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In this thesis we study some stochastic problems related to networks and search engines. We study

systems in a dynamic setting where input is continually injected into the system and the algorithm

(protocol) processes it. The goal is the design and analysis of protocols that are stable and efficient

in the long run.

We first consider the problem of routing calls on telephone or ATM networks, for which we present

a routing protocol and we compare it with the one that is commonly used (Dynamic Alternative

Routing). We prove that under a standard input model (Poisson arrivals, exponential durations)

our protocol has exponentially smaller bandwidth requirement than the traditional approach. Next

we study the problem of load balancing on networks, where requests are continually created and

serviced. We analyze a protocol under a variety of input models and we prove bounds on the

expected load and the expected waiting time of a new request as time passes.

Subsequently, we address a problem related to search engines. We introduce the problem of

sampling results from search-engine queries, which has applications in data mining the results and

offering services to the user. We present algorithms for the problem and we analyze their running

time and the quality of results that we obtain. We supplement the analysis with several experiments.

In modeling of dynamic phenomena as stochastic processes we place some stochastic assumption

on the stream of inputs to the system. The stochastic process that generates the stream of inputs

might be stationary, periodic, or even bursty. The goal is to obtain results that are valid under

the weakest set of assumptions. To this end, we have to develop and apply various mathematical

tools. In our analyses we apply tools from Markov processes, queueing theory, renewal theory and

martingale or martingale-like processes, that enable us to handle the dependencies between the

quantities that appear in our systems.
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Chapter 1

Introduction

In this thesis we study some stochastic problems related to networks and to search engines.

Many of the processes that occur in computing systems are dynamic: input is continually injected

into the system and the algorithm (protocol) processes it. Traditionally, theoretical computer science

analyzes algorithms in a static setting where the algorithm accepts an input, it processes it, and it

terminates with an answer. In contrast, in dynamic systems the protocol does not terminate, but

instead it continually processes the input as it is being generated by making irrevocable decisions.

The goal is the design of protocols that are stable and efficient in the long run. There are many

examples of such dynamic network systems: the evolution of the World Wide Web, traffic in routing

network, processing in distributed systems, contention resolution protocols, and so on.

Rigorous analysis of such processes seems to be necessary to characterize input conditions under

which a given system behaves as desired. One approach is to model the systems according to a

probabilistic model, as stochastic processes. This is one of the most popular ways for analyzing sim-

ilar dynamic processes in other scientific fields. For example, Brownian motion and generalizations

are used in economics to model the fluctuation in stock prices. Diffusion and branching processes

are applied in biology, while the Poisson process models the arrival of customers in a queue, or the

emission of radioactive particles.

In a large part of this thesis we analyze some networking systems where stochastic processes serve

as natural models for their evolution. We believe that the experience gained from the aforementioned

related fields is useful in understanding dynamic network processes so that we can design practical

and efficient schemes for the associated problems.

Subsequently, we addresses a problem related to search engines. Web search continues its ex-

plosive growth and thus search algorithmic efficiency is as important as ever: although processor

speeds are increasing and hardware is getting less expensive every day, the size of the corpus and

the number of searches is growing at an even faster pace. Therefore, new tools are required to assist

the user in his search process.

We introduce the problem of sampling results from search-engine queries, which has applications

in data mining the results and offering services to the user. We present algorithms for the problem

1
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and we analyze their running time and the quality of results that we obtain.

1.1 System Stability

The primary performance measure for the networking systems that we analyze is their stability. The

issue of stability arises in many different areas in modeling real-world systems. Hence, it does not

have a unique formal definition—and this is especially true in the world of stochastic processes—but

instead, depending on the context, it takes different technical interpretations, which try to capture

the intuitive idea of a system being “stable.”

It seems that the issue of stability first appeared in the analysis of problems encountered in

mechanics, and the issue of whether a solution of a deterministic dynamical system that is modeled

as an ordinary or partial differential equation is stable, is one of the major concerns. In that context,

a solution is stable if small perturbations in the problem parameters or in the problem input do not

create large changes to the solution, and there are various definitions that formalize this concept.

A very important contribution to the theory of stability was made in 1892 by A.M. Lyapunov in

his Ph.D. thesis entitled “The General Problem of Motion Stability,” who, firstly, provided a rigorous

definition of motion stability, and, secondly, introduced a method for proving that a solution is stable,

now referred to as the Lyapunov-function method. The main power of the method lies in the fact

that it is fairly versatile and easy to apply, as one can prove that a solution to a differential equation

is stable without having to explicitly solve the equation.

The ideas of Lyapunov for proving stability were carried to the world of stochastic processes,

first, probably, by Foster [30], and subsequently by Bertram and Sarachik [16] and Kats and

Krasovskii [44]. An early exposition of the method appears in Kushner’s book [46]. Theorem 2.2.2

in this thesis is an example of the application of the method in Markov processes, while similar in

spirit is Theorem 3.4.4, for more general stochastic processes.

As an important example, in the area of Markov chains there are various ways in which a system

can be considered stable. A nice discussion appears in the book written by Meyn and Tweedie [55].

At a first level, a Markov chain can be considered stable if it is irreducible: no matter how the system

starts executing it can reach any other state. A stronger notion of stability is that of recurrence:

there is a guarantee that for every state, the return time is finite; and that of positive recurrence:

the expected return time is finite.

Yet another notion of stability is that concerning the limiting or ergodic behavior. It turns out

that for a positive recurrent Markov chain, there exists a stationary regime (distribution), π, such

that if the chain starts in this regime it stays there, and if it starts in some other regime it converges

to π in a probabilistic sense. Then we can study conditions that guarantee the convergence of

empirical measures such as

1

T

T−1
∑

t=0

f(Xt)

to Eπ[f ], and as a further step, we can study the speed of convergence.
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All the aforementioned notions of stability, which are desired for the systems that we analyze, are

not precisely what we are trying to achieve. Consider for example a queueing system. One idea of

stability that we envisage is that the load of the queue remains bounded as time passes. In the case

of a stochastic analysis, this criterion can be transformed to the expected load under the stationary

regime being bounded, or to the maximum expected load over all time steps being bounded. This

is, for example, the notion considered in previous work regarding backoff protocols for contention

resolution [36, 41], queueing networks [8, 17, 22], and load-balancing protocols [15]. Even more, we

would like those bounds to be (small) polynomial functions of the system size. Furthermore, we

might like to have bounded higher moments of the load, or high-probability results.

For a finite system the requirement of stability translates to the avoidance of overloading the

system, and since in a (nontrivial) infinite-time stochastic process this is inevitable, we desire that

disasters take place infrequently and that whenever those disasters happen, the system manages to

recover fast. (Recovering could mean taking a simple action such as dropping a packet and waiting

for the sender to resend, or, in more complicated systems, performing a more sophisticated action.)

Returning to the queuing-system example, we may desire further properties. In particular we

would like a bound on the time that a packet has to wait in the queue before it becomes served.

A very useful tool is the famous Little’s law [71], L = λW , which can transform a bound on the

expected load to a bound on the expected waiting time. If, however, we want to provide a bound on

the expected waiting time of a given packet (as opposed to bounding the average expected waiting

time over all packets, which is the quantity that Little’s law involves) we need to perform more

detailed analysis. Further analysis is also necessary when we want to obtain stronger guarantees

than just bounding the expectation.

One point we should mention, is that the two different notions of stability are not unrelated. For

instance, assume that we model our system as a Markov chain, for which we show that there exists

a stationary distribution π and that the expected load under the stationary distribution is bounded.

Then, Theorem 14.0.1 in [55] implies that as time passes the expected load remains bounded. This

close relationship is one of the reasons that the authors in [37] use positive recurrence as the definition

of stability, while all the protocols considered in [41] are either stable or unstable with respect to

both stability notions.

In any case, the idea of stability that we consider is the one that we discussed previously, the

boundedness of the system load and the waiting time for service as the system evolves, in expectation

and with high probability. The statements of our theorems quantify in precise technical terms this

notion of stability.

1.2 Adversaries in Modeling

One of the important decisions when modeling a system’s evolution is the type of the input in the

system. Traditionally, in computer science analyses of algorithms, the input is controlled by an

adversary and the goal is to design algorithms that have good worst-case performance. In the case
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of the analysis of a dynamic system, worst-case analysis rarely gives any insight to the efficiency of

a protocol. A worst-case adversary is too powerful, and can flood the system by creating extremely

hard sequences, which hardly occur in practice, therefore the performance of a protocol on such

sequences does not reflect its actual performance.

An alternative approach, common in other scientific fields, is the application of probabilistic

analysis. Here the input is not controlled by an all-powerful adversary, but instead, it is a sample

from a prespecified distribution or from a distribution selected from a family of distributions. In this

case the measure of efficiency is the performance of the protocol under some probabilistic measure,

for example in expectation or with high probability. In the analysis of dynamic systems like those

that we analyze in this thesis, the probabilistic assumption is more realistic than in the traditional

(in computer science) static analysis, for the input is defined by requests that are generated by a lot

of independent (or weakly dependent) processors, and, therefore, infinitely divisible distributions,

such as the Poisson distribution, provide good approximations to their ensemble. In Chapter 2 our

input model is defined by a set of Poisson processes, a very realistic and commonly employed model

in systems like the one that we analyze.

The main criticism against probabilistic analysis is that it is very specific. Often the assumption

for the input is driven by the desire to perform detailed analysis of the process, therefore it may be

only a very simplistic model of the “real world.” As we mentioned, it turns out that these types of

assumptions are fairly realistic in the problems that we analyze and experimental evidence justifies

them, while efficient performance under those assumptions is an indication of a well-designed system.

Nevertheless, it is desirable to obtain results that are valid in big generality, under the weakest set

of assumptions. This is the route that we follow in Chapter 3. There, the input is controlled by an

adversary who has significant power, for example, he has full information about the system and his

decision may depend on the entire history of the process. However, several restrictions are necessary.

A necessary and rather obvious restriction is that in the long run the expected rate with which new

load is generated, must be lower than the rate with which existing load is consumed by the system

when operating in full capacity. This assumption still allows for large bursts, but we need to keep

them under control; this is formalized by placing some further bounds on higher moments of the

input rate, and the more restrictions that we place, the stronger are the results that we obtain.

1.3 Overview

We study two problems related to network processes and a problem on search engines.

In Chapter 2 we consider the problem of routing calls on circuit-switching telecommunication

systems. Examples of such networks are telephone and Asynchronous-Transfer–Mode (ATM) net-

works. We present a routing protocol and we compare it with the one that is commonly used. We

show that under a standard input model (Poisson arrivals, exponential durations) our protocol offers

significantly (asymptotically) higher performance than the traditional approach.

In Chapter 3 we study the problem of load balancing on networks. We consider a network
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model, suitable for networks where job processing is the dominant operation (as opposed to routing),

we present a very simple distributed randomized protocol for distributing work to the processors

through the network, and analyze the stability of the system, as jobs are created and as jobs are

being consumed. In particular we show that the maximum expected load in the long run is bounded

by a quantity that depends on the network structure (the expansion of the network), which is always

a small polynomial in the network size. We also give similar results for the waiting time of a job

in the system before being consumed. Furthermore, we show that the system has efficient behavior

not only in expectation, but also with high probability.

In Chapter 4 we diverge and we consider a search-engine related problem. Consider a search

engine and a given query which when issued to the search engine it returns a total of m results

(documents). The problem that we study is how to sample efficiently a random subset of k documents

from the result set, where k � m. We present the motivation for studying the problem and we

introduce a general mechanism for sampling efficiently any query. We then present a specialization

that performs additional optimizations and increases the performance for a class of queries. We

justify our findings analytically and experimentally. Next we present and analyze a second method

for sampling, faster from a theoretical viewpoint but probably less efficient in real system deployment.

1.4 Mathematical Tools

For the analysis of the problems that we study, we need to develop and apply certain tools from

mathematics. In the network systems under consideration we focus on the asymptotic behavior

and so every valid system state will occur infinitely often. Therefore the analysis must ensure that

the system rarely enters undesirable states and quickly recovers from them when it does. Simple

probabilistic techniques (e.g., estimating the probability of rare events for every time point and

using a union bound over all time steps) are not sufficient to achieve these goals. We require more

sophisticated arguments.

One of our goals is to demonstrate the application of different ideas in modeling and analyz-

ing dynamic processes. An important one is the modeling of the system evolution as a Markov

chain. In Chapter 2 we model our system as a countable-space, continuous-time Markov chain (or

Markov process). We first adapt a Lyapunov-type drift criterion to this type of Markov chain (The-

orem 2.2.2), which establishes the existence of a unique stationary regime and the convergence to

it at an exponential rate. Subsequently, we combine queueing-theoretic results and combinatorial

arguments to analyze the transient behavior of the chain, which exhibits the system’s behavior under

the stationary regime.

A martingale [60] is a stochastic process that generalizes Markov chains. It is frequently used

in computer science to obtain tight concentration results through the Azuma inequality. Another

fundamental theorem of martingales, less commonly employed in the computer-science literature, is

the optional sampling theorem, which can be applied to calculate values for expectations. We use it

in Chapter 4 to prove that an estimator has the correct expectation.
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Often we can use a static algorithm and adapt it in order to create a dynamic protocol (e.g., [22]).

This is the approach that we follow in Chapter 3. We adapt a protocol that has been proven to

perform efficiently in a static setting, and then we apply it in a dynamic one. Here the input is

controlled by an adversary whose decisions may depend on the entire history of the process, therefore

in this case we cannot model the system as a Markov chain. Instead, we first consider a simple but

powerful adversary and we analyze the system using results from renewal theory. This enables us to

translate the efficient static performance to an efficient steady-state performance. Once again, we

have to combine known results from renewal theory with combinatorial arguments.

Subsequently, we consider a broader class of adversaries. In this case the analysis follows a

different path, namely we use results that analyze stochastic processes with behavior similar to

supermartingales. Once again, we combine the efficient static performance, with additional combi-

natorial arguments and obtain results that show that the system has efficient performance in the

long run, both in expectation and with high probability.



Chapter 2

Balanced-Allocation Routing

Fast, high bandwidth, circuit switching telecommunications systems such as Asynchronous Transfer

Mode (ATM) and telephone networks often employ a limited path-selection algorithm in order to

fully utilize the network resources while minimizing routing overhead. Typically, between each pair

of nodes in the network there is a dedicated bandwidth for communication; namely, no more than a

certain fixed number of calls can be simultaneously active between each pair of nodes. This dedicated

bandwidth is chosen in order to satisfy the demand for communication between these stations. Only

when this bandwidth is exhausted does the admission control protocol try to find an alternative

route through intermediate nodes. To minimize overhead and routing delays, the protocol checks

just a small number of alternative routes; if there are no free connections available on any of these

alternatives, then the call or communication request is rejected. Implementations that use this

technique include the Dynamic Alternate Routing (DAR) algorithm used by British Telecom [34],

and AT&T’s Dynamic Nonhierarchical Routing (DNHR) algorithm [10].

A common feature in these (and other) currently implemented protocols is the sequential exami-

nation of alternative routes. Only when the algorithm examines a route and finds it cannot be used

is an alternative one examined. The criteria for when a route can or should be used, and the method

in which the alternative route is selected have been the subject of extensive research, in particular,

in the context of British Telecom’s DAR algorithm [33, 34, 42]; see Kelly [45] for an extensive survey.

Dynamic routing can be viewed as a special case of the online load balancing problem, where the

load (incoming calls or requests) may be assigned to one or more servers (network links), and jobs

(communication requests) can be scheduled only on specific subsets (paths) of the set of servers, as

defined by the network topology. In this chapter we study the impact of replacing the sequential

searches of the routing algorithm by a version of the balanced-allocation principle. The basic idea is

as follows: Instead of sequentially choosing alternative options (in our case, paths) until a desirable

one is found, in the balanced-allocation regime the algorithm randomly chooses and examines a

number of possible options, and assigns the job at hand to the option that appears to be the best

at the time of the assignment.

7
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A number of papers have demonstrated the advantage of the application of the balanced-

allocation principle [11, 12, 21, 57, 58] for standard load balancing problems, where jobs require

only one server and can be executed by any server in the system. This research has shown that

balanced allocations usually produce a very substantial improvement in performance, at the cost of

a small increase in overhead: Since several alternatives are examined even when the first alternative

would have been satisfactory, the complexity of the routing algorithm is increased. But, as has

been shown before and as we also demonstrate in the present context, examining even a very small

number of alternative (thus increasing overhead by a very small amount) can offer great performance

improvements.

The idea of employing the balanced-allocation principle to the problem of dynamic network

routing as described here was first explored in [49]. In this context the goal is to reduce system

congestion and minimize the blocking probability, that is, the probability that a call request is

rejected. The main difficulty in applying and analyzing the balanced-allocation principle in a network

setting is in handling the dependencies imposed by the topology of the network. The preliminary

results in [49] show that the advantage of balanced allocations is so significant that it holds even in

the presence of a set of dependencies.

The performance of a routing protocol can be analyzed in a static (finite, discrete time) or in

a dynamic (infinite, continuous time) setting. The static case has been extensively studied in [48],

extending and strengthening the results in [49]. In this chapter we consider the continuous-time

case. The analysis of the continuous-time case suggested in [49] was based on applying Kurtz’s

density-dependent jump Markov chain technique, following the supermarket model analysis in [57,

58]. However, since the argument in [49] is incomplete, we present here a different analysis. Our

results concern the long-term behavior of large networks employing a routing protocol based on

the balanced-allocation principle. The main tools we employ are a Lyapunov drift criterion used to

establish the existence of a stationary distribution for the BDAR routing protocol, and a continuous-

time extension of the technique in [12], used to analyze the stationary behavior of a network.

Balanced allocations have also been studied in the context of queueing networks, where analogous

results (under different asymptotic regimes than the ones in this chapter) are obtained in [51, 57,

73, 76], among others.

The results of this chapter have appeared in [7], and are joint work with Ioannis Kontoyiannis

and Eli Upfal.

2.1 Model Description and Main Results

In the types of networks that we consider here, a logical link or “bandwidth” is reserved between

each pair of stations, and an alternative route is only used when this logical link has already been

exhausted. We model such a network as the complete undirected graph G = (V,E) with |V | = n

vertices (stations) and |E| = N =
(

n
2

)

edges (links).

The input to the system is a sequence of call requests, which are assumed to arrive at Poisson
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times: New calls onto each link (i.e., between each pair of nodes) arrive according to a Poisson process

with rate λ, all arrival streams being independent. Similarly, the duration of a call is independent

of all arrival times all other call durations, and it is exponentially distributed with mean 1/µ.

The routing algorithm has to process the calls on-line, that is, the tth request is either assigned a

path or rejected before the algorithm receives the (t+1)th request. Once a call is assigned to a path,

that path cannot be changed throughout the duration of the call. We assume that each edge has a

capacity of 3B circuits (one circuit can transmit one call), where 1/3 of this capacity is reserved for

direct calls (namely, it will only be used for call requests between these two nodes), and the rest is

reserved for being used as part of an alternative route between two stations.

As in most of our results we consider large networks with a number n of nodes growing to infinity,

we will also assume that the capacity parameter B may vary with n. Specifically, we assume that

B = Bn is nondecreasing in n, and we also allow the possibility B = ∞.

The goal in designing an efficient routing protocol is to assign routes to the maximum possible

number of call requests without violating the capacity constraints on the edges. We will compare

the performance of the following two protocols:

The d-Dynamic Alternative Routing (DAR) algorithm works as follows. When a new call request

arrives, it tries to route the call through the direct (one-link) path. If there are no available circuits

on the direct path, then the algorithm sequentially chooses alternative routes of length two, without

replacement, and assigns the call to the first available path. Up to d such choices are made, and

they are made at random. If no possible path is found, then the request is rejected.

The d-Balanced Dynamic Alternative Routing (BDAR) algorithm also assigns a new call request

to the direct path if there are available circuits. If not, then the algorithm chooses d length-two

alternative paths at random, with replacement, and compares the maximum load among them (in

the exact sense that we describe later). Then the call is assigned to the path with the minimum

load. As before, if there is no path with free circuits among these d choices, then the call is rejected.

Consider some link e between two stations u and v, with a capacity of 3B circuits, from which B

are reserved for routing calls between u and v. The rest of the 2B circuits, which are reserved for

alternative paths, are further split into two. B circuits are reserved for routing calls with u as one

of the endpoint station communicating, and B circuits for calls with v as the endpoint.

The model described so far, together with one of the two protocols above, induces a continuous-

time stochastic process describing the behavior of the network. As we show below, this system (for

fixed n) converges to a stationary regime exponentially fast. For our purposes, the main performance

measure is the minimum required bandwidth that ensures that, under the stationary distribution of

the network, the blocking probability (i.e., the probability that a new call is rejected) is appropriately

small.

Our main goal is to compare the performance of the DAR algorithm with that of BDAR. It is

clear that BDAR’s performance is dominated by its performance on alternative (length-two) routes.

Therefore, to simplify the analysis, we consider a variant of BDAR, which we call BDAR*, which

ignores the direct links and services each call only via an alternative route, making use only of the 2B
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alternative connections of each edge. In other words, we assume that each edge has capacity 2B and

all of it is dedicated to alternative routes. We show that even though the BDAR* policy ignores the

direct links, it has superior performance compared to DAR.

The following result illustrates this superiority by exhibiting explicit asymptotic bounds on their

bandwidth requirements. It follows from the results in Theorems 2.2.4 and 2.3.1.

Theorem 2.1.1. Assume that all the edges have a capacity of 3B circuits.

Under the DAR policy, capacity

B = Ω

(
√

lnn

d ln lnn

)

, as n→ ∞

is necessary to ensure that, under the stationary distribution, a new call is not lost with high proba-

bility.

On the other hand if we perform the BDAR* policy (thus ignoring the B direct links), capacity

B =
ln lnn

ln d
+ o

(

ln lnn

ln d

)

, as n→ ∞

suffices to ensure that, under the stationary distribution, a new call is not lost with high probability.

In the above result and throughout the thesis, we say that a limiting statement holds “with high

probability” (abbreviated “whp.”) if it holds with probability that is at least 1 − 1/nc for some

constant c > 0. For example, when we say that a random variable “Xn = O(lnn) whp.” we mean

that there are positive constants C and c such that Pr(Xn ≤ C lnn) ≥ 1 − 1/nc for all n large

enough. Similarly, “Xn = o(lnn) whp.” means that there is a c > 0 such that, for all ε > 0,

Pr(Xn ≤ ε lnn) ≥ 1 − 1/nc for all n large enough.

Note that the result of Theorem 2.1.1 is exactly analogous to that obtained in [48] in the discrete-

time case.

2.2 Analysis of Balanced-Allocation Routing

This section presents our main contribution in this chapter, a steady state analysis of the performance

of the BDAR* routing algorithm. The network is a complete graph with n nodes and N =
(

n
2

)

undirected edges. New calls arrive at Poisson times with rate λ and their durations are exponentially

distributed with mean 1/µ, as described earlier. As it turns out, an important parameter in the

analysis of the network load is the ratio ρ = λ/µ.

2.2.1 Unbounded capacities

We first analyze the maximum load on edges when the algorithm is used on a network with un-

bounded edge capacity, corresponding to B = Bn = ∞. Consider some ordering of the edges, and

let

Γ = {(e, e′) : e, e′ ∈ E, e < e′, e adjacent to e′},
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be the set of edge pairs that are adjacent to each other. For every pair of adjacent edges (e, e′) ∈ Γ,

let ce,e′(t) denote the number of calls at time t that use edges e and e′ (recall that every alternate

path consists of two links). Then the above model induces a continuous-time Markov process Φ =

{Φ(t) : t ≥ 0}, evolving on the state space

Σ = N
N(n−2),

where

Φ(t) = (ce,e′ (t))(e,e′)∈Γ.

For an edge e = (u, v) we define also `e,v(t) to be the number of calls at time t that use edge e and

have node v as an endpoint:

`e,v(t) =
∑

e′:
(e′,e)∈Γ, v not
adjacent to e′

ce′,e(t) +
∑

e′:
(e,e′)∈Γ, v not
adjacent to e′

ce,e′(t),

and we also define `e(t) to be its combined load at time t, that is,

`e(t) = `e,v(t) + `e,u(t)

=
∑

e′:(e′,e)∈Γ

ce′,e(t) +
∑

e′:(e,e′)∈Γ

ce,e′ (t).

Assume that a call arrives at time t on edge e = (u, v). Algorithm BDAR* selects d nodes

uniformly at random with replacement, from V \{u, v}. Name these nodes {wi} for i = 1, 2, . . . , d,

and the corresponding edges eu
i = (u,wi) and ev

i = (wi, v). The call is then assigned to the path

(eu
i , e

v
i ) corresponding to the minimum i satisfying

max{`eu
i ,u(t−), `ev

i ,v(t−)} = min
j=1,2,...,d

max{`eu
j ,u(t−), `ev

j ,v(t−)}.

In the above expression, and throughout the entire chapter, f(t−) denotes the left-side limit of

function f at t, namely, limδ↓0 f(t− δ). Note that instead of selecting the minimum i satisfying the

above expression, we can choose any Markovian rule. Finally, we define

Mv
≥i(t) =

∑

e:e incident to v

(`e,v(t) − i+ 1)+

Lv
≥i(t) =

∑

e:e incident to v

1{`e,v(t)≥i},

where 1E denotes the indicator function of event E , and x+ = max{x, 0}. In words, Lv
≥i(t) counts

the number of edges incident to node v with at least i calls with v as an endpoint at time t, and

Mv
≥i(t) counts the excess above i at time t on edges incident to v, of calls that have node v as an

endpoint. Trivially we have Lv
≥i(t) ≤Mv

≥i(t).

As we show next, this Markov process has a stationary distribution πn to which it converges

exponentially fast, regardless of the initial state of the network. We then prove a high probability

bound on the maximum load on any edge in the system under this stationary distribution.
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The process Φ evolves on Σ according to the model described above. This evolution is formalized

by the transition semigroup {P t : t ≥ 0} of Φ, where P t(c, c′) is simply the probability that Φ is in

state c
′ at time t given that it was in state c at time zero, P t(c, c′) = Pr(Φ(t) = c

′ |Φ(0) = c).

Our first result shows that Φ has a stationary (or invariant) distribution to which it converges

exponentially fast. It is stated in terms of the “Lyapunov function” V (x), which is defined as

1+(total number of active calls in state x ∈ Σ):

V (x) = V ({ce,e′ : (e, e′) ∈ Γ}) = 1 +
∑

(e,e′)∈Γ

ce,e′ , (2.1)

where ce,e′ counts the number of calls in state x that use edges e and e′.

Theorem 2.2.1. Assume that the BDAR* algorithm is used on a network with n nodes, each of

which has infinite capacity. Then the induced Markov process Φ has a unique invariant distribution

πn, and, moreover, for any initial state x ∈ Σ, the distribution of Φ(t) converges to πn exponentially

fast, namely, there is a constant γ < 1, such that

sup
y
|P t(x, y) − πn(y)| ≤ V (x)γt, for all t ≥ 0 and all x ∈ Σ.

Proof. Our proof uses the Lyapunov drift criterion for the exponential ergodicity of a continuous

time Markov process [53, 26, 54]. To state our main tool, we recall a few definitions, adapted to our

case of countable state space.

The generator A of the process Φ is a linear operator on functions F : Σ → R defined by

AF (x) = lim
h↓0

E(F (Φ(h)) |Φ(0) = x) − F (x)

h

whenever the above limit exists for all x ∈ Σ. The explosion time of Φ is defined as

ζ = sup
n
Jn,

where

J0 = 0, Jn+1 = inf{t ≥ Jn : Φ(t) 6= Φ(Jn)}

(J0, J1, . . . are the jump times of the Markov process). We say Φ is nonexplosive if Pr(ζ = ∞|Φ(0) =

x) = 1 for any starting state x.

The following theorem follows from the more general results in [54, 26], specialized to the case

of a continuous-time Markov process with a countable state space.

Theorem 2.2.2. [54, 26] Suppose a Markov process evolving on a countable state space that is

nonexplosive, irreducible (with respect to the counting measure on Σ) and aperiodic. If there exists

a finite set C ⊂ Σ, constants b <∞, β > 0 and a function V : Σ → [1,∞), such that,

AV (x) ≤ −βV (x) + b1C(x) x ∈ Σ , (2.2)

then the process is positive recurrent with some invariant probability measure π, and there exist

constants γ < 1, D <∞ such that

sup
y
|P t(x, y) − π(y)| ≤ DV (x)γt, for all t ≥ 0 and all x ∈ Σ.
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It is easy to verify that the process is ψ-irreducible and aperiodic, with the maximal aperiodicity

measure ψ being the counting measure on Σ.1 Also the process is nonexplosive since the number of

new calls in a given interval has a Poisson distribution with a finite mean; therefore, the probability

of infinite number of transitions in a finite interval is 0.

To show that the drift criterion (2.2) can be satisfied, we use the Lyapunov function V (x)=1+(total

number of active calls in state x) defined in Equation (2.1) above.

In order to compute AV we notice that when a new call enters the system, it increases the loads

of two edges by 1, hence the value of V by 1, and when a call terminates the value of V decreases by

1. Therefore, new calls are generated with rate λN and calls are terminated at a rate µ(V (x) − 1).

The probability that in a time interval h there are 2 or more new calls or terminations of calls

is o(h).2 Using these observations we can compute AV :

AV (x) = lim
h↓0

V (x) + λN · h− µ · (V (x) − 1) · h+ o(h) − V (x)

h

= λN − µV (x) + µ.

We define

C =

{

x ∈ Σ : V (x) <
2λ

µ
N + 2

}

,

which is clearly finite, and in order to analyze the drift condition we distinguish between the following

two cases:

• x ∈ C:

AV (x) = λN − µV (x) + µ ≤ −µV (x)

2
+ λN + µ

• x ∈ Σ\C:

AV (x) = λN − µV (x) + µ ≤ µV (x)

2
− µV (x) = −µV (x)

2
.

Thus, the drift condition holds for β = µ/2 and b = λN + µ.

Having shown the existence of an invariant limiting distribution πn, we now analyze the maximum

load on the edges under this distribution.

Theorem 2.2.3. Consider a network with n nodes, and let πn be the invariant distribution of the

induced Markov process under the BDAR* policy with unbounded edge capacity. Under πn, the

maximum number of calls in any edge is bounded whp. by

2 ln lnn

ln d
+ o

(

ln lnn

ln d

)

as n→ ∞.

1This follows along the lines of the arguments in Chapters 4 and 5 of [55]. In particular, note that all sets {y} ∈ Σ
are ν1-small and P 1(x, y) > 0 for all x, y ∈ Σ so that in fact Φ is irreducible and strongly aperiodic.

2Here and in the next expression with the notation o(h) we mean that f is o(h) if limh→0
f(h)

h
= 0. In the rest of

the text o(n) has the usual meaning.
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Proof. In order to compute the maximum edge load under the stationary distribution, we start

observing the system at some time point and study its transient behavior; we then use the results

to deduce the properties of the invariant distribution. In particular, we show that there exists a

T = O
(

n ln ln n
lnd

)

, such that for any state of the system at time τ − T that has sufficiently large

probability (we will be more precise later), whp. at time τ the maximum number of calls on any

edge is
2 ln lnn

ln d
+ o

(

ln lnn

ln d

)

.

The high level idea is the following. We partition the time period T into ln ln n
ln d +o

(

ln ln n
ln d

)

periods

of length O(n). Roughly, we argue that at the end of the ith period, whp., for each node, the number

of incident edges with load greater than i is at most 2αi. The αi’s decrease doubly exponentially, so

at the end of the last period we will be able to deduce that there are no edges with more than ln ln n
ln d

load towards each direction, whp. The challenge is to handle the dependencies, as the number of

calls during some period depends on the number of calls of the previous periods. We now proceed

with the details.

We first define the sequence of values {αi}, which decrease doubly exponentially:

ακ =
(n− 2)ρ

κ
where κ = eρ · d−1

√

2ρ · 4d

αi =
2ρ · 4d · αd

i−1

(n− 2)d−1
for i > κ and αi−1 ≥ 1

4
· d

√

25

ρ
(n− 2)d−1 · lnn

αi∗ = 50 lnn i∗ is the smallest i for which αi−1 <
1

4
· d

√

25

ρ
(n− 2)d−1 · lnn

αi∗+1 = 10

Solving the recurrence we get for κ ≤ i < i∗,

αi+κ = (2ρ · 4d)
di

−1
d−1 ·

(ρ

κ

)di

(n− 2) =
1

d−1
√

2ρ · 4d
·
[

ρ · d−1
√

2ρ · 4d

κ

]di

(n− 2)

=
1

d−1
√

2ρ · 4d
· n− 2

edi ,

(2.3)

and since i∗ is the smallest integer satisfying

αi∗−1 <
1

4
· d

√

25

ρ
(n− 2)d−1 · lnn,

we get that

i∗ =
ln lnn

ln d
+ o

(

ln lnn

ln d

)

.

In order to see that, let first i∗ − 2 = j + κ. Then

αi∗−2 = αj+κ =
1

d−1
√

2ρ · 4d
· n− 2

edj .

Since

αi∗−2 ≥ 1

4
· d

√

25

ρ
(n− 2)d−1 · lnn,
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we get, successively,

1
d−1
√

2ρ · 4d
· n− 2

edj ≥ 1

4
· d

√

25

ρ
(n− 2)d−1 · lnn

1

2dρd · 4d2 · (n− 2)d(d−1)

edj+1(d−1)
≥ 1

4d(d−1)
· 25d−1

ρd−1
(n− 2)(d−1)2 · (lnn)d−1

1

22d2+dρ
· (n− 2)d2−d

edj+1(d−1)
≥ 1

22d2−2d
· 25d−1(n− 2)d2−2d+1 · (lnn)d−1

2−2d2−d+2d2−2d · (n− 2)d2−d−d2+2d−1

edj+1(d−1)
≥ ρ · 25d−1(lnn)d−1

edj+1(d−1) ≤ 1

ρ · 23d · 25d−1
· (n− 2)d−1 · 1

(lnn)d−1

dj+1(d− 1) ≤ (d− 1) ln(n− 2) − (d− 1) ln lnn− ln(ρ · 23d · 25d−1)

dj+1 ≤ ln(n− 2) − ln lnn− ln(ρ · 23d · 25d−1)

d− 1

j + 1 ≤ ln ln(n− 2)

ln d
− ln ln lnn

ln d
−

ln ln(ρ·23d·25d−1)
d−1

ln d
.

Therefore,

i∗ = j + κ+ 2

≤ ln ln(n− 2)

ln d
− ln ln lnn

ln d
−

ln ln(ρ·23d·25d−1)
d−1

ln d
+ κ+ 1

=
ln lnn

ln d
+ o

(

ln lnn

ln d

)

.

Next we define T = n(i∗ − κ + 3) = O
(

n ln ln n
ln d

)

and an increasing sequence of points in time:

Let tκ−1 = τ −T and for i ≥ κ, ti = ti−1 +n, so that the end of the last period, ti∗+2, is the current

time τ .

Let E denote the event “at time tκ−1 = τ − T there are at most (1 + ε)Nρ calls in the system,”

for some constant ε > 0, and let

Ci = {∀v ∈ V, t ∈ [ti, τ ] : Lv
≥i(t) ≤ 2αi}.

We show by induction that for i = κ, . . . , i∗ + 1

Pr(Ci | E) ≤ 2i

n2
. (2.4)

Initially we prove the following lemma, which we use throughout the proof.

Lemma 2.2.1. Let A and B be events such that Pr(B) ≥ 1 − n−c for some constant c, for n large

enough. Then for any constant ζ > 0 we have

Pr(A |B) ≤ (1 + ζ)Pr(A),

for sufficiently large n.
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Proof. We have

Pr(A |B) =
Pr(A,B)

Pr(B)
≤ Pr(A)

Pr(B)
≤ 1

1 − n−c
Pr(A) ≤ (1 + ζ)Pr(A).

Now we examine the base case of Relation 2.4. Let Cv
i be the event

Cv
i = {∀t ∈ [ti, τ ] : Lv

≥i(t) ≤ 2αi},

and J v be the event “no more than 2λ(n − 1)T calls are generated with node v as an endpoint

during [τ − T, τ ].” We need to bound the probability of J v, so we prove the following lemma.

Lemma 2.2.2. For sufficiently large n, we have

Pr(J v | E) < n−4.

Proof. Node v has n − 1 incident links, on each of which new calls are generated according to a

Poisson process with rate λ, independently of the other links. Therefore, the number of new calls

with v as an endpoint during T steps is distributed according to a Poisson(λ(n−1)T ). So by applying

a Chernoff bound for the Poisson distribution3 we get that

Pr(J v) ≤ e−λ(n−1)T (eλ(n− 1)T )2λ(n−1)T

(2λ(n− 1)T )2λ(n−1)T

= e−λ(n−1)T+2λ(n−1)T+2λ(n−1)T ln(λ(n−1)T )−2λ(n−1)T ln(2λ(n−1)T )

= e−λ(n−1)T (2 ln 2−1)

< n−4,

for sufficiently large n. To complete the proof, we use the fact that the number of new calls during

[τ − T, τ ] is independent of event E .

We now have

Pr(Cκ | E) ≤ nPr(Cv
κ | E)

≤ nPr(Cv
κ | J v, E) + nPr(J v | E).

(2.5)

By Lemma 2.2.2, the second term is bounded by n · n−4, and we now bound the first term.

Conditioning on J v, we have at most 2λ(n − 1)T new jobs during [tκ−1, τ ], say at times {t̂j, j =

1, 2, . . . }. Define also t̂0 = tκ. Then

Pr(Cv
κ | J v, E) ≤

2λ(n−1)T
∑

j=0
t̂j≥tκ

Pr(Lv
≥κ(t̂j) > 2ακ | J v, E). (2.6)

3Assume that X is distributed according to a Poisson distribution with rate λ. Then (see, for example, [69,
page 416])

Pr(X ≥ i) ≤
e−λ(eλ)i

ii
.
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Let us compute the number of calls in the system with node v as an endpoint at time t̂j . These

calls can be separated to calls that were in the system before time tκ−1 (let x be their number), and

calls that arrived after tκ−1 (say y).

In order to compute x, we can notice that each of the x calls remains in the system until time t̂j

with probability e−µ(t̂j−tκ−1). Since t̂j ≥ tκ = tκ−1 + n, the probability that a such call survives is

bounded by e−nµ. So,

Pr(x > 0 | E) ≤ (1 + ε)Nρe−nµ <
1

n7
,

and we conclude that conditioning on event E , x = 0 with probability at least 1−n−7, for sufficiently

large n.

In order to bound y, the number of calls arrived after time point tκ−1, we prove the following

lemma.

Lemma 2.2.3. Consider a period Π and a given node v. The number of calls having node v as an

endpoint that were generated during Π and are in the system at the end of Π is distributed according

to a Poisson distribution with rate bounded by ρ(n− 1), independently of E.

Proof. Let ∆ be the duration of the period Π, and let Y be a random variable counting the number

of calls that were generated during Π, had v as an endpoint and are in the system at the end of Π.

Node v has n− 1 incident links on each of which new calls are generated with rate λ, independently

of each other. The duration of each call is exponentially distributed with parameter µ. This process

is an infinite server Poisson queue [67, page 18] in which the number of calls at the end of the period

is distributed according to a Poisson distribution with rate

λ(n− 1)∆p,

where

p =

∫ ∆

0

e−µ(∆−x)

∆
dx =

1

µ∆

(

1 − e−µ∆
)

≤ 1

µ∆
.

So Y is distributed according to a Poisson distribution with rate at most λ(n − 1)/µ = ρ(n − 1).

Notice also that since Y does not depend on any event prior of Π, the distribution of Y conditioned

on E is still Poisson with the same rate.

By applying this lemma, we have that y is bounded by a Poisson(ρ(n−1)). So, from the Chernoff

bound, we conclude that y ≤ 2ρ(n− 2) with probability at least 1 − n−7, for sufficiently large n.

The probability that at time t̂j there are more than 2ρ(n− 2) calls with node v as an endpoint

is bounded by

Pr(x > 0 ∨ y > 2ρ(n− 2) | E),

which, using the previous facts, can be bounded by 2n−7.

Notice now that if node v has fewer than 2ρ(n− 2) calls at time t̂j , then

Lv
≥κ(t̂j) ≤

2ρ(n− 2)

κ
= 2ακ.



18

Hence, for all t̂j ≥ tκ we have

Pr(Lv
≥κ(t̂j) > 2ακ | E) ≤ 2n−7,

and by making use of Lemma 2.2.1, we get

Pr(Lv
≥κ(t̂j) > 2ακ | J v, E) ≤ 2 · 2n−7 = 4n−7. (2.7)

Combining Relations (2.5), (2.6), (2.7), Lemma 2.2.2, and the fact that T = O(n2), we get that

Pr(Cκ | E) ≤ n · (2λ(n− 1) + 1) · n2 · 4n−7 + n · n−4 ≤ n−2,

for large enough n, which completes the base case (i = κ) of Relation (2.4).

For the induction step we assume that

Pr(Ci−1 | E) ≤ 2(i− 1)

n2
. (2.8)

Assume now that at time t a new call enters the system. Then the call is routed through an edge

with (new) load greater or equal to i if in all the d alternative paths at least one of the two edges

had load at least i − 1. More concretely, let G denote the event “a new call is generated at time t

with v as an endpoint,” and let u be the other endpoint and (wj , j = 1, . . . , d) be the intermediate

nodes of the queried alternative paths.

We then have

Pr(Mv
≥i(t) > Mv

≥i(t−) |Φ(t−),G)

≤ Pr(Mv
≥i(t) > Mv

≥i(t−) ∨Mu
≥i(t) > Mu

≥i(t−) |Φ(t−),G)

≤ Pr(∀j ∈ {1, . . . , d} : `(v,wj)(t−) ≥ i− 1 ∨ `(u,wj)(t−) ≥ i− 1 |Φ(t−),G)

≤
(

Lv
≥i−1(t−) + Lu

≥i−1(t−)

n− 2

)d

,

therefore,

Pr(Mv
≥i(t) > Mv

≥i(t−) | E ,G, ∀z ∈ V : Lz
≥i−1(t−) ≤ 2αi−1)

≤
(

2 · 2αi−1

n− 2

)d
.
= qi. (2.9)

Notice that for i = κ+ 1, . . . , i∗ we have

qi ≤
αi

2ρ(n− 2)
. (2.10)

We now define

Fi = {∀v ∈ V : Mv
≥i(ti) < αi}

and prove Lemmata 2.2.4 and 2.2.6, that allow us to conclude that Pr(Ci | E) ≤ 2i

n2
, and establish

Relation (2.4).
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Lemma 2.2.4. Under the inductive hypothesis

Pr(Fi | Ci−1, E) ≤ n−2.

Proof. First we apply Lemma 2.2.3 for the interval Π = [tκ−1, ti−1] and we deduce that the number

of calls with v as an endpoint that were generated during Π and remained until time ti−1 follows a

Poisson distribution with mean bounded by ρ(n − 1). Hence, with a Chernoff bound, we get that

with probability at least 1− n−3 there are at most 2ρ(n− 1) such calls. If we condition on event E ,

then the total number of calls in the system at time ti−1 with node v as an endpoint is at most

(1 + ε)Nρ+ 2ρ(n− 1)

with probability at least 1 − n3. The probability that each of these calls stays in the system until

time ti is bounded by e−nµ (recall that ti− ti−1 = n), so the probability, conditioned on the event E ,

that some of the calls that were in the system up to time ti−1 and had v as an endpoint, stays in

the system until time ti is bounded by

n−3 + [(1 + ε)Nρ+ 2ρ(n− 1)]e−nµ < 2n−3

for sufficiently large n. By applying Lemma 2.2.1 and making use of the induction hypothesis (Equa-

tion (2.8)) we deduce that the probability that some of those calls stay in the system conditioned

on the events Ci−1 and E is bounded by 4n−3. To analyze the number of the remaining calls that

were created during the period [ti−1, ti], we make use of Lemma 2.2.5 which completes the proof of

this one.

Lemma 2.2.5. Consider a period Π and a given node v. Conditioning on Ci−1 and E, the number

of new calls that increased Mv
≥i when they were generated, and remained until the end of Π is less

than αi, with probability at least 1 − n−7.

Proof. Let Y be the number of calls that were generated during Π, had v as an endpoint and are

in the system at the end of Π. By applying Lemma 2.2.3 we get that conditioned on E , Y follows a

Poisson distribution with rate bounded by ρ(n− 1).

Let now Z be the number of calls in the system at the end of Π whose arrival resulted in the

increase of Mv
≥i. Denote with Hk the event {Y = k} and let {t̃j}k

j=1 be the time of the arrival of

the jth call that exists in the system at the end of Π. We can then write

Pr(Z > r | E , Ci−1) =
∑

k

Pr(Z > r | E , Ci−1,Hk) ·Pr(Hk | E , Ci−1).

We now fix k and we consider the random variables {Zj}k
j=1, where

Zj = 1 if Mv
≥i(t̃j) > Mv

≥i(t̃j−)

and ∀z ∈ V : Lz
≥i−1(t̃j−) ≤ 2αi−1.

From Relation (2.9) we get that

Pr(Zj = 1 | E) ≤ qi,
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so, since (induction hypothesis (2.4)) Pr(Ci−1 | E) ≥ 1− 2(i− 1)/n2, we can apply Lemma 2.2.1 and

get

Pr(Zj = 1 | E , Ci−1) ≤ (1 + ζ)qi, (2.11)

for some constant ζ (say 0.05), independently of all the previous Zj . Notice now that conditioning

on events Ci−1, and Hk, we have

Z =

k
∑

j=1

Zj .

Hence

Pr(Z > r | E , Ci−1) =
∑

k

Pr





k
∑

j=1

Zj > r

∣

∣

∣

∣

∣

E , Ci−1,Hk



 · Pr(Hk | E , Ci−1).

Again by Lemma 2.2.1, we get

Pr(Hk | E , Ci−1) ≤ 2Pr(Hk | E).

So by the fact that the distribution of Y conditioned on E is Poisson with rate at most ρ(n − 1),

and by Relation (2.11), we can finally conclude that

Pr(Z > r | E , Ci−1) ≤ 2
∑

k

Pr(Binomial(k, (1 + ζ)qi) > r) ·Pr(Poisson(ρ(n− 1)) = k)

≤ 2Pr(Poisson((1 + ζ)ρqi(n− 1)) > r).

We now distinguish the following two cases:

Case 1: For i ≤ i∗, by using Equation (2.10) we get that (1 + ζ)ρqi(n− 1) ≤ 1.1αi/2 for ζ = 0.05, and

by applying the Chernoff bound, we get that the probability that the number of calls is higher

than αi is bounded by

2
e−

1.1αi
2 (e 1.1αi

2 )αi

ααi

i

≤ 2e−0.147αi.

For i < i∗ we have from the definition of αi

2e−0.147αi = 2e
−0.147

2ρ·4dαd
i−1

(n−2)d−1

≤ 2e
−0.147

2ρ·4d 1
4d

25
ρ

(n−2)d−1 ln n

(n−2)d−1

= 2e−0.147·50 ln n

= o

(

1

n7

)

,

while for i = i∗ we get

e−0.147αi = 2e−0.147·50 ln n

= o

(

1

n7

)

.
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Case 2: For i = i∗ + 1, using Equation (2.9) we get that the parameter of the Poisson distribution is

(1 + ζ)ρqi(n− 1) ≤ (1 + ζ)
4d · αd

i−1

(n− 2)d
ρ(n− 1) = (1 + ζ)

(4 · 50 lnn)d

(n− 2)d
ρ(n− 1),

and with the Chernoff bound we get that the probability that the number of calls is higher

than αi∗+1 = 10 is o(1/n7).

Lemma 2.2.6. Under the inductive hypothesis

Pr(Ci | Fi, Ci−1, E) ≤ n−2.

Proof. First we compute

Pr(Fi, Ci−1 | E) = Pr(Ci−1 | E) ·Pr(Fi | Ci−1, E)

≥
(

1 − i− 1

n2

)

·
(

1 − 1

n2

)

,

by Relation (2.8) and Lemma 2.2.4, so

Pr(Fi, Ci−1 | E) ≥ 1 − 1

n
.

So, by Lemma 2.2.1 we get

Pr(J v | Fi, Ci−1, E) ≤ 2Pr(J v | E)

and finally, by using Lemma 2.2.2, we conclude

Pr(J v | Fi, Ci−1, E) ≤ 2n−4. (2.12)

Hence, we can get

Pr(Ci | Fi, Ci−1, E) ≤ n ·Pr(Cv
i | Fi, Ci−1, E)

≤ n ·Pr(Cv
i | J v,Fi, Ci−1, E) + n ·Pr(J v | Fi, Ci−1, E)

(2.13)

We have a bound for the second term, so we want to bound the first one. For that, we write (recall

that {t̂j} are the times of the arrivals of the new calls with node v as an endpoint)

Pr(Cv
i | J v,Fi, Ci−1, E) ≤ Pr(∃t̃ ∈ [ti, τ ] : Lv

≥i(t̃) > 2αi | J v,Fi, Ci−1, E)

≤ Pr(∃t̃ ∈ [ti, τ ] : Mv
≥i(t̃) > 2αi | J v,Fi, Ci−1, E)

≤
2λ(n−1)T
∑

j=1
t̂j≥ti

Pr(Mv
≥i(t̂j) > 2αi | J v,Fi, Ci−1, E)

(2.14)

Conditioning on event Fi, we have Mv
≥i(t̂j) > 2αi only if Mv

≥i increased by at least αi during the

interval [ti, t̂j ]. Therefore, by applying Lemmata 2.2.1, 2.2.4, and 2.2.5, we get

Pr(Mv
≥i(t̂j) > 2αi | Fi, Ci−1, E) <

2

n7
.
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We combine this result with Relation (2.12) and Lemma 2.2.1 and we have

Pr(Mv
≥i(t̂j) > 2αi | J v,Fi, Ci−1, E) <

4

n7
. (2.15)

If we combine Relations (2.13), (2.14), and (2.15), we get the result.

Having proven Lemmata 2.2.4 and 2.2.6 we can now show that Pr(Ci | E) ≤ 2i/n2:

Pr(Ci | E) = Pr(Ci | Ci−1, E) ·Pr(Ci−1, E)

+ Pr(Ci | Ci−1, E) · Pr(Ci−1, E)

≤ Pr(Ci | Ci−1, E) +
2(i− 1)

n2

= Pr(Ci | Ci−1,Fi, E) ·Pr(Fi | Ci−1, E)

+ Pr(Ci | Ci−1,Fi, E) ·Pr(Fi | Ci−1, E) +
2(i− 1)

n2

≤ 1

n2
+

1

n2
+

2(i− 1)

n2

=
2i

n2

We have therefore shown that the event Ci∗+1 holds whp., which implies that for every node v,

after the (i∗ + 1)th period, there will be no more than 2αi∗+1 = 20 incident edges with load more

than i∗ + 1. We will now bound the probability that in the next interval ([ti∗+1, ti∗+2], the last

interval of T ) there will be an incident edge of v with load more than i∗ + 3, conditioning on the

event Ci∗+1. For this to happen, we must have at least 2 new calls to be routed using one of the 20

highly loaded edges. The probability that two specific new calls use these edges is at most

(

20 + 20

n− 2

)2d

= O

(

1

n4

)

, (2.16)

since d ≥ 2. The expected number of calls with v as an endpoint is λ(n − 1)n, since (n − 1) links

are connected to v in each of which new calls are generated with rate λ, while the total length of

the interval is n. This implies that whp. there will be O(n2) new calls in the whole period. By

combining this fact with Equation (2.16), applying Lemma 2.2.1, and summing for all the nodes we

conclude that at the end of period T there will be no edges with load more than i∗ + 3 whp.

We now consider the stationary distribution πn, and show that under it

Pr

(

`max ≤ ln lnn

ln d
+ o

(

ln lnn

ln d

))

= 1 − o

(

1

n

)

.

where

`max = max
e=(u,v)∈E

max{`e,u, `e,v}

denotes the maximum number of calls on any edge, in the stationary regime (`e,u is the number of

calls with u as an endpoint routed through edge e in the stationary regime). Recall that Φ(t) is the

state of the system at time t, and consider the following partitioning of the state space, Σ, of the

underlying Markov process:
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• S1 =

{

x : V (x) ≤ (1 + ε)Nρ, `max ≤ ln lnn

ln d
+ o

(

ln lnn

ln d

)}

,

that is, states in which the total number of calls in the system is at most (1 + ε)Nρ, and the

maximum load is at most ln ln n
ln d + o

(

ln ln n
ln d

)

.

• S2 =

{

x : V (x) ≤ (1 + ε)Nρ, `max >
ln lnn

ln d
+ Ω

(

ln lnn

ln d

)}

,

that is, states in which the total number of calls in the system is at most (1 + ε)Nρ, and the

maximum load is higher than ln ln n
lnd + Ω

(

ln lnn
ln d

)

.

• S3 = {x : V (x) > (1 + ε)Nρ} ,
that is, states in which the total number of calls in the system is higher than (1 + ε)Nρ.

We have shown that

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) ∈ S1 ∪ S2) = o

(

1

n

)

and we can easily show that

Pr(Φ(τ) ∈ S3 |Φ(τ − T ) ∈ S1 ∪ S2) = o

(

1

n

)

Moreover, in the stationary distribution the number of calls in the system has a Poisson distribution

with parameter Nρ. Hence by using the Chernoff bound

∑

i∈S3

(πn)i = o

(

1

n

)

Then we have
∑

i∈S2∪S3

(πn)i =
∑

i∈S2

(πn)i +
∑

i∈S3

(πn)i

The second term is o(1/n), while for the first one

∑

i∈S2

(πn)i =
∑

j

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

=
∑

j∈S1∪S2

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

+
∑

j∈S3

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

=
∑

j∈S1∪S2

(πn)j · o
(

1

n

)

+ o

(

1

n

)

= o

(

1

n

)

Therefore,
∑

i∈S2∪S3

(πn)i = o

(

1

n

)

,

which implies that
∑

i∈S1

(πn)i = 1 − o

(

1

n

)

and completes the proof of Theorem 2.2.3.
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2.2.2 Bounded Capacities

In this section we use the analysis of the BDAR* algorithm for unbounded capacities to compute

the bandwidth requirement B (<∞) that ensures that a new call is not lost whp.

Theorem 2.2.4. Assume that all the edges have capacity 3B circuits, which can be a function of n.

Then, if we perform the BDAR* policy, capacity

B =
ln lnn

ln d
+ o

(

ln lnn

ln d

)

as n→ ∞

ensures that under the stationary distribution a new call is not lost whp.

Proof. The result for finite B follows from the proof of Theorem 2.2.3, which concerns unbounded

capacity. Since the Markov process is finite and aperiodic there exists a stationary distribution.

Moreover, the analysis for the unbounded case still holds for finite B as long as B ≤ i∗ + 1.

A new call between nodes u and v will be rejected if in all the d choices, either the edge incident

to node u is used in routing i∗ + 1 = ln lnn/ lnd+ o(ln lnn/ lnd) calls with node u as an endpoint,

or the edge incident to node v is used in routing i∗ + 1 calls with node v as an endpoint. With

probability at least 1− o(n−1), for each node, the number of incident edges with load at least i∗ + 1

is at most 2αi∗+1. Therefore, the probability for a call to be rejected is no more than

o

(

1

n

)

+

(

2αi∗+1 + 2αi∗+1

n− 2

)d

= o

(

1

n

)

since αi∗+1 = 10.

2.3 Lower Bound on the Performance of the DAR Algorithm

To demonstrate the advantage of the balanced-allocation method we prove here a lower bound on

the maximum channel load when requests are routed using the DAR algorithm. This bound shows

an exponential gap between the capacity required by the balanced-allocation algorithm and the

capacity required by the standard DAR algorithm for the same stream of inputs.

Recall from Section 2.1 that we consider a complete network of n nodes and N =
(

n
2

)

edges.

Requests for connections between a given pair arrive according to a Poisson process with rate λ,

the duration of a connection has an exponential distribution with expectation 1/µ. Edges have

capacities of 3B circuits, B are used for direct connections, and the remaining 2B are used for

alternative routes with the capacity reserved for alternative routes furthermore split into two, so

that B circuits are used for alternate paths with one node of the edge as an endpoint and B for calls

with the other node as an endpoint.

Theorem 2.3.1. Assume that all the edges have capacity 3B circuits, which can be a function of n.

Then, if we perform the DAR policy, capacity

B = Ω

(
√

lnn

d ln lnn

)

, as n→ ∞
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ui
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Figure 2.1: A call is generated on edge e at time t.

is necessary to ensure that under the stationary distribution a new call is not lost whp.

Proof. We will compute a lower bound on the probability P = P (B), that a request arriving at an

arbitrary time t is rejected.

We consider first the probability P1 that the new call is not routed through the direct link.

The process of routing calls through the direct link is an M/M/B/B loss system (Poisson arrival,

exponential service time, B servers—corresponding to the B direct links, up to B customers in the

system—corresponding to up to B calls that can be routed through the direct links). Applying

Erlang’s loss formula (e.g., [45]),

P1 =
(λ/µ)B

B!

(

B
∑

i=0

(λ/µ)B

i!

)−1

≥ e−λ/µ (λ/µ)B

B!
. (2.17)

Since the arrival is Poisson, it is independent of the state of the queue at the time of arrival,

hence the probability that a given pair (v, w) had a request during interval Π = [t− 1, t] that could

not be routed by the direct link is

Palternate = (1 − e−λ)P1.

Next we lower bound the probability P2 that a request generated at time t that failed to use

the direct link e = (v, z), fails also to be routed by an alternative path (i.e., all the d attempts to

find a nonsaturated alternative path do not succeed). In fact, we will restrict our discussion to the

probability that in each of these d routes the first edge (v, ui) on the alternate route was saturated

for alternate paths with endpoint v (Figure 2.1).

In order to estimate the probability P2, we compute a lower bound for the probability P (ei, t),

that an arbitrary edge ei = (v, ui) was carrying, at time t, B alternate paths with endpoint v (and

thus blocked for any other alternate path starting at v). For this we study the evolution of the

system during period Π = [t− 1, t]. We will lower bound the probability P (ei, t) by the probability
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that at some point during the interval Π the edge carried B alternate paths with endpoint v, and

that none of these paths terminated during this interval.

The second requirement is easy to evaluate. Since the calls have exponential duration with

parameter µ, every call that is on edge ei at time t− 1, or that is created during Π, will stay in the

system until time t with probability at least e−µ, and all the calls do not terminate in that interval

with probability at least e−µB.

Let Ci be the event “during the interval Π, B different pairs (v, w1), . . . , (v, wB) try to use edge

ei = (v, ui) as a first choice for alternate path, and for each of these pairs the edge (ui, wj) (the

second edge in the alternate path) was not blocked.” Then,

P (ei, t) ≥ Pr(Ci)e
−µB.

The difficulty in computing Pr(Ci) is bounding the probability that the second edge on the

alternate path is not blocked. The following lemma simplifies this computation.

Lemma 2.3.1. Let D be the event “there is a vertex u 6= v that during the interval Π was the center

node for more than c1d
(

λ
µ + λ

)

(n− 1) alternate paths with no endpoint in v.” Then,

Pr(D) ≤ e−c2n,

for some constants c1, c2 > 0.

Proof. There are
(

n−1
2

)

possible pairs of vertices not containing v. For each pair the number of

active calls at time t−1 is bounded by a Poisson random variable with parameter λ/µ. The number

of new calls between a given pair during the interval is bounded by Poisson random variable with

parameter λ.

Fix a vertex u. The probability that a given call uses u as a center vertex in an alternate path is

bounded by d/(n−2), independently of other calls. Thus, the number of alternating paths through u

is stochastically dominated by a Poisson distribution with parameter λ
(

1 + 1
µ

)

dn−1
2 . Applying the

Chernoff bound for u and summing over all n− 1 vertices gives the lemma.

There can be no more than B alternate paths with endpoint v that use a vertex w as a center

node. Thus, conditioning on the event D, no more than c1d
(

λ
µ + λ

)

(n − 1) + B alternate paths

use any vertex w 6= v during the interval Π, and thus, during any time in that interval no more

than 1
B

(

c1d
(

λ
µ + λ

)

(n− 1) +B
)

edges adjacent to w are blocked for alternating paths using w as

a center node.

Focusing back on the edge ei = (v, ui), there is a set Wi of vertices such that the edge from ui to

w ∈Wi is not blocked for an alternate path with endpoints v and w ∈ Wi throughout the interval Π.

Conditioned on D, we have |Wi| ≥ αn for some constant α > 0.

We can compute

Pr(Ci | D) ≥
(

αn

B

)(

Palternate ·
1

n− 2

)B (

1 − Palternate ·
1

n− 2

)αn−B

= e−O(B2 ln B−B2 ln(λ/µ)). (2.18)
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The above follows from the fact that there are at least αn edges (v, w), w ∈ Wi, that can create

a call during Π with probability Palternate, and select as a first choice for alternate path the path

v− ui −w. Note that in the computation we consider no more than one communication request for

each pair of vertices (v, w), w ∈Wi, in order to avoid further dependencies.

Consider now a request that arrives at time t with endpoint v. The probability that the direct

link for that request is blocked is P1.

For simplicity, label the d alternative paths that the call generated at time t (between nodes v

and z) as v − ui − z, i = 1, 2, . . . , d, and let Ei be the event “the ith alternative path (v − ui − z) is

blocked.” We want to lower bound the probability P2 = Pr(E1, E2, . . . , Ed) that the request generated

at time t that failed to use the direct link, fails to use all the d alternate paths. Then

P2 ≥ Pr(C1, C2, . . . , Cd) · e−dµB

≥ Pr(C1, C2, . . . , Cd | D) ·Pr(D) · e−dµB

≥ (1 − e−c2n) · e−dµB ·
d
∏

j=1

Pr(Cj | D, C1, . . . , Cj−1).

Let us try to compute Pr(Cj | D, C1, . . . , Cj−1). Let

Ui = {w ∈ Wi : v − ui − w became an active alternate path during Π}

and

Wi = Wi−1\Ui−1 = W1

∖

i−1
⋃

j=1

Uj .

Notice that if the calls (v − ui − w) do not terminate during Π, we have |Ui| = B, so as long as

dB = o(n), conditioned on D, there exists a constant α such that |Wi| ≥ αn, for all i = 1, . . . , d.

We can repeat the calculation of (2.18) and get that

Pr(Cj | D, C1, . . . , Cj−1) = e−O(B2 ln B−B2 ln(λ/µ)),

since a call in Wi is generated, fails to use a direct route, and uses the alternate path v − ui − z,

independently of events C1, . . . , Ci−1. So, finally, we get that

P2 = e−O(dB2 ln B−dB2 ln(λ/µ)).

Putting everything together we conclude that the probability that the call generated at time t is

rejected is at least

P1 · P2 ≥ e−O(dB2 ln B−dB2 ln(λ/µ)).

Therefore, in order to guarantee that a new call is not lost whp., the bandwidth must be at least

B = Ω

(
√

lnn

d ln lnn

)

.



Chapter 3

Load Balancing Under Stochastic

Adversarial Input

Efficient utilization of parallel and distributed systems can often depend on dynamic load balancing

of individual tasks between processors. In the dynamic load balancing problem, we consider a

system that is designed to run indefinitely. New jobs arrive during the run of the system, and

existing jobs are executed by the processors and leave the system. The arrival of new jobs may not

be evenly distributed between the processors. The task of the load balancing protocol is to maintain

approximately uniform job load between the processors, and in particular to keep all processors

working as long as there are jobs in the system waiting for execution.

We assume a simple combinatorial model of load balancing following a number of earlier studies.

The computing system is represented by a connected, undirected, n-node graph. Jobs (represented

by tokens) have equal execution time. The load of a node is the number of tokens in its queue. A

processor can execute (or consume) one token per step, and we assume that it executes the oldest

job in its queue. In each step a processor can also move a number of jobs from its queue to the

queue of an adjacent node in the network. This abstraction models the case where the execution

time of a job is significantly longer than the time required to move a job to an adjacent node. The

assumption that all jobs have equal execution time simplifies the analysis while still capturing the

combinatorial complexity of the load balancing problem in networks.

Dynamic load balancing algorithms have been studied extensively in experimental settings,

demonstrating significant run-time improvements obtained by relatively simple load balancing tech-

niques [78, 80]. Rigorous, theoretical study of load balancing in the past has focused mainly on

static analysis [2, 31, 32, 52, 63, 65], where a set of jobs is initially placed in the processors and the

algorithm needs to distribute the jobs almost evenly between the processors in a minimum number

of parallel rounds. A number of important techniques have been developed in this line of work, and

in particular our work here builds on the static analysis in [32].

28
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Load balancing, however, is best analyzed in a dynamic setting that captures the actual appli-

cation of such protocols. An important step in that direction was taken in [15], where the work

stealing model was shown to be stable on the complete network. The main tool used in that work

was the stability conditions for ergodic Markov chains, and consequently their stability result holds

only for Markovian adversaries. In addition, a number of other works have studied dynamic load

balancing under the assumptions that jobs are generated by a randomized process that is oblivious

to the current state of the system [50, 56, 59, 70]. Finally, [9, 62] proved stability results for load

balancing on a general network assuming the deterministic adversarial model. The computational

model there is different, assuming that only one job can traverse an edge per step.

Most of the results of this chapter have appeared in [5], and in [6], and are joint work with Adam

Kirsch and Eli Upfal.

3.1 Adversarial Models

There is a substantial class of results, based on modeling a system’s evolution as a Markov chain,

which is frequently employed in these sorts of analyses—this is the case, for example, in [15], where

the adversary is a weaker version of the one that we present in Section 3.1.1. Furthermore, for

this Markov-chain setting, there are additional tools for proving rapid convergence to a stationary

distribution (see Meyn and Tweedie [55]), as well as for deriving properties of the stationary dis-

tribution (see [15] and the references therein). However, many of these results are qualitative and

not quantitative. More importantly, they restrict the class of problems that they can model. In the

particular context of adversarial load balancing, which is the focus of this work, any straightforward

application of such tools will only yield results for Markovian adversaries (i.e., adversaries whose

usage allows for the system to be modeled as a time-homogeneous Markov chain)—the analysis

in [15] is an example. While it is not obvious whether this restricted class of adversaries is really

any weaker than the general class presented earlier, it is clear that results in the general adversarial

model serve as a compelling argument for the efficacy of the load balancing protocol under a wide

range of input conditions.

Since we seek greater generality than Markov chain results are known to provide, we need more

elaborate tools. In Section 3.1.1 we present a class of non-Markovian adversaries that generalize those

that have appeared earlier in the literature [15], and in Section 3.4.1 we analyze the performance of

our system under those adversaries. The main tools that we apply in order to show that the system

has efficient long-term behavior under that class of adversaries are some results from renewal theory.

Subsequently, in Section 3.1.2 we initially consider the more general class of adversaries that

was introduced by Borodin et al. in [17], and in Section 3.4.2 we analyze the system under those

adversaries. To this end, we show that the load in the system behaves like a supermartingale above

some threshold and then employ a result of Pemantle and Rosenthal [64] for the analysis of such

processes. We show that the expected load and the expected waiting time of a newly arrived job

is bounded by a small polynomial. Subsequently, we place some additional restriction to the power
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of those stochastic adversaries, and in Section 3.4.2, we derive stronger, high-probability results for

those adversaries.

It turns out that the general adversarial model presented in Section 3.1.2 is strictly more general

than the class of adversaries presented in Section 3.1.1, and, therefore, the results of Section 3.4.1

can be deduced as corollaries (if we ignore constant factors) of those of Section 3.4.2. Nevertheless,

we choose to separately consider the former to illustrate the idea of applying tools from the theory

of renewal processes to analyze the long-term system behavior.

3.1.1 Adversarial-Generator Models

The adversarial models that we consider here, are generalizations of the one presented in [15]. We

present two simple but powerful adversaries:

1. a deterministic adversary that can add up to λn new jobs to the network at any step, and

2. a randomized adversary that places n generators in the processors in an arbitrary fashion, and

each generator adds one new job to the processor in which it is placed, independently with

probability at most λ < 1.

The placement of the generators to the processors can depend on the entire history of the system

and not only on the current system state (i.e., the load of each processor at the current moment).

This is the main difference of this input model from the one in [15], where the placement of the

generators depends only on the current system state.

We give a high-level description of the protocol here, deferring the details to Section 3.2. After

the generation of new load, the nodes execute a particular distributed randomized algorithm for

choosing a random matching. The matching is not necessarily perfect, nor is it necessarily chosen

uniformly from all possible matchings, although it does have some important properties that we will

exploit later. Once the matching is chosen, every two matched nodes equalize their load (up to one

job). For simplicity, we refer to this protocol as P .

We first show that under these adversary input models the system (using protocol P) is stable,

that is, the expected total load in the system is bounded with respect to time. The following theorem,

proven in Section 3.4.1, relates the load in the system to the network topology, and establishes the

stability of the system. We assume a network G = (V,E) that has n nodes, maximum degree at

most ∆, and whose Laplacian1 has smallest nontrivial eigenvalue Λ. For convenience, we define the

quantity γ = Λ/16∆.

Theorem 3.1.1. Suppose that we run the system under one of the two adversarial-generator models,

using protocol P. Then the system is stable and as time tends to infinity the expected total load in

the system is O(γ−1n lnn). If the system starts with no load, the result holds for any time step.

1Let A denote the adjacency matrix of a graph G, and let D = (dij ), where dij is the degree of node i if i = j, and
is 0 otherwise. The Laplacian of G is the matrix L = D − A. The eigenvalues of L are 0 = Λ1 ≤ Λ2 ≤ · · · ≤ Λn,
and Λ2 = Ω(n−2), if G is connected.
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Next we address the efficiency of the load balancing protocol, an important performance param-

eter that was not addressed in most previous work. That is, we relate the waiting time of jobs to

the topology of the network. Since protocol P treats all jobs equally regardless of their ages, it

cannot guarantee efficient delivery time for individual packets. To bound the waiting time of jobs in

the system we augment the protocol with a distributed version of the first-come-first-served (FCFS)

queueing discipline, requiring that a node always respect the ages of its jobs in the load balancing

step, and always consume its oldest job in the load consumption step (see Section 3.2 for details).

We denote this version of P by P∗.

Theorem 3.1.2. Suppose that we run the system under one of the two adversarial-generator models,

using protocol P∗. Let Wt be the wait of a job that arrived at time t. For any constant c > 1 there

is a constant κ = κ(c), such that

1. lim
t→∞

Pr(Wt ≤ κγ−1 lnn) ≥ 1 − n−c.

2. lim
t→∞

E[Wt] = O(γ−1 lnn).

The above bounds hold without the limits if the system starts with no load.

In particular, for bounded degree regular expanders γ = Θ(1), and the diameter of the graph is

O(log n), so for these graphs the above result is optimal.

3.1.2 General Stochastic Adversarial Model

Here we generalize the input model that we presented in the previous section. In particular, we

consider the type of adversaries proposed by Borodin et al. in [17]. Following that work, we define

a (w, λn) input adversary as a process that inserts jobs in the system subject to the condition that

for every sequence of w consecutive time steps, the total inserted load is at most λnw. This allows

the adversary to insert more jobs at some time steps, as long as the total load in windows of size w

is bounded. An extension is a (w, λn) stochastic adversary, whose input load is a random variable,

with the property that the expected injected load during any sequence of w consecutive time steps

is bounded by λnw, and additionally, for some p > 2, the pth moment of the new load is bounded

(see [17] for a detailed discussion).

For these adversaries, we derive asymptotic (with respect to the network size) bounds on both the

expected total load and the waiting time of a job in the system. As before, we wish to augment the

expected performance results with high-probability bounds. In this case, the stochastic adversarial

model is too powerful, since it allows for large bursts of load to occur in certain time steps with

decent probability. Therefore we need to place additional restrictions on the adversary if we wish

to derive high-probability results. To this end, we introduce a constrained version of the stochastic

adversary by enforcing a large-deviation–type bound for the incoming load, similar to a Chernoff

bound. We call these adversaries strongly bounded.

Formally, let A be an adversary that is injecting load into the system. Let It be the load injected

by the adversary during time step t.
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Definition 3.1.1. We say that A is a (λ,w, p,M) stochastic adversary (where we assume that w

is a positive integer) if the following conditions hold for any time t and any event H determined

entirely by information about the system at or before time t.

1. E [
∑w

i=1 It+i | H] ≤ λnw.

2. E
[

(
∑w

i=1 It+i)
p | H

]

≤Mnpwp.

In addition, we say that A is strongly bounded if it also satisfies the following condition.

3. There is a constant α > 0 and a constant β ≥ 1 such that for any ε > 0

Pr

(

w
∑

i=1

It+i > (1 + ε)λnw | H
)

≤ e−αλnwεβ

.

Throughout the chapter, we always assume that λ and p do not depend on n, while w and M

may be functions of n.

We first show that the system (using P) is stable under the stochastic adversary model (for λ < 1

and p > 2). That is, the expected total load in the system is bounded with respect to time. The

following theorem, proven in Section 3.4.2 is the analog of Theorem 3.1.1.

Theorem 3.1.3. Suppose that we run the system with a (λ,w, p,M) adversary, where λ < 1 and

p > 2, using protocol P (described in Section 3.2). Let Lt be the load of the system at time t. Then

the system is stable and

lim sup
t→∞

E[Lt | L0] = O(γ−1n(w + lnn)(1 +M)3p) as n→ ∞.

In addition, if the adversary is strongly bounded, then for any constant c > 0 there is a constant

κ = κ(c), such that for sufficiently large n,

lim inf
t→∞

Pr(Lt ≤ κγ−1n(w + lnn)) ≥ 1 − n−c.

The above bounds hold without the limits if the system starts with no load.

Once again, we desire to show that a new job does not wait into the system for too long before

being consumed. The following theorem provides such guarantees, for protocol P∗.

Theorem 3.1.4. Suppose that we run the system with a (λ,w, p,M) adversary, where λ < 1 and

p > 2, using protocol P∗ (described in Section 3.2). Let Wt be the wait of a job that arrived at

time t. Then

lim sup
t→∞

E[Wt | L0] = O(γ−1(w + lnn)(1 +M)3p) as n→ ∞.

In addition, if the adversary is strongly bounded, then for any constant c > 0 there is a constant

κ = κ(c), such that for sufficiently large n,

lim inf
t→∞

Pr(Wt ≤ κγ−1(w + lnn)) ≥ 1 − n−c.

The above bounds hold without the limits if the system starts with no load.
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Notice that the generator adversary models of Section 3.1.1 are special cases of a strongly bounded

(λ,w, p,M) adversary, with w = 1, p = 3 and the corresponding M being 0 for the deterministic and

a constant for the stochastic. The deterministic model is clearly strongly bounded, while a standard

Chernoff bound establishes the claim for the stochastic model. Therefore we can deduce the results

of the previous section from the above theorems. In order, however, to illustrate the technique of

applying renewal theory for long-term analysis, we consider the previous model separately. It seems

however that renewal theory is not sufficient to handle the more general adversaries presented here,

therefore, in Section 3.4.2 we use a more sophisticated martingale technique.

3.2 Protocol

If we were simply interested in a stability result we could use the protocol studied in [32]: in each

step, nodes are matched randomly with adjacent neighbors in the network, and if node v is matched

with node u, they equalize their load subject to integer rounding. The details of the protocol (which

we call protocol P) are given below.

1. Matching Phase:

• For each node i

– Node i inserts each incident edge (i, j) into a set S with probability 1
8 max(di,dj)

, where di is the

degree of node i.

– Node i removes edge (i, j) from S if some edge (i, k) or (j, k) is in S, with k 6= i, j.

• Let the matching M consist of the remaining edges in S.

2. Transfer Phase:

• If (i, j) ∈ M

– i and j equalize their loads so that, say, i gets load d(`t(i) + `t(j))/2e and j gets load b(`t(i) +

`t(j))/2c, where `t(i) is the load of processor i in the beginning of the step.

To bound the waiting time of jobs in the system we need to augment the above protocol with a

distributed version of the first-in-first-out queueing discipline. It is not enough to require that a node

consume the oldest job in its queue; we also need to consider the jobs’ ages in the load balancing

procedure. In particular, when u and v are matched they should not only equalize their total load

but also equalize (up to rounding) the load that they have above any given age. A simple method

to maintain this property is given by protocol P∗ below. Note that protocol P∗ is a special case of

protocol P .
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1. Matching Phase:

• For each node i

– Node i inserts each incident edge (i, j) into a set S with probability 1
8 max(di,dj)

, where di is the

degree of node i.

– Node i removes edge (i, j) from S if some edge (i, k) or (j, k) is in S, with k 6= i, j.

• Let the matching M consist of the remaining edges in S.

2. Transfer Phase:

• If (i, j) ∈ M

– Let Ji
1, Ji

2, . . . , Ji
`t(i)

(where `t(i) is the load of processor i in the beginning of the step), and let

Jj
1 , Jj

2 , . . . , Jj
`t(j)

be the jobs in the queues of nodes i and j, respectively, sorted from oldest to

newest.

– Node i sends jobs Ji
2, Ji

4, . . . , Ji
2b`t(i)/2c

to node j. Similarly, node j sends jobs

Jj
2 , Jj

4 , . . . , Jj
2b`t(i)/2c

to node i.

– Node i merges jobs Ji
1, Ji

3, Ji
5, . . . with Jj

2 , Jj
4 , Jj

6 , . . . in its queue, so that, finally, if a job J is

older than a job J ′, then job J is in the queue before job J ′.

– Similarly, node j merges jobs Jj
1 , Jj

3 , Jj
5 , . . . with Ji

2, Ji
4, Ji

6, . . . in its queue, so that, finally, if a

job J is older than a job J ′, then job J is in the queue before job J ′.

3.3 Analysis of the Static Case

We first analyze our load balancing protocol in a static setting in which some initial load is placed

on the n processors, and load is moved between processors until the loads in all the processors are

approximately equal. No new load is added to or removed from the system throughout the execution

of the protocol. Later we will use the results for the static setting to analyze the dynamic one.

Our analysis of the static case is based on coupling the execution of our protocol with the

nonintegral protocol studied in [32]. The only difference between the two protocols is that in the

nonintegral protocol the load is equally distributed between the two matched processors with no

rounding. We consider two copies of the network starting with the same initial distribution, one

using our protocol and the other using the nonintegral protocol. The two processes are coupled so

that they use the same matching at every time step.

Fix any initial distribution of K tokens to the nodes in V , and let ¯̀ = K/n. For each time

step t ≥ 0 and u ∈ V , let `t(u) be the number of tokens at u at the end of step t of the original,

integral protocol, and let `′t(u) be the number of tokens at u at the end of step t in the nonintegral

copy of the protocol. Also, for each time step t ≥ 0, let Φ′
t =

∑

v∈V (`′t(v)− ¯̀)2. Note that if the total

load in the system is K, then for any t ≥ 0, Φ′
t ≤ K2. Notice that Φ′

t corresponds to the variance

of the load on the nodes, and it is easy to see that it is nonincreasing with time, which, intuitively,

means that successive applications of the load balancing protocol even out the distribution of the

tokens to the nodes.

Recall that γ = Λ/16∆. The performance of the nonintegral protocol was analyzed in terms of γ

in [32]. The relevant result is the following lemma, which follows immediately from Theorem 1 in



35

that work.

Lemma 3.3.1. For any t ≥ 0,

E[Φ′
t+1 | Φ′

t] ≤ (1 − γ)Φ′
t.

Adapting the technique in [32] we can prove the following static load balancing result for the

nonintegral copy.

Lemma 3.3.2. If t ≥ γ−1(2 lnK + c lnn), then the probability that there is some v ∈ V with

|`′t(v) − ¯̀| > 1 is at most 1/nc.

Proof. By Lemma 3.3.1 we get

E[Φ′
t] = E[E[Φ′

t | Φ′
t−1] ] ≤ (1 − γ)E[Φ′

t−1].

By applying the same argument t times we get

E[Φ′
t] = (1 − γ)tΦ′

0

≤ Φ′
0e

−γt

≤ e−c ln n,

where in the last inequality we used the facts that Φ′
0 ≤ K2 and t ≥ γ−1(2 lnK + c lnn). Applying

Markov’s inequality yields Pr(Φ′
t > 1) < n−c.

We will now tie the performance of our protocol to the performance of the nonintegral copy.

Lemma 3.3.3. For any t ≥ 0 and any v ∈ V , |`t(v) − `′t(v)| ≤ t/2, regardless of the chosen

matchings and the rounding decisions in the original protocol.

Proof. The proof is by induction on t ≥ 0. If t = 0, then `t(v) = `′t(v) for every v ∈ V , because

no randomness has been introduced into the process yet. For the induction step, suppose that the

lemma holds for time t. Choose any v ∈ V . If v is not matched at time t+ 1, then `t+1(v) = `t(v)

and `′t+1(v) = `′t(v), so the lemma holds by the induction hypothesis. Otherwise, v is matched to

some vertex u at time t+ 1. In this case, for any rounding choice, (`t(u) + `t(v) − 1)/2 ≤ `t+1(v) ≤
(`t(u) + `t(v) + 1)/2. Also, `′t+1(v) = (`′t(u) + `′t(v))/2. These observations give

|`t+1(v) − `′t+1(v)|
(a)

≤ 1

2
+

∣

∣

∣

∣

`t(u) + `t(v)

2
− `′t(u) + `′t(v)

2

∣

∣

∣

∣

(b)

≤ 1

2
+

1

2
|`t(u) − `′t(u)| +

1

2
|`t(v) − `′t(v)|

(c)

≤ 1

2
· t
2

+
1

2
· t
2

+
1

2

=
t+ 1

2
,

where (a) follows from previous observations, (b) follows from the triangle inequality, and (c) follows

from the induction hypothesis.
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Putting Lemmata 3.3.2 and 3.3.3 together yields the following theorem.

Theorem 3.3.1. Let t̂ = γ−1(2 lnK+c lnn). Then, for any t ≥ t̂, the probability that there is some

v ∈ V with |`t(v) − ¯̀| > 1 + t̂
2 is at most n−c.

Proof. We first prove the theorem for the case t = t̂. Regardless of the matchings generated in the

first t̂ steps, |`t̂(v)−`′t̂(v)| ≤ t̂/2 for every v ∈ V by Lemma 3.3.3. With probability at least 1−1/nc,

|`′
t̂
(v) − ¯̀| ≤ 1 for all v ∈ V by Lemma 3.3.2. Adding these inequalities proves the theorem for the

case t = t̂. To extend the result for the case t > t̂, notice that the sequence {maxv∈V |`t(v) − ¯̀|}t≥t̂

is nonincreasing.

3.4 Analysis of the Dynamic Case

In order to analyze the long-term performance of the system, we split the time into epochs of a fixed

length TE (to be defined later). We analyze each epoch in Theorem 3.4.1, which is the key ingredient

in showing the stability and waiting-time properties of the system. Notice that the first part of the

theorem, which we will apply for the stability result, holds for any protocol obeying the rules of P ,

while the second part, which will be applied for the waiting-time guarantees, uses protocol P∗.

Theorem 3.4.1. For any constant c > 0 and load Θ = Θn > 0, consider an epoch of length TE =

TD + TC , such that

TD ≥ γ−1(2 ln Θ + c lnn) and TC ≥ Θ

n
+
TD

2
+ 1.

1. Running protocol P, if at time τ the load is Lτ , then the system consumes at least min{Lτ ,Θ}
tokens in the next TE steps with probability at least 1 − n−c.

2. Running protocol P∗, if at time τ the load is bounded by Θ, then with probability at least

1 − n−c, all the jobs that exist in the system at time τ will be consumed by time τ + TE.

Proof. For the purpose of the analysis we split the epoch into two parts. In the first TD steps we

focus on the distribution of load between the processors, and in the remaining TC steps we focus

on the consumption of load by the processors (although load is consumed throughout the whole

execution by processors that have load).

We start by proving the first part of the theorem; a modification of that argument gives the second

part. To analyze the distribution of load between the processors, we couple the actual execution of

the protocol in the first TD steps with an execution of the protocol in a static setting that starts

with a total load of exactly Θ and does not generate or consume any jobs. We refer to the actual

execution of the protocol as the dynamic copy and the static execution as the static copy.

To formulate the coupling we color all the tokens (jobs) in the dynamic copy at time τ by red

and blue. A subset of M = min{Lτ ,Θ} tokens in the system at time τ is colored red, and the rest

are colored blue. We now place Θ tokens in the static copy so that each node in the static copy

starts the process with at least as many tokens as the number of red tokens in the corresponding
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node of the dynamic copy. New tokens that arrive through the execution of the dynamic copy are

colored blue.

The executions of the two copies are coupled so that they use the same matching in each step

and the same rounding decisions. When we equalize (up to one) the load between two vertices in

the dynamic execution, we also equalize (up to one, using the same rounding rule) the number of

red tokens in the two nodes, keeping the total number of red tokens in the two nodes as before (this

can be achieved by recoloring some tokens). Finally, after each matching we recolor the tokens in

the nodes again, preserving the total number of red tokens in each queue, but putting all the red

tokens in a queue ahead of all the blue tokens.

Lemma 3.4.1. At any time τ ≤ t ≤ τ + TD the number of red tokens in each node of the dynamic

copy is bounded by the number of tokens in the corresponding node in the static copy.

Proof. We begin with some intuition. Initially the coloring of the tokens in the dynamic copy is such

that the claim holds. New tokens that enter the system in the dynamic copy are colored blue, while

no tokens in the static copy are removed. Furthermore, the matching operations in both copies are

coupled, so we expect that if one node in the static copy gives half of its tokens to a neighbor, the

same node in the dynamic copy will do the same with its red tokens. Therefore, we expect that the

claim will hold at the next step. By induction, the lemma follows.

We now proceed formally by induction on t. The claim is true for t = τ by the construction of

the static copy. Assume that the claim holds after the execution of step t− 1, and consider the load

of node u after the execution of step t. If u was not part of a matching in step t, then the load of the

static copy did not change. The number of red tokens of the dynamic copy either did not change, or

was reduced by 1 if a red token was consumed. In both cases, using the induction hypothesis, the

number of red tokens in the dynamic copy after the execution of step t is bounded by the number

of tokens in the static copy of u.

Assume now that node u was matched with node v during step t. Note that every time step

in the process can be decomposed into three substeps: the insertion substep (where new load is

created in the dynamic copy), the balancing substep, (where the matching is chosen and the nodes

in both copies equalize their loads), and the consumption substep (where the nonempty nodes in

the dynamic copy consume a job). With this in mind, we define some new variables:

• `it(u), `
b
t(u), `

c
t(u) are the total number of tokens at node u in the dynamic copy immediately

following the insertion, balancing, and consumption substeps of the tth time step, respectively.

• ri
t(u), r

b
t (u), r

c
t (u) are the number of red tokens at node u in the dynamic copy at that time.

• si
t(u), s

b
t(u), s

c
t(u) are the number of tokens at node u in the static copy at that time.

We analyze each substep separately.

Initially, by the induction hypothesis, we have

rc
t−1(u) ≤ sc

t−1(u), rc
t−1(v) ≤ sc

t−1(v). (3.1)
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After the insertion substep, we color the new tokens blue so the number of red tokens remains

the same:

ri
t(u) = rc

t−1(u), ri
t(v) = rc

t−1(v). (3.2)

The static copy does not accept new tokens so

si
t(u) = sc

t−1(u), si
t(v) = sc

t−1(v). (3.3)

So from Relations (3.1), (3.2), and (3.3) we get that

ri
t(u) ≤ si

t(u), ri
t(v) ≤ si

t(v). (3.4)

Notice also that the number of red tokens is bounded by the total number of tokens, so

ri
t(u) ≤ `it(u), ri

t(v) ≤ `it(v). (3.5)

After the balancing substep, we assume, without loss of generality, that the rounding is such

that

`bt(u) =

⌈

1

2
(`it(u) + `it(v))

⌉

, `bt(v) =

⌊

1

2
(`it(u) + `it(v))

⌋

. (3.6)

The results of the analysis of the static case in Section 3.3 hold for an arbitrary rounding proce-

dure. Thus, in the static copy we perform the rounding so that

sb
t(u) =

⌈

1

2
(si

t(u) + si
t(v))

⌉

, sb
t(v) =

⌊

1

2
(si

t(u) + si
t(v))

⌋

. (3.7)

Finally, we recolor the tokens in the dynamic copy (we swap colors between some tokens), so

that

rb
t (u) =

⌈

1

2
(ri

t(u) + ri
t(v))

⌉

, rb
t (v) =

⌊

1

2
(ri

t(u) + ri
t(v))

⌋

. (3.8)

Then, using Relation (3.4), we get

rb
t (u) =

⌈

1

2
(ri

t(u) + ri
t(v))

⌉

≤
⌈

1

2
(si

t(u) + si
t(v))

⌉

= sb
t(u), (3.9)

and

rb
t (v) =

⌊

1

2
(ri

t(u) + ri
t(v))

⌋

≤
⌊

1

2
(si

t(u) + si
t(v))

⌋

= sb
t(v). (3.10)

Notice that

rb
t (u) + rb

t (v) =

⌈

1

2
(ri

t(u) + ri
t(v))

⌉

+

⌊

1

2
(ri

t(u) + ri
t(v))

⌋

= ri
t(u) + ri

t(v),

which means that we haven’t changed the number of red tokens, and notice also that by using

Relation (3.5) we get that

rb
t (u) =

⌈

1

2
(ri

t(u) + ri
t(v))

⌉

≤
⌈

1

2
(`it(u) + `it(v))

⌉

= `bt(u)

and

rb
t (v) =

⌊

1

2
(ri

t(u) + ri
t(v))

⌋

≤
⌊

1

2
(`it(u) + `it(v))

⌋

= `bt(v),
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which ensure that the recoloring is valid (i.e., for both u and v, the number of the red tokens is not

more than the total number of tokens).

Finally, we recolor the tokens again (preserving the number of red tokens at each node), so that

every red token in a queue is ahead of every blue token in that queue.

After the consumption substep, since some red tokens may be consumed, we get that

rc
t (u) ≤ rb

t (u), rc
t (v) ≤ rb

t (v). (3.11)

In the static copy there are no tokens being consumed, so

sc
t(u) = sb

t(u), sc
t(v) = sb

t(v). (3.12)

Hence, from Relations (3.9), (3.10), (3.11), and (3.12) we can finally prove the induction hypoth-

esis for the tth step:

rc
t (u) ≤ sc

t(u), rc
t (v) ≤ sc

t(v).

We now turn to studying the consumption phase. Applying Theorem 3.3.1 to the execution of

the static copy, we see that at time τ+TD (the reader can verify that the condition of Theorem 3.3.1

holds for t = TD and K = Θ), with probability at least 1−n−c no node of the static copy has more

than TD/2 + Θ/n+ 1 ≤ TC tokens. Thus, by Lemma 3.4.1, with the same probability, no node in

the dynamic copy has more than TC red tokens.

We continue to run the coupling from time τ + TD with this new coloring. When balancing

between two nodes, we recolor the tokens in exactly the same way as in the distribution phase (see

Lemma 3.4.1), so that, in particular, if a node has some red tokens in its queue, then these tokens

are at the front of the node’s queue, before the blue tokens. In this case, notice that after a balancing

substep, the maximum (over all the nodes in the graph) number of tokens does not increase. In the

consumption substep the maximum (again, over all the nodes in the graph) number of red tokens

decreases by 1, since the red tokens are at the front of their queues. Since initially at most TC red

tokens are at a node with probability at least 1 − n−c, we conclude that with probability 1 − n−c,

all the red tokens (which means at least M = min{Lτ ,Θ} tokens) are consumed in this epoch. This

completes the proof of the first part of the theorem.

The proof of the second part of the theorem is almost identical to the first one. We color initially

all the Lτ ≤ Θ tokens of the dynamic copy at time τ red, while all the subsequent ones are colored

blue, and again we consider the coupled static copy. Since now we are interested in the identities of

the jobs that are being consumed, we do not allow recolorings of the tokens.

Notice though that protocol P∗ ensures that during the whole epoch, if a node has both red and

blue tokens in its queue, the red tokens are before the blue ones. Moreover, the Transfer Phase of P∗

ensures that when node u is matched with node v, they balance their red tokens (up to a difference

of 1). Without loss of generality, we assume that the rounding is such that if the ensemble of the red

tokens in the two nodes is odd, then node u ends up with one more red token. Hence equations (3.8)
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remain true. We then perform the rounding in the static copy to ensure that equations (3.7) remain

true as well.

As an aside, notice that it may be the case that after the balancing substep, node v’s total load

is exactly one larger than u’s total load, in which case Equations (3.6) may become

`bt(u) =

⌊

1

2
(`it(u) + `it(v))

⌋

, `bt(v) =

⌈

1

2
(`it(u) + `it(v))

⌉

.

Here, however, we analyze only the distribution of the red tokens, so the analysis is not affected by

this fact.

Everything else is identical to the first part, and by the same reasoning we conclude that by the

end of the distribution phase, for every node u, the number of red tokens in the dynamic copy is

bounded by the number of tokens in the static copy, with probability at least 1 − n−c, which, by

applying Theorem 3.3.1, implies that every node has at most TC red tokens.

Then, as in the first part, we can conclude that by the end of the consumption phase all the red

tokens—which are exactly the tokens that were in the system in the beginning of the epoch—are

consumed.

An immediate consequence of the analysis of the second part of Theorem 3.4.1 is the following

lemma, which gives a bound on the expected time needed until the initial load is distributed. We

make use of the lemma in order to bound the expected waiting time.

Lemma 3.4.2. Assume that we are given c,Θ, TD, TC, satisfying the conditions of Theorem 3.4.1,

and assume that we balance according to protocol P∗. If at time τ the load is bounded by Θ, then

the expected time needed until every node in the system has at most TC of the initial jobs is bounded

by 2TD for sufficiently large n. At every time, when a node has some of the initial load, this is at

the head of its queue.

Proof. The analysis is an extension of the proof of the second part of Theorem 3.4.1. We color the

initial load at time τ red, all the new incoming load blue, and we let T be the time until every node

in the network has at most TC red tokens. We perform the same coupling as in Theorem 3.4.1 from

time τ until time τ + T . During this whole period the number of red tokens in the dynamic copy is

bounded by the number of tokens in the static copy. Since the red tokens are the oldest tokens in

the system, protocol P∗ ensures that if a node has some red tokens and some blue tokens, the red

tokens are always in front of the blue ones.

Thus, by the proof of Theorem 3.4.1, part 2, we get that T ≤ TC with probability at least 1−n−c.

It follows that dT/TDe is stochastically dominated by a geometric random variable with parameter

1 − n−c, so

E[T ] ≤ 1

1 − n−c
TD ≤ 2TD

for sufficiently large n.
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3.4.1 Adversarial-Generator Model

We first prove that for any constant λ < 1 and any connected network topology, the load-distribution

protocol is stable. We then use the structure developed here to analyze the waiting time of individual

jobs.

Having worked out the constants that appear in the proof, we give here the values of the main

ones, for easy reference. ε = 1 − λ, c > 3, c3 = c+ 9, c1 = 2λ(2c3+1)
(1+ε)−1−λ , c4 = c1 + c3

2 + 1, c2 = c3 + c4,

c6 = (1 + ε)λc2, c5 = c1 − c6, ρ = c5/(c2 + c5).

As we mentioned, in order to analyze the behavior of the system over time, we partition time

into epochs, where each epoch has TE = c2γ
−1 lnn steps. We say that the system is in a good state

at the end of an epoch if the total load in the system is less than Θ = c1γ
−1n lnn, otherwise the

system is in a bad state.

We will define a two state renewal process that alternates between states G and B. The crux

of the proof is to show that the distribution of the length of a B segment in the renewal process

stochastically dominates the distribution of the number of successive epochs in which the original

system is in a bad state, conditioned on its past. On the other hand, the distribution of the

number of successive epochs in which the original system is in a good state, conditioned on its past,

stochastically dominates the length of time that the renewal process is in the G state. Once this

relation is established, the analysis of the renewal process implies the stability and waiting-time

results for the load balancing protocol.

Analysis of One Epoch

We say that an epoch is successful if one of the following conditions holds:

• The total system load is less than Θ = c1γ
−1n lnn immediately after the epoch finishes.

• The total load of the system decreases by at least c5γ
−1n lnn during the epoch.

Lemma 3.4.3. The probability that an epoch is successful, conditioned on all events in the past, is

at least 1 − 2n−c.

Proof. Recall that the epoch length is c2γ
−1 lnn. The expected number of new tokens arriving

during the epoch is at most λc2γ
−1n lnn, and by applying a Chernoff bound (for the version of the

randomized adversary) we deduce that with probability at least 1− n−c this number is bounded by

c6γ
−1n lnn = (1 + ε)λc2γ

−1n lnn.

Let τ be the time that the epoch begins, so the load of the system at this time is Lτ . We apply

Theorem 3.4.1, part 1, for Θ = c1γ
−1n lnn, TE = c2γ

−1 lnn, TD = c3γ
−1 lnn, and TC = c4γ

−1 lnn

(the reader can verify that the conditions of Theorem 3.4.1 hold for sufficiently large n), and we get

that during the epoch the system consumes at least min{Lτ ,Θ} tokens, with probability at least

1 − n−c.

We distinguish now between two cases.
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1. If Lτ ≤ Θ = c1γ
−1n lnn, then with probability at least 1 − n−c, the initial Lτ tokens are

consumed during this epoch, and with probability at least 1−n−c no more than c6γ
−1n lnn <

c1γ
−1n lnn tokens join the system during this epoch. Thus, with probability at least 1− 2n−c

the epoch is successful since it ends with less than c1γ
−1n lnn total load.

2. If Lτ > Θ = c1γ
−1n lnn, then with probability at least 1−2n−c at least c1γ

−1n lnn tokens are

consumed during this epoch and no more than c6γ
−1n lnn new tokens arrive during this epoch.

In this case, the epoch is successful, since the total load decreases by at least c1γ
−1n lnn −

c6γ
−1n lnn = c5γ

−1n lnn.

Note that the probability space considered here is defined by the distribution of the matchings

performed during this epoch, and by the arrival of new load (and not by the adversary’s placement

of the generators). So, in this probability space, the event that the epoch is successful is independent

of any event in the past.

Basic Renewal Theory

In this section we provide some basic background for renewal processes, that is needed for the

analysis of the process. For more information refer for example to [68, Chapter 3].

Let {Xn, n = 1, 2, . . . } be a sequence of nonnegative independent random variables with a

common distribution function F . Let S0 = 0, and for n ≥ 1, Sn =
∑n

i=1Xi; finally define

N(t) = sup{n : Sn ≤ t}. The process {N(t), t ≥ 0} is a Renewal Process. We say that a re-

newal occurs at time t, if Sn = t for some n. Since the interarrival times Xi are independent and

identically distributed, it follows that after each renewal the process starts over again.

We say that a nonnegative random variable X (or the corresponding distribution function) is

lattice (or periodic) if there exists a d ≥ 0 such that
∑∞

n=0 Pr(X = nd) = 1. We are interested in

renewal processes that are nonlattice.

Let Z(t) = t − SN(t) be the age at time t, that is, the time that has elapsed from the last

renewal before t until t. We can compute the distribution of Z(t) as t → ∞ by Lemma 3.4.4 (see

[68, Corollary 3.13]).

Lemma 3.4.4. If F is not lattice, then

lim
t→∞

Pr(Z(t) ≤ z) =
1

E[X1]

∫ x

0

[1 − F (y)]dy.

An Alternating Renewal Process can be in one of two states, on or off. Initially, it is on and it

remains on for a time X1; it then goes off and remains off for a time Y1; it then goes on for a time X2,

then off for a time Y2, and so on. We assume, moreover, that the Xi’s have the same distribution,

that the Yi’s have the same distribution, and that all the Xi’s and the Yi’s are independent of each

other. Let P (t) be the probability that the system is on at time t. Then, Lemma 3.4.5 (repeating [68,

Proposition 3.11]) gives the probability that at some time, in the limit, the system is found in state

on.
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Lemma 3.4.5. If E[X1 + Y1] <∞ and if X1 + Y1 is nonlattice, then

lim
t→∞

P (t) =
E[X1]

E[X1] + E[Y1]
.

Stability

We now define the two state renewal process that dominates the execution of our protocol. The

process alternates between states G and B. Let T (G) be the length of a G segment and T (B) be

the length of a B segment. To apply Lemmata 3.4.4 and 3.4.5 we define these distributions on

continuous time. For any x ≥ 1, let

• Pr(T (G) ≥ x) = (1 − 2n−c)(x−1) and

• Pr(T (B) ≥ x) = n−ρ(c−1)(x−1).

Note that these functions are monotonically decreasing in x,

E[T (G)] = 1 +

∫ ∞

1

(1 − 2n−c)(x−1)dx

≥
∞
∑

i=1

(1 − 2n−c)(i−1) =
1

2
nc,

and

E[T (B)] = 1 +

∫ ∞

1

n−ρ(c−1)(x−1)dx

≤ 1 +

∞
∑

i=1

n−ρ(c−1)(i−1) = 1 +
1

1 − n−ρ(c−1)
.

Now consider the sequence of epochs in the execution of our protocol. Recall that at the end

of an epoch the system is in a good state if the total load in the system is bounded by c1γ
−1n lnn,

otherwise the system is in a bad state.

Lemma 3.4.6. Let T (good) be the distribution of the number of epochs in a given segment in which

the system is in a good state, and T (bad) be the number of epochs in a given segment in which the

system is in a bad state. Conditioned on all events before the start of the segment, for any i ≥ 1,

1. Pr(T (good) ≥ i) ≥ Pr(T (G) ≥ i),

2. Pr(T (bad) ≥ i) ≤ Pr(T (B) ≥ i).

Proof. If the total load in the system at the start of an epoch is less than c1γ
−1n lnn, and the

epoch was successful, then the total load in the system at the end of that epoch is also less than

c1γ
−1n lnn. Therefore, once the system is in a good state it stays in a good state until at least the

first unsuccessful epoch. The probability that an epoch is successful, conditioned on the past, is at

least 1 − 2n−c, by Lemma 3.4.3. Thus,

Pr(T (good) ≥ i) ≥ (1 − 2n−c)(i−1) = Pr(T (G) ≥ i).
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To bound the distribution of T (bad) we observe that if a segment of i epochs begins when the

system is in a good state, and each of those i epochs finishes when the system is in a bad state, then

at least ρi of those i epochs must have been unsuccessful. Otherwise, the total change in the system

load over the course of those i epochs is at most ρic2n lnn− i(1− ρ)c5n lnn ≤ 0, which implies that

the last epoch finishes with the system being in a good state, yielding a contradiction.

The probability of at least ρi unsuccessful epochs in a sequence of i epochs, for n large enough,

is bounded by

(

i

ρ(i− 1)

)(

2

nc

)ρ(i−1)

≤
(

ei

ρ(i− 1)

)ρ(i−1) (
2

nc

)ρ(i−1)

=

(

n−c · 2e

ρ
· i

i− 1

)ρ(i−1)

≤ n−ρ(c−1)(i−1).

Thus, for sufficiently large n,

Pr(T (bad) ≥ i) ≤ n−ρ(c−1)(i−1) = Pr(T (B) ≥ i).

We now use the stochastic dominance proven in Lemma 3.4.6 to analyze the performance of

our protocol using renewal theory. Let Et be the event “the system is in a bad state at time t.”

Then Lemmata 3.4.5 and 3.4.6 along with the fact that T (B) and T (G) have continuous distribution

functions and therefore are not lattice, yield

Lemma 3.4.7.

lim
t→∞

Pr(Et) ≤
E[T (B)]

E[T (B)] + E[T (G)]
≤ E[T (B)]

E[T (G)]
≤ 3n−c

for large enough n.

We now turn to bounding the expected load in the system at time t, thus establishing the fact

that the system is stable.

Let Lt denote the total load in the system at time t.

E[Lt] = E[Lt | Et]Pr(Et) + E[Lt | Et]Pr(Et)

≤ c1γ
−1n lnn+ E[Lt | Et]Pr(Et),

(3.13)

where in the inequality we use the fact that in a good state the load of the system is bounded by

c1γ
−1n lnn.

To compute

E[Lt | Et] =
∞
∑

x=1

Pr(Lt ≥ x | Et)

we need a bound on the probability Pr(Lt ≥ x | Et). Observe that for i ≥ 1, if Lt ≥ (c1+ic2)γ
−1n lnn

then the system must have been in a bad state for at least the last i − 1 epochs. Otherwise, by
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the beginning of the current epoch, the load would have been at most (c1 + (i − 2)c2)γ
−1n lnn, so

at time t the load would be at most (c1 + (i − 1)c2)γ
−1n lnn. Thus, we need a bound on Zt, the

time from the start of the bad segment until t. Let Z ′
t be the corresponding random variable in the

renewal process, that is, the time from the start of a B segment until t, conditioned on t being in

a B segment. With the same argument as in Lemma 3.4.6, we have

Pr(Zt ≥ i− 1 | Et) ≤ Pr(Z ′
t ≥ i− 1 | Et).

Using that fact, applying Lemma 3.4.4, and using again the fact that T (B) and T (G) have continuous

distribution functions and therefore are nonlattice, we compute for i ≥ 1

lim
t→∞

Pr(Lt ≥ (c1 + ic2)γ
−1n lnn | Et) ≤ lim

t→∞
Pr(Zt ≥ i− 1 | Et)

≤ lim
t→∞

Pr(Z ′
t ≥ i− 1 | Et)

=
1

E[T (B)]

∫ ∞

i−1

Pr(T (B) ≥ x)dx

=
1

E[T (B)]
· n

−ρ(c−1)(i−2)

ρ(c− 1) lnn

≤ n−ρ(c−1)(i−2)

(3.14)

where in the last inequality we used the fact that (trivially) E[T (B)] ≥ 1. We can also write

E[Lt | Et] =
∞
∑

x=1

Pr(Lt ≥ x | Et)

≤ (c1 + 3c2)γ
−1n lnn+

∞
∑

x=(c1+3c2)γ−1n ln n

Pr(Lt ≥ x | Et)

= (c1 + 3c2)γ
−1n lnn+

∞
∑

x=0

Pr(Lt ≥ (c1 + 3c2)γ
−1n lnn+ x | Et)

= (c1 + 3c2)γ
−1n lnn+

∞
∑

i=3

c2γ−1n lnn−1
∑

j=0

Pr(Lt ≥ (c1 + ic2)γ
−1n lnn+ j | Et)

≤ (c1 + 3c2)γ
−1n lnn+ (c2γ

−1n lnn)

∞
∑

i=3

Pr(Lt ≥ (c1 + ic2)γ
−1n lnn | Et).

So, by making use of Inequality (3.14), we have

lim
t→∞

E[Lt | Et] ≤ (c1 + 3c2)γ
−1n lnn+ (c2γ

−1n lnn)
∞
∑

i=3

n−ρ(c−1)(i−2)

≤ (c1 + 4c2)γ
−1n lnn.

Therefore, Relation (3.13) and Lemma 3.4.7 give, for sufficiently large n,

lim
t→∞

E[Lt] ≤ lim
t→∞

E[Lt | Et]Pr(Et) + E[Lt | Et]Pr(Et)

≤ c1γ
−1n lnn+ 3n−c(c1 + 4c2)γ

−1n lnn

≤ (c1 + 1)γ−1n lnn.
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Thus, we prove the following.

Theorem 3.4.2. The system is stable and as time tends to infinity the expected total load in the

system is O(γ−1n lnn).

Note that, given that the system started with no load, or even just in a good state, the above

bound holds for any t, not only in the limit. To see this, assume that at some point before time t the

system had no more than c1γ
−1n lnn load. Then the system can have load c1γ

−1n lnn+ic2γ
−1n lnn

at time t only if the system was in a bad state in the last i epochs up to time t. The probability of

that event is bounded by n−ρi(c−1). Thus,

E[Lt] ≤ c1γ
−1n lnn+ c2γ

−1n lnn
∑

i≥1

n−ρi(c−1)

= O(γ−1n lnn).

Waiting Time

Having established that the system is stable, the next important performance parameter is the

waiting time of a job from when it enters the system until it is executed. For a given task that

entered the system at time t, let Wt be the number of steps until the task is executed.

By Theorem 3.4.1, part 2, we get that if an epoch starts when system is in a good state (i.e.,

with less than c1γ
−1n lnn load), then with probability at least 1 − n−c the load that was in the

system before the epoch started is consumed during the epoch. Thus, if the system is in a good

state at time t, and both the current and the next epoch are successful, then Wt ≤ 2c2γ
−1 lnn. By

summing the failure probabilities we prove that

lim
t→∞

Pr(Wt ≤ 2c2γ
−1 lnn) ≥ 1 − 7n−c (3.15)

for large enough n, and the limit can be removed if the system starts in a good state.

Next we turn to computing E[Wt]. The first problem we have to address is that there may be

unsuccessful epochs during a good segment. The probability that t is in a good segment but the

next epoch is unsuccessful is bounded by 2n−c. To simplify the computation, we assume that if an

unsuccessful epoch occurs during a good segment, then the system switches to a bad state, and add

2n−c to the probability that the system is in a bad state at time t. To bound the waiting time when

a job arrives during a bad state, we note that the waiting time of a job is always bounded by the

total load of the system at the time it arrives. If the system is in a bad state at time t, and the

system switched to a bad state i epochs back, then the load of the system at time t is bounded by

c1γ
−1n lnn+ ic2γ

−1n lnn.

If we let Ft denote the event “the system is in a good state at time t, and both the current and
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the next epochs are successful,” then by Lemma 3.4.6 and Relation (3.15), we have that

lim
t→∞

E[Wt] ≤ lim
t→∞

(

2c2γ
−1 lnn · Pr(Ft) + E[Lt | Ft] · Pr(Ft)

)

≤ 2c2γ
−1 lnn+

(

c1γ
−1n lnn+ c2γ

−1n lnn

∞
∑

i=1

n−ρi(c−1)

)

· 7n−c

= O(γ−1 lnn).

Again the limit can be removed if the system starts in a good state. We have proven the following

theorem:

Theorem 3.4.3. Let Wt be the wait of a job that arrived at time t.

1. lim
t→∞

Pr(Wt ≤ 2c2γ
−1 lnn) ≥ 1 − 7n−c.

2. lim
t→∞

E[Wt] = O(γ−1 lnn).

The above bounds hold without the limits if the system starts in a good state.

3.4.2 General Stochastic Adversarial Model

In order to analyze the behavior of the system under the more power adversarial model that we

presented in Section 3.1.2 it seems that we cannot resort to renewal theory; the adversary’s behavior

is much less predictable. We still, however, have the property that when the load is above some

threshold Θ, then the expected consumed load after some time steps is smaller than the expected

new load. Therefore, the load of the system behaves like a supermartingale as long as it is above Θ

and it decreases in expectation. Just decreasing the expectation is not sufficient as we show later

in this section. The machinery that we apply and formalizes the above thinking is Theorem 3.4.4,

that follows from [64, Corollary 2]. Refer to [64] for the proof and an insightful discussion.

Stability

In this section we prove the stability of the system under a (λ < 1, w, p > 2,M) stochastic adversary.

The main technical tool that we use is the following theorem, which follows immediately from [64,

Corollary 2].

Theorem 3.4.4. Let X1, X2, . . . be a sequence of nonnegative random variables satisfying the fol-

lowing conditions:

1. There exist positive numbers α = αn and Θ = Θn such that for all x1, . . . , xi with xi > Θ,

E[Xi+1 −Xi | X1 = x1, . . . , Xi = xi] ≤ −α.

2. There exists a positive number ξ = ξn and a p = pn > 2 such that for all x1, . . . , xi

E[|Xi+1 −Xi|p | X1 = x1, . . . , Xi = xi] ≤ ξ.
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Then there exists Ξ = Ξ(X0, α,Θ, ξ) such that for all t,

E[Xt | X0] ≤ Ξ + max(0, X0 − Θ).

Furthermore, assuming that p is a constant with respect to n,

Ξ = O

(

Θ + α

(

1 +
ξ

αp

)3p
)

as n→ ∞.

Our stability result is summarized in the following theorem.

Theorem 3.4.5. Suppose that we run protocol P with a (λ,w, p,M) adversary, where λ < 1 and

p > 2. Then

sup
t≥0

E[Lt | L0] = O(max(γ−1n(w + lnn)(1 +M)3p, L0)) as n→ ∞.

Proof. We first present the high-level idea of the proof. Recall that Lt is the load of the system

at time t. As with the generator model, we partition the time into epochs of some length d and

apply Theorem 3.4.4 to the subsequence {Ldi | i ≥ 0}. Using Theorem 3.4.1, part 1, we show that

if the load at the beginning of an epoch is above some threshold Θ, then the expected load at the

end of that epoch is strictly smaller by a significant amount, proving condition 1 of Theorem 3.4.4.

We then derive the required bound on the pth moment L(i+1)d − Lid, establishing condition 2 of

Theorem 3.4.4. Applying Theorem 3.4.4 then gives the desired bound on the maximum expected

load at the end of epochs. Finally, we generalize to steps that are not multiples of d.

Let us now formalize the above argument. The two conditions that we want to satisfy are

E[L(i+1)d − Lid | L0 = l0, Ld = ld, . . . , L(i−1)d = l(i−1)d, Lid = `id > Θ] ≤ −α,
E[|L(i+1)d − Lid|p | L0 = l0, Ld = ld, . . . , L(i−1)d = l(i−1)d, Lid = `id] ≤ ξ

for all (l0, l1, . . . , lid). In order to simplify the notation we denote

Li−1 = {L0 = l0, Ld = ld, . . . , L(i−1)d = l(i−1)d},

so the conditions become

E[L(i+1)d − Lid | Li−1, Lid = `id > Θ] ≤ −α, (3.16)

E[|L(i+1)d − Lid|p | Li−1, Lid] ≤ ξ. (3.17)

Let

Θ = σγ−1n(w + lnn) (3.18)

for some constant σ that we will fix later. Also let

TD = γ−1(2 ln Θ + lnn) and TC =
Θ

n
+
TD

2
+ 1,
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so that

TE = TD + TC

=
Θ

n
+ 3γ−1 ln Θ +

3

2
γ−1 lnn+ 1

= σγ−1(w + lnn) + 3γ−1 lnσ + 3γ−1 ln γ−1 + 3γ−1 ln(w + lnn) +
9

2
γ−1 lnn+ 1.

(3.19)

We let σ be such that TE/w is an integer, say k (we show later that such a σ exists), so that TE is

a multiple of the window size w, and define the epoch length

d = kw = TE . (3.20)

Notice that d = O(γ−1(w+ lnn)), a fact that we use later. Fix some time t = id and consider what

happens in the case that Lt > Θ. By Theorem 3.4.1, part 1 (for c = 1), we get that within d = TE

steps the system consumes at least Θ units of load, with probability at least 1 − 1/n. Thus, the

expected number of tokens consumed between steps id and (i+ 1)d is at least
(

1 − 1

n

)

· Θ = σγ−1n(w + lnn) − σγ−1(w + lnn), (3.21)

independently of the past, and of any of the adversary’s decisions.

Since an epoch consists of k windows, by the definition of the adversary, the expected injected

new load in the system from time id until (i+ 1)d, conditioned on Li−1, is bounded by

kλnw = λnd.

Using equations (3.19) and (3.20) we can conclude that the expected new load injected by the

adversary, conditioned on the history, is bounded by

λnd = λσγ−1n(w + lnn) + 3λγ−1n lnσ + 3λγ−1n lnγ−1 + 3λγ−1n ln(w + lnn) +
9

2
λγ−1n lnn+ λn

≤ λσγ−1n(w + lnn) + 3λγ−1n lnσ + 9λγ−1n ln(c′n) + 3λγ−1n ln(w + lnn) +
9

2
λγ−1n lnn+ λn

= γ−1n(w + lnn)

[

λσ +
3λ lnσ

w + lnn
+

9λ ln(c′n)

w + lnn
+

3λ ln(w + lnn)

w + lnn
+

9λ lnn

2(w + lnn)
+

λ

γ−1(w + lnn)

]

,

(3.22)

where the inequality follows from the fact that γ−1 ≤ c′n3 for some constant c′, since Λ = Ω(n−2)

for any connected graph. Therefore, from Relations (3.21) and (3.22) we get

E[L(i+1)d − Lid | Li−1] ≤ −σγ−1n(w + lnn) + γ−1n(w + lnn)

[

λσ +
3λ lnσ

w + lnn
+

9λ ln(c′n)

w + lnn

+
3λ ln(w + lnn)

w + lnn
+

9λ lnn

2(w + lnn)
+

λ

γ−1(w + lnn)
+
σ

n

]

≤ −σγ−1n(w + lnn) + γ−1n(w + lnn)(λσ +Q),

for sufficiently large n, where Q is a constant independent of σ. Hence,

E[L(i+1)d − Lid | Li−1] ≤ −γ−1n(w + lnn)(σ − λσ −Q).
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If

σ >
Q

1 − λ
,

then Relation (3.16) is satisfied for sufficiently large n. We therefore let σ be the smallest number

that is greater than Q/(1 − λ) that ensures that d = TE is a multiple of the window size w. Notice

that the fact that d is a continuous function of σ ensures that such a value of σ exists and satisfies

σ ≤ 2Q

1 − λ
.

Thus condition 1 is satisfied for α = O(γ−1n(w + lnn)).

We now turn our attention to Relation (3.17). Let Ji and Zi be the number of tokens injected

by the adversary and consumed by the processors, respectively, during the ith epoch. We note that

|L(i+1)d − Lid|p = |Ji − Zi|p

≤ Jp
i + Zp

i

≤ Jp
i + dpnp,

(3.23)

where the last inequality follows from the fact that the system (deterministically) consumes at most n

tokens in every step.

We now bound E[Jp
i | Li−1, Lid]. Write Ji =

∑k−1
j=0 Yj , where

Yj =

w−1
∑

t=0

Iid+jw+t

is the number of tokens injected by the adversary during the window [id+ jw, id+ (j + 1)w − 1].

The second condition on the stochastic adversary gives, for all j,

E[Y p
j ] ≤Mnpwp.

Applying Hölder’s inequality gives

Jp
i =





k−1
∑

j=0

Yj





p

≤





k−1
∑

j=0

1





p(1− 1
p )



k−1
∑

j=0

Y p
j



 = kp−1
k−1
∑

j=0

Y p
j

and therefore we get

E[Jp
i | Li−1, Lid] ≤ kpMnpwp. (3.24)

Therefore, relations (3.23) and (3.24) imply that Relation (3.17) is satisfied with

ξ = kpMnpwp + dpnp = (M + 1)dpnp,

and by Theorem 3.4.4 we deduce that

sup
i≥0

E[Lid | L0] = O(max(γ−1n(w + lnn)(1 +M)3p, L0)).
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We have now proven the theorem for t corresponding to the beginning of an epoch. To finish the

proof, we have for any t ≥ 0

E[Lt | L0] = E[Lbt/dcd+(t−bt/dcd) | L0]

≤ E[Lbt/dcd | L0] + E





t
∑

j=bt/dcd
Ij

∣

∣

∣

∣

∣

L0





≤ sup
i≥0

E[Lid | L0] + λnd

= O(max(γ−1n(w + lnn)(1 +M)3p, L0)).

Theorem 3.4.6. Given any initial load L0, with probability 1 there is an i ≥ 0, such that Lid ≤ Θ

for Θ defined as in (3.18).

Proof. For intuition, assume that the initial load L0 is above Θ. Then by Relation (3.16), we expect

it to decrease below Θ after a sufficiently long time period. In order to prove this fact, we use

martingale techniques. Since the expected load decreases independently of the past, we can couple

the load with a supermartingale until it drops below Θ. Then we can apply a martingale convergence

theorem to show that the supermartingale (and therefore the coupled system load) will eventually

reach Θ.

Proceeding formally, we define a supermartingale {Yid | i ≥ 0} with respect to the sequence

{Lid | i ≥ 0}, where

Yid =















max(L0,Θ) for i = 0,

Lid if L(i−1)d > Θ,

Θ if L(i−1)d ≤ Θ.

As long as Y(i−1)d > Θ the two sequences of random variables are identical. The sequence Lid

assumes a value ≤ Θ if and only if there is an index j such that Yjd = Θ.

The (nonnegative) supermartingale Yid converges with probability 1 to a random variable Y (see

[43, Theorem 5.1]), and since

E[Y(i+1)d | Yid > Θ] ≤ Yid − α

for some α > 0 (defined in the proof of Theorem 3.4.5), we have limi→∞ E[Yid] = Θ. By applying

Fatou’s lemma [28, page 110] we get E[Y ] ≤ lim infi→∞ E[Yid] = Θ. Thus, with probability 1 the

sequence {Lid} assumes at some time jd a value less than or equal to Θ.

Corollary 3.4.1. 1. If the system starts with no load, then for sufficiently large n,

sup
t≥0

E[Lt] = O(γ−1n(w + lnn)(1 +M)3p).

2. For any starting conditions

lim sup
t→∞

E[Lt | L0] = O(γ−1n(w + lnn)(1 +M)3p) as n→ ∞.

Proof. The first part follows from Theorem 3.4.5, while the second part also uses Theorem 3.4.6.
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An Instability Result

In [64] the authors give several counterexamples to justify the necessity of the second condition of

Theorem 3.4.4. One of the goals in [64] is to establish a theorem that holds under general conditions,

thus the counterexamples presented there consider fairly strong adversaries. For example, in all of

those, for any state there is a positive probability for the next state to equal 0 (thus allowing

the process to have large increments and yet keep the expectation bounded). Our setting is more

restricted. For example, the decrement is bounded since in one time step the load can decrease by

at most n. Nevertheless, here we show that the first condition of Theorem 3.4.4 is not sufficient to

ensure stability.

Assume a network with just n = 1 node. Consider an adversary that at time step t inserts t new

jobs with probability λ/t, where λ < 1. Then the expected number of new jobs at time t is λ. The

second moment of the new load at time t is λt, so notice that is is bounded for every t but it is not

uniformly bounded.

Let Et be the event that “there were t new jobs inserted at time t.” Then Pr(Et) = λ/t. Fix k > 0.

Since in one step the system can consume only one job, we have for any t ≥ 2k:

Pr(Lt ≥ t− 2k) ≥ Pr(∪t
i=t−k+1Ei)

≥
t
∑

i=t−k+1

Pr(Ei) −
∑

t−k+1≤i<j≤t

Pr(Ei ∩ Ej)

≥ kλ

t
−
(

k

2

)(

λ

t− k + 1

)2

= λk

(

1

t
− λ(k − 1)

2(t− k + 1)2

)

.

Therefore, for every t ≥ 2k we get

E[Lt] ≥ (t− 2k) ·Pr(Lt ≥ t− 2k) ≥ (t− 2k) · λk
(

1

t
− λ(k − 1)

2(t− k + 1)2

)

,

which implies that supt E[Lt] ≥ λk.

Since this holds for arbitrary k, we have supt E[Lt] = ∞.

Waiting Time

Having established that the system is stable, the next important performance parameter is the

waiting time of a job from the time it enters the system until it is executed. For a given task that

enters the system at time t, let Wt be the number of steps until the task is executed. Following the

discussion of Section 3.2, throughout this section we assume that we perform protocol P∗.

Theorem 3.4.7. Suppose that we run protocol P∗ with a (λ,w, p,M) adversary, where λ < 1 and

p > 2. Then

sup
t≥0

E[Wt | L0] = O(max(γ−1(w + lnn)(1 +M)3p, L0/n)) as n→ ∞.
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Proof. We begin with some intuition. By the results of Section 3.4.2, we expect the load Lt at

time t to be low, namely, bounded by O(max(γ−1n(w + lnn)(1 +M)3p, L0)). We also expect that

the distribution protocol will rapidly distribute this load among the nodes (even if it is not already

distributed, and regardless of any load that comes in after time t)—this is formalized by Lemma 3.4.2.

Once this load is evenly distributed, it can be quickly consumed, since P∗ ensures that every node

consumes the oldest token in its queue at the end of every time step. Therefore, the expected time

to consume all the load is O(E[Lt]/n).

We now proceed formally. Assume that at some time t the load in the system is Lt. We apply

Lemma 3.4.2 with c = 1, Θ = Lt, TD = γ−1(2 lnLt + lnn) and

TC =
Θ

n
+
TD

2
+ 1,

and we get that the expected time, conditioned on any past event H, until all the tokens that were

present at time t are consumed (measured from time t) is at most

2TD + TC ≤ 4TC + TC = 5TC

for n ≥ 2. Thus for n ≥ 2,

E[Wt | Lt,H] ≤ 5TC =
5Lt

n
+

5γ−1

2
(2 lnLt + lnn) + 5.

Consequently, for sufficiently large n, we have that for any t ≥ 0,

E[Wt | L0] =
∑

`t

E[Wt | L0, Lt = `t] · Pr(Lt = `t | L0)

≤
∑

`t

(

5`t
n

+
5γ−1

2
(2 ln `t + lnn) + 5

)

·Pr(Lt = `t | L0)

= E

[

5Lt

n
+

5γ−1

2
(2 lnLt + lnn) + 5

∣

∣

∣

∣

L0

]

=
5E[Lt | L0]

n
+

5γ−1

2
(2E[lnLt | L0] + lnn) + 5

≤ 5E[Lt | L0]

n
+

5γ−1

2
(2 lnE[Lt | L0] + lnn) + 5

= O(max(γ−1(w + lnn)(1 +M)3p, L0/n)),

where the second-to-last step follows from Jensen’s inequality applied to the concave function f(x) =

lnx, and the last step follows from Theorem 3.4.5.

Applying Theorem 3.4.6 we have the following

Corollary 3.4.2. 1. If the system starts with no load, then for sufficiently large n,

sup
t≥0

E[Wt] = O(γ−1(w + lnn)(1 +M)3p).

2. For any starting conditions,

lim sup
t≥0

E[Wt | L0] = O(γ−1(w + lnn)(1 +M)3p) as n→ ∞.

Proof. The first part follows from Theorem 3.4.7, while the second part also uses Theorem 3.4.6.
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Strongly Bounded Adversaries

Recall that a strongly bounded adversary satisfies the additional requirement that for some constants

α > 0, β ≥ 1, for any ε > 0, the probability that the total number of new jobs that arrive in a given

interval of length w is greater than (1 + ε)λnw is bounded by e−αλnwεβ

.

In this subsection we strengthen the preceding results for adversaries that are strongly bounded.

The Chernoff-type restrictions on the input stream allow us to get high-probability results for the

load and the waiting time.

High-Probability Bound on Load

Theorem 3.4.8. Consider a system where load is injected by a strongly bounded adversary. Let Lt

be the load of the system at time t. Then for any sufficiently large constant c1 there exists a constant

c′ > 0 such that

lim sup
t→∞

Pr(Lt > c1γ
−1n(w + lnn)) ≤ 3n−c′ .

The above holds without the limit if the system starts with no load.

Proof. Let Θ = c1γ
−1n(w + lnn). We observe the system at some time t, and we need to bound

the probability that the load at time t is above Θ. Therefore, we assume that the load at time t is

above Θ and calculate the probability of the events that may have led to such a load. If the load at

some time t′ < t were smaller than Θ (which holds with probability 1 as t→ ∞ by Theorem 3.4.6),

then from time t′ up to t some rare events have taken place and increased the load much more than

expected. We bound the probability of those events, thus bounding the probability that the load at

time t is above Θ.

Similarly to Theorem 3.4.5, we split time into epochs of length

TE = c2γ
−1(w + lnn)

starting from time t and going backwards. The constant c2 (which depends on c1) is chosen so that

the epoch length is a multiple k of the window size (TE = kw). Let B be the event {Lt ≥ Θ}, and

for i ≤ t/TE let Bi be the event that the load of the system is above Θ for exactly the last i epochs.

More precisely,

Bi = {∀j = 0, . . . , i− 1 : Lt−jTE ≥ Θ, Lt−iTE < Θ}.

Let Ct be the event that the load in the system was not always above Θ before time t. Formally,

Ct = {∃t′ ≤ t : Lt′ ≤ Θ}.

Then we have

Pr(B | Ct) =

bt/TEc
∑

i=1

Pr(Bi | Ct). (3.25)

To estimate Pr(Bi | Ct) we distinguish between two cases, depending on the total load injected

by the adversary during the i epochs immediately before t. Either the adversary inserted a lot of
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new jobs during this time, or he inserted a reasonable number of new jobs and the protocol failed

to reduce the total load. Both cases are intuitively unlikely: the first by the strong bound on the

adversary, and the second by the efficacy of the protocol. We bound the two cases separately and

then use a union bound. We fix a constant ε > 0 (whose actual value will be determined later) and

define M as the event that “the injected load during the i epochs immediately preceding t is less

than K = (1 + ε)iλnTE = (1 + ε)iλnkw.” Then we have

Pr(Bi | Ct) ≤ Pr(M | Ct) + Pr(Bi ∩M | Ct). (3.26)

We bound each term separately, starting with Pr(M | Ct). The first K jobs can be distributed

in the ik windows of the period in
(

K + ik − 1

ik

)

(3.27)

ways.

We now bound the probability of each such distribution of the inserted jobs (K1,K2, . . . ,Kik)

(so that
∑ik

j=1Kj = K). Recall that the expected number of jobs during the jth time window is at

most λnw. Define εj as the deviation of Kj above λnw, namely,

εj = max

(

0,
K

λnw
− 1

)

.

In other words, εj is such that

Kj = (1 + εj)λnw

if K > λnw and εj = 0 otherwise. Since
∑

Kj = K, we get that

ik
∑

j=1

εj ≥ ikε.

By using the definition of the strongly bounded adversary, we can bound the probability (conditioned

on any past event) that in the jth window at least Kj were generated by

e−αλnwεβ
j .

Therefore, the probability of a particular distribution (K1, . . . ,Kid) of the first K jobs is bounded

by
∏

e−αλnwεβ
j = e−αλnw

P

εβ
j .

Since β ≥ 1, and
∑

εj ≥ ikε, we obtain
∑

εβj ≥ ikεβ (by raising to the βth power and using Hölder’s

inequality as in Relation (3.24)), and the aforementioned probability becomes

e−αλnwikεβ

.
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Together with Equation (3.27) we get that

Pr(M | Ct) ≤
(

K + ik − 1

ik

)

e−αλnwikεβ

<

(

K + ik

ik

)

e−αλnwikεβ

≤
(

(K + ik)e

ik

)ik

e−αλnwikεβ

= eik ln(K+ik)+ik−αλnwikεβ−ik ln(ik)

≤ eik ln[ik((1+ε)λnw+1)]+ik−αλnwikεβ−ik ln(ik)

= eik ln[(1+ε)λnw+1]+ik−αλnwikεβ

< n−κi

(3.28)

for any constant κ and sufficiently large n.

Next we bound Pr(Bi ∩ M | Ct). By Theorem 3.4.1, part 1, if at the beginning of an epoch

the load of the system is at least Θ, then the load decreases by at least Θ with probability at least

1 − n−c. This is the case for the last i− 1 epochs. However, at time t− iTE the load of the system

is below Θ, while at time t the load is above Θ. Moreover we have assumed that the total new load

is at most K = (1 + ε)iλnTE. These facts imply that the consumed load is less than K, which in

turn implies that in fewer than
K

Θ
=

(1 + ε)λc2
c1

i
.
= µi

epochs the consumed load was more than Θ. By making c1 sufficiently large and ε sufficiently small,

we can guarantee that µ < 1. In this case, the probability that, among the i − 1 epochs, fewer

than µi consumed at least Θ load can be bounded by

Pr(Bi ∩M | Ct) ≤
(

i− 1

(1 − µ)i

)(

1

nc

)(1−µ)i

≤
(

e(i− 1)

(1 − µ)i

)(1−µ)i(
1

nc

)(1−µ)i

=

(

n−c · e

1 − µ
· i− 1

i

)(1−µ)i

≤ n−(1−µ)(c−1)i.

(3.29)

By combining equations (3.26), (3.28), and (3.29) we get that

Pr(Bi | Ct) ≤ 2n−(1−µ)(c−1)i.

Finally, we estimate the probability that the load is above Θ at time t using Equation (3.25). If

we make c and c1 sufficiently large, we get that (1− µ)(c− 1) > 0, so the sum converges and we get

Pr(B | Ct) =

bt/TEc
∑

i=1

2n−(1−µ)(c−1)i ≤
∞
∑

i=1

2n−(1−µ)(c−1)i ≤ 3n−(1−µ)(c−1).

From Theorem 3.4.6 we have limt→∞ Pr(Ct) = 1, which gives the result.
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Waiting Time By Theorem 3.4.1, part 2, we get that if the load of the system is bounded by Θ

at some particular time, then with probability at least 1 − n−c ≥ 1 − n−c′ all the load that was in

the system at that time is consumed during the next TE steps. The limiting probability that the

load of the system is above Θ is bounded by 3n−c′. Summing the failure probabilities proves the

following.

Theorem 3.4.9. Consider a system whose load is injected by a strongly bounded adversary. Let Wt

be the wait of a job that arrived at time t.

lim inf
t→∞

Pr(Wt ≤ c2γ
−1(w + lnn)) ≥ 1 − 4n−c′.

The above holds without the limit if the system starts with no load.

3.5 Conclusion

We analyze a simple load balancing system and show that it has many desirable steady state proper-

ties under a big variety of input conditions. In particular, we derive low-degree polynomial bounds on

the asymptotic expected load and waiting times of jobs in the system, and we match these expected

performance results with high-probability results in a very natural restriction of the general stochas-

tic adversary model. While there are many stability results for similar systems in the literature, our

analysis of waiting time, the strength of our bounds, and our high-probability results are novel. In

addition, our application of the Pemantle–Rosenthal result reveals many of the challenges in using

general adversaries and will likely provide good insight for other applications. Finally, unlike much

of the related work, our results hold for arbitrary connected network topologies and are optimal for

the extremely important expander topology.



Chapter 4

Sampling Search-Engine Results

In this chapter we study a problem concerning search engines, namely the problem of efficiently

sampling a random subset out of the entire set of results satisfying a given search query. We present

the motivation for the problem and two algorithms for addressing it. We analyze them theoretically

and we present some experimental results.

Most of the results of this chapter have appeared in [4], and are joint work with Andrei Broder

and David Carmel.

4.1 Problem Description and Motivation

Web search continues its explosive growth: according to the Pew Internet & American Life Project [27],

there are over 107 million web search users in United States alone, and they did over 3.9 billion queries

in the month of June 2004. At the same time, the Web corpus grows: a study during the beginning

of 2005 argues that the size of the indexable web is at least 11.5 billion pages [39].

Thus search algorithmic efficiency is as important as ever: although processor speeds are in-

creasing and hardware is getting less expensive every day, the size of the corpus and the number of

searches is growing at an even faster pace.

On the other hand, Web search users tend to make very short queries (less than 3 words long [72]),

which result in very large result sets. Although by now search engines have become very accurate

with respect to navigational queries (see [19] for definitions), for informational queries the situation

is murkier: quite often the responses do not meet the user’s needs, especially for ambiguous queries.

As an example, consider a user that is interested in finding out about famous opera sopranos and

enters the query “sopranos” in the Google search box. It turns out that the most popular responses

refer to the HBO’s TV-series with the same name: in the top 100 Google results, only 7 documents

do not refer to the HBO program. (All Google numbers, here and below, refer to experiments

conducted in early 2005.)

This situation has stimulated search engines to offer various “post-search” tools to help users deal

with large sets of somewhat imprecise results. Such tools include query suggestions or refinements

58



59

(e.g., yahoo.com and ask.com), result clustering and the naming of clusters (e.g., wisenut.com and

vivisimo.com), and mapping of results against a predetermined taxonomy, such as ODP (the Open

Directory Project used by Google and many others), Yahoo, and LookSmart. All these tools are

based in full or in part on the analysis of the result set.

For instance in the previous example, the search engine may present the categories “TV series,”

“Opera,” etc., or the query extensions “HBO sopranos,” “mezzo sopranos,” etc. Ideally, in order to

extract the most frequent categories within the results set, all the documents matching the query

should be examined; for Web size corpora this is of course prohibitive, as thousands or millions

of documents may match. Therefore, a common technique is to restrict attention only to the top

few hundreds ranked documents and extract the categories from those. This is much faster since

search engines use a combination of static (query-independent) rank factors (such as PageRank [18])

and query dependent factors. By sorting the index in decreasing order of static rank and using a

branch-and-bound approach, the top 200 (say) results can be produced much faster than the entire

set of results.

The problem with this approach is that the highly-ranked documents are not necessarily repre-

sentative for the entire set of documents, as they may be biased towards popular categories. In the

“sopranos” example, although 93 of the top 100 documents in Google refer to the HBO series, the

query for “sopranos AND HBO” matches about 265,000 pages in Google (per Google report), while

the query “sopranos AND opera -HBO” matches about 320,000, a completely different picture.

Many corporate search engines, and especially e-commerce sites, implement a technique called

multi-faceted or multidimensional search. This approach allows the refinement of full-text queries

according to meta-data specifications associated to the matching items (e.g., price range, weight) in

any order, but only nonempty refinements are possible. The refinement is presented as a “browsing”

of those results that satisfy certain metadata conditions, very similar to narrowing results in a

particular category.

As an example, consider a user who visits an online music store such as towerrecords.com, and

performs a query, say, the string “james.” The engine (from mercado.com) provides a number of

hits, but also numerous possible refinements, according to various “facets,” for instance by “Genre”

(Blues, Children’s, Country, . . . ), by price (Under $7, Under $10, Under $15, . . . ), by “Format”

(Cassette, CD, Maxi-Single, Compact Disc, . . . ), and so on. The refinements offered depend on the

initial query, so that only nonempty categories are offered, and sparse subcategories are merged into

an “Other” subcategory. Similar approaches are used by many other e-tailers.

Multi-faceted search is used in other contexts as well, for instance, Yee et al. [79] show the

benefits of this approach as applied within the “Flamenco” project at U. C. Berkeley for searching

images using metadata refinement.

Since the categories displayed for multi-faceted search depend on the result set of the query, they

have to be extracted quickly, a procedure that becomes a problem when the corpus is large. It seems

that some current multi-faceted search engines are limited to corpora that can be represented in

memory.
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4.1.1 Sampling the Search Results

The applications described above require significant processing time; in order to apply them to large

corpora we propose to only sample the set of documents that match the user’s query. Asymptotically,

the average running time of one of our sampling approaches is only proportional to the sample size.

On the other hand, sampling allows us to extract information that is unbiased with respect to the

search-engine’s ranking, and therefore produce better coverage of all topics or all meta-data values

present in the full result set.

The main technical difficulty in sampling follows from the fact that we do not have the results

of the query explicitly available, but instead the results are generated one after the other, by a

rather expensive process, potentially involving numerous disk accesses for each query term. The

straightforward implementation is to pay the price, find and store pointers to all the documents

matching the original query, and build a uniform sample from these results. However, as we already

mentioned, our algorithm will obtain the sample after generating and examining only a small fraction

of the result set and yet the sample produced is uniform, that is, every set of matching pages of

size k (the desired sample size) has an equal probability to be selected as the output sample.

Although, to the best of our knowledge, the idea of sampling query results from search engines

is new, sampling has been applied in different contexts as a means to give fast approximate answers

to a particular problem. The areas of randomized and approximation algorithms provide numerous

examples. In the area of data streams, where the input size is very large, sampling the input and

operating on it is a common technique (see e.g., [13, 35, 61]). Even databases allow the user to

specify a sampling rate in a select operation that instead of performing the query on the full set

of data operates on a sample [40]; as a result the DB2 relational database has been augmented to

support this option.

4.1.2 Further applications

Besides the two applications already mentioned, result categorization and multi-faceted search, a

random sample of the query results has more potential uses. In Theorem 4.2.3 we show that after the

execution of our algorithm we can obtain an unbiased estimator of the total number of documents

matching the user’s original query, while in Theorem 4.2.4 we show that the estimator can achieve

any prespecified degree of accuracy and confidence. Many users seem to like such estimates, maybe

to help them decide whether they should try to refine the query further. In any case, Web search

engines generally provide estimates of the number of results matching a query. For instance, both

Google and Yahoo provide such estimates at the top of the search results page. However these

estimates are notoriously unreliable, especially for disjunctions (see the discussion in [14]). As an

example, as of early 2005, Google reports about 105M results containing the term “George,” about

185M pages containing the term “Washington,” while its estimate for the documents satisfying the

query “George OR Washington” is about 33M. We get similar inconsistencies with other search

engines, such as MSN Search. In contrast, in our experiments (see Section 4.5) even a 50-result
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uniform sample yielded estimates within 15% of target in all cases.

Yet another application of random sampling is to identify terms or other properties associated

to the query terms. For instance one might ask “Who is the person most often mentioned on the

Web together with Osama bin Laden?” The approach we envisage is to sample the results of the

query “Osama bin Laden,” fetch the sample pages, run an entity detection text analyzer that can

recognize people names, extract these names, and so on. Again the advantage of this approach

compared to using the top results for the query “Osama bin Laden” is that the top results might

be biased towards a particular context.

A similar application is suggested by Amitay et al. [3] where the authors demonstrate how

finding (by “hand”) new terms relevant or irrelevant to a given query can be useful for building

“corpus independent” performance measures for information retrieval systems. The main idea is

that by providing a set of relevant and a set of irrelevant terms for a given query, we can evaluate

the performance of the information retrieval system by checking whether the documents retrieved

contained the specified relevant and irrelevant terms. However, discovering these sets of terms is a

daunting task, which requires the time and skill of an IR specialist; a sample of the search results

for the query can help the specialist identify both relevant and irrelevant terms. Again the lack of

bias is probably useful.

Yet another application is suggested by Radev et al. [66], who propose the use of the Web as

a knowledge source for domain-independent question answering by paraphrasing natural language

questions in a way that is most likely to produce a list of hits containing the answer(s) to the

question. It might well be the case that the results would be better when using a random sample of

matches rather than a ranked set of matches, since the ranking is based on a very different idea of

“best” results.

Finally, it might be possible to use sampling on the results of search-engine queries in order to

extract summary information from the ensemble of the results and then we can use this information

as a means of providing feedback to the user in order to refine his query.

The list of potential applications of search results sampling that we proposed above is probably

far from complete. We hope that our work will stimulate search engines to implement a random

sampling feature, and this in turn will lead to many more uses than we can conceive now.

4.1.3 Alternative Implementations

A very simple way of producing (pseudo) random samples is to keep the index in a random order.

Then the first k matches of a query can be viewed as a random sample, or, if more than one sample

is needed, we can take matches x to x+ k as our sample. In fact this is the approach used in IBM’s

WebFountain [38], a system for large scale Web data mining.

However, in a standard Web search engine, there are many disadvantages for such an architecture:

1. If the index is in random order, rather than in decreasing static rank order, ranking regular

searches (“top-k”) is very expensive since no branch-and-bound optimization can be used.

Thus the random-order index has to be stored separately from the search index, and this
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doubles the storage cost. (This is not an issue in WebFountain where “top-k” searches are a

small fraction of the load.)

2. Maintaining a true random order as documents are added and deleted is nontrivial. A good

solution is to have a “random static score” associated to each document and keep the index

sorted by this “random score.” This allows having an old index and a delta index to deal with

additions.

3. Creating multiple truly independent random samples for the same query is nontrivial.

Thus, for regular Web search engines, sampling is a much better alternative.

4.1.4 Retrieval Model and Notations

Our model is a traditional Document-at-a-time (DAAT) model for IR systems [74]. Every document

in the database is assigned a unique document identifier (DID). The DIDs are assigned in such a

way that increasing DIDs corresponds to decreasing static scores; however this is not relevant to

the rest of our discussion. Every possible term is associated with a posting list. This list contains

an entry for each document in the collection that contains the index term. The entry consists of

the document’s DID, as well as any other information required by the system’s scoring model such

as number of occurrences of the term in the document, offsets of occurrences, etc. Posting lists are

ordered in increasing order of the document identifiers.

Posting lists are stored on secondary storage media, and we assume that we can access them

through stream-reader operations. In particular, each pointer to the posting list of some term A

supports the following standard operations.

1. A.loc(): returns the current location of the pointer.

2. A.next(): advances the pointer to the next entry in the term’s posting list and returns this

entry’s DID.

3. A.next(r): moves the pointer to the first document with DID greater than or equal to r, and

returns this DID.

For our purposes, we need a special operator

4. A.jump(r, s): moves the pointer to the sth entry in the posting list after the document with

DID greater than or equal to r, and returns this DID. (Equivalent to A.next(r) followed by s

A.next() operations. However, simulating A.jump(r, s) this way would cost s moves rather

than one—see below.)

Operations loc() and next() are easily implemented with a linked-list data structure, while for

next(r) search engines augment the linked lists with tree-like data structures in order to perform the

operation efficiently. For example, one can use a binary tree where the leaves are posting locations
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corresponding to the first posting in consecutive disk records and every inner node x contains the

first location in the subtree rooted at x.

The jump(r, s) operation is not traditionally supported but can be easily implemented using the

same tree data-structures needed for next(r)—we simply augment the inner nodes with a count of

all the postings contained within the rooted subtree.

In the modern object-oriented approach to search engines based on posting lists and DAAT

evaluation, posting lists are viewed as streams equipped with the next method above, and the next

method for Boolean and other complex queries is built from the next method for primitive terms.

For instance, (AORB).next() = min(A.next(), B.next()). We will show later how to construct

a basic sample-next(p) method that samples term posting lists with probability p, and show how

to construct sample-next(p) methods for Boolean operators (AND, OR, WAND) from primitive

methods.

Since the posting lists are stored on secondary storage, each next or jump operation may result

in one or more disk accesses. The additional search-engine data structures ensure that we have at

most one disk access per operation. Our goal is to minimize the number of disk accesses, and hence

we want to minimize the number of the stream-reader pointer move operations. In the rest of the

paper, we assume that these moves (i.e., next, jump, and sample-jump) have unit cost, while any

other calculation has a negligible cost. (This assumption is of course only a first approximation,

but it is well correlated with observed wall clock times [20]. A more accurate model would have to

distinguish at least between “within-a-block” moves and “block-to-block” moves.)

For easy reference, we list here the notations used in the remainder of the paper. The total

number of documents is N , while the number of documents containing term Ti is Ni. For the query

under consideration, we let t be the number of terms contained in the query, and m ≤ N be the

number of documents that satisfy the query. The sample size that we require is of size k; we expect

in general to have k � m, and we let ps = k/m to be the ideal sampling probability.

The most general sampling technique that we propose is applicable to many search engine archi-

tectures. We describe it in Section 4.2. Next, in Section 4.3, we specialize to a particular architecture

based on the WAND operator, which was first introduced in [20], and this specialization allows us

to achieve better performance. Subsequently, in Section 4.4, we present an alternative scheme to

sample results; this method is more efficient theoretically, but probably less efficient in practice. We

implemented some of our algorithms and performed various experiments, and we present the results

in Section 4.5.

4.2 A General Scheme for Sampling

4.2.1 Two Motivating Examples

In order to build some intuition for the sampling problem, we present two examples: one where the

query is a conjunction (AND) of two terms and another where the query is a disjunction (OR)

of two terms. Later in the paper we will provide more details about the sampling mechanism, and
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generalize it to a broader class of queries.

For the AND example consider some term A that appears in 10M documents, a term B that

appears in 100M documents, and assume that the number of documents containing both terms

is 5M . Assume, moreover, that we want a sample of 1000 results. Then sampling each document

that satisfies the AND query with probability equal to ps = 1000/5M = 1/5000 creates a random

sample with the desired expected size.

We use the notation A (resp. B, C, etc.) to mean both the term A and the set of postings

associated to A. The meaning should be clear from context.

An initial problem arises from the fact that although we may know how many documents contain

the term A and how many contain the term B, we do not know a priori the number of documents

that contain both terms, and thus we do not know the proper sampling probability. There are ways

to circumvent this issue and we discuss them later in Section 4.2.3. For now, assume that we know

the correct sampling probability, and the question is how to sample efficiently.

The naive approach would be to identify every document that contains both terms and, for each

document independently, add it to the sample with probability ps. This means checking at least all

the postings for the rarest of the terms, so we need to examine at least the 10M postings on A’s

posting list.

Instead consider the following approach: Sample the posting list of A (the rarest term) with

probability ps and create a virtual term Aps whose posting list contains the sampled postings of

A. Then the posting list for Aps contains roughly 10M/5000 = 2000 documents. We return the

documents satisfying the query Aps ANDB. It is easy to verify that the result is a uniform sample

over all the documents containing AANDB. Later we will show how, given ps, we can create the

posting list of Aps online in time proportional to |Aps |; hence, this method allows us to examine

only 2000 postings, a clear gain over the 10M postings examined by the naive approach.

Now let us look at the OR example that turns out to be somewhat more complicated. Consider

another term C that appears also in 10M documents and assume that there are 15M documents

containing AORC. Again we want a sample of 1000 documents, so in this case ps = 1000/15M =

1/15000. The naive approach is to check every document in AORC and insert it into the sample

with probability ps, which means traversing the posting lists of both A and C, or 20M operations.

However we can apply the same technique as before and create a term Aps in time proportional

to |Aps |. However, a document may satisfy the query even if it does not contain A, so we create

also a virtual term Cps in the same manner, and return documents in Aps ORCps . Thus the total

number of postings examined is |Aps | + |Cps | = 20M/15000 ' 1333, so we have a factor of 15000

improvement. But now we need to be more careful: if a document contains only the term A then it

is inserted in Aps with probability ps, and, similarly, if it contains only the term C then it is inserted

in Cps with probability ps. But if a document contains both terms, the probability to be contained

in either Aps or Cps is 2ps − p2
s. Hence, every document containing both A and C and contained in

Aps ORCps must be rejected from the sample with probability 1 − ps/(2ps − p2
s). This will ensure

that every document in AORC is included in the sample with probability exactly ps.
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4.2.2 Sampling Search Results for a General Query

We now generalize the examples of the previous section and show how to apply the same procedure

for sampling query results to any search engine based on inverted indices and a Document-at-a-time

retrieval strategy. This class includes Google [18], AltaVista [23], and IBM’s Trevi [29].

Consider a query Q, which can be as simple as the prior examples, or a more complicated boolean

expression (including NOT terms, but not exclusively NOT terms). It could even contain more

advanced operators like phrases or proximity operators. Every such query contains a number of

simple terms, say T1, T2, . . . , Tt, to which the operators are applied, and each term is associated

with a posting list. Although the exact details depend on the specific implementation, every search

engine traverses those lists and evaluates Q over the documents in the lists and several heuristics and

optimization techniques are applied to reduce the number of documents examined (so, for example,

for an AND query the engine will ideally traverse only the most infrequent term). Recall that

the total number of documents satisfying the query is m, and that we need a sample of size k,

which means that every document satisfying the query should be sampled with probability ps =

k/m. Assume, moreover, for the moment that we know m, and therefore we know the sampling

probability ps—in Section 4.2.3 we show how to handle this.

The way to sample the results is simple in concept. In a nutshell, we use rejection sampling

to sample uniformly from the union of the posting lists T1, T2, . . . , Tt, conditional on the sample

satisfying the query.

For every term Ti (but not for terms NOTTi) we create a pruned posting list of document

entries that contains every document from the posting list of Ti with probability ps, independently

of anything else. The naive way to create the pruned list is to traverse the original posting list and

insert every document into the pruned list with probability ps. An efficient equivalent way is to skip

over a random number X of documents, where X is distributed according to a geometric distribution

with parameter ps. We can create a geometrically distributed random variable with parameter ps,

in constant time, by using the formula

X =

⌈

ln(U)

ln(1 − ps)

⌉

,

where U is a real random variable uniformly distributed in the interval [0, 1] (see [25]).

The random skip is then performed by executing a jump(r, X) operation, where r is the last

document considered. (Recall from the discussion of Section 4.1.4 that the data structure used for

postings allows for efficiently skipping documents in the posting lists and thus in our model the

skip has unit cost.) We then insert the document into the pruned list and we skip another random

number of documents, continuing until the posting list is completely traversed. Note that the pruned

lists can be precomputed at the beginning of the query, or they can be created on the fly, as the

documents are examined.

We now perform the query by considering only documents that contain at least one term in the

pruned lists. This is equivalent to replacing the original query Q(T1, T2, . . . ) with the query

Q(T1, T2, . . . )AND
(

T1,ps ORT2,ps OR · · ·
)

.
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By this construction, every document that appears in some posting list has probability at least ps

to be considered. There are, however, documents that originally appear in more than one posting list.

Consider some document that appears in the posting lists of r terms that are also being pruned.

Then this document has increased chances to appear in some pruned list, the probability being

exactly 1 − (1 − ps)
r. Therefore, for every document that satisfies the query, we should also count

the number r of posting lists subject to pruning, in which it originally appears. Then we insert the

document into the sample with probability ps/(1 − (1 − ps)
r), so that overall the probability that

the document is accepted becomes exactly ps.

There are several remarks to be made about this technique:

• First we want to stress its generality, which allows it to be incorporated in a large class of

search engines.

• Second, the method is very clean and simple, since it does not require any additional nontriv-

ial data structures; indeed, although the pruned lists can be precomputed (and, to improve

response time, even stored on disk for common search terms and fixed pruning probabilities),

the pruned lists can exist only at a conceptual level. When an iterator traverses a pruned list,

in the actual implementation, it may traverse the original posting list and skip the necessary

documents. Our implementation that we describe in detail in Section 4.3, demonstrates this

approach. The only addition we require is the support of the jump operation described in

Section 4.1.4, which is not significantly different from the next operation. Therefore from a

programming point of view, the needed modifications are very transparent.

• Furthermore, the modern object-oriented approach to search engines is to view posting lists

as streams that have a next method, and to build a next method for Boolean and other

complex queries from the basic next method for primitive terms. Our geometric jumps method

provides a method that samples term posting lists with probability ps providing the primitive

sample-next(ps) method, and the approach described above provides a sample-next(ps) method

for arbitrary queries: we first advance to the minimum posting in all pruned posting lists via

the primitive sample-next(ps) method, we evaluate the query, and if we have a match, we

perform the rejection method as described.

• Finally, we want to mention that the general mechanism can be appropriately modified and

made more efficient for particular implementations. For example, in the AND example of

the previous section, we saw that we need to create the pruned list of only one of the terms.

In Section 4.3 we show how we apply the technique to the WAND operator used in IBM’s

Trevi [29] and JURU [24] search engines and gain similar benefits.

4.2.3 Estimating the Sampling Probability

During the previous discussion we assumed that we know the total number of documentsm matching

the query and hence that we can compute the sampling probability ps = k/m. In reality we do not
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know m, and therefore we have to adjust the probability during the execution of the algorithm.

The problem of sequential sampling (sample exactly k out of m elements that arrive sequentially)

when m is unknown beforehand, has been considered in the past. Vitter [75] was first to propose

efficient algorithms to address that problem, using a technique called reservoir sampling. The main

idea is that when the ith item arrives we insert it into the sample (reservoir) with probability k/i

(for i ≥ k) replacing a random element already in the sample. This technique ensures that at every

moment, the reservoir contains a random sample of the elements seen so far. Vitter and subsequent

researchers proposed efficient algorithms to simulate this procedure, which instead of checking every

element skip over a number of them (see, for example, [75, 47]).

It seems, however, that those techniques cannot be applied directly to our problem, because the

list of matching documents represents the union or intersection of several lists. If we simply skip

over a number of documents, we do not know how many skipped documents matched the query and,

therefore, we cannot decide what the acceptance probability of the chosen document should be.

Instead we apply the following technique, related to the method used in [35] in the context of

stream processing: We maintain a buffer of size B > k (e.g., B can equal 2k), and set the initial

sampling probability equal to some upper bound for the correct sampling probability, p0; trivially we

can set p0 = 1. In other words, we accept every document that satisfies the query with probability

p = p0. Whenever the buffer is full, that is, the number of documents accepted equals B (which

indicates that p was probably too large) we set a new sampling probability p′ = α·p, for some constant

k/B < α < 1. Then every already accepted document is retained in the sample with probability α

and deleted from the sample with probability 1 − α, all random choices being independent. Thus

the expected sample size becomes Bα > k and a Chernoff bound shows that with high probability

the actual size is close to Bα, if B is large enough. Subsequent documents that satisfy the query

are inserted into the sample with probability p = p′ independently of all other documents and p is

decreased again whenever the buffer becomes full.

Eventually, the algorithm goes over all the posting lists and it ends up with a final sampling

probability equal to some value p∗, and with a final number of documents in the sample, K, where

K < B always, and K ≥ k with high probability. Assuming the latter holds, we can then easily

sample without replacement from this set and extract a sample of exactly k documents.

To recapitulate, we present in Figure 4.1 a high-level description of the entire algorithm for

sampling the results of a general query. Note that, for the sake of simplicity, the description does

not give any details, nor does it present the most efficient implementation. For example, in Figure 4.1,

in order to consider the next candidate document we consider only the pruned posting lists; in an

actual implementation, we would consider both the pruned lists and the posting lists of the actual

terms.

To estimate the running time of the algorithm, observe that the number of times that the sampling

probability is decreased is bounded by

ln(1/p∗)

ln(1/α)
≈ ln(m/k)

ln(1/α)
.
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1. Function getSample()
2. /* First some initializations. */
3. curDoc ← 0
4. p← 1
5. /* We assume that initially the pointers of all

the terms’ posting lists point to DID 0 */
6.
7. foreach (term Tj)
8. create a term Tj,p with the same posting

list as Tj

9.
10. repeat

11. foreach (j : Tj,p.loc() = curDoc)
12. Tj,p.nextPruned(curDoc)
13. curDoc← min{Tj,p.loc(), j = 1, . . . , t}
14. if (curDoc = lastID)
15. return /* Finished with all the

documents */
16. foreach (j : Tj .loc() < curDoc)
17. Tj .next(curDoc)
18. r ← |{j : Tj .loc() = curDoc}|

19. if (curDoc satisfies Q)
20. with probability normalizedProbability(r)

addToSample(curDoc)
21. end repeat

1. Function T .nextPruned(r)
2. X ← Geometric(p)
3. T .jump(r, X)

1. Function normalizedProbability(r)
2. return p/(1− (1− p)r)

1. Function addToSample(DID)
2. Add DID to the sample
3. /* Let B be the size of the buffer. */
4. while (size of sample = B)
5. /* we should take a smaller sample */
6. p′ ← α · p
7. foreach (i ∈ sample)
8. keep i with probability α = p′/p
9. p← p′

Figure 4.1: The General Sampling Scheme. We assume that we want to sample a query Q where
terms T1, T2, . . . , Tt appear nonnegated.

Every time the probability is decreased the expected number of samples removed from the buffer is

(1 − α)B. Thus, assuming that B = Θ(k), the expected total number of samples considered can be

bounded by approximately

(1 − α)B
ln(m/k)

ln(1/α)
+B = O

(

k ln(m/k)
)

. (4.1)

Using this fact, and under independence assumptions that are common in information retrieval for

the containment of terms in documents, we can show that the expected running time of this sampling

scheme is bounded by approximately

O
(

k ln(m/k)
)

,

for any fixed query, and k,m → ∞. The analysis is similar to the one that we present later in

Section 4.3.3 so we omit it.

It is tempting to assert that the algorithm chooses independently every document with proba-

bility p∗. Unfortunately this is not the case: for every independent sampling probability p∗ there is

some probability that the sample will be larger than B; however, our algorithm never produces a

sample larger than B. What holds is that, conditional on its size, the sample is uniform. Further-

more, we can use the final size and the final sampling probability to compute m, the size of the set

that we sampled from. This is captured by Theorems 4.2.1, 4.2.3, and 4.2.4.
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Theorem 4.2.1. Assume that at the end of the sampling algorithm the actual size of the sample

is K. Then the produced sample set is uniform over all sets of K documents that satisfy the query.

Proof. We use a coupling (simulation) argument. Assume that each of the m documents that satisfy

the query has an associated real random variable Xi, chosen independently uniformly at random in

the interval (0, 1].

We build a new algorithm that proceeds exactly as before except that whenever the buffer is full,

p is reduced to p′ and we keep in the buffer only those documents i that have Xi < p′. Every new

document j is inserted in the buffer if and only if it has Xj < p′.

Let Sp = {i | Xi < p}. Then p∗ is the largest value in the set {p0, αp0, α
2p0, . . .} such that

|Sp∗ | = |{i | Xi < p∗}| < B,

and the final sample is Sp∗ . Clearly the set Sp∗ is uniform over all sets of size K = |Sp∗ |. On the

other hand the original algorithm and the new algorithm are in an obvious 1-1 correspondence, and

thus, conditional on its size, the final sample is uniform.

Notice that the algorithm does not know initially the number of documents that satisfy the query,

a value that is usually hard to estimate. As we mentioned, an additional feature of the algorithm is

that we can estimate the number of documents matching the query. Theorem 4.2.3 summarizes the

result.

The main tool that we use in the proof of Theorem 4.2.3 is the concept of a martingale, and here

we present the definition and the main result that we are using.

Definition 4.2.1. Consider a sequence {Xt, t = 0, 1, . . .} of random variables, and a family of sets

of random variables {Ht, t = 0, 1, . . . }, where Ht−1 ⊂ Ht. We say that the sequence {Xt} forms a

martingale with respect to {Ht} if for every t ≥ 0 the following three properties hold:

1. Xt is a function of Ht.

2. Xt is integrable, that is, E[|Xt|] <∞.

3. E[Xt+1 | Ht] = Xt.

Intuitively, Ht corresponds to the history up to time t.

Definition 4.2.2. A random variable T taking values in {0, 1, 2, . . .} ∪ {∞} is called a stopping

time with respect to {Ht}, if for every t ∈ {0, 1, 2, . . .} the indicator function of the event {T = t}
can be written as a function of the random variables in Ht.

This means that T is a stopping time if it is decidable whether or not T = t with a knowledge

only of the past and present, Ht, and with no further information about the future.

Having defined a martingale and a stopping time, we are now able to present and prove a

(nonstandard) version of the Optional Sampling Theorem that we use in our proof.
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Theorem 4.2.2 (Optional Sampling Theorem). Consider a martingale {Xt, t = 0, 1, . . .} with

respect to {Ht} and assume that T is a stopping time, such that Pr(T < ∞) = 1. Then we have

that E[XT ] = E[X0] if there is a constant A independent of t, such that for every t = 0, 1, 2, . . . we

have that E[|Xt∧T |2] < A, where t ∧ T = min{t, T }.

Proof. Since the process {Xt} forms a martingale with respect to {Ht}, also the stopped process

{Xt∧T} forms a martingale with respect to {Ht}, so, in particular, E[Xt∧T ] = E[X0] for t =

0, 1, 2, . . . .

The fact that E[|Xt∧T |2] < A implies that the sequence {Xt∧T} is uniformly integrable, and the

fact that Pr(T < ∞) = 1 implies that Xt∧T → XT almost surely. Therefore (see, for example, [77,

page 131]),

lim
t→∞

E[Xt∧T ] = E[XT ],

which concludes the proof.

We are now in position to state and prove that our algorithm provides an unbiased estimator for

the number of matches.

Theorem 4.2.3. Assume that at the end of the algorithm the size of the sample is K, and the

final sampling probability is p∗. Then the ratio K/p∗ is an unbiased estimator for the number of

documents m matching the query, that is, E[K/p∗] = m.

Proof. View the algorithm as performing two types of steps: if the buffer is full then the algorithm

reduces the sampling probability and resamples the buffer with probability α; if the buffer is not

full, the algorithm considers the next candidate document and inserts it with probability p.

Assume that after t steps there are Kt documents in the sample, the sampling probability is pt,

and we have consideredmt candidate documents. Thus if the algorithm stops after f steps, Kf = K,

pf = p∗, and mf = m. If mt = m, we also define mt+1 = mt = m, Kt+1 = Kt, and pt+1 = pt. Now

we define a sequence of random variables {Xt, t = 0, 1, . . . } as follows. We let X0 = 0 and for t ≥ 1

we have

Xt =
Kt

pt
−mt.

We now show that the sequence {Xt} is a martingale with respect to {Ht}, where Ht =

(K0, p0,m0,K1, p1,m1, . . . ,Kt, pt,mt). This will finally imply that E[Kf/pf ]−E[mf ] = 0, which is

what we want to prove.

It’s clear that Xt is a a function of Ht, while for the integrability notice that

E[|Xt|] = E

[∣

∣

∣

∣

Kt

pt
−mt

∣

∣

∣

∣

]

≤ B

αt
+m <∞,

where we used the fact that Kt ≤ B, and mt ≤ m.

It remains to show that E[Xt+1 | Ht] = Xt, the basic martingale property. If mt = m, then

the property holds trivially; if mt < m we consider two cases: First, if Kt < B then the sampling

probability does not change (pt+1 = pt) but we consider a new document, which is inserted with
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probability pt+1 = pt. Therefore, if we let Z be the indicator of the event that at time t + 1 a

document is accepted, we get

E[Xt+1 | Ht] = E

[

Kt + Z

pt+1
−mt+1

∣

∣

∣

∣

Ht

]

= E

[

Kt + Z

pt
− (mt + 1)

∣

∣

∣

∣

Ht

]

=
Kt + pt

pt
−mt − 1 = Xt.

On the other hand, if Kt = B then every document already in the sample is resampled with

probability pt+1/pt = α but we are not considering any new document, that is,mt+1 = mt. Therefore

E[Xt+1 | Ht] = E

[

Binomial(Kt, pt+1/pt)

pt+1
−mt+1

∣

∣

∣

∣

Ht

]

= E

[

Binomial(Kt, α)

αpt
−mt

∣

∣

∣

∣

Ht

]

=
Ktα

αpt
−mt = Xt.

Hence, we conclude that the sequence {Xt} forms a martingale with respect to {Ht}. We define

the stopping time f = min{t : mt = m}. We will apply Theorem 4.2.2 for the martingale {Xt}
and the stopping time f , which will allow us to conclude that E[Xf ] = E[X0] = 0, therefore

E[Kf/pf ] = E[mf ] = m.

It is not hard to show that Pr(f < ∞) = 1, but in order to apply Theorem 4.2.2 we have also

to show that the second moment E[|Xt∧f |2] is uniformly bounded (over t) by some constant. To

this end, it helps to define for t = 0, 1, 2, . . . the random variable Yt = logα pt. Then Yt counts how

many times the algorithm resampled from the buffer up to time t. We have

E[|Xt∧f |2] = E

[

∣

∣

∣

∣

Kt∧f

pt∧f
−mt∧f

∣

∣

∣

∣

2
]

≤ E

[

K2
t∧f

p2
t∧f

]

+ E[m2
t∧f ] + 2E

[

Kt∧f

pt∧f
mt∧f

]

≤ B2 E

[

1

p2
t∧f

]

+m2 + 2BmE

[

1

pt∧f

]

,

(4.2)

where we used the fact that Kt∧f ≤ B, and mt∧f ≤ m. We now show that the term E
[

1
p2

t∧f

]

is
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uniformly bounded. We have

E

[

1

p2
t∧f

]

≤
∞
∑

i=0

Pr

(

1

p2
t∧f

≥ i

)

=

∞
∑

i=0

Pr

(

1

pt∧f
≥

√
i

)

=

(1/α)2m−1
∑

i=0

Pr

(

1

pt∧f
≥

√
i

)

+

∞
∑

i=(1/α)2m

Pr

(

1

pt∧f
≥

√
i

)

≤
(

1

α

)2m

+

∞
∑

i=(1/α)2m

Pr

(

(

1

α

)Yt∧f

≥
√
i

)

=

(

1

α

)2m

+

∞
∑

i=(1/α)2m

Pr
(

Yt∧f ≥ log1/α

√
i
)

≤
(

1

α

)2m

+

∞
∑

i=(1/α)2m

Pr
(

Yf ≥ log1/α

√
i
)

,

since Yt is increasing with t.

We will now bound the probability of the event Ei = {Yf ≥ log1/α

√
i}. Recall that Yt counts how

many times the algorithm resampled from the buffer up to time t, so, since there are m documents

in total, event Ei implies that in at least log1/α

√
i − m resample steps no document was evicted

from the buffer. Since in every resampling step each document that is in the buffer stays in the

buffer with probability α, and since the buffer contains B documents at every resampling step, the

probability of event Ei is bounded by αB(log1/α

√
i−m). Therefore we get

E

[

1

p2
t∧f

]

≤
(

1

α

)2m

+

(

1

α

)Bm ∞
∑

i=(1/α)2m

αlog1/α iB/2

=

(

1

α

)2m

+

(

1

α

)Bm ∞
∑

i=(1/α)2m

1

iB/2
,

which is bounded for B > 2.

This implies that also E
[

1
pt∧f

]

is uniformly bounded, and by Equation (4.2) the expecta-

tion E[|Xt∧f |2] is also uniformly bounded. So, we can apply Theorem 4.2.2 and get that E[Xf ] =

E[X0] = 0, which finally implies that

E

[

K

p∗

]

= E

[

Kf

pf

]

= E[mf ] = m.

Hence, K/p∗ is an unbiased estimator for the number of documents satisfying the query.

Besides having the correct expectation, a good estimator should be close to the correct value

with high probability.

Definition 4.2.3. An (ε, δ)-approximation scheme for a quantity X is defined as a procedure that

given any positive ε < 1 and δ < 1 computes an estimate X̂ of X that is within relative error of ε
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with probability at least 1 − δ, that is,

Pr(|X̂ −X | ≤ εX) ≥ 1 − δ.

The following theorem shows that our sampling procedure, using a buffer size quadratic in 1/ε

and logarithmic in 1/δ, is in fact an (ε, δ)-approximation scheme.

Theorem 4.2.4. There are constants c1, c2 such that for any positive ε < 1 and δ < 1, the algorithm

above with a buffer size B = c1

ε2 ln c2

δ is an (ε, δ)-approximation scheme, that is, if at the end of the

algorithm the size of the sample is K and the final sampling probability is p∗ we have:

Pr

(∣

∣

∣

∣

K

p∗
−m

∣

∣

∣

∣

≤ εm

)

≥ 1 − δ.

Proof. The proof is similar to that of Theorem 3 in [35]. We assume that the initial sampling

probability is p0 = 1 and we have pi = αpi−1, so that pi = αi. In order to simplify some calculations

we assume that α ≤ 3/4. We set the buffer size to be

B =
1 + ε

α
· 3

ε2
ln

8

δ
.

We use the coupling argument (the one used in Theorem 4.2.1) and think of the algorithm as

sampling from all documents and working by levels. Let Y0 be the number of all the matching

documents, Y1 be a random variable counting the number of documents that got sampled with

probability α, Y2 be a random variable that counts the documents that further got sampled with

probability α and so on. Then Yi is distributed as Binomial(m,αi).

Here is the main idea. The final outcome size K equals one of the Yi’s (the one for which we have

Yi−1 ≥ B and Yi < B) and then p∗ equals αi. The idea is that for small i, with good probability,

the estimates Yi/α
i are accurate and if K equals one of those then the algorithm provides a good

estimate. Otherwise K equals one of the later Yi’s, but this has small probability.

We define the events

Bi =

{∣

∣

∣

∣

Yi

αi
−m

∣

∣

∣

∣

> εm

}

= {|Yi −mαi| > εmαi}.

We also define

` = max i s.t. mαi ≥ 3

ε2
ln

8

δ
,

and therefore we have

mα`+1 <
3

ε2
ln

8

δ
.

So, the probability that the estimator fails to be within a factor of ε close to m is bounded by

∑̀

i=1

Pr(Bi) + Pr(Y` ≥ B).

By applying a Chernoff bound we have that for i ≤ `

Pr(Bi) ≤ 2e−
ε2

3 mαi

.
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If f(i) = e−
ε2

3 mαi

, then for i ≤ ` we have f(i)/f(i − 1) ≥ (8/δ)(1−α)/α, which for α ≤ 3/4 is at

least 2, for any δ < 1. So for the summation we have

∑̀

i=1

Pr(Bi) ≤
∑̀

i=1

2e−
ε2

3 mαi

≤ 4e−
ε2

3 mα`

≤ 4e−
ε2

3
3

ε2
ln 8

δ

=
δ

2
.

For Pr(Y` ≥ B) we have

Pr(Y` ≥ B) = Pr

(

Y` ≥
1 + ε

α

3

ε2
ln

8

δ

)

≤ Pr

(

Y` ≥
1 + ε

α
mα`+1

)

= Pr
(

Y` ≥ (1 + ε) ·mα`
)

≤ e−
ε2

3 mα`

≤ δ

8
.

Therefore, the probability that the algorithm fails is less than δ.

4.3 Efficient Sampling of the WAND Operator

Although we described a general sampling mechanism that can be applied to diverse settings, we

have also seen that when we specialize to some particular operator such as AND we can achieve

improved performance. In this section we describe the operator WAND, introduced in [20], which

generalizes AND and OR, and we present an efficient implementation for sampling the results of

WAND.

4.3.1 The WAND Operator

Here we briefly describe the WAND operator that was introduced in [20] as a means to optimize the

speed of search queries. WAND stands for Weak AND, or Weighted AND. It takes as arguments

a list of Boolean variables X1, X2, . . . , Xk, a list of associated positive weights, w1, w2, . . . , wk, and

a threshold θ. By definition, WAND(X1, w1, . . . Xk, wk, θ) is true iff

∑

1≤i≤k

xiwi ≥ θ, (4.3)

where xi is the indicator variable for Xi, that is,

xi =

{

1, if Xi is true

0, otherwise.
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Observe that WAND can be used to implement AND and OR via

AND(X1, X2, . . .Xk) ≡ WAND(X1, 1, X2, 1, . . .Xk, 1, k),

and

OR(X1, X2, . . . Xk) ≡ WAND(X1, 1, X2, 1, . . .Xk, 1, 1).

For the purposes of this paper we shall assume that the goal is simply to sample the set of

documents that satisfy Equation (4.3) with Xi indicating the presence of query term Ti in document

d. We note however that the situation considered in [20] is more complicated: there each term Ti is

associated with an upper bound on its maximal contribution to any document score, UB i, and each

document d is subject to a preliminary filtering given by

WAND(X1,UB1, X2,UB2, . . . , Xk,UBk, θ),

where Xi again indicates the presence of query term Ti in document d. If WAND evaluates to true,

then the document undergoes a full evaluation, hence a document that matches WAND does not

necessarily match the query. We can deal with this approach by doing a full evaluation on every

document that we would normally insert into the buffer (that is, a document that won the coin toss).

The document is then inserted into the buffer only if it passes the full evaluation. This insures that p

is reduced only as needed. Further refinements considered in [20], such as varying the threshold θ

during the algorithm, are meant to increase the efficiency of finding the top k results and thus are

beyond the scope of this paper.

4.3.2 Sampling WAND Results

In the AND example that we saw previously, we can sample only the rarest term, and hence

minimize the total number of next, jump, and sample-next operations. In contrast, in the OR

example, we must sample the posting lists of all terms. Since the WAND operator varies between

OR and AND, a good sampling algorithm must handle efficiently both extremes.

Let T = {T1, . . . , Tt} be the set of the query terms with associated positive weights, w1, w2, . . . , wt.

Our goal is to sample uniformly at random documents from the set of documents {j} that satisfy

the inequality
∑

1≤i≤t

xi,jwi ≥ θ, (4.4)

where xi,j is given by

xi,j =

{

1, if document j contains Ti

0, otherwise.

We divide T it into two subsets, the set S that contains the terms that must be sampled, and

the set Sc that contains the rest of the terms in T . In the AND example, the set S contains only

the least frequent term, while in the OR example the set S contains all the terms.
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The first issue is how to select the set S. We will discuss the optimal way to do it, after discussing

the running time of the algorithm. For the time being, assume that we choose the set S arbitrarily

such that
∑

i∈Sc

wi < θ.

Hence S is such that any document that satisfies Equation (4.4) must contain at least one term

from S. It is easy to check that the AND and the OR examples expressed as WAND obey this

inequality for their respective choices of S.

Following the description in Section 4.2.2, we create pruned lists for the terms in S (but not for

the terms in Sc), and again as before, a document in the posting list of a term is included in the

pruned list of that term with probability ps, independently of other documents and other terms.

Of course the algorithm does not know ps beforehand, so it initially starts accepting all the

documents with some probability p = p0, maybe p = 1, and it reduces p over time, using the process

described in Section 4.2.3.

The algorithm guarantees that every document that contains at least one term in S has prob-

ability at least p to be selected. If it becomes selected and it satisfies WAND, we normalize the

probability to be exactly p using the rejection method described in Section 4.2.2. If a document

does not contain any term from S, its total weight is strictly smaller than θ and, therefore, it does

not satisfy WAND.

We now give a high-level description of the sampling algorithm. The details appear in Fig-

ure 4.2, while a complete description and a formal proof of correctness can be found in Section 4.3.4;

Figure 4.3 contains a visual example.

Every term in the set S is associated with a producer, which is an iterator traversing the pruned

list, selecting documents for evaluation against the query. Furthermore, in order to perform the

evaluation, every term in the query is also associated with a checker that traverses the original

posting list. At one iteration of the algorithm we advance the producers that point to the document

with the smallest DID, and some document is selected (with probability p) by some of them. Then

the checkers will determine the terms that are contained in the document and if the sum of their

weights exceeds the threshold θ, then the document becomes a candidate to be selected for the

sample. Like in the general approach, the pruned list may exist only at the conceptual level, and

the producers may traverse the original posting lists and jump over a random number of documents,

which is geometrically distributed.

Once a document, whose DID is held in the variable global, is selected for consideration, we use

the checkers to determine if global satisfies the query. Some checkers point to documents with DID

smaller than global and these are terms that, as far as we know at this point, might be contained

in the document with DID=global. The algorithm maintains an upper bound equal to the sum of

the weights of the terms whose checkers point to a document with DID not greater than global.

As long as the upper bound exceeds the threshold θ (and therefore global might satisfy the query),

we advance some term’s checker to the first document with DID ≥ global. Assume its DID is doc.

If doc = global then the term is contained in global. We continue by advancing the rest of the
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1. Function getWANDSample()
2. /* First some initializations. */
3. curDoc ← 0
4. global ← 0
5. p← 1
6. foreach (term i)
7. checker[i].next(0)
8. foreach (term i ∈ S)
9. producer[i].nextPruned(0)
10.
11. repeat

12. advance global to smallest DID for which
P

i:checker[i].DID ≤ global wi ≥ θ

13. if (global < min DID of producers)
14. global ← min DID of producers
15. /* Now at least one producer is ≤ global. */
16. A←

{terms i ∈ S s.t. producer[i].DID < global}
17. while (A 6= ∅ && no producer points to

global)
18. pick i ∈ A
19. producer[i].nextPruned(global)
20. if (no producer points to global)
21. global ← min DID of producers
22. if (global = lastID)
23. return /* Finished with all the

documents */
24. /* Now the global points to a DID that

exists in some pruned list, and such that
the accumulated weight behind it is at
least θ. */

25. B ←
{terms i ∈ T s.t. checker[i].DID ≤ global}

26. /* B contains the terms that contribute to
the upper bound */

27. if (global ≤ curDoc)
28. /* document at global has already been

considered */
29. pick i ∈ B
30. /* it is probably best to pick an

i ∈ B ∩ S */
31. checker[i].next(curDoc + 1)
32. else /* global > curDoc */

33. if (
P

i∈B:checker[i].DID = global wi ≥ θ)

34. /* Success, we have enough mass on
global. */

35. curDoc ← global
36. /* We consider curDoc as a candidate.

Now we must count exactly how many
posting lists in S contain global in
order to perform the probability
normalization correctly. */

37. foreach

(i ∈ S ∩B s.t. checker[i].DID < curDoc)
38. checker[i].next(curDoc)
39. D ←

{terms i ∈ S s.t. checker[i].DID = global}
40. with probability

normalizedProbability(|D|)
addToSample(curDoc)

41. else (of line 33)
42. /* Not enough mass yet on global,

advance one of the preceding terms. */
43. pick i ∈ B s.t. checker[i].DID < global
44. /* it is probably best to pick an

i ∈ B ∩ S */
45. checker[i].next(global)
46. end repeat

1. Function producer[i].nextPruned(r)
2. X ← Geometric(p)
3. producer[i].jump(r, X)

1. Function normalizedProbability(r)
2. return p/(1− (1− p)r)

1. Function addToSample(DID)
2. Add DID to the sample
3. /* Let B be the size of the buffer. */
4. while (size of sample = B)
5. /* we should take a smaller sample */
6. p′ ← α · p
7. foreach (i ∈ sample)
8. keep i with probability α = p′/p
9. p← p′

Figure 4.2: Sampling WAND.

checkers that are behind global until either the total sum of weights of the terms whose checkers

are in positions ≤ global is less than the threshold θ, in which case the document does not satisfy

the query, or until the sum of the weights of the terms that were found to be contained in global

exceeds the threshold θ, in which case the document becomes a candidate to be selected for the
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Term 4

Producer

Checker

22DID

curDoc global

Term 1

Term 2

Term 3

Term 5

Term 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S

Figure 4.3: An example of the posting lists. A bullet indicates that the term exists in the corre-
sponding document. A black bullet indicates that the document was sampled (or will be), hence it
exists in the pruned list.

sample. In the latter case, the next step is to count the exact number of terms in S that are

contained in the document. Each of these terms offers a chance to the document to be inserted

to the corresponding pruned list, therefore, by counting the terms in S that are contained in the

document we can apply the rejection method, described in Section 4.2.2, and accept the document

with the correct probability (i.e., with probability p).

Notice that the algorithmic description leaves some details unspecified. For instance, whenever

some checker has to be advanced there is usually more than one choice. The goal is to select the

checker that will advance the farthest possible, and a simple heuristic is to select the checker of the

most infrequent term. This problem appears in the general context of query constraints satisfaction

for posting list iterators and there are more advanced heuristics that try to guess the best move

based on the results seen so far (see [23]). In our particular case, at some point during the execution

of the algorithm, there is even more flexibility: we can either advance a checker or a producer (e.g.,

at line 31 we can advance a producer instead of a checker). Hence in principle, we can select whether

it is better to advance a producer or a checker, based on our experience so far and the expected

benefit of the choice and, indeed, our implementation uses this heuristic.

4.3.3 Running-Time Estimation and the Choice of the Set S

We now bound the running time of the algorithm, assuming that we know the correct value of the

sampling probability ps = k/m. Consider a query with t terms, and recall that Ni is the total

number of documents containing the ith term and that wi is the weight of the ith term in the

WAND operator. In order to obtain an upper bound for the number of pointer advances, we note

that whenever we advance a checker we advance it to at least past a producer, since during the

execution of the algorithm the document under consideration (global) has been originally selected
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by some producer. Therefore, the total number of each checker’s advances is bounded by the total

number of producer advances, which is expected to be ps

∑

i∈S Ni. Therefore, the running time is

expected to be

O

(

tps

∑

i∈S

Ni

)

= O

(

t
k

m

∑

i∈S

Ni

)

. (4.5)

If the sampling probability is not known in advance, then in the worst case sampling will not

help much. For instance if the standard search WAND spends a large amount of time getting the

first B matches and then starts producing matches very fast, the sampling WAND will spend an

equal amount of time until the first decrease of p from 1 to α. This is of course unlikely but entirely

possible.

Hence for the average case we need to assume that the results are uniformly distributed with

respect to DID numbers. To this end we assume the often-used probability model in IR, that is,

we assume that each document contains the query terms independently with certain probabilities.

In this case, conditional on a document d containing a term ti ∈ S, there is a fixed probability πi

that d satisfies the query. Similarly there are fixed probabilities, πi,1, πi,2, . . . , πi,s that d satisfies

the query and contains exactly 1, 2, . . . , s terms from S, where s = |S|. Now consider the first time

a document d is selected by a producer, say for the term ti. Assume that at that time the sampling

probability was p. In view of the above, the probability that d satisfies the query and also passes

the rejection procedure is
s
∑

j=1

πi,jp

1 − (1 − p)j
≥

s
∑

j=1

πi,j

j

.
= ρi.

On the other hand, in view of Equation (4.1), we know that the expected total number of samples

ever inserted in the buffer is bounded by approximately O
(

k ln(m/k)
)

. Hence the expected number

of occurrences of the term ti selected by its producer is bounded by approximately

O

(

k

ρi
ln(m/k)

)

,

and therefore the expected total number of moves (producers and checkers) is approximately

O

(

tk ln(m/k)
∑

i∈S

1

ρi

)

= O
(

k ln(m/k)
)

, (4.6)

for any fixed query, and k,m→ ∞.

In order to minimize the running time of the algorithm, we want to select S so that the sum
∑

i∈S ρ
−1
i is minimized. Of course ρi is not known in advance, but it can be estimated as the query

progresses. Another approach, for m � Ni, is to make the rough estimate ρi ≈ m/Ni. Then

Equation (4.6) again suggests that a good choice for S is to try to minimize
∑

i∈S Ni.

A simple way to achieve a good selection for S in this vein is to sort the terms in increasing order

of frequencies (and decreasing order of weights in case of ties), and let

s = min
i

s.t. :

t
∑

j=i+1

wj < θ.
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Then let S = {1, 2, . . . , s}. Notice that this greedy approach includes both the examples of AND

and OR as special cases.

The optimal choice for the set S to minimize
∑

i∈S Ni is obtained by solving the following integer

program:

min
∑

i∈S

Ni

s.t. :
∑

i∈Sc

wi < θ,

or, equivalently,

max
∑

i∈Sc

Ni

s.t. :
∑

i∈Sc

wi < θ,

which can be interpreted as a Knapsack problem. Since the values Ni are integral we can solve it

exactly in polynomial (in t and N) time through dynamic programming, but since we have a small

number of terms we can solve it much more efficiently by brute force. Sometimes we have some

flexibility in assigning weights (usually we want terms with low frequency to have large weight), in

which case the greedy approach will suffice to obtain an optimal solution.

The analysis above is based on the independence assumptions for the containment of terms in

documents; in reality, however, the running time will depend on the actual joint distribution of the

query terms, which generally changes as the algorithm iterates through the posting lists. In practice

we can achieve better performance by observing the performance of each producer and dynamically

changing the set S as the algorithm progresses. We want to insert terms that both produce large

jumps and are well correlated with successful samples so that the sampling probability will go down

quickly.

4.3.4 Detailed Description of the Algorithm and Proof of Correctness

Here we present a detailed description as well as a formal proof of the correctness of the algorithm

presented in Figure 4.2. The essence of the proof is to show that a set of four invariants is maintained

throughout the execution of the protocol. For i ∈ S, let

Ci = {DIDs that appear in the pruned list of term i},

and C =
⋃

i∈S Ci. The four invariants are the following:

1. All documents with DID ≤ curDoc have either been considered as candidates, or do not belong

to C.

2. For any term i ∈ T , any document containing i with DID < checker [i].DID has either been

considered as a candidate, or does not belong to C.
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3. At every given time point, every document with DID < global has either been considered or

does not belong to C.

4. For all terms i ∈ S, every document containing i with DID < producer [i].DID has either been

considered or does not belong to Ci.

It is easy to verify that all for of them are true after the initializations (line 9).

We next try to find the next candidate document. We increase global to equal the minimum DID

that could be a potential candidate, which happens when the sum of the weights of terms whose

checkers are behind (i.e., point to documents with DID smaller than or equal to) global reaches

the threshold θ. Since we increase global we must verify that invariant 3 is maintained after the

execution of line 12. This is indeed true by invariant 2. [2 ⇒ 3]

The next candidate document must be pointed to by some producer . Therefore, at lines 13–14,

if all the producers are ahead of global we increase global to the smallest producer . The validity of

invariant 3 follows from invariant 4. [4 ⇒ 3]

The next candidate document is the one with the smallest DID ≥ global that exists in some

pruned list. In order to discover it, we advance all the producers that are behind global in their

pruned list to their first document with DID ≥ global (lines 16–19). Notice that we can stop if we

discover a pruned list that contains global . [3 ⇒ 4]

By line 20, either some producer points to global , or we have advanced all the producers past

global . In the latter case (lines 20–21) we increase global to the smallest of the producers. [4 ⇒ 3]

At lines 22–23 we check whether we have traversed all the documents and in that case the

sampling is finished. Otherwise global points to the next candidate document. Notice that if the

DID of that document is ≤ curDoc, then the document has been considered in the past (invariant 1)

so we can advance one of the checkers past curDoc (lines 27–31). (Actually global cannot be strictly

smaller than curDoc.) [1 ⇒ 2]

Otherwise we have a candidate new document. The next step (line 33) is to check whether we

have discovered enough terms contained in the document, that is, we check whether the sum of

the weights of terms whose checkers point to global exceeds the threshold θ. If this is the case,

then we consider the new document as a candidate and we set curDoc to its DID [3 ⇒ 1]. Now

the document should be inserted to the sample after applying the rejection scheme described in

Section 4.2.3. Since we want the probability of the document being sampled to be exactly p, we

must compute the probability that at least some pruned list contains the document. Consider all the

terms S that have producers (and associated pruned lists). Assume that the document appears in the

posting lists of r such terms. Then for each of those, the probability to appear to the corresponding

pruned list is p, therefore the probability to appear in some pruned list equals 1−(1−p)r. Hence we

must normalize and accept the document with probability p/(1− (1−p)r) (lines 39–40). Previously,

at lines 37–38, we advance the checkers of all terms in S in order to compute r. [1 ⇒ 2]

In the case that the sum of the weights of terms whose checkers point to global is less than θ

(i.e., in the case that the if clause of line 33 evaluates to false) we chose one of the terms whose
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checker is behind global (and therefore contributed to the upper bound at line 12) and we advance

the corresponding checker to the first smallest DID ≥ global . [1 ⇒ 2]

When the execution of the algorithm is over, invariant 1 proves that every document in C gets at

some point to be considered as a candidate. At line 39, the set D contains exactly those terms that

exist in set S and are contained in document global . This follows from the definition of the set D

and from invariant 2, combined with the foreach loop at line 37. (If a posting list contains the

document global then its checker cannot be ahead of global , otherwise invariant 2 would have been

violated. It is therefore behind, and the foreach loop makes sure that the checker will point exactly

to global .) Therefore we count all the terms in S that exist in document global , hence (because of

the normalization) the document becomes accepted with probability exactly p.

4.4 An Alternative Sampling Scheme

In this section we present a different way for adjusting the sampling probability. As we will see,

this technique is faster theoretically, but in practice it may not be as efficient, as it may require

traversing a term’s posting list more than once.

Here is the main idea. For concreteness, we present the algorithm for sampling a WAND query,

although the same method can be applied for a general query (where the set S will include all the

query terms that appear in the query and are not negated, as in Section 4.2.2). Recall that Ni is the

number of documents in the posting list of the ith term. We let N =
∑

i∈S Ni. By Equation (4.5),

whenever we sample with probability p, the expected running time is bounded by O(tpN). In this

scheme we sample initially with some small probability p0 = 1/N . Then the expected time needed

to scan all the lists is O(t). If we sample at least k documents, then we stop and we have a uniform

sample (like previously, if we end with more than k documents then we further select a sample

of exactly k documents, by sampling from the final set without replacement). Otherwise, we set

p1 = 2p0, and repeat. In general, if in the ith step the buffer did not become full, then we increase

the sampling probability pi+1 = 2pi (so pi = 2i/N), and we restart. Let ` = log2
kN
m . We are

expected to finish when pi ' p` = k/m, so we expect the total time to be about

O

(

t

(

∑̀

i=0

piN

))

= O

(

t

(

1 + 2 + 4 + · · · + k

m
N

))

= O

(

t
k

m
N

)

.

Let us try now to analyze the running time and the performance more rigorously. We prove the

following lemma, which bounds the total number of producer advances.

Lemma 4.4.1. The expected number of producer advances is bounded by 6kN/m.

Proof. We call the traversing of the posting list with probability pi round i. Notice that for the ith

round, the total number of producer advances is stochastically dominated by a binomial random

variable, Binomial(N, pi). Let the number of producer advances at round i be Xi (Xi equals 0 if

the algorithm stopped before round i) and the total number of producer advances be X =
∑∞

i=0Xi.
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We then have

E[X ] =

`+1
∑

i=0

E[Xi] +

∞
∑

i=`+2

E[Xi] ≤
`+1
∑

i=0

E[Binomial(N, pi)] +

∞
∑

i=`+2

E[Xi].

We denote by Ai the event that “the algorithm has not terminated up to (and including) round i.”

First notice that conditioning on Ai−1 we have Xi = 0. Also, event Ai implies that at round i

there were fewer than k documents sampled. Since at level i the number of documents that become

sampled is distributed as Binomial(m, pi), the expected number of sampled documents is m2i/N ,

and for i ≥ `+ 1 we get by a Chernoff bound

Pr(Ai) = Pr(Binomial(m, 2i/N) < k)

= Pr

(

Binomial(m, 2i/N) <
k

m2i/N
m2i/N

)

≤ e
− 1

2
m2i

N

“

1− k

m2i/N

”2

≤ e−
1
8

m2i

N .

From the previous calculation and from the fact that conditional on event Ai−1 the random

variable Xi is stochastically dominated by a Binomial(N, pi), we get for i ≥ `+ 2

E[Xi] = E[Xi | Ai−1] ·Pr(Ai−1) + E[Xi | Ai−1] ·Pr(Ai−1)

≤ N
2i

N
e−

1
8

m2i−1

N + 0,

and so

E[X ] ≤
`+1
∑

i=0

2i +

∞
∑

i=`+2

2ie−
1
8

1
N m2i−1

≤ 2`+2 + 2`
∞
∑

i=`+2

2i−`e−
1
8

1
N m2i−1

=
4kN

m
+
kN

m

∞
∑

j=2

2je−
1
8

1
N m2`+j−1

=
4kN

m
+
kN

m

∞
∑

j=2

2je−
1
16 k2j

≤ 6kN

m
,

for k ≥ 6.

Since, as we argued right before Equation (4.5), the number of advances that each checker

performs is bounded by the total number of producer advances, and by making use of Lemma 4.4.1,

we have proven the following theorem.

Theorem 4.4.1. The expected running time of the algorithm is O(tkN/m).
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Let us compare now the running time of this scheme with the one of the first algorithm. According

to Equation (4.6) the expected running time of the first algorithm under independence assumptions

is approximately

O

(

tk ln(m/k)
∑

i∈S

1

ρi

)

.

Recall from the discussion after Equation (4.6) that ρi ≈ m/Ni, therefore the expected running time

is approximately

O

(

tk ln
(m

k

) N

m

)

.

Therefore, we can see that the first scheme is slower by a logarithmic factor than the second scheme.

More importantly, Theorem 4.4.1 holds without the independence assumptions that are introduced

in the analysis of the first scheme. Nevertheless, as we mentioned previously, we expect the second

scheme to be less efficient in practice, since it requires accessing the terms’ posting lists several times.

Now we show that the second algorithm also provides an (ε, δ)-approximation scheme to the

number of documents that match the query.

Theorem 4.4.2. There are constants c1, c2 such that for any positive ε < 1 and δ < 1, the algorithm

above with a requested sample size k = c1

ε2 ln c2

δ is an (ε, δ)-approximation scheme, that is, if at the

end of the algorithm the size of the sample is K and the final sampling probability is p∗ we have:

Pr

(∣

∣

∣

∣

K

p∗
−m

∣

∣

∣

∣

≤ εm

)

≥ 1 − δ.

Proof. The main idea is to show that the algorithm will not terminate in the first rounds (up to

round `−1), while if it terminates later it provides a good approximation to the number of documents

matching the query.

Let Bi be the event that “the algorithm terminated at round i,” and Ci the event that “the

algorithm terminated at round i and failed to provide an estimation within ε to m.” Finally, let B
be the event that “the algorithm failed.” Then we have

Pr(B) ≤
`−1
∑

i=0

Pr(Bi) +

∞
∑

i=`

Pr(Ci).

In order to bound Pr(Bi), we notice that the number of matches at the ith round is a random

variable distributed as a Binomial(m, 2i/N). Therefore,

Pr(Bi) ≤ Pr(Binomial(m, 2i/N) ≥ k)

≤ Pr

(

Binomial(m, 2i/N) ≥ k

2im/N

2im

N

)

≤ e−
1
3

2im
N ( kN

2im
−1)2

.

Notice that if f(i) = e−
1
3

2im
N ( kN

2im
−1)2

, then for i ≤ `−1 and k ≥ 2 we have f(i)/f(i−1) ≥ e7k/12 > 2.

Therefore,
`−1
∑

i=0

Pr(Bi) < 2 ·Pr(B`−1) ≤ 2e−
k
6 .
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Also,

Pr(Ci) ≤ Pr

(∣

∣

∣

∣

Binomial(m, 2i/N)

2i/N
−m

∣

∣

∣

∣

> εm

)

= Pr

(∣

∣

∣

∣

Binomial(m, 2i/N) − 2im

N

∣

∣

∣

∣

> ε
2im

N

)

≤ 2e−
1
3

2im
N ε2 .

So,

∞
∑

i=`

Pr(Ci) ≤ 2 ·
∞
∑

j=0

e−
1
3

2`+jm
N ε2

≤ 2 ·
∞
∑

j=0

e−
1
3 2jkε2

≤ 3e−
1
3kε2 .

Putting everything together, we get

Pr(B) ≤ 2e−
k
6 + 3e−

1
3kε2 ,

which for

k =
6

ε2
ln

3

δ

is less than δ.

4.5 Experiments

We implemented the sampling mechanism for the WAND operator and performed a series of ex-

periments to test the efficiency of the approach as well as the accuracy of the results. We used the

JURU search engine developed by IBM [24].

The data consisted of a set of 1.8 million Web pages, consisting of a total of 1.1 billion words (18

million total distinct words). Each document was classified according to its content to several cate-

gories. The taxonomy of the categories, as well as the classification of the documents to categories,

were performed by IBM’s Eureka classifier described in [1]. We used a total of 3000 categories, and

each document belonged to zero, one, or more categories. Eureka’s taxonomy contains additionally

a number of broader super-categories that form a hierarchical structure. Although we did not make

use of this structure in our experimental evaluation, we argue later in this section that it can be

used to provide more meaningful results for the category-suggestion problem.

In order to estimate the gain in run-time efficiency, we count the number of times a pointer is

advanced (via next, jump, or sample-next) over the terms’ posting lists. As we argued previously,

the total running time depends heavily on the number of those advances, since the posting lists are

usually stored on secondary storage and accessing them is the main bottleneck in the query response

time.
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# Query

Q1 Schumacher and (Joel or Michael)
Q2 Olympic and (Airline or Games or Gods)
Q3 Turkey and Customs
Q4 Long and Island and Tea
Q5 Schwarzenegger and (California or Terminator)
Q6 Taxi and Driver
Q7 Dylan and (Musician or Poet)
Q8 Football and (Lazio or Patriots)
Q9 Indian and (America or Asia)

Table 4.1: The queries that we inserted to the sampling algorithm.

We experimented by creating nine ambiguous queries depicted in Table 4.1 chosen to produce

results in many different categories. For each query we created different samples of sizes k = 50,

200, and 1000. In all the experiments the resampling probability equals α = 3/4 and the buffer

size is B = 2k. In Table 4.2 we compare the number of pointer advances for different sample sizes

and in Figure 4.4 we plot a summary of those results. Notice that even though the total number

of matching documents is small (in the order of several thousands, while the motivation for our

techniques is for applying them to queries with result sizes in the millions) we show a significant

gain for small sample sizes. In order to further establish this point we performed additional queries

using artificially created documents built from random sequences of numbers, such that the result

sets would be larger. We present the results in Table 4.3.

Query Matches No Sampling 50 200 1000

Q1 587 3275 2627 4297 4561
Q2 5109 31121 4323 12716 31231
Q3 3111 33849 13841 24192 35461
Q4 1111 28604 12120 28547 40151
Q5 407 2497 1532 3278 3314
Q6 1028 6491 3783 6401 7475
Q7 356 3678 3173 4967 4967
Q8 566 8796 5060 8699 9123
Q9 15721 96997 6437 19423 55248

Table 4.2: Number of pointer advances for the nine queries. The second column contains the total
number of pages matching each query. The rest of the columns contain the number of pointer
advances performed without sampling, and for samples of 50, 200, and 1000 pages.

From the two tables it is clear that sampling is justified if the sampling size k is at least 2 orders

of magnitude smaller than the actual result size m. In this case the total time can be reduced by a

factor of 10, 100, or even more, depending on the ratio k/m, as well as on the query type. On the

other hand, if k is comparable to m, the overhead of the sampling (due to more than one pointer

for each term) might even increase the total time.
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Query Matches No Sampling 10 100

T1 and T2 13011 104087 977 7161
T3 or T4 57046 120102 566 4392
T3 or T4 or T5 62890 134874 715 5351

Table 4.3: Comparison of pointer advances for queries performed on artificially created documents
with samples of sizes 10 and 100.
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Figure 4.4: A log− log plot of the pointer advances as a function of the ratio k/m. Summary of the
data of Tables 4.2 and 4.3.

4.5.1 Estimating the Most Frequent Categories of the Search Results

We also evaluated the suitability of our approach for a particular application, namely the discovery

of the most frequent categories spanned by the set of documents matched by a given query. We

emphasize that we are not testing the uniformity of the samples: our samples are provably uniform;

what we test here is whether uniform samples capture popular categories, something which of course

depends on the distribution of categories over the result set. To this end, we consider the same queries

of Table 4.2. Each of these query results induces a set of categories from the Eureka taxonomy. In

order to determine whether the sampling succeeds in discovering the most frequent categories, we

measured, for each sample size, how many of the 10 most frequent categories in the full result set

are present in the sample; we show the results in Table 4.3(a) and a summary in Figure 4.5(a).

Furthermore, it is desirable for the frequent categories in the full result set to be also frequent in

the sample so that we can identify them. For that, for each query, we check how many of the top-10

frequent categories in the result set are present within the top-10 frequent categories according to

the sample, and we show the results in Table 4.3(b) and in Figure 4.5(b).
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There are some facts worth noticing with respect to the results of sampling, some of which are not

revealed in the tables. First observe that in most cases, even small sample sizes succeed in sampling

documents from the frequent categories (Table 4.3(a)) but a somehow larger sample size is needed

in order to ensure that the frequent categories are frequent in the sample as well (Table 4.3(b)). It

also seems that a sample of size 1000 is always successful in our examples, but this is somewhat

misleading since in some of the examples the total number of documents is small, and therefore the

sampling extracts all the original categories.

(a) Number of the top-10 frequent
categories that appear in the sam-
ples.

Query 50 200 1000

Q1 10 10 10
Q2 7 10 10
Q3 7 10 10
Q4 4 8 10
Q5 5 10 10
Q6 7 9 10
Q7 7 10 10
Q8 8 10 10
Q9 2 9 10

(b) Number of the top-10 frequent
categories that appear in the 10
most frequent sample categories.

Query 50 200 1000

Q1 7 8 10
Q2 6 5 8
Q3 4 6 9
Q4 3 6 10
Q5 3 7 10
Q6 3 4 10
Q7 5 10 10
Q8 7 8 10
Q9 0 3 7

Table 4.4: Results from experiments on discovering popular categories using a random sample.

A final important remark, explains the poor performance in most of the cases of Table 4.3(b),

compared with Table 4.3(a). Let us focus, for concreteness, on Q9 (corresponding to the query

“Indian and (America or Asia)”). The total number of matching documents is 15721, and the

sample of size 50 fails completely to identify the frequent categories, while the sample of size 200

also fails to spot out the most frequent categories in Table 4.3(b) (although, notice in Table 4.3(a)

that it does manage to sample some documents related to 9 out of the 10 frequent categories).

This is due to the Eureka categorization: the 3000 categories used to tag the documents are very

fine, resulting in documents matching very specific categories. For query Q9, the 15721 matching

documents were found to be related to 1935 categories, from which we tried to extract the top

10. Each of these categories contains a rather small number of documents: the most frequent one

contains 125 documents, the 10th most frequent contains 54; the accumulated mass in the top 10

categories (sum of the number of documents contained within the top 10 categories) is 753, while

the total mass is 9404. Therefore, each of the 50 sampled documents, has less than 10% chance

to be a document contained within the top-10 categories, and negligible probability (0.57%) to be

contained within the top 10th category.

The solution to this categorization artifact is straightforward: after obtaining the samples, we

must aggregate the categories to coarser super-categories according to the taxonomy (e.g., the cat-

egories Lions, Cheetahs and Monkeys can be aggregated to Mammals, or Animals). Then the final

result is a sample of a smaller number of categories each with a large mass, in which case even a
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(a) Number of the top-10 frequent categories that appear
in the samples.
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(b) Number of the top-10 frequent categories that appear
in the 10 most frequent sample categories.

Figure 4.5: Results from experiments on discovering popular categories using a random sample.

small sample size can efficiently discover the popular super-categories and present them to the user.

Since the emphasis of our work lies mainly on the method for sampling, we have not pursued this

line of research any further.

4.5.2 Estimating the Size of the Result Set

Finally we evaluate the quality of the estimator for the size of the result set. Table 4.5 shows the

estimates and the relative errors. We mention again that many commercial Web search engines

fail to provide an accurate estimation of the number of results. In contrast, notice that for even

the smallest sampling size the error never exceeds 15%, and usually it is negligible for a sample size

greater than 200. Here, however, the fact that the result sets are rather small plays to our advantage:

our samples are relatively large, occasionally larger than the result set. Further research is needed

to elucidate the case of very large result sets and to compare against the current performance of

commercial search engines.

Match 50 200 1000
Query

Count Est. Err. Est. Err. Est. Err.

Q1 587 562 4.3 597 1.7 587 0
Q2 5109 5388 5.5 5088 0.4 5050 1.1
Q3 3111 2652 14.8 3376 8.5 3150 1.3
Q4 1111 1119 0.7 1150 3.5 1111 0
Q5 407 433 6.4 395 2.9 407 0
Q6 1028 1172 14.0 989 3.8 1028 0
Q7 356 316 11.2 356 0 356 0
Q8 566 545 3.7 596 5.3 566 0
Q9 15721 17028 8.3 15448 1.7 15902 1.2

Table 4.5: Evaluation of the estimates for the sizes of the query results. The table shows the actual
value, and for each sampling size the estimate and the percentage of the error.
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