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Chapter 1

Introduction

1.1 Motivation

In recent years, the field of machine learning [33] has evolved to produce a set of power-
ful methods to complement knowledge engineering for solving classification problems
among others. The task of classification is to assign objects to a set of predefined
classes. In text classification, in particular, the object could be a news article, and
the class an identifier that corresponds to the topic of the article, e.g. politics, art,
sports, etc. The document shown in Figure 1.1, for example, obviously belongs to
the general class “sports”. In knowledge engineering, a human expert would con-
struct a set of rules in order to automatically perform the classification task. One
such rule, for the example above, could be the following: “if the document contains
the word football then assign it to the class sports”. Although, it may be relatively
easy for a human to assign an object to a class, it is not always as simple to provide
a set of rules that perform the classification with acceptable accuracy. It may also
be impractical to provide such rules for a wide variety of classes. Furthermore, for
classification tasks, where the objects to be classified are not as intuitive as natural
language text, human experts may be able to specify object/class pairs, but not a
precise relationship between objects and the corresponding classes.

The machine learning approach to solving classification problems is to automat-

ically infer a classification rule based on such a set of object/class pairs. This is a
1
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04 July 2004 19:45 (Portugal Local Time) - (Luz)
Greece kings of Europe

Greece pulled off arguably the biggest shock at a
major football championship as a goal by
Angelos Charisteas gave them victory at UEFA
EURO 2004™. Having begun the tournament as
80-1 outsiders, the achievement of Otto
Rehhagel's team of European journeymen is hard
to put into perspective, but once again the belief
they have shown in themselves throughout this
amazing adventure was too strong for their
opponents.

Figure 1.1: Text Classification. The first paragraph of an article that appeared on
the web. A human can easily recognize the text as belonging to the class ‘sports’.

general problem of learning functions between input and outputs based on a set of
input/output pairs. The latter, which are called training examples, define the un-
derlying relationship between inputs and outputs. The goal of machine learning is
to provide computationally efficient algorithms that can construct a function, from a
certain function class, that captures the underlying relationship, so that it does not
only classify correctly the training examples but it also generalizes well to unknown
examples. Human expertise is very critical to the success of this learning process
in specifying the representation of the inputs, and selecting an appropriate function
class. Going back to the text classification example, the underlying document repre-
sentation could be the frequency of the words in the document (bag-of-words model),
and the function class that of linear classifiers.

So far we have considered classification problems where the outputs are simple,
that is, they can be characterized by an arbitrary identifier. However, in many real-
world applications the outputs are often complex, in that (i) there are dependencies
between classes, and (ii) the classes are sequences, trees, or have some other internal
structure. To be more precise let’s consider a couple of examples. In text classifi-
cation, when there is a large number of classes, the classes are often organized in

non-flat taxonomies. Figure 1.2 shows part of the hierarchical taxonomy provided
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Figure 1.2: Hierarchical text classification. Part of the hierarchical taxonomy pro-
duced by the open directory project (DMOZ). Leaves represent the most specific
classes.

by the open directory project (DMOZ) to organize web-page content. The document
shown in Figure 1.1 belongs to the class “euro 2004”, which is about the specific
european football championship that took place in 2004, and falls under the classes
“european championships”, “competitions”, “uefa”, “soccer”, on a path from specific
to more general classes, that eventually leads to the root class “sport”. There is
clearly useful information encoded in this taxonomy, in particular there is a depen-
dency between classes, that can be used when learning a classifier. This is particularly
useful when there are very few available training examples, as it is often the case for
very specific classes such as the class “euro 2004”

Another set of classification problems, that involve structured outputs, come from
the area of natural language processing. In the problem of named entity recognition,
we are interested in classifying each word in a sentence as being a named entity
(person, organization, location, etc) or not. Consider the example shown in Figure 1.3.
Due to the fact that the word “UEFA” is a named entity, in particular the name of
an organization, it is likely that the following word, “Euro” is a continuation of the

name of the organization, also a named entity. Clearly, the sequential dependencies,
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04 July 2004 19:45 (Portugal Local Time) - (Luz)
Greece kings of Europe

[Greece /LOCATION] pulled off arguably the biggest shock at a major football
championship as a goal by [Angelos Charisteas/PERSON] gave them victory at
[UEFA EURO 2004™/ORGANIZATION]. Having begun the tournament as 80-1
outsiders, the achievement of [Otto Rehhagel/PERSON]}'s team of European
journeymen is hard to put into perspective, but once again the belief they have
shown in themselves throughout this amazing adventure was too strong for their
opponents.

Figure 1.3: Named entity recognition for an abstract of a news article taken from the
web. Words immediately following named entities are very likely to be named entities
too.

implied by the ordering of the words in a sentence, suggest that we should consider
this problem as a sequence learning problem, rather than considering each word in
isolation. In the problem of natural language parsing, as the example in Figure 1.4
shows, the output is the parse of a sentence, which is a tree structure of grammar rules
that span parts of the input sentence. Lastly, in the problem of machine translation
(see Figure 1.5) the output is a sequence of words in a target language, based on the
input, which similarly is a sequence of words in a source language.

Support vector machines is a machine learning method that has been very suc-
cessful in classification problems with simple outputs. The reason is that they provide
a computationally efficient algorithm that can make use of powerful input represen-
tation, and construct highly accurate classifiers. Apart from the experimental veri-
fication of the generalization performance of support vector machines in a variety of
tasks, there is also strong theoretical justification. Although support vector machines
have focused on designing flexible and powerful input representations, that deal with
structured inputs, for example, sequences, trees, or graphs, existing support vector
machines ignore the dependencies/structure in the output, as they can only consider

simple outputs.
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Figure 1.4: Parsing. The parse tree of a sentence.

1.2 ° Thesis

The main topic addressed in this dissertation is the generalization of support vector
machine learning, so that it can be efficiently applied to classification problems that
involve interdependent and structured outputs, such as the ones described in the
previous section.

These problems fall into two generic cases: first, problems where outputs them-
selves can be characterized by certain output-specific attributes, and learning should
occur across outputs as much as across inputs, for example, text classification, where
the outputs (classes) are organized in non-flat taxonomies, and consequently specific
classes may inherit attributes from more general ones (predecessors in the taxonomy);
second, problems where the outputs are structured, that is, they describe a config-
uration over components, with possible dependencies among these components, for
example, parsing, where an output (parse of a sentence) describes a tree configuration
over components (grammar rules) that span part of the input (sentence).

An indirect approach, in order to use existing support vector machines for such
classification problems, would be to ignore the interdependencies and structure of

outputs, treating, for example, any taxonomy as flat in the former case, and learning
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Greece kings of Europe
by Adam Szreter from Estadio da Luz

Greece pulled off arguably the biggest
shock at a major football championship as
a goal by Angelos Charisteas gave them
victory at UEFA EURO 2004™. Having
begun the tournament as 80-1 outsiders,
the achievement of Otto Rehhagel's team
of European journeymen is hard to put intc
perspective, but once again the belief
they have shown in themselves
throughout this amazing adventure was
too strong for their opponents.

Griechenland holt européaische Krone
Von Andreas Alf, Estadio da Luz

Die Sensation ist vollkommen: Der neue
Europameister heiBt Griechenland. Ein Kopfballtor
von Angelos Charisteas in der 57. Minute
besiegelte den 1:0-Finalsieg gegen Gastgeber
Portugal in Lissabons Estadio da Luz und lie3 die
Hellenen endgliltig den FuBball-Olymp
emporsteigen. Die favorisierte "Seleccao" fand
gegen die abermals unglaublich diszipliniert
spielende Mannschaft von Trainer Otto Rehhagel
kein Mittel. Der deutsche Coach ist im Land der
Gétter nun unsterblich.

Figure 1.5: Machine translation. Given the English text, one would like to obtain the
equivalent German text.

the grammar rules independently in the latter, thus, losing much useful information.

We approach these problems by generalizing multiclass support vector machines
[12] to the broad problem of learning for interdependent and structured outputs. In
order to do so, we specify discriminant functions that exploit the dependencies and
structure of outputs. In that respect, our approach follows the work of [7, 10} on
perceptron learning with a similar class of discriminant functions for problems with
structured outputs. Note that the naive approach of treating each structured output
as a separate class in a multiclass classification scenario is often intractable, since it
involves a very large number of classes, that is, it depends on the size of the output
space; in parsing, for example, the output space comprises all admissible parse trees,
whose number is exponential in the length of the input.

Furthermore, we appropriately generalize the well-known notion of a separation
margin and derive a corresponding maximum-margin formulation . A similar max-
imum margin formulation has been proposed in [8]. Yet, it depends on the size of
the output space, therefore it requires some external process to enumerate a small
number of candidate outputs for a given input. For a large class of problems, however,

there is a polynomial-time algorithm that produces the highest scoring output with
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respect to a given discriminant function. For this class of problems, we propose a
cutting plane algorithm that does not depend on the size of the output space, and
solves the corresponding optimization problem in polynomial time, taking advantage
of the sparseness of the maximum margin solution.

In addition, for classification problems that involve interdependent and struc-
tured outputs, more appropriate loss functions than the missclassification loss (0-1
loss) function are needed to penalize for incorrect predictions. In natural language
parsing, for example, a predicted parse tree that is almost correct, and differs from
the correct tree in only a few components (rules), should be penalized less than an
output that is completely different. Another support vector machine formulation for
structured output problems, proposed in [45], essentially makes use of a loss that is
proportional to the number of components in which an incorrect output differs from
the correct one. Our framework, however, allows for the incorporation of arbitrary
loss functions in the learning algorithm. This is very useful, since loss functions that
are commonly used for the evaluation of a given problem, can be directly incorporated
in the learning algorithm, and thus improve the generalization performance with re-
spect to the specific loss function. In parsing, for example, the correctness of an parse
tree is typically measured by its Fj score, the harmonic mean of precision and recall
as calculated based on the overlap of components between the two trees.

Besides the respective theoretical results, we empirically evaluate our approach
for a number of specific problem instantiations, namely, classification with class tax-
onomies, label-sequence learning, learning weighted context-free grammars and string-

to-string mappings.

1.3 Overview

Having presented the topic of this dissertation, the rest goes as follows. Chapter
2 gives a short introduction to support vector machines (SVM), and in particular
multiclass SVMs, upon which the proposed generalization is based. The core of the

thesis is Chapter 3. We first present a novel framework for learning linear discriminant
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functions over joint input-output spaces. We then propose a generic optimization
algorithm that generalizes support vector machine learning for interdependent and
structured output spaces. We finally provide an analysis of the algorithm, and prove
the sparseness of the proposed solution. In the following chapter we discuss several
interesting special cases, instantiations of the general framework, and demonstrate the
versatility and effectiveness of our approach by experimental evaluation. We conclude

in Chapter 5 with a summary of contributions and suggestions for future work.
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Chapter 2

Background

2.1 Introduction

In this chapter we will give a short introduction to support vector machines (SVMs)
[4]. There are several books written on support vector machines [47, 13, 41}, and the
reader should refer to these sources of information for an extensive study.

Support vector machines rely on two significant ideas. First, the notion of the
separation margin of a set of training examples, that suggests the use the maximum
margin principle in choosing the appropriate classifier (the one that separates the
training data by the largest margin) for a certain classification problem. The maxi-
mum margin principle, ‘comes with several advantages. It leads to robust classifiers
with competitive performance over a wide variety of applications. It also provides
a nice theoretical argument for learning theory to study the performance of the re-
sulting classifiers and prove strong generalization results. Furthermore, it constructs
sparse solutions that involve only a subset of the training examples, and consequently
to computationally attractive algorithms.

Second, the use of kernel functions, that allow support vector machines to implic-
itly employ powerful input representations, and thus efficiently construct non-linear
classifiers, as well as classifiers for complex inputs such as sequences, trees, or graphs
(cf. Section 2.5).

The maximum margin principle and the use of kernel functions for classification
9
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are not exclusive to support vector machines. There are other classification algorithms
that are proven to produce maximum margin classifiers (cf. boosting [16]), or that can
be adapted to make use of kernels (cf. principal component analysis [42]). Support
vector machines, nevertheless, put them together in an artful way to produce powerful
machine learning methods. In the following sections we will illustrate these ideas, and

highlight some significant results.

2.2 Linear Classifiers

For a moment, let us go back to the problem of text classification, presented in the
introduction, and, say, that we are interested in learning to classify documents as to
whether they belong to the class “euro 2004” or not. The learning algorithm, given
a training set of input/output pairs (documents about “euro 2004” and documents
not related to “euro 2004”), should find an appfbpriate discriminant function f from
a restricted function class that performs the specific classification task with some
accuracy.

A common representation of the inputs in text classification is the bag-of-words
model [40, 21], illustrated in Figure 2.1. It comprises a (sparse) vector space repre-
sentation, that ignores the sequence of the words in a document. A document is only
represented by the frequencies of the words it contains (vector x). As this is a binary
classification problem, the output ¥ is conveniently represented by either 1 or —1.

In the linear discrimination case, the discriminant functions are restricted to be

linear in the components of x. The considered class of functions (hyperplanes)
(w,x)+b=0 weRLbeR (2.1)
correspond to decision functions of the form
f(x) =sign({w,x) +b) (2.2)

Solving this problem amounts to finding appropriate values for the parameters w, b.
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X:
Greece kings of Europe

by Adaine Szreter from Estadio-da Luz

Greece pulled off arguably the biggest shock at a 2 greece
maijor football championship-as a goal by Angelos 0 soccer
Charisteas gave them victory at UEFA EURO 1 victory
2004™ . Having begun the tournament as 80-1 1 football
outsiders, the achievement of Otto Rehhagel's x=1]1 championship
team of European journeymen is hard to putinto .
perspective, but anceagain the belief they have 1 tournament
-shown in themselves throughout this amazing 1 team
adventure was too strong for their opp,onents. 1 strong

s ¢ 1 opponent

Y. ‘sport’

Figure 2.1: Text classification feature map: bag of words model. The text shown in
the text is represented by the vector of the word frequences. The word sequence is
ignored. ~

The margin of a training example (x,y) with respect to a separating hyperplane

(w, b) is defined as

v = y({w,x) +b) (2.3)

which for canonical parameterization of the hyperplanes (||w|| = 1) is the Euclidean
distance of the training input x to the hyperplane and b is a bias parameter. Geo-
metrically, a separating hyperplane splits the input space into two half spaces, one
for each class, and the optimal hyperplane is orthogonal to the shortest segment

connecting the convex hulls of the two classes and intersects it at its midpoint.

2.3 Support Vector Machines

The support vector machine is a classification method that is based on the princi-
ple of margin maximization. SVMs generalize the linear discrimination method by
choosing the maximum margin hyperplane with respect to a training sample S. For

linearly separable data S = {(x1,%1), (X2,%2)---» (Xn,¥n)} € R% x {1,...,k}, and
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A

\ .
<wWx>+b=0 =

<wW,X>+b<0

>

Figure 2.2: Hard-magin support vector machines. The data points of the two classes
(circles and squares) are perfectly separable. Among all possible separating hyper-
planes, we choose the one that maximizes the margin of separation between the
classes. The black circles and squares are the ones that define the support of the
maximum margin separating hyperplane. ~y is the maximum margin achieved over all
possible hyperplanes that separate the data.

w-parameterized hyperplanes, there are in general many separating hyperplanes that
separate the training data perfectly. These hyperplanes form the so-called version
space. The maximum margin principle suggests to choose w* among the parameters
in version space so that the margin of separation between the classes is maximized

(see Figure 2.2)
w* = argmax {_min 'yi(w)} (2.4)

wijwl=1 [=L-n

This problem can be equivalently expressed as a convex quadratic program, lead-

ing to the hard margin SVM formulation:
1
min §Hw[|2 (2.5a)
subject to: y;(w) >1 Vie{l,...,n} (2.5b)

Obviously for data that is not separable the version space is empty. For example,

the dataset shown in Figure 2.3 contain points that belong to two distinct classes.
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O

>

Figure 2.3: Soft-margin support vector machines. Example where the classes are non
separable by a hyperplane. In this case we choose the hyperplane that at the same
time maximizes the margin and minimizes a penalty for the violations of the margin.
The variable &;, &; are the slack variables.

This dataset is not separable by a hyperplane. In order to be able to deal with non
separable datasets one introduces slack variables &;, one for every training example,
and augments the objective function by an additional penalty term. The penalty
term is often proportional to the sum of the slack variables (L; penalty) giving the
so-called hinged-loss, or else proportional to the squared slack variables (L, penalty).

Linear penalties lead to the following standard quadratic program for soft-margin

SVMs [11]
R T o
min gl + 36 (262
subject to: (W) >1—§&, & >0 Vie{l,...,n} (2.6b)

and quadratic penalties to the following quadratic program

1l e O~
min > ||w| +'27l;€" (2.72)

subject to: y;(w) >1-¢& Vie{l,...,n} (2.7b)
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In both soft margin SVM formulations C is a trade-off between the norm of the weight

vector w, that controls the complexity of the classifier, and an upper bound on the

classification error.

2.4 Sparseness

We will now derive equivalent quadratic programs to the hard-margin and the soft-

margin quadratic programs, given in the previous section, for the case of binary

classification. In binary classification the margin is defined as in Equation 2.3. Let

us denote by «; the Lagrange multiplier enforcing the margin constraint for example

(x;,v;). Using standard Lagrangian duality techniques (see {3, Ch. 3}), one arrives to

the following dual quadratic programs for the hard margin case
max — % Z Z ;o (X, %;5) + Zyiaiv
i i
subject to: «; >0 Vi
the soft-margin with linear penalties
max — % Z Z e (x,, X;) + Zyiai
i i
subject to: 0<o; <C, Vi
and the soft-margin with quadratic penalties
1 n0s;
max — o ; 2; ;0 [(xi, x;) + "CT} + ;yﬂi
subject to: a; >0 Vi
respectively, where

1 ifi=j

0 ifi#j
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The optimal weight vector w* can be written as an expansion of the training examples
w = Zyiaixi (2.12)
i

Lagrange multipliers were introduced in the Lagrangian dual derivation to enforce the
margin constraints, and the Karush-Kahn-Tucker (KKT) complementary conditions

(sufficient and necessary optimality conditions) for the hard margin case
ai(y,—1)=0 Vi (2.13)
and the ones for the soft margin case
(i —1+&)=0 Vi (2.14)

need to be satisfied at the optimal solution w*. According to the KKT conditions the
training examples with non-zero Lagrange multipliers are the ones that either have a
functional margin of one (support vectors), or violate the margin (outliers). Notice
that only the training examples with non-zero Lagrange multipliers o, contribute to
the optimal solution. Assuming that only a relatively small fraction of the training
data will be support vectors or outliers, this will result in a sparse representation of
the optimal weight vector, and efficient optimization algorithms that solve for the

optimal weight vector w*.

2.5 Kernels

Linear discriminant functions are inherently too limited in terms of the type of func-
tional relationships that they can learn [32]. To the left of Figure 2.4, for example, the
class of circular examples are inside a circle and the square examples outside. This
training data are obviously not separable by linear discriminant functions. Neverthe-
less they can be separated by a circle, that is, by linear discriminant functions that
use second order features of the inputs, i.e., monomials of degree 2 (see Figure 2.4).

It is in general useful to use mappings

d:X > H (2.15)
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Figure 2.4: Non-linear kernels. The circular points cannot be separated from the

squares with a linear function. But if we map the data to a higher dimensional space
2

(e.g. (21,29, 23) = (3, 73, ¢)) they can separated using a hyperplane.

of the data from the input space X to a feature space H where the data can be
separated linearly. This mapping ® is called a feature map. However, this may not
always be as efficient as in the above example, especially when the feature space need
to be high-dimensional, for example, in the case where we would like to use monomials
of degree much higher than two.

An important property of the dual formulations for support vector machines is
that the data appear only in inner products (x;, X;) between pairs of training examples
(cf. the dual objective functions 2.8a, 2.9a, and 2.10a) . Thus, if we have a way to
compute the inner product (®(x), ®(x’)) efficiently, we can solve the problem linearly
in the feature space without having to explicitly construct the feature map ®. One
just needs to replace the input space inner products (x;,x;) with the feature space
inner products (®(x), ®(x’)) in the dual formulations.

A function K : X x X — R with the property that there exists a map ® into an

inner product space such that
K(x,%) = (3(x), B(x)) (2.16)

is called a (positive definite) kernel. For a complete study of kernels and their ap-

plications the reader is referred to [41, 18]. Here we will briefly describe a couple
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of commonly used kernels, and some basic properties of the kernels used to combine
kernels.

Two popular kernels are the polynomial kernel
K(x,x) = ({x,) + )’ (2.17)

where d € N, ¢ > 0 and the Gaussian kernel

K(x,x') = exp <~“—§:—X:E> (2.18)

202

where ¢ > 0 . Polynomial kernels correspond to mappings into the feature space
of all possible d-th order monomials in input coordinates (as seen for d = 2 in the
example earlier). Gaussian kernels correspond to mappings into (possible infinite)
feature spaces, that whenever possible give rise to smooth discriminant functions, the

smoothness depending on the parameter o.

2.5.1 Properties of kernels

It is easy to see that the sum of kernels and the pointwise product of kernels are

themselves kernels (cf. [41])

Proposition 1 If K; and K, are kernels, and aj,as > 0, then a1 Ky + as K3 is a

kernel.

Proposition 2 If K, and K, are kernels, then K1K,, defined by (K1 K>)(x,X') =

Ky(x,x')Ks(x,%'), is a kernel.

Similar properties hold for the tensor product and the direct sum of kernels,

(possibly) defined on different domains.

Proposition 3 If K, and K, are kernels defined respectively on Xy and Xs, then

their tensor product
(K1 ® K)((x1, %2) (X1, %3)) = Ki(x1, 1) Ka(x2, X3) (2.19)

is a kernel on (X1 X X)) x (X; x Ah).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Proposition 4 If K, and Ko are kernels defined respectively on Xy and X, then

their direct sum
(K1 @ Ka)((x1, %x2)(x), %5)) = K (x1, %)) + Ka(x2,%5) (2.20)
is a kernel on (X x Xp) x (X x Xz).

Based on the properties of sum and product of kernels, [17, 48] proposed the
general family of convolution kernels. Convolution kernels involve a recursive compu-

tation over d components of structured inputs as follows

Kxx)= S [ Kby (2.21)

x€R~1(z),XReR~1(F) c=1

Convolution kernels provide a method for constructing kernels for structure inputs
like strings, trees and graphs (c.f. [9, 29]).

Kernels allow support vector machines to deal with complex input representations.
However, the output space representation is simple, as that in binary classification.
At this point, let’s move from the binary classification to multiclass classification, and

pave the way for more complex outputs in the sequel.

2.6 Multiclass Classification

In multiclass classification the output space is Y = {1,...,k}, and the solution in-
volves several separating hyperplanes. There are basically two different approaches
for multiclass classification. The first one is an indirect approach that combines sev-
eral binary classifiers into a multiclass classifier. The second one involves a direct

approach of learning the multiple hyperplanes simultaneously.
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2.6.1 Indirect Multi-class Classification
One-Against-All

The first combination scheme involves learning k binary classifiers F, (r = 1,..., k),
one for each class, that discriminate between patterns of a particular class and pat-
terns of any of the remaining classes. The decision function is given by

f(x) = argmaxF,(x) (2.22)

r=1,...,k

Geometrically this amounts to associating a hyperplane with each class and assigning
a new pattern x to the hyperplane that is furthest from it. The input space is split
into k simply connected, convex regions. The main disadvantage of this scheme is
that the training is performed independently for each classifier, and it may be hard

to separate each class from \the all the other k — 1 classes.

{

All-Against-All

The second scheme involves learning (';) binary classifiers and employing some voting
scheme to derive the decision function. This scheme has also the disadvantage that
the training is performed independently for each classifier, but also the computational

complexity of training k(k — 1)/2 classifiers may be prohibitive.

Error Correcting Codes

An alternative scheme involves learning m < (';) binary classifiers, each one for a
different partition of the classes. Each classifier thus assigns a new pattern x to a set
of classes (imposed by the specific partition), and the decision function selects the
class that prevails in most partitions. Ideas from error correcting codes [14] can be
used in the choice of the partitions in order to add some robustness to the decision

function.
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2.6.2 Direct Multi-class Classification

A more natural way to solve the multiclass classification problem is to construct a
decision function by considering all classes simultaneously. One such scheme [50, 12]

involves r,r = 1, ..., k linear discriminant functions
F.(x) = (w,,x) (2.23)

one for each class, and a decision function derived by the so-called winner-take-all
rule

f(x) = argmaxF,(x) (2.24)

r=1,..,k

that computes a separate score F,.(x) for every class, and predicts the class with the
highest score. In order to generalize SVMs to this multiclass setting, the margin of a

training example (x;,y;) is defined as
v = F,(x;) — max Fy(x;) (2.25)
Y#Yi

which is the difference between the score of the correct class and the highest score of
all incorrect classes. This definition of the margin introduces a non-linear constraint
for each training example in the quadratic program for SVMs, that can be expanded

in k£ — 1 linear constraints of the form
Fyzﬁ(xi) - Fy(x) = <Wyi - Wy7x> >1 Vy 7’4‘ Yi (2'26)

so that it indeed corresponds to a quadratic program with n(k — 1) constraints.
In order to allow margin violations, [50] proposed to introduce a slack variable &
for each one of the n(k — 1) constraints leading to the following quadratic programs

for linear penalties

k n
1 , C
min 5?21: [[wl +m§ > &) (2.27a)

i=1 y#y;

subject to: (pw,, — Wy, X;) > 1 — &y, uyy >0 Vie{l,...,n},Vy #u: (2.27b)
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and the following quadratic program for quadratic penalties

min - Z llw, |2 + Z > & (2.28a)

=1 y#yi

subject to: (wy, — Wy, X;) > 1 —&uyy Vie{l,...,n}, Vy#y (2.28b)

The above approach, introducing a slack variable for every linear constraint, often
leads to a hard to solve optimization problem, so [12] proposed to introduce a single
slack variable &; for every non-linear constraint, which results in a tighter upper bound
on the empirical risk and offers additional algorithmic advantages. This leads to the

following quadratic program for linear penalties

k n
1 . C ;
min 3 ; lw "+ po. ; & (2:29)
subject to: (wy, —w,,x;) >1=& Vie{l,...,n}, Vy #u (2.29b)
§i >0 Vi € {1,...,n} (229@)

and the following quadratic program for quadratic penalties

1¢ C <

. 2 2

min - - ?21 lwel® + 5~ ?:1 & (2.30a)
subject to: (wy, — Wy, x;) > 1—-& Vi€ {l,...,n}, Vy #y; (2.30b)

Having presented multiclass support vector machines we are ready to proceed to
the core of the thesis. In the next chapter we will present a generalization of multiclass
support vector machines to the problem of learning for interdependent and structured

outputs, motivated by the applications presented in Chapter 1.
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Chapter 3

Joint Kernel Support Vector

Machines

3.1 Introduction

In Chapter 1 we presented a series of applications in areas such as information re-
trieval, and natural language processing, where learning general functional depen-
dencies between arbitrary input and output spaces is particularly relevant. Recent
progress in machine learning has mainly focused on designing flexible and powerful
input representations, facilitated by the development of kernel-based methods, a brief
introduction of which we gave in Chapter 2. However, the complementary issue of
designing classification algorithms that can deal with more complex outputé has been
largely ignored.

In this chapter we first explain the main ideas of joint input-output feature maps,
loss functions, and decoding, which are the necessary ingredients of the general frame-
work, through an illustrative example. These depend on the structure of the problem
and the assumed decomposition. Different structures, consequently decompositions,
leading to different joint feature maps, loss functions, and decoding algorithms will be
discussed in detail in Chapter 4 (see Tables 4.6, 4.7). Here we will focus on the gen-

eral algorithms starting from simple a on-line algorithm, and building incrementally

22
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Figure 3.1: Illustration of a natural language parsing model. We want to learn a
function f that maps a sentence x to its parse tree. To the right we show the
computed input-output feature representation.

hard-margin SVMs, soft margin SVMs, and finally loss-sensitive SVMs. We will focus
on a general cutting plane approach proposed to solve the above SVM problems, and

discuss its convergence and sparseness properties.

3.2 Discriminant Function and Joint Feature Maps

We are interested in the general problem of learning functions f : X — Y between
input spaces X and arbitrary discrete output spaces ) based on a training sample
of input-output pairs. As an illustrating example, which we will continue to use as a
prototypical application in the sequel, consider the case of natural language parsing,
where the function f maps a given sentence x to a parse tree y. This is depicted
graphically in Figure 1.4.

The approach we pursue is to learn a discriminant function F' : X x Y — R
over input/output pairs from which we can derive a prediction by maximizing F' over

the outputs for a specific given input x. Hence, the general form of our function
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(hypothesis) f is
f(x) = argmax cy, F (%, y; W) (3.1)

where w denotes a parameter vector. It might be useful to think of F' as a compat-
ibility function that measures how compatible pairs (x,y) are, or, alternatively, —F
can be thought of as a w-parameterized family of cost functions, which we try to
design in such a way that the minimum of F(x,-;w) is at the desired output y for
inputs x of interest.

We assume F' to be linear in some combined feature representation of inputs and

outputs ¥(x,y), i.e.
F(x,y;w) = (w,¥(x,y)) (32)

The specific form of ¥ depends on the nature of the problem, and special cases will be
discussed subsequently. However, in this chapter we presenty learning algorithms and
theoretical results for the general case. Since we want to exploit the advantages of
kernel-based method, we will pay special attention to cases where the inner product

in the joint representation can be efficiently computed via a joint kernel function

Ju((x,5), (¥,¥)) = (¥(x,y), ¥(¥,¥)) - (3-3)

We generalize the notion of a separation margin, by defining the margin of a

training example with respect to a discriminant as
v = F(x;,y;) — max F(x;,y) (3.4)

yEV\Y:

This corresponds to the separation margin employed by multiclass support vector
machines (cf. Section 4.2) as proposed by [50, 12], generalized to the problem for
learning interdependent and structured outputs. Nevertheless, there are cases where
the number of outputs is extremely large, and some sort of decomposition of the fea-
ture map is required, to ensure that f can be computed from F' efficiently, i.e. via a
dynamic programing algorithm. Such decompositions have been proposed for prob-
lems with structured outputs in the context of perceptron learning [7], and support

vector machine and boosting re-ranking algorithms [10, 8].
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As pointed out in [8], we can think of the (linear) discriminant function F’ in terms
of a sum of potentials, i.e. a log probability of an exponential family model, only that

the global (or input specific) normalization Z is ignored. This implies that

P(y|x) exp[(w, ¥(x,¥))]
P(y}x)’ Z(x)

Maximum likelihood estimation aims at maximizing the average logarithm of the

F(x,y) — F(x,¥) = log where P(y|x) = (3.5)

conditional probability of the correct output given the input [24]. In contrast, the
proposed maximum margin approach aims at maximizing the difference of log prob-
abilities between the correct output and the highest ranked incorrect one(s). While
the former requires to take Zy exp[(w, ¥(x,y))] into account, the latter does not.
We will discuss two learning approaches for the joint input-output kernel setting:
(i) An on-line algorithm in the spirit of the perceptron algorithm and (ii) a maximum

margin formulation generalizing support vector machines.

3.3 Perceptron Learning

We will first focus on an on-line learning approach, which generalizes perceptron
learning [39], and was first proposed in the context natural language processing in
[10].

In a nutshell, the perceptron algorithm works as follows. In an on-line fashion,
training inputs x; are presented. Then the function f(x;) is computed, which produces
the highest scored output y. If the predicted label sequence is correct y = y;, no
update is performed. Otherwise, the weight vector is updated based on the difference
vector 60;(¥) = W(x;,y:) — ¥(x;,¥), namely w™¥ «— wold 4+ §¥,(y). This scheme
can be proven to converge under a standard separability assumption.

In order to avoid an explicit evaluation of the feature map as well as a direct
(i.e. primal) representation of the discriminant function, we would like to derive an
equivalent dual formulation of the perceptron algorithm. Notice that in the standard
perceptron learning case, ¥(x,1) = —¥(x, —1), so it is sufficient to store only those
training inputs that have been used during a weight update. In the generalized per-

ceptron algorithm one also needs to store the incorrectly predicted (decoded) outputs
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Algorithm 1 Dual perceptron for learning via joint feature maps.

for all training patterns x; do
/* decode */
compute ¥y = arg maxyey F(x;,y
where F(x;,y) = 35 ag) (6 ;(
7 if y # y; then
/* update */
gy < aay) + 1
9: end if
10: end for
11: until no more errors

1: input: (X1,¥1),- -, (Xn, ¥n)
2: output: o

3: initialize all oy =0

4: repeat

5:

6:

),
S’): \II(XhY))

o

f(x;). More precisely, one only needs to store how the decoded f(x;) differs from the
correct y;, which typically results in a more compact representation.
The dual formulation of the discriminant function is as follows. One maintains a

set of dual parameters «;y) such that
F(X7 Y) = Z a(i}"’) <6‘I;1 (y)) \I/(X7 y)) (36)
i’y

Once an update is necessary for training example (x;,y;) and incorrect output ¥, one
simply increments ay). Of course, as a practical matter of implementation, one will
only represent the non-zero o). Notice that this requires to keep track of the «
values themselves as well as the pairs (x;,y) for which ay) > 0.

The above formulation is valid for any joint feature map ¥ and can be general-
ized to arbitrary joint kernel functions Jy by replacing the inner product with the
corresponding values of Jy.

In order to prove the convergence of this algorithm, it suffices to apply Theorem

1 in {10], which is a simple generalization of Novikoft’s theorem [34].

Theorem 1 Assume a training set {(x;,yi)}, ¢ = 1,...,n, and for each training

output a set of candidate outputs V; C Y \'y:. If there exists a weight vector w such
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that |wl|| =1 and
(W, \I}(XiaYi» - (Wv \D(Xh}’)) 2 fO?“ all y € Vi (3'7)

then the number of update steps performed by the above perceptron algorithm is
bounded from above by
R2
—,;2— (3.8)

where R = max; |V(x;,y)| fory € V.

3.4 Hard-Margin Support Vector Machines

Here, we consider the case where there exists a function f parameterized by w such

that the empirical risk (the error on the training data) is zero. The condition of zero

training error can then be compactly written as a set of nonlinear constraints
Vie{l,...,n}: yrél%'{(w,\ll(xi,y))} < (w,¥(x;,yi)) (3.9)

Every one of the nonlinear inequalities in Eq. (3.9) can be equivalently replaced by

|V] — 1 linear inequalities, resulting in a total of n|)| — n linear constraints,
Vie{l,...,n}, Vy e Y\yi: (W, ¥(x;,y:;) — V(x5,y)) >0 (3.10)

If the set of inequalities in Eq. (3.10) is feasible, there will typically be more than
one solution w. To specify a unique solution, we select the w for which the score of
the correct output y; is uniformly most different from the closest runner-up y;(w) =
argmax,, (W, ¥(x;,y)). This generalizes the maximum-margin principle employed
in Support Vector Machines [47] to the more general case considered in this thesis.
Denoting the margin by 7 and restricting the L, norm of w to make the problem

well-posed, this leads to the following optimization problem.

max vy (3.11a)
ywillwli=1
st. Vie{l,...,n}, Vy e Y\yi: (W, 0¥;(y)) >~ (3.11b)
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This problem can be equivalently expressed as a convex quadratic program
1
SVMj: min —2-||wl[2 (3.12a)
st. Vi, Vy € Y\yi: (w,00;(y)) >1 (3.12b)

The key challenge is that the size of these problems can be immense, since we have to
deal with n|Y|—n margin inequalities. In many cases, |Y| may be extremely large, in
particular, if ) is a product space of some sort (e.g. in parsing), its cardinality may
grow exponentially in the description length of y. This makes standard quadratic
programming solvers unsuitable for this type of problem.

In the following, we will propose an algorithm that exploits the special structure of
the maximum-margin problem, so that only a much smaller subset of constraints needs
to be explicitly examined. We will show that the algorithm can compute arbitrary
close approximations to SVMs in polynomial time for a large range of structures.
Since the algorithm operates on the dual program, we will first derive the Wolfe dual.

We will denote by oy;y) the Lagrange multiplier enforcing the margin constraint
for label y # y; and example (x;,y;). Again, using standard Lagragian duality

techniques, one arrives at the following dual quadratic program (QP).

Proposition 5 The objective of the dual problem of SVM, from Eq. (3.12) is given
by

=5 Z Z Z Z a(W)a(JY)JMf (Xu Y) X;,y + Z Z Q(iy) (3.13)

i oyEy: J I#Y; tyFyi
where J((x:,y), (X5, ¥)) = (0U:(y), 6¥;(¥)). The dual QP can be formulated as

o = argmaz,©(a), subject to: a >0 (3.14)
Proof The primal Lagrangian of the problem SVM, is
1
L(w,a) =5 [wll* - D0 auyl(w, §%i(y)) — 1] (3.15)

i YFY:
where a > 0 are the Lagrange mulipliers. The corresponding dual is found by differ-

entiating with respect to w, tmposing stationarity

Q{“W—“ —30 Y sy (3.16)

i y#Yi
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and re-substituting this relation into the primal we obtain the dual objective

Liw,a) =Y > o) (3.17)

i y#£yi

SIS S aamans (BW), 6%(3) (3.18)

i oy£yi J YEY

Notice that the Js¢ function that generates the quadratic form in the dual objec-
tive can be computed from inner products involving values of ¥, which is a simple
consequence of the linearity of the inner product. Jsy can hence be alternatively

computed from a joint kernel function Jy over X x ).

3.5 Cutting Plane Algorithm

The algorithm we propose aims at finding a small set of constraints from the full-sized
optimization problem that ensures a sufficiently accurate solution. More precisely, we
will construct a nested sequence of successively tighter relaxations of the original prob-
lem using a cutting plane method [23], implemented as a variable selection approach
in the dual formulation. We will later show that this is a valid strategy, since there
always exists a polynomially sized subset of constraints so that the solution of the
relaxed problem defined by this subset fulfills all constraints from the full optimiza-
tion problem up to a precision of €. This means that the remaining — potentially
exponentially many — constraints are guaranteed to be violated by no more than e,

without the need for explicitly adding these constraints to the optimization problem.

3.5.1 Algorithm

We will base the optimization on the dual program formulation which has two impor-
tant advantages over the primal QP. First, it only depends on inner products in the
joint feature space defined by ¥, hence allowing the use of kernel functions. Second,

the constraint matrix of the dual program supports a natural problem decomposition.
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(a) First step. (b) Second step

Nwii=1 lwlii=1

(c) Third step. (d) Fourth step.

Figure 3.2: Cutting plane algorithm. Successive steps of the cutting plane algorithm.
(a) First step: No constraints have been added. w? is the current solution. (b)
Second step: The (potentially) most violated constraint has been added. It cuts off
the current solution w® from the feasible region (shaded).(c) Third step: One more
violated constraint is added, and the new solution is computed. (d) Fourth step: The
process is repeated until there are no more violating constraints.
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More specifically, notice that the constraint martrix derived for SVM, is diagonal,
since the non-negativity constraints involve only a single a-variable at a time.
Pseudocode of the algorithm is depicted in Algorithm 2. The algorithm maintains
working sets S; for each instance to keep track of the selected constraints which
define the current relaxation. Iterating through the training examples (x;,y;), the
algorithm proceeds by finding the (potentially) “most violated” constraint, involving
some output value y. If the margin violation of this constraint is more than e,
the dual variable corresponding to y is added to the working set. This variable
selection process in the dual program corresponds to a successive strengthening of
the primal problem by a cutting plane that cuts off the current primal solution from
the feasible set. The chosen cutting plane corresponds to the violated constraint.
Once a constraint has been added, the solution is re-computed with respect to S (see
Figure 3.2). Alternatively, we have also devised a scheme where the optimization is
restricted to .S; only, and where optimization over the full § is performed much less
frequently. This can be beneficial due to the block diagonal structure of the constraint
matrix, which implies that variables a3 with j # ¢, ¥ € S; can simply be “frozen” at
their current values. Notice that all variables not included in their respective working
set are implicitly treated as 0. The algorithm stops, if no constraint is violated by
more than e. With respect to the optimization in step 9, we would like to point out
that in some applications the constraint selection in step 7 may be more expensive
than solving the relaxed QP. Hence it may be advantageous to solve the full relaxed
QP in every iteration, instead of just optimizing over a subspace of the dual variables.
A convenient property of both algorithms is that they have a very general and
well-defined interface independent of the choice of ¥. To apply the algorithm, it is
sufficient to implement the feature mapping ¥(x,y) (either explicit or via a joint
kernel function), as well as the maximization in step 7. All of those, in particular the
constraint/cut selection method, are treated as black boxes. While the modeling of
U(x,y) is typically straightforward, solving the maximization problem for constraint

selection typically requires exploiting the structure of ¥. We need to identify the
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Algorithm 2 Hard-margin support vector machines (SVMy ).
1: input: (X1,¥1),- -, (Xn, ¥n), €
2: output: «
3: S;«—0foralli=1,...,n

4: repeat
5 fori=1,...,ndo
6: /* prepare cost function for optimization */

set up cost function
H(y) =1— (00(y), w) where w =}, Zy'esj gy 0¥, (y’)

7: /* find cutting plane */
compute ¥ = arg maxyey H(y)
8: if H(y) > € then
9: /* add constraint to the working set */
9a: /* Variant (a): perform full optimization */
ag < optimize the dual over S, S = U;S;
9b: /* Variant (b): perform subspace ascent */
g, — optimize the dual over S;
12: end if

13:  end for
14: until no §; has changed during iteration

highest scoring y that is incorrect,

y = argmax,, {1 — (w,0¥(y))} (3.19)

It is therefore sufficient to identify the best solution y = argmaxyey (W, ¥(x;,y))
as well as the second best solution y = argmaxyeyg (W, ¥(x;,y)). The second
best solution is necessary to detect margin violations in cases where ¥ = y;, but
(w,d¥;(y)) < 1. This means that for all problems where we can solve the inference
problem in Eq. (3.1) for the top two y, we can also apply our learning algorithms
with the zero-one loss. In the case of parsing, for example, we can use CKY algorithm
that returns the two highest scoring parses of a sequence.

We will now proceed by analyzing the presented algorithm. In particular, we
will show correctness and sparse approximation properties, as well as bounds on the

runtime complexity.
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3.5.2 Analysis

What we would like to accomplish first is to obtain a lower bound on the achievable
improvement of the dual objective by selecting a single variable o) and adding it
to the dual problem (cf. step 9 in Algorithm 2). In order to derive useful bounds, it
suffices to restrict attention to simple one-dimensional families of solutions that are
defined by improving an existing solution along a specific direction n. By proving
that one can make sufficient progress along a specific direction, this clearly implies
that one can make at least that much progress as by optimizing over a larger subspace
that includes the direction 77. A first step towards excecuting this idea is the following

lemma.

Lemma 1 Let J be a symmetric, positive semi-definite matriz, and define a concave

objective in a
1
Oa) = —§a'Ja + (h, o) (3.20)

which we assume to be bounded from above. Assume that a solution o and an opti-
mization direction 1 is given such that (VO(at),n) > 0. Then optimizing © starting

from ot along the chosen direction n will increase the objective by

1(VO(a'),n)’

4 t
- = 21
%Sgc{@(a +6n)} — 6(a") T >0 (3.21)
Proof The difference obtained by a particular 3 is given by
50(8) = § | (Ve(a), n) — Sn'Tn (3.22)

as can be verified by elementary algebra. Solving for 3 one arrives at

o . _ (VO(a'),n)
dﬁ(S@—O < [ ——————nl]n

Notice that this requires n'Jn > 0. Obuviously, the positive semi-definiteness of J

(3.23)

guarantees n'Jn > 0 for any . Moreover n'Jn = 0 together with (VO(at),n) > 0
would imply that limg_., ©(a‘+0n) = co, which is in contraction with the assumption
that © is bounded. Plugging the value for 8* back into the above expression for 6©
yields the claim. |
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Corollary 1 Under the same assumption as in Lemma 1 and for the special case of

an optimization direction m = e,, the objective improves by

1 (00’
0O(B*) = 3.24
6 =5 (5) >0 (324
Proof Notice that n = e, implies (VO,n) = %T@T and n'Jn = Jpr. [ |

We now apply the above lemma and corollary to get the following proposition:

Proposition 6 For step 9 in Algorithm 2 the improvement 6© of the dual objective
1s lower bounded by

2
00 > 6—2, where R; = max ||6V;(y)]] (3.25)
2R; y
Proof Using the notation in Algorithm 2 one can apply Corollary 1 with multi-indez

r=(iy), h =1, and J such that

Jag)gy) = (0T(¥), 0¥;(y)) (3.26)

Notice that the partial derivative of © with respect to oy is given by

00
day)

(@) =1- agndauy =1 — (W",8%(§)), (3.27)

(7¥)

since the optimality equations for the primal variables yield the identities

W= gy 8(y) (3.28)
(y)

Now, applying the condition of step 9, namely

(1 —(W*,00(¥))) > ¢ (3.29)
leads to the bound
o0 (@) >e¢ (3.30)
dayiy)
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Finally, J., = ||6%;(y)||* and inserting this expression and the previous bound into
the expression from Corollary 1 yields

1 00 \? € €2
_ > > 3.31
2, (3%&)) —20T(9))12 T 2R? (3:31)

The claim follows by observing that jointly optimizing over a set of variables that

include o, can only further increase the value of the dual objective. [
This leads to the following polynomial bound on the maximum size of .S.

Theorem 2 With R = max;y [|0%;(y)||, v > 0 the geometric margin of a separable
training set, and for a given € > 0, Algorithm 2 terminates after incrementally adding
at most
2
% (3.32)
constraints to the working set S. |
Proof With S = 0 the optimal value of the dual is 0. In each iteration a constraint
(iy) is added that is violated by at least €, provided such a constraint exists. After
solving the S-relazed QP in step 9, the objective will increase by at least the amount
suggested by Proposition 6. Hence after t constraints, the dual objective will be at

least t times this amount. The result follows from the fact that the dual objective is

upper bounded by the minimum of the primal, which is -2% [ |

Note that the number of constraints in S does not depend on |Y|. This is crucial, since
|V| is exponential or infinite for many interesting problems. For problems where step 7
can be computed in polynomial time, the overall algorithm has a runtime polynomial
in n, R, 1/, since at least one constraint will be added while cycling through all n
instances and since step 9 is polynomial. This shows that the algorithm considers only
a small number of constraints, if one allows an extra e slack, and that the solution
depends on the precision parameter . The upper bound on the number of active
constraints in such an approximate solution depends on the chosen representation,
more specifically, we need to upper bound the difference vectors ||¥;(x;, y)— ¥ (x;, )|
for arbitrary y,¥ € V. In the following chapter, we will thus make sure that suitable

upper bounds are available.
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3.5.3 Discussion

The nested sequence of successively tighter relaxations of the original problem created
by the proposed cutting plane algorithm is reminiscent of the chunking technique [4],
shown to converge to the optimal solution of the original problem by [36]. Chunking
starts with an arbitrary subset of the constraints (working set) and uses a generic
quadratic programming solver on that relaxed subproblem. Adding constraints that
violate the current solution, the set of constraints grows until in the last iteration it
contains all the active constraints of the original problem, that is, the support vectors.
For joint kernel support vector learning it may be beneficial to use a specialized
support vector machine learner (i.e. SVM"" [20]) for solving the increasing in size
relaxed problems, rather than a generic quadratic programming solver.

Alternatively, the use of decomposition methods [35, 37, 20], where the working
set size is smaller than the number of the active constraints, may be favorable, espe-
cially since one can exploit the block diagonal structure of the optimization problem
and perform the optimization at every iteration on the subspace defined by a sin-
gle training example. However, even though decomposition methods lead to a strict
improvement of the objective function, available convergence proofs [28] depend on
the selection of the working set. More flexible working set selection schemes, such
as sequential or random subspace selection, that are computational appropriate in
the case of joint kernel support vector machines, may not lead to convergence, and
[28] suggests that it may not be an easy task to prove more generalized convergence
without the properties of a systematic working set selection.

At the extreme of decomposition methods there is an algorithm for joint kernel
support vector learning, similar to sequential minimal optimization (SMO) [37], where
the size of the working set is 1. It exploits the fact that once a constraint violated by
the current solution has been identified there is an analytical solution of the optimal

update of the corresponding lagrange multiplier.
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3.6 Soft-Margin Support Vector Machines

To allow errors in the training set, we introduce slack variables and propose to op-
timize a soft-margin criterion. As in the case of multiclass SVMs, there are at least
two ways of introducing slack variables [50, 12]. One may introduce a single slack
variable ¢ for violations of the nonlinear constraints (i.e. every instance x;) [12] or
one may penalize margin violations for every linear constraint (i.e. every instance
x; and output y # y;) [50]. Since the former results in a tighter upper bound on
the empirical risk and offers some advantages in the proposed optimization scheme,
we have focused on this formulation, which generalizes the multiclass SVM of [12].
Adding a penalty term that is linear in the slack variables to the objective results in

the quadratic program

_ B SR o
SVMi:  min 5Iwl® + ;;@- (3.33a)
st. Vi, Vy e Y\yi: (w,00;(y))>1-&,& >0 (3.33b)

Alternatively, we can also penalize margin violations by a quadratic term leading to

the following optimization problem:
SVM,: min luwnz’ + < ig? (3.34a)
) w,€ 2 2n P * '
st. Vi, Vy € Y\yi: (w,00(y))>1-§ (3.34Db)

In both cases, C' > 0 is a constants that controls the trade-off between training error
minimization and margin maximization. Both optimization problems correspond to
minimizing an upper bound on the zero-one loss, since ;1:2;;1 & and %Z?ﬂ £2 are
upper bounds on the empirical risk for this loss function.

In the respective dual problems for the soft margin formulations, linear penalties
introduce additional (box) constraints, whereas the squared penalties modify the

kernel function.
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Proposition 7 The dual problem to SVM, is given by the program in Proposi-

tion 3.14 with additional box constraints

Z QAiy) <

Y#Yi

. Vi=1,...,n (3.35)

31Q

Proof Appendiz A. [ |

Proposition 8 The dual problem to SVM, is given by the program in Proposi-
tion 38.14 with modified kernel function

T, 9), (55, 9)) = (), 50 () + 22 (3:30

Proof Appendiz A. [ |

The soft-margin SVM formulation is a special case of the loss-sensitive SVM for-
mulation we describe in the following section. One just needs to replace the arbitrary
loss function A with the 0 — 1 loss function to arrive from loss-sensitive SVMs to
soft-margin SVMs. Therefore, we will skip the presentation of the soft-margin SVMs
algorithm and analysis, and present the more general loss sensitive SVM algorithm

and analysis in the following section.

3.7 Loss-Sensitive Support Vector Machines

The standard zero-one loss function typically used in classification is not appropriate
for most kinds of structured outputs. For example, in natural language parsing, a
parse tree that is almost correct and differs from the correct parse tree in only a few
nodes should be treated differently from a parse that is completely different. Typi-
cally, the correctness of a predicted parse tree is measured by its F} score (see [22]),
the harmonic mean of precision and recall as calculated based on the overlap of nodes
between the trees. To be able to model such crucial distinctions, we propose two ap-

proaches that generalize the above formulations to the case of arbitrary loss functions

A.
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3.7.1 Slack Re-scaling

Our first approach is to re-scale the slack variables according to the loss incurred in
each of the linear constraints. Intuitively, violating a margin constraint involving a
y # y; with high loss A(y;,y) should be penalized more severley than a violation
involving an output value with smaller loss. This can be accomplished by multiplying
the margin violation by the loss, or equivalently, by scaling the slack variable with
the inverse loss, which yields

SVM2*:  min E (w,w) + ¢ igi (3.37a)

we 2 n
&i

Alyi,y)

A justification for this formulation is given by the subsequent proposition.

st Vi, Vy € Y\yi: (w,00,(y)) >1— (3.37b)

Proposition 9 Denote by (w*,£*) the optimal solution to SVM® . Then LS L&
is an upper bound on the empirical risk R (w*).

Proof Notice first that £ = max{0, maxy,,, {A(yi,y) (1 — (W*,6%;(y)))}}.

Case 1: If f(x;; w*) =y; then & > 0= A(y;, f(xi;W)) and the loss is trivially upper
bounded.

Case 2: If y = f(xs;W*) # yi, then (w,0%,(¥)) < 0 and thus Z_(—Ei—yf > 1 which is
equivalent to £ > A(y:,y).

Since the bound holds for every training instance, it also holds for the average. [ |

The optimization problem SVMzA % can be derived analogously, where A(y;,y) is re-
placed by 1//A(y;,y) in order to obtain an upper bound on the empirical risk.
In the loss-sensitive case with slack re-scaling, the loss function is introduced in

the box constraints for L; penalties and in the kernel function for Ly penalties.

Proposition 10 The dual problem to S VMf‘ % is given by the program in Proposi-

tion 8.14 with additional box constraints

Z—O“’ﬁ—<9, Vi=1,...,n (3.38)

= ANy,y) — n

Proof Appendiz A. [
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Proposition 11 The dual problem to S VM2A5 is given by the program in Proposi-

tion 3.14 with modified kernel function

+ nd;;
CVAyuy)VAY;,Y)

Proof Appendiz A. |

J((x:,¥), (x,¥)) = (0¥i(y), 69;(3)) (3-39)

3.7.2 Margin Re-scaling

In addition to this slack re-scaling approach, a second way to include loss functions is
to re-scale the margin as proposed by [45] for the special case of the Hamming loss.
It is straightforward to generalize this method to general loss functions. The margin

constraints in this setting take the following form:
Vi, Yy €Y (w,0%4(y)) = Alyi,y) — & (3.40)

The set of constraints in Eq. (3.40) combined with the objective in Eq. (3.33a) yield

an optimization problem SVM2™ which also results in an upper bound on Rﬁ (w*).

Proposition 12 Denote by (w*,£*) the optimal solution to SVMY™ . Then LN &
is an upper bound on the empirical risk RS (w*).

Proof The essential observation is that £ = max {0, max, {A(y;,y) — (W*,0¥;(y))}}
which is guaranteed to upper bound N(y;,y) fory such that (w*,6¥;(y)) < 0. [ |

The optimization problem SVMfm can be derived analogously, where A(y;,y) is re-

placed by /A(yi, y).

In the non-separable case with margin re-scaling, the loss function is introduced

in the linear part of the objective function.

Proposition 13 The dual problems to SVMY™ and S VMS™ are given by the dual
problems to SVM, and SV M, respectively with objective

@(a) = _% Z Z Z Z a(iy)a(jy)J((Xi7Y)v (Xj’ y)) + Z Z a(iy)A<yi7 Y)

i y#yi J§ VHY; T y#EYi

(3.41)
Proof Appendiz A. [ ]
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3.7.3 Algorithm

We propose a general cutting plane algorithm for loss-sensitive support vector ma-
chines. The algorithm proposed in Section 3.5 is a special case of either version of the
general algorithm. Once again we base the optimization in the dual program formu-
lations. Notice that the constraint matrix derived for the SVMj3 variants is diagonal,
as the one for SVMy, whereas in the SVMJ case, dual variables are coupled, but the
couplings only occur within a block of variables associated with the same training
instance. Hence, the constraint matrix is (at least) block diagonal in all cases, where
each block corresponds to a specific training instance.

Pseudo-code of the algorithm is depicted in Algorithm 3. The algorithm maintains
working sets S; for each instance to keep track of the selected constraints which define
the current relaxation. Iterating through the training examples (x;,y:), the algorithm
proceeds by finding the (potentially) most violated constraint, involving some output
value y. If the appropriately scaled margin violation of this constraint exceeds the
current value of & by more than € the dual variable corresponding to ¥ is added to
the working set. This corresponds to a cutting plane that cuts off the current primal
solution from the feasible set. The chosen cutting plane corresponds to the constraint
that determines the lowest feasible value for £;. Once a constraint has been added,
the solution is recomputed with respect to S (or alternatively S;).

The presented general algorithm is implemented in the software package SVM**"*<*
by Thorsten Joachims!. Note that the SVM optimization problems from iteration to
iteration differ only by a single constraint. We therefore restart the SVM optimizer
from the current solution, which greatly reduces the runtime. The algorithm has
a very general and well-defined interface independent of the choice of ¥ and A.
To apply the algorithm, it is sufficient to implement the feature mapping ¥(x,y)
(either explicit or via a joint kernel function), the loss function A(y;,y), as well as
the maximization in step 7. All of those, in particular the constraint/cut selection
method, are treated as black boxes. While the modeling of ¥(x,y) and A(y;,y) is

typically straightforward, solving the maximization problem for constraint selection

Thttp://svmlight.joachims.org
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typically requires exploiting the structure of W.
In the slack re-scaling setting, it turns out that for a given example (x;,y;) we

need to identify the maximum over

y = argmax ey {(1 — (W, 0%:(y))) Ayi, ¥)} (3.42)

We will discuss several cases for how to solve this problem in Chapter 4. Typically, it
can be solved by an appropriate modification of the prediction problem in Eq. (3.1),
which recovers f from F. For example, in the case of grammar learning with the
Fy score as the loss function via A(y;,y) = (1 — Fi(ys,y)), the maximum can be
computed using a modified version of the CKY algorithm. More generally, in cases
where A(y;, -) only takes on a finite number of values, a generic strategy is a two stage
approach, where one first computes the maximum over those y for which the loss is
constant, A(y;,y) = const, and then maximizes over the finite number of levels.

In the margin re-scaling setting, one needs to solve the maximization problem

y = argmax oy {A(yi,y) — (W, 0%:(y))} (3.43)

In cases where the loss function has an additive decomposition that is compatible
with the feature map, one can fold the loss function contribution into the weight
vector (W, 0%;(y)) = (w,0¥;(y)) — A(yi,y) for some w'. This means the class of
cost functions defined by F(x, -; w) and F(x, -; w)— A(y, -) may actually be identical.

3.7.4 Analysis

While it is relatively straightforward to obtain a lower bound on the achievable im-
provement of the dual objective by selecting and adding a single dual variable oy
to the dual problem when using quadratic penalties, the SVM} formulation intro-
duces an additional complication in the form of upper bounds on non-overlapping
subsets of variables, namely, the set of variables a;y) in the current working set that
correspond to the same training instance. Hence, we may not be able to answer the
above question by optimizing over a(y) alone, but rather have to deal with a larger

optimization problem over a whole subspace.
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Algorithm 3 Loss-sensitive support vector machines (SVMj and SVM3 ).
input: (thl): MR (Xn,Yn)a 07 €
output: «
S;i—Qforalli=1,...,n
repeat
fori=1,...,ndo
/* prepare cost function for optimization */
set up cost function
(1= (6%i(y), W) Ay, ) (SVM?*)
(Yw ) <5\Pi(Y)>W> (S 4Am)
(1 (0%:(y), w) VA y)  (SVM3*)
Alyiy) — (08i(y), w) (SVM;™)
where w =33 res. aiyy 0¥ (y)
7: /* find cutting plane */
compute ¥ = arg maxycy H(y)
8: /* determine value of current slack variable */
compute & = max{0, maxycs, H(y)}
9: if H(y) > & + ¢ then
10: /* add constraint to the working set */
Si — Sz U {y}
10a: /* Variant (a): perform full optimization */
ag +— optimize the dual of SVM? or SVMj over S, S = U;S;
10b: /* Variant (b): perform subspace ascent */
as, — optimize the dual of SVM] or SVMj over S;
13: end if
14: end for
15: until no S; has changed during iteration

H(y)

IH

Corollary 2 Under the same assumptions as in Lemma 1 and enforcing the con-

straint 3 < D for some D > 0, the objective improves by

<V@(a°),7]>2 (V@( t ’
o TA T a'),n) < Dn'Jn
max (O’ + )} —O@)={ T :
D(VO(at),n) — Zn'Jn otherwise
(3.44)

Moreover the improvement can be upper bounded by

(VO(a'),n

e (0(at + o)} ~ ©(a") = Jmin { D, LI (vo(@)m) (09
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Proof We distinguish two cases of whether * < D or * > D. In the first case,
we can simple apply lemma 1 since the additional constraint is inactive and does
not change the solution. In the second case, the concavity of © implies that 8 = D
achieves the mazimum of §© over the constrained range. Plugging in this result for
B* into 0O yields the second case in the claim.

Finally, the bound is obtained by exploiting that in the second case
(Ve(a'),n)

8*>D <= D< -
n'Jn

(3.46)

Replacing one of the D factors in the D? term of the second case with this bound
yields an upper bound. The first (exact) case and the bound in the second case can be

compactly combined as shown in the formula of the claim. |

Corollary 3 Under the same assumption as in Corollary 2 and for the special case

of an optimization direction 1 = e,, the objective improves at least by

90 .t
1 (@) ] 90
i _ N> Zmi dar t
Jax O(a’ + fe,) — O(a’) > 5 tin {D, T } D (') (3.47)
Proof Notice that n = e, implies (VO,n) = %T@r and 'Jn = Jpr. [ |

Proposition 14 (SVM?S ) For SVM5* step 10 in Algorithm 3 the improvement §©

of the dual objective is lower bounded by

2

00 > %ER%‘_‘_—%“, where A; = m;xx{A(yi,y)} and R; = m)?X{“‘S‘I’z(Y)”}

(3.48)

Proof Using the notation in Algorithm 3 one can apply Corollary 1 with multi-index
r = (iy), h =1, and J such that

0
Jas)y) = (0¥:(¥), 6¥;(y)) + 4 (3.49)
o T VA VA Y)
Notice that the partial derivative of © with respect to oiyy is given by
00 £
(@) =1- ot Jusriy) = 1 — (W* 00(§)) — —=—,  (3.50)
o) 2.2 i A(y)
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since the optimality equations for the primal variables yield the identities
¢

no,
wh = ol 0W,(y), and & = W (3.51)
52ttt 5, VB
Now, applying the condition of step 10
Ay ¥) (1= (W, 00:(3))) > & + € (3.52)
leads to the bound
O e — (3.53)
dagig) Ay, ¥)
Finally,
o = 0T + s 3.54
PV + 5773 (3.54)

and inserting this expression and the previous bound into the expression from Corol-

lary 1 yields

® 2 2 2
1(8)2 Ae > 62n (3.55)
2Jrr \ Oay) 2 (A(Yi,Y)”(S‘I’i(Y)” + 6) 2 (AiRz’ + 5)
The claim follows by observing that jointly optimizing over a set of variables that

include o, can only further increase the value of the dual objective. [ ]

Proposition 15 (SVMS™) For SVM;™ step 10 in Algorithm 8§ the improvement

8O of the dual objective is lower bounded by

E2

1
> = = . _
50 > SR E where R, m}z};mx”c?\h(y)ﬂ (3.56)
Proof By re-defining
- U,
oWi(y) = _OWily) (3.57)
we are back to Proposition 14 with
max{ A (ys, ) [5(y) 7} = max{|0%:(y) |} = R} (3.59)
since
(U 2 VAGY) — 6 <> (i) 21- s (359)
||
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Proposition 16 (SVM2*) For SVMY* step 10 in Algorithm 3 the improvement 6©
of the dual objective is lower bounded by

Ce €2
> mi _— .= . L= .
0O > min { o 8Ai2Ri2} where  /\; m;zx{A(yz,y)} and R; m&x{”é‘llz(y)“}
(3.60)
Proof
Case I:

If the working set does not contain an element (iy), then we can optimize over Qy)

under the constraint that

L C
auy) < Dysy)— =D (3.61)
Notice that
e ., ¥ & +e€ €
a')y=1— (w* 0¥, > 2> - 3.62
8a(,-9)( ) ( @) Alyi,y) — Alyi9) (362

where the first inequality follows from the pre-condition for selecting (¢y) and the last
one from & > 0. Moreover, notice that Jug)uy) < R?. Ewoking Corollary 3 with the

obvious identifications yields

1

00 >  tmin D, — 90 ol 00 (@) (3.63a)

2 Jrr O(ig) Oaig)

1 : A(Yi) S’)C €
2 63b
> 2mm{ - A (3.63b)
€ . Ce 62

T Aey) {Z{ m} (3.63¢)

The second term can be further bounded to yield the claim.

Case II:
If there are already active constraints for instance i in the current working set,
i.e. S; # 0, then we may need to reduce dual variables a(y) in order to get some

slack for increasing the newly added o). We thus investigate search directions m

such that nug) = 1, Nay) = ——Ao(t;fiy’;)% < 0 for (iy) € Si, and ngyy = 0 in all other

cases. For such m, we guarantee that ot + Bn > 0 since B < £A(y;, ¥).
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In finding a suitable direction to derive a good bound, we have two (possibly conflict-
ing) goals. First of all, we want the directional derivative to be positively bounded

away from zero. Notice that
(VO(a'),m) = > ny) (1 = (w*,8Ti(y))) (3.64)
y

Furthermore, by the restrictions imposed on M, Nuyy < 0 implies that the (iy)-

constraint 15 active and hence

Alysy) (1 — (w*,6¥i(y))) =& (3.65)

Moreover the pre-condition of step 10

Ay, ) (1= (W, 6W0(¥))) = & +9 (3.66)

where 6 > € > 0. Hence

t _ '5: (iy) ) €
<V@("‘)’">_—_A(yi,y ( CZA y“y)) NN (3.67)

The second goal is to make sure the curvature along the chosen direction is not too

large.

t
(,y) Uiy) N Xiyn
n'JIn = Jug)ag) — 22 A J(zy)(cy) +y > (yz 5 A(yj )CJay)(iy')

()€ YEY Y'#Y
(3.68a)
SR+ 2013(];1:2 y) Z Uiv) T Ay o2 C'2A Z Z i) iy) (3.68b)
wY) YEY Y'#Y

2N, 2A2
< R}+2 B, — + Ry L (3.68¢)

Ays¥)  Alys¥)

AR2N2
< ——R’—Af—z— (3.68d)
This follows from the fact that
zy) CAZ’

Za(zy) A Z A Ym n (369)

Y£Y Y#Y
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Evoking Corollary 2 yields

t
s© = 5 min{ 0, LTI | (vO(00.m) (3700
. % _— A(yi; y)C 7 *_f}(zyzfz) A 6‘ 5 (3.70b)
A vy
_ [Ce €
m

Proposition 17 (SVM%™) For SVMY™ step 10 in Algorithm 3 the improvement
00O of the dual objéctive is lower bounded by

62

> = : )
00 > SE where R, max 10T (y)|l (3.71)
Proof By re-defining
= oW;(y)
oVi(y) = ———~ 3.72
) Alyiy) (372)
we are back to Proposition 14 with
mgx{ﬁ(yi,Y)Qllﬁfi(Y)HQ} = me{IIWi(Y)HZ’} = R} (3.73)
since
(w,80,(y)) > Alyiy) — & <= (W,00;(y)) > 1~ Zé}—;)" (3.74)
|

Theorem 3 With R = max; R;, A = max; /\; and for a given € > 0, Algorithm 3

terminates after incrementally adding at most

{ 2an\ 8CA3R? } {2nA 8CAR? } CAR? +nA CAR? +nh
max , max , d —————

an
’ €2 €2

H

€ €2 €2

(3.75)

constraints to the working set S for the S VMlAs , S VMlAm , S VMQAS and S VMzAm re-

spectively.
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Proof With S = { the optimal value of the dual is 0. In each iteration a constraint
(iy) is added that is violated by at least €, provided such a constraint exists. After
solving the S-relazed QP in step 10, the objective will increase by at least the amounts
suggested by Propositions 14, 15, 16 and 17 respectively. Hence after t constraints,
the dual objective will be at least t times these amounts. The result follows from the

fact that the dual objective is upper bounded by the minimum of the primal, which in

turn can be bounded by CA and —%C’A for SVM; and SVM; respectively. [

3.7.5 Discussion

Let us discuss some of the advantages and disadvantages of the two formulations
presented. An appealing property of the slack re-scaling approach is its scaling in-

variance.

Proposition 18 Suppose A\’ = n/\ with n > 0, i.e. A is a scaled version of the
original loss /N. Then the optimal weight vector w* for S VMf "* is also optimal for
SVME® and vice versa, if we rescale C' = C/n.

Proof If w is fized in SVM™® and SVMS'* then the optimal values for & in each
of the problems are related to another by a scale change of n. By scaling C with the

inverse of n, this effectively cancels. [ ]

In contrast, the margin re-scaling formulation is not invariant under scaling of the loss
function. One needs, for example, to rescale the feature map ¥ by a corresponding
scale factor as well. This seems to indicate that one has to calibrate the scaling of the
loss and the scaling of the feature map more carefully in the SVMfm formulation. The
SVM?S formulation on the other hand, represents the loss scale explicitly in terms of
the constant C.

A second disadvantage of the margin scaling approach is that it potentially gives
significant weight to output values y € )Y that are not even close to being con-
fusable with the target values y;, because every increase in the loss increases the
required margin. If one interprets F(x;,y;) — F(x;,y) as a log-odds ratio of an ex-

ponential family model (cf. [44]) then the margin constraints may be dominated by
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incorrect values y that are exponentially less likely than the target value. To be more
precise, notice that in the SVM?S formulation, the penalty part only depends on y
for which (w,dW;(y)) < 1. These are outputs that all receive a relatively “high”
(i.e. 1-close to the optimum) value of F(x,y;w). However, in SVME™ | €F has to
majorize A(y;,y) — (w,0¥;(y)) for all y. This means & can be dominated by a
value y = argmax, {A(y;,y) — (w,0%(y))} which has a large loss, but whose value
of F(x,y;w) comes nowhere near the optimal value of F. Nevertheless, Proposition
12 provides some justification for using the constraints set in Eq. (3.40), whereas this
choice was not explicitly justified in [45].

Having presented the general algorithm for joint kernel support vector machines,
we will proceed to present several interesting special cases, in order to focus on the
details of specific instantiations of the generic framework, and demonstrate the ver-

satility and effectiveness of the approach.
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Chapter 4

Special Cases

4.1 Introduction

In the sequel we will discuss a number of interesting special cases, of the general frame-
work described in the previous chapter. Furthermore to demonstrate the effectiveness
and versatility of our approach, we have applied it to the problems of taxonomic text
classification [5, 46], named entity recognition [2, 46}, natural language parsing [46],
and string-to-string mapping.

To model each particular problem and to be able to run the algorithm and bound

its complexity, we need to examine the following three questions for each case:

e Modeling: How can we define suitable feature maps ¥(x,y) and loss functions

A(y,y’) for specific problems?

o Algorithms: How can we compute the required maximization over Y for given

x?
o Sparseness: How can we bound ||¥(x,y) — ¥(x,y')||?

First we give some useful definitions. We define the canonical (binary) represen-

tation of outputs y € Y = {1, ..., k} by unit vectors

A(y) = (6(y,1),0(v,2),...,8(y, k) € {0,1}* (4.1)

51
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so that (A%(y), A°(v')) = d(y,v’). It will turn out to be convenient to use tensor
products ® and direct sums & to combine feature maps over X and Y. We define

the ® and @ operations in the following manner

X ZRd X Rk - de, [a ® b]i—{—(j——l)d = [a]i[b]j (42)

@ RIXxRF - R?™ [a@b); = (4.3)

4.2 Multiclass Classification

A special case of Eq. (3.1) is multiclass classification, where y € ¥ = {1,...,k} and
w = (w},...,w}) is a stack of vectors, w, being a weight vector associated with the

r-th class. The classification rule is given by
flx) = argmax F(x,y;w),  Flx,y;w) = (wy, B(x)) (4.4)

Here ®(x) € R? denotes an arbitrary feature representation of the inputs, which in

many cases may be defined implicitly via a kernel function.

4.2.1 Modeling

The above decision rule can be equivalently represented by making use of a joint
feature map as follows. We can define a joint feature map for the multiclass problem
by

U(x,y) = O(x) ® A(y) (4.5)

It is is easy to show that this results in an equivalent formulation of multiclass clas-

sification as expressed in the following proposition.

Proposition 19 F(x,y;w) = (w, ¥(x,y)), where F is defined in Eq. (4.4) and ¥ in
Eq. (4.5).
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Proof Forallye)y

k

(w, W (x,9)) = (w, T(x) ® A()) = Y 8(y,7) (wy, B(x)) = (W, 2(x)) . (4.:6)

r=1

4.2.2 Algorithms

It is usually assumed that the number of classes k in simple multiclass problems
is small enough, so that an exhaustive search can be performed to maximize any

objective over ). Similarly, we can find the second best y € ).

4.2.3 Sparseness

In order to bound the norm of the difference feature vectors, we prove the following -

simple result.

Proposition 20 Define R; = ||®(x)||. Then || ¥(x;,y) — ¥(x;,y')||* < 2R}

Proof
1% (i, ) — T, 9O < 18 Gxs )P + 110 (x5, 9117 = 2] B ()1 (4.7)

where the first step follows from the Cauchy-Schwarz inequality and the second step

exploits the sparseness of A°. [ |

4.3 Multiclass Classification with Output Features

4.3.1 Modeling

The first generalization we propose is to make use of more interesting output feature
map A than the canonical representation in Eq. (4.1). Apparently, we could use the
same approach as in Eq. (4.5) to define a joint feature function, but use a more general

form for A.
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We first show that for any joint feature map W constructed via the direct tensor

product ® the following relation holds:

Proposition 21 For ¥ = ® ® A the inner product can be written as

(T(x,p), ¥(x',¢) = (2(x), 2(x)) (A(v), Ay)) (4.8)

Proof By simple algebra

(T(x,y), T(x',9)) = (2(x) ® Ay), 2(x) © A(Y)) (4.9)
=D 8y, 18y, 5) (2(x), 2(x)) (4.10)
= (2(x), 2(x)) (A(y), AY)) - (4.11)

This implies that for feature maps ® that are implicitly defined via kernel functions

K, K(x,x') = (®(x), ®(x')), one can define a joint kernel function as follows,

J((x,9), (¥, 9)) = (¥(x,), ¥(x,y)) = (Ay), AlY)) K (x,x) (4.12)

Of course, nothing prevents us from expressing the inner product in output space
via yet another kernel function L(y,y’) = (A(y),A(y')). Notice that the kernel L is
simply the identity in the standard multiclass case. How can this kernel be chosen
in concrete cases? It basically may encode any type of prior knowledge one might
have about the similarity between classes. It is illuminating to note the following

proposition.

Proposition 22 Define ¥(x,y) = ®(x) ® A(y) with A(y) € RP, then the discrimi-

nant function F(x,y;w) can be written as:

p

Fx,y;w) =Y A(y) (wy, ®(x)) (4.13)

r=1
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where w = (wi,...,w.) is the stack of vectors w, € R?, one vector for each basis

P
function of A.

Proof
F(x,y;w) = (w,¥(x,y)) = (W, 8(x) @A(y)) = >_M(y) (w,, B(x))  (4.14)

We can give this a simple interpretation: For each output feature A, a corresponding
weight vector w, is introduced. The discriminant function can then be represented
as a weighted sum of contributions coming from the different features. In particular,
in the case of binary features A : Y — {0,1}?, this will simply be a sum over all
contributions (w,, ®(x)) of features that are active for the class y, i.e. for which
Aly) = 1.

It is also important to note that the orthogonal representation provides a maxi-
mally large hypothesis class and that nothing can be gained in terms of representa-

tional power by including additional features.

Corollary 4 Assume a mapping Ay) = (A(y),A(y)Y, Aly) € R? and define
U(x,y) = ®(x) ® Aly) and ¥(x,y) = ®(x) ® A(y). Now, for every W there is a
w such that <\ir, ¥(x, y)> = (w, ¥(x,y)) and vice versa.

Proof
p+k
(%, 805,9)) = 3 Mly) (7, 260) (4.15)
- <\; T<y>vr,<1><x>> (4.16)
= (v, 2()) (4.17)
= (w, ¥(x,9)) (4.18)

where we have defined v, = Z’T’:’f A (Y)V,. The reverse direction is trivial and requires

setting v, =0 forr=1,...,p. |
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In the light of this corollary, we would like to emphasize that the rationale behind
the use of class features is not to increase the representational power of the hypothesis
space, but to re-parameterize (or even constrain) the hypothesis space such that a
more suitable representation for ) is produced. We would like to generalize across
classes as we want to generalize across input patterns in the standard formulation
of classification problems. Obviously, orthogonal representations (corresponding to
diagonal kernels) will provide no generalization whatsoever across different classes y.
The choice of a good output feature map A is thus expected to provide an inductive
bias, namely that learning can occur across a set of classes sharing a common property.

Let us discuss some special cases of interest.

Classification with Taxonomies Assume that class labels y are arranged in a
taxonomy. We will define a taxonomy as a set of elements Z 2 Y equipped with a
partial order <. The partially ordered set (£, <) might, for example, represent a tree
or a lattice (see Figure 4.1). Now we can define binary features for classes as follows:
Associate one feature \, with every element in Z according to

A(y) = 1 ify<zory=z (4.19)

0 otherwise

This includes multiclass classification as a special case of an unordered set Z = ). In
general, however, the features \, will be “shared” by all classes below 2, e.g. all nodes
y in the subtree rooted at z in the case of a tree. One may also introduce a relative
weight S, for every feature and define a S-weighted (instead of binary) output feature
map A as X, = B.\,. If we reflect upon the implication of this definition in the light
of Proposition 22, one observes that this effectively introduces a weight vector v, for

every element of Z, i.e. for every node in the hierarchy.

Learning with Textual Class Descriptions As a second motivating example,
we consider problems where classes are characterized by short glosses, blurbs or other
textual descriptions. We would like to exploit the fact that classes sharing some

descriptors are likely to be similar, in order to specify a suitable inductive bias. This
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can be achieved, for example, by associating a feature A with every keyword used
to describe classes, in addition to the class identity. Hence standard vector space
models like term-frequency of idf representations can be applied to model classes
and the inner product (A(y), A(y)) then defines a similarity measure between classes

corresponding to the standard cosine-measure used in information retrieval.

Learning with Class Similarities The above example can obviously be general-
ized to any situation, where we have access to a positive definite similarity function
for pairs of classes. To come up with suitable similarity functions is part of the do-
main model — very much like determining a good representation of the inputs ~ and

we assume here that it is given.

4.3.2 Algorithms

As in the multiclass case, we assume that the number of classes is small enough to

perform an exhaustive search.

4.3.3 Sparseness

Proposition 20 can be generalized in the following way:

Proposition 23 Define R; = ||®(x;)|| and S = maxyey ||A(y)|. Then ||[¥(x;,y) —
U(x;,y)||2 < 2R2S? for ally,y' € V.

Proof (U(x;,v), U(x:,v)) = |2 |IPIIAW)II? < RZS?. In the first step, we have
used Proposition 21. [

4.3.4 Application: Classification with Taxonomies

We have performed experiments using a document collection released by the World
Intellectual Property Organization (WIPO), which uses the International Patent Clas-

sification (IPC) scheme. We have restricted ourselves to one of the 8 sections, namely
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| At 0/1 tax 0/1 | fit A tax A |
4 training instances per class
acc 28.32 2832|2747 29.74| +5.01%
A-loss 1.36 1.32 1 1.30 1.21 | +12.40 %
2 training tnstances per class
acc 20.20 20.46 | 20.20 21.73 | +7.57%
A-loss 1.54 1.51 | 1.39 1.33 | +13.67 %

Table 4.1: Results on the WIPO-alpha corpus, section D with 160 groups using 3-
fold and 5-fold cross validation, respectively. ‘fit’ is a standard (flat) SVM multiclass
model, ‘tax’ the hierarchical architecture. ‘0/1’ denotes training based on the classi-
fication loss, ‘A’ refers to training based on the tree loss.

section D, consisting of 1,710 documents in the WIPO-alpha collection. For our exper-
iments, we have indexed the title and claim tags. We have furthermore sub-sampled
the training data to investigate the effect of the training set size. Document parsing,
tokenization and term normalization have been performed with the MindServer re-
trieval engine.! As a suitable loss function A, we have used a tree loss function which
defines the loss between two classes y and 3’ as the height of the first common ances-
tor of y and 3/’ in the taxonomy. The results are summarized in Table 4.1 and show
that the proposed hierarchical SVM learning architecture improves performance over
the standard multiclass SVM in terms of classification accuracy as well as in terms

of the tree loss.

4.4 Label Sequence Learning

The next problem we would like to formulate in the joint feature map framework is
the problem of label sequence learning, or sequence segmentation/annotation. Here,
the goal is to predict a label sequence y = (¥, . ..,4') for a given observation sequence
x = (x!,...,x"). In order to simplify the presentation, let us assume all sequences are
of the same length [. Let us denote by = the set of possible labels for each individual

variable ¢t, i.e. ) = ¥!. Hence each sequence of labels is considered to be a class of

thetp:/ /www.recommind.com
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x: Angelos Charisteas gave them L (x3)+00 (x4)+0 (xs)+0 (x6) | N
victory at UEFA EURO 2004 x1 =
0(x2) p
f ¢ (x7) o}
Oxy) = [ (x8)+(] (x9) o
V:PoN NNNOboo 3 NN
? 1 pN
1 Pp
1 MO
1 Oo
1 00

Figure 4.2: Label sequence learning. To the left we see a sentence and the label
sequence that corresponds to name tags (e.g. person, organization). To the right
we show the feature map. It includes joint features between input and output, via
multiple copies of input features associated with a specific label, and features between
nearby labels, counts of occurrences of pairs of labels.

its own, resulting in a multiclass classification problem with |X|' different classes. To
model label sequence learning in this manner would of course not be very useful, if
one were to apply standard multiclass classification methods. However, this can be

overcome by an appropriate definition of the discriminant function.

4.4.1 Modeling

Inspired by Hidden Markov Model (HMM) type of interactions, we propose to define
¥ to include interactions between input features and labels via multiple copies of
the input features, as well as features that model interactions between nearby label

variables. It is perhaps most intuitive to start from the discriminant function

F(x,y;w ZE(ua, 5y, 0)+nzzsz/5y 0)8(y"*, o")

t=1 g€l t=1 geX o’€eX

(4.20a)

:<u,2q>(xt)®1\6( > < ZAC ) ® AY( t+1)> (4.20b)

Here w = (', v')’, A® denotes the orthogonal representation of labels over ¥, and n >

0 is a scaling factor which balances the two types of contributions. It is straightforward
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to read off the joint feature map implicit in the definition of the HMM-discriminant
from Eq. (4.20b),

7721\0 ) @ A(yth) (4.21)

o S—r

Notice that similar to the multiclass case, we can revoke Proposition 21 in the case of

an implicit representation of ® via a kernel function K and the inner product between

labeled sequences can thus be written as

l l -1 1-1

(U6, y), W& 5)) = 30 3 0 TR %) 10t 3 S d, 70 57 =

o o (4.22)

I 1 -1 I-1 )
SN A, M) KR 07 YD (A, A7) (A, M)
2 (4.23)

A larger family of discriminant functions can be obtained by using more powerful
feature functions ¥. We would like to mention three ways of extending the previous
HMM discriminant. First of all, one can extract features not just from x*, but from
a window around x!, e.g. replacing ®(x*) with ®(x'",...,x% ..., x*"). Since the
same input pattern x* now occurs in multiple terms, this has been called the use
of overlapping features [24] in the context of label sequence learning. Secondly, it
is also straightforward to include higher order label-label interactions beyond pair-
wise interactions by including higher order tensor terms, for instance, label triplets
S A(Y) @ A(ytT) ® A°(y™+2), ete. Thirdly, one can also combine higher order out-

put features with input features, for example, by including terms of the type using

> () @ A%(yh) @ A(y*tH).

4.4.2 Algorithms

The maximization of (w, ¥(x;,y)) over y can be carried out by dynamic program-
ming, since the cost contributions are additive over sites and contain only linear and

nearest neighbor quadratic contributions. In particular, in order to find the best label
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Algorithm 4 Viterbi decoding.

1: input: x = (x4,...,x!),w = (0, V)

2: output: y, F(x,y;w)
/* initialization */
3: for o € X do
4:  Score[l, 0] « (ug,x')
end for
/* recursion */
fort=2,...,ldo
for ¢’ € ¥ do
Scorelt, 0'] + max,cx {Score[t — 1, 0]vyer } (Uor, X°)
LabelSequenceTable[t, 0’| « argmax, 5, {Score[t — 1, 0]vger }
10:  end for
11: end for
/* termination */
12: §' = argmax, s Score[l, o]
13: F(x,¥;w) = max,es Score[l, o]
/* reconstruction */
14: fort=101-1,...,1do
15:  §* = LabelSequenceTable[t + 1, 7]
16: end for

17: = (..., 1Y)

o

sequence ¥ # yi, one can perform Viterbi decoding [15, 43] (see Algorithm 4), which
can also determine the second best sequence for the zero-one loss (2-best Viterbi de-
coding). Viterbi decoding can also be used with other loss functions by computing

the maximization for all possible values of the loss function.

4.4.3 Sparseness

Proposition 24 Define R; = max, ||®(x!)||. Then
10 (xi,y) — W (xi, y)I* < 20%(R; +7°) (4.24)
Proof Notice that

1 (xi, ) HQ—IIZ@ ) © A (y ||2+17IIZA“’ ) ® A(y I (4.25)
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Method | HMM | CRF | Perceptron | SVM
Error 9.36 | 5.17 5.94 5.08

Table 4.2: Results of various algorithms on the Named Entity Recognition task.

The first squared norm can be upper bounded by
I3 00 @AW = D (ee o) ) < PR (42

and the second one by 1%, which yields the claim. [ |

4.4.4 Application: Named Entity Recognition

We study our algorithm for label sequence learning on a named entity recognition
(NER) problem. More specifically, we consider a sub-corpus consisting of 300 sen-
tences from the Spanish news wire article corpus which was provided for the special
session of CoNLL2002 devoted to NER. A 5-fold cross validation was performed. The
label set in this corpus consists of non-name and the beginning and continuation of
person names, organizations, locations and miscellaneous names, resulting in a to-
tal of |¥| = 9 different labels. In the setup followed in [2], the joint feature map
¥(x,y) is the histogram of label-label interactions plus a set of features describing
the observation-label interactions. An adapted version of the Viterbi algorithm is
used to solve the argmax in step 7. For both perceptron and SVM a second degree
polynomial kernel was used. No special tuning was performed, and C was set to 1 and
€ to 0.01. Finally we used the Hamming distance as the loss function for loss-sensitive
SVM formulations.

The 5-fold cross validation results given in Table 4.2 for the zero-one loss, compare
the generative HMM with Conditional Random Fields (CRF) [24], perceptron [7] and
the joint kernel SVM algorithm. All discriminative learning methods substantially
outperform the standard HMM. In addition, the SVM performs slightly better than
the perceptron and CRFs, demonstrating the benefit of a large-margin approach.

Table 4.3 shows that all joint kernel SVM formulations perform comparably, prob-
ably due to the fact the vast majority of the support label sequences end up having
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Method | Train Err | Test Err | Const Avg Loss
SVM, 0.24+0.1 | 5.1+0.6 | 28244106 | 1.02+0.01
SVM?S 04404 | 5.140.8 | 2626225 | 1.10+0.08
SVM?m 0.3£0.2 | 5.1+0.7 | 2628+119 | 1.17£0.12

Table 4.3: Results of various joint kernel SVM formulations on the Named Entity
Recognition task.

Hamming distance 1 to the correct label sequence. Note that for loss equal to 1 all

SVM formulations are equivalent.

4.4.5 Discussion

The predominant formalism for modeling and learning label sequence has been based
on Hidden Markov Models (HMMs) and variations thereof. HMMs model sequen-
tial dependencies by treating the label sequence as a Markov chain. This avoids
direct dependencies between subsequent observations and leads to an efficient dy-
namic programming formulation for inference and learning. Yet, despite their suc-
cess, HMMs have at least three major limitations. (i) They are typically trained in a
non-discriminative manner. (ii) The conditional independence assumptions are often
too restrictive. (iii) They are based on explicit feature representations and lack the
power of kernel-based methods. To address these shortcomings several discrimina-
tive approaches, that includes maximum entropy Markov models (MEMMs) [31, 38],
conditional random fields (CRFs) [24], perceptron re-ranking [7] and label sequence
boosting [1], have recently been proposed. The basic commonality between joint ker-
nel SVMs and these methods is their discriminative approach to modeling and the
fact that they can account for overlapping features, that is, labels can depend directly
on features of past or future observations. Joint kernel SVMs furthermore combine
the maximum margin principle and a kernel-based approach to learning non-linear
discriminant functions. Perceptron and conditonal random fields [25] can also be

kernelized.
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4.5 Weighted Context-Free Grammars

In natural language parsing, the task is to predict a labeled tree y based on a sequence
x = (x',...,7') of terminal symbols. For this problem, our approach extends the
approaches of [6] and [10] to an efficient maximum-margin algorithm with general
loss functions. We assume that each node in the tree corresponds to the application
of a context-free grammar rule. The leaves of the tree are the symbols in x, while
interior nodes correspond to non-terminal symbols from a given alphabet X. For
simplicity, we assume that the trees are in Chomsky normal form. This means that
each internal node has exactly two children. An exception are pre-terminal nodes

(non-leaf nodes that have a terminal symbol as child) which have exactly one child.

4.5.1 Modeling

We consider weighted context-free grammars to model the dependency between z 'ahd
y. Grammar rules are of the form 3" — yy®s 1 <t <r <s<lory" — o',
t=1,...,1, where y* € ¥ are non-terminal symbols, and z* € T are terminal symbols.
Each such rule is parameterized by an individual weight w,. A particular kind of
weighted context-free grammars are probabilistic context-free grammars (PCFGs),
where the weights Wy (0,0,0" € £) and wy—r (0 € E,7 € T) are the log-
probabilities of expanding nodes y** and y* with respective rules. In PCFGs, the
individual node probabilities are assumed to be independent, so that the probability
P(x,y) of sequence x and tree y is the product of the node probabilities in the tree.
The most likely parse tree to yield x from a designated start symbol is the predicted

label h(x). This leads to the following maximization problem.
h(x) =argmax, ¢y P(y|x) (4.27)

(-1
zargmaxyey{z Z Wosgran8(y7%, 0)8(y™, )6 (¥, 6"+ (4.28)

t=1 (0,0",0’")623

l
+y ) wa_ﬂ.é(yt,a)é(a:t,’r)} (4.29)

t=1 (o,7)eXXT
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More generally, weighted context-free grammars can be used in our framework as
follows. W(z,y) contains one feature 1,_.,/o~ for each node of type o — o’c" and one
feature 1,_., for each node of type o — 7. As illustrated in Figure 3.1, the number
of times a particular rule occurs in the tree is the value of the feature. The weight

vector w contains the corresponding weights so that

X VW Z Z wa—)a/a”é(yrs’ 0,)5(yrt7 0”)5(’]/(t+1)8,0")—|— (430)

t=1 (g,0',0")e%3

!
+Z Z Wy 0(y, 0)3(2t, T) (4.31)

t=1 (a TYELXT

< Z °(z") ® A )> + <W i‘ AW @A (YY) ® A“’(y(t“)s)>

(4.32)

It is eaéy to read off the joint feature map implicit in the definition of the discriminant
from Eq. 4.32

= {Z (") ® A°(y')

Note that our framework also allows more complex ¥(x, y), making it more flexible

7 [‘2 A(y™) @ A(y™) ® Ac<y<f+”s>} (4.33)

than PCFGs. In particular, each node weight can be a (kernelized) linear function of

the full z and the span of the subtree.

4.5.2 Algorithms

The solution of argmax,cy (W, ¥(x,y)) for a given x can be determined efficiently
using a CKY-Parser [30] (see Algorithm 5), which can also return the second best
parse for learning with the zero-one loss. To implement other loss functions, like
Ay, y) = (1 — Fi(yi,y)), the CKY algorithm can be extended to compute both
argmaxyey (1 — (w, 00;(y))) Ayi,y) as well as argmaxyey(D(yi,y) — (W, oW (y)))

by stratifying the maximization over all values of A(y;,y).
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Algorithm 5 CKY parsing.

1:

134

*®

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

input: x = (z,...,2),w=(u,v')

output: ¥ = {(r,s,0 — d’o")r <t <st=1,...,1-1,0,0,0" € B}, F(x,9;W)

/* initialization */
fort=1,...,ldo
for 0 € ¥ do
Scorelt, t, 0] « Uy_,, where ' =7
end for
end for
/* recursion */
fork=2,...,ldo
forr=1,...,l—k+1do
s—r+k—-1
fort=r,...,s—1do
for o,0',0"” € ¥ do
z + Score[r, t,0’] + Score[t + 1, 8, 0"] + Ugmgrgn
if z > Scorelr, s,0] then
Score[r, s, 0] «— z
- ParseTable[r, s, 0] « (t,0",0")
end if
end for
end for
end for
end for
/* recosntruction */
y = parse(ParseTable, 1,1, 0°), F(x,¥; w) = Score[1,, ],
where ¢® € ¥ is the start symbol, and parse(ParseTable,r, s, o) =
{(r,s,0 — o'0"), parse(ParseTable, r,t, "), parse(ParseTable,t + 1,s,0")}

4.5.3 Sparseness

Since the trees branch for each internal node, a tree over a sequence x of length [ has

| — 1 internal nodes. Furthermore, it has [ pre-terminal nodes. This means that the

Li-norm of ¥(x,y) is 21 — 1 and that the Lo-norm of ¥(x,y) — ¥(x,y’) is at most
VA2 +4(1-1)% < 2v2L.
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4.5.4 Application: Natural Language Parsing

We test the feasibility of our approach for learning a weighted context-free grammar
(see Figure 3.1) on a subset of the Penn Treebank Wall Street Journal corpus. We
consider the 4098 sentences of length at most 10 from sections F2-21 as the training
set, and the 163 sentences of length at most 10 from F22 as the test set. Following the
setup in [22], we start based on the part-of-speech tags and learn a weighted grammar
consisting of all rules that occur in the training data. To solve the argmax in line 6
of the algorithm, we use a modified version of the CKY parser of Mark Johnson?.

The results are given in Table 4.4. They show micro-averaged precision, recall,
and F; for the training and the test set. The first line shows the performance of the
generative PCFG model using the maximum likelihood estimate (MLE) as computed
by Johnson’s implementation. The second line show the SVM; with zero-one loss,
while the following lines give the results for the Fi-loss Ay, y) = (1 — Fi(¥i,v))
using SVM5* and SVM5™ . All results are for C = 1 and € = 0.01. All values of
C between 107! to 10? gave comparable prediction performance. While the zero-
one loss (which is also implicitly used in Perceptrons [9, 7]) achieves better accuracy
(i.e. predicting the complete tree correctly), the Fi-score is only marginally better
compared to the PCFG model. However, optimizing the SVM for the Fi-loss gives
substantially better Fl—scorés, outperforming the PCFG substantially. The difference
is significant according to a McNemar test on the Fy-scores. We conjecture that we can
achieve further gains by incorporating more complex features into the grammar, which
would be impossible or at best awkward to use in a generative PCFG model. Note
that our approach can handle arbitrary models (e.g. with kernels and overlapping
features) for which the argmaz in line 6 can be computed.

In terms of training time, Table 4.4 shows that the total number of constraints
added to the working set is small. It is roughly twice the number of training examples
in all cases. While the training is faster for the zero-one loss, the time for solving the
QPs remains roughly comparable. The re-scaling formulations lose time mostly on

the argmaz in line 6 of the algorithm. This might be sped up, since we were using a

2http://www.cog.brown.edu/~mj/Software.htm
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rather naive algorithm in the experiments.

4.6 String-to-String Mappings

We now focus on the problem of string-to-string mapping, where the goal is to predict
an output string y = (y',...,9') for a given input string x = («',...,2™). Let us
denote by ¥ and T the alphabets of each individual character ¢, (t =1,...,1) and y°
(s =1,...,m) respectively, ie. X = X* and Y =T".

4.6.1 Modeling

We propose to learn mappings from strings to strings with a combined string kernel
computing joint features from an input string x and an output string y, e.g. the joint
occurrence of some substring in x and some other substring in y. It is convenient to
use direct tensor products to combine feature maps over X and Y. We define a joint

feature map for string to string mapping by
U(x,y) = ¢(x) ® A(y) (4.34)

We now notice that for any joint feature map ¥ constructed via the direct tensor

product ® as ¥ = ® ® A the inner product can be written (cf. Proposition 21)

(T(x,y), ¥(x,y)) = (2(x), 2(x)) (A(y), A(Y")) (4.35)

This implies that for feature maps ®, A, that are implicitly defined via kernel
functions K, K(x,x') = (®(x), ®(x')) and L, L(y,y’) = (A(y), A(y')), one can define

a joint kernel function as follows,

J((x,3), (x,¥) = (¥(x,y), ¥(X,¥")) = K(xx)L(y,¥') (4.36)

and perform the computation independently for each kernel. For K and L we can
employ one of the proposed string kernels, based on substrings [18], gapped substrings
[29], k-length substrings [26], or mismatch penalties [27].
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Method Test Err

Baseline | 0.903+0.026
E-NN* | 0.963+0.037
KDE* | 0.813+0.078
SVM, | 0.723+0.089
SVM5® | 0.605+0.034
SVM5™ | 0.600£0.041

Table 4.5: Results on toy string to string mapping example.

4.6.2 Algorithms

We propose to use some external process to enumerate a small number of candidate
outputs for a given x. This has been pursued in [9, 7] for problems like parsing.
In general, all that is required for learning is a set Gen(x;) € Y for every training
instance. This can be understood as a process of boosting the performance of the
original algorithm which was used to génerate the candidate set Gen. For example, the
latter may use a non-discriminative approach or a simple discriminative method like
nearest neighbor, which may be inexpensive to perfbrm, even for large configuration

spaces Y.

4.6.3 Sparseness

In order to bound the norm of the difference feature vectors, we prove the following

simple result.

Proposition 25 Define R; = ||®(x;)|| and S = maxyey ||A(y)||. Then
1% (i y) — ¥(xi, ¥)|I* < 2R7S? (4.37)

forally,y' €Y.
Proof (U(x;,y),¥(x;,y)) = [|®)IPNAW)I? < RES®. In the first step, we have
used Proposition 21. |
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4.6.4 Example: Synthetic Data

As a toy example we generated synthetic data as described in [49]. In summary, there
are three classes of strings of letters from the same alphabet of four letters (a, b, ¢, d).
Input strings from all classes are generated by a Markov model with a random length
between 10 and 15. In the first class transition from any letter to any other are
equally likely, in the second class transition from any letter to itself has probability
0.7 and all other transitions 0.1, and finally in the third class only letters c and d are
used with transition from any letter to itself 0.7. The output strings for each class
are abad, abbd and aabc respectively, corrupted by the following noise. There is a
probability of 0.3 of a random insertion of a random letter and 0.15 of two random
insertions. After the potential insertions there is a probability of 0.3 of a random
deletion and a probability of 0.15 of two random deletions.

We generated 200 such strings and performed 4-fold cross validation. For the joint
feature map framework we have used corﬁbined string kernels. For KDE separate
string kernels for the input and output were used. The parameters of the string
kernels were A = 0.01 and n-grams = 3. KDE also used an extra Gaussian kernel
for the input strings whose parameters were chosen by 5-fold cross validation. SVM
parameter C was set to 1. For all methods 1 minus the string kernel value between
any incorrect output string and the correct one defined the loss of incorrect strings.

For k-NN (k > 1) as well as KDE a pre-image is found by the closest training
example output to the given solution. Similarly, in order to apply our algorithm to
this problem, the set of output strings was reduced to all the observed output string in
the training data. It is thus as though function Gen(x) generated, out of all possible
noisy outputs, only the ones observed in the training data.

Table 4.5 shows that SVM and especially the loss re-scaling formulations outper-
form k-NN and KDE. Note that the results reported for k&-NN and KDE are the ones
reported in [49], so the dataset is not exactly the same as the one we used, but they

were both randomly generated according to the same procedure.
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4.6.5 Discussion

On the surface our approach is related to the kernel dependency estimation approach
[49]. There, however, separate kernel functions are defined for the input and output
space, with the idea to encode a priori knowledge about the similarity or loss function
in output space. In particular, this assumes that the loss is input dependent and
known beforehand. More specifically, in [49] a kernel PCA is used in the feature
space defined over ) to reduce the problem to a (small) number of independent
regression problems. The latter corresponds to an unsupervised embedding (followed
by dimension reduction) performed in the output space and no information about the
inputs x is utilized in defining this low-dimensional representation. In contrast, the
key idea in our approach is not primarily to define more complex functions, but to
deal with more complex output spaces by extracting combined features over inputs
and outputs. A discrete output variable y may not be simply a simple output, but
may have an internal structure that can itself be described by certain features. These
features may, in turn, interact in non-trivial ways with certain properties of the input

patterns.
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Chapter 5

Conclusions

5.1 Summary

We presented a maximum-margin approach to learning functional dependencies for
discrete interdependent and structured output spaces. In particular, we considered
cases where the predicted outputs can themselves be characterized by output-specific
attributes or are structured. The key idea is to model the problem as a (kernel-
ized) linear discriminant function over a joint feature space of inputs and outputs.
We demonstrated that our approach is very general, covering problems from natural
language parsing and label sequence learning to multilabel classification and classifi-
cation with output features. While the resulting training problem can be exponential
in size, we presented an algorithm for which Wé prove polynomial convergence for
a large class of problems. We also evaluated the algorithm empirically on a broad
range of applications. The experiments show that the algorithm is feasible in prac-
tice and that it produces promising results in comparison to conventional generative
models. A key advantage of the algorithm is the flexibility to include different loss
functions, making it possible to optimize an upper bound on the desired performance
criterion. Furthermore, the ability to include kernels opens the opportunity to learn

more complex dependencies compared to conventional, mostly linear models.
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5.2 Future Work

Various improvements with respect to the optimization method seem possible that
would lead to more scalable algorithms. The naive sequential heuristic, for example,
for selecting the next training example could be replaced by a parallel step that
would evaluate the violation of the KKT conditions for each constraint and select the
training example that incurs the largest violation.

A number of experimental evaluations could also be interesting. For example,
an experimental evaluation of different loss functions and different upper bounds
across a number of datasets, as well as an experimental verification of the sparseness
properties.

This thesis has focused on learning general dependencies over discrete output
spaces. Likewise, in many applications of regression methods, one has to predict
multiple outputs simultaneously. Special cases include prediction of sequence values,
e.g., time series prediction, or prediction of a spatial field of values, e.g. image
modeling. An open research problem is to develop a generalization of SVM regression
that can take into account dependencies between multiple outputs. This framework
should unite SVM and the idea of e-sensitive loss functions with Markov networks
to model statistical dependencies. An important ensuing question is related to the
computational aspects and sparseness issues: Is it possible to deal with an infinite
number of constraints? This will lead to a semi-definite quadratic program that
needs to be solved. Other related questions are to investigate how multivalue SVM
regression compares to multivalue Gaussian process regression (cokriging) and other

techniques, such as kernel dependency estimation.
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Appendix A

Derivation of Dual Formulations

1-Norm Soft Margin—Slack Re-Scaling

. The primal Lagrangian of the problem SVM2 of Eq. (3.37) is
1

L(w,& a,p) =%Ilw|l2 + % D& (A1)
- o | tw. 6T (v)) — & 3 N ~
Zy; iy [( , 0% (y)) BN “y)} };pz& (A.2)

where a,p > 0 are the Lagrange mulipliers. The corresponding dual is found by

differentiating with respect to w and &, imposing stationarity

8L(W8£ p) =w — Z E Q;y0U;(y) =0 (A.3)
i y#yi
OL(w,§, a,p)
=~ - =0 (A.4)
9 = yz,

and resubstituting the relations obtained into the primal we obtain the dual objective

Lw,,0,0) = Y aiy = > > ¥ ciyas (00:(y),0%,(F))  (A5)

i yAYi i y#y: J VEY:

which is identical to that for SVM, . The difference is that the box constraints

C
< — .
Zﬂyz, n (4.6)
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are now scaled by the loss function. The Karush-Kahn-Tucker complementarity con-

ditions are given by the following equations

| (w80 ) ~ 1+ 5| =0 Vi £y, (A7)

1-Norm Soft Margin—Margin Re-scaling

The primal Lagrangian of the problem S\/'I\/IlAm is
1 s C

=3 > i [(wW, 0Wi(y)) ~ Alyi,y) +&] - Z pi& (A9

i y#EY
where a, p,> 0 are the Lagrange mulipliers. The corresponding dual is found by

differentiating with respect to w and £, imposing stationarity

(Waﬁ,a .P) =W — Z Z iy 0, (y (A.10)
i y#yi
@%#Mlg—zwym~o (A11)
& YA

and resubstituting the relations obtained into the primal we obtain the dual objective

L(W,&,a,p) = Z Z azy (yoy Z Z Z Z Ay A5y (5\1, ) ( )

i YFEYi i y#EY: J YEY

(A.12)

which differs from that for SVM; in the linear term that is now scaled by the loss
function. The constraints are exactly the same as for SVM;. The Karush-Kahn-

Tucker complementarity conditions are given by the following equations

iy [(W, 0V,(y)) — Alyi,y) +&] =0 Vi,Vy #y; (A.13)
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2-Norm Soft Margin—Slack Re-scaling

The primal Lagrangian of the problem SVM?s is

L(w,&,a,p) == |lwl|* +-Z£2 (A.14)
&i
- 21:);1 iy (W, 0%(y)) — 1+ m (A.15)

where @, p > 0 are the Lagrange mulipliers. The corresponding dual is found by

differentiating with respect to w and &, imposing stationarity

PLWE0E) 5™ 3 by (A.16)
i y#Yi
oL(w,§, a,
——(—5%—-’-’— =& — Y ay =0 (A.17)
¢ YE£Yi

and resubstituting the relations obtained into the primal we obtain the dual objective

L(w,§, a,p) Z Z Qiy (A.18)

i Y#Yi

TL(S,']'
_= Z Z Z Z Qiy iy |: (0W;(y), 0%;(¥ )+ C\/E(Yi,Y)\/A(Yjay)

i y#Ay: J I#yi

(A.19)

The Karush-Kahn-Tucker complementarity conditions are given by the following

equations

&
VAL Y)

(Wa 5\111(Y)> e

Qiy

2-Norm Soft Margin—Margin Re-scaling

The primal Lagrangian of the problem SVMfm is

L(w,¢, a) :—‘%”W”2 4+ = 252 Z Z Qiy [ w,0U(y)) — /Ay, Y +§1]

i Y#Y:
(A.21)
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where @ > 0 are the Lagrange mulipliers. The corresponding dual is found by differ-

entiating with respect to w and £, imposing stationarity

aL( =w— > > aiydU(y (A.22)

i YF#EY:

aL( _-«g -3 =0 (A.23)
§ Y#Yi

and resubstituting the relations obtained into the primal we obtain the dual objective

L(Wvgaa) = Z Z iy \/ A(Yia Y) (A24)

i Y#EYi

SET TN aa |G one) g ()

i yAyi J YEY

The Karush-Kahn-Tucker complementarity conditions are given by the following

equations

Qiy [ w,00,(y)) — VA, Y +£z:l =0 Vi,Vy#y; (A.26)
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Appendix B

Notation

Table B.1: Notation conventions used in this thesis.

Symbol Interpretation

X input space

Yy ouput space

V] size of output space
S sample

(x,¥) training example

1,7 example identifier

n number of examples
F discriminant function
f classification function

iyi), (jy;) | training example identifiers

iy), (7¥) | pseudo example identifiers

Yi correct output of a given training example
y highest scoring incorrect label

k number of classes

T class identifier

I,m output length

continued on next page
82
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Table B.1: continued

Symbol

Interpretation

r,s,t

TR D QMR

™

indices of output components
output component space

output components

input feature map

canonical input feature map
output feature map

canonical output feature map

joint input-output feature map
joint feature map difference

input kernel function

output kernel function

joint kernel function

real numbers

space of non-negative real numbers
dimensions

normal vector of a hyperplane
weight vector components

margin

slack variable

l;-norm

{3-norm

complexity vs classification error trade-off constant
loss function

Lagrange multiplier / expansion coefficient of weight vector
Lagrange multiplier

precision

working set for a given example

continued on next page
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Table B.1: continued

Symbol

Interpretation

RO

> D> =

working set over all examples

objective function

optimization direction

maximum joint feature map difference for a given example
maximum joint feature map difference over all examples
maximum loss for a given example

maximum loss over all examples
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