gi-1 ( ) Ba+ G- ( ) B, ifi > 1 and Py_; is a universal base.
(3.5)

The secondary path trees may be eliminated without affecting the overall expan-

if 2 > 1 and P,_; is a natural base,

sion of the tree as a whole, so when P,_; is a natural base, all paths must be confirmed
by fooling probes—none are guaranteed to be extended. The size of the secondary
trees can be expressed by the following recursion, where the case for natural bases is

the same as in the original Equation 3.3:

Be ifi =1,
(=<8 ¢, if 4 > 1 and P,_; is a natural base,
! ( ) Ba+ ( : nl ) - By ifi>1 and Py_; is a universal base.

(3.6)
Unfortunately, due to the complexity of path extension when constraining queries
occur, there does not appear to be a simple closed-form equation to express the width

of the primary path tree. Instead, the recurrences given in Equations 3.5 and 3.6 must
be used.

Finally, recall that the sum of all of the primary and secondary trees, at depth 2
is

i1
wi=1+G+ ZCJ'
=1

Using this recursive calculation, the size of trees at depth ¢ can be computationally
predicted quite accurately. Figure 3.7 shows the predicted tree size as well as the tree
sizes observed during three sequencing attempts, for fragment sizes of m = 15000.

There is a very good match between the predicted and observed values.

3.3.3 Direct Probes

Recall from Definition 1.10 that direct (s, r)-probes to have the form 15(057'1)", with

‘1’ representing a natural base, and ‘0’ a universal base. For example, 111001001001
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Width of path tree

2 4 6 8 10 12 14 16 18 20
Depth of tree i

Figure 3.7: Predicted vs. observed tree widths for (4,4)-reverse probes at m = 15000.
The solid line is the predicted width; the dotted lines represent three separate obser-
vations.

is a (3, 3)-direct probe, which we represent as NNN..N..N..N using ‘N’ and ‘.’
in place of ‘1’ and ‘0.

Direct probes have the disadvantage of allowing the guaranteed extension of spu-
rious paths for (s — 1) characters after a branching. Each of these (s — 1) queries may
also produce further branches in the path tree, both from the correct and spurious
paths. While the same general reasoning leads to an accurate prediction of the path
tree size for probes, the structure of the probe requires a more precise calculation:
the approximation used for reverse probing patterns is too coarse to be used here.

Figure 3.8 shows the qualitative composition of the path tree for (3,3)-direct probes
(compare with Figure 3.6 for the (3,3)-reverse pattern). Recall that these diagrams
indicate only qualitative tree size, not specific expected tree sizes. With this in mind,
note that at depth 2 and 3, the size of the primary tree is expected to increase—at
these depths, a decrease in tree size is expected for the reverse probing pattern.

We will begin by looking at a single example of an ambiguous branch using (3,2)-

direct probes.
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Depth
12 11 10 9 8 7 6 5 4 3 2 1
Q
o
] i
[}
HE] B leE=-
a.
[}
o
[
E,
«
©
[
(@]
Q
Qo
(7))

Figure 3.8: Primary and secondary trees for (3,3)-direct probes. The initial branch
in each tree is diagonally cross-hatched, with the guaranteed initial branch in the
primary tree shaded solid black. The queries which may resolve the initial ambiguity
in the primary tree are darkly shaded, and the constraining queries in the secondary

trees are shown hatched.
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Example 3.7. In this example, the initial ambiguous branch is shown in square
brackets: [C][G]. The putative sequence is to the left of the square brackets, and a
secondary branching (which occurs in both the correct and spurious paths) is shown
in parentheses: (A)(G). There are three spurious paths: a, b, and ¢, and 8 relevant
probes which support these paths, numbered 1...8. Fooling probes are labeled fp in

the last column.

Path Tree
Depth i 1 2 3 4 5 6 8
.. G AGCTAAGAIC T A CTAG
a Gy ¢ T A G
b [G] T (A) C T A G
¢ (G) C T A G
Probes
1 A G C A [C]
2 A G C . . A [G] fo
3 C T A A . . (A)
4 C T A . A . . (G) fr
5 T A A [c . . C
6 T A A G] . . C fp
7 A G A . . (4) .
8 A G A . G .7 fr

The correct path is the topmost path, containing the characters [C] and (A) at
the primary and secondary branchings, respectively. Thus, probes 1, 3, 5 and 7 are
guaranteed in the spectrum. Probes 2, 4 and 6 all contain one spurious character:
they are expected to be present in the spectrum with probability a. And there are
four probes of the form of probe 8; each of the four has probability a of being in the
spectrum.

The primary tree originates at position 1 with the initial ambiguity [C][G]. Path
b is guaranteed to be extended by s — 1 = 2 characters beyond the branching, since
the next two probes do not sample the initial ambiguous position. Probe 4 causes
a branching event in the path tree at depth 3. Since probe 4 is a feasible-extension
probe for both the correct and spurious paths, it initiates a branch from both the
correct and spurious paths, creating path ¢ in the primary tree and path a which

initiates a secondary tree. This event doubles the total size of the tree to 4 paths.
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At depth 4, the first constraining query occurs. At this point, both of the paths
in the primary tree (b and c) could be eliminated, but the presence of probe 6 allows
them to be extended further. Notice that probe 6 allows the extension of both of
the false paths in the primary tree, since these two false paths are identical over all
sampled positions. At the same depth, probe 5 allows the secondary false path (a) to
be extended.

The initial branching can only be resolved (by eliminating all of the paths con-
taining the initial spurious character) by queries which sample the initial branching.
However, it is possible to eliminate some of the spurious paths even when a query
does not sample the initial ambiguous character. At depth 5, all of the characters
sampled agree with the correct sequence, so no paths may be eliminated. At depth
6, the situation is more complicated.

The query at depth 6 samples the secondary branching. Probe 7 is guaranteed
in the spectrum, and allows path b to be freely extended. The other two spurious
paths must be confirmed by a probe of the type of probe 8. There are potentially
four fooling probes which can confirm these paths, each present with probability o:
if none is found, then paths a and ¢, which differ from the correct sequence at the
secondary branching, will be eliminated.

We are most interested in the expected size of the primary tree at depth 6, so let’s
look at the two paths in the primary tree: b and c¢. Path b—containing the correct
character [A] at the secondary branching—is guaranteed to be extended to depth 6,
and may produce further branches if there are fooling probes in the spectrum. This
path falls into branching event a, and has an expected 3, = 1 + 3« children at depth
6. Path b—containing the spurious character [G] at the secondary branching—may
be eliminated. It falls into brancing event b, and has an expected 3, = 4« children at
depth 6. The primary tree (rooted at the initial spurious character) has size (5 = 2
at depth 5. Since one child produces 3, children and the other produces £, children,
the tree will have an expected size (g =1- 8, + 1 - 3 at depth 6. n

For reverse probing patterns, it was possible to estimate the fraction of false paths
which would be extended by a non-constraining query simply by counting the number
of constrained positions in a query (c¢;). For direct probes, a more precise calculation

is needed.
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We need to calculate the expected proportion of the paths at depth ¢ which may
be eliminated by a non-constraining query due to positions of disagreement with the
correct path. If we denote the fraction of paths which are guaranteed to be extended
at depth 4 (since they agree with the correct path in all sampled positions) as p;, then

we can calculate the width of the primary tree as

G = pi- Gie1Ba + (1 — pi) - Gi-1Bb

It remains to calculate p;. A path may potentially be eliminated if it differs from
the correct path at a position which is sampled by the current query. False paths can
disagree with the correct path only at positions to the right of the initial branching.
The structure of direct (s,r) probing patterns means that a path may be eliminated
at depth 7 < s-r if and only if it contains a spurious character at some position j

such that j =i — s, —2s,...,i—rs (i. e., where (i — j) mod s = 0).

Example 3.8. Consider the (4,4)-direct probing pattern
NNNN...N...N...N...N. At depth 14, 15, and 16, there are three positions
sampled by the query which fall to the right of the initial ambiguous character, and
are sampled by the query. The initial branching position is indicated in square brack-

ets [T][A], and the potential positions of disagreement in the query are lightly shaded:

Depth 1 2 3 45 6 7 8 910 11 12 13 14 15 16

.ACCGGACIT G ATCGCA..
]

(A X X X XX XX
14 NNNN . ?
15 NNNN . ?
16 NNNN ?

We want to precisely calculate the effect that non-constraining queries have on
the width of the path tree. We will use direct (4,4)-probes as an illustrative example
of direct probing patterns. Example 3.8 showed that at depth 14, 15 and 16, there
are exactly 3 positions where a query can disagree with the correct path. At these

depths in the tree, the proportion of paths which require fooling probe support 1s
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constant, so pi4 = p15 = p1s. By analagous argument, at depths 10, 11 and 12, the
queries contain exactly 2 positions which can disagree with the correct path.

For any direct (s, r)-pattern, the first rs queries can be divided into r regions (for
(4,4)-probes, r = 4). Within each region, there are s — 1 non-constraining queries for
which p; is constant, since the number of potential disagreements between the correct
and spurious paths is the same. Each region with a constant p; value contains s — 1
queries.

The 4 regions for direct (4,4)-probes are explicitly defined below. For each region,
the s — 1 = 3 included queries are aligned with a symbolic DNA string. In the DNA
string, the character Y’ represents the branching position, and the character ‘X’ an
arbitrary natural base. Each query string is labeled with the depth of its right-most
character. The first region, region 1 corresponds to depths ¢ = 2,3,4 in the tree.
These queries do not sample any characters to the right of the branching position,
so all paths are guaranteed to be extended, indicating that p; = 1. (In other words,
in region 1, the probes that allow the extension of the correct path also permit all

spurious paths to be extended as well.)

Depth 1 234
Y] X X X

2 NNNN...N...N...N.. .2=?2

3 NNNN...N...N...N. . .72

4 NNNN.. .N...N...N . ..z?

In region 2, corresponding to ¢ = 6,7, 8, there is a single sampled character to the

right of the initial branching position:

Depth 1 2 3 45678
Y] X X X XXXX

6 NNNN...N...N.. .®N . . .2

7 NNNN...N...N. N ?

8 NNNN.. .N...N ?

In region 3, where 7 = 10,11, 12, each query contains 2 sampled positions to the

right of the initial branching:
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Depth 1 2 3 456 7 8 9101112
[Y] X X XXX X XXX XX

10 NNNN...N.. . N ' ?

11 NNNN...N. . . N . .. N . ..7

12 NNNN...N. . . N. . .N.. .27

And region 4, where i = 14,15,16, is the same as for the above example, where

each query contains three sampled positions to the right of the initial branching:

Depth 1 2 3 45 6 7 8 910 11 12 13 14 15 16
Y] X X XX X X XXX X X XXXX

14 NNNN.. . N N . .. N . . .2

15 NNNN . | I ?

16 NNNN N . ?

All of the regions can be summarized quite simply. In the following table, the
regions themselves are shaded, and shown on the 3™ line of the following table. The
second row contains the (4,4)-direct probing pattern, and the first row shows the
depth at which the corresponding character in the probing pattern intersects with
the branching position. The depths in the tree at which queries sample the initial

branching are shown in stalics.

Depth 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1
XX xx . . . X

Region

In general, a direct (s,r)-probing pattern contains 7 regions of s — 1 positions.
The queries in region j sample j — 1 positions beyond the initial branching—these are
the positions in the queries above which are highlighted in grey boxes. If a false path
differs from the correct sequence any sampled position, that path may be eliminated
by the corresponding query. We just need to determine what fraction of paths agree
(or disagree) with the correct sequence at a sampled position; this is the value p; (or
1 — pi).

Note that although the width of the path tree may increase or decrease at every
step 1, the expected fraction of paths that agrees with the correct sequence is deter-
mined only by the steps which could have produced mismatches between the correct

and spurious paths. For instance, in region 2, the fraction p; of paths in the tree
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Step 7 6 5 4 3 2 1

it i i
I

Figure 3.9: A path tree consisting of two groups of paths: A and B. At depth 2, 3,
5 and 6, the two groups are each expected to increase in size by a factor of 3,. At
depths 1, 4 and 7, the multipliers for groups A and B are different. From depth 1-3
(and again from depth 4-6), the ratio of paths |A| : |B] remains constant.

Group A

Group B

which agree with the correct path is determined uniquely by the number of branches
produced at depth 7 — s. In region 3, where there are 2 sites of potential mismatch,
the fraction of spurious paths which agree with the correct path is determined by how
many branches were produced at depths i —s and 7 —2s. At all other depths 1...7—1,
although the tree may have grown or shrunk in width, the fraction of matching paths
is not affected. This is due simply to the fact that there are essentially two groups of
paths: those that agree with the correct sequence at the relevant locations and those
that do not. Both groups of paths produce the same expected number of descendants
at the intervening depths in the tree, so the fraction of matching paths does not
change. Figure 3.9 illustrates this phenomenon.

We can now move on to the p; coefficients themselves, beginning with the simplest
possible. Queries in region 1 do not sample any sites of possible disagreement, so they
are guaranteed to extend all spurious paths.

Figure 3.10 shows a typical region 2 query with a (4,4)-direct probing pattern. The
query shown (depth 7) samples a single character to the right of the initial ambiguity.
Although the number of paths in the tree increases after depth 3, the fraction of
paths which differ from the correct path does not. The paths which disagree with the
correct sequence at depth 3 are expected to produce the same number of children at

every intermediate depth as other paths (as illustrated in Figure 3.9).
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Possible Disagreement  .........0.. 0t T T

Current Query ~
TAX X X X - - - X =

Initial Branching Position

Figure 3.10: A query in region 2 samples each path in the tree at one position to the
right of the initial branching position. The depth-7 query is shown in the middle,
with the initial branching position highlighted. The bars beneath the query show the
expected size of the primary tree; the lighter bars above the query show the fraction
of paths which might contain a spurious character at the sampled position.

How do we calculate p; for queries in region 27 Consider for a moment the case
where the query at depth 7 — s spawned only a single child. In practice, it is expected
to produce B, = 1 + 3o descendants. However, if there were no fooling probes which
produced a branch for then all of the paths at depth ¢ are guaranteed to be extended:
a false path can be eliminated by a query in region 2 only if it differs from the correct
path at the sampled position ¢ — s.

We expect each path in the tree at depth ¢ — s to have spawned £, = 1 + 3«
descendants. One descendant is guaranteed to exist, and to match the correct se-
quence. There are 3 descendants which are created with probability a and which do
not match the correct sequence. Each of the paths spawned at depth ¢ — s spawns
the same number of descendants at depths i —s—1,7—s—2,...,7—1. Thus, if there
were 2 descendants (and therefore a single false path) spawned at depth i — s, then
approximately % of the queries at depth ¢ match the correct sequence, since they are
descendants of the paths which matched the correct sequence at depth ¢+ — s. If 2 false
paths were spawned (for total of 3 descendants) at depth i — s, then only % of the
queries at depth ¢ match the correct sequence. In general, there are 5, = 1+ 3« paths
spawned at depth 7 — s, so BlZ of the paths at depth ¢ match the correct sequence over

1

all sampled characters. Thus, in region 2, p; = e

The multipliers p; for region 3 are yet more complex to calculate. There are two
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sampled positions to the right of the branching position. To determine the value of
p; in region 3, we need to calculate the fraction of paths in the tree which differ from
the correct sequence at either of the sampled positions.

Again, we consider only the paths which descended from queries at positions 7 —s
and ¢ — 2s. Out of these paths, only one can match the correct sequence; the rest
must all be confirmed by fooling probes. We thus need to calculate the product of
the multipliers at depth ¢ — s and i — 2s. This product yields the total number of
paths which might differ in a sampled position from a query in region 3. Figure 3.11

shows a typical region-3 query using (4,4)-direct probes.

Possible Disagreements ...

Current Query :
X X X X -

- X - - = X - - -
Initial Branching Position

Figure 3.11: A query in the region 3 samples each path in the tree at two positions to
the right of the initial branching position. The depth-11 query is shown in the middle,
with the initial branching position highlighted. The bars beneath the query show,
qualitatively, the expected size of the primary tree; the lighter bars above the query
show the fraction of paths which might contain a spurious character at a sampled
position.

Note that position 71—2s falls in region 1, and position ¢— s falls into region 2. This
observation will help calculate the number of paths which may contain a mismatch
at those two positions. In region 1, each path produces 8, = 1 + 3« descendants. In_
region 2, only the fraction p; of paths which agree with the correct path produce 3,

descendants; the rest produce 8, children. The expected number of children produced
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by each path in region 2 is

Pi Ba+ (L= pi) - B

= (g)er(-g)m

at

Since the queries in region 1 produced 8, descendants each, the fraction of paths at
depth ¢ which might differ from the correct sequence at one of the sampled positions
to the right of the branching is the product of the multipliers (number of descendants)

at 7 — s and i — 2s,

B
(1+ﬂb 5. ) Ba=Bat Babs = By
Finally, by the same argument we made for region 2, we can say that in region 3,
1
Py =
Ba + Babo — Po

We now calculate a general formula for p;. Since p; is constant within each region,
we first define a parameter v;,1 = 1...7, such that p; = —- Wlthln any given region.

w; is the total number of paths which may differ from the coxrect sequence at sampled

positions: paths which could have branched at depth ¢ — 5,7 —2s,...,% —7rs.
Y =1
0 = o[ (1))
(1/7" 1) wr 1 ’ ( )

In Equation 3.7, the value v;_, accounts for branches which occurred at sampled

) B

accounts for the number of descendants expected for each path at depth . The total

positions prior to the current one. The rest of the equation [(1/1 Ba + (

number of paths at depth ¢ which might have branched at depth i—2,4—2s,...,1—rs
is the product of these two factors.

As we did for reverse probes, we calculate the total width of the path tree at depth
i by adding the width of the primary trec at depth 4, plus the width of secondary
trees at depth 1...7 — 1. The total number of paths in the complete tree at depth 2
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is -
wi = G+ Z ¢
j=1
The width of a secondary tree at depth ¢ is given by
1 ifi=1,
G=4B-C 4 if i > 1 and P,_; is a natural base, (3.8)

! pi-Bat+C - (1—p;)- B ifi>1and P, is a universal base.

where p; is 1/1;, and P; denotes the " character of the probing pattern.

Now we need to calculate the probability of extending a path when Py_; is a
natural base. Recall that we only count the width of a tree at depth ¢ if the path tree
is extended to at least depth i. Therefore, even if Py_; is a natural base, at least one
of the paths in the tree at depth ¢ — 1 must have been confirmed by a fooling probe.

For reverse probing patterns, we claimed that if there were (;_; paths in the tree
at depth i — 1, at least one of those paths must have been extended to depth ¢, and
the rest all required a fooling probe. That was a reasonable approximation for reverse
probing patterns. For direct probing patterns, we need to be more precise. Observe
that if one path (p;) at depth 7 — 1 is extended to depth 4, then any other path (ps)
that matches the extended path over all sampled positions will also be extended. The
paths p, and p; may contain disagreements in positions which are not sampled by the
current query. When using reverse patterns, the first s — 1 queries after a branching
all sample the ambiguous position, so for the first s —1 levels there are no unsampled
positions after the branching. When a single path is extended during these first s —1
positions, it is the only path which is guaranteed to be extended; all other paths
require supporting fooling probes.

Using direct probing patterns, the situation is much different. After the initial
branching, there are s — 1 queries that are guaranteed to extend every false path,
and each of these queries may produce additional branches from. Furthermore, at
depth s+ 1 in the tree (the first constraining query after the initial branch), if there
is a single probe which confirms a spurious extension, then all paths which descended
from that particular initial extension will also be extended. Thus, the fraction of

paths which are guaranteed to be extended to depth s+1 from depth s in the tree, is
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1
# of initial branches:’

known to be 1/8; = T—T?C:T)% the fraction of paths guaranteed to be extended (given

Since the expected number of initial branches in the primary tree is

that at least one path was extended) at depth s is ;. These paths are governed
by branching event e: each may potentially be confirmed by 4 fooling probes, and
we know that at least one fooling probe is present. They are expected to spawn
Be = T‘f“_a—); children each. The remaining paths must all be confirmed by a fooling
probe or be eliminated, and thus fall into branching event b.

After the second constraining query, there are an additional s — 1 queries which
do not sample the initial branching—the behavior of the path tree at these depths
is described above. Following these queries, at depth 2s + 1 in the tree another
constraining query occurs. Again, we want to determine the fraction of the paths in
the tree that are guaranteed extensions, given that at least one path is extended to
depth 2s + 1. Here, we need only consider the paths which may have branched at
depth s+ 1. At depth s+ 1, there were

1 1
G (1)

descendants to each path in the tree. By multiplying by the initial number of paths in
the tree (8,) by this second branching factor, we can calculate the the total number of
paths in the tree which may potentially be extended by the same query that extends
a single path in the set:

[—1—-m+ (1—i) -ﬁb] Ba= B+ Bubs — By
d /8(1

Analogous to our calculation for the non-constraining queries, the proportion of
paths which are guaranteed to be extended at depth ¢, when i is a constraining query
can be expressed as a simple recurrence. We consider only the positions sampled by
the current query which fall to the right of the initial branching position. If there are
j such positions, then the proportion of paths which produce g, expected descendants
is just 1/1;, where the value of ¢; can be calculated using Equation 3.7.

The expected width of the primary path tree using direct (s, r)-probes is given by

the following recurrence:
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Figure 3.12: Predicted vs. observed tree widths for (4,4)-direct probes at m = 12000.
The solid line shows the predicted tree width, while the three dotted lines correspond
to three separate observations.

1 ifi=1,
G=19GC1 - Be+C-1-(1—1) 6 ifi>1and Py_;is a natural base, (3.9)
Gt pi Ba+C1-(1—p;)- By ifi>1and P,_; is a universal base.

Finally, the total width of the path tree at depth 7, including the correct path,
and all spurious paths contained in the primary path tree and all 7 — 1 secondary

secondary path trees is
i1
wi =1+ Z G
J=1

Figures 3.12 and 3.13 show the observed vs. predicted tree sizes for (4,4)-direct
probing patterns for m = 12000 and m = 15000, respectively. In each graph, the
analytical curve is presented along with the observed tree sizes from three sequencing

attempts. The predicted values show a remarkable match to the observed tree widths.
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Figure 3.13: Predicted vs. observed tree widths for (4,4)-direct probes at m = 15000.
The solid line shows the predicted tree width, while the three dotted lines correspond
to three separate observations.

3.3.4 Segment Length, Tree Size and Work

The total number of nodes created in the path tree when EXTEND attempts to resolve
ambiguous extensions is one of the most significant factors determining the amount of
work, in terms of total spectrum queries, the gapped-SBH algorithm performs while
reconstructing sequences. Two other parameters affect the total work as well: the
frequency with which the branching event is initiated, and the average depth reached
before an ambiguous extension is resolved.

If each character added to the putative sequence was independent of the previous
one, we would expect that approximately (1 — «)® of all initial queries would produce
an unambiguous extension. If we constrain the branching EXTEND algorithm to
produce segments of only a single character in length, this is precisely the behaviour
that is observed. When m = 12000, o =~ 0.167, and (1 — a®) ~ 0.58. Over several
hundred sequencing trials, we find that about 57% of all initial queries produce a
single, unambiguous extension.

However, the behaviour of the EXTEND algorithm significantly alters the incidence
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of the simple and branching extension modes. When the initial ambiguity is resolved,
EXTEND produces a segment consisting of the unambiguous prefix derived from the
path tree. This means that, if a k-character segment is produced—beginning at depth
1 and extended to depth k in the tree—there must have been a branch in the tree
at depth k + 1. If the path did not branch at depth k£ + 1, then the path to depth
k would have had only one descendant in the tree, indicating an unambiguous ‘next’
character, and the segment would have been longer than k characters.

When the k-character segment is appended to the putative sequence, the next
query made by EXTEND is virtually guaranteed to produce a branch. In fact, the
branch will be the same one that occurred in the path tree. Thus, after a the first
ambiguous character is resolved by EXTEND’s branching mode, almost no characters
will ever be added by the simple extension mode. EXTEND’s next query is guaran-
teed to produce a branch unless all of the spurious paths in a path tree terminate
simultaneously, leaving only a single correct path alive.

We want to calculate how much ‘work’ is performed by the gapped-SBH algorithm

to reconstruct a sequence of length m with a particular probing pattern. A good

# spectrum queries
nucleotide

metric for measuring the work performed is ( ) Since virtually every
character in the reconstructed sequence is produced by EXTEND’s branching mode,

we can estimate this value by calculating two values:

1. The average length, in characters, of an extension segment.

2. The average size, in nodes, of a path tree.

We begin by estimating the size of a path tree. Each node in the tree requires 4
spectrum queries: one for each potential child-node, so the average tree size yields the
average number of spectrum queries performed to produce an extension segment. By

dividing the average tree size by the average segment length, we arrive at an estimate

# spectrum queries
for ( nucleotide )

The initial ambiguous extension in a path tree can be resolved only by a constrain-
ing query. Such queries will eliminate the tree if there are no fooling probes which
confirm the spurious paths. Each individual spurious path in the tree is eliminated
with probability (1 — a)*. However, note that when the first constraining query after

the initial branch is executed, all of the paths which share the same initial (spurious)
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character are confirmed or eliminated by the same query. If there are one or more
fooling probes which confirm one such path, then all of them are extended (or pro-
duce another branch). And if there are no such fooling probes, then all of the paths
sharing the same initial character are eliminated simulataneously.

If we assume that at depth 1, the primary path tree has width 1 (there is only
a single initial spurious character), then the probability of resolving the branch with

the first constraining query is
(1-a)?

However, since there are 5; = 1_&—30)3 initial spurious characters, and each of the
subtrees sharing the same initial character may be extended by independent fooling
probes, the query at depth 2 resolves the initial ambiguity if and only if all spurious
paths are eliminated. The probability of this event is most easily calculated using a
generating function.

The generating function G;(z) of the probability distribution of a variable v > 0 is
a polynomial function that allows us to compactly represent the distribution, p(v = j),
for j = 1,1,.... In our case, we have a random variable describing the width of the
path tree, which is governed by a different probability distribution at each depth 1.
If we want to calculate the probability that there are 0 items in the tree at depth 1,
we compute G1(0). If we want to determine the probability that there are 0 children
in the tree at depth 2, we must first compute G3(z), since the number of paths in
the tree at depth 2 is governed by a different probability function. Once Gs(z) is
determined, the probability that there are no spurious paths remaining in the tree at
depth 0 is determined by computing G2(0).

We will first compute G;(z). To begin, we define a parameter 6 = 1 — «, for
the sake of legibility. There is always at least one spurious path in a tree, which
contributes a factor z to the generating function, and there may be two other paths,

with probability .. Each potential path gives rise to a factor (6 + az). This gives us

Gi(z) = 2(6 +az)?
= 0%z + 2062 + o?2° (3.10)

The coeflicient of 2" gives the probability that there are n paths in the tree at
that depth. The probability of finding a single path in the tree is 62; the probability
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of 2 paths is 26, and the probability of 3 paths is o®. Note that the probability of
finding 0 or 4 spurious paths is 0, since we are considering only spurious trees (of
which there can be only 3) which ezist at depth 1 (and consequently contain at least
one path). At depths i > 1, the generating function grows rapidly more complex.
When the query performed at depth 4 is not a constraining query, a spurious path
is freely extended only if it agrees with the correct path at all sampled positions.
Equation 3.4 yields the approximate proportion of paths that are freely extended in
this case. For (s,7)-reverse probing patterns, the proportion of paths which are freely
—, and for the (4,4)- and (5,3)-patterns

that are typically used, .= < L. For the purposes of determining the ultimate tree
s—1 64

extended by a non-constraining query is

depth, this value is small enough that it may be safely ignored. We can assume that
all paths in the tree are equally likely to be eliminated, even by non-constraining
queries. For (s,7)-reverse probes, we assume that all queries are just as likely to
resolve the initial extension and eliminate the entire path tree. Thus, each individual

path at depth ¢ > 2 is governed by the following generating function:
R(z) = (6+az)! (3.11)

If there is only one path in the tree at depth 1, then G5(0) = R(0) = §* = (1 - a)*
gives the probability that the tree is resolved by the query at depth 2, as expected. The
generating function for G5(z) is just R(G1(z)), which can be calculated by substituting
the generating function G(z) = (6 + az)? for z in G;(z). This gives us

G2(G1(2)) = (0 + a2)* (6 + a6 + az)?)?

The probability that a random path tree is eliminated at depth 2 can be deter-
mined by computing G2(0). At depths ¢ > 2, the generating function R(z) must be
applied recursively, 7 — 1 times. Note that

R.(2) = R(Rn-1(2)) = R(R(Rn—2(2)))) = ... = R(R(-- - R(2) - -))
and that consequently,
Gi(Z) = Rz_l(Gl(z)) (312)

so the generating function for the number of paths in the tree at depth ¢ can be

computed manually in a simple (although tedious) manner. In fact, at depths ¢ > 2,
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there is little to be gained by multiplying out the full expression for G;(2); generating
functions do not lend themselves well to closed-form expression. However, they do
allow for a very convenient method of computing the probability of the extinction of
branching processes, and in our case, for the elimination of the path tree.

For (s,r)-direct probes, the situation is a little more complex. In this case, the
non-constraining queries cannot possibly eliminate the path tree, since there can be
no differences between the correct path and a false path at any sample position. For
direct probes, the probability of eliminating the tree by a non-constraining query is
0.

Since there are s — 1 queries between the initial branch and the next constraining
query, the primary tree will almost definitely contain more than §; independent spu-
rious paths at the second and subsequent constraining queries. However, no matter
how many disagreements there are between two spurious paths, if they agree at all
sampled positions, then they will be confirmed or eliminated by the same fooling
probes. The second constraining query samples only the initial ambiguous position,
so there are a maximum of 3 (and an expected fS4) independent spurious paths at
this site. At subsequent constraining queries, there are more sampled positions in the
queries, and so there are more sites of potential disagreement.

Let’s examine the situation where there are two fooling probes that match a
spurious path at the position of the first constraining query, using (3,2)-direct probes.
Here we show the putative path to the left of the initial ambiguous position, [C][T]. At
depth 4, there are two feasible-extension probes for the spurious path, so the number

of spurious paths in the primary tree doubles.

Path Tree
1 23 4 5 6 7 8 9
L..ATACGAGTI[CCG T GAGTSG
[T] C G (A) G A
b T] C G (C) G A
Queries
Qa G T [T] Ay . . 7
Qb G T [T] < . .7

The second contraining query occurs at depth 7. At this level in the tree, there are

two spurious paths in the primary tree, a and b. These two paths will be extended if
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there is at least one fooling probe matching the queries ¢, and g, respectively. There
are 4 potential fooling probes that will match either query; each query produces
an expected 4o responses in the spectrum. The probability of finding 0 matching
probes for ¢, is (1 — a)?*; the same as for g,. However, since each of the fooling
probes confirming path a is independent of the fooling probes confirming path b, the
probability of finding no fooling probes to confirm either path is ((1 — )*)2. If there
were 3 fooling probes matching the single spurious path at depth 4, there would be 3
independent paths at depth 7, and hence 12 independent probes which could confirm
one or more of them. In general, when there are n different constraining queries

performed, the probability of eliminating the entire tree is (1 — a)*".
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Figure 3.14: Predicted vs. observed tree depth for (4,4)-reverse probes at m = 12000.
The solid line shows the predicted value, and the two dotted lines show the observed
values for two sequencing attempts.

All that remains to be done is to calculate the expected number of independent
spurious paths—which differ in at least one sampled position—and the probability of
eliminating the tree at every constraining level can be easily calculated. We simply
need to determine the proportion of paths which differ from the correct path at a

sampled position. A slight modification of Equation 3.7 yields the expected number
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of independent queries after ¢ constraining queries have been performed (recall that
for direct probing patterns, every query is considered to be a constraining query).

Denoting the number of paths with ¢ sites of potential disagreementas 7;, we have:

m = By

! Be + (1— ! )ﬂb} (3.13)

i = Thi-1 l:
Ni—1 i—1

At the "' constraining query, the probability of eliminating the primary tree and

thereby resolving the initial branch is (1 — «)*%. The probability 6; that a tree is

extended to depth ¢ is simply the product
i

o, = [[1-a)™
7=1

= (1-a)* H(l — ) (3.14)

j=1
which does not have a simple closed form solution.

Figures 3.14 and 3.15 show the proportion of trees extended to at least depth
i by Equations 3.13 and 3.14 for (4,4)-direct and reverse probing patterns at m =
12000. Each figure shows the predicted analytical curve and three experimental curves
obtained from three sequencing trials. The correspondence between our model and
the experimental data is remarkable.

Now that we have developed a reasonable model for predicting the likelihood
of extending a tree to depth i, we can calculate the expected number of queries
performed before resolving an ambiguous extension. Recall from Chapter 2 that a
spectrum query determines the presence or absence of a particular probe, and so 4
queries are required for each node in the tree. The probability that a tree is extended
to depth ¢ is #;, and the expected size of the tree at depth ¢ is w;. If the tree does
reach depth 7, we expect there to be w; nodes in the tree at that depth. Since the
probability of reaching depth i is 6;, there is a probability of 6; that 4w; queries at
depth 7 will be performed. Thus, in a tree of unknown depth, we expect 4w;0; queries
to be performed at depth 7. We denote the total number of expected queries in an

average tree created for a sequence of length m as Q(m),

Q(m) = .24“”9" (3.15)
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Figure 3.15: Predicted vs. observed tree depth for (4,4)-direct probes at m = 12000.
The solid line shows the predicted value, and the two dotted lines show the observed
values for two sequencing attempts.

In practice, we sum over depths ¢ =1... %)\; the probability that a tree reaches a

depth beyond that is negligible. The following table gives the results of this estimate

of tree size with direct and reverse (4,4)- probes for m = 12000 and m = 15000, along

with the average tree size over several sequencing attempts using the same probing

pattern and m.

Probe m | Predicted | Observed
(4,4)-direct | 12000 543 589
(4,4)-reverse | 12000 31.1 35.2
(4,4)-direct | 15000 | 2072 2153
(4,4)-reverse | 15000 |  77.4 72.8

Now that we can predict the amount of work required to resolve a single ambiguous

extension, we should be able to estimate the total work required to reconstruct a

complete sequence. We just need to calculate the expected length of a branching-

mode segment. Unfortunately, this process is not simple. Moreover, the strategy of
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selecting the longest unambiguous prefiz of the path tree after resolving a branching
introduces a selection effect on the path trees themselves.

If, upon eliminating all of the spurious paths in a tree, only a single character—the
now unambiguous character at the branching position i—is appended to the putative
sequence, the (possibly empty) path tree produced at position ¢ + 1 is independent
of the tree produced at ;. By selecting a sequence whose length is determined by
subsequent (secondary) branches in the path tree, we are eliminating some subset of
path trees from consideration.

This problem warrants further consideration, but is beyond the current scope of
this thesis. For now, we can estimate the work required to reconstruct a sequence
when only single-character segments are selected from a path tree. Recall that Equa-
tion 3.15 gives the expected number of queries performed to resolve an ambiguous
extension. We denoting the probability of a branching event as p, =1 — (1 — a). A
little thought reveals that 4 queries are performed for every character produced by
the algorithm’s simple extension mode. Thus, the predicted total number of queries

needed to reconstruct an m-length sequence is

m-Q(m) - pp +4m - (1 — pp)

The following table shows the predicted vs. observed total number of queries per-

formed during sequencing attempts for 12000- and 15000-character target sequences:

Probe m Predicted | Observed
(4,4)-direct | 12000 | 2.77 x 10° | 2.64 x 10°
(4,4)-reverse | 12000 | 1.86 x 10° | 1.83 x 10°
(4,4)-direct | 15000 | 1.54 x 107 | 1.56 x 107
(4,4)-reverse | 15000 | 6.02 x 10° | 5.87 x 10°

As expected, the analytical and experimental values are in close agreement. How-
ever, this constrained case does not accurately predict the amount of work required to
reconstruct a sequence when we take the longest prefix of the path tree after resolving
a branching. In such cases, although the individual trees tend to be larger, there are
fewer of them, so the total amount of work performed appears experimentally to be
reduced by about 30%, for both direct and reverse probes and m = 12000, 15000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Failure Modes of the Gapped-SBH
Algorithm

We know that sequencing failures occur because of fooling probes in the spectrum.
The likelihood of finding a fooling probe increases as the length of the target sequence
increases, so longer DNA fragments are more likely to result in failure than shorter
ones. Beginning with these observations, we develop a means of analytically predict-
ing the likelihood of sequencing failure. This chapter presents a formal analysis of
the probability of sequencing failure as a function of the probing pattern, the length
of the sequence, and other parameters to the algorithm.

Subsequent sections discuss in greatér detail the probability of enéountering dif-
ferent types of sequencing failures. The most common sequencing failure, called a
Mode 1 failure, occurs when there are x fooling probes scattered throughout the tar-
get sequence which confirm a spurious extension. Alternatively, there are Mode 2
failures, which occur when two similar (A — 1)-character subsequences occur at dif-
ferent points in the target sequence, and the spectrum contains the fooling probes
required to compensate for the differences between them. Within the range of frag-
ment legths m where the gapped-SBH can correctly reconstruct a random sequence
with at least a 90% chance of success, Mode 2 failures are less likely to occur than
Mode 2. However, each of these two Modes results in the depth-bound (H) being
reached. A different type of sequencing failure occurs when the tree of paths grows

wider than the breadth-bound of the algorithm (B); this event is discussed in turn.

118
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Finally, some unique problems arise when sequencing natural DNA—DNA drawn
from a living organism. Since natural DNA is (unfortunately) not generated by a
maximum-entropy process, the incidence of Mode 1, Mode 2, and breadth-bound
failures all increase, and the relative occurrence of the three types of failures changes

significantly. These issues are introduced in the last section of this chapter.

4.1 Sequencing Failures

Sequencing failures are caused by a set of fooling probes which initiate and then
confirm an incorrect extension at a particular point in the sequence. Different modes
of failure require different sets of fooling probes, but in all cases, there is some set of
probes which serve to create an unresolvable ambiguous extension. We denote this

set of probes as follows:

Definition 4.1. The set of probes which confirm an extension character is called the

extension set of that character.

Each possible extension in a Mode 1 failure has a x-probe extension set, consisting
of each of the k probes which samples the ambiguous extension character. Each
possible extension in a Mode 2 failures has up to A probes in its extension set.

Finally, it is convenient to differentiate the initial fooling probe that starts the
branching mode of EXTEND from the other (x — 1) fooling probes needed to confirm

a spurious extension.

Definition 4.2. At any point during the sequencing process, a probe is said to be a
feasible-extension probe if its (A — 1)-character prefiz matches the (A — 1)-character

suffiz of the putative sequence.

The EXTEND algorithm attempts to add characters one at a time to the putative
sequence. When EXTEND queries the spectrum for feasible extensions to the sequence
at position ¢, the correct feasible-extension probe is located at position 7 of the target
sequence; any other feasible-extension probes must be located elsewhere in the target

sequence. There are 3 such probes that can produce an ambiguous extension at 4.
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Definition 4.3. A feasible-extension probe for position ¢ which s located at position
j # i of the target sequence is not the correct extension at ¢ is called a spurious

extension probe.

4.2 Mode 1 Failures

The most common type of sequencing failure are called Mode I failures. They account
for the majority of failures observed for sequences of length 15000 or less, using probes
with k = 8. As mentioned in Chapter 2, these failures occur when there are x fooling
probes, scattered uniformly along the full length of the target sequence that confirm
a spurious extension to the putative sequence. This results in two sequences in the
path tree which are identical except for the initial ambiguous character. Once a Mode
1 spurious sequence has been extended by A characters beyond the branch, no further
probes sample the spurious character, so that path cannot be eliminated. Hence,
it becomes impossible to disambiguate the branching position. In this section, we

discuss the probability of this event. We begin with an example:

Example 4.1. Consider the situation where the following event occurs during a se-
quencing attempt. Using a direct (3,2)-probing scheme (NNN. .N. .N) , an ambigu-
ous extension is encountered at the position indicated by the square brackets. The
putative sequence lies to the left of the ambiguous position, and the two paths which
emanate from the branching position are identical except for the initial ambiguous

character:

.. AACGGTTACATI[TGATATG GG A..
G TGATATGG A...
If we assume that the top path is the correct one, we know that the spurious path

is supported by the following fooling probes:
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Path Tree
..AACGGTTACAIMIM TGATATGGA..
Gl TG ATATGGA...

Probes
1 C . T C A [G]
2 G T AG T
3 G A Gl T G
4 A [G] . ATA
) [G] A T G G

There are k = 5 fooling probes required to confirm the spurious sequence; all of

them must be present fo cause a Mode 1 failure at this point in the sequence. |

There are two distinct components to a Mode 1 failure: the initial ambiguous
branch (caused by a single spurious feasible-extension probe), and the (x—1) addition
fooling probes which must confirm the incorrect extension character. Additionally, in
[PU00] Preparata & Upfal calculate a small factor to account for the possible overlap
between the (k — 1) fooling probes after the initial one. The total probability of a

Mode 1 failure is given by the following theorem.

Theorem 4.1. The probability of a Mode 1 failure occurring while reconstructing an
m-character randomly generated-sequence from (s, r)-probes is bounded above by the
equation

m s o 4r+1 r 48 (s-1)
mo= m~(1—e_3?““)-(1-e_4_“) 1-(1+ ) <1+ ) (4.1)

3m 3m

Proof. Each factor in Equation 4.1 will be discussed separately. First, there are m
locations in the sequence at which a Mode 1 failure may occur. The first factor in
Equation 4.1 (m) accounts for all of the possible failure positions along the sequence.
At each position in the sequence, a Mode 1 failure is equally likely.

The second factor (1 — e_i_T) accounts for the initial fooling probe which causes
an ambiguity in the extension process. There are 3 potential probes which can cause
an ambiguous extension, since the spurious character must, of course, be different from
the correct extension. Each potential fooling probe is independent of the others, so
at least one ambiguous extension to the sequence occurs with probability 1 — (1 —a)3.

However, recall that o = 1 — %%, so (1 — )% = (ei* )3,
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The third factor in Equation 4.1, (1 - e‘%)'{”—1 accounts for the xk — 1 additional
fooling probes needed to confirm the ambiguous character. Each of these fooling
probes is present (independently) in the spectrum with probability & = 1 — e, and
all kK — 1 must be present to confirm the initial ambiguous character.

The final two factors correct for the possibility of overlapping probes occurring
at the same position in the target sequence. A detailed explanation of this correc-
tion can be found in [PU0O], and will not be explored in detail here. Briefly, the
likelihood of overlapping probes is determined by the autocorrelation function of the
probing pattern, and since (s,7)-probes have a reasonably low autocorrelation the
correction factor is quite small. The correction for overlap adds only about 2-3% to
the total probability of failure. Other (irregular) patterns exist with better or worse

autocorrelation, some of which will be discussed in later chapters in this proposal. O

Example 4.2. A sequencing trial with direct (3,3)-probes has produced the 12-
character putative sequence GCTGAGCGAGTA. Assume that the next character
in the sequence is A. The next extension query is AGC..G. .7; the response to
this query will contain the correct extension character (A) and up to three spurious
extension characters. Each of the three possible spurious extensions is produced with
probability «, if and only if the corresponding spurious-extension probe is found in the
spectrum. The spurious extension G is contained in the query result if the spurious-

extension probe AGC. .G. .G is present. Similarly, the spurious extensions T and C

are contained in the query result if the spurious-extension probes AGC. .G. )
AGC. .G. . " are present. Any one of the spurious-extension probes is present with
probability «, so the chance that any one of the three is found is 1—(1—a)® = 1 —eTH,

The presence of any one of the three spurious-extension probes initiates the
branching mode of EXTEND. However, sequencing failure only occurs if a full set of &

probes fooling probes is present for one of the spurious extensions. We’ll assume that

the extension set for the correct extension (A) contains the six probes AGC. .G.
GAG..A..G,TAA..G..T,AAA..C..T,and AAG..T..T. The extension
set for the spurious extension G contains the probes AGC..G..@#,
CGAG.. @ ..G, TAG..G..T, AGA..C..T, and GAG..T..T. All of the

probes in the extension set must be present in the spectrum, or the EXTEND al-

gorithm will resolve the initial ambiguity as it performs the breadth-first expansion
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of the path tree. Each of the (x — 1) fooling probes in the extension set beyond the
initial spurious-extension probe are each present in the spectrum with probability «,

so the total probability of finding them is o*~!. |

It may appear that the probes in the extension set only need to match the correct
probes in positions which precede the ambiguous character. However, if there is more
than a single-character disagreement between the correct probe and the fooling probe,
then additional fooling probes will be required to support the extra mismatched char-
acters. If any of the added fooling probes introduced yet more mismatched characters
the extension set quickly grows very large, and the probability of finding all of the
required fooling probes decreases rapidly. To a reasonable approximation, this type
of failure requires a fooling probe for every character added to the spurious path.
When o < 1/4, the extension of such a ‘totally spurious’ path to the depth bound H
is exceedingly unlikely. However, when a = 1/4, the probabilistic extension of paths
which do not correspond to any subsequence of the target DNA fragment becomes
possible. Thus, o = 1/4 is effectively a hard limit on the length of fragments which
may be reconstructed using gapped-SBH. The fragment length (m) at which oo &~ 1/4

is given for m = 6...10 in the following table:

Kk | Maximum m
6 1180

7 4710

8 18900

9 75400

10 302000

For a more detailed discussion of the information-theoretic bounds on SBH, see
[PFU99]. However, long before the information-theoretic limit, or the above maxi-
mum 7 is reached, other failures reduce the effectiveness of gapped-SBH too low for
it to be useful.

Mode 1 failures describe a very specific occurrence, wherein all of the fooling
probes in the extension set for a spurious extension agree with the correct sequence,
except for the single spurious position. This specific case accounts (perhaps counter-

intuitively) for the majority of all sequencing failures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

0.98 +
0.96
0.94

0.92

Probability of successful reconstruction

0.9 2000 4000 6000 8000 10000 12000 14000 16000
Length of sequence

Figure 4.1: Predicted and observed incidence of Mode 1 Failures for (4,4)-direct and
reverse probing patterns. The solid line represents the predicted values. The upper
dotted line shows the observed values for reverse probes, and the lower dotted line
the observed values for direct probes.

Equation 4.1 provides a very accurate estimate of the probability Mode 1 failures,
which are the most likely sequencing failures for the SBH algorithm. Figure 4.1
displays the number of Mode 1 failures predicted by Equation 4.1 vs. the observed
number of failures over several hundred sequencing trials at each m. At times, it can
be useful to have a simpler equation. If we ignore the correction factor for overlapping
probes—which amounts to only a few percent or less—the whole equation may be

reasonably approximated by:

p, = 1-—em" (4.2)

There is one important point to note regarding this approximation. Although it
would appear that it might apply to an arbitrary probing pattern with x = 8, it is
valid only for (4,4) and (5, 3) probes. The correction factor for overlapping probes
has only been defined for (s,r) probes, and can quite large when r is substantially

different from s.
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Now we move on to another failure mode, which accounts for an increasing pro-

portion of sequencing failures as m approaches the feasible limit.

4.3 Introduction to Mode 2 Failures

While Mode 1 failures account for the majority of observed sequencing failures, there
is another class of failures that are similar to the failures observed in ungapped-SBH.
This second class will be referred to as Mode 2 failures, and they are qualitatively
very different from Mode 1. While the correct and spurious paths in a Mode 1 failure
differ only in the initial branching position, the two paths in a Mode 2 failure appear
to diverge completely, with only about one fourth of the characters agreeing. Since
the probabilistic extension of a completely spurious path up to the depth-limit H is
extremely unlikely, we assume that Mode 2 failures have some other cause.

Mode 2 failures appear qualitatively similar to the failures which occur using
the ungapped-SBH algorithm. In ungapped-SBH, a failure occurs when there is a
(X — 1)-character® string which occurs at two locations a # b, in the target sequence.
However, the likelihood of encountering an exact (A — 1)-character duplicate string
using (4,4)- or (5,3)-probes is vanishingly small. Even with a target sequence length
m near the feasible limit (i. e. m = 16000), the probability of finding a duplicate
19-character string is only 755 ~ 5.8 X 10=%. Mode 2 failures are observed much more
frequently than this, so there must be another cause.

First we consider the simplest case, where the target sequence does contain a
sufficiently long duplicate string. When there is a sequence with length > A — 1
that occurs at two different locations in the target sequence, a Mode 2 failure will
occur when the first of the two segments is encountered during sequencing. We can
easily calculate the probability of this event. Let the two identical segments occur
at positions ¢ and b, and let them be denoted s(a) and s(b) respectively. Without
loss of generality, assume that a < b. The character immediately following s(a) may
be called e(a), and the character following s(b), s(b). Upon encountering the first
occurence of the duplicated segment, s(a), the sequencing algorithm is unable to

select between e(a) and s(b), and sequencing fails.

!When ungapped probes are used, A = k.
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However, Mode 2 failures may also occur when a (A — 1)-character subsequence
s(a) is similar—but not identical—to a (A — 1)-character subsequence s(b). Such
similar strings are called homologous, and the similarity (or difference) between them
may be measured by counting the number of mismatched characters when they are
aligned. A pair of homologous (A — 1)-character strings results in a Mode 2 failure
if there are enough fooling probes in the spectrum to compensate for the differences
between the two strings. In fact, any pair of strings can cause a Mode 2 failure if
there are enough fooling probes in the spectrum, but since @ < 1/4 in the interesting
range of target sequence lengths, it is much more likely that we will find an exact
(A — 1)-character duplicate string in the target sequence than A — 1 fooling probes.

To begin our exploration, we examine the process that leads to Mode 2 failures
during sequencing. Consider an ambiguous extension which occurs at position a. If
any spurious path in the tree descended from this branch contains a (A — 1)-character
segment which is identical to a subsequence of the target at position b # a, then that

path will be extended indefinitely. Such a segment is called a self-sustaining segment.

Definition 4.4. A (A—1)-character segment of a spurious path which exactly matches

a (A—1)-character substring of the target sequence is called a self-sustaining segment.

Once a self-sustaining segment is encountered in a spurious path, the further
extension of that path is assured, since all of the required probes are guaranteed to be
present in the spectrum. Consider a self-sustaining segment in a spurious path which
is identical to a substring of the target sequence occuring at position b. Subsequent
to the self-sustatining segment, the spurious path is identical to the target sequence

at b. The following example illustrates this event.

Example 4.3. Using a direct (3,2)-probing pattern (NNN. .N. .N), the sequencing

algorithm detects the following situation:

..ACGAGTC(CTI[GAGT{G} ATATAT...
[T] AGT {A} ATCTGG...

The pair [G][T] shows the ambiguous branching, and the top path represents the
correct sequence. Since A = 9, there is an 8-character self-sustaining segment—
CT|[T]AGT{A}A—which is enclosed within parentheses. This segment occurs else-

where in the target sequence, and it guarantees that the bottom (spurious) path will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

be extended indefinitely. It is nearly identical to the aligned 8-character subsequence
of the top (correct) sequence; other than the initial ambiguous character, there is one
other mismatch between the correct and spurious paths, indicated in braces: {G}{A}.

|

Mode 2 failures generally occur when there are two homologous strings containing
only a few mismatched positions that require only a few fooling probes to compensate

for the mismatches. We want to predict the likelihood of this occurrence.

4.4 Probability of Mode 2 Failures

A Mode 2 failure may occur at any point in the sequence. For any given (A — 1)-
character substring s(a) occurring at location a, we must consider all of the possible
(A — 1)-character substrings of the target sequence as potential sites for the self-
sustaining segment s(b). For every value of b = 1...m where b # a, there exists some
set of fooling probes which compensate for the differences between s(a) and s(b).

Since a different set of fooling probes are required, the locations of the homologous

m 2

2
s(b) from the target sequence. The probability that any particular pair of strings s(a)

strings are not interchangeable, and there are ( ) ~ m?* ways of selecting s(a) and

and s(b) will cause a Mode 2 failure is affected by three factors:
1. The probing pattern used.

2. The number of disagreements between the two (A — 1)-character homologous

strings s(a) and s(b).
3. The location of disagreements within the homologous strings.

For any particular pair of strings, it is fairly straightforward to calculate the prob-
ability that they will lead to a Mode 2 failure, simply by counting the disagreements

between them and the fooling probes required to compensate.

Example 4.4. Referring to the same event as Example 4.3 above, we can count the
number of fooling probes required by this particular pair of homologous strings, given
a (3,2)-direct probing pattern. In this case, there are three fooling probes which

compensate for the disagreements between the strings:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

Path Tree
0 123 4 5 6 7 8 9 10..
LA CGAGTC((CTIGIAGTI{G ATATAT..
T] A G T {A} A) TC TG G..
Probes
1 C G A C [T]
GgTC . .17 . . T
TCC . . A . . {A}

There are two disagreements between the correct path and the spurious path over
the 8-character homologous subsequence. In the spectrum, the initial branching [G-T}
is compensated for by probes 1 and 2, and the second disagreement {G-A} by probe
3. No other fooling probes are required, because the remaining probes are guaranteed
in the spectrum by the sequence CT[T]AGT{A}A. [

While it is straightforward to determine the number of fooling probes required to
compensate for the differences between a particular pair of homologous strings, the
probability of a Mode 2 failure is extremely complex to calculate precisely. There are
(’\;1) ways of selecting ¢ positions in a (A — 1)-character string, so for two (A — 1)-
character strings which contain ¢ mismatches, there are (’\;1) possible arrangements
of the locations of disagreement between them. Moreover, there is no simple way of
determining (or estimating) the average number of fooling probes required to com-
pensate for the 7 disagreements. One permutation might require only a few fooling
probes, while another might require the maximum (A — 1).

In [HPYO02], we present an exhaustive estimate for the probability of a Mode 2
failure using (s, r)-reverse probes. Here we present another, simpler approximation
for the event, for both direct and reverse probing patterns. A different estimate is
used for the two classes of probing patterns, but the fundamental concepts are the
same, and we explore those first.

Consider a (A — 1)-symbol self-sustaining segment s(b) which, when aligned with
the target sequence at position a, matches the target in all positions except sg, 1 <
k < A. (This corresponds to the case where there is only one disagreement between
s(a) and s(b).) Since sy is the site of the only disagreement between the correct
sequence s(a) and the aligned self-sustaining segment s(b), it must coincide with the

branching position. In general, no matter how many mismatches there are between
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the correct sequence and the self-sustaining segment, the first (left-most) mismatch
must be aligned with the branching position in a Mode 2 failure: it is precisely this

mismatch which causes the initial branching to occur.

Example 4.5. An attempt is made to sequence a target sequence S using (3,3)-
reverse probes (for which A = 12). If S contains the two homologous 11-character
strings s(a) =CGAG: C and s(b) =CGAG G TGA EGC, a # b, then a

Mode 2 failure may occur when the sequencing algorithm encounters either s(a) or

s(b). In either case, since s5 is the first position of disagreement between s(a) and
s(b), s5 is aligned with the initial branching position.

If the sequence before s(a) is .. .GTTAACTT, then the following event may occur
at s(a). With the initial branching denoted [T][G], the second disagreement denoted
{C}{T}, and the self-sustaining segment enclosed in parentheses (), the event has the

following appearance:

.GTTAACTT(CGAGIIJTGA{C}G C AGA...
[GITGA{T}GC)CTG...

It is impossible for any other position s; of the self-sustaining segment to be aligned
with the branching position. Since fooling probes cannot compensate for differences
in the self-sustaining segment which occur to the left of the branch, we can eliminate
S6 - .. 511 from consideration. And because s(a) and s(b) agree at all positions s; ... s4,

there will not be a branch at any of those locations. |

If we denote the branching as position 0, then the character immediately to the
right of the self-sustaining segment may be called the offset, and denoted J. By this
definition J > 0. The sustaining segment consists of v = A — 1 — J characters to
the left of the branching position, the branching position itself, and J — 1 characters
to the right of the branching. Each of the characters to the left of the branching is
fully constrained: when s(a) is aligned with s(b), the first v characters of the two
strings must all agree. The character aligned with the branching position (sx) must
be supported by fooling probes. And the characters to the right of the branching
position must either match (with probability 1/4) or be supported fooling probes.
These rules allow us to calculate the probability of Mode 2 failures as a function of
the offset J.
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We return again to the simplest Mode 2 failure, occuring when J = 0. In this
case, there are two identical strings s(a) and s(b) with length > A—1 at two locations
a # b in the target sequence. The branching position is the first site of a disagreement,

after the self-sustaining segment. The probability of this event is approximately

m?2/ 1 \3 3m?
2 (4A—1> 4 2 (4.3)

The factor "‘72 is derived from the fact that there are (%) ~ m? possible locations

for the identical strings, and their positions are interchangeable. The self-sustaining

segment s(b) consists of A — 1 characters which agree with the s(a), and each of these
A — 1 symbols match with probability 1/4. Finally, the branching position itself is
selectable in 3 out of 4 ways, adding another factor of 3/4.

When J > 0, the analysis becomes significantly more complex. The positions
of the homologous strings s(a) and s(b) are not interchangeable since the sequences
preceding s(a) and s(b) determine the specific fooling probes required. Thus, there are
about (';L) ~ m? ways of selecting the positions of the two strings. The probability of
a Mode 2 failure with an offset of .J can be expressed as m?n;, for some coefficient =,
so the total probability of encountering a Mode 2 failure using any probing pattern is

given by the following expression, where 7; is a function of the probing pattern used.

PQZmQZ’]TJ

A slight modification to Equation 4.3—the factor of m? must be removed—yields

the first coefficient,
3
= 4.4
T g (44)

For the remaining coefficients, a little more thought is required. The v = A—-1-J

positions prior to the branching are fully constrained positions: s(a) and s(b) must
match at each of those locations, with probability 1/4. The branching position and the
J—1 characters after the branching position must either match or be compensated for
by fooling probes. For a particular offset J, we must consider whether or not a fooling
probe is required (with its right-most symbol aligned) for each position 0 < i < J.
The branching position is position 0, and always requires a fooling probe, since

it is (by definition) the site of a disagreement between s(a) and s(b). Unfortunately,
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for positions ¢ > 0, the we must treat direct and reverse probes independently. In
general, a fooling probe is required at ¢ if the probe terminating at : samples any site of
disagreement between s(a) and s(b), including the branching position. However, the
different structure of direct and reverse probing atterns requires that the calculation
of the coeflicients 7;,J > 0 must be performed separately; we will examine reverse

probes first.

4.4.1 Reverse Probes

The calculation of the first few coeflicients 7;,1 < J < s is quite simple. In these
cases, there are v = A — 1 — J constrained positions prior to the branching, and each
position agrees with probability 1/4. Furthermore, since each of the first s shifts after
the ambiguous extension samples the branching position, a fooling probe is required
at each position 0 < ¢ < J, and so J fooling probes are required when J < s. The

branching position itself may be selected in 3 out of 4 ways, so when 1 < J < s

Ty = 21;'3O!'CYJ_1
3a’

= 2 (4.5)

Unfortunately, when J > s, such a simple analysis is not possible. Since a fooling
probe is required at position 7 if any sampled position 0 < 7 < ¢ is the site of a
mismatch between s(a) and s(b), we must consider the likelihood that all sampled

positions ¢z > 0 match.

Example 4.6. Using (3,2)-direct probes, the algorithm encounters the following sit-
uation, where s(a) =AA[C]TG(G)AC and s(b) =AA[A]TG(C)AC. There are two
disagreements between the two homologous strings; the first at s;, corresponding to
the initial branching, and the second at sg. Note that in this example, A =9, J =6
and v = 2.

The following figure shows that although there are only two positions of disagree-
ment between s(a) and s(b), J = 6 fooling probes are required to compensate for

those mismatches:
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Path Tree
0 1 2 3 4 5 6 7 8 9...
.GACTTACMAICTG{G} ACCAGA..
Al T G {A} AC) T AT G..
Probes
1 A T A A [A]
C A A Al T
3 T C [A] T G
4 T . . A . . TG {A}
5 A . . A . . G {A} A
6 c . . A . . {A} A C

Probes 1, 2 and 3 are all required required by the initial branching position [C][A].
Probes 4 and 5 are required to compensate for the second mismatch, {G}{A}, and
probe 6 samples both positions of disagreement.

Upon reflection, we can see that even if the initial branching position had been the
only site of disagreement, 4 fooling probes would have been required. Furthermore, a
disagreement at sy or sy instead of sg would have required a total of 5 fooling probes,
and if there had been a disagreement at ss instead of sg then a complete set of 6

fooling probes would still have been needed. u

For reverse probing patterns, when i > s, there are always at least s sampled
positions to the right of the branching, due to the solid block of natural bases at the
right end of the probing patterns?. Furthermore, if any of the positions ¢ —2s+1,7 —
3s+1,...,i—rs+ 1 falls to the right of the branching, the corresponding positions
in s(a) and s(b) must also agree. If there is a disagreement between s(a) and s(b) at
any one of these sampled positions, then a fooling probe is required at position .

It is difficult to precisely determine the number of fooling probes required for
all cases. For each value of J, we can take a J-bit binary string p’ describing the
locations of disagreement between s(a) and s(b); there are 27 such strings. The

non-zero terms in the convolution of p/ with the probing pattern P determine which

2These s sampled positions correspond to positions 4,7 — 1,...,7 — s + 1. i. e. The (4,2)-reverse
probing pattern N. . .N. . . NNNN has a sequence of 4 natural bases in its 4 right-most posi-
tions.
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positions 1 < ¢ < J require fooling probes. For the vast majority of such convolutions,
we find that J fooling probes are required to compensate for the sites of disagreement.

This seems to imply that the value of pijy for J > s,

3a’
7rJ ~o 41/

However, this expression does not give a very good estimate for the probability

of Mode 2 failure. We observe that the few convolutions which require fewer than J
fooling probes have a much higher relative probability of causing failure. A permu-
tation of p’ which requires i fewer fooling probes is (1/c)* times as likely to result
in a Mode 2 failure. The permutations of p’/ with the least required fooling probes
contribute most of the weight to the multiplier 7;. In order to arrive at a reasonable
approximation for the probability of Mode 2 failures, we make the assumption that
we can calculate 7; as if (8- J) fooling probes are required for a given offset J, where

f < 1. This gives us the expression

3a0J
Ty — 4v (46)

The value of coefficient # is not constant. We expect # to increase as « increases,

since smaller values of & make it less likely that any fooling probe will be found in the
spectrum, and the permutations of p’ that require fewer fooling probes contribute
even more disporportionately to the multiplier ;. Furthermore, we expect 6 to
decrease as J increases. This is due to the relative proportion of natural to univeral
bases which fall to the right of the branching position. At the outset, when J < s,
6 = 1. As J increases, more and more universal bases fall to the right of the branching,
and we expect that fewer fooling probes will be required. Computer analysis suggests
that as a first approximation, § = 0.85 yields a satisfactory match between our
analysis and observed results for the (4,4) and (5,3) probing patterns which are most
commonly used.

When J > A, the coefficients 7, are negligible, but we include them here for
completeness. Using the same approximation as Equation 4.6, 6 - (A — 1) are required
to support the self-sustaining segment in such a case. Moreover, a fooling probe is
definitely required at each position ¢ =0...J — A (each position from the branching

position to the position just before the start of the self-sustaining segment). Thus,
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In order to arrive at a readable estimate for the probability of Mode 2 failure,
we use Equation 4.6 for all positions 1 < J < s, sacrificing only a minor degree of
precision. Furthermore, we ignore the contribution of the coefficients J > A, so the
probability of a Mode 2 failure using an (s, 7)-reverse probing pattern calculated using

Equation 4.4 for 7y and 4.6 for 7y ... 7 :

A

P2 = m2E Ty
J=0

_ m2( 3 | 3a _1—(4&)*)

2.4 42 1 —4af

3m? ( 1 1— (40:‘9)*)

ALy 4,
P\ T g (4.7)

Figure 4.2 displays a comparison between the predicted and observed rates of
Mode 2 failure for (4,4)- and (5,3)-direct probing patterns. The analytical failure

estimates show are in quite close agreement with the observed values.
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Figure 4.2: Predicted and observed rates of Mode 2 failure for (4,4)- and (5,3)- reverse
probes. Note that the predicted probability of failure is the same for both probing
patterns. The solid line represents the predicted values. The dotted lines show the
observed values for (4,4)-probes (upper line) and (5,3)-probes (lower line).
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4.4.2 Direct Probes

As for reverse probing patterns, the calculation of the first s coefficients 7;,1 <
J < s is straightforward. There are still v constrained positions to the left of the
branching position, and the branching position itself may be chosen in three of four
ways. However, a fooling probe is required at position 1 < ¢ < J if and only if ¢ is the
site of a disagreement between s(a) and s(b). An agreement occurs with probability
1/4, and any disagreement must be compensated for by a fooling probe. Since these

two events are independent, each position 1 < ¢ < J contributes a factor of

1 3 _1+3a

4 4 4

and the coefficients 7, for 1 < J < s is just

Ty = i-3a- <1+3a)aJ‘1

4v 4
3a’ 1+ 3a

= . 4.
o ( - ) (4.8)

For J > s, the we could simply use the same method of estimating the total

number of fooling probes required as we used for reverse probes. However, we can
arrive at a more accurate estimate of the values of 7; by adopting a different approach.

When we consider whether or not a fooling probe is required at position i < J, we
are actually asking whether or not the query performed at depth i in the path tree
requires a fooling probe. However, this question assumes that the path tree has, in
fact, been extended to at least depth ¢ — 1. This means that at all depths 0...7 — 2,
either no fooling probe was required (because s(a) matched s(b) at all of the sampled
positions) or a fooling probe was found (if there was at least one mismatch between
s(a) and s(b)).

In explanation, we will consider a detailed example. Assume that while attempting
to reconstruct a target sequence using (3,2)-direct probes, the sequencing algorithm
encounters a potential Mode 2 failure. We know that there is a string s(b) which
is homologous to the string s(a) with an offset of J = 6, but we do not yet know
the exact identity of the string s(b), nor whether or not the required fooling probes
are present in the spectrum. We assume that the spurious path has been extended

to depth 3 already. If we restrict our example to only a pair of paths in the tree,
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corresponding to the correct path s(a) and the spurious path containing the self-
sustaining segment s(b), then there are two possible situations that can be encountered
when the sequencing algorithm attempts to extend the tree to depth 4, as shown in
the following table. The two situations are labeled Case a and b. In the following
table, the character ‘V’ is used to represent a character other than ‘T’ (i. e. ‘A, ‘C)

or ‘G’)3, while ‘X’ represents an unknown nucleotide:

0 1 2 3 4 5 6 7 89
.GACTTACMAICI TTGAT CT CAGA
Case a A] T T A X X)
Case b [A] VV A X X)
Probe 1 ACA . . T X
Probe 2 ACA . .V X

In Case a, position 1 corresponds to the location of an agreement between s(a)
and s(b). The probe required to extend the spurious path at this depth has the form
of Probe 1 in the above table. If s(a) and s(b) also agree at position 4—an event
which has probability 1/4—then no fooling probe is needed at depth 4. However, in
Case b, position 1 is the site of a mismatch between s(a) and s(b). In this situation,
a fooling probe of the form of Probe 2 is needed at depth 4 whether or not position
4 is the site of a disagreement between the two homologous strings.

Now we calculate the probability of Case a and b. At first glance, it appears that
position 1 is the location of an agreement with probability 1/4. However, at depth 1,
there must either have been a match or a fooling probe, or the spurious path would
not have been extended to depth 3. The total probability that either a match or a

fooling probe occurred is 1+43a. Thus, the probability that Case a is true is just the

likelihood that position 1 is the site of an agreement between s(a) and s(b), given
that the spurious path was extended at depth 1,

1

1
Z _—

143
4"‘ 14 3a

3In actuality, “V’ is the IUPAC-IUB-GCG ambiguity code for ‘A, C or G’; meaning that ‘V’ is
in a sense the official character code to use.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

For convenience, we will let v = ﬁ%& Now, since the right-most position sampled
by the query matches the correct sequence with probability 1/4, we know that at
depth 4 the probability that no fooling probe is required is -y - i—. It follows that the
probability that the spurious path gets extended at depth 4 is

1 1 ¥+ a(d - )
- 1—2 S B B N 4
47+( 47)0‘ 1

Assuming that the spurious path does get extended to depth 4, an identical argu-
ment can be made for the probability that it will be extended to depth 5:

01 2 3 4 5 6 7 8 9.
.GACTTACMAAIECTTGAT CT CAGA.
Case a Al T T A X X)
Case b [A] V.V A X X)
Probe 1 C A A . T X
Probe 2 C A A . .V X

At depth 5, we consider only whether there position 2 is the location of an agree-
ment between s(a) and s(b), and the probability that the spurious path is extended
: o rte(d—7)
to depth 5 is again =1
If a query samples more than one position to the right of the branching position,
then each sampled position agrees with the correct sequence with probability . Thus,
a query using a (3,3)-direct probing pattern at depth 7 samples all paths in the shaded
positions: ‘NNN. ./ N.. }@@ . 7. Since there are two sampled positions in the query,
the probability that a spurious path is extended by a query of this form is
1 2 2 4 — 2
2 <1_v_)a:7 +a(d-9%)

T 4 4

Recall that in Section 4.4.2, we analyzed the direct-probe queries in terms of r
regions. The queries in each region sample a constant number of positions to the
right of the branching. The 4 regions in a direct (4-4)-probing pattern are shown
here. This table has been modified slightly from the original in Section 4.4.2 so that
the first row shows the offset at which the character in that column is aligned with

the branching position, and the third line shows the regions themselves.
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Depth 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X X X X

Region

For ease of notation, we denote by §; the probability that a spurious path is

extended by a query which samples 2 — 1 positions to the right of the branching, so

1 ) ,yi—l
& = 4+ (1-
4’)/ +( y )a

71+ (4 — 47
4

Queries in region 1 do not sample any positions to the right of the branching, amd
so they agree with the correct sequence with probability $7° = 1, and the spurious
path is extended with probability §;. Queries in region 2 sample one position to
the right of the branching, so they extend a spurious sequence with probability d..
Generally, queries in region ¢ sample the post-branch sequence at ¢ — 1 locations,
so they will extend a spurious path with probability 6;. Now we may calculate the
coefficients 7.

To recap, there are v — 1 characters to the left of the branch that agree with
probability 1/4. The branching position may be chosen in three of four possible ways.
There are |£] complete regions to the right of the branch, each of which consists of
s — 1 queries that extend the spurious sequence with probability §;_;. There is one
query adjacent to each complete region which samples the branching position, and
therefore requires a fooling probe. And finally, the last (J mod s) positions fall into

region | 2] 41 = [£]. The coefficients 7, for J =1...7s are

L]
3 1 4 T s
Ty = Z'4u-1'6jmods'l];]1:a6i

v J mod s

3 o 15
= 2 .55 . s=1
= 90 go@ (4.9)

When J > rs, the coefficients are a little simpler, since all r regions are complete,
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and we just have and additional J mod s positions which all require a fooling probe.

3 J mod ITI ]
7'["] - __4’/ e mod s | 1 a(S'L
3 o
. . ~{J mod s)+r %
= 5o i|:|1 5 (4.10)

While the total probability of a Mode 2 failure using direct probes is easily calcu-
lated computationally, it is rather more complex to perform by hand. If we want a
closed-form estimate for the probability of Mode 2 failure using direct probes, we can
fall back on the same technique we used for reverse probes. Figure 4.3 displays the
results of the two analytical estimates compared with the observed results for direct
(4,4)-probes.

19

0.98 1

0.96

0.94

0.92 4

Probability of No Mode 2 Failure

0.9 2000 4000 6000 8000 10000 12000 14000 16000
Length of Sequence {m)

Figure 4.3: Predicted and observed rates of Mode 2 failure for (4,4)- direct probes.
Note that there are two analytical estimates for the probability of failure; one using
the simpler method used for reverse probes (the upper solid line), and one using the
probability calculated by Equations 4.9 and 4.10 (the lower solid line). The dotted
line represents the observed values.
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4.5 Predicted Probability of Success

After spending so much time discussing in detail the events which cause the gapped-
SBH algorithm to fail, it is worth noting that it is actually successful most of the time,
when using (4,4)- or (5,3)- probing patterns on target sequences with m = 14000 or
less.

The total probability of failure is simple to calculate. We assume (based on
extensive simulations) that Mode 1 and Mode 2 failures are indepedent, so the total
probability of successfully sequencing an m-character target sequence is

o~ (PLP2) (1 _bh+ Pz)m
m

However, in the interesting range of values, where the the probability of success is
close to 1, this can be accurately approximated for the by summing Py = P, + B,.
Figure 4.4 shows a the predicted probability of sequencing success for all (s, r)-probes
with k = 8, over a range of m. The specific predicted and observed performance of
(4,4)-probes is shown in Figure 4.5. The predictions and observed sequencing trials
both yield a maximum target sequence length of about m = 13800 with ¢ = 0.9.

We can also see how the proportion of failures caused by Mode 1 and Mode
2 changes as a function of target sequence length. Initially, Mode 1 failures are
dominant, but as m increases, Mode 2 failures contribute more and more to the total
probability of failure. Figure 4.6 illustrates this phenomenon.

Another interesting observation can be made concerning the relative incidence of
Mode 1 and Mode 2 failures for different probing patterns. If we plot the proportion
of all failures caused by Mode 1, for k = 8 and a range of values of s = 4...8, we
find that as s — 8, Mode 2 failures dominate. In fact, for the special case s = 8,
which corresponds to an ungapped 8-mer, all sequencing failures are expected to fall
into Mode 2. This is to be expected, since a single duplicated (k — 1)-character
subsequence is sufficient to cause a Mode 2 failure when ungapped x-mers are used
as probes. Such a duplicate subsequence is about 4 times as likely to be found as a
single fooling probe. Figure 4.7 shows a graph of the proportion of failures caused by

Mode 1 using different (s, r)-probing patterns.
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Figure 4.4: Predicted probability of success for all (s, r)-probes with k = 8. The best
performance is achived with s = r.
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Figure 4.5: Predicted and observed probability of success for (4,4)-probes. The solid
line shows the predicted value; the dotted line the observed behaviour.
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Figure 4.6: Relative proportion of Mode 1 (dotted line) and Mode 2 (solid line)
failures using (4,4)-reverse probes.

4.6 Measuring Performance on Natural DNA

At the end of the Chapter 2, Figure 2.2 showed the performance of the SBH algo-
rithm on random DNA, and several sources of natural DNA. Here we present a more
thorough exploration of the behaviour of the SBH algorithm on a larger variety of

natural sources of DNA.

4.6.1 Selection of Natural DNA Sources

We wanted to compare the performance of the gapped-SBH algorithm on a variety
of organisms. The source of the natural DNA sequences used as sample data in this
dissertation were drawn from the public GenBank database of complete genomes.
Appendix A contains a complete list of the accession numbers for the sequences used.
The organisms selected were chosen from all three major domains of life: eukary-
ota, eubacteria and archaea. The only real requirement for inclusion was that the
genome was long enough to conduct several hundred sequencing attempts with non-

overlapping fragements of length m = 5000 (about 2Mbp).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



143

0.6
0.4

0.2

Proportion of Mode 1 Failures
QD

0
2000
4000
6000

800
10000
12000
14000
16000
8 18000

Length of Sequence

Figure 4.7: Relative proportion of Mode 1 and Mode 2 failures for the family of (s, r)-
probes, s = 4...8. Note that 8-nucleotide ungapped probes (8-mers) correspond to
the s = 8, where all failures are expected to be caused by Mode 2.

Several different eukaryotes were included, including humans and yeast. In eu-
karyotic organisms, there is a qualitative and quantitative difference between the
coding—the sections of DNA that code for proteins—and non-coding regions. The
SBH algorithm can be expected to perform differently when reconstructing coding
vs. non-coding regions. While the coding regions are probably of the most interest
to researchers, it may not be possible to extract only those segments of DNA, if they
are even known. To cover all bases, we conducted sequencing trials using both the
full genome, and using only the extracted coding regions themselves. Note that cod-
ing sequences are actually only the subset of mRNA that is actually translated into
proteins; they exclude mRNA that is excised by splicing as well as all intergenic DNA
which is never transcribed into mRNA in the first place.

Several different bacterial (prokaryotic) genomes were included as well. Unlike
eukaryotes, prokaryotes have a single, circular chromosome. These organisms tend
to have a very low degree of intergenomic, or ‘junk’ DNA, and so we expect little

difference in performance when using the complete genome, or just coding regions.
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For this reason, prokaryote genomes were sequenced as s, without attempting to
extract only the genes themselves.

Finally, we have the archaea, the most alien form of life. When there were enough
annotated coding sequences to produce sufficient data, we extracted coding sequences
from the included archaea. This was possible for one of the two archaea that were
used.

A brief description of each included organism follows:

Eukaryota

e Arabidopsis thaliana is widely used as a model organism in plant biology. It is
a small flowering plant that is a member of the mustard family. Chromosomes
I and IIT were both included, and each chromosome was processed to extract

the coding sequences.

e Homo sapiens should be familiar to all readers. Two chromosomes (3 and 11)
of the human genome were included. Both were processed to extract the coding

sequences.

e Plasmodium falciparum is the parasite that causes malaria. It is known for
having an unusually high ‘AT’ content. We included chromosome 3, which was

also processed to extract the coding sequences.

e Saccharomyces cerevisiae is common baker’s yeast, and the only fungus that
was included. Chromosome IV, and the coding sequences extracted therefrom,

were both used.
Eubacteria

e FEscherichia coli is one of the most common types of bacteria, and has been ex-
tensively used as a model organism for genetics research. (“Once we understand
the biology of Escherichia coli, we will understand the biology of an elephant.”
—Jacque Monod.) It was the second organism to be completely sequenced, and

was completed in 1996.

e Haemophilus influenzae was mistakenly identified in 1890 as the cause of the
disease influenza, and named accordingly. It it was the first living organism to

have its full genome narrowly beating out e. coli.
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e Salmonella typhimurium causes salmonellosis in humans, which is contracted
mainly through the consumption of undercooked, contaminated meat, poultry

and eggs. Its genome was not sequenced until 2001.

e Streptococcus pneumoniae completes our selection of bacterial DNA sources. It
is the most common cause of meningitis, bacterial pneumonia, and ear infec-

tions.
Archaea

e Methanosarcina acetivorans is an archaea which produces methane from (among
other things) acetate. The complete genome for strain C2A was made available
in March 2002, and we include both the complete genome and the extracted

coding sequences.

o Sulfolobus solfataricus is a hyperthermophilic archaea found in sulfur-rich acidic
hot springs. It grows optimally at temperatures ranging from 70 to 90 degrees
Celsius and pH values from 2 to 4. The included genome for this organism was
completed in October 2001.

Most of the listed organisms will be referred to by the initial of their genus and
full species name (i. e. e. coli). However, salmonella and streptococcus may be used
for the specific examples of these genii included in this thesis, and human DNA may
simply be called that. A specific chromosome from an organism is labeled ‘chr. %,

where ¢ is the number of the chromosome. Finally, we use the shorthand annotation

‘CDS’ to denote coding sequences, as used in the GenBank files.

4.6.2 Observed SBH Results for Natural DNA

To derive estimates of SBH performance on natural DNA, simulations were conducted
using data drawn from the public GenBank database. For each fragment length, 400
unique, non-overlapping fragments were drawn from the complete genome. Using
(4,4)-reverse probes, an attempt was made to reconstruct each fragment from its
spectrum. The approximate maximum length m of sequences for which ¢ = 0.9 of

the sample fragments could be successfully reconstructed using reverse (4,4)-probes
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is presented in the following table. Recall that the maximum m for random sequences

is 13800.
Sequence Source Maximum m
Eukaryotes
a. thaliana chr. 1 400
a. thaliana chr. T CDS 1600
a. thaliana chr. III 900
a. thaliana chr. III CDS 1700
h. sapiens chr. 3 700
h. sapiens chr. 3 CDS 1400
h. sapiens chr. 11 800
h. sapiens chr. 11 CDS 1600
p. falciparum chr. 3 100
p. falciparum chr. 3 CDS 400
s. cereuvistae chr. IV 1300
s. cerevisiae chr. IV CDS 2300
Eubacteria
e. coli 5400
h. influenzae 2800
s. typhimurium 6000
5. PNeumoniae 2400
Archaea
m. acetivorans 400
m. acetivorans CDS 1700
s. solfactaricus 3000

Complete performance graphs for almost all of the above data sources are pre-

sented on the following pages. However, we omit a. thaliana chromosome I, and
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human chromosome 3, for the simple reason that these chromosomes exhibit nearly
identical performance curves as the other included chromosome from the same or-
ganism. We also omit p. falciparum and the full genome (non-CDS) m. acetivorans
DNA, since performance on these sequences is so poor that it is irrelevant.

"
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0.82 §

0.8 500 1000 1500 2000 2500
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Figure 4.8: Observed proportion of sequences successfully reconstructed by the basic
SBH algorithm using reverse (4,4) probes. The four curves correspond to a. thaliana
chromosome III coding sequences, human chromosome 3 coding sequences, the full
a. thaliana chromosome III, and the full human chromosome 3, from right to left
respectively.

4.6.3 Some Comments on SBH with Natural DNA

It is not surprising that the performance of our method degrades significantly when
the target sequences are drawn from natural DNA. Both Mode 1 and Mode 2 failures
are more common, although Mode 2 failures show a much higher relative increase in

frequency. But some types of failure appear to occur only when sequencing natural
DNA.
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Figure 4.9: Observed proportion of sequences successfully reconstructed by the basic
SBH algorithm using reverse (4,4) probes. The four curves correspond to s. solfactar-
tcus, s. cerevisiae chromosome IV coding sequences, the full s. cerevisiae chromosome
IV, and m. acetivorans coding sequences, from right to left respectively.

In contrast to the failures observed for random data, when attempting to recon-
struct natural DNA sequences, the algorithm frequently fails because the breadth-
bound B is reached. However, increasing B from 256 to 2048 generally results in a
negligible increase in performance: typically less than 2%. If nothing else, this indi-
cates that the types of failures which account for much of the performance difference
are qualitatively different from the two modes observed in random DNA.

A great deal of work (see for example, [F+94, LLY00]) has gone into calculating
the information content, or entropy of DNA. While the general results indicate that
DNA appears to be nearly random, most of the techniques for estimating information
content assume that the data source being observed is stationary. This assumption is
inherently flawed. Introns are qualitatively different from exons: one type of DNA is
used to code for proteins, and the other is not. Coding regions differ from intergenic
regions even more drastically. Any measure of information or entropy which assumes

a memoryless model is bound to misrepresent the data.
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Figure 4.10: Observed proportion of sequences successfully reconstructed by the basic
SBH algorithm using reverse (4,4) probes. The four curves correspond to salmonella,
e. coli, h. influenzae, and s. pneumoniae, from right to left respectively.

Furthermore, exons themselves cannot be random sequences: the proteins into
which they are translated have specific functions which must be encoded in their se-
quences. There are also higher-order patterns in DNA caused by natural processes of
infection by viruses, recombination of DNA molecules, ‘jumping genes’ called trans-
posons, and the non-random effect of natural selection.

A simple measure of the ‘randomness’ of DNA can be obtained by estimating the
entropy of the DNA sequence over some window of characters. By examining the
nearest 100 or 1000 bases, and assuming (falsely) that they issue from a stationary
source, we can calculate the information content of the sequence, in (bits/base). Any
deviation from the 2 bits/base required for a uniformly random sequence indicatest
that some bases are more likely to occur within that segment of DNA than others.
Since any deviation from a uniform random generating process increases the chance
of finding fooling probes, lower estimated entropy values indicate that sequencing
failures are more likely. Unfortunately, in terms of predicting the occurrence of fooling

probes within lower-entropy sequences, we cannot be any more precise.
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One organism has a startlingly high incidence of A and T bases, with correspond-
ingly low entropy: plasmodium falciparum. Over 80% of all of the nucleotides in the
genome of this parasite are adenosine and thymine. In this case, SBH is nearly use-
less, at least in its present form. Experimentally, the longest fragments which can be
sequencing using gapped-SBH are only about 30bp in length. SBH fares much betters
on the DNA of other organisms, but the case of p. falciparum serves to illustrate the
worst-case scenario.

Certain specific features of natural DNA which cause sequencing failures can be
identified, recognized and targeted. For instance, microsatellites and tandem repeats
can cause problems for the SBH algorithm. In both cases, a short sequence (typically
2-10 bases) of DNA is repeated up to several hundred times in succession. These
locally repeating regions produce sequencing failure, due to explosive branching in
the path tree. A more detailed explanation of these repeating segments, along with a
method for recognizing them and continuing the sequencing process, is contained in
Chapter 6.

Appendix C contains the beginnings of a fairly detailed model of the repeat struc-
ture of natural DNA sources, and Chapter 5 describes a method for recovering from
some the failures common to both random and natural DNA sources. However, simply
by applying the standard gapped-SBH algorithm, we can sequence DNA fragments
of certain organisms which are more than an order of magnitude longer than that
achievable by traditional sequencing mathods. In particular, the maximum achiev-

able length of sequences for e. coli and salmonella is very encouraging.
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Chapter 5

Resolving Ambiguous Extensions

by Polling

When attempting to reconstruct maximum entropy random sequences, all sequencing
failures can be grouped into two classes: Mode 1 and Mode 2 failures (refer to Sections
4.2 and 4.3 for a detailed description of each type of failure, respectively). In failure
Mode 1, a single ambiguous character is confirmed by « independent probes scattered
throughout the target sequence. In Mode 2, the presence of a (A — 1)-character transi-
tion sequence and a set of fooling probes provokes a real branch in the reconstruction,
where both the correct and spurious paths correspond to an actual substring of the
target sequence. In both cases, the spectrum is insufficient to select between the
correct and spurious paths. Fortunately, the spectrum itself is not the only source of
information available to the reconstruction algorithm.

When either type of sequencing failure occurs, it is possible to use the putative
sequence-the p-character fragment of the target sequence which has already been
reconstructed—to gain additional information. Specifically, there are at least x fooling
probes in the spectrum which confirm a spurious extension (more in the case of a
Mode 2 failure); by counting the number of probes in each extension set which can be
found in the u-character putative sequence, we can select the correct extension with a
high degree of confidence. This process is called polling, since it chooses between two
alternative extensions by counting the number of used probes which confirm either

extension. Of course, we must now discuss what it means for a probe to be used.
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5.1 Definition of Used Probes

By the time the branching mode of EXTEND has reached the depth-bound H, we
know that all of the fooling probes necessary to confirm a spurious extension are
present in the spectrum: if any of them were not present, then reconstruction would
not have failed. Assuming that the fooling probes are scattered randomly along the
full length of the complete length-m sequence, a proportion p/m of the fooling probes
confirming the spurious extension should be present in the sequence completed thus
far. These probes have been used in the reconstruction already performed; they are

formally defined as follows:

Definition 5.1. A used probe is a probe which is located in the u-character putative

Sequence.

When sequencing is commenced with a A-character seed segment, there can be
only a single used probe: the probe which matches the seed segment. Ignoring the
possibility of repetitions, each character added to the putative sequence also uses one
additional probe. Thus, if the putative sequence is u characters long, there are at

most (u — A+ 1) used probes in the spectrum.

Example 5.1. The 22-character putative sequence AGGGTCTAGGTATTGGGAT-
TAA has been reconstructed from a spectrum of direct (4,4) probes. At this point
there are p — A+ 1 =22 - 20+ 1 = 2 used probes: AGGG...A... A...G...T
GGGT...G...T...G...A and GGTC...G...T...A.. A [ |

We expect a fraction u/m of the probes confirming a spurious extension to be
used. However, due to repetitions of probes within the target sequence, some of the
probes which confirm the correct extension may be present in the previously completed
portion of the sequence (and thus used). However, this event is uncommon enough
that it is possible to adopt a strategy of choosing between the two extensions by
comparing the number of previously used probes which confirm each of them. The
extension which is confirmed by the greatest number of used probes can be rejected

as spurious. This process is referred to as polling.!

1Unlike most polling processes where the candidate with the most votes is the winner, here the
candidate with the most votes is the loser.
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A probabilistic analysis of the polling method for Failure Mode 1 is straightforward:
k probes are required to confirm the single ambiguous character, and so we consider
only the x probes in the extension set for each branch. The analysis for Failure Mode

2 is more subtle, but fundamentally the same. We consider each case in turn.

5.2 Polling and Mode 1 Failures

Mode 1 failures, as discussed in Section 4.2, have a very simple characterization.
When an unresolvable ambiguous extension occurs and two paths are extended up
to the depth bound H, there is only a single character difference (the initial ambigu-
ous character) between the two paths. After the initial ambiguity, the paths match
exactly.

During sequencing runs, H is typically set to > 128. This contrasts with the
length of the probes, which is virtually always A ~ 20. (A = 20 occurs for (4,4)-
and (5,3)- (s,7)-probing patterns). The difference between H and X is especially
important when using the polling method to resolve an ambiguous extension. Recall
from the previous chapter that H must be chosen sufficiently large to prevent failures
due to completely spurious sequences supported entirely by fooling probes. Since
each character in such a path must be supported by fooling probes, the probability
of extending a path to n characters is an exponentially decreasing function of n. The
value of H determines the minimum length which must be achieved by such a false
path to cause sequencing failure, and so H is chosen to be sufficiently large to make
false paths of this type vanishingly unlikely.

Additional branches may occur subsequent to the initial ambiguous character. To
eliminate these additional branches, all paths in the tree are pruned to A characters
(including the initial branching position). The pruning process eliminates all branches
which occur at ¢ > X characters beyond the initial ambiguous character by simply
excising them from the tree. It also tends to greatly reduce the total number of
paths; usually, there are only 2 paths which remain. By definition, these paths must
originate at the root of the tree. Moreover, secondary branches which occur within
the first A characters are subject to a depth bound of (H' > H — ) characters. Since
H > 128, H— X > 108, which is still large enough to make the probabilistic extension

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

of totally spurious paths extremely unlikely.

After pruning, each of the A-character paths in the shortened tree is compared to
all of the others. If there are only two paths, then they should differ only in their
initial character-the branching position. If there are more than 2 paths in the set—due
to additional secondary branches which survived the pruning-then for some path p;,
there should be another path p;,% # j which is identical to p;, save for the initial
position. This is the criterion used to recognize a Mode 1 failure during sequencing.
Virtually all other cases can be treated as Mode 2 failures, but this will be discussed

thoroughly in the next session.

Definition 5.2. A sequencing failure is a Mode 1 Failure if and only if there are at

least two paths in the pruned tree, which differ in only the initial character.

Once a Mode 1 failure has been recognized, it remains to count the number of
used probes confirming each path. There are x probes in the spectrum which sample
the ambiguous position. The putative sequence contains p characters, and the length
of the target sequence is m characters, so (£ - x) used probes confirming the spurious
path are expected. If probes were unique within the target sequence, there would be
no used probes confirming the correct path, but due to repetitions of probes within
the sequence, each probe confirming the correct path may appear in the u-character
putative sequence with probability approximately (£ - «). The polling algorithm
selects the extension with the fewest used probes in the extension set. In the event
of a tie (an equal number of fooling probes in the extension set for both paths), no
decision can be made, and the sequencing process halts.

To predict the likelihood that the polling mechanism selects the correct extension,
it 1s necessary to predict the probability of finding more used probes confirming the
spurious path than the correct path. We will let p§1)(u) denote the probability of
finding 7 used probes confirming a spurious Mode 1 extension after u characters have
been sequenced. There are x probes which sample the ambiguous position, and are
thus involved in polling. The probability that a specific fooling probe has already
been used is p/m. Therefore, the probability of finding j used probes for the spurious

branch of a Mode ¢ failure is equal to
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7 m m

W) = (*’f)(ﬂ)j(l—ﬁ)“-j (5.)

Now we need to consider the probability of finding used probes which confirm
the correct extension, due to multiplicity of probes. Let qj(-l)(u) be the probability
of finding j used probes confirming the correct extension of a Mode 1 failure. The
probability that any one particular probe has already been used is 6 =1 — e~H/4" 5o

the probability of finding at least 7 used probes for the correct path is

¢ = i: ( Z ) (1 —g)<" (5.2)

h=j

Note that the likelihood of encountering a Mode 1 failure remains constant as
i — m; they can occur with equal probability at any point along the target se-
quence. The likelihood of finding used probes confirming either the correct or spuri-
ous extension increases as y — m, but the likelihood of seleting the correct extension
also increases with y. To calculate the overall probability of success for the polling
method, an average over all possible failure points must be taken. Recall that the
polling algorithm selects the incorrect alternative when more used probes are counted
for the correct than for the spurious path, and is unable to choose between the two
paths when there are an equal number of used probes for each. In either case, the
polling algorithm fails to select the correct path after an ambiguous branch, but se-
quencing halts only if the number of used probes for each extension is equal. When
there are more used probes confirming the correct extension than the spurious one,
the algorithm selects the incorrect path and continues. This event leads to false
positive sequences—sequences which appear to be correct but contain one or more
errors—and will be discussed in detail later in this chapter.

The probability that the polling algorithm cannot correctly resolve a Mode 1

failure is:

K

P(poll failure|Mode 1) = —T}n—z p;i (1) - g () (5.3)

u=1 j=0
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5.3 Polling and Mode 2 Failures

Mode 2 failures, described in detail in Section 4.3, are more difficult to recognize
than Mode 1 failures, due to the difficulty of precisely identifying the sustaining
segment. However, since there are only two types of sequencing failure, any unresolved
ambiguity which cannot be identified as a Mode 1 failure is assumed to be Mode 2.
This assumption necessarily groups together standard Mode 2 failures with more
complex failure cases. For example, it is possible (though unlikely) that a Mode 2
failure falls within A positions of a Mode 1 failure. By Definition 5.2, any sequencing
failure not specifically recognized as a Mode 1 failure, is treated as a Mode 2 failure.

If it were possible to determine the exact nature of the sustaining segment that
prompts the occurrence of a Mode 2 failure, it would also be possible to identify the
fooling probes necessary to complete the failure. The probes which are produced by
the sustaining segment itself could be ignored, and only the fooling probes would
be polled. Since we cannot identify sustaining segment exactly, a different strategy
must be used. Sustaining segments which terminate more than A characters beyond
the initial branching are highly improbable, so the polling algorithm uses the set of
all probes which contain the initial ambiguous character within their span (and thus
have a rightmost character at most (X — 1) characters beyond branching point). Any
probes which are superfluous to the failure—which are not needed to confirm the
spurious extension—will be present in both paths, and thus either contribute 1 vote
to both poll counts, or contribute to neither count.

The set of probes polled for Mode 2 failures contains A members: all probes which
contain the initial ambiguous position within their span. Other than that minor
difference (there are only k probes polled for Mode 1 failures), the equations for the
number of used probes confirming the spurious and correct paths are identical to
Mode 1. The probability (p(~2) (u)) of finding j used probes confirming the spurious

branch of a Mode 2 failure is

PP () = (A.)@)ju—ﬁ)*-f (5.4)

7 m

And the probability (qf)(,u)) of finding at least j used probes confirming the

correct branch of a Mode 2 failure is
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A (A
¢ () = Z( h>6h<l~6)*—h (5.5)

h=j

With the exception of failures caused by duplicated (A—1)-character strings, Mode
2 failures are equally likely to occur at any point along the sequence (recall from
Section 4.3 that this event corresponds to self-sustaining segment offset of J = 0).
When there there is a (A—1)-character duplicated subsequence in the target sequence,
a Mode 2 failure will occur when the sequencing process reaches first of the two
identical strings. In such a case, the point of failure is the smaller of two values
chosen randomly on [1,m]. However, in all other cases (when the offset J > 0), the
positions of the two homologous strings are not interchangeable, so a failure-as for
Mode 1-is equally likely at any point along the sequence. Since the event J = 0
accounts for such a small proportion of all Mode 2 failures, we may reasonably ignore
the possibility of such an event in our calculations. Thus, the probability of an

incorrect polling result for Mode 2 can be expressed as

1
P(poll failure|Mode 2) = — Z Zp§l)(u) -qj(.l)(,u) (5.6)

5.4 Overall Performance Improvement

Equations 5.3 and 5.6 can be quite easily combined. First, we define a parameter o; to
represent the number of probes polled for each failure type; 01 = k, and 02 = A. Then
a combined equation for a Mode i polling failure can be calculated by the following

equation:

m o

P(poll failure|Mode i) = % Z zp@(u) . q](-i)(,u) (5.7)

u=1 =0
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Thus, we can conclude that the probability of failure ¢(m) as a function of se-

quence length is

#(m) = P(poll failure|Mode 1) - P, + P(poll failure|Mode 2) - P, < P, + P,

Solving ¢(m) = € would give a quantitative measure of the increase in performance
achieved by the polling mechanism. As it has not been possible to find a closed-
form solution to the expansion of P(poll failure|Mode 3), a numerical solution must
suffice. By averaging over the parameter u for both Mode 1 and Mode 2 failures, and
calculating the respective likelihood of each type of failure, it is possible to predict
the performance of the algorithm.

The predicted results indicate the proportion of correct reconstructions expected.
While the standard sequencing method never produces incorrect sequences (sequences
which contain one or more errors), the polling mechanism introduces the possibility
of selecting an incorrect extension at some point in the sequence. In the case of Mode
1 failures, the result of an incorrect poll result would be limited to a single incorrect
character. Polling failures for Mode 2 are more problematic, since they can result in
a completely incorrect sequence after the first incorrectly chosen character. On the
other hand, incorrect polling results for Mode 2 failures also tend to produce sequences
which differ substantially in length from the actual target sequence, allowing such
errors to be fairly easily identified.

Figure 5.1 shows the predicted proportion of successful sequencing attempts us-
ing the polling method, compared with the observed results over 200 trials for each
m. Using (4,4)-probes on random data, a 20% improvement is observed, which is
in excellent agreement with the numerical prediction. Note, however, that the ex-
perimental results do not account for false positive sequences (sequences which are
reported to be correct, but which contain one or more errors). In the laboratory,
it would be impossible to differentiate between correct and incorrect sequences, and
thus it is unreasonable to subtract the false positive trials from the results observed
in simulation. We can, however estimate the number of errors which are expected to
occur.

The polling algorithm only fails to produce an answer when there are an equal

number of used probes in the extension set for both ambiguous branches. If either
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Figure 5.1: The solid lines show the predicted performance of the sequencing algo-
rithm with and without the polling provision; the dotted lines show the observed
behaviour. Both the predicted and observed data assume the use of (4,4)-probes.

branch has a numerical advantage, then the branch with the fewest used probes is
selected. Thus, errors only occur when the spurious branch is confirmed by fewer
used probes than the correct branch. We can estimate the probability of this event

with a minor modification of Equation 5.7:

1 m o . o; .
P(poll incorrect|Mode 7) = ;n—ZZpg)(u) Z q,(c')(u) (5.9)
u=1 j=0 k=j+1

Note that the last factor in Equation 5.9 is the probability of finding (j + 1)
or more used probes in the extension set for the correct path. Figure 5.2 displays
the probability of an incorrect polling result for Mode 1 and Mode 2 failures for a
range of target sequence lengths. The probability of selecting an incorrect path is
never greater than 4%. However, the probability of an incorrect result masks the
fact that polling errors are far more likely when failures are encountered early in the
sequence. Also, note that for long sequences, the expected number of failure points

in the sequence also rises: although there may only be about a 4% chance of choosing
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Figure 5.2: The probability that the polling algorithm selects the incorrect path after
a Mode 1 (upper curve) or Mode 2 (lower curve) failure. The probability is weighted
by the likelihood of each type of failure at all positions 1...p...m.

the incorrect path at a particular failure point in a 18,000-character target sequence,

there are likely to be several failure points within the sequence.

5.5 Using PCR Primers

The performance benefit derived from the polling algorithm is dependent on the
correct resolution of failures. Averaged over all u, the probability of choosing the
correct extension for both Mode 1 and Mode 2 failures is very high, but for u4 < m/4,
the probability of an incorrect polling result is approximately 0.5. Figure 4.3 shows the
probability that the polling algorithm will produce an incorrect result for 0 < p < %m.

It is evident from this figure that when a failure occurs very early in the sequencing
process, the polling algorithm cannot be expected to produce reliable results. In fact,
when p = m/20, the polling algorithm will either fail to produce an answer (due to a
tie in the polling) or produce an incorrect result about 2/3 of the time, whereas for

all 4 > m/2, the likelihood of a polling failure is very close to 0. It is possible to take
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Probability of Polling Failure

Figure 5.3: Probability of an incorrect polling result as a function of target sequence
length (m) and failure point (u/m).

advantage of this phenomenon if we assume that both PCR primers are available.

Consider first the case of a Mode 1 failure which occurs at position u ~ ¢ of a
12,000-character sequence. The probability that the polling algorithm will successfully
resolve the failure is only about 51%. On the other hand, a Mode 1 failure which
occurs at p =~ 9m/10 of a 12,000-character sequence can be successfully resolved with
over 99.9% confidence. By using both PCR primers, and performing two separate
sequencing attempts—one beginning at each end of the sequence-it is possible to deal
with the first event (1 =~ %) as an event of the second type (4 ~ ). The same
Mode 1 failure will be encountered during both sequencing attempts. The polling
algorithm will be called upon twice to attempt to resolve the failure, and the result
with higher probability of success can be chosen.

By choosing to deal with a Mode 1 error in a way that maximizes success, the
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probability that each of the fooling probes confirming the spurious path is changed
to %(j‘nl:’ﬂ Also, the likelihood of finding a used probe confirming the correct path

is 6 = 1— e "2 Effectively, u is never less than m/2. Figure 5.4 shows the
increase in confidence derived from selecting the more favorable direction from which

to use the polling algorithm.

4
I

0.8

0.6

0.4+

Probability of Correct Poll Result

0.2

0 2000 4000 6000 8000 10000 12000 14000

Point of Failure (mu)

Figure 5.4: Probability of polling failure given a Mode 1 failure at the point u in
a m =15,000-character sequence. The lower curve displays the single-direction case;
the upper curve the dual-direction (PCR seed) case. Note that the upper and lower
curves are identical for p > m/2.

The analysis for Mode 2 failures is somewhat more complex, since the set of fooling
probes which are required for a Mode 2 failure is dependent on the two homologous
strings, the probing pattern, and even the rclative position of the two homologous
strings. When sequencing from right-to-left instead of left-to-right, the probing pat-
tern is effectively reversed. Thus, a pair of homologous strings at positions 7 and j
which lead to a Mode 2 failure at position ¢ during forward sequencing may not cause

a Mode 2 failure at ¢ during reverse sequencing. Nor does it appear to be likely that
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a Mode 2 failure will be observed at position j during forward or reverse sequenc-
ing. Furthermore, there may be a Mode 2 failure at some position [ # ¢,5 which
occurs during reverse sequencing, entirely unrelated to the Mode 2 failure observed
in forward sequencing.

Although it is difficult to prove, we may reasonably assume that a the forward
and reverse sequencing attempts made using PCR primers are independent attempts
to reconstruct the string: the occurrence of a Mode 2 failure in one direction does
not affect the probability of finding such a failure in the other direction. Thus, by
performing two sequencing attempts, using both PCR primers, we may be able to
eliminate a Mode 2 failure completely. This assumption appears to be justified by the
experimental results. If a Mode 2 failure is encountered only during one of the two
sequencing attempts, then the sequencing attempt which does not contain a failure
may be used; we only need to resort to the polling algorithm when there is a Mode
2 failure in both the forward and reverse sequencing attempts. If the probability of
encountering a Mode 2 failure while reconstructing an m-character DNA fragment is
P,(m), then the likelihood of encountering a Mode 2 failure in both the forward and
reverse sequencing attempts is Py(m)?.

On the other hand, even if a Mode 2 failure does occur in both the forward and
reverse sequencing attempts, we can select between the two events based on the
likelihood of a correct polling result. In this case, the improvement in polling success
is somewhat lower than for Mode 1 failures, but the bi-directional approach still
improves the confidence of the polling method significantly. In this case, each failure
occurs at point chosen uniformly on [1,m]. Let 7(u) by probability that the larger of
the two values occurs at the point . Then w(u) = 2- 4.

The following table shows the predicted vs. expected proportion of Mode 1 and
Mode 2 failures which are resolved incorrectly (producing a false positive sequencing
results) by the polling algorithm for m = 10000, 13000, 16000: this is the error rate
of the polling algorithm. (For lengths m < 10000, failures of either type are too rare

to be relevant.)
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Length m Mode 1 Mode 2
Predicted | Observed | Predicted | Observed
10000 1.6% 1.5% 0.8% 1.0%
13000 2.2% 2.1% 1.1% 1.2%
16000 2.8% 2.8% 1.5% 1.5%

As we can see, the number of observed successful polling attempts matches very
well the predicted values, and we can generally trust the polling algorithm to produce

the correct result.

5.6 Effectiveness of Polling on Natural DNA

The performance of the branching EXTEND algorithm shows moderate to severe
degradation on natural DNA sequences, due to the non-uniform distribution of bases,
and the presence of long repeats within target sequences. Figures 5.5 and 5.6 show
the improvement in achievable target sequence length which is gained by applying
the polling algorithm to natural DNA. The maximum length which can be sequenced
with an expected 90% success rate (¢ = 0.9) is also shown in the following table, for

4 different natural DNA sources:

Gapped Algorithm | w/ Polling | Verified Polling
Random DNA 13800 17700 17300
a. thaliana chr. 111 CDS 1700 2600 2200
human chr. 3 CDS 1400 1500 1400
s. cerevisiae chr. IV CDS 2300 3300 2900
e. coli 5400 7600 6300
h. influenzae 2800 3800 3500
salmonella 6000 7700 7400
s. solfactaricus 3000 3200 3200

The results in the second column of the table above present include false positives—
sequences which appear to be correct, but contain at least one incorrect nucleotide at
a position 7, where H < ¢ < m — H. The third columns displays only verified correct

sequences: these numbers are derived by subtracting the number of false positive
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Figure 5.5: Observed performance of polling provision on h. influenzae (the two
left-most lines) and e. coli (the two right-most lines). The solid grey lines show
performance with the polling provision; the dotted black lines without.

reconstructions from the total number of presumed successes. While false positive
results are simple to detect in simulation, they are impossible to discover in the real
world. However, since a precise model of natural DNA is not available, it can be
helpful to observe experimentally the overall number of polling errors. We note that
the percentage of false positive sequences, where € = 0.9 is less than about 4%. Where
there appears to be a large difference between the maximum fragment length in the
Polling and Verified Polling conditions, it is because for some natural DNA sources,
the performance of the sequencing algorithm remains almost constant for a large
range of m (as can be seen for e. coli in Figure 5.5). In the range m = 5000. .. 7500,
the Polling condition shows a success rate of approximately 90-91%, and so a very
small proportion of false positive results can have a large impact on the data.
Overall, the polling provision is a fairly simple and effective way of extracting
a performance improvement of about 20% on random DNA at no additional cost
in terms of microarray size, and very little computational work. Furthermore, the

method appears to work extremely well on some natural DNA sequences. With the
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Figure 5.6: Observed performance of polling provision on human chromosome 3 cod-
ing sequences (the two left-most lines) and s. cerevisiae (the two right-most lines).
The solid grey lines show performance with the polling provision; the dotted black

lines without.

polling provision, SBH can reconstruct human coding sequences about 50% longer

than without, and the performance on salmonella approaches 8Kb, even after sub-

tracting false positive results.
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Chapter 6

Identifying and Escaping from
Repeating Segments

To the great benefit of biological diversity and the disadvantage of computational bi-
ologists trying to perfect SBH, the DNA of living organisms is not uniformly random.
The non-random nature of DNA is evident in many ways. Individual nucleotides do
not always occur with equal probability, thus altering the occurrence probabilities of
the four bases. Transposons produce long (several hundred bases or more) exactly
repeated subsequences, which automatically cause the gapped-SBH algorithm to fail.
Finally, shorter transcription errors can lead to tandem repeats or microsatellites:
periodic sequences composed of a very short segment which repeats over and over in
succession. This chapter is concerned with the effect that these repeating segments

have on the gapped-SBH sequencing algorithm.

6.1 Recognizing Repeating Segments

While tandem repeats may theoretically occur in randomly-generated DNA, in prac-
tice they are encountered almost exclusively in natural DNA sequences. They have
the effect of triggering explosive branching in the path tree, resulting in the relatively
common occurrence of failures due to violating the breadth-bound B!. When they

occur, the size of the path tree originating at a single ambiguous character can exceed

1Compared with the incidence of such breadth-bound failures while sequencing random DNA.
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B at a depth of only 50-100. A quick glance at the complete set of paths generated
in such failure cases reveals the unique nature of these repeat failures.

Based on experimental observation, there appear to be three basic types of these
failures, which we will refer to as Class 1...3. The following example shows a typical
occurrence of a Class 1 failure. In each path, the leftmost character corresponds to
the branching position, so the initial ambiguous character is a choice between the two
options A and G):

Class 1

GTG AAC GGG
= GTG AAC GGG ACC

TG AAC GGG ACC CGA TGT CTA GCT
TG AAC GGG ACC CGA TGT CTA GCT CCC
...GTG AAC GGG ACC CGA TGT CTA GCT CCC CAA

In this example, the repeating segment in each path is highlighted in grey. In
each path, there are a variable number of copies of the triplet ATC followed by a
path GTGA. .., which is identical (to the extent that it can be observed) in all
paths. Not all failures that contain a repeating segment are a simple as this one.

In other cases, there can be two (or more) sequences which continue from the end
of the repeating segment, but the failure is of the same basic type. For instance, the
following example shows an example where there are two different paths extending
the sequence after a GA repeating segment. These types of repeat failure will be
called Class 2.
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CcC

L. CC AT GA CG GC GA T
TAA GC CT TT TA TG G
...CC AT GA CG GC GA TT C

Finally, there is a third class of failures involving two or more different short
repeated segments. If the two repeated segments are GA and ACC, then the corre-
sponding set of paths might look like:

Class 3

These three classes of repeat-segment failure appear to account for up to 20% of the
sequencing failures for natural DNA. Since the incidence of such events is dependent
on natural biological processes, it seems to be impossible to predict exactly how
often they occur. However, it is possible in many cases for the EXTEND algorithm
to recognise a repeating segment when it is encountered, excise it, and continue

sequencing.
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6.2 Causes of Repeat Failures

In natural DNA, regions consisting of consecutive occurrences of a very short subse-
quence are called tandem repeats, or microsatellites. Such repeating segments will be
referred to here more precisely as periodic segments. When these periodic segments
reach a sufficient length, they confound the operation of the sequencing algorithm,
and produce the repeat failures described above. Notationally, we define periodic

segments as follows:

Definition 6.1. Let a denote a string of k > 1 characters, and a’ denote a j-character
prefiz of a, for j > 0. Using the notation a™ to represent n consecutive copies of the
sequence a, a™a’ denotes a periodic segment with total length ¢ = k-n+j, and a

period of length k.

Within a periodic segment, the short sequence a is called the repeated segment.
Periodic segments which are shorter than the probe length A do not produce sequenc-
ing failures. In other words, when EXTEND encounters a periodic segment p = a"a’
during sequence reconstruction, a failure occurs only when sequencing cannot proceed
past the segment. If a target sequence S contains a periodic segment the range S, ;,
then there is of course a probe in the spectrum corresponding to the (j+1)'* character
of S. If there are no spurious-extension probes at position j + 1, then obviously there
can be no difficulty in continuing the sequencing process.

However, if there is a spurious-extension probe for j+1 which is contained entirely
within S, ;) (i. e. the rightmost character of the fooling probe falls within the repeating
segment), then a branch occurs in the sequencing process. There are two feasible-
extension probes at the branching position: one feasible-extension probe produces the
correct post-repeat extension of the sequence, while the other (spurious) probe allows
the repeating segment p to continue with another repetition of a. Such a fooling
probe must be contained entirely within the periodic segment, and will be found at

some position j + 1 — (i - k), > 0 of the sequence. Consider the following example:

Example 6.1. Using a (3,2)-reverse probing pattern (N..N..NNN), a repeating

segment p = aa’ with period ¢ =GGC and o' =G is encountered.
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... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18...
actual ... A (G GC)GGCGGCG G CGL ATTT..
escape C c . . C G A
spurious ¢ . .Cc . . CG

The span of the periodic segment in this example is Sz 13. The fooling probe for

position 14 is located at position 14 — k = 11, and |a| = k = 3. ]

There must be a spurious-extension probe at all positions 5 +1...7 + &, |a| = k.
If any of these fooling probes is missing, then the spurious path begun at 7 + 1
will be eliminated at depth k at the k' level in the path tree. In order to produce
the explosive branching characteristic of repeating segment failures, there must be
a complete set of k fooling probes that fall entirely within the span of the periodic

segment S; ;.

Example 6.2. Consider the probing (3,3)-direct probing pattern NNN. .N. .N..N,
and a target sequence containing the repeating segment aa’ with a = GGCA and
a’ = GG. The complete periodic segment is shown in square brackets [], and the

period within parentheses (), on the top line.

.1 2 34 5 6 7 8 910 11 12 13 14 15 16 17 18...
. AGGCA GGCAGGT CAGG TTT..
1 G G C . G . . G . . A

2 G C A . cCc. . G . .G

3 CAG. .A . . C. .G

4 AGG . .G . . A . . T

The periodic segment spans 4 - 3 + 2 = 14 symbols in the sequence. It does not
contain a fooling probe for position 16 of the sequence, so this segment does not cause a
sequencing failure. Although there are 3 probes which fall entirely within the periodic
segment, probe 4 is the only feasible-extension probe for the 16" character in the
sequence, so extension of the sequence beyond the repeating segment is unambiguous.

On the other hand, if the periodic segment is extended by only a single character,
a failure does occur. Consider the following, with GGCA and o' = GGC.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
..AJGGCAGGCAGGT CAGG GO CTTAC
v G G C . G G . A

2 G C A . C G . G

3 C A G . A C G

Iy A GG G A C

5’ cecCc. .G . .G . .T

6 GCA . .C . .G . .T

7 CAG . . A . . C . . A

8 AGG . .G . . T . .C

With the longer periodic segment (¢ = 15), when EXTEND attempts to produce
the 17" character in the sequence, there are two feasible-extension probes: 5’ (which
provides the correct extension) and 1’ (the spurious extension). Furthermore, as
the two paths are extended further, probes 2’, 3’ and 4’ ensure that the false path
continues to be extended, while probes 6’, 7 and 8 extend the correct path. At
depth 5 in the tree, the spurious path produces a secondary branching, since both
probes 1’ and 5 match the corresponding extension query. The path tree at this
point contains the following three paths, with the initial branching position shown in
square brackets, the secondary branching in parentheses, and the putative sequence

falling to the left of the branching position:

1 2 3 4 5
.GGCAGGCIITTA G
[A] G G C (T)

(A)

The newly-spawned spurious path will be extended to depth 9, at which point the
cycle will continue. In fact, at depth 47+ 1,7 > 0, a new spurious path is spawned in

the tree which extends the repeating segment by an additional k£ = 4 characters. W

In the above example, the first (shorter) periodic segment had length 14, which was
one character shorter than the minimum length required to cause a repeat-failure with
(3,3)-probes and a 4-character repeated segment (GGCA). In general, the minimum
length required for a periodic segment to cause a failure, which will be denoted p, is

given by the following theorem:
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Theorem 6.1. A periodic segment p has the form a™a’, where a’ is a prefiz of a with
length 7 > 0. If the total length of the periodic segment ¢ = k -n + j is at least

p = A+ k—1, then the sequencing algorithm fails when it encounters p.

Proof. If the length of the periodic segment ¢ > A+ k — 1 characters, then there is a
complete set of k fooling probes contained within the span of the periodic segment.
These fooling probes are sufficient to allow the indefinite extension of the periodic
segment, since for every possible alignment of the probing pattern with the period k,

there exists a probe in the spectrum that is contained entirely within p. O

Note that in the event of a repeat-failure, the path tree does contain the correct
extension beyond the repeated segment. However, the algorithm has no way of dif-
ferentiating between the correct and spurious paths-without some modification. We
will describe such a modification later in this chapter, but first the types of repeats
encountered should be discussed a little further.

Example 6.2 is an example of what we will call a well-formed repeat, where a pe-
riodic segment containing at least p characters actually occurs in the target sequence.
In the case where the repeating segment is only a single character too short to pro-
voke the infinite branching characteristic of this type of failure, a single fooling probe
at another point in the sequence can complete the cycle. For instance, in Example
6.2 above, when the repeating segment had length 14 = p — 1, if the probe 4' =
AGG..G..A..C had been present in the spectrum as a fooling probe, a repeat
failure would have occurred. A single fooling probe occurs with probability « in a
random sequence. In natural DNA, a particular fooling probe may be more or less
likely to be present in the spectrum, for various reasons.

Any deviation from a uniform random model of DNA makes some DNA sequences
more likely than others. For instance, the DNA of p. falciparum is composed predom-
inantly of adenine (A) and thymine (T); these two nucleotides account for well over
80% of this organism’s genome. Thus, a fooling probe such as AAT..A..T..T
would be significantly more likely to be found in the spectrum of a target sequence
drawn from p. falciparum than, for instance, GGA..C..C..T. Moreover, even if
each of the four bases accounts for exactly one fourth of an organism’s DNA, there are
other factors which affect the frequency with which individual subsequences occur.

Appendix C has a more detailed discussion of these effects.
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Repeat failures that are caused by periodic segments shorter than p characters
(and one or more fooling probes) are called fooling-repeats. They produce a sequencing
failure which cannot be differentiated from that produced by a proper periodic repeat
in the target sequence, even when such a sequence does not exist. It has not yet been
determined what proportion of the observed repeat failures are due to well-formed

repeats, and what proportion are due to fooling-repeats completed by fooling probes.

6.3 Variations on Repeat Failure

Class 1 failures are the most well-behaved and well-understood type of repeat failure.
In such cases, there is only a single repeated segment a, and a single path out of
the sequence after the periodic sequence a™a’. After the initial branch, an additional
spurious path is spawned every |a| = k characters. All of the spurious paths are
identical, modulo the number of times the segment a occurs in each. Class 2 and 3
repeat failures are more complex, with more than one potential path issuing from the
periodic segment, or more than one repeating segment. Before discussing the effects
of these variations in detail, we need to define two new concepts, continuations and

extt points.

Definition 6.2. A continuation is a sequence path which leads out of the periodic

segment.

Example 6.3. In the following three paths, there is a single continuation past the pe-
riodic segment with period ‘GA’. The continuation consists of the sequence beginning
with CCAT.

i CCA TGAAC

Definition 6.3. A periodic repeat has the form a™a’. The segment a consists of k
characters ay, ag, ..., ax, and the segment o' has length |a’| < k. The exit point from

the periodic repeat is said to occur at a particular character a;,i > 0, ¢ = |d/|.
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Example 6.4. Using the same three paths as Example 6.3, the exit point to the
sequence occurs at a;. The repeated segment is ‘GA’, and ¢’ = a; = G, which has
length 1. In all three paths, the continuation ‘CCAT..." begins after character a,
(G).

GA GCCAT
GA GCCATGA
CCA TG AAC

Example 6.5. The following set of six paths contain 2 different continuations, each
occuring at a different exit point. The repeated segment is ‘GAT’, the two continua-
tions begin with ‘CCT’ and ‘ATAC’.

CCT AAC GCC
A TAC AAA CCA

Each of the two continuations has a different exit point from the periodic sequence:
‘CCT” exits after a' = ¥, or at ag, and ‘ATAC’ exits after o’ = GA, or a,. [ |

Following any periodic segment, there can be only one correct continuation, and
thus only one correct exit point. There are two reasons why spurious continuations
might appear. First, an appropriate collection of fooling probes can create the ap-
pearance of other continuations to the sequence after the periodic repeat. Second,
the periodic segment may not be unique in the target sequence. For instance, a
single periodic segment a"a’ may be followed by the subsequence b. Another peri-
odic segment a"a” with an identical period a may occur later in the target sequence,
where it is followed by the subsequence c. The whole local segment has the form
...a"a'b...a"a"c. .., where a'b and a"c will create two alternate continuations to the
first occurrence of the periodic segment. If a' = a”, then both continuations will occur
at the same exit point, but if a’ and a” have different lengths, then each continuation
will occur at a different cxit point from the periodic segment.

Finally, there can be a combination of multiple continuations and multiple exit

points to a scquence. Here is an example of a periodic segment with three exit points:
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Example 6.6. The repeating segment a is AGA, two exit points occur at aq (contin-
uations GAGT and TAGT) and a third continuation occurs at exit point a; (ACGG).

CGT .
AG TTT TAA TCG GA...
TTT TAA TCG GA...
L AC GGG CGT GGG ATT AA...
'GAG TTT TAA TCG GAT TG...
AG TTT TAA TCG GAT TG...
GAT TAG GG...
...G AG TTT TAA TCG GAT TGG GA...
...TAG TTT TAA TCG GAT TGG GA...

Note that the two exit points occuring at ag are identical to each other after the

first character:

123 4 5678910111213 141516 ...
..(AGA)GIAGTTTTAATCGG ...
. (AGA)[CAGTTTTAATCGG ...

Such matching continutations are indicative of a Mode 1 failure that immediately
follows the periodic segment. On the other hand, the third exit point is an entirely
different path, similar to a Mode 2 failure. Similar combinations of multiple exit

points are not uncommon in practice. |

The interaction between periodic segments and the standard failure modes creates
some difficulty in designing an algorithm to recover from repeating segments. In some
cases, it should be possible to use the branching EXTEND algorithm to choose between
alternate continuations after handling the periodic segment. It may also be possible
to combine repeat-detection with the polling provision to handle situations which
cannot be resolved by EXTEND.

Finally, there is a phenomenon related to periodic segments, which we will call
pseudo-repeats. These segments appear to be abetted by the incidence of low entropy

segments of DNA that do not take the form of a strict periodic repeat, but have the
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form (a™b™)*, where n and m are not constant values, but can vary as k increases.
Many of the observed examples of this event appear to have m = 1 and [b] = 1. It
may be possible to recover from these pseudo-repeats as well, but more work on this
is required.

For now, we want to develop a strategy for detecting and recovering from a well-

formed periodic segment in the target sequence.

6.4 The REPEATRECOVERY Algorithm

When the branching EXTEND algorithm encounters a periodic repeat, each of the
possible exit points from the repeat will spawn a path every |a| = k characters while
EXTEND attempts to resolve the initial ambiguity. As the EXTEND algorithm extends
the path tree deeper, the path tree grows wider. In fact, the width of the path tree
at depth i is proportional to i - k.

We are only interested in periodic repeats which are long enough to produce a
sequencing failure. Therefore, we only need to look for periodic repeats after the EX-
TEND algorithm has failed. The algorithm that searches for and attempts to recover
from periodic sequences is REPEATRECOVERY; the pseudo-code for this algorithm
will be listed later in this section. First, we describe several sub-steps which are
required by REPEATRECOVERY.

We expect that the A — 1 characters preceding the initial branching position con-
sist of the pattern a™a’. At the branching position, there should be two alternative
extensions: one extension begins another cycle of the periodic segment a; the other
which corresponds to the first character of the continuation after the repeat. This is
true in most cases. However, Class 3 repeat failures differ from Class 1 and 2 in an
important characteristic.

If there is only a single periodic segment present in a repeat failure, then the
sequencing algorithm will not encounter a branch until the first exit point to the peri-
odic segment. In the case of Class 3 failures, since the repeated segments themselves
are not identical, the sequences must diverge at the first occurrence of a mismatch
between the repeated segments.

For now, we handle Class 3 failures by ignoring them, and consider only repeat
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failures in which there is a single repeating segment shared among all paths. This
allows the construction of the following algorithm for detecting repeats. We look for
a periodic sequence with period ¢ = 1...A — 1, in the A 4 ¢ — 2-suffix of the putative
sequence (including the branching position).

Note that periodic segments with short periods are preferred over longer periods,
for the simple reason that a repeating segment that consists of (AT)" could also be
viewed as a repeating segment consisting of (AT AT)™. The only difference between
the two periods is that the critical length p of a periodic repeat depends on the length
of the repeated segment (k). In this case, an additional two symbols would be re-

quired to cause sequencing failure if the larger repeated segment were used.

REPEATFINDER(S, \)
1 fori<1to A

2 do if s; = 5144
3 then a < s;_;
4 j+1
) repeat < true
6 while 7 < A+ ¢ AND repeat = true
7 do b < s jti
8 ifa#b
9 then repeat < false
10 J g+
11 if repeat = true
12 then return a

13 return failure

The REPEATFINDER algorithm is run on every path in the tree. Once a periodic
segment a has been found in one path, a similar algorithm, REPEATVERIFIER® is
executed, to check that the periodic segment is present in all (or all but one) of the
paths. If there is more than one path which lacks any occurrence of the periodic

segment, then the REPEATRECOVERY algorithm fails.

?REPEATVERIFIER is similar enough to REPEATFINDER that the pseudocode is not included
here.
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Recall that for a probe pattern of length A\, and a periodic repeat consisting of the
pattern a"a’, |a| = k, a repeating segment must have total length p = A +k —1. Any
periodic repeat that is at least p characters in length will provoke infinite branching.
Thus, it is impossible for the algorithm to determine the exact length of any periodic
repeat. All repeating segments of sufficient length are identical in terms of the path
tree they produce.

Furthermore, there is no way for the REPEATRECOVERY algorithm to distinguish
between fooling-repeats and true periodic segments. If a periodic segment in the
target sequence contains fewer than p symbols, a repeat failure occurs as long as
fooling probes are found that compensate for the length shortfall.

Once a periodic segment has been verified in all paths, we can attempt to recover
from the failure. We present a simple algorithm that removes the periodic segment
from all paths so that we can reduce the tree to a set of only a few possible contin-
uations. The REPEATREMOVER algorithm removes all copies of the string a from
every path, along with the shortest a' string which was found in all paths. This has
the effect of treating all continuations as though they share the same exit point. In

explanation, consider the two sequences:

. GA A ACGGGCGTGGGAT. ..
... AGAAGA G AGTTTTAATCGGA...

The repeated segment is ‘AGA’. In the first sequence, ¢’ =A, and in the sec-
ond sequence, a' is empty. Instead of viewing the continuation in the top path as

‘ACGG...’, occurring at ay, we can treat it as though it contains the continuation

ACGG.. ., occurring at a;. Then both continuations share the same exit point
a1, and we avoid introducing an offset between paths.

Once the periodic segment has been removed from all paths, we are still left with
a (potentially) large set of paths. Each path should correspond to a prefix of the post-
repeat sequence. The following table shows such a set of paths before and after the
periodic segment has been removed. We will denote the set of paths containing the re-

peating segment as S; and the set of paths with the repeating segment removed as Sp.
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With Periodic Segment (.5;) — Without Periodic Segment (Sp)
GTG —» GTG
GTG AAC - GTGAAC

GTG AAC GGG — GTGAACGGG
*GTG AAC GGG ACC — GTGAACGGGACC
-

-

-

GTG AAC GGG ACC CGA GTGAACGGGACCCGA
TG AAC GGG ACC CGA TGT GTGAACGGGACCCGATGT
GTG AAC GGG ACC CGA TGT CTA GTGAACGGGACCCGATGT CTA

Note that all of the paths in Sy appear to be prefixes—of varying length—of the
same sequence. In fact, each path in Sy is a prefix of the longest path in the set. This
indicates that there is only a single continuation to the sequence after the repeating
segment. In such a case, we can select the longest path in Sy as the correct extension
to the sequence. However, there may be mismatches between the paths in Sy. There

are two reasons that this may occur:
1. There is more than one continuation to the periodic segment.

2. There is an ambiguous character (and consequent branch) during the sequencing

of a continuation.

In either of these cases, we cannot simply choose the longest path in Sy, and must
perform additional work to try to decide between the alternate continuations. How-
ever, we still want to eliminate those paths in Sy which are exact prefixes of other
paths in Sy. This can be performed quite simply: for every path p, if there is another
longer path ¢ which contains p as a prefix, p may be removed from the set. Each path
in the above example is a prefix of the longest path in the set, so after removing all
of the prefixes, only a single path is left: GTGAACGGGACCCGATGTCTA. This
will be true for all Class 1 repeat failures.

The pseudo-code for the REPEATREMOVER algorithm itself is:

REPEATREMOVER(P, a, a')

1 j+ |

2 k<« |d|

3 (<« NIL

4 for each pathpin P
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5) do while p; ; =a

6 do p < pjyi.pp|

7 P Drti.p|

8 RQ+—QUp

9 for each path p in @

10 doifdge@st. g jp=p
11 then remove p from Q)
12 return ()

REPEATREMOVER produces the set of all continuations to a periodic segment.
At this point, the standard branching EXTEND algorithm with the polling extension
may be used to select between them. In the most well-formed cases (Class 1), there
will be only a single continuation in the collapsed set of paths, and extension of the

sequence may immediately proceed.

6.5 Results and Observations

Some minor bookkeeping needs to be done to indicate the presence of a repeated
segment in the final reconstructed sequence. We are just running simulations, so we
would like to verify whether the reconstructed sequence matches the target sequence,
or whether it contains errors. Since the exact number of repeats is impossible to
determine, a repeated segment a in the reconstructed sequence must be allowed to
match an arbitrary number of copies of a in the target sequence; a base-by-base
verification of the sequence is otherwise impossible. This imprecision also means that
the precise length of the reconstructed sequence is no longer known with certainty.
The uncertainty in length introduced by this method will typically be fewer than
approximately 10 bases out of 2000 < m < 10000 when it is used.

Initial results from the implementation of the REPEATRECOVERY algorithm indi-
cate that it offers a performance increase somewhat less than the polling mechanism
on natural sequences. However, although the polling and repeat-recovery techniques
may be combined for further performance increases, the benefits offered by each tech-

nique are not independent: it appears that sequences that cannot be reconstructed
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by the polling technique often cause problems for the repeat-recovery method as well.

Furthermore, it does not appear possible to choose between alternate continuations
by performing the breadth-first expansion of path trees, nor does the polling provision
offer much benefit in choosing between the post-periodic paths. Periodic segments
with multiple continuations are equivalent to Mode 2 failures, and the probes in the
extension set for each path often occur in a low-entropy region near the periodic

segment, resulting in a high number of used probes for each alternative.
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Figure 6.1: Observed performance of repeat recovery on h. influenzae (the two left-
most lines) and salmonella (the two right-most lines). The solid grey lines show
performance with the repeat recovery; the dotted black lines without.

Figures 6.1 and 6.2, along with the following table compare the results of the
REPEATRECOVERY algorithm to the basic gapped-SBH algorithm, and the basic
algorithm with the polling provision enabled. The numerical values in the table rep-
resents the longest fragment length for which at least 90% of the 400 non-overlapping
fragments were completely and correctly reconstructed.

The data titled ‘Gapped Algorithm’ show the data for the basic sequencing al-
gorithm, with neither the polling provision nor the REPEATRECOVERY algorithm
enabled. The ‘Polling’ data illustrate the results of the algorithm with the polling
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Figure 6.2: Observed performance of repeat recovery on human chromosome 3 coding
sequences (the two left-most lines) and s. cerevisiae chromosome IV coding sequences
(the two right-most lines). The solid grey lines show performance with the polling
provision; the dotted black lines without.

provision enabled. Finally, the ‘Repeat’ data show the results of the sequencing al-

gorithm with the REPEATRECOVERY algorithm enabled.

Gapped Algorithm | w/ Polling | w/ Repeat
a. thaliana chr. 1II CDS 1700 2600 1900
human chr. 3 CDS 1400 1500 1400
s. cerevisiae chr. IV CDS 2300 3300 2900
e. coli 5400 7600 5800
h. influenzae 2800 3800 3100
salmonella 6000 7700 6600
s. solfactaricus 3000 3200 3000

The above data illustrate that the REPEATRECOVERY algorithm does offer a small
performance benefit to the basic method, but the current implementation leaves ample

room for improvement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

Pooling Information from Multiple

Spectra

Until now, we have used only a single spectrum to perform sequencing. If a second
spectrum is constructed from the same target sequence but using a different probing
pattern, the information available therein might be expected to improve sequencing
performance. In order to explore this hypothesis, we need to reformulate our per-
formance metric slightly. Up to this point, we have simply calculated the length m
of the longest target sequence which we can reconstruct with a 90% rate of success
(e = 0.9). However, every added spectrum requires the addition of another microar-
ray, with corresponding increase in chip size and cost. If the maximum length of the
target sequence does not increase by at least as much as the increase in cost, then the
extra chip area is not justified by the performance gain. It would be more efficient to
simply perform two separate experiments on shorter sequences.

In order to discuss the performance achieved by sequencing algorithms making use

of multiple spectra, we will weight the results by the total chip size. More formally,

# bases
chip features*

since we will restrict our discussion to spectra of equal size. It is sufficient for our

we could adopt the metric of This level of precision is not needed here,

purposes to determine whether, for an n-fold increase in chip size and cost, we have
achieved better than an n-fold increase in performance, measured in terms of the
longest feasible target sequence. In the rest of the chapter, we will refer to the

method of gapped-SBH using more than a single spectrum as multi-spectrum SBH.

184
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Before continuing, we note that as m increases, so does a. In fact, when m =
27000—about twice the feasible limit for the single-spectrum SBH algorithm—the
value of o for both (5,3)- and (4,4)-probing patterns is 0.338. When « exceeds 0.25,
the probabilistic extension of totally spurious paths using a single spectrum becomes

very likely. To be useful, multi-spectrum SBH will have to overcome this limit.

7.1 Choice of Probing Patterns

If multiple spectra are to be used, the probing patterns used in the different spectra
should have low correlation with one another. In the extreme case, imagine using the
same probing pattern for each spectrum: the spectra obtained would be identical,
and no additional information would be gained. Fortunately, (s,r)-probing patterns
offer a natural and convenient source of probing patterns with low cross-correlation.
If we calculate the cross-correlation of a direct (s, r)-probing pattern with its reverse,
we find that there are never more than maz(s,r) natural bases aligned between the
two patterns, at any offset. The correlation polynomial for a (5,3)-direct probe with
a (5,3)-reverse probe is shown in Figure 7.1.

We will focus our discussion on a specific type of multi-spectrum SBH which
makes use of two spectra: the direct and reverse versions of an (s, r)-probing pattern.
For any given (s, r)-pattern, the construction of two microarrys of identical size for
the direct and reverse patterns results in two spectra which will be called S; and S,
respectively. The direct and reverse spectra of an (s, r)-pattern are together referred
to as tandem spectra, and thus SBH using tandem spectra may be called tandem

sequencing.

7.2 The Multi-spectrum SBH Algorithm

The simplest way of exploiting a second spectra is to make two attempts to recon-
struct the target sequence, once with each spectrum. For probing patterns with low
correlation, extensive computer simulation indicates that the two processes appear

to be effectively independent, although a rigorous analysis has not been completed.
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Figure 7.1: The cross-correlation polynomial for a (5,3)-direct probe

(NNNNN....N....N....N) and its corresponding reverse (5,3)-probe
(N....N....N....NNNNN).

The result is a trivial improvement in performance, with
p(fail with Sy) = p(fail with S,) = p(success) =~ 1 — p(fail with Sq)”

For fixed ¢ = 0.9, the sequence length which can be achieved using two spectra
in this way is about 16000, or an improvement about 16% over the single-spectrum
case—an insignificant improvement compared with the doubled chip cost.

By contrast, there is another method of exploiting two spectra that yields more
than double the performance of the single-spectrum algorithm. This is achieved by
using the spectra in a local, or probe-by-probe fasion. This technique requires a new
QUERY algorithm called MULTIQUERY that queries all spectra independently, and
returns only results which are present in every spectrum.

MULTIQUERY is very similar to the QUERY algorithm described in Chapter 2. The
only notational change made from the pseudo-code for the single-spectrum QUERY
algorithm is that S* is used to indicate a set of spectra. S* is passed as a param-
eter to the multi-spectrum version of QUERY, which are each queried in turn. The

pseudo-code for the multi-spectrum query algorithm is presented here:
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MULTIQUERY(S*, q)

1 ¢ < qqq-tia-1)

2 e;+ {ACGT}

3 for each S in &

4 do e, + QUERY(S,q)
5 ef < epNes

6 return e;

The extension e is initialized to contain all possible extension characters. As each
spectrum is queried in turn, extension characters not present in e, are eliminated from
es. A character will remain in e after all spectra are queried if and only if it was
in the extension e, of all spectra S. In this way, we ensure that a spurious extension
can be produced only if it is confirmed by a fooling probe in every spectrum.

We would like to calculate how the use of multiple spectra and the MULTIQUERY
algorithm affects the execution time of the SBH algorithm. (Recall from Chapter 3
that work can be measured in terms of spectrum CHECKs.) If thare are no other
effects on the running time size of path trees, then if MULTIQUERY is used in place
of all calls to QUERY in the standard single-spectrum algorithms, then for n spectra
in 8*, we will perform n times as many calls to QUERY. In fact, the use of the second
spectrum should reduce the size of path trees for a fixed length m, so in the worst case,
multi-spectrum sequencing is only slower by a constant factor than single-spectrum
sequencing. We would now like to examine how the additional spectra affect the

probability of failure.

7.3 Probability of Failure with Tandem Spectra

The query-by-query verification of every possible extension in both the forward and
reverse spectra has a significant effect on sequencing performance. The discussion
here expands upon a similar analysis performed in [HPY02]. Here, as in that paper,

Mode 1 and Mode 2 failures are treated separately.
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7.3.1 Mode 1 Failures

As we discussed in Chapter 4 (see Theorem 4.1 for details), the probability of Mode

1 failure for the single-spectrum sequencing algorithm is

r+1\ " s\ (-1

The individual factors are briefly explained here. There are m ways of selecting a

failure position. The spurious character at the position of failure may be chosen in

3 possible ways (1 — e“i_w) and then confirmed by x — 1 additional fooling probes

(1- e‘f%)"_l. The remaining factor (contained within square brackets [ | is a cor-
rection factor to account for probe overlap.

In the tandem-spectrum case, the most significant change is in the third compo-
nent of the equation: 2k — 1 instead of xk — 1 fooling probes are required. This occurs
because although an ambiguous extension can take one of three possible values in one
spectrum, once a value has been determined, it must be confirmed by a unique fooling
probe in the companion spectrum. Without any loss of generality, we designate one
spectrum as the primary spectrum Sy, and the other as the secondary spectrum.

Every query in the primary spectrum produces one or more spurious responses to
a query with probability

1-(1-a)Pfxl-e

which corresponds to the first factor in Equation 7.1.

If queried by itself, the secondary spectrum produces a spurious response with
the same probability. However, there is only one possible probe in the secondary
spectrum that will confirm a particular spurious character in the primary. Thus, the
probability that MULTIQUERY produces a spurious character in response to a query
is

a(l - (1—a)) ~ (1 - e—%’%) (1— e #)

Once a branch occurs, it must be confirmed by an additional x — 1 fooling probes
in each spectra. Thus, 1+ 2(x — 1) = 2k — 1 fooling probes are required to cause a
Mode 2 failure. Finally, the correction factor for probe overlap (contained with the

square brackets [ ] in Equation 7.1) must be raised to the power of two, since it affects
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each spectrum independently. Thus, the probability of a Mode 1 failure using tandem

spectra is

|

r+1\ T s 2
o) e [ ) ()] o

We now move on to a discussion of Mode 2 failures.

7.3.2 Mode 2 Failures

In Chapter 4, we developed an approximation for the probability of Mode 2 failures,
which are caused by so-called self-sustaining segments. At each of the m positions in
the target sequence, there are m — 1 possible locations for the self-sustaining segment,
and so there are (’;) ~ m? possible pairs of strings in the target sequence which can
lead to failure. The probability of Mode 2 failures was calculated in terms of the
position, or offset of a self-sustaining segment. For each position 0 < J < A, we
calculated a coefficient 7y, such that the total probability of failure for the single-

spectrum method is

by
P = m? ZWJ
J=0
3m? [ 1 1 — (4o
= P2 (3—2" + a~—~——1 —4a0 (73)

where the parameter # < 1 is a scaling factor, accounting for the fact that fewer than
J fooling probes are required at offset J. For a more detailed explanation of Equation
7.3, refer back to Section 4.3.

In order to calculate the expected performance enhancement derived by using
tandem spectra, we need to examine how the 7 coefficients are changed. Recall that

the individual coefficients w; were

= 74

T e (7.4)
aGJ

ma = 35 (7.5)

There are two components to the 7; multipliers:
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1. The number of constrained characters in the sequence, each of which contributes
a factor of 1/4.

2. The number of fooling probes required to compensate for differences between
the correct sequence and the self-sustaining segment, each of which contributes

a factor of a.

We will use the variant symbol w; to denote the coefficients for the offset of the
self-sustaining segment in the tandem spectrum case.

When sequencing with tandem spectra, item 1 is not affected: two (A—1)-character
strings chosen from the m-character target sequence agree at each position with prob-
ability 1/4. Thus, since no fooling probes are required for the base case of J =0, the
multiplier for J = 0 does not change, and wy = 7.

The multipliers @ ; are a bit more complex to calculate, but not unduly so. For
any value of J > 0, there are v = A — 1 — J constrained positions to the left of the
initial branching position. The branching position can be chosen in 3 different ways,
and must be confirmed by a fooling probe in each spectrum. There are J characters
to the right of the branching positions, for which an average of §J fooling probes are
required in each spectrum to compensate for disagreements. Thus, we have

a29J

41/

Wi — 3 (76)

The total probability of a Mode 2 failure when using tandem spectra can be

calculated using Equations 7.4 and 7.6:

PQ(t) = m2ZwJ
J=0
3m? (1 o1 — (402
= —‘“4)\_2 <3—2' + « ————1 — A0 (77)

Here, the primary advantage over the single-spectrum case is again derived from
the fact that although the initial branching position may be chosen in three of four
ways in the primary spectrum, it requires a fully constrained fooling probe in the
secondary spectrum to confirm it. This introduces an additional factor of «, so that
if 7 fooling probes are required in the single spectrum case, 2 + 1 are required in the

tandem spectrum case.
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7.4 Performance Improvement

Figure 7.2 shows the performance of the single-spectrum and tandem-spectrum SBH
algorithms compared. In order to present the two curves on the same graph, the
single spectrum curve is displayed with the abscissa dilated by a factor of 2.

L el
0.98
0.96
0.94 -

0.92

Probability of Successful Reconstruction

0.9 20000 22000 24000 26000 28000 30000 32000 34000
Length of Sequence (m)

Figure 7.2: Performance of tandem-spectrum sequencing sequencing on random DNA
using (4,4)-probes. The single-spectrum curve has been scaled by a factor of 2 to
permit per-feature comparison with the tandem-spectrum method. Predicted values
are shown using solid curves, and observed values with dotted lines.

The total probability of failure for single and tandem spectrum sequencing is
simple to calculate. Recall from Chapter 4 that we assume (based on extensive
observation) that Mode 1 and Mode 2 failures are indepedent, so the total probability
of successfully sequencing an m-character target sequence is

o~ (PLEP2) o, (1 P+ P2>m
m
However, in the interesting range of values, where the the probability of success is
close to 1, this can be accurately approximated for the single and tandem spectrum
cases by summing P®) = P + P and P® = p{) + P,
Since the area and cost of the microarrays in the tandem-spectrum case is twice

that for the single-spectrum method, we must take that into account. If we denote as
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my and ms he maximum achievable fragment length using single and tandem spectra
for a particular value of €, we must compare my to 2m;. What is desired is a simple
factor x = mo/2m;. If x > 1, then the extra cost inherent in the tandem-spectrum
method is more than justified. However, the expected performance increase realized
by utilizing two spectra appears to be very cumbersome to calculate precisely.

Here we reprise the calculation originally made in [HPY02], where we calcu-
late my/m; analytically for Mode 1 failures, and ignore the correction factor for
overlapping probes. If we expand the exponential from Equations 7.1 and 7.2 to

second-degree terms, we derive the following approximations, which are accurate when

m/4" < 0.6:
3m( m 1/ m \2\"
Pl___ _ = .
12 <2-4n 2(2-4~)> (78)

5 m 1 /m\2\>
P1—3m<4—n—§(E)> (7.9)

In the single-spectrum case, we introduce the unknown z = m/(2 - 4*). For a

and

chosen confidence level €, we must solve Equation 7.8 for Pl(s) =1—g¢,

1
1 /1—€\*

% — 2 — =
T 2<3x)

And for the tandem spectrum case, we let y = m/4* and solve Pl(t) =1—¢ asin

1—e\
2y_y2_< 3y )

The above equations were solved numerically for ¢ = 0.9 and different practical

values of k. From these numerical solutions, we may compute the ratio

my Y

2m1 N —2;
These values, which provide analytical confirmation of the experimental observations

derived from our simulations, are displayed in the following table:

k ot 6 7 8 9 10

T 1946 | .2057 | .2146 | .2218 | .2278 | .2329

Y 5112 | .5b443 | .5714 | .5941 | .6134 | .6302
me/2my || 1.319 | 1.323 | 1.331 | 1.339 | 1.346 | 1.352
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When sequencing with two independent spectra performance improvement is al-
ways greater than 2, indicating an increase which outweighs the increase in chip cost
by at least 30%. Unfortunately, while it is tempting to hope for further performance
increases with even more spectra, for 3 or more spectra, the increase in chip cost is

barely justified by the increased length of m, if at all.

7.5 Integration with Polling and Repeat-Recovery

The polling and repeat-recovery provisions detailed in Chapters 5 and 6 can be ap-
plied to tandem-spectrum sequencing, although only the polling provision has been
implemented. We should expect the repeat-recovery algorithm to have the same
(small) improvement in performance for the tandem-spectrum method as it does for
the single-spectrum method, but since there is no way of predicting its effectiveness,
we leave the implementation and discussion of the technique for future work.

To begin, we will briefly recall what the polling provision is. The polling provision
is a method for resolving Mode 1 and Mode 2 failures. When a failure of either type
ocurs, there is a set of probes which sample the ambiguous character; these probes
form the extension set for that character. The number of used probes (refer to
Definition 5.1) in the extension set for each alternative extension are counted, and
the extension with the fewest used probes is selected as the correct one.

In the single spectrum case, there are k probes in the extension set for a Mode 1
failure, and X for a Mode 2 failure. In the tandem spectrum case, there are an equal
number of probes in each spectrum. Thus, there are a total of 2k probes for Mode 1
failures and 2\ probes for Mode 2 failures. The polling algorithm may be used in an
essentially unchanged manner when two spectra are used; in fact, the extra probes
should slightly increase the effectiveness of the method. The only caveat is that in
the case of Mode 1 failures, the x probes in each spectrum which form the extension

set have different offsets. The following example illustrates this effect.

Example 7.1. Using tandem (3,2)-probing patterns (NNN. .N. .Nand N. .N. .NNN),

the algorithm encounters the following situation:
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Probes 1-5 belong to the reverse spectrum Sg and probes 6-10 to the direct spec-
trum Sp. The s probes in extension set from Sp are located at different offsets
relative to the branching position than those from Si. The right-most characters of
the forward probes fall at positions {0, 1, 2, 5, 9} while the reverse probes fall at {0,
3, 6, 8, 9}. When counting the number of used probes in the extension sets for [T]
and [G], all 2« probes are included. [

The predicted performance of tandem-spectrum SBH with the polling provision
is compared with the observed behaviour in Figure 7.3. Recall that in the single-
spectrum case, we predicted and observed about a 25% performance improvement.
We derive a nearly identical result for the use of the polling provision with tandem-
spectrum SBH, indicating that the benefits of the tandem-spectrum sequencing tech-
nique and the polling provision are effectively independent, and contribute multiplica-
tively to the maximum length of a sequenceable fragment. The following table shows,
the maximum fragment length which can be sequenced with confidence € = 0.9, for
both the single-spectrum and tandem-spectrum gapped-SBH methods with and with-
out the polling provision (for random DNA and (4,4)-probes). For the single-spectrum
case, the values shown are 2mq; twice the actual length achievable, to permit easy

comparison with the tandem-spectrum method.
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Figure 7.3: Performance of tandem-spectrum sequencing with (solid line) and without
(dotted line) the polling provision on random DNA using (4,4)-probes.

Sequencing Method m

Single-spectrum without polling || 27800

Single-spectrum with polling 34200

Tandem-spectrum without polling || 34600

Tandem-spectrum with polling 42600

The combination of the two algorithmic enhancements yields about a 55% im-
provement over the standard gapped sequencing technique. Moreover, the sequence
length achieved by the tandem-spectrum sequencing algorithm with the polling pro-

vision is nearly 2/3 of the information-theoretic bound.

7.5.1 Performance on Natural DNA

The results of tandem-spectrum sequencing experiments on natural DNA sequences
are shown in Figures 7.4 and 7.5 Note that in these two figures, no abscissa dilation has
been performed. Separate experiments on the DNA of various natural organisms using
either a single (4,4)-reverse probing pattern or (4,4)-tandem spectra (two spectra

realized from the forward and reverse probing form of a (4,4)-gapped probe pattern).
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Figure 7.4: Observed performance of repeat recovery on h. influenzae (the two left-
most curves) and salmonella (the two right-most curves). The single-spectrum curves
are drawn with solid lines and the tandem-spectrum curves with dotted lines.

The following table shows the longest fragment length achievable with ¢ = 0.9 for

both the single spectrum and tandem spectrum method, using (4,4)-probes.

(4,4)-Single (2m,) | (4,4)-Tandem (m2)
Random DNA 27700 34600
a. thaliana chr. IIT CDS 3400 1800
human chr. 3 CDS 2800 1400
s. cerevisiae chr. IV CDS 4600 2900
e. coli 10800 6100
h. influenzae 5600 4400
salmonella 12000 7600
s. solfactaricus 6000 3900

In a disappointing result, for all natural DNA sources, my < 2m;. In fact, in
certain cases (human chromosome 3, for instance), m; =~ msg, indicating that no

performance benefit at all is gained by adding a second spectrum. The most likely
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Figure 7.5: Observed performance of repeat recovery on human chromosome 3 cod-
ing sequences (the two left-most curves) and s. cerevisiae chromosome IV coding
sequences (the two right-most curves). The single-spectrum curves are drawn with
solid lines and the tandem-spectrum curves with dotted lines.

explanation for this phenomenon is that the DNA of these organisms contains a large
number of repeats, either of the (A — 1)-character strings which cause Mode 2 failures
or of short-period local repeats. In either case, since all of the fooling probes necessary
to cause a sequencing failure are guaranteed by the target sequence itself to be in the
spectrum, then they are guaranteed in both Sp and Sg. In this case, the independence

of the probing patterns does not help.
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Chapter 8
Constructing a Seed

We have until now assumed the availability of a seed—a short segment of known DNA
from which we can begin sequencing. This is not unreasonable, since both methods of
DNA amplification—cloning and PCR—require that we know the exact sequence of
short pieces of DNA (primers) at each end of the sequence. These primers are typically
attached biochemically prior to amplification. However, it is possible to construct a
seed for a target sequence from only the information available in its spectrum. Seeds
thus built will be located at random positions within the target sequence, and must
be extended in both directions to complete the reconstruction. Other than this minor
modification, constructed seeds are identical to manually affixed primers.

In addition to providing the SBH technique with a degree of algorithmic complete-
ness, the ability to build new seeds also allows us to extract additional information
from a spectrum when all of the other algorithms for extending a sequence have failed.
Sequencing failure occurs when the information contained in the spectrum is insuffi-
cient to produce an unambigous reconstruction of the target sequence. While there is
no way of resolving the failure computationally, we can try to extract as much infor-
mation as possible from the spectrum when one occurs. Instead of simply abandoning
the sequencing effort, we can restart sequencing from a new seed, expressly created
in the portion of the sequence which has not yet been reconstructed. In this manner,
rather than producing a single sequence fragment, we might produce two or more
fragments which cover a correspondingly larger proportion of the target sequence.

This strategy is left for future work.

198
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8.1 Constructing a Seed

Seed construction begins by selecting a random probe p from the spectrum. The
selected probe has length A and A — k “don’t care” positions, where A > 2 -k for
any useful probing pattern. The “don’t care” positions in this initial probe may
also be considered to be “unknown” bases; they correspond to nucleotides in the
target sequence whose values are not yet determined. To construct a seed, we need to
generate a A-character oligomer from the initially selected probe, so we must somehow
fill in all of the initial probe’s unknown positions. Once this process is complete, there
is a single valid seed among a large set of invalid seeds; the invalid seeds are strings
of X\ characters which are not substrings of the target sequence, but are produced by
random combinations of fooling probes filling the unknown positions in p. This large
set of potential seeds must be processed so that invalid seeds are eliminated from
consideration.

Note that while filling the initially unknown bases, incorrect values may be as-
signed to some or all of these positions in the initial probe. To differentiate between
completed seeds (which necessarily correspond to actual subsequences of the target
sequence) and potential seeds (which may not be subsequences of the target), the

potential seeds created during the seed construction process will be called seedlets.

Definition 8.1. A seedlet is a sequence of bases (natural and universal) produced by
the seed-construction algorithm. It may be either a valid or invalid seed, where valid
seeds are sequences consisting only of natural bases, that are actual subsequences of
the target. Invalid seeds are sequences that either contain one or more universal bases

or do not correspond to any subsequence of the target.

The set of seedlets grows larger as the initially unspecified positions are filled, so
the first stage of this process will be called the growth stage. The second stage of
the process, whereby we eliminate the invalid seedlets from consideration and reduce
the set to a single valid seed will be called the reduction stage. There may actually
be more than one valid seed in the set at the end of the growth stage, and all valid
seeds will remain in the set at the end of the reduction stage. This will be discussed
in more detail later in this chapter, but for now we make the simplifying assumption

that the growth process produces only a single valid seed.
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In Chapter 1, a general description of spectrum queries is given, along with a
more specific discussion of queries which contain a single free position. In order to
perform the growth steps of the seed construction algorithm, spectrum queries which
contain more than one free position must be performed. These will be referred to as

multi-position queries, and are formally defined here.

Definition 8.2. A multi-position query is a spectrum query containing more than
one free position. The response to a query with n free positions is the set of all probes

in the spectrum which match the query string over all non-free positions.

8.1.1 Detailed Example of seed Construction

We now give a detailed example of seed construction for a short DNA sequence. The
70-base DNA  sequence GACGTGCCTG ACGCAATAAA GTCATTCCCC
GGCTTGATGT CCGGATTCGG GCGTCGCCGT TCTCTTGTAA produces the fol-

lowing (3, 2)-reverse spectrum:

{A..A..GTC,A..A..TCA,A..C..CGG,A..C..GCG,A..C..TAAA. .C. .TCC,
A..G..ATT,A..T..CTG,A..T..GGA,A..T..TTC,C..A..AAA, C..A..CAA,
C..A..CGG,C..C..CGT,C..C..CTT,C..C..GAT,C..C..TCT,C. .G. .GCA,
C..G..GTC,C..G..TCG,C..G..TGA,C. .G..TTG,C..T. .AGT,C..T. .CCG,
C..T..CIT,C..T..TAA, C..T..TCT, G. .A. .AAG, G..A..CCC, G..C. .ATT,
G..C..CGC,G..C..GAC,G..C..TTG,G..G..ATA,G. .G. .CCT,G. .G. .CGG,
G..G..CTC,G..G..GCC,G..G..GTT,G..T..ATG,G..T..CCG,G..T..CGC,
G..T..GGC,G..T..GGG,G..T..TGT,T..A..CAT, T..A..TCC, T..C..AAT,
T..C..ACG, T..C..GAT,T..C..GCT,T..C..GGC, T..C..GTA, T..C..TTC,
T..G..CGT,T..G..GTC,T..G..TTC,T..T..CCC,T..T..CCG,T..T..TGT}

The probing pattern has length A = 9 characters. If no probes were duplicated,
the spectrum would contain 70 —9+1 = 62 probes. In fact, the probes C. .G..TCG
and C..G. .TGA each occur at two positions in the sequence, and so the spectrum
contains only 60 distinct probes.

To begin seed construction, a probe is selected at random from the spectrum. In
this example, we assume that the probe C. . A. .AAA has been selected. We say that
this probe occurs at position 12 in the sequence (i.e. it was produced by aligning the

left-most position of the probing pattern with the eighth character in the sequence).
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From this initial probe we need to build a seed: a 9-character sequence containing no
unknown characters (universal bases). Four of the characters in the initial probe are
universal bases, so we need to assign values to these four unknown positions in the
probe. This process can be completéd in two growth steps.

The first step in the growth stage will fill in positions 2 and 5 in the initial probe.
The query string used to accomplish this is generated by shifting the (3,2)-probe

pattern one position to the right with respect to the initial probe, as shown here:

C . .A .  AAA
N..N..NNN

This yields the query string 7.A?.AAA?, containing three free positions. They
are represented by the character ?, and correspond to the two positions within the
span of the initial probe which will be assigned values as well as one free position
outside the span of the initial probe. There are two additional unknown positions in
the query string-represented by the ‘.’ character-which coincide with universal bases
in the probing pattern and so do not affect the results of the query. In fact, only two
of the natural bases in the probing pattern align with natural (and known) bases in
the initial probe: positions 8 and 9 of the query. Those two positions are fixed to the
values of the natural bases in the the initial probe to which they align (AA). Note
that these are the only two positions in the query string which restrict the possible
matches in the spectrum; the query string can be rewritten in the form 7. .7. . AA?
without affecting the results of the query. By transforming the query string into the
same structure as the probes in the spectrum, we highlight the fact that only the five
positions in the query string which align with natural bases in the probing pattern
affect the query results. All other positions in the string are irrelevant. Thus, any
probe which matches the query string in only the seventh and eighth positions is a
valid result to the query.

There are three probes in the spectrum which fit the criteria, creating the result
set: {C..A..AAA, G..A..AAG, T..C..AAT}. Each of these probes provides us
with a different assignment for the three free positions in the query. Each of the
three resultant probes provides a potentially correct assignment of values to the free
positions in the query string. There is no way of determining which assignment is the

correct one, so all three must be considered. Each of the matching probes is aligned
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with the initial probe with the same offset that was used to produce the query string
(in this case, one position to the right), and a new string with values assigned to free
positions in the query is produced from the aligned strings. This is defined as the
combination of two strings. Two strings are combinable only if there is no aligned

position which contains different natural bases in the two strings.

Definition 8.3. The combination of two strings so and sy with lengths ly and [y is
calculated for a particular offset k < min(lp,l1) of s1 to the right of so. Each string
is extended to the left or right as needed with universal bases so that each string has
length | = maz(ly, 1) + k. We denote the two extended strings sq and sy. If s5 and
s, are combinable, then he result of the combination is a third string (s.) of length l.
The characters of s.[i],i = 1..l take the value of (spi] & si[i]), where the ‘&’ operator
is defined according to the following table. In the table, N denotes any natural base

and U denotes a universal base.

&|N|U
N|N|N
U|IN|U

Example 8.1. The two strings sy = CC..AC.AA and s; = CATA..AAA are

combined with an offset of 1. This corresponds to the following alignment:

cCc. . AC.AA
CATA . . AAA

Each string must be extended with a single universal base. s; = CC. .AC.AA. is
produced by appending a universal base to sg, and s} = .CATA. .AAA is produced
by prepending a universal base to s;.

The first character in the resulting string s. is C, since character in string s;
aligns with the universal which was added to create sj. The second character in the
resulting string is C, since both s4[2] and s}[2] have the value C. The third and fourth
characters are AT, since string sj contains universal bases in those positions. The

fifth character is A, which is a match between both aligned strings, and so on. The
final string s. is CCATAC. AAA. |
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Combining the query string C. .A..AAA with each of the probes in the result
set, using an offset of 1, yields the following set of three seedlets: {CC.AA.AAAA,
CG.AA.AAAG, CT.AC.AAAT}.

The second step of the growth stage requires three spectrum queries; one for each
of the seedlets in the set. The three query strings are generated by shifting the probing
pattern another character to the right (two positions to the right with respect to the
initial probe), as shown here for the seedlet CT.AC.AAAT:

CG . AA . AAAG
N. .N..NNN

The query string which is produced by this alignment is TAATAAAG?. Again,
there are only two characters in the seedlet which align with natural bases in the

probing pattern. In this case they are the characters AG, corresponding to the seventh

and matches only one probe in the spectrum: C..T..AGT. When combined with
the query string, the seedlet CGCAATAAAGT is produced. This is the first seedlet
with no unknown positions remaining; the other two queries will produce additional
fully-specified seedlets.

The query string corresponding to the seedlet CC.AA.AAAA is TAATAAAAY,
which matches the probes {C..A..AAA, G..A..AAG, T..C..AAT}. When com-
bined with the query string, the seedlets CCCAAAAAAAA, CCGAAAAAAAG and
CCTAACAAAAT are generated. Note that this is the same set of probes which
matched the first search performed, but the results to this query are used to fill in
different positions in the initial probe.

Finally, the query string for the seedlet CT.AC.AAAT is TACTAAAT?, which
matches the four probes: {A..G..ATT,G..C..ATT,G..G..ATA, G..T. . .ATG}.
These four probes yield an additional four fully-specified seedlets: {CTAACGAAATT,
CTGACCAAATT, CTGACGAAATA, CTGACTAAATG]}.

When the results of all three queries are pooled, we get the following set of eight
seedlets; {CCCAAAAAAAA, CCGAAAAAAAG CCTAACAAAAT, CGCAATAAAGT, CTAAC-
GAAATT, CTGACCAAATT, CTGACGAAATA, CTGACTAAATG}.

None of these seedlets contain any universal bases and each of them is long enough

to serve as a seed. However, most likely only one of them is an actual substring of
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the target sequence. The other seedlets were produced by random combinations of
results to the queries performed in the two growth steps. The reduction stage of seed
construction aims to eliminate false seeds from the set.

Like spurious branches in the sequencing process, false seeds will only be extended
probabilistically. To eliminate them, we simply attempt to extend each of them in
parallel. Each extension step produces a single-character query string for each of
the seedlets. The query string corresponding to the seedlet CTAACGAAATT is
ACGAAATT?. There is only one free position in the query, so any probe in the
spectrum which matches the query must match over four positions, compared with
only the two positions which were required to match during the growth stage. Fewer
matches are expected to each of the extension queries since the query strings contain
fewer specified positions, and there are in fact no matches in the spectrum to this
query string, so this seedlet is eliminated.

The only seedlet which can be extended by a single character is CGCAATAAAGT.
(The probe A . . A. . GTC matches the query string AATAAAGT?; the next character
is C.) After only a single reduction step, the seed construction process has completed:
since there is only one remaining seedlet, it must be a valid seed. Note that this seed
is a substring of the target sequence, beginning at the twelfth character of the target.
The initial probe also corresponded to the twelfth character of the target sequence:
the seed construction process served to fill in the unknown characters in the initially

selected probe.

8.2 Complexity of the Basic seed Algorithm

We would like to predict the work required to produce a seed; this most easily ac-
complished by estimating the maximum size of the seed set. The seed construction
process always begins with a single probe; the ultimate size of the seed set is depen-
dent on the length of the target string (which determines «, from Definition 3.3), the
probing pattern, and the strategy used to construct the seed. The notion of a strategy
will be described more fully below.

The growth stage of seed construction is analogous to the branching mode of the

extend algorithm. The primary difference is that each spectrum query has multiple
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unspecified positions, which leads to much larger answer sets. Each free position in
the query string increases the number of potential matching probes by a factor of 4.

Queries will be referred to as n-position queries, where n is the number of free
positions in the query. For instance, the A..G..?T? is a two-position query. In
general, a query with f free positions (an f-position query) can potentially yield 45
results. Every seedlet in the seed set produces a different query string, and every
probe which matches a query provides a different potential assignment of values to
the unknown positions in the initial probe. Thus, each probe resulting from a query
must be combined with the query string in order to fill in additional free positions
in the seedlet. This implies that each step in the growth stage increases the size of
the seed set by some multiplicative factor. Seed construction always begins with a
single probe, so all that is required to estimate the maximum size of the seed set is
to calculate the multiplicative factors.

The most obvious method of filling in the unknown positions in a (4,4)-probe is
presented here as an example. The process begins with a string of the form of the
direct (4,4)-probe pattern NNNN...N...N...N...N. From there, three shifts
are performed. Each shift is a single character to the right, and yields a query with
five free positions. The initial probe is on the first line with N’s standing for natural
bases, and ¢.’s for universal bases. The three query steps are shown in order below.
The free positions in each query are shown using the ‘7’ character. The form of the

seedlets with the corresponding positions filled is shown directly below each query.

Step
NNNN. . .N...N...N...N

1 NNN? .. .2 .. .2 . ..7...7
NNNNN. . NN..NN..NN..NN

2 NNN? .. .2 .. .72 . . .7...7
NNNNNN. . NNN.NNN.NNN.NNN

3 NNN?...N. . .7. . ? ?

NNNNNNNNNNNNNNNNNNNNNNN

At each step, every match to a spectrum query is combined with the query string

and added to the new seed set. Once these three growth steps have been completed,
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at least one of the seedlets in the set corresponds to an actual subsequence of the
target sequence. Most (or all) of the others are spurious, and will be eliminated
during the reduction process.

The expected size of the seed set can be calculated as a function of a. Recall from
Chapter 3 that @ = 1 — e"™*" measures the probability of the finding a particular
k-character subsequence of the target sequence. The first spectrum query has 5 free
positions, so there may be as many as 4° = 1024 matches. Each potential match can
be considered an independent query, and yields a positive response with probability
a. The total number of responses to the query is follows a binomial distribution with
parameter p = . Thus, the expected number of responses to this query is o - 43,

The same calculation holds for the second query as well, except that we must
query the spectrum once for every result to the first query. The sizes of the result
sets to the two queries are multiplicative factors, leading to a seed set containing an
expected o? - 410 seedlets after two queries. By the same reasoning, after the third
(and final) query, we expect to have approximately o - 4'> seeds in the set.

Once the growth stage is completed, the reduction stage is executed, in which each
seedlet is extended a single character at a time, breadth-first. As they are extended,
the seedlets which are not substrings of the target sequence will be extended only
probabilistically as long as there are probes in the spectrum to support them. The
seedlets which are actually present in the target sequence-those which are valid seeds—
will be extended with certainty. The reduction stage continues until all of the invalid
seedlets are eliminated, leaving only valid seeds which may be used interchangeably
as starting points for sequencing.

With every single-character shift performed in the reduction stage, each of the
invalid seedlets is extended if and only if there is a fooling probe present in the
spectrum confirming it. Such a probe must match a query string with x — 1 specified
positions. The query strings used to confirm each seed during every reduction step
have the exact same form as the query strings used during sequence extension: the
(A — 1)-character suffix of the scedlet with a single free position appended. For
example, query strings of this type for seedlets constructed using (3, 4)-probe have the
form NNNNNNNNNN?: an 11-character suffix of the seedlet followed by a universal

base.
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For any probing pattern, there are four possible matches to a query with a sin-
gle free position. Each of the potential matches is present in the spectrum with
probability . Thus, the expected number of extensions to an invalid seedlet in a
reduction-step query is 4. For all reasonable target sequence lengths, 4o < 1, so the
number of seedlets is expected to be reduced by a factor of 4a with every shift.

If the size of the seed set when the growth stage has completed is |setmqz|, then

the average size of the seed set (|set,|) after s reduction steps is given by the equation:

|sets| = |setmas| - (40)°.

By letting |set,| < 1 and solving for s, we get the number of shifts expected to
eliminate all of the invalid seedlets. Note that s need not be calculated in advance
(using the expected final size of the seed set), but should instead be calculated during
the execution of the seed algorithm, after the growth stage has completed. The
average number of reduction steps s required to eliminate all invalid seeds from the

set is:

s > In(|setmaa) - 1n(21&) (8.1)

The number of seedlets remaining in the set after each reduction step is an ex-
ponentially decreasing sequence. And even though it takes an expected s reduction
steps to eliminate all of the invalid seeds, some may remain. Making only the assump-
tion that the seedlets are independently extended or eliminated during the reduction
process, it is possible to gain a measure of confidence that only valid seeds remain in
the set after additional shifts are performed.

Consider an individual (invalid) seedlet present in the set at the beginning of the
reduction process. The probability that it (or one of its descendants) remains in the
set after s reduction steps is bounded above by p, = (4«)®. Since there were originally
|setmaz| seeds in the set, the probability that all invalid seeds have been eliminated
from the set is m; &~ (1 — (4a)®)setmazl. However, (4a)® & —+—, so 7, = 1/e, for any

setmaz’

reasonably large |sete,|. This indicates that there is only slightly more than a 1/3

chance that all of the invalid seeds have been eliminated after s steps. We would like

to improve on this.
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If we want to achieve some confidence factor (7) that no invalid seeds remain in the
set, then we need to execute a total of s’ reduction steps such that ((4a)*)lsetmesl < .

This is equivalent to determining the number of steps required such that:

(1 - (da))ictmesl <y (8.2)

Which can be restated (somewhat inelegantly) as:

In(y)
ln(l — e|3€tma:v|)
> 8.3
5= In(4a) (8:3)

For a seed set of a given size, and a particular «, the number of steps required to
eliminate all of the invalid seeds from the set can be easily calculated. Typically, a
confidence factor of at least v = 0.9 is desired, indicating that any of the remaining
seeds may probably be used as a valid seed. Higher confidence is not necessarily
required; if sequencing fails using one of the seeds, another attempt at reconstruction
may be made using one of the other seeds from the set. The next chapter will
discuss in greater detail the advantages which can be gained by using multiple seeds

in sequencing.

Example 8.2. Consider the (3, 3)-probing pattern NNN. .N. .N. .N. The growth

stage stage of seed set construction for these probes consists of only two fill steps, as

follows:
Step
N N N N N N
1 N N ? ? ? ?
N N NN N N N N N N
2 NNZ? . .2 . .07 .0 07

N NNNNNNNNNNNNN

Each query string produces an expected « - 4* responses, so the expected size of
the seed set when the growth stage has completed is o - 4. If a seed is generated for

an 800-character sequence (and corresponding to oo = 0.1774, we expect to produce

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



209

In(0.9
H‘T‘(—E— Zé’f’“‘) = 28.81, we find

that it will take an expected 29 steps to eliminate the invalid seeds from the set, with

2063 seedlets. By using Equation (4.3) to solve for s’ >

confidence v = 0.9.

If the growth stage seed construction produces more or fewer seedlets than ex-
pected, the value of s’ may change. For instance, if the seed set contains 4000 seedlets
after the two growth steps, solving for s’ > 30.74 indicates that we need to perform
an expected of 31 reduction steps to eliminate all invalid seeds from the set, with
confidence 0.9. [ |

There are two reasons why the seed set may contain more than a single element
even after s’ shifts. First, the initially selected probe may occur at some additional
location in the target sequence (an event which occurs with probability o). If this
occurs, then upon completion of the growth phase, there will be a seedlet in the set

corresponding to each position in the target sequence which matches the probe.

Example 8.3. Recall from the detailed example earlier in this chapter that there
were two probes in the spectrum which occurred at two points in the sequence (the
probes C..G..TCG and C. .G..TGA). If either of these probes were selected as
the initial probe during seed construction, then at the end of the growth stage there
would be (at least) two valid seeds in the set, each corresponding to a subsequence

of the target at each of the locations where the initial probe is found. |

Secondly, there is a size issue. For instance, using (4,4)-probes, when m = 6000
(implying that o = 1 — e7%%09/4° ~ 0.09) the seed set will grow to approximately
783000 seedlets after the 12 unknown positions in the initial probe are filled. With
so many seedlets in the set, it is very likely that at least one of the invalid seedlets
leads to an event akin to a Mode 2 failure (introduced in [HP01] and discussed in
detail in Chapter 4). That is, there is a set of fooling probes in the spectrum which
is sufficient to cover the difference between one of the invalid seedlets and a similar
substring of the target sequence, such that an invalid seed can nevertheless lead into
a valid point in the sequence.

Fortunately, neither of these events produces an invalid seed; any seed so produced
may be used to start sequencing. It is pointless to extend each potential seed until

all but one of them reaches the end of the target sequence and is thereby eliminated.
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Rather, we should continue the reduction phase of seed construction only long enough
to be sufficiently confident that any remaining seedlets are overwhelmingly likely to
be real substrings of the target sequence. This is accomplished by shifting each seedlet
s' times. Once this threshold has been reached, all remaining seedlets are assumed
to be correct, and may be used interchangeably as starting points for extend.

There is one more potential problem. If there are { seedlets remaining in the set
after ' shifts are completed, then there are ¢ sequences being extended in parallel.
Each of the sequences is just as likely to produce a branch as the single putative
sequence produced by the standard estend algorithm. To avoid polluting the set
of valid seeds with one of these invalid branches, we restrict the selection of seeds
to those from which we can extract A-character segments containing no unresolved

branches.

8.2.1 Different Shift Strategies

The naive approach to seed construction is limited in application to shorter sequences
(of length m < 7000) since the size of the seed set becomes too large as « increases. Of
course, increasing the value of x means that much longer sequences can be processed,
but that just postpones the problem. Without changing the probing pattern, we want
to construct a seed in such a manner that minimizes the maximum expected seed set
size. This is done by finding a better method to fill in the unknown positions in the
initial probe. The series of shifts constituting the growth stage of seed construction

will be called a shift strategy.

Definition 8.4. A shift strategy is described by a sequence of offsets relative to
the initial probe. For each offset position, a query is performed, and the results are
combined with the query string so that all positions which are specified in the query

or resulting probes are now instantiated.

Example 8.4. Using this nomenclature, the shift strategy described above for (4,4)
probes is [1,2,3]. |

One obvious solution is to take advantage of the structure of the probe, and

perform shifts of more than a single character at a time. For instance, by shifting
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four times instead of three, and by shifting 4 characters to the right each time, we
get the strategy [4,8,12,16] for (4,4)-direct probes. It looks like this:

Step
NNNN. . N...N...N...N

1 ?27?7?2N...N.. .N...N...?
NNNNNNNN.. .N...N...N...N

2 ??7?N...N...N...N.. .7
NNNNNNNNNNNN...N.. .N...N...N

3 ?77?N.. .N...N...N...7
NNNNNNNNNNNNNNNN.. . N...N...N...N

3 ??2?N...N...N...N...?
NNNNNNNNNNNNNNNNNNNN...N...N...N...N

This may not immediately appear to offer an advantage over the previous shifting
strategy: there are now 4 shifts instead of 3, an increase of one step. However,
note that each shift has only 4 free positions instead of 5, so each step increases the
expected size of the seed set by a factor of 4* - @. The final size of the seed set is
expected to be a* - 41% ~ 282000 when o = 0.09. The additional shift introduced one
extra factor of 4 into the equation, reducing the maximum set size by about 2/3.

In fact, since a < 1/4 for any realistic target sequence length, additional factors
of 4a will always result in a decrease in the maximum expected size of the seed set.
This simple observation forms the basis of a search for a better seed construction
strategy.

The minimum constraint on seed construction is that all of the unspecified po-
sitions in the original probe must be filled. Positions are filled during the growth
stage when a query is performed containing a free position corresponding to one of
the unknown positions in the initial probe. For (4,4)-probes, there are 12 unknown
positions, requiring a series of spectrum queries containing a total of at least 12 free
positions: one for each unknown position in the initial probe.

In addition to the free positions which must be filled in the initial probe, additional

free positions are inevitably introduced outside the original probe’s span. These will
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be called new free positions. Every time the probing pattern is shifted with respect to
the original placement of the probe, at least one new free position is added. Thus, any
complete shifting strategy consisting of ¢ shifts for a probing pattern with length A,
must contain a total of at least A\ — x + ¢ free positions. Each free position introduces
a potential factor of 4 into the maximum seed set size.

On the other hand, every time a search is performed in the spectrum, we inhibit
the growth of the seed set by a factor of «, since each potential response to a query
is present only with probability a.

Note that free positions which fall outside the span of the initial probe do not
contribute any useful information to the seed-building process. Yet they still add
potential factors of 4 to the maximum set size. Moreover, observe that a shift which
introduces one new free position contributes a factor of 4a to the maximum seed set
size, while a shift with two new free positions contributes a factor of 4% . o. While
4o < 1 for any reasonable target sequence length, 4> - & > 1 when o > 0.0625.
When « is small enough that 42 - & < 1, seed construction is trivial. Taking this
into consideration, shifts which introduce more than a single new free position are
excluded from consideration.

Thus we have the following: a shifting strategy which uses ¢ shifts to fill all A — &
unspecified positions in the initial probe produces a total of exactly ¢ free positions
outside the original probe’s span. Each of the ¢ shifts also contributes a factor of «,
so the total expected maximum size of the seed set can be calculated as a product of
two factors. In the expression below, the first factor, (4)?, accounts for the shifting
steps and the new free positions they introduce; the second factor, 4>+ accounts for
the unknown positions in the original probe. Thus, the maximum expected set size

is:

|S€tmaa| = (4a)? - 427% = af - 49TA7"

Note that each shift contributes a factor of 4c, independent of the number of free
positions filled by the query. Typically, (0.1 < o < 0.2), and 4« is always less than
1. Note also that for a given probing pattern, A — « is a constant. This leads to the

following theorem:

Theorem 8.1. Given a probing pattern with length A and x specified positions, a
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shifting strategy So fills in all unspecified positions in ¢ steps. If there exists another
strateqy Sy which fills in all unspecified positions in ¢, = ¢o + 1 steps, the seed set
produced by strategy S is 4o smaller than the set produced by So.

Therefore, the optimal strategy for the growth stage of seed construction is the
strategy which uses the maximum number of shifts to produce a seed. An interesting
special case now arises: it is possible during the growth stage of seed construction to
perform spectrum queries which contain no free positions inside the initial probe’s
range; the response to such queries do not fill in any unknown positions in the initial

probe. For example, take the following series of shifts for a (4, 3)-probing pattern:

Step
NNNN...N...N...N. . .N
1 N NN ? ? ? ? ?
N NNNN N N N N N N N N
2 NNNZ©? .. .2 .. 2. . .0 . .7
NNNNDNN.NNN.NNN.NNN . NNN
3 ??  NN. . .N.. . .N.. . .N...N

Step 3 (a shift of two positions to the left with respect to the initial probe: an
offset of —2) defines a shift which contains two new free positions, but no free positions
within the range of the original probe. At first, it would seem that we would never
want to consider such shifts: they have the potential to increase the seed set size and
yet don’t fill in any positions. However, if we treat these shifts slightly differently

than other growth-stage steps, they can be used to reduce the size of the seed set.

8.2.2 Spectrum Scans

Until now, the growth stage of the seed construction process has included only steps
which actually fill in unknown positions in the initial probe. Here we introduce a
new class of spectrum query which does not serve to fill in the initial probe, which
will be called spectrum scans. They are similar to queries in that they interrogate

the spectrum. However, they do not produce sets of probes which match the query
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string, but rather simply confirm or deny the existence of any matching probes in the

spectrum.

Definition 8.5. A spectrum scan is a spectrum query which returns true if there are
one or more probes in the spectrum which match the query string, and false if there

are no probes in the spectrum which match the query string.

Spectrum scans can be used as shifting steps which serve only to reduce the current
size of the seed set. They are used only to provide negative information about a seedlet
in the set: based on the response to a scan, a seedlet is either removed from or left

in the seed set. No unspecified positions are filled, and no new seedlets are created.

Example 8.5. Consider again the following series of shifts for a (4, 3) probing pattern:

Step
NNNN. . .N.. . N...N...N

1 NNN? . . .72 . . .2 . ... .0 .07 query
NNNNN. . .NN. . NN. . NN..NN

2 NNN? . . .2 . . .. . .7, ..7 query
NNNNNN.NNN.NNN.NNN.NNN

3 ? 2?2 NN...N.. . . N...N...N scan

NNNNNNNN.NNN.NNN.NNN.NNN
4 NNNZ? . . .2 . . .2 . . .7 . . .7 query

NNNNNNNNNNNNNNNNNNNNNNNNN

Note that the shift at Step 3 contains two new free positions, and no free positions
within the initial probe’s range. If this step were performed as a standard spectrum
query, the seed set size would increase by an expected factor of 4% - a, and add no
useful information. However, if Step 3 is performed as a scan, each of the seedlets in
the seed set after Step 2 must be confirmed by one of the 16 possible matches to the
query in Step 3 (the scan returns true). If no match is found in the spectrum (the
scan returns false), then that seedlet is eliminated from the set.

For instance, assume that the seedlet AGCTAG.CGA.AGT.TTA exists in the
seed set after Step 2. If there are no matches to the query ??AG...G.. . A.. .T,

then it is removed from the set before step 4.
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Finally, notice that the seedlets in the set after Steps 2 and 3 have the exact same

form: the scan performed during Step 3 does not fill or add any positions at all. W

A fill strategy that includes scans may reach its maximum size before the final
shift is completed. We now examine the likelihood of removing a seedlet from the set
based on a scan.

Previously, we ignored any shift which produced a query with more than one free
position outside the original probe range. If we hold to that rule, then scans will
be queries with only a single free position: by definition, they have no free positions
within the original range of the probe. Such queries produce at most at most 4
matches in the spectrum, so the likelihood of producing 0 matches is (1 — a)*. When
a = 0.1, performing a scan is likely to eliminate (1 — a)* ~ 66% of all seeds, and
reduce the seed set to about 1/3 of its previous size.

Since a scan cannot possibly increase the size of the seed set, it is advantageous to
perform any scan which reduces the size of the seed set. For instance, a scan which
contains 2 free positions has a probability of (1 — a)'¢ of producing no matches in
the spectrum, thereby eliminating a seedlet. When o = 0.1, this corresponds to a
19% chance of eliminating a seedlet from the set. Can scans with more than two free
positions also be used?

In general, let

cle—(l——a)"‘f

be the probability that there is at least one match in the spectrum to an f-character
scan. And let

be an upper-bound approximation to the expected number of responses to a spectrum
query with f free positions. Values of ¢; and ¢; for « = 0.1 and o = 0.2 are given in
the following table, along with the expected number of matches to the corresponding

f-character query string;:

o (63 Co C3 q1 p) g3
0.110344 1081510999 |04 |16 | 6.4
0.210.590 | 0.972 | 1.000 | 0.8 | 3.2 | 12.8
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Determining whether or not the work required to perform a scan will reduce the
overall work performed in constructing the seed is somewhat complex. We need to
estimate the expected number of spectrum checks that will result from keeping each
of the seedlets currently in the set, and compare that number with the number of
spectrum checks required to perform the scan.

Scans with three or more free positions are extremely unlikely to eliminate any
seeds from the set, and they are exponentially more expensive to perform (requiring
4J spectrum checks for a scan c¢;). Here is work-based justification for scans, limiting

our attention to scans with one or two free positions:

e Single-character scans

Single-character scans are equivalent to a reduction step, so they may be per-
formed at any point in the seed building sequence. The earlier they are per-
formed, the more benefit they produce, since at any step prior to the complete
filling of the seed, they allow the elimination of not just a single potential seed,
but all of the children that would have resulted from allowing that seed to

remain in the set.

¢ Double-character scans

The work-based justification of double-character scans is slightly more complex
than single-character scans. We want to perform double-character scans (scans
which include two free positions outside the range of the initial probe) when the
cost of performing the scan is lower than the cost of individually eliminating all
of the descendants of each of the probes expected to be eliminated by performing

the scan.

The cost of a double-character scan is 16 spectrum checks per seedlet: one
for each of the four possible matches to the query string. The additional cost
incurred by not performing the scan is equal to the probability of eliminating a
seed, multiplied by the total number of checks required to grow and ultimately
eliminate all descendants of the tree spawned from the seedlet which would have

been eliminated.

Given a shifting strategy S, we can calculate exactly the expected size of the

tree spawned from a seedlet at any point in the construction process. Let f; be
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the number of free positions in each query ¢;, and let |set;| be the size of the set
after performing the same query. If j shifts have already been performed, then
the total number of descendants to each current seedlet in the growth stage is

Dy, which can be calculated as:

D, = i adfit|set; |
i=j+1
Now we must consider all of the descendants to the current seedlet in in the
reduction stage. Given that there are ¢ steps in the growth stage, and we have
completed j steps which have filled F' = Zgzo f; of the initial A — k unspecified
positions, we expect there to be approximately |sety] = a?77 - g(@=i)+A—rn=F

seedlets descended from each current seedlet at the end of the growth stage.

The number of descendants of these seedlets in the reduction stage is D, and

can be estimated as follows:

D, =3 (o) - Isetyl
=1

Recall that the probability of eliminating a seed from the set by performing a
double-character scan is 1 — ¢; = (1 — @)'®. Four checks must be performed
for each seedlet at every level in the tree spawned from the current one. We

conclude that double-character scans should be performed whenever

16<4-(1—c)- (D, +D,)

In practice, these calculations were simplified further, and two-character scans
were used as long as there were 2 or more free characters left. This results in slightly
more work being performed by the seed construction algorithm, but limits the ulti-
mate size of the seed set: the ‘optimal’ strategy in terms of work performed requires
more memory than strategies with unjustified double-character scans. Slightly looser
requirements for performing double-character scans assign some value to the memory

taken by the algorithm.
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Now, with u single-character scans and v double-character scans, we can express

the expected size of the set upon completion of the growth stage as

|sety] = cichafqttr=r

The next step is to find an optimal strategy incorporating scans.

8.2.3 Searching for a Better Fill Strategy

Extensive experiments indicate that it is not possible to design a simple greedy al-
gorithm to find the optimal fill strategy for a particular probing pattern. Often, a
shift which produces a query with more free positions than another available shift
at a certain point in the growth stage will allow subsequent shifts which produce an
ultimately smaller seed set. To find an optimal (or near-optimal) shifting strategy, a
randomized algorithm was designed.

The algorithm accepts one parameter: a probing pattern P with length A\. The
result of the algorithm is a series of offsets, all in the range [—(\ — 1), A — 1], corre-
sponding to the shifts and queries which should be performed to fill in all unspecified
positions in a randomly selected starting probe.

Each shift is selected by the randomized algorithm by searching over all admissible
shifts (shifts which introduce only one new free position outside of the original probe

range), with the following rules:

1. If one or more single-character scans are available, perform all of them before

any other shifts.

2. If one or more double-character scans are available, and there are still 2 or
more unfilled positions in the seedlets, perform all of the double-character scans

before any other shifts.

3. Out of all admissible shifts label them all according to the number (f;) of free
positions they produce. If the optimal shift has f’ free positions, select a differ-
ent shift i with probability p = 2~(~),

By iterating over this shift-selection process until all positions in the initial probe

are filled, a single fill strategy is produced. The algorithm is repeated 10000 times,
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and the strategy which produces the smallest maximum set size for a particular value
of « is selected. Note that strategies may differ based on «, because of the varying
effects that scans can have on set size.

The ultimate result of the above algorithm is a seed strategy for (4,4)-probes which
reduces the maximum expected size of the seed set to c3c3a’4', when o = 0.2. A
slightly different seed strategy produces better results when a = 0.1; this discrepancy
is due to the scan steps introducing multipliers which are not linear functions of a.

The span of the initial probe is shown using a bold ‘N’ character to delimit the
ends of the probe. Filling steps are shown on the lines labelled with ‘F’, followed
immediately by another line which shows the characters which have been ‘filled’ or
specified so far. Scan steps (which specify no additional characters) are shown on
lines beginning with ‘S’. At the end of each line corresponding to a scan or fill step,
three numbers are printed. The first number gives the position of the shift relative
to the initial probe position. The second gives the number of free positions in the
query. Furthermore, the actual free positions in a query are denoted with the 7’
character. And the third number gives the expected size of the seed set after that
step has completed, using o = 0.2. For example, a fill step which shifts the probing

pattern 2 characters to the left, and results in a query with 4 free positions, would be

printed as:
S/F Query String Offset Free Set
Pos Size
F ?7...7...7...27...NNNN -2 4 2620

The complete fill strategy for (4,4)-probes is:
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S/F Query String Offset Free  Set
Pos  Size
................N...N...N...N...NNNN.
F.............7. . ..N...N...N...N?777N -4 4 41
= .............N...N...N...N...NNNNNNNN .
F ?2...%7...2...7...NNNN -2 4 2620
= N.N.N.N.N.N.N.N.NNNNNNNN .
S N...N.. . N...N...NN?77 2 2 2546
F ?2...N...N...N...N?7NN -6 2 8147
= N.N.N.N.N.N.N.N.NNNNNNNNNN .
F ?...N...N...N...N?NN -8 2 26068
= .........N.N.N.N.N.N.N.N.NNNNNNNNNNNN .
F ?2...7...7...N...NNNN -3 3 333620
= N.N.NNN.NNN.NNN.NNNNNNNNNNNN .
S ?2...N...N...N...NNNN -7 1 196944
S N...N...N...N...NNN? 1 1 116261
F ?7...N...N...N...NNN? -12 2 371970
= N N.N.NNN.NNN.NNNNNNNNNNNNNNNN .
S ?...7...N...N...NNNN -11 2 361493
S ?7...N...N...N...NNNN -10 1 213399
F ?...N...N...N...NNN? -16 2 682754

= .N...N...N.N.NNN.NNNNNNNNNNNNNNNNNNNN .

The size of the seed set for & = 0.1 and a = 0.2 for randomized fill methods (which
will be called fill*), as well as the two previous methods (called shift-1 and shift-4,

according to the number of positions shifted in each step) is shown in the following

table. Scan-steps are omitted, so that the set size is shown after each fill-step. Also

note that the strategy for a = 0.1 is differs from that for o = 0.2. The maximum set

size reached for each shift strategy is shaded, since it does not always correspond to

the final size of the seed set.
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a=0.1 ~0.2
Step | fill* shift-1 shift-4 fill* shift-1 shift-4
25 102 25 51 205 51

655 | 1.049 x 10 655 2621 4.194 x 10* 2621
1440 | : 1.678 x 10 8151 1.342 % 10°

. 1 2.608 x 10*
1743 3.338 x 10°

2788 3.618 x 10°

|l ot kW N ]

T

There are several things which should be noted in the above table. First, for
o = 0.1, the size of the seed set for the fill* strategy peaks at step 4. This is due
to the judicious use of scan-steps during the growth stage. Second, the maximum
size achieved for & = 0.1 by the fill* strategy is about 3% of the size reached by
the initial naive fill strategy (shift-1). While the advantage of the fill* strategy is
diminished when a = 0.2, the maximum seed set size is still only 8% of the maximum
size reached by the naive shift-1 strategy. This reduction makes it possible to consider
constructing seeds for sequences which approach (or even exceed) the limit achievable
by our algorithm (m ~ 15000).

8.3 Probe Structure

We have not been able to make any specific predictions regarding the maximum seed
set size which will be generated by a good shift strategy for a given probing pattern.
However, we were able to make some general observation regarding the effect of probe
structure on seed construction.

It is possible to reduce the expected size of the seed set by choosing probing
patterns different from the standard (s, r)-probes. Of course, if the length of the
pattern is increased or decreased, a corresponding increase or decrease in the set size
is to be expected: every additional unspecified position in the probe increases the
expected set size by a factor of at least 4. But even considering only patterns with
)\ = 20 and x = 8, striking results can be observed.

For instance, a brief experimental search results in the discovery of a pattern
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N...... N...... NNNNNN (essentially a (6, 2)-probe with an additional universal
base inserted in each of the gaps) which yields a fill strategy with a maximum expected
size of c’a® - 4%°. This results in a final (and maximum) set size of only 2.01 x 10°
seedlets when o = 0.2; less than 1/3 the size of the set produced by a (4,4)-pattern.
And thepattern N. . .. ........ NNNNNNN produces a maximum set size of only
4.1 x 10% seedlets when o = 0.2. Furthermore, the fill strategy which produces such
a small seed set is optimal, in that is uses 12 shits to fill the 12 unspecified positions
in the probe. There is no fill strategy for any probing pattern with x = 8 and A = 20
which could use more shifts.

These non-standard probes are obviously better suited to seed construction for
longer sequences (with correspondingly higher «) than the standard (s, r)-probes. The
drawback to patterns which are suited to efficient seed construction is that they have

poor autocorrelation functions and are ill-suited to actual sequence reconstruction.

84

~20 —10 10 20

Figure 8.1: Autocorrelation function for (4,4)-probing pattern.

At the other end of the spectrum, the ideal probing pattern for sequence recon-
struction is a Golomb ruler: a pattern which has auto-correlation of at most 1 for any

off-peak shift. The shortest (optimal) Golomb ruler with 8 marks (specified bases)
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has length 35; this is significantly longer than an (s, ) probing pattern, but serves as
a useful example of worst-case seed construction®. Since the first shift performed in
the growth stage of seed construction intersects with at most one specified base from
the initial probe, the expected size of the seed set after only one shift is a4’ seedlets.
It is impossible to improve on this result for the initial shift because there is no offset
at which the Golomb-pattern has autocorrelation of more than 1 position. The final
(and maximum) size of the seed set constructed using a the best known fill strategy
for a Golomb-ruler probing pattern is c;c2c!%4%7 after 10 shifts, effectively making it

impossible to construct a seed at all with such a pattern.

8.3.1 Autocorrelation and Seed Strategy

8

6_

4—

2,.

Ok T

20
Figure 8.2: Autocorrelation function for (5,3)-probing pattern.

By comparing (4,4)-probes with the patterns N. ... .. N...... NNNNNN and
"The 8-mark ruler used here was NN..N....N..... N...... Nooooo.n. N.N,
from the Optimal Golomb Ruler page on the internet at

http://www.research.ibm.com/people/s/shearer/gropt.html
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N.oooon.. NNNNNNN, we note that in general, the size of the seed set de-
creases as the gaps in the probe grow fewer and larger. In particular, the best seed
strategy is produced for a probe with only a single gap, of length 12. Such probes are
not suited to sequence reconstruction, due their poor autocorrelation functions.
However, (4,4)-probes and (5,3)-probes are nearly identical in terms of sequencing
performance, and (5,3)-probes are significantly better for seed construction. The
best-known fill strategy for (5,3)-probes produces a final seed set size of 4.27 x 10°

when « = 0.2, corresponding to a seed construction strategy yielding cla4.

—20

Figure 8.3: Autocorrelation function for N............ NNNNNNN probing pat-
tern.

In general, there appears to be a trend in the autocorrelation function of these
probes, which corresponds well with the observed maximum seed set sizes. As the cen-
tral peak in the autocorrelation function increases in prominence, the size of the seed
set decreases. The histograms for the autocorrelation of the (4,4)— and (5,3)-probes
and the N........... NNNNNNN pattern are included as figures for reference.
Also, the following table shows the maximum seed set size achieved by the best-

known seed strategy for a variety of probes. For all probes, x = 8, and for all but the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



225

OGR-probe, the overall probe length A = 20.

Probing Pattern |s€tmas| of Best Fill Strategy
NNNN...N...N...N...N (4,4) 682750
NNNNN....N....N....N(53) 414700
NNNNNN...... N...... N 201930
NNNNNNNN........... N 41140
N..N..N..N..N..N.N.N 103900
NNNN............ NNNN 133190

OGR-8 probe 31.45 x 10°

The inference we can draw from these observations is fairly simple. We know that
probing patterns which have very low autocorrelation functions perform better dur-
ing sequencing, since the correction factor required to account for the possibility of
overlapping fooling probes is lower. However, the difference in sequence performance
between (s, r)-probes and an OGR probing pattern is barely significant: an increase
of about 2-3% in terms of sequence length. On the other hand, it is effectively impos-
sible to construct a seed from the spectrum of an OGR probe, due to the explosive
growth of the seed set. For seed construction, (s,r)-probes have a remarkable ad-
vantage, due largely to their periodic nature. In fact, the ease with which seeds can
be constructed for (s,r)-probes gives them an overwhelming advantage over longer

probes with ‘better’ autocorrelation functions.
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Chapter 9

Conclusion & Future Work

Sequencing-by-Hybridization has been studied for almost 15 years. The initial at-
tempts to develop SBH as feasible sequencing method [BS91, L+88, D89, P89, P91]
yielded results which fell short of providing any improvement over traditional sequenc-
ing techniques. The information theoretic bound on the length of fragments which
could be reconstructed using the technique on the maximum fragment length which
could be sequenced with a fixed confidence level € using probes with « natural bases
was %

The performance of the initial algorithms was shown to be limited to the square
root of the information-theoretic bound [DFS94, S96]. However, more recent devel-
opments have proven that the method has a great deal of promise. By making use
of universal bases, Preparata, Frieze & Upfal [PFU99] presented an algorithm which
achieved performance that asymptotically approached the theoretic bound.

In another paper in 2000, Preparata & Upfal [PU0O] presented another, more
advanced SBH algorithm which achieved performance within a constant factor of
about 0.4 of the information-theoretic bound: this is the basic gapped-SBH algorithm
which is described in Chapter 2. Their algorithm and analysis of its performance are

used as the foundation of the current work.

226
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9.1 Contributions

The research described in this dissertation has taken several forms, most notably
enhancements to the existing SBH algorithm and further analysis of its behaviour.
Although these improvements only affect the constants in an SBH method previously
shown to be asymptotically optimal, the potential applications of SBH are such that a
constant factor improvement can be very significant. Other than enhancements to the
sequencing algorithm, we also developed a method of seed construction that allows
sequencing to commence even in the absence of a known, biochemically affixed primer
string. Finally, we measured the performance of the SBH algorithm on natural DNA
sources. From this, we developed a preliminary model of DNA that offers a degree of
predictive power, and allows a variety of natural DNA to be represented by a model
of only a few parameters. These contributions can be divided into four basic areas,

which are each described in turn.

e Algorithmic Enhancements

We have extended previous algorithms to increase the performance of gapped-
probe SBH by over 50%, to nearly 2/3 of the information-theoretic bound,
when using (4,4) or (5,3)-probing patterns. All of the performance increases
discussed below assume the use of these specific probes. There were three

specific enhancements made to the SBH algorithm from [PU00].

The first was the polling provision described in Chapter 5, which makes an in-
formed decision between two alternate extensions at a failure point. The polling
provision increases the predicted and observed maximum fragment length by

about 25% over the standard gapped-SBH algorithm.

Second, the tandem-spectrum sequencing algorithm allows a 30% increase in the
length of feasible target sequences, over and above the required increase in chip

cost, and independent of the polling provision.

When the polling provision and tandem-spectrum sequencing algorithm are used
together, they allow target sequences of length m > 42000 bases (with doubled
chip size) to be successfully reconstructed with confidence € = 0.9. Figure 9.1

shows a comparison of all four techniques.
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Figure 9.1: A comparison of single-spectrum and tandem-spectrum sequencing with
and without the polling provisions, using random DNA and (4,4)-probes. Solid lines
represent the predicted values for all four conditions, and dotted lines the observed
values. From left to right, we have single-spectrum without voting; tandem-spectrum
without voting; single-spectrum with voting; and tandem-spectrum with voting.

Finally, the repeat-recovery technique, while not really applicable to random
DNA, allows a minor increase in the length of natural DNA sequences which can
be reconstructed, and indicates that targeted algorithms may further improve

sequencing performance on natural DNA.

e Combinatorial Analysis

The analysis of the size of the path trees created by EXTEND’s branching mode
gives greater insight into the behaviour of the SBH algorithm than has previ-
ously been available. We developed a detailed model of the growth of the path
trees that naturally allows a very accurate prediction of the amount of work—in

terms of spectrum CHECKs—performed by the sequencing algorithm.

Furthermore, we developed an analytical model of Mode 2 failures, which are
the dominant failure mode for tandem-spectrum SBH. Prior to our work, only

Mode 1 failures had been well-understood.
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¢ Seed Construction

The seed construction algorithm described in Chapter 8 allows sequencing to
be started at any location in the sequence, negating the need for primers to
be affixed to the end(s) of the target sequence. This gives gapped-SBH a nice
degree of algorithmic completeness: other than the hybridization process, no
other biochemical steps must be completed before the computational sequenc-
ing algorithm begins. Furthermore, the ability to construct a seed from the
spectrum of a target may allow multiple fragments of the target sequence to be

produced when the algorithm fails, rather than a single shortened piece.

e Measuring and Modeling Natural DNA

In order to facilitate comparison between different sequencing techniques, their
performance has traditionally been evaluated only in terms of their expected
performance on random DNA. We continued to uphold this convention through-
out the current dissertation, but we have also measured our algorithms’ perfor-
mance on natural DNA sequences. This additional information offers an initial
view of how well SBH may perform in real-world situations. Furthermore, by
examining the behaviour of the SBH on natural DNA, we were able to be-
gin developing algorithmic methods to compensate for the structural problems

inherent in such sequences.

The repeat-recovery technique was the first of such methods, and although it
did not offer the performance gains that were hoped for, it did successfully
overcome some of the short-period failures that occur when sequencing natural

DNA. However, there is a lot of room to improve the method in the future.

9.2 Future Work

There are many avenues open for further research on this topic. We begin by men-
tioning minor extensions and improvements to the methods developed in this thesis,

and move on to more elaborate projects.

e Improved Repeat-recovery Algorithm
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The repeat-recovery algorithm, in its current state, allows recovery from only the
most basic of repeat failures. It should not be too difficult to extend the current
algorithm to handle more complex cases, with multiple potential continuations

and more than one repeated segment.

e Better Model of Natural DNA

A simple model of natural DNA presented in Appendix C is sufficient for our
current purposes, but it could also be used as a starting point for building a
more rigorous model. If the repeated subsequences present in DNA are due
to one (or a few) biological processes, then a model that accurately reflected
the behaviour of these processes could be useful not only to computational

biologists, but researchers in related fields as well.

e Eulerian Path Sequencing

When the polling algorithm selects an extension at a the point of Mode 2 failure,
it then immediately ‘forgets’ the paths that it chose between, along with the
identity of the path that it chose. This information could be stored, instead of
discarded. Then, if the same ‘choice point’ was encountered again, the algorithm
would know that it should not select the same extension as it did in the previous
encounter. This strategy, along with a reasonably accurate estimate of the total
length of the sequence, would allow an Eulerian path traversal over all choice
points encountered during sequencing. Such a traversal could be expected to
offer (at least) a small performance improvement, and might also help to select

between multiple alternate continuations from periodic segments.

e Sequencing with Noisy Data

Attempts [DHO0O, H+02] have been made to extend SBH to function in the
presence of noisy data. While they have extended a less advanced version of
the gapped-SBH algorithm (introduced in [PFU99]), the results have been en-
couraging. Halperin et. al. [H+02] demonstrated a sequencing method using a
collection of randomly generated probing patterns which achieved performance
only a factor of logm worse than for the noise-free case. And Leong et. al.

[LPSW02] used another approach to control for noise in SBH. However, most
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research into SBH with noisy data has used the initial [PFU99] version of the

gapped-SBH algorithm. More work needs to be done to extend the more ad-

vanced versions of the SBH algorithm to function in the presence of noise.
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Appendix A

GenBank Accession Numbers

The following GenBank files were used in this thesis:

Organism name / Chromosome

Accession Number

Date

a. thaliana chr. I NC_003070 August 13, 2001
a. thaliana chr. III NC_003074 August 13, 2001
h. sapiens chr. 3 NT_015150 August 1, 2002
h. sapiens chr. 11 NT_017854 August 1, 2002
p. falciparum chr. 3 MAL3 April 15, 1999
s. cerevisiae chr. IV NC_001136 September 22, 2002
e. coli N/A NC_000913 October 26, 2001
h. influenzae N/A NC_000907 February 14, 2002
s. typhimurium N/A NC_003197 November 7, 2001
s. pneumoniae N/A NC_003098 October 3, 2001
m. acetivorans N/A NC_003552 April 9, 2002
s. solfactaricus N/A NC_002754 October 3, 2001
232
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Appendix B

Obtaining the Simulator Source

The data generated in this dissertation was generated using an SBH simulator pro-
gram written in C++ on Solaris and Linux (RedHat and Debian). It consists of about
15 thousand lines of source code (including blank lines and comments), and several
additional helper programs which are used to extract coding sequences from GenBank
files; calculate Markov Models from data; generate data from Markov Models; and
generate random probing patterns (or sets of patterns).

While it was designed with a single purpose—to supply experimental verifica-
tion of the analytical predictions made in this thesis—it may be useful to any other

researchers who are working on SBH algorithms. (On the other hand, it may not.)

B.1 Obtaining the Source Code

A tarball of the simulator source code, along with some related scripts and other
utility programs may be obtained at http://www.cs.brown.edu/ sah/seq.tar.gz.

The simulator has been compiled, at various times, using different versions of the
Sun and gnu compilers, but development for the last 8 months was conducted entirely
using versions 2.95 and 3.1 of the gnu C++ compiler on Debian Linux 2.2 and Redhat
Linux 7.2, respectively. Minor changes to the source may be required to make the
code conform more precisely to the C+-+ standard (if such a standard can even be

said to exist).
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Appendix C

Model of Duplicated Subsequences
in DNA

The performance of SBH degrades significantly when the target sequences are drawn
from natural DNA. Mode 1 failures are more common, and Mode 2 failures occur with
dramatically greater frequency. There are also repeat-failures which do not occur at
all in random DNA, but appear with some frequency in natural data. To try and
understand what it is about natural DNA that produces more and different types
of failures than random data, we took preliminary steps to build a better model for
natural DNA.

C.1 Natural DNA and Models

A great deal of work (see for example, [F+94, LLY00]) has gone into calculating the
information content, or entropy of DNA. While the results of these studies indicate
that DNA appears to be nearly random, most of the techniques for estimating in-
formation content assume that the data source being observed is stationary. This
assumption is inherently flawed. Introns are qualitatively different from exons: one
type of DNA is used to code for proteins, and the other is not. Coding regions differ
from intergenic regions even more drastically. Any measure of information or entropy
which assumes a memoryless model is bound to misrepresent the data.

Furthermore, exons cannot be random sequences: the proteins into which they are

234
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translated have specific functions which must be encoded in their sequences. There
are also higher-order patterns in DNA caused by natural processes of infection by
viruses, recombination of DNA molecules, ‘jumping genes’ called transposons, and
the non-random effect of natural selection. A detailed examination of the primary
structure of DNA—the sequence itself—can provide valuable help in refining our

algorithms, and may be of some use to biologists and other bioinformaticians as well.

C.2 Suffix Trees

The most important aspect of natural DNA from our perspective is the frequency
and length of duplicate strings in a fragment. Duplicates of length (A — 1) or greater
automatically cause the SBH algorithm to fail, and even shorter repeats significantly
enhance the likelihood of a Mode 2 failure. The suffix tree is a natural way of studying
the occurrence of repeats at a high level.

Suffix trees are data structures which contain all possible suffixes of a string. Nodes
in the tree have a degree of at most the size of the alphabet (in the case of DNA, this
limit is 4), and every unique suffix corresponds to a leaf in the tree. Thus, the string
CAGCAGT, which is 7 characters long, would have 7 leaf-nodes—one for every possible
suffix—including the complete 7-character string. Every unique directed path from
the root of the tree to a leaf node reproduces a unique suffix of the tree. BEarly
methods for constructing suffix trees were slow for strings of 10° characters or more,
but Ukkonen’s algorithm [U95] constructs a suffix tree in amortized linear (O(n))
time.

The usefulness of the suffix tree in finding duplicate strings lies in the internal
nodes of the tree, not the leaves. If a node has at least two children, then the string
from the root leading to that node must occur at least twice in the tree. In fact, it is
possible to count the number of occurrences of any string in the sequence by finding
its corresponding node in the tree and counting the number of leaves in the subtree
rooted at that node.

By traversing the tree and counting the number of internal nodes at depth n, we
can count how many different strings of length n are duplicated at least once in a

sequence, since every internal node in the tree corresponds to a string which occurs
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Suffix tree data for 200Kb random data
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Figure C.1: The suffix tree for a 200Kb random DNA sequence shows a full tree up
to length 7, followed by a probabilistic exponential falloff for longer strings.

at least twice in the sequence. In random sequences, the tree appears to be full at
short lengths: for m = 2 x 10°, all possible sequences of length n < 7 are present
in the tree, indicating that they occur at least twice in the sequence. At lengths
n > 7, duplicate strings of length n are present with probability decreasingwith
length. Recall from Chapter 3 that the probability of finding a particular n-character
string in a random m-character sequence is Q(y ). Thus, the probability of finding
at least one duplicate string of length n in an m-character sequence is approximately
M - O(m,n)- The likelihood of finding any duplicate strings of 20 characters or greater
in strings of less than 20Kb is very small. In fact, even with m = 200 000, there is
only a 3.6% chance of seeing a duplicated string of length 20.

A plot illustrating the distribution of the length of duplicated strings observed in
a typical 200Kb random sequence of DNA is shown in Figure C.1.

Without a good model of natural DNA, there is no way to predict the incidence
of long duplicated strings in natural organisms. However, as Figure C.2 shows, the
DNA natural organisms shows a much higher incidence of long duplicated strings

than random sequences. This is important, because every duplicate string of length
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Comparison suffix tree data for 200Kb data
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Figure C.2: Suffix trees for natural DNA demonstrate an increased incidence of long
duplicated strings.

(A — 1) or greater causes the basic algorithm to fail. A model can help us extend the
basic sequencing method to recover from some of these failures. But perhaps more
importantly, we also would like to be able to better predict our method’s chance of

success.

C.3 Markov Models and Entropy

It is obvious that there are more repeated strings in natural DNA than would re-
sult from a simple uniform random generating model. Somewhat misleadingly, the
incidence of individual bases in natural DNA sequences appears to be fairly uniform,
although there is some skew to the occurrence probabilities. If some nucleotides are
more common than others, then sequences which consist of the more common nu-
cleotides will occur (and thus be duplicated) with greater frequency than others. The
following table shows the occurrence probabilities observed for five different natural

DNA sequences:
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Data source A C G T

human chr. 1 0.3011 | 0.2001 | 0.1998 | 0.299
human chr. 1 CDS | 0.2394 | 0.2593 | 0.2589 | 0.2424
e. coli 0.2463 | 0.2543 | 0.2535 | 0.246
h. inf 0.3102 | 0.1916 | 0.1899 | 0.3083
p. falciparum 0.399 | 0.09902 | 0.09975 | 0.4022

While we know that a simple memoryless model does not suffice as a model of
natural DNA, it is reasonable to ask how well a stationary Markov Model with a
memory of the previous ¢ states would reflect natural data. First it is necessary to
determine what value of € would most accurately represent the DNA being modeled.
To do this, nine Markov Models (with € = 0, 1,. .., 8) were trained on 2.5Mb of coding
sequences from human chromosome I and e. coli. Once the models were trained, the
estimated entropy e = — Y plog(p) per state was determined.

The following table shows that the entropy value appears to asymptotically ap-
proach about 1.9 bits per base until the 7th-order model, when it drops precipitously.

MM order | e. coli | human chr. 1 CDS
0 1.99983 1.99915
1 1.98142 1.95409
2 1.96005 1.94837
3 1.9455 1.93929
4 1.93736 1.94563
5 1.93049 1.9311
6 1.9228 1.91924
7 1.88741 1.88585
8 1.75188 1.64665

Upon examination, it was found that about 10% of the states in the 7th-order
Markov Models had been visited 3 or fewer times, and nearly 15% of the states in the
8th-order models had been visited 3 or fewer times. With so few visits to so many
states, the transition probabilities out of these states could not possibly accurately
represent the underlying DNA, and the low entropy values for these low-visit states

was skewing the overall average entropy value for the model.
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We created Markov Models for 8 different natural sources of DNA, setting the
value of & to 5 or 6, depending on the number of training states available. If fewer
than 1Mb were available, £ was set to 5; otherwise it was set to 6. Each Markov
Model was then used to generate 2Mb sequences, and the suffix-trees were created
for both the natural DNA sources and the MM-generated data.

From the suffix trees, we counted the incidence of duplicate strings of up to 25
characters, and compared these suffix trees to those for natural DNA. In general,
any difference between the incidence of repeated strings in the natural DNA and
Markovian-generated DNA will have to be dealt with separately from the Markov
Model. Figure C.3 shows the difference between suffix tree sizes for natural e. cols

and data produced by a 6th-order Markov Model of the same.

e. coli Suffix Tree
1e406 T T

' Actual Sequence ~———
6th-order MM --==-- E
Residual -------

100000

10000 |

1000 |-

g .
100 |- - o e
N

1 1 1 ) 1
10 15 20 25 30

Figure C.3: Duplicate strings in e. coli compared to those predicted by a 6th-order
Markov Model. The Markov Model accurately produces the correct number of dupli-
cate strings up to about length 16.

In general, the Markov Models are not particularly accurate models. They can
accurately reproduce the occurrence of duplicate strings of DNA for lengths n < 16,
although it begins to underpredict duplicate strings, at about length 13. The Markov

Model almost never produces any repeats longer than 22 characters at all.
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Figure C.3 shows the results of such an experiment for a 6th-order Markov Model
of e. coli. The graph shows, for lengths 5 to 22, the number of duplicate strings over-
predicted (negative number) or under-predicted (positive number) by the Markov
Model. There is an atypical spike around length 11, where the model actually un-
derpredicts the number of duplicate strings of that length. This is unusual, and ulti-
mately not very relevant to the construction of a more complex model, since strings
of that length do not typically have much influence on sequencing failures.

These simple experiments show that although a simple Markovian model is ob-
viously not sufficient to accurately model the repeat-structure of natural DNA, it is
significantly better than a uniform random data. We move on to develop a better

model of natural DNA, using a Markov Model as a base.

C.4 Building a Model

Any good model of DNA should be able to represent a wide variety of natural DNA
sources, with only parameter changes—the structure of the model should be left
unmodified. For the purposes of measuring or estimating the performance of DNA,
an effective model must generate sequences which exhibit the same repeat structure as
natural DNA, as it is the repeat structure which has the greatest impact on sequencing
performance. Starting with a sequence generated by a 5th- or 6th-order Markov
Model, it is possible to reproduce the repeat structure of natural DNA by copying
substrings from one location to another in a way that hopefully mimics the processes
of evolution that generate the modeled natural DNA.

The most important aspect of the repeat structure is the length of the dupli-
cated strings. The gap between two copies of a duplicate string is also impor-
tant, since duplicate strings which do not fall into the same sequencable fragment
cannot possibly affect the sequencing of that fragment. Finally, the gap between
duplicate-string pairs—the inverse of the expected number of duplicate pairs—must
be included in the model. This value measures the distance between the first copy
of one duplicated string and the first copy of the next duplicated string. Dupli-

cate strings can be interleaved—for two strings a and b, they may have the order
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..ay...by...ay...by.. —the gap between duplicate strings measures the space be-
tween a; and by.

To simplify the discussion of the model slightly, a pair of duplicate strings will be

called a ‘duplicate event’. The constructed model has three parameters to represent

these values:

e 7, the length of the duplicate strings.

e t, the ‘small gap’ or within-pair spacing between two occurrences of the same
string.

e T, the ‘large gap’ or spacing between two different pairs.

Unfortunately, the three parameters are not independent. Shorter duplicate strings
occur with greater frequency than longer ones, so the large gap size T' decreases with
7. There may also be other subtle interactions between the parameters 7 and ¢, with
the small gap size t decreasing as the size of the duplicated string 7 increases. Fur-
thermore, the underlying Markovian generating model used as a starting point for
the model produces many of the shorter (7 < 16) duplicate string events.

A starting point is needed to estimate appropriate model parameters, and the
suffix tree offers a valuable visualisation of two of them. The maximum length 7 of
the duplicate strings determines the length of the ‘tail’ of the suffix tree, and the large
gap spacing T determines the incidence of duplicate events, or the height of the tail.

Figure C.4 shows the suffix tree for coding sequences (CDS) taken from human
chromosome 1. There are a few extremely long repeated strings of length 7 ~ 1000
which occur in these sequences. In e. coli, the duplicate strings are not this long, but
there are still repeats of several hundred bases. Typically, extremely long repeats are
separated by a small gap of t ~ 10° bases. While these widely-spread pairs of long
duplicated strings may be interesting biologically, they are not typical of the observed
pattern of duplicate events. To make the construction of a model feasible, we need
to restrict our focus to the duplicate strings which cause sequencing failures.

To restrict the model to relevant events, repeats which will not affect the per-
formance of our sequencing method are ignored. First, the model is restricted to

duplicated strings which occur within 20Kb of one another (events with a small gap
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Suffix tree data for 2Mb human chromosome 1 CDS
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Figure C.4: The suffix tree for human coding sequences shows several extremely long
repeated strings.

t of less than 20Kb). We will also only attempt to model the distribution of string
lengths 7 up to 100 bases; longer strings will be treated as though they have some
length 100 > 7 > 50. This will have the effect of reducing the average duplicate string
length somewhat, but will not affect the usefulness of the model, as any duplicate

event of length 7 > A results in a Mode 2 failure.

C.4.1 Length of duplicate strings: 7

Our model should predict the incidence of duplicate strings which are long enough
to affect the performance of the sequencing algorithm. However, many of the shorter
(t < 16) events are produced by a Markovian model. To avoid overpredicting the
incidence of shorter events in the model, we consider only events which are quite rare
in the underlying Markovian sequence. The threshold was set at the point where
the Markovian model generated fewer than 20% of the observed duplicate events of
a particular length. For e. coli, this corresponded to 7 > 16.

A histogram of all duplicated strings of length 7 > 16 was constructed to mea-

sure the distribution of 7 in e. coli. Using Maple we manually fit a mixture of an
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exponential and a uniform random distribution to match the observed values.
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Figure C.5: The histograms of the lengths of duplicate strings observed in e. coli
(left) and predicted by a blended model (right).

The parameters necessary to model the duplicate string length are the mean of
the exponential €mean, the offset of the exponential (since it begins at 15+, not at 0)
eoffset, the range of the uniform distribution mg and Umes, and the portion of the
total distribution attributable to the exponential, €percent-

The actual parameters used to generate the above data for e. coli are presented
in the following table, along with parameters for a model of Human Chromosome 1

coding sequences. !

!The Human Genome Project is producing new annotations at a very rapid rate. The draft of
Human Chromosome 1 which was initially used to produce this model was obtained in February
2001. It contained only half of the annotated coding sequences of an October 2001 draft of the
same sequence. The distribution of repeated strings appears to have changed significantly, and
the model had to be updated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



244

Parameter | e. coli | human chr. 1
€mean 10 8

€offset 17 16
€percent 0.7 0.8
Umin 24 30

Umnaz 100 100

C.4.2 Gap between duplicated strings (intra-gap spacing): ¢

To accurately model the spacing between two copies of a duplicate string, it is again
important to only include the events which are not produced by the Markov Model.
The spacing between duplicate strings produced by the Markov Model should be
uniformly distributed; the gap between the non-Markovian duplicates is not. To
avoid interference from the Markovian events and their uniform distribution, only
events of length 7 > 17 are included in the model of the small gap size.

This model is further restricted to repeated strings which have a small gap size
t < 20* bases. 20KDb is well above the practical maximum length (for now) for single-
spectrum sequencing of real DNA. Any duplicate strings which are separated by more
than 20Kb will never fall into the same sequencable fragment.

With Maple it is a simple process to informally fit a distribution to the observed
small gap sizes. Again, as in the model for 7, a good fit can be achieved using a
mixture of an exponential and a uniform distribution. The only modification is that
no offset is used for the exponential distribution of ¢, and thus the parameter eqge:
is not required. The parameters used for a model of e. coli and Human Chromosome

1 coding sequences are presented in the following table:

Parameter | e. coli | human chr. 1
€mean 600 1200
Epercent 0.84 0.96
Umnin 2000 2000
Urnaz 17500 20000
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C.4.3 Gap between events (inter-gap spacing): T

The gap between events (large gap, or T') is tricky to model accurately: it appears to
be extremely well represented as a mixture of two exponential distributions, one with
a much shorter mean than the other. However, there is some difficulty in deciding
which events to include in the model. While it would seem to be enough to simply
ignore all duplicate strings of length 7 < 17-—as with the model of the small gap size
t—the number of events included directly determines the mean value of T'.

Furthermore, the underlying Markovian overpredicts some of the shorter events;
most notably those of length 7 = 14. It is not entirely clear what should be done to
compensate for this overprediction. For the time being, it appears to be sufficient to
include only events with 7 > 16; the number of non-Markovian events ignored with
length 15 or less is approximately equal to the number of Markovian events included
with length 16 or greater.

To measure the mean values of the two exponential distributions, we separate all
of the gap sizes into two sets: gaps of 500 bases or fewer, and gaps of greater than
500 bases. A random exponential distribution with mean equal to the mean gap size
of the smaller set yields a nearly perfect match.

This method yields the following values for the exponential parameters of 7"
esman and ep;g, as well as the proportion of gaps distributed according to the smaller

exponential s.

Parameter | e. coli | human chr. 1
€small 88 45
€big 30000 9300
s 0.65 0.72

C.5 Evaluating the Model

In order to validate the model, we performed simulated trials on sequences generated
by the two models, and the original natural DNA sources they were modeled on. The
results are shown in Figure C.6. The performance curve for the original and modeled

e. coli sequences agree remarkably well. For human coding sequences, there is a
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Comparing Sequencing Performance on Natural and Model DNA
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Figure C.6: Comparing natural and modeled e. coli and human coding sequences.

general trend in the right direction, but the model is not perfect. There are several
possible reasons for this.

First (and most likely), there are factors affecting the sequencing of human DNA
which are not reflected in the model. Second (and also quite likely), the selection
effects introduced by the current methods of gene annotation could be introducing
significant artifacts into the sequences being modeled—many of the coding sequences
used to create the model are annotated based only on the prediction of a single gene-
finding software tool. The available data is changing rapidly, and the model should

be re-evaluated in often.
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