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What is the object in this picture? What would this object look like in a different scene?These

questions are the core of computer vision (image analysis) and computer graphics (image synthesis).

They are traditionally approached through specific problems like matting and composition, image

segmentation, capture of high-speed video, depth-from-defocus, and visualization of multi-spectral

video. For the solutions to these problems, both the inputs and outputs are frequently images.

However, they are not the same kind of images as photographs, but a more general form of 2D maps

over the surface of an object, lens, or display. For example, an image describing reflectivity over a

surface is known as a texture map, an image composed of subimages with varying optical center is

a light field slab, and an image describing the partial coverage of a backdrop by an object is a matte.

This dissertation introducesmulti-parameter video, a framework for describing generalized 2D

images over time that contain multiple samples at each pixel. Part of this framework is diagram-

ing system calledoptical splitting treesfor describing single-axis, multi-parameter, lens (SAMPL)

camera systems that can be used to capture multi-parameter video. My thesis is that a SAMPL is

a generic framework for graphics and vision data capture; that multi-parameter video can be accu-

rately and efficiently captured by it; and that algorithms using this video as input can solve interest-

ing graphics and vision problems. In defense of this thesis I demonstrate physical SAMPL camera

hardware, many registered multi-parameter video streams captured with this system, and a series

of problems solved using these videos. The leading problem I solve is the previously open unas-

sisted video matting/subpixel object segmentation problem for complex, dynamic, and unknown

backgrounds. To show generality I also demonstrate high speed video capture, multi-modal video

fusion, multi-focus video fusion, and high dynamic range video capture.
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Chapter 1

Introduction

This thesis in particular describes a new way of thinking about images of real scenes, and of render-

ing virtual scenes without meshes. A multi-parameter video allows us to capture and convey more

visual information than traditional photograph or video conveys to the naked eye. Multi-parameter

video streams can help capture and visualize hard-to-observe phenomena from the real world. These

include fast-moving objects, details concealed in the shadows of a bright scene, surfaces with hyper-

spectral reflectance patterns, camouflaged targets. The applications and motivation for visualizing

each of these are clear. Multi-parameter videos also help visualize worlds that never existed: the

results are special effects for films.

A video is parameterized on the camera settings chosen at the time of capture, encoding a lim-

ited information about the incident light field. If a camera can capture more information at each

pixel, applications can later edit the video to communicate that information to a viewer (visualiza-

tion), alter its appearance to meet an artistic goal while maintaining photorealism (visual effects), or

synthesize a plausible new image from a virtual camera with a novel parameter set (virtualization).

This thesis addresses all three.

There is a large body of literature describing systems for virtualizing a single parameter of an

imaging system. Byvirtualizing I mean synthesizing new images corresponding to a virtual camera

given different actual images from a set of real cameras. Virtual cameras are one of the places

where computer graphics and computer vision meet, since the analysis of the real images is a vision

problem and the synthesis of a new image is computer graphics. Examples of such work include the

1
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high dynamic range work that virtualizes exposure, image based rendering and lightfield rendering

that virtualize the optical center, high speed videography that virtualizes temporal sampling, and

super resolution that virtualizes spatial sampling.

This thesis generalizes previous work by introducing multi-parameter video. It proposes a new

video capture system that virtualizes aspects of the imager less explored in computer graphics, like

the lens parameters, and allows multiple parameters to besimultaneouslyvirtualized. This allows,

for example, capture of video that is simultaneously multi-modalandhigh speed.

This thesis develops algorithms to solve problems in computer graphics using the new capture

system. Although in most cases these are motivated by, and have direct applications in visual

effects for film production, they also have applications in medical and scientific imaging, military,

and remote sensing. Take for example the matting problem of separating subject from background.

It is similar to the processes of separating a tumor from background in an X-ray and separating a

target from background for identification in reconnaissance video.

1.1 Multi-parameter Video

A continuous 2D monochrome image is a real-valued function that measures incident light intensity

at an imager. Video introduces a time dimension, giving a functionI(x,y, t).

Before capturing conventional monochrome video, the camera operator first chooses a single

set of tunableparameterslike focal length and imager position. During capture, sensor produces a

stream that samplesI(·) with high resolution. This is video with a single intensity value per pixel.

In other words, each pixel contains a sample from asingleset of imaging system parameters, e.g.

the camera’s focus depth. These parameters are “baked in” to the video. An application cannot later

change a parameter like focus depth without recapturing the video. Because the entire parameter

set of the camera is fixed (except for space and time) at a single set of values, I call traditional

videosingle-parameter video. The actual video is discretely sampled, I switch to bracket notation:

I [x,y, t]. Figure 1.1a shows a frame of single-parameter video.

Introducing color is the first step towards sampling across not only space and time but across the

parameter space of the imaging system. Spectral response is one parameter of an imaging system,
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and a color video sensor coarsely samples across the space of potential spectral responses. A pixel in

I [x,y, t,λ ] contains multiple intensity values per pixel, corresponding to different spectral response

parameters. I call the captured stream amulti-parameter video(color video is the simplest multi-

parameter stream; I’ll discuss more sophisticated streams in a moment.) Figure 1.1b shows the

addition of color as another axis in parameter space.

Multi-parameter video allows an application to retroactively choose some of the imaging pa-

rameters. In the familiar case of three wavelength per pixel, an application can edit the spectral

response by interpolating between channels or filtering across the color dimension. Because the

human visual system can interpret three wavelength samples,I [...,λ ] does not strike us as an extra-

ordinarily rich data stream or in need of visualization. However, consider the case where the camera

samples more than three wavelengths, capturing more information about the incident light field and

thereby providing more editing capability. Multispectral video quickly eclipses the capabilities of

the human visual system, impressing us that it has moved spectral response from capture-time to

edit-time. The key concept in adding a coarsely sampled dimension forλ is that itvirtualizesthe

spectral response of the camera. That is, an application can now produce images with a virtual filter

at edit time by interpolating between the real samples.

The camera can virtualize other parameters. For example, a high dynamic range (HDR) image

virtualizes the exposure time, capturing a richer data set than a single-exposure image. It is a

multi-parameter image; just as a color image contains multiple wavelength samples per pixel, an

HDR image contains multiple exposure samples per pixel. Unlike a three-wavelength color image,

however, it cannot be directly viewed in a meaningful way by a human observer. To create a directly

viewable image, an application can simulate a virtual exposure or tone map the HDR data for a

visualization that conveys more information than a single realistic photograph. Figure 1.1c shows

a high dynamic range multi-parameter image created by. The cathedral image shown is in fact a

common test case from the HDR literature. I didn’t invent HDR or capture this particular image;

my goal is to generalize our notion of images with varying parameters.

There is no reason to limit the virtualization to only one or two parameters of video. This thesis
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Figure 1.1: Comparison visualization of one- and two-camera parameter sampling spaces.
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describes an imaging system called themulti-parameter lens camerathat can be configured to vir-

tualize focal length, lens-imager separation (i.e., “focus”), polarization response, spectral response,

aperture radius, exposure time, center of projection, and spatial and temporal sampling. The pixels

recorded by this system are truly multi-parameter and contain many samples that must be processed

for meaningful viewing.

Figure 1.1d shows images that vary the distance between the imager and the aperture, creating

varying amounts of defocus. Such multi-focus images are popular in computer vision literature.

This thesis describes explorations into part of the useful configuration space for the multi-

parameter camera by developing new algorithms that take advantage of the rich data in multi-

parameter video. Although the capture systemcan vary the center of projection (e.g., to provide

stereo or light field sampling), for these algorithms I choose to hold the center of projection fixed,

creatingsingle-center, multi-parameter video. I chose to do so for three reasons.

The first is straightforward; I needed to explore how effective pure single-center video can be

before expanding to multi-center. Second, changing the center of projection increases the signifi-

cance of viewer-dependent effects and introduces parallax occlusion. In practice the camera I built

is limited to 24 samples per pixel (up to three colors× eight video sensors), and in many cases

the added information from multi-center images would be offset by the loss of data to parallax.

However, I do identify situations in which multi-center video could could likely improve the results

given a higher sensor count, and am applying the multi-sensor camera to other projects that can take

advantage of its multi-center capabilities [53].

Third, the single-center system can be built compactly. Compared to a light field camera, a

single-center camera has a significantly smaller footprint along two dimensions. If one forgoes the

ability to change lens parameters, it is possible to split the view behind the objective and build

a single-center camera of the same volume as a consumer video camera (e.g., 0.001 m3). My

camera that does support lens parameters is larger, with an optical path and components folded into

a volume of about 0.025 m3. However, in the near future it will likely be possible to build the same

system with a much smaller footprint using either a nano-technology array of light-slowing spikes

and microlenses or a holographic aperture.
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1.2 Reader’s Guide

This thesis spans a framework, a system, data, theory, and applications. The chapters are organized

to build from first principles of the physics governing optics (at least, those relevant to the later

discussion) up to the specific applications of interest to the film industry. However, the chapters

are structured so that readers with a particular interest can begin directly with that area and only

skim the other chapters to pick up cross references and notation. Each chapter also begins with

an introduction accessible to the casual scientific reader. These introductions bring out the salient

contributions of each chapter.

1.2.1 Framework

The multi-parameter framework described in chapters 2, 3, 4, and 6 builds heavily on previous work.

These chapters include derivations that I have not previously seen expressed in a coherent end-to-

end manner from light physics to capture devices, but the framework introduces no significant new

mathematics and all equations will be familiar to readers acquainted with the previous work. The

novel contributions of the multi-parameter framework are instead an idea:different single-purpose

capture devices all seek a common goal of increased sampling precision; and two notation systems,

one graphical and one symbolic, for compactly expressing the interesting ways that the precision

is distributed among sampling parameters. This generalizes previous work in image capture and

shows for the first time a way of directly comparing diverse capture systems like high dynamic

range and high speed imaging systems.

Related work for the framework is referenced as the framework is presented. Related work for

the system and applications is reviewed in chapter 5, after presentation of the framework. This

allows the use of terminology and optical models introduced in the earlier chapters.

1.2.2 System

The hardware systems I developed for video capture is described in chapter 7.This include the

crucial calibration processes and registration software. Appendices give relevant source code and
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system diagrams, and most of the source code is available in electronic form on the Brown Univer-

sity web site. The data sets are too large to serve directly over today’s internet but are available on

request from Mitsubishi Electric Research Laboratory and Brown University.

1.2.3 Applications

The most detailed application of the SAMPL camera and multi-parameter theory is the centerpiece

defocus video mattingalgorithm, which appears in chapter 8. This chapter describes new solution

to the classic hard problem of matting. There was previously no solution for this problem that

could handle unconstrained scenes without user assistance. I recommend reviewing the notation in

chapter 4 and the matting related work in chapter 5 before beginning the matting chapter.

Chapter 9 demonstrates applications that span the breadth of the SAMPL camera’s capabilities.

It shows that the SAMPL camera can achieve high-quality results for different applications. The

graphical notation for Optical Splitting Trees introduced in chapter 6 is used heavily in describing

the algorithms.



Chapter 2

Models of Light

This chapter reviews physical properties of light, basic electromagnetic phenomena, and defines

the terminology used to describe light. Readers concerned only with data capture and matting

applications can skip this chapter.

Future chapters use a simplified ray model of light common in computer graphics. But before

moving to that simple model it is important to first understand some of the complexity of electro-

magnetic phenomena. This guides intuition and makes clear where the simplified model is applica-

ble. Because the small apertures used in this thesis approach the size where the ray model breaks

down due to diffraction, and because sources of error like wavelength-specific variance and abber-

ation cannot be expressed in the simple ray model, it is also critical to revisit physics to correctly

evaluate potential sources of physical sampling error.

2.1 EM Waves

Light is an informal term for an electromagnetic (EM) wave with wavelength in the hundreds of

nanometers, near the portion of the spectrum to which the human eye is sensitive. EM waves with

longer wavelengths are classified as Microwaves and Radio. EM waves with shorter-than-visible

wavelengths are classified as X-rays and Gamma rays.

An electromagnetic wave comprises an electric fieldE(x, t) and a magnetic fieldB(x, t) that

vary sinusoidally in time (hence the “wave” designation) and are in phase with one another1. The

1Sans serifB andE are used exclusively in this chapter; in this chapter only, serifE represents energy in Joules. In

8
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fields are vector quantities perpendicular to each other (E(x, t) ·B(x, t) = 0) and to the direction

of propagation of the wave. The magnitude of the electric field is measured in units of Newtons

per Coulomb or, equivalently, volts per meter, since it is defined as the negative spatial gradient of

voltage (1 N / C = V / m = 1 kg m s−3 A−1). The magnitude of the magnetic field is measured in

Teslas (1 T = 1 kg s−2 A−1). Note that, expanded into their SI base units, Teslas and Newtons per

Coulomb differ by a factor of velocity units, m / s.

A wave frontis the locus of points in space for which the magnetic fields and the electric fields

all have the same phase. When visualized, wave fronts are typically rendered as a few subsequent

crests of the electric field.

In the free space of vacuum, the wave fronts propagate2 at the speed of light,c = 299,792,458

m/s≈ 3×108 m/s. The speed of propagation is slower inside materials and can even become zero

in some exceptional materials [7]. Slowing down light creates refraction, enabling the creation of

lenses, and can be used to selectively shorten an optical path as proposed in the introduction. The

magnitude and direction of propagation of energy flow due to a light wave is measured with the

Poynting vector,

S =
1
µ0

E×B, (2.1)

whereµ0 = 4π ×10−7kg m s−1 A−2 is thepermeability of free space. The units on the Poynting

vector are kg s−4.

The sinusoidally varying magnitudes of the electric and magnetic fields are related by|E(x, t)|=
c|B(x, t)| (the units check since the field units were related by velocity units).

Figure 2.1 shows the vector fields for alinearly polarizedEM wave. The entire pattern moves

through space at the speed of light.

The axis along whichE is directed at pointx is called thepolarization axisof the wave atx

(ignore the 180-degree reflection that occurs on the negative portion of the wave). The single wave

shown in figure 2.1 islinearly polarized, that is, the axis ofE is invariant in space and time. For

polarization axisy, electric field with maximum magnitudeEmax has the form:

the remainder of the thesis,~E is an error vector andB is an image.
2However, it is possible to create a standing EM wave by placing a perfect reflector (ideal conductor) perpendicular to
the direction of travel of a linearly polarized wave. The situation is analogous to fixing the end of a vibrating string.
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Figure 2.1: Electric and magnetic vector fields in a linearly polarized EM wave.

E(x, t) = Emaxsin(ft +y·x)y. (2.2)

Now consider a scenario in which the fields of two in-phase linearly polarized EM waves of

the same frequency superimpose. Let the polarization axes of the waves differ by angleθ . The net

electric field is linearly polarized with peak magnitudecos(θ)|E1||E2|. If the waves are instead out

of phase byφ , the net electric field iselliptically polarized. In this case, the polarization axis at

the wave front traces a flattened helix (spring shape) as it moves through space. When the phase

difference isφ = λ/4, the net wave iscircularly polarizedandE traces a perfect helix.

2.2 Photons

All types of EM waves are created by accelerating electrical charges. In the cases considered here,

the charged particle that accelerates is an electron and it accelerates because it is either dropping

from a higher energy orbital to a lower energy one or is accelerating under an electric field. Energy

levels and electrons are discrete, so EM waves have a quantum nature– they can exist only at spe-

cific (albeit many) wavelengths and are produced in quantized packets. These packets are modeled

asphotonparticles, which allows particle physics to model the interaction of light with surfaces.

Although this model breaks down in some cases (e.g., diffraction grating) where the wave model is

more accurate, it accurately describes situations where surfaces have features much larger than the

wavelength of the EM waves considered.



11

When an electron drops from energy levelE2 to levelE1 (measured in Joules, 1 J = 1 N m = 1

kg m2 s−2), a photon is released with frequency

f = (E2−E1)/h, (2.3)

whereh = 6.626×10−34 J·s is Plank’s constant. The equivalent wavelength is

λ = c/f. (2.4)

Because all energy lost when the electron dropped was converted into the photon, the photon’s

energy is

E = fh =
hc
λ

. (2.5)

There are several potential energy levels in each atom for an electron to begin and end the drop

at. A material composed of a single element can therefore emit photons at many discrete wave-

lengths. The proportion of each wavelength present depends on the average temperature.Black-

body radiationdescribes the expected distribution based on the temperature of an assumed hetero-

geneous material colored black so that reflected illumination and self-absorption can be ignored.

The visible spectrum ranges from about 400 to 700×10−9 m. The average wavelength is 550

×10−9 m, and by equation 2.5, each photon at that wavelength carries energy

Evisible ≈ hc
λ

∣∣
λ=550nm

≈ 3×108m s−1 ·6.6×10−34J s
550×10−9m

≈ 3.61×10−19J. (2.6)

Within the visible spectrum, “white” light has approximately uniform energy with respect to

wavelength. This means that there are more “red” photons than “blue” photons in white light be-

cause the red photons each have less energy. This physics argument leads to a valuable high-level

observation: one can expect slightly higher variance in a camera’s blue pixels than green, and higher

in green than in red.
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It is happenstance that uniform energy appears white to the human visual system. The Sun’s

energy is shifted towards the red end of the spectrum, appearing yellow, but indirect sunlight (i.e.,

the sky color) contains energy primarily at the blue end because of Raliegh atmospheric scattering,

so the net illumination on Earth has is uniform energy. This can be observed on a winter day: snow

appears white (yellow + blue) and shadows appear blue. The human visual system evolved under

these illumination conditions, so it is equally sensitive at all wavelengths. Had we evolved on Mars,

where the prevailing illumination is red, the eye would likely be hypersensitive to blue light and

perceive the color we call pink as if it were white.

2.3 Rays

Modeling a single photon is rarely significant in computer graphics. An image is created by millions

of photons striking the image plane. Because photons move so much faster than everyday objects,

it is common to consider only the steady state in which a regular stream of photons is coursing

along a set of paths through the scene. These paths are composed of linear segments, where the

points where segments meet are interactions with surfaces or locations within a medium like fog

that scatters light.

A light ray describes a point on a path and the direction to the next point in a path. The direction

is the Poynting vector. The energy transferred along a ray is constant (in steady state), that is,

there is constant photon flux at every point along the ray. Abundleor pencilof rays pass through

a common vertex, forming a double cone. One particularly interesting vertex is the aperture of a

pinhole camera, which is explored in depth in the next chapter.

2.4 Properties

The source of illumination for a scene can influence the kind of algorithm applied to its image.

Light is classified according to the properties of its rays.

Natural light is the name given to light with a broad a distribution of wavelengths, polarizations,

phases, and directions. It describes the illumination of an everyday scene under sunlight, fluorescent

or incandescent bulbs, etc. Note that “artificial” (i.e., man-made) sources produce natural light under
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this definition. Natural light is challenging to work with in computer vision because nothing can

be assumed about the lighting environment. The new algorithms in this thesis work with natural

light, which allows them to work on the most general scenes. Polarization issues arise only in the

context of sources of error. In describing related work I refer to other kinds of light. These are used

to actively illuminate a scene in order to make the specific problem at hand easier.

Structured illuminationhas a broad distribution of polarizations and phases but carries a pattern

in wavelengths and the rays are all within a pencil. Projectors produce structured illumination; the

wavelengths are described by the colors in the projected image and the apex of the pencil is the light

source.

All of the rays incollimated lightare parallel. Direct sunlight is collimated because the source

is extremely far from the Earth. Semiconductor laser light is the most common man-made source

of collimated light. Incoherent light, all rays are in phase and at the same wavelength. This is also

true of laser light, and is an important property in the creation of holograms.
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Figure 2.2: Daylight Spectrum and Human and CCD Spectral Responses



Chapter 3

Optical Image Formation

This chapter establishes basic camera notation and rephrases prior work so that new ideas can be

expressed. It describes the interaction of light with an imaging system comprising a lens, aperture,

and imager described byparameterslike focal length and aperture radius. Most of the equations

have been re-derived and motivated differently than in previous texts in order to address the agenda

of multi-parameter videography and to present a consistent notation system across the optical model.

The two-plane image and gradient models near the end of the chapter are especially popular topics

in graphics and vision today; the derivation discussion here is intended to be intuitive and well

motivated compared to the more in-depth work previously published.

The models presented in this chapter are the theoretical underpinning that allows the reasoning

about elements of a 3D scene given multiple images with different parameters which appears in

later chapters. These models were also used to synthesize images for experiments, which allowed

exploration of both camera and algorithm design space before commitment to the design for a

physical incarnation.

The equations used in this chapter are referenced throughout the thesis. Although many peo-

ple have used cameras, fewer people are aware of how the parts of a camera control the image

formed. The geometry behind the following facts is shown in this chapter and implicitly relied upon

throughout the remainder of the thesis:

• Projected images are everywhere–but are too defocussed to recognize.

15
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• An aperture (not a lens!) enables image formation.

• The lens determines the depth of field.

• The distance between aperture and imager determines image scale.

• Exposure time and aperture size determine intensity.

• At the plane of focus, a pinhole and lens image differ only in intensity.

3.1 Forward and Backward Models

Figure 3.1: Schematic of imager-backward and scene-forward optical models.

The previous chapter began with a photon emitted during an electron’s drop to a lower energy

orbital and ended with light waves propagating through space along rays. I resume the discussion

by treating light as a steady-state phenomena of transport rays usingray optics. I develop a number

of relations for describing the interaction of light from a scene with an imaging system. These

relations will progressively abstract the underlying physics until they reachFourier optics, which

models images as incident energy functions on the plane. I extend traditional Fourier optics to

include occlusion and derive compact models of special cases of interest in computer graphics.

These include scenes with distinct foreground and background elements that are to be distinguished

by matting, and the pinhole camera frequently employed for rendering. Throughout I reference

the notation and terminology of different fields including photography, optics, astronomy, computer

vision, image processing, and computer graphics. I relate parameters from the mathematical model

to measurable physical quantities in experiments with real sensors and scenes.
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In computer graphics, image formation is often posed as animager-backward problemfor the

integral of incident radiance over a pixel, where the scene is expressed as a 3D model of polygons

and other primitives. Informally, this model pulls radiance from the scene to a pixel, as depicted

by the black arrows in Figure 3.1. In the figure, the imager is on the right, the lens is in the center,

and the scene is on the left. The imager-backward model follows paths from a pixel on the imager

through the lens into the scene. These paths are shown as solid black arrows. These are the paths

that a classic ray tracer follows. The scene-forward model instead distributes the contribution from

each scene point across all pixels. The distribution paths are shown as red dashed arrows.

The scene-forward model of ray optics is a good framework for the rendering problem because

the radiance at visible points is typically unknown and the same framework that traces rays back-

wards from the imager, through the lens, and to a surface can be further employed to follow the

transport path back through the scene to a light source. In this work I am only concerned with radi-

ance transport from a visible surface to the lens, and not the entire transport path. I therefore treat

all points in the scene as emitters and assume some previous operation (e.g., a global illumination

solver) has computed the appropriate amount of radiance to emit towards the lens. In this situation

solving for the image arising from a scene, using good spatial subdivision, takes only linear time in

the number of pixels.

In computer vision and image processing, image formation is often posed as ascene-forward

problem. In this model, I solve for the radiance contribution to all pixels from a single patch in

the scene. Informally, this model pushes radiance from a patch onto the imager, as depicted by

the red arrows in Figure 3.1. It is convenient to represent the scene as planes of emitting points

parallel to the image plane (for the optical axis-perpendicular imagers in most cameras, these are

planes of constant depth). These planes are modeled as continuous functions over space, time, and

wavelength, that is, videos. By holding time fixed, this becomes an infinite, continuousimage,

which is the primary building block of Fourier optics. The actual picture produced by a digital

camera is a finite, discrete function produced by integrating the image over small patches of time,

space, and wavelength.

When drawing distinctions between forward and backward models of image formation, the
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pinhole camera is interesting because it resides between the models. Under a theoretically ideal

pinhole camera, every visible point maps to exactly one point on the imager. I devote an entire

section to pinhole optics because this property can be usefully exploited for both image synthesis

and analysis.

3.2 Coordinate Systems

The equations of this thesis are expressed primarily inlens space, a right-handed 3D coordinate

system where the optical axis is thenegativez-axis, the origin is the center of the lens (i.e. the

optical center), they-axis increases vertically upwards, and thex-axis is given by their cross product.

Because I work with a multi-sensor camera, there are potentially many lens spaces. However, the

cameras are commonly configured so that their virtual centers of projection are identical.

Lens space is convenient for mathematical models of image formation where the lens remains

fixed at the origin and the image plane moves during focussing. However, in a real scene, the image

plane is usually fixed within the body of the camera and the lens moves. Thus it is common to

measure distances into the scene relative to the image plane and then convert to lens space.

A 3D homogeneous space is used to express projections and linear transformations as4× 4

matrix multiplications. Two helper functions move points between ann-dimensional space (e.g.,

3D lens space) and the corresponding homogeneous space with(n+1) dimensions:

inj(x1,x2, ...,xn) = (x1,x2, ...,xn,1) (3.1)

proj(x1,x2, ...,xn+1) = (x1/xn+1,x2/xn+1, ...,xn/xn+1) (3.2)

Note that proj(inj(p)) = p andwinj(proj(x,y,z,w)) = (x,y,z) for w 6= 0. Injection and matrix

multiplication are linear (and differentiable), while projection is nonlinear with a derivative that

varies withw.

To drop dimensions (parallel projection), multiply by the generalized identity matrix withr rows

andc columns:



19

rIc =




1

1
...




↑
r

↓
← c →

(3.3)

for example,2I3 =


 1 0 0

0 1 0


.

Pixel space(alternatively known as image space, film space, and screen space) is a traditional

2D raster coordinate system with origin at the upper left in which thex-axis increases to the right

and they-axis increases downward (relative to the content of the image– i.e. the ground appears at

largey values and the sky at small values.)

Figure 3.2: Image and lens coordinate frames

The equations for moving points between continuous pixel space(i, j) and 3D lens spaceat the

image planeqz = zI , are:

fromPix(i, j) =
(

WI

[
1
2
− i

Wpix

]
,−HI

[
1
2
− j

Hpix

]
,zI

)
(3.4)

toPix(q) =
(

Wpix

[
1
2
− qx

WI

]
,Hpix

[
1
2

+
qy

HI

])
(3.5)

whereWI andHI are the real-world dimensions and location of the imager.Wpix andHpix are the

pixel dimensions of the imager. The relation is invertible: toPix(fromPix(i, j)) = (i, j).
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Note that the pixel space coordinate system is rotated 180-degrees as mapped by toPix. This

is because computer graphics typically works with positions on thevirtual image, as if the image

plane were in front of the lens. This is intuitive because the points project directly outward onto the

scene with no flip, as if they were an image on a projector. It is occasionally useful to compute the

mapping to the actual sensor pixel position, or in the terminology of optics, a location in thereal

image. Since the aperture flips images both vertically and horizontally, both axes are inverted on the

real image compared to the virtual image. For reference, this mapping to the real image is given by:

toRealPix(p) =
(

Wpix

[
1
2

+
qx

WI

]
,Hpix

[
1
2
− qy

HI

])
(3.6)

The toPix mapping is useful for implementing end-to-end systems. Consider a camera and

monitor placed back to back, with the video feed displayed live on the monitor. In this situation,

toPix gives the screen coordinates that will produce the expected image, as if the monitor were a

window.

By convention, the point at(i, j) in image coordinates is within integer pixel(bic,b jc).
It is useful to express toPix as a matrix product so that it can be chained to the end of a series of

transformations in lens space. Letq = proj(x,y,z,z/zI ). The toPix(q) expression is then the matrix

product

2I3proj(V[qx,qy,qz,qz/zI ]T), (3.7)

whereV is theviewport matrix:

V =




−Wpix

WI
0 Wpix

2zI
0

0 Hpix

HI

Hpix

2zI
0

0 0 1 0

0 0 0 1




(3.8)

The factors that translate the origin to the upper left of the screen are in the third column instead

of the fourth, where one might expect translation terms, because the input was specified in a strange

form withqz/zI in thewcomponent. This form of input is intentionally chosen to match the output of

the projection matrix introduced later in this chapter, which typically precedes the viewport matrix
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in expressions.

# f-number denominator (e.g., 1.4)
α Area of pixel covered by the image of an object
a Radius of the aperture
B Image of a background plane
Dq Depth of focus
Dp Depth of field
d Midfield depthfrom the image plane
f Focal length of the lens
f Frequency of a light wave
F Image of a foreground plane
h Point spread function
I An image; intensity function at the image plane
∇ Gradient operator;( ∂

∂x,
∂
∂y)

p A point in the scene (pz < 0)
P Perspective projection matrix
q Location at whichp is in focus (qz > 0)
r Radius of the circle of confusion
s Width of a pixel= WI/Wpix

∆τe Exposure time (shutter speed)
V Viewport matrix
WI ,HI Real-world dimensions of the imager
Wpix,Hpix Pixel dimensions of the imager
(x,y) or (i, j) Image (pixel) coordinates
zI z-location of the imager/image plane (positive)
za z-location of the aperture(negative)
⊗ Convolution operator

Table 3.1: Symbols used in the lens model.

3.3 Lens Camera Model

I use a common parameterization of the optical system and scene in both image formation models.

Assume an optical system consisting of a single lens, an image plane (containing the CCD array)

and an aperture between them as shown in Figure 3.3. In the figure, the dark black labels refer to

camera parameters. Light orange labels refer to properties of pointp on the orange object at the

upper right. Note that thez-axis increases to theleft, so all points in the scene have negativez and
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Figure 3.3: Ray model of a lens camera.

points behind the lens have positivez. The remainder of this section derives the geometry of the

rays in terms of the camera parameters and location of pointp.

3.3.1 Gaussian Optics

I useGaussian Opticsto approximate refraction at the lens. Gaussian (also known asFirst Order)

Optics is predicated on the assumption that the angleθ between the optical axis and the vector top

is sufficiently small that trigonometric functions can be reasonably approximated by their first order

Taylor terms,cosθ ≈ 1 andsinθ ≈ θ . When the first order assumption is violated, the lens creates

a defocussing effect known asspherical abberationthat would not be present for an aspherical lens.

For full derivations and discussion of the aspherical case, see Hecht’sOpticstext [42].

The locations ofp andq are geometrically related by the lens shape and indices of refraction

for the lens and surrounding medium by:

1
−pz−D/2

+
1

qz−D/2
=

η−ηm

ηm

(
1
R1
− 1

R2

)
+

η
ηm

· D
R1R2

(3.9)

whereη is the index of refraction for the lens,ηm is the index of refraction for the medium,R1 and

R2 are the radii of the spheres defining the front and back surface curves,D is thethicknessof the
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lens (the distance between the lens surfaces along the axis between the sphere centers).

For most imaging lenses,D is negligible compared to the radii of the spheres, i.e. the lens is

thin. Assume that the medium is air (ηair ≈ 1.0) and the lens is thin (the limit asD→ 0). The right

side of the previous equation can then be approximated as the inverse of the focal length:

1
f

= (η−1)
(

1
R1
− 1

R2

)
. (3.10)

This relation is known as theLensmaker’s Formula. Driving the D terms on the left side of

equation 3.9 to zero and combining with the Lensmaker’s Formula gives theGaussian Lens For-

mula:

1
f

=
1
−pz

+
1
qz

(3.11)

which gives relative expressions forp andq:

p =
q f

f −qz
(3.12)

q =
p f

f + pz
(3.13)

The limit of equation 3.13 aspz→ ∞ implies that objects at infinity are in perfect focus when the

image plane is located one focal length behind the lenszI = qz = f .

Often the lens is replaced with a compound lens system to limit chromatic aberration. A com-

pound lens can be modeled as a single lens withpower(1/ f ) equal to the sum of the powers of the

individual lenses:

1
f

= ∑ 1
fi

(3.14)

Light paths from the scene that are incident on the lens at the origin are not bent by refraction

and pass through the lens in a straight line. All other paths are refracted and form the two nappes of

a double cone with vertex atq. If p is unoccluded from all points on the lens, these paths form an
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image that is a uniform disk called thecircle of confusion. Photographers also use the phrase “circle

of confusion,” however they typically refer to thediameterof the disk and not the radius.

When the aperture is immediately adjacent to the lens, i.e.,za = 0, it effectively limits the radius

of the lens and it is possible to compute the radius of the circle of confusion from the geometry in

figure 3.4.

Figure 3.4: Paths from points at different depths converging behind the lens.

In the figure, pointsp1 andp2 (off the left, not shown) give rise to the light paths that focus atq1

andq2 behind the lens. Neitherq is atzI , so the circle of confusion has a non-zero radius. Similar

triangles give the radius as a function of the cone apex:

r
|zI −qz| =

a
qz

(3.15)

r = a

∣∣∣∣
zI

qz
−1

∣∣∣∣ . (3.16)

The sign ofzI − qz indicates whether the circle is flipped because the intersection is past the

apex of the cone. This does not matter for a disk, but I revisit it later in cases where a full image is

projected along the cone so that the intersection is no longer a disk.

Substituting forqz by equation 3.13 gives the real-world image radius as an expression for the

radius of the disk that is the image of a pointp:
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r = a

∣∣∣∣zI
pz+ f
pz f

−1

∣∣∣∣ . (3.17)

Let theimager(e.g., CCD array or film) be aWI ×HI rectangle able to resolve square elements

(e.g., pixels) of sizes×s. Even whenr > 0, a point will still appear reasonablyin focusif its circle

of confusion is below the resolution of the imager. Thefield is the interval over whichpz can be

moved while maintaining this constraint; thedepth of fieldis the span of the interval and thedepth of

focusis the span of the corresponding interval forqz. AssumeaÀ s, so that the circle of confusion

is meaningful. Solving
(

s
2

)2 = a2
(

zI
qz
−1

)2
for qz gives the depth of focus:

depth of focus Dq =
4aszI

2a2−s2 (3.18)

focus bounds =
a
s
Dq± 1

2
Dq (3.19)

Substitute the focus bounds into the Gaussian lens formula (equation 3.12) to solve for the field

bounds and depth of field.

Figure 3.5: The circle of confusion grows rapidly as objects move closer thand, so the depth of
field interval is shifted away from the lens.

Figure 3.3.1 shows a plot ofr as a function of distance from the lens for a system focussed at

2m. The curve is hyperbolic so the circle of confusion grows much more rapidly as objects approach

the lens than as they recede towards infinity. The red line showsr = s
2, the in-focus criterion, and

its intersection with the curve marks the bounds.
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Asymmetric lenses give rise toastigmatism, the imaging of a point off the axis as two per-

pendicular lines in different planes. The first convergence from the lens is theprimary image, the

second is thesecondary image. There is no single point of convergence. In this case, the circle of

least confusion lies along a curve called thecurvature of field[94]. I assume symmetric lenses and

neglect astigmatism.

I define thefield-of-viewof a camera as the angular dimensions that can be imaged with a very

small aperture:

f ov= 2tan−1
(

WI

2zI

)
×2tan−1

(
HI

2zI

)
(3.20)

3.4 Pinhole Camera

Computer graphics often uses anideal pinhole camera model. This is the limit of the lens camera

model asa→ 0. Because it is linear in aperture radius, the radius circle of confusion is negligible

when the aperture is negligible and the image of a point is a point even whenqz 6= zI . Thus, the

focal length and the presence of the lens are both irrelevant. Photographers sometimes say that the

ideal pinhole “has an infinite focal length.” This is not mathematically true, however it is true that

the depth of field is infinite for an ideal pinhole.

One can construct a physical pinhole camera using a very small aperture and no lens. The

practical aperture is limited to abouta = 0.25mm because smaller apertures produce diffraction

effects that create a defocussed image, defeating the purpose of using a pinhole [42].

An important consideration for pinhole cameras is that the infinitesimal aperture requires either

extremely bright lights or an extremely long exposure time to produce a useful image. This makes

it impractical to produce pinhole images of dynamic scenes or to capture pinhole video.

Image formation is trivial under the ideal pinhole camera model. A pointp in the scene projects

to a single pointq = p zI
pz

on the image plane. This mapping can be expressed with a homogeneous

perspective projection matrix:
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P =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/zI 0




, letq= proj(P· inj(p)T (3.21)

Recall thatpz < 0 andzI > 0. After projectionqz = zI , that is,q is on the image plane.

3.5 Telephoto Lens

The only difference between the pinhole camera and the lens camera is the size of the circle of

confusion, and not the location of projection. The lens radius and focal length do not appear in the

projection equations; the projection matrix is independent of the focal length and aperture radius.

This may at first seem contrary to one’s experience with telephoto lenses. A telephoto lens

appears to flatten perspective and magnify the object viewed. However, consider the length of the

barrel on which a telephoto lens is mounted (technically, it is atelephoto objective, and the lens

is only the glass at the end of the barrel). The lens is very far from the image plane compared to

a normal lens. Moving the image plane far from the lens always enlarges the image because the

imager then intersects a larger cone of rays; a pinhole camera could achieve the same magnification

effect. Because the image is larger more of it is cropped by the edges of the imager, which is

why perspective appears compressed. This effect is calledtelephoto compression. Cropping also

reduces the amount of light that falls on the imager, so telephoto lenses must be used with longer

focal lengths.

The seeming paradox of “a lens cannot magnify an image” and “a telephoto lens magnifies an

image” arises from poorly choosing the reference frame to be that of the photographer and camera.

The phenomena is intuitive considered in lens space. Increasing the barrel length of the objective

moves the image plane (and camera, and photographer) far away while the scene and lens remain

fixed. This is analogous to moving a projector away from a screen– the farther back it is pulled, the

larger and dimmer the image produced.

Moving the image plane far from the lens also increases the size of the circle of confusion. Aside
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from the barrel length, the geometric difference between a normal lens and a telephoto lens is that

the telephoto lens has a very long focal length (> 75mm). This counteracts the increasing distance

from the image plane and allows a reasonably small circle of confusion despite the magnification.

3.6 Obtaining Parameters from Real Cameras

I now relate the mathematical lens camera parametrization to the notation used with real cameras in

order to apply this theory to real data.

The housing containing the aperture and one or more lenses is called anobjective. Physical

objectives have known focal lengths, commonly printed in millimeters on the lens. Adjustable

zoom objectives are typically labeled with the compound focal length in both meters and feet on the

adjustment ring.

An objective is focussed by moving the lens relative to the image plane. The distance labels

on the focus adjustment ring give the approximate scene locations that will be in focus at those

settings, i.e., the label gives the value ofpz that producesqz = zI at that lens position. The manu-

facturer computes those distances by assuming a value forzI (probably slightly larger than the focal

length). There is some error because the objective manufacturer does not know the distance from

the objective mount to the actual image plane in the camera. In practice, the labels are too coarse to

use for actual measurement. The distanced between the image plane and the plane within the scene

that is in sharp focus must be explicitly measured for use in computation. Recall that distance is

measured relative to the image plane, because the lens moves relative to the scene during focussing.

To recover the image plane location fromd, let pz = −d− zI , qz = zI and solve equation 3.13

for the smallerzI root:

zI =
1
2

[
d−

√
d2−4 f d

]
(3.22)

The aperture is adjusted by a ring labeled withf-numbers, e.g. f/2.8, that opens and closes an

iris. The aperture radiusa of the iris is one-half the focal length divided by the denominator of the

f-number (hence the “f” notation). The marked f-numbers, calledf-stops, are scaled and rounded

powers of
√

2 (e.g. f/1.4, f/2, f/2.8, f/5.6) so that the aperture area doubles between stops. By
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definition, f-stop f/# gives aperture radius:

a =
1
2
· f

#
(3.23)

A film camera lifts a shutter for∆τe seconds to expose the film. This is called theshutter speed

or exposure time and is indicated with a knob. A digital camera uses a charge-coupled device (CCD)

or complementary metal oxide semiconductor (CMOS) array to replace the film. This thesis uses

CCD cameras, which depend on the photoelectric effect. A CCD releases electrons in response to

incident light, thus measuring the charge produced effectively “counts incident photons.” Such a

camera has no physical shutter, it simply measures and releases the charge after the exposure time.

The total radiant energyQ is linear in the exposure time and aperture area for any camera:

Q ∝ a2∆τe (3.24)

To make high-speed images that preserve image intensity at the expense of depth-of-field, photogra-

phers therefore increase the aperture while decreasing the exposure time. This is why photographers

often refer to f-stops as if they were a measure of time (e.g., “the exposure on my pinhole camera is

f/500”).

Film is typically described by the width in millimeters and resolution in line pairs per millimeter

(l p/mm). In this measure, each pair of lines is the equivalent of four pixels–two foreground pixels

for the lines and two background pixels to separate them from each other and the next line pair.

“35 mm” (135 format) film has an image frame of36×24mm and is rated at 50 lp/mm, roughly

equivalent to a 34-megapixel imager.

Digital camera specifications directly report the dimensions and pixel resolution of the imager,

although the actual output is frequently a subrectangle of the total image captured.

After projection under equation 3.21,q is measured in meters on the image plane, not pixels.

Recall theviewport matrixthat maps points on the image plane to points in pixel space previously

introduced in equation 3.8.

The 2D, pixel-spacepinhole projectionof lens space pointp is given by2I3proj(V ∗P∗ p). The

matrix productVP is the familiar projection matrix used in computer graphics [36] extended to
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real-world units and taking the mirroring produced by a lens into account.

3.7 Fourier Optics

Combining equations 3.17, 3.22, and 3.24 gives the radiusrp of the image of pointp from directly

measurable distances and camera settings:

rp =
1

−4pz#

∣∣∣
(

d−
√

d2−4 f d
)

(pz+ f )−2 f pz

∣∣∣ (3.25)

where f/# is the f-stop,d is the mid-field distance from the image plane,f is the focal length, and

zI − pz is the distance top from the image plane. To obtain a pixel radius, must divide by the width

of a pixel,s (assume square pixels). The pixel width is occasionally called thepixel pitch.

Let hp(x,y) be a uniform disk of radiusrp/s with
∫ ∫

hpdxdy= 1, wherex,y are measured in

units of pixels. This is thepoint spread functionfor the image of pointp due to defocus.

Recall thatp′ is the pixel-space pinhole projection ofp. Let δp(i, j) be the impulse that isinf

where(i, j) = p′ and zero elsewhere with
∫ ∫

δp(x,y)dxdy= 1.

The image of a scene containing onlyp is Ip(x,y) = [δp(i, j)⊗hp(i, j)] (x,y).

The image of a scene containing a set of pointsthat do not occludeone another relative to the

aperture is the sum of the images of the individual points. It follows that ifI0 is the in-focus image

of a textured plane perpendicular to the optical axis,I = I0⊗h0 is the defocussed image.

Consider a scene containing only two textured planes perpendicular to the optical axis. The

foregroundplane intersects the optical axis atzF and the background plane intersects it atzG (recall

thatz values are relative to the lens and points in the scene havez< 0.) Let the background plane’s

texture have full coverage everywhere (i.e., no alpha channel) and the image of the background

plane beB(x,y) when it is in perfect focus or, equivalently, imaged under a pinhole camera. Let the

foreground plane have imageF(x,y) with partial coverage given byα(x,y).

Choose a pointb on the background plane. The bundle of rays fromb to the camera aperture

forms a cone with apex atb that intersects the foreground plane at a disk. By similar triangles, that

disk has radiusazB−zF
zB

, wherea is the aperture radius. The transport fromb to the aperture along

each ray is modulated by1−α at the particular point of intersection.
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So far, this discussion considered only scenes containing a single background, plane. These

corresponds to a two-plane scene whereα is zero everywhere. In those cases the image of pointb

on the image plane was a uniform disk. Here it will be the occlusion shadow of the disk foreground.

In other words, the point spread function ofb in the two-plane scene is a sub-disk of theα image,

divided by the area of the disk (regardless of the actual values ofα).

Figure 3.6 shows the two-plane scene in exaggerated 3D perspective with discreteα values at

the foreground plane. Every point on a defocussed background plane contributes a disk to the final

image, cut by occlusions at the foreground plane. The disk shape arises from the circular silhouette

of the lens; an octagonal iris gives rise to an octagon instead.

To write the image expression for this point spread function, must convert the radius and center

of the disk from real-world 3D length and position to pixel coordinates on the foreground image. By

similar triangles, the imager atzI with real-world widthWI projects to a rectangle with real-world

width−zF
WI
zI

on the foreground plane. The pixel radius of the diskon the foreground imagewhere

the cone fromb intersects the foreground plane is thus:

r = a
(zF −zG)zI

zBszF
. (3.26)

wheres is the size of an imager pixel. Note thatr is also the radius of the circle of confusion for the

virtual image ofb at planezF .

Let diskr(x,y) be the continuous function that is1/(πr2) when
√

x2 +y2 ≤ r and 0 elsewhere.

Modulatingα by a disk of radiusr and shifting coordinates gives the point spread function forB

at a given pixel(x,y), but the result is scaled in the pixels ofα, not the pixels of the final image.

A dilation is needed for the net spread function to the scale of the image ofb on the image plane.

Equation 3.17 gives this radius in meters. Converted to pixels it is:

rB =
a
s

∣∣∣∣zI
zB + f
zB f

−1

∣∣∣∣ . (3.27)

When computing the dilation factors= r/rB, the aperture radius and pixel size cancel, giving:

σ =
zF −zB

zBzF

(
zB+ f
zB f − 1

zI

) (3.28)
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It is now possible to write an expression for the point spread function forB at (x,y),

hB,i, j(x,y) = (1−α(σx+ i,σy+ j))diskrB(x,y). (3.29)

Whenσ is negative the intersection is past the apex of the cone behind the lens. After this point,

the disk of alpha is upside down and left-to-right inverted.

Figure 3.6: Two-plane scene with discreteα values at the foreground plane.

The composite image formed from the rays contributed by each plane is:

I =
∫ ∫

(αFδ (x− i,y− j))⊗hF,i, j ∂ i∂ j +
∫ ∫

(Bδ (x− i,y− j))⊗hB,i, j ∂ i∂ j

Note that at every(i, j) there is a different point-spread function and thatα is hidden inside thehB

term.

BecauseF is never occluded, its point spread function is a disk with radiusrF = a
s

∣∣∣zI
zF+ f
zF f −1

∣∣∣.
Subsituting this, the double integral overF is unnecessary and the expression for the image of two

planes reduces to:

I = (αF)⊗diskrF +
∫ ∫

(Bδ (x− i,y− j))⊗hB,i, j ∂ i∂ j (3.30)

One property evident from this equation is that the background appears in sharper focus near

edges of the foreground because those edges narrow the effective aperture.
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3.8 Special Cases

It is sometimes convenient to approximate equation 3.30 with the simpler form:

I ≈ (αF)⊗diskrF +(1−α⊗diskrα )(B⊗diskrB), (3.31)

where

rα ≈ rF . (3.32)

This introduces error because it assumes that the point spread function forB has magnitude deter-

mined byα but uniform shape. The relation in equation 3.32 is also an approximation, although

it introduces less error. I address the uniform approximation immediately and return to the radius

approximation at the end of this section.

The error from assuming uniform point spread functions forB in equation 3.31 is small if either

or bothα andB are low frequency, or if at least one of the two planes is in perfect focus. There

are three ways that at least one plane may be in focus: a pinhole imageIP, an imageIF focussed

precisely on the foreground plane, and an imageIB focussed precisely on the background plane.

Figure 3.7 illustrates the three cases. It traces the cone of rays from a point on the foreground

(solid green line) and a point on the background (dashed red line) through the lens and pinhole to

various image planes. The point spread functionhF for the foreground inIB, where the background

is sharp, and point spread functionhB for the background inIF , where the foreground is sharp, are

shown as disks created by the intersection of the appropriate cones with the image planes. The

specific equations for the three cases follow. I then bring all together and discuss their gradients,

and then simplify further in cases where the frequency content of the scene is known.

3.8.1 Pinhole

If f s is very small or# is very large, thenr is less than half a pixel at both planes. In this case, the

image is the limit of the composite image as the aperture radius approaches zero. In equation 3.30,

the point spread functions forF andB are (modulated) disks with radius proportional toa. These

become (scaled) impulses in the limit:

IP = lim
a→0

I = (αF)⊗δ +
∫ ∫

(Bδi, j)⊗ ((1−α)δi, j) ∂ i∂ j (3.33)
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Figure 3.7: Schematic of cases where the image of two planes can be expressed simply.

Thus the composition simplifies to the well-knownpinhole compositionmodel first published by

Porter and Duff [73], which is simple linear interpolation:

IP = αF +(1−α)B. (3.34)

The pinhole composition model is accurate when the PSFs involved are much smaller than the pixel

size. It is an approximation when the PSFs are larger; if they are very much larger than a pixel it is

an exceedingly poor model!

3.8.2 Focused on Background

When the background is in focus its PSF is an impulse (zero radius disk with finite integral). Rays

in a cone fromB are still modulated by a disk of(1−α) at the foreground plane, but that disk

projects to a single point in the final image. Only the average value, and not the shape, of theα disk
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intersected affects the final image. The composition equation in this case is thus:

IB = lim
1
zI
→ 1

f +
1

zB

I

= (αF)⊗diskrF +(B⊗δ )(1−α⊗diskrF ) (3.35)

= (αF)⊗disk(rF)+(1−α⊗disk(rF))B. (3.36)

This model is accurate when the foreground is in focus. It isnot an approximation; the math truly

simplifies as described. Error is introduced only when the focus depth drifts from the foreground,

the foreground object is large with respect to the depth of field, or when the background depths vary

extremely with respect to the depth of field (recall that this section assumed planar foreground and

background).

3.8.3 Focused on Foreground

When the background is defocused, its PSF varies along the border of the foreground object. The

aperture shape is effectively different at each point because it is the intersection of the relevant disk

of α and the true aperture. If the foreground is simultaneously in sharp focus, then the result is

the limit of the composite image as the image plane moves to satisfy the Gaussian Lens Formula:

1
zI
→ 1

f + 1
zF

. This causeszF f/(zF + f ) to approachzI and the point spread function forF to again

approach an impulse. Because the foreground is in focus, one can conceptually move the site at

which background rays are modulated from the foreground plane (where the real occlusion occurs)

to the image plane (which matches the resolution ofα) where the modulation is easier to express.

Under that model, the background contribution is the convolution ofB with a disk, modulated at the

image plane by(1−α).

IF = lim
1
zI
→ 1

f +
1

zF

I

Of the three special cases, this is the one where equation 3.30 is complex and the equation 3.31

approximation is inaccurate. However, the approximation is so much simpler that it is necessary to

make many algorithms (like the one discussed in chapter 8) practical for implementation. The PSF

for the foreground drops out in this case and equation 3.31 becomes:

IF ≈ αF +(1−α)(B⊗disk(rB)) , (3.37)
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The error in this approximation is at the borders of the foreground object. The smaller effective

aperture at those locations should make the background contribution sharper (but dimmer) than

where the background is completely unoccluded. The effect is similar to vignetting. The approx-

imation ignores this effect, so the background appears more blurry than it should be. See Bhasin

and Chaudhuri [12] and Asada et al. [5] for a more detailed discussion of the point spread func-

tions at an occluding edge, improved (albeit more complex) approximations for the final case, and

experimental results that validate the theory.

To recap, the collected reduced equations for the cases where one or more planes are in perfect

focus are:

IP = αF +(1−α)B

IF = αF +(1−α)(B⊗hB)

IB ≈ (αF)⊗hF +(1−α⊗hF)B (3.38)

3.8.4 Gradients of Special Cases

Given these simplified equations, the spatial gradients can also be written in a simplified form.

These are as follows (the extra terms emerge from the chain rule):

∇IP = (1−α)∇B+α∇F +(F−B)∇α

∇IF = (1−α)∇(B⊗hB)+α∇F +(F−B⊗hB)∇α

∇IB = (1−α⊗hF)∇B+∇(αF⊗hF)+B∇(α⊗hF), (3.39)

where∇ =
(

∂
∂x,

∂
∂y

)
. For a sufficiently narrow depth of field, the point spread functions are large

disks. In that case, any term convolved with a non-impulse point spread function has a small gradi-

ent. Approximating such terms as zero, the second two equations simplify to:

∇IF ≈ α∇F +(F−B⊗hB)∇α

∇IB ≈ (1−α⊗hF)∇B (3.40)
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When moving to discrete space for numerical computation, frequency aliasing and the fact that

the gradients of blurry images are small but non-zero are sources of error in this approximation. For

a real camera, imprecision in focussing, lens abberations, and a non-circular aperture are additional

sources of error.

In continuous space, the special case equations in this section are limits of the general case, and

not approximations.

So far, there have been no assumptions about the frequency content of either plane and the geom-

etry has not been simplified in any way; the results stand in fully general circumstances. As a result,

the equations are correct but unwieldy. Limiting the scene can dramatically simplify the equations.

The next two sections make limiting assumptions about frequency content and approximating small

gradients as zero to achieve such simplifications.

3.8.5 Low Frequency Background

When the background has no high frequencies, its gradient is small and can be approximated as

zero. In this case, the image gradients are approximated by:

∇IP ≈ α∇F +(F−B)∇α

∇IF ≈ α∇F +(F−B⊗hB)∇α

∇IB ≈ 0 (3.41)

3.8.6 Low Frequency Foreground and Background

When both background and premultiplied foreground have no high frequencies, their gradients are

small and the image gradients are approximated1 by:

1The low frequency∇Ip expression was introduced by [60], including a discussion of point spread functions, and also
appears in [84]
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∇IP ≈ (F−B)∇α (3.42)

∇IF ≈ (F−B⊗hB)∇α (3.43)

∇IB ≈ 0 (3.44)

3.8.7 Radius Approximation

I now return to the approximationrα ≈ rF used in equation 3.31 and prove that the error in that

approximation is small for typical scenes. Recall thatrα is the radius of the point-spread function

applied to(1−α) during linear interpolation and thatrF is the point spread function applied toαF .

Figure 3.8 depicts the geometry governing these variables.

The lens is in the center of the figure. The left side of the figure is ‘in front of the lens’ and the

right side is ‘behind the lens.’ The green, thick, solid, vertical line on the far left is the background

plane whose image in isolation isB. To its right is the foreground plane whose image in isolation

is αF , represented by a red, thick, dotted, vertical line. The gap near the bottom of the foreground

plane represents an area whereα = 0. Two vertical, colored lines on the right of the lens represent

imager positions at which the background (green, solid) and foreground (red, dotted) are in perfect

focus. The gray, dashed, horizontal line through the figure represents the optical axis.

Let WB be the extent of the background plane that is within the frame. LetWI be the extent of

the imager that hasWpix pixels along that dimension. The ratio of these is the previously discussed

pixel pitchsof the imager,

s=
WI

Wpix
. (3.45)

All variables are measured in a single spatial dimension, which here isy. The scene extentW

imaged at locationz (which is negative by my convention) in front of the lens is related to the size

of the imager by similar triangles. These triangles are shown with gray dashed lines and give rise to

the relation,

W ≈WI
z
f
, (3.46)

assuming|z| >> f . When that assumption fails, the object is near the focal distance and is nearly

completely defocussed so that we cannot ignore vignetting effects.
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Figure 3.8: Geometry that determines point-spread radiirF andrα .

The two radii of interest are determined by intersections between cones and planes on opposite

sides of the lens. Without loss of generality, consider the point on the foreground plane in front of

the lens that happens to be on the optical axis. The boundaries of the pencil of rays from that point

to the lens is shown by thin dotted lines. Behind the lens, they correspond to a second pencil with

apex at depthz′F , however we will not trace them all of the way to the apex. When the background

plane is in focus, the foreground rays intersect the imager at depthz′B and the intersection is a disk.

The radius of that disk isrF , which is here measured in pixels. It is shown in figure 3.8 as the

right-most (purple) extent. Equations 3.17 and 3.27 gave expressions for computing the radius from

different variables, derived by similar triangles. In terms of the variables labeled in the figure,rF is

given by:

rFs
z′F −z′B

=
a
z′F

(3.47)

rF =
a
s

(
1− zB(zF + f )

zF(zB + f )

)
(3.48)

Next, consider the point on the background plane in front of the lens (again, without loss of of

generality) that is on the optical axis. The pencil of rays from this point, shown by thin solid green

lines in the figure, converge behind the lens to a point on the imager. However, en route to the lens

they intersect a cone of the foreground plane and are there modulated by(1−α). That intersection

indirectly gives rise torα . The disk of intersection (in pixels) is the area of imageα that modulates
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a single point fromB, however the dual of that statement is that each point inα affects an area ofB

of the same radius (in pixels).

The radius of the disk at the intersection of the foreground plane and the pencil of rays from a

point on the background plane is marked by the left-most cyan extent in the figure. It gives rise to

the relation:
rα(WF/Wpix)

zB−zF
=

a
zB

. (3.49)

Solving this forrα in pixels gives:

rα ≈ a f(zF −zB)
szFzB

(3.50)

This is an approximation because equation 3.46 was used to remove theW terms. It therefore holds

when|zF |>> f . Note that the two radii computed are not exactly equal under equations 3.48 and 3.50.

However, if one assumes that|zB|>> f and rewrites equation 3.48 as

rF =
a
s

f (zF −zB)
f zF +zFzB

, (3.51)

then the denominator is dominated byf zF and the equation reduces equation 3.50. Thus,

rF ≈ rα when|zF |>> f and|zB|>> f , (3.52)

which means that one can approximate the radii as equal when neither the scene nor the imager is

near the focal length of the lens, where the image would be seriously blurred anyway. Thus the

radius approximation contributes litter error in the approximate compositing equation 3.31 at the

beginning of this section.

3.9 Transmission and Coverage

Thus far, I have only considered scenes where there is no transmission through the foreground and

α represents partial coverage. In those scenes, the expressionsαF andB are the energy emitted by

the foreground and background in the direction of the lens. The foreground does not transmit light,

so wherever the foreground emits non-zero energy, the background must be blocked. In continuous

space,α is binary, so each image point is from either the foreground or the background exclusively.

In discrete space, each pixel value is a sample of continuous functionIP convolved with a pixel
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response function (e.g., a box filter for a camera CCD). This gives rise to the fractionalα values

described by Porter and Duff.

I now return to continuous space (binaryα) and extend the model of the foreground object

with four coefficients modeling its interaction with light. Let the foreground be a perfectly diffuse

material with index of refraction matching the surrounding medium. Assume that, as do most real

materials, it reacts identically to light from the front and behind.

Let r̂, γ, andâ be the fractions of incident light reflected, transmitted, and absorbed (the hats

distinguish them from the radius and aperture variables used elsewhere in this chapter). For conser-

vation of energy, at every frequencyλ , r̂ +γ + â= 1. The material may also emit light with intensity

E. Let L describe the total incident light contribution from the front (taking angle of incidence into

account) andB describe light from behind. All variables may vary overx, y, andλ . The observed

light intensity under pinhole projection is:

IP = α(E + r̂L + γB)+(1−α)B (3.53)

As before, the first term describes locations where the foreground covers the background and the

second where the background is uncovered. The light absorbed by the foreground isαâ(B+L). I

ignore the difference between emitted and reflected light and abstract them both intoF = E + r̂L.

This gives:

IP = αF +(1−α(1− γ))B

∇IP = α∇F +F∇α +(1−α(1− γ))∇B+αB∇γ− (1− γ)B∇α

(3.54)

Many highly transmissive materials encountered in daily life, like colored glass, do not emit

and have very low reflectance, soF ≈ 0. The impression of the color of such a surface is given

by the wavelength sensitiveγλ function. For example, a transmissive red gel on a black backing

appears nearly black, and the same gel with a white backlight2 in a dark room appears red. Opaque

2This thought experiment employs a backlight instead of a white backing to eliminate the question of the double



42

red construction paper appears red regardless of the backing color. Neither gel nor paper emits

light, so the difference lies in the wavelengths reflected, transmitted, and absorbed. The “red” paper

reflectsred light, absorbs other wavelengths, and transmits nothing. The “red” geltransmitsred

light, absorbs other wavelengths, and reflects nothing. The final possibility is an ideal beam-splitter,

which absorbs nothing and partly transmits and reflects all wavelengths.

Although partial coverage and transmission are separate phenomena, they are frequently con-

flated in computer graphics for two related reasons. The first is that linear blending gives the vi-

sual impression of transparency. Consider the (discrete) case of a uniform foreground plane with

α = 0.5 andγ = 0.5. By equation 3.54, the resulting image has intensityIP = 0.5F +0.75B (brighter

than either foreground or background!), which is not a linear interpolation between foreground and

background. So-called “colorless” glass is a special case where linear interpolation does suffice

for transparency, as described in the next section. The second reason is screen transparency. From

far away, a fine window screen withα = 1
2,γ = 0 is indistinguishable from colorless glass with

α = 1,γ = 1
2 because each effectively absorbs 50% of the light from the background.

It is worth mentioning that the “one-way mirror” is not a case of transmission acting differently

in different directions. Half-silvered mirrors are beam splitters that transmit about 50% of incident

light and specularly reflect the remainder. When objects on one side of the glass are brightly illu-

minated and objects on the opposite side are dim, this gives the illusion of one-way visibility. Were

both sides equally illuminated observers on opposite sides would see equally bright superimposed

images of themselves and their counterparts.

3.10 Imager and Noise Model

The values returned from a real digital camera are discrete in space and value, have limited dynamic

range, and are noisy.

I model the true imageI(x,y,λ , t) convolved with the pixel response function,w(x,y,λ , t), and

sampled at regular intervals before it hits the analog-to-digital reader. The sensors are manufactured

filtering. That occurs when light passes through the gel to the backing, reflects, and passes back through the gel
again en route to the observer.
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so that the response function is nearly a 4D box filter, which uniformly integrates incident illumina-

tion across an entire pixel, the entire visible spectrum, and exposure time. In practice the response

must be zero at the narrow spatial border separating adjacent pixels and is not perfectly flat across

the surface. There are also some other electronics for each pixel that are printed on the circuit beside

the actual photosensitive area. Thefill factor is the ratio of photosensitive area to total pixel area,

which can be less than 50% for some CCD designs.

There is also a temporal border because the exposure period cannot exceed the inter-frame time

and there is some downtime while the device discharges the CCD pixels to read their values. The

wavelength response is not only non-uniform but also extends outside the visible range, particularly

on the infrared side, making CCDs extremely heat sensitive. The CMOS response function is shown

in figure 3.9 from [1].

Figure 3.9: Spectral response of a CMOS image sensor. From Kodak.

The low-pass filtered image is converted from analog to digital at a fixed bit depth. Digital gain

and brightness apply a linear transformation to the values and then the final result is rounded to the

nearest integer and clamped to the typical 8-bit dynamic range:

Idigital = max(0,min(255,bbI ⊗wc∗gain+brightnessc)) (3.55)

Color cameras have three pixel response functionswr , wg, andwb, to sample across the spec-

trum. Most color cameras do not measure red, green, and blue values at each pixel but instead tile

a color filter array (CFA) over pixels to give them different wavelength response functions. Bayer’s

popular tiling pattern [8] prescribes a regularly tiled grid. Even pixel rows alternate between green
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and red pixels and odd pixel rows alternate between blue and green (figure 3.10. Twice the space is

given to green because the human eye has the most resolution in green, which is also centered on

the visual spectrum. The color filters typically do not match the three color response functions in

the human eye, which leads to desaturation of the captured image. Figure 3.11 shows the spectral

response of red, green, and blue pixels (from [1]).

Figure 3.10: The Bayer pattern of CCD pixel tiling.

Figure 3.11: Product of a typical RGB CFA spectral response with that of a CMOS image sensor.
From Kodak.

Moreover, the individual sensor pixels differ from the manufacturing target, which is itself more

conservative than the theoretical ideal because of practical constraints like non-zero pixel borders

and the difficulty of manufacturing perfect box filters3.

3Regardless, the ideal filter is probably a sinc function and not a box, since the box produces ringing in the frequency
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There are two common pixel errors that change slowly over time.Hot pixels return values that

are too high andcold pixels return values that are too low. Because the CCD is sensitive well into

the infrared range, these names are not just evocative but often actually descriptive. As the sensor

heats up from operation or bright illumination in the scene more pixels become hot due to ambient

IR energy. Although this error can also result from manufacturing imprecision, any slowly-changing

bias is called athermal errorin the pixel value.

It is common practice to model the hot/cold error as a per-pixel linear function. The parameters

of this model are obtained from two photographs. Ablack level(dark field in astronomy) image is

captured with the lens cap on and a long exposure. This determines whether the pixel is hot and

will return a positively biased value even in the absence of visible light. Agray level(flat field in

astronomy) image is created by imaging a uniform gray card with a long exposure. The image of

the card is defocussed by placing the card outside the field. This distributes the illumination from

each point on the card approximately evenly across all sensor pixels. Defocussing compensates

for non-uniform reflectance off the card due to uncontrollable surface properties (e.g., specularity,

roughness, non-uniform albedo). The gray level alone can be used to identify cold pixels. Combin-

ing both images gives the model of manufacturing and thermal noise:I = 2ItrueIgray+ Iblack. The

multiplication by two is a division (normalization) by the12, the expected value ofIgray. The value

is exactly 1
2 and is unitless because the algorithm operates on pixel values arbitrarily scaled to the

range[0,1] and not real energy units.

In addition to the thermal noise images, each frame has a small amount of sampling error that

is calledtransient noiseimage noise. This primarily arises because light is a stream of photons

and, for short exposures, the variance on the individual photon count at a pixel per frame is high.

Because the electronics for the sensor are mounted to the same breadboard as the CCD, there is also

some electrical interference that causes small frame-to-frame variation in the images returned for a

static scene.

How many photons hit a CCD pixel per frame? Direct sunlight carries about 500 W/m2 (1 W = 1

J/s) of energy in the visible spectrum. Because each visible photon carries aboutE = 3.61×10−19J

domain.
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(equation 2.6), there are about1.4× 1021 photons incident per second under direct sunlight per

square meter, per second. Consider a camera with a 50 mm lens, 640× 480 imager, and wide open

aperture directly imaging the (completely defocussed) sun with an exposure of∆τ = 1/30s. The

aperture has areaA = π .05m
1.4

2 ≈ 0.004m2, so during one frame there are1.38×10210.004m2

30 photons

directed at the imager. The imager contains about3× 105 pixels, so each pixel receives about

6×1011 photons per frame. This is an upper bound–the camera is usually directed at a surface, not

the sun, there is some light loss through the lens, pixels are not fully covered by their photosensors,

and CCDs have quantum efficiencies of about 0.5 (i.e., only half the incident energy is converted

to measurable charge). When imaging a sun-lit scene one can therefore expect photon counts for

bright areas to be on the order of109, and indoors on the order of105.

3.11 Sample Values

To give a sense of reasonable parameters and properties of a camera, below is a list of values for the

640×480Basler a601f cameras with 35 mm Cosmicar lenses used in this thesis. These constants

are for a typical scenario where the f-number isf/1.4 (wide open) and the objective is focussed 2m

from the image plane.

f = 3.5×10−2m

# = 1.4

WI ×HI = (7.2×5.4)×10−3m

Wpix×Hpix = 640×480pix

d = 2.0m (from the lens)

a = 1.17×10−2m

zI = 3.56×10−2m

s= 1.562×10−5m/pix

f ov= 16.0×12.0◦ = 0.278×0.210rad
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VP=




−106667 0 0.1684 0

0 106667 6735.0 0

0 0 1.0000 0

0 0 28.062 0




Figure 3.4 is a graph ofr vsd for this scenario.



Chapter 4

Multi-Parameter Notation

This chapter formally defines multi-parameter video and its notation based on the optical model

from the previous chapter. Because Matlab is a natural tool for working with multi-parameter

images, along with the definitions I give notes on how they interact with that implementation envi-

ronment.

The idea of varying a single parameter (like focus) while gathering a collection of images has

been used previously in graphics and vision. The contribution of this chapter is a generic framework

for describing organized collections of multiple parameter values. The framework is suitable for the

design of image-capture hardware and applications.

4.1 Functions on the Imager

In linear algebra, a matrix is most often used as a compact notation for the coefficients in a set

of linear equations. It is common practice to use a matrix (as in ‘a grid’) of numbers to represent

images as well, where the matrix indices describe the pixel at which a sample lies. This practice

allows convenient re-use of the grid structure and notation from linear algebra. Pointwise operations

like addition have identical implementations for the two structures, and the same efficient data

formats (e.g., sparse vs. dense, floating point vs. integer) are available for each. Since linear

algebra is an important tool in image processing, using a matrix to represent an image also has the

benefit of allowing a smooth transition between imaging operations and linear algebra operations.

Matlab and other numerics tools exploit all of these properties by allowing images and sets of

48
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coefficients to be used interchangeably. The only limitation is that certain operations that make

sense in linear algebra—row exchanges, for example—do not make sense in image processing, and

must be avoided. When something like a row permutationis needed (e.g., when solving for an

inverse transformation), the typical strategy is to unravel images into vectors of pixel values and

indices, perform the math, and then pack them back up. This practice is described later in this

chapter and used extensively in chapter 8.

A multi-parameter videois a discrete function on finite integer domains. It is frequently imple-

mented as ann-dimensional array (which, in packages like Matlab, is aliased with the concept of

“matrix”). To be clear, a multi-parameter video isnota matrix in the linear algebra sense. However,

as is the common case for the Matlab user, one can read this thesis thinking of them as matrices

and rarely become confused. The only point requiring care when reading is that two adjacent image

variables denote componentwise or array multiplication (“.*” operator in Matlab), and not matrix

multiplication. As with any componentwise operation, the operands must have matching shapes.

This allowsαF to denote the pixel-by-pixel modulation of video (or image, if time is held constant)

F by videoα, which is the notation expected in computer graphics.

The scalar values of a multi-parameter video represent the samples of a continuous function at

specific locations in parameter space. The function being sampled is the integral of the continuous

image formation equation at the image plane. LetL(x,y, t,ω) represent the incident radiance at

the image plane at point(x,y) at timet from directionω. Radiance is measured in W m−2 sr−1.

IntegratingL over the hemisphere visible from(x,y) eliminates the steradian denominator and yields

the continuous space image:

I(x,y, t) =
∫

hemi
L(x′,y′, t ′,ω ′) dω ′. (4.1)

IntegratingI(·) over a small space (dx dy, a pixel) and duration (dt, an exposure) gives energy

units of Joules. This represents the energy absorbed by a discrete pixel in a photograph. That

integration is what is sampled by the discrete multi-parameter video function:
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I [x,y, t] =
∫ x+∆x/2

x−∆x/2

∫ y+∆y/2

y−∆y/2

∫ t+∆ t/2

t−∆ t/2
w(x′−x,y′−y, t ′− t)I(x′,y′, t ′) dt′ dy′ dx′, (4.2)

wherew(·) is the imaging filter and its extents are∆x and∆y in space and∆t in time. (Note the

change from parentheses to brackets forI ). For a typical digital video camera,w is a box filter in

both space and time, where the box has about the extent of a pixel in space and an exposure in

time. Equation 4.2 describes a monochrome video; ift is held fixed it represents a single frame.

Returning to the case wheret varies through a discrete set of values, imageI can also be viewed as

a three-dimensional array. This is the monochrome version of thevideo cuberepresentation that is

now popular, particularly in non-photorealistic rendering [32, 48].

4.2 Parameters

Horizontal space, vertical space, and time are three of many interesting samplingparameters. The

other parameters are less frequently discussed in the literature but could just as well appear explicitly

on L as well. Any parameter of the imaging system may appear inside the brackets ofI . Some

interesting ones are:

• Wavelength (λ ; “color”)

• Imager depth (zI )

• Sub-pixel space sampling offset

• Sub-frame time sampling offset (“time offset”)

• Aperture

• Polarization phase

• Wave or “complex” phase

When defining the sampling process, the imaging filterw must be extended with these parame-

ters as well. It will not always be a box filter. For example, in the case ofλ , a typical CCD camera’s

filter is described by the plots in figures 3.9 and 3.11 from the previous chapter.
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It is also acceptable to sample derived parameters that correspond to no particular part of the

physical capture system but are instead derived values. For example, chapter 8 combines imager

depth, aperture size, and a post-processing scale correction into a derived parameter calledz that

selects between a near-focussed sub-image, far-focussed image, and a pinhole image.

The specific parameterization chosen for a problem is thus the choice of the implementor; suc-

cess at finding a solution will likely rest on whether the chosen parameterization is well-suited to

the problem. Although it is useful to chose statistically independent (orthogonal) parameters, it is

frequently not practical to do so. For example, the blue and green channel’s filter responses overlap

significantly for the typical CCD, so samples corresponding to different wavelengths have non-zero

correlation.

4.3 Range, Domain, and Shorthand

As described, a multi-parameter video is a real-scalar-valued discrete function. It measures integrals

of radiance, so the range is the set of non-negative numbers. In practice, the range is frequently

linearly scaled to a unitless [0, 1] range where 1 is the brightest value in a video with no over-

exposed pixels and 0 is the dimmest value.

What is the domain of a video? Because any parameter of the imaging system, whether funda-

mental or derived, is eligible to act as a parameter of the video, there is no fixed domain. Before

working with a particular multi-parameter video I always describe its parametrization. Any funda-

mental parameter not in that parameterization is assumed to be held fixed for the experiment. Note

that holding a parameter fixed does not imply a narrow filter for it; e.g., in the case of wavelength,

a monochrome image has a singleλ sample but the the extents ofw are large for that parameter

because all visible wavelengths are in the domain of integration.

Because there is a fixed parameterization for each experiment, the reader can detect missing pa-

rameters in an expression. Missing parameters are used as a convenience notation for sub-domains.

For example, take the context of the space-and-time parameterization from equation 4.2. In that

context, the value of an expression likeI [x,y] is a new discrete function of one parameter,t, i.e.,
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it is the 1-pixel video over all time1. This concept is straightforward if one slips into thinking of

multi-parameter videos as multidimensional arrays;I [x,y] is a sub-array, which is denotedI(x, y,

:) in Matlab. This notation means that in an equation it is safe to read omitted parameters as ones

that do not vary in that equation. For example, when parametersλ andt are omitted in an equation

(as they often are), that equation holds for allλ andt.

Many equations have the same form inx andy, but including both spatial dimensions creates

burdensome notation. As is common in image processing literature, I frequently omity and describe

the equation as if the image were “1D.” This contradicts the missing parameter notation, but I trust

it will be obvious to the reader what is meant in each case.

4.4 Operators

All of the usual pointwise arithmetic operators are available to apply to two multi-parameter videos

on the same domain. These are inn particular: addition (a+b), subtraction (a−b), multiplication

(a∗b or a b), and division (a/b). Where one video’s parameters are strict subset of the other’s, let

the video with the smaller parameter set be spread. For example, let modulation of a color video by

a monochrome video produce a color video:

α[x]F [x,λ ]
∣∣
x′,λ ′ = α[x′]F [x′,λ ′]. (4.3)

Let scalar constants be spread across all parameters. Note that subtraction may produce multi-

parameter images with negative values (1−α is a common one).

Let the spatial convolutionF⊗G of two videos have the same domain asF . It is computed by

first extending the spatial domain ofF by half the extent of the spatial domain ofG, so that it the

result well defined near the edges of the imager, and then cropping back to the domain ofF after

the operation. In Matlab, this is implemented byconvm(F, G, ’same’). The temporal and other

parameter-based convolutions are similarly defined, but are not used in this thesis.

Let disk(r) be the function that returns a normalized, discrete 2D disk filter kernel with radius

r pixels as a video with two parameters,x andy (that is, theresult has two parameters). Radius

1Those familiar with functional programming languages may recognize this as acurried function.
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r may be any real-number. Since the output is discrete, let the disk be defined as an image of an

anti-aliased disk with unit integral. Whenr < 1
2, the disk becomes a impulseδ that is one at[0,0]

and zero elsewhere. Note that convolution with an impulse is the identity and convolution with a

disk is a uniform blur. In Matlab, this video is produced byfspecial(’disk’, r) / (pi*r*r).

4.5 Conversion to Matrices

I is the identity matrix (the bold font is to avoid confusion with the italicI used for images).In

is the n× n identity matrix. Recall thatrIc is the generalized identity previously introduced by

equation 3.3 for parallel projection.

Let Mi, j be the element at rowi and columnj of matrix M (the subscript onI has a different

meaning, but it is never necessary to index into the identity matrix). Note that matrices are indexed

exclusively by subscripts to distinguish them from multi-parameter video functions.

As previously mentioned, it is frequently useful to operate on the values in a multi-parameter

video using linear algebra. Although it is natural to define the coercion of a video to a matrix by

simply lettingMi, j = I [i, j], in practice that is not useful. Instead, videos are unraveled into long

vectors.

A vector hat denotes a multi-parameter video unraveled into a column vector along its dimen-

sions in order, such that

~F [x+W((y−1)+H(λ −1))] = F [x,y,λ ], (4.4)

whereF describes an image withW×H pixels and uses 1-based indexing. For example, say that

F represents the image on a2×2 imager with three color samples. Let its values, expressed as a
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three-dimensional array with integerλ , be:

F [λ = 1] :


 1 3

2 4




F [λ = 2] :


 5 7

6 8




F [λ = 3] :


 9 11

10 12




The unraveling,~F is the vector[12436879101112]. In Matlab, the unraveling is accessed asF(:).

Because an unraveled image is a matrix and not a function, it is indexed by subscripts. Linear

algebra operations like matrix-vector multiplication, inverse, and transpose operate normally on

these vectors.

It is often useful to create a diagonal matrix from an unraveled image or other vector. Letx be a

vector of lengthn. Let X = diag(x) be the diagonal matrix such that

Xi, j =





xi , i = j

0, i 6= j
(4.5)

With this notation in hand, many of the operations in subsequent chapters can be expressed

succinctly and clearly.

In closing, a thought about generality. Multi-parameter video typically has evenly sampled

values along each parameter, and all samples at all parameter-points are gathered. But one can

easily imagine a much less structured version with uneven sampling along parameters so that the

result is not a regular grid in sampling space. As a motivating example, consider the video captured

by 1000 parents at a graduation ceremony, where all are far enough form the stage that their videos

can be considered to have a common center of projection. The resulting collection of videos differ

along many parameters: temporal offsets (because they did not synchronize their start times), color-

response curves, focus, focal lengths, apertures, etc., but not in any regularly sampled way (Wang

and Yang [90] collect precisely this kind of irregularly sampled data). Both collections should still

be describable as a multi-parameter image. I don’t investigate the irregularly sampling further in

this thesis, but point to it as an interesting area of future work.



Chapter 5

Related Work

Computational videography is one of many names given to the field of producing new or better

output video streams from sets of input streams using a computer. This chapter reviews models

of the image formation process, systems for capturing image sets and the processes for calibrating

them, and then some of the hard problems in the field. These problems are hard in an empirical

and not provable sense–although efficient and robust solutionsmayexist, they have not yet been

discovered in the half century over which these problems have been active research.

For each problem the goal or ideal, often unacheivable, result is discussed and then previous

work is presented and evaluated. Novel contributions in this thesis over previous work are discussed

in the chapters that concerned with those contributions.

5.1 Capture Systems

Generalizing and extending previous work with multiple views of a single scene is the motivation

for the multi-parameter approach. Previous systems have relied on a variety of physical optics

techniques for creating multiple views. The most popular of these are beam splitters, which include

polka-dot mirrors and half-silvered mirrors; a pyramid of mirrors with tip on the optical axis; and

arrays of side-by-side cameras. An array of microlenses or micro-mirrors with a single imager is an

inexpensive way of implementing the camera array method. Table 5.1 summarizes a representative

subset of the prior work that uses these methods.

55
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Design Example Advantages Drawbacks

Dense Array of
side-by-side sen-
sors

[38] [3] [91]

Easy to calibrate (planar scenes).
Inexpensive to prototype.
Well suited for parallel process-
ing.

Parallax occlusions.
Only suitable for planar scenes.

Per-Pixel Filters [8] [61]
Easy to manufacture.
Easy to calibrate.
Automatically synchronized.

Cannot virtualize lens or aper-
ture.
Filter tiles require interpolation.
Hard to virtualize imager depth.

Mirror Pyramid
post-lens

[3] Compact; length not proportional
to splits.

Asymetric PSF; not suited to
defocus experiments.
Cannot virtualize lens or aperture.
Distorted projection requires
warping.

Pre-Lens Split-
ter Tree

[62]
Easy to calibrate
Compact.
High quantum efficiency.

Cannot virtualize lens or aperture.

Post-Lens Split-
ter Tree

[26] Can virtualize all parameters.
High quantum efficiency.

Large.
Hard to calibrate.

Table 5.1: Optical mechanisms for creating multiple copies of a view.

5.1.1 Beam Splitters

Prisms and half-mirrors are popular beam splitting mechanisms. They can be constructed to split

light into two or more paths, and the ratio of intensities directed to each path at each wavelength

can be adjusted. The cheapest and most common element is a half-silvered mirror. A drawback of

mirrors is that their orientation must be calibrated relative to the optical path. In contrast, sensors

placed immediately against the sides of a splitting prism are automatically registered up to a 2D

translation. In the case of 3-CCD cameras, a dichroic prism is often used to capture three copies of

the image, each representing a different spectral band. Prisms have also been used for high dynamic

range imaging [44].

In the SAMPL camera implementation from this thesis, the beam splitters are placed between

the lens and the scene. This allows the use of separate objective lens parameters (e.g., aperture size)

for each sensor. It also provides enough physical room in the splitting tree for us to introduce many

splits. An alternative is to split the light in between the lens and the sensor [62]. That alternative

shares a single lens over all sensors, which simplifies lens calibration and reduces lens cost while
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making calibration and filter changes more difficult.

5.1.2 Pyramid Mirrors

Another interesting way to create multiple copies uses a pyramid mirror placed behind the lens

[41, 3]. This is a nice solution because it creates a very compact optical path. However, it has

some drawbacks. It requires a large aperture, which leads to a narrow depth of field and limits the

situations to which it may be applied (in the limit, it is impossible to create a duplicated pinhole

view using a pyramid mirror). It is also non-trivial to divide light intensity unevenly between the

image copies, as might be desirable for HDR. Furthermore, the edges between the individual mirrors

cause radiometric falloffs as discussed in [3]. Such fall-offs, even when calibrated for, translate to a

measurable loss the effective dynamic range of each copy.

When a pyramid mirror is placed behind the lens, the point spread functions due to defocus

wedge-shaped instead of disk-shaped because each sensor’s effective aperture is a wedge. This

makes it difficult to fuse or otherwise compare images in which some objects are out of focus or

where the different image copies are captured with different focus depths. Objects outside the depth

of field appear not only defocused but also shifted away from their true positions.

5.1.3 Arrays and Alternatives

For scenes that are at infinity, there is no parallax and the optical centers of the sensors need not be

aligned so long as the optical axes are parallel. In this case, view dependent effects and occlusions

are not a problem for the imager. In practice, the parallax error may be tolerable for scenes as

near as 10 meters provided the depth range of the scene is not too large. In this case, a stereo or

other dense array of side-by-side sensors, e.g., [38, 91], can be used to obtain multiple copies of the

scene as if they were captured from the same viewpoint. Compared to a beam splitter system, the

cameras in a dense array receive much more light. However, a beam splitter system can operate over

a larger depth range and offers the possibility of sharing expensive optical components like filters

over multiple sensors.

One could use a mosaic of sensors to sample multiple parameters in a single image. The classic
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Bayer mosaic tiles single-pixel band-pass filters over a sensor, capturing three wavelengths with a

single monochrome sensor. Recently, filter mosaics have also been proposed for capturing other

imaging dimensions with high precision (see [63, 65]). The benefit of this approach is that it can be

implemented compactly and requires no calibration (once manufactured), making it ideal for many

applications. The drawback is that it trades spatial resolution for resolution along other imaging

dimensions, which is not desirable for some applications. It is also difficult to experiment with

aperture, spatial resolution, and timing effects in such a system, all of which are explored in this

paper.

5.2 Matting

Mattingor “pulling a matte” is a computer graphics technique used in the film industry for separating

the pixels of aforegroundobject from the pixels of thebackgroundin an image. The foreground can

then becompositedover a novel background to simulate the appearance of the object in the novel

scene. The image is typically a frame from a video sequence, where a time-coherent matte is desired

for the entire sequence. The practice of matting and recompositing against a novel background is

extremely common–it was first used commercially in the 1950’s on the filmBen Hur (1959) and

now almost every feature film uses digital matting and compositing techniques.

Matting is a valuable technology. Chuang argues persuasively [18] that visual effects are key to

the financial success of a film, and points out that the best-selling films of all time would not have

been possible without matting. In addition to being a core technology for the billions-of-dollars

entertainment industry, matting has applications in medical imagery and remote sensing where it is

necessary to separate data from multiple depth layers for analysis. Many computer vision algorithms

begin by segmenting an image into discrete objects at a pixel level. Matting solves the same problem

(albeit typically for only two objects) at a sub-pixel level. Another application for matting is thus

extending vision algorithms that use segmentation to sub-pixel precision.

The ideal matting algorithm takes as input a color video streamIrgb and outputs three streams:

a color, foreground-only streamαFrgb with premultiplied alpha; a color, background-only stream

Brgb; and a single-channel stream of the partial coverageα of each pixel by the foreground object.
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The ideal algorithm places no constraints on the input video. This means that both foreground and

background aredynamic(contain moving objects), they may overlap at locations where there is

no texture and identical color, the background contains objects at multiple depths, the camera may

move, and the illumination is natural (uncontrolled).

The ideal matting algorithm is unachievable in practice because too much scene information

is lost when creating a discrete 2D video of a continuous 3D scene. This was proved formally

by Smith and Blinn [82], and is readily apparent from consideration of the ambiguous cases. For

example, where foreground and background are visually similar and have no texture, there is no

distinction between them in a single frame. This ambiguity makes it impossible to discriminate the

objects in all cases. Even in a scene with texture, this ambiguous case can occur where objects are

under-exposed and appear black or are over-exposed and appear white.

A second reason the ideal matting algorithm is unachievable is that portions of the background

may be entirely occluded by the foreground. There is no way to perfectly reconstruct these occluded

areas and a real algorithm can only apply heuristics and interpolation to approximate them.

Even if the ideal matting algorithm were achievable, decomposition into foreground, back-

ground, and matte is insufficient for the idealcompositingresult because of interreflection. The

foreground and background objects affect each other’s images because shadows and reflected light

form a mutual environment.Environment mattingand its extensions by Zongker et al. [96] and

Chuang et al. [22] are methods for pulling mattes of transparent and reflective objects like glass

against known, structured light backgrounds.

Shadows are another way that foreground and background interact. When reconstructing the

background, it is often desirable to remove the shadow of the foreground object. Likewise, one

might wish to film a foreground against one background, pull its matte, and then re-light the fore-

ground with the environment of the new scene into which it will be composited. This has been

explored extensively by Paul Debevec’s group at ICT (see e.g., Debevec et. al [26]). One might also

wish the foreground to cast shadows on the new scene, as explored by Petrović et al. [72], Finlayson

et al. [34], Chuang et al. [21], and Cao and Shah [16]. Figure 5.1 shows a result from Chuang et

al. [21] for a shadow matting problem with a static background, camera, and light source with a
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dynamic foreground. The background is scanned with a shadow-casting stick to recover the effects

of geometry on shadow displacement. The foreground and matte are extracted with Chuang et al.’s

video matting [19] and then foreground and displaced shadow are composited into a novel scene.

Figure 5.1: Shadow matting example from Chuang et al. [21].

This thesis limits the discussion of matting to the classic problem of separating foreground and

background at sub-pixel precision, i.e., the 2D problem. It does not consider or further review the

larger 3D scene reconstruction, relighting, and compositing problem.

Matting is a hard problem. This follows from the informal argument that one cannot achieve

the ideal algorithm because there is insufficient information in the input. The formal reason that it

is hard is that the problem is mathematically underconstrained, which is shown later in this chap-

ter. The difficulty of the matting problem is also evident from the history of progress in solving

it. Matting and compositing have been active areas of research since the 1950’s, yet today there

is no previous system that can autonomously pull a matte without a severely constrained scene.

The apparent success that the film industry has enjoyed with matting has only been achieved by

institutionalizing the constraints of the blue-screen matting algorithm. Sound stages are equipped

with giant colored screens and the film crew actively works to avoid the many scenes for which that

algorithm fails.

Matting and compositing problems are posed for scenes with well-defined, even if hard to dis-

criminate, foreground and background objects. Assume these distinct objects of comparatively

narrow depth extent, so that they can be well-approximated as planes parallel to one another and the

image plane and and perpendicular to the optical axis. Let the image of the foreground plane against
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a black background beαF and the image of the scene background without the foreground beB. Let

α be an image where each pixel represents the partial coverage of that pixel by the foreground

object– it is essentially an image of the foreground object painted white, evenly lit, and held against

a black background. Note that the scale and resolution of the foreground and background images

in world space differs. Due to perspective foreshortening, the pixels ofαF andα correspond to a

smaller world space area than those ofB.

Porter and Duff’s classic paper on compositing [73] formalized and standardized the notions of

an alpha matte, pre-multiplied alpha, and the algebra of composition. They show that for a pinhole

camera, the image ofαF in front of (“over,” in their notation)B is given by linear interpolation:

IP = αF +(1−α)B (5.1)

Porter and Duff’s definition ofα and compositing rule holds only for sub-pixel coverage. That is,

the foreground object is opaque and partially occludes each pixel due to motion blur (sub-exposure

coverage), or because its silhouette lies within the pixel (traditional sub-pixel coverage). It can be

extended to model defocus (sub-aperture coverage of the pencil of rays from the pixel) by blurring

the images and changing the interpolation parameter at each pixel. Althoughα is frequently abused

in real-time rendering as an approximation to colored transparency, i.e., filtering, that is a different

phenomenon and is not accurately modeled by linear interpolation.

It is important to note that the variables in equation 5.1 have linear (γ = 1.0) radiance units

(W/m2). The pixel values stored in a video frame buffer and captured by many digital cameras are

commonly brightness or voltage values, which can be approximated as non-linear (γ ≈ 1.2) radiance

values. I suspect that a common but unreported source of error in many matting results is a failure

to convert to a linear space before matting. Doug Roble reports that this matches his experience at

the Rhythm and Hues studio working with experimental matting techniques [78].

Matting is underconstrained as posed. Recall that the goal is to recoverα and αF (and B,

although the background is frequently discarded) given the compositeIP. Under the pinhole com-

position model in equation 5.1 there are seven unknowns (Fr ,Fg,Fb,α,Br ,Bg,Bb) and only three

constraints(IPr, IPg, IPb), so there is not a unique input scene for each composite image. A matting

algorithm must therefore constrain the problem.
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Some matting approaches make matting tractable by introducing assumptions. Examples of

useful assumptions are: the background is blue, the background is low-frequency, the edges of the

foreground are within a narrow region, and the background is known. Other matting approaches

make the problem tractable by gathering more data, for example, an infrared color channel or im-

ages of the foreground against two different backgrounds. The new defocus difference matting and

defocus difference matting algorithms presented in this thesis use the data-gathering approach and

operate on sets of images that differ by defocus. Another way to solve an underconstrained prob-

lem is to appeal to the user.Interactiveor user-assistedmatting solutions pair an algorithm with a

painting tool. In such systems, a human being creates an approximate solution that is refined by the

algorithm, and then corrects any artifacts in the final matte. Matting began with the rotoscope, which

was an entirely user-driven solution, and evolved as researchers and engineers sought to reduce the

user’s burden.

5.2.1 The Rotoscope

The rotoscopeis a physical device for projecting live action footage onto a hand-animator’s can-

vas so that filmed objects can be traced and overdrawn, creating cartoons with realistic animation.

The projector and camera for capturing the final animation share a single lens to ensure perfect

alignment.

It was invented and first used by animator Max Fleischer in hisExperiment #1film in 1915 and

later patented in 1917 [35]. The same device was later used for manually tracing and hand painting

individual binary alpha mattes for each frame (e.g., in2001: A Space Odyssey). Foreground and

background can then be combined according to Porter and Duff’s compositing rules using the hand-

painted matte.

The obvious drawback to rotoscoping is that it requires significant time on the part of the ani-

mator. Working entirely in an artistic domain also limits the physical accuracy of the matte (it may

be appropriate for visual effects, but not necessarily for medical and scientific applications) and it

is impractical to manually pull mattes with fractionalα values, such as for smoke or wisps of hair.

Manual rotoscoping is still in practice, although today it is performed digitally, with software
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aiding the user by interpolating the matte between key frames. It is joined by digital blue-screen

matting as the current best practices for matting in the film industry.

5.2.2 Self Matting

It is possible to directly photograph an object and its matte using two cameras, two sets of lights,

and a background curtain. The first set of lights illuminates the object only. They are filtered so that

their spectrum contains no energy at a specific wavelength,λ . The second set of lights uniformly

illuminates the background only. They are filtered to contain only energy atλ . The cameras share

an optical path using a beam-splitter and are co-registered but have different wavelength responses

due to color filters. The first camera has a filter that absorbsλ and transmits all other visible

wavelengths. Through this camera, the background appears black and the foreground is illuminated.

The second, “matte” camera has the inverse filter. Through the matte camera, the foreground appears

black and the background is uniformly bright. The matte is thus the inverse of the video stream

captured by the matte camera. The color camera captures the pre-multiplied color directly because

the background is entirely black in its view. This process is calledself-mattingbecause the scene

produces its own matte and no further work is required to solve the matting problem. Smith and

Blinn also call this amulti-filmapproach [82].

The first self-matting system was by Petros Vlahos. His system [87] lit the scene with a sodium

lamp that naturally produces illumination at a single wavelength within the visible spectrum. One

drawback to the sodium lamp approach is that the color camera and color illumination must be

filtered. Using matte illumination outside the visible range (i.e., infrared and ultraviolet) avoids this

problem and has long been used (e.g., Vidor’s 1960 IR system [86]) to simplify the filtering process.

Self-matting techniques are still active in film production and research–see Fielding’s text [33] for

a description of those used in cinematography.

A recent research system by Debevec et al. [26] performs self-matting and compositing. Their

system uses visible and infrared cameras connected by a beam splitter to pull high-quality mattes in

a controlled studio environment. The background is a special cloth material chosen which appears

black under visible wavelengths and is highly reflective (“white”) under infrared light for an infrared
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camera. Flooding this background with infrared light therefore creates the image of a reverse matte

in the infrared camera, where background is white and any foreground object before it appears

black. The foreground is lit by a dome of LEDs, which are controlled by a computer to match the

lighting environment of the scene into which the foreground will later be composited. Because color

LEDs have little emission in the infrared portion of the spectrum, the lighting on the subject does

not corrupt the matte.

The obvious drawback to self-matting processes is that the lighting and background must be

carefully controlled. Thus it is inappropriate for shooting outdoors (natural lighting), on location,

or in scenes with large backgrounds, and for consumer-level film production.

The sodium lamp technique was used onMary Poppins(1964), but appears in few other major

films [78]. Infrared and ultraviolet mattes are used occasionally for objects where blue-screen mat-

ting fails; e.g., multi-colored or reflective surfaces. In general, however, filmmakers are averse to

techniques that divide light with beam splitters (a drawback shared with my system) and find the

process of using specific filters and backgrounds with specific reflectivities cumbersome. Infrared

shares these problems and is also believed to be blurry and noisy compared to higher-frequency

visible light [78].

5.2.3 Blue-Screen Matting

After his sodium lamp work, Vlahos invented the now-famous technique that won him his second

technical Oscar award:blue-screen matting. In a blue-screen system, a single camera films a fore-

ground object that contains no blue against a uniformly lit blue screen background. BecauseB is

known, occupies a single color channel, and has little overlap with the foreground in color space,

the matting problem is sufficiently constrained to solve for plausible values ofα andαF from a

single image.

Although it is not explicitly mentioned in the literature, there is some defocus error in blue-

screen matting. Blue-screen matting creates “pinhole mattes;” that is, the output is intended for

composition by Porter and Duff’s pinhole “over” operator. However the matte is pulled using in-

put from lens cameras. Although the resulting composite image is not physically plausible (theα
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channel and defocus will be slightly incorrect), the mismatch is rarely visually apparent. The ob-

servation that defocus can be approximated as pinhole linear compositing [5] underlies many other

vision systems, including the new defocus matting algorithms discussed in this thesis.

When Vlahos’ patents began to expire, Smith and Blinn introduced [82] blue-screen matting to

the research community and provided a detailed analysis of Vlahos’ methods. Vlahos’ original blue

screen method is described in a 1971 patent [88]. It computes the alpha and premultipled foreground

as:

α = max(0,min(1,1−k1(Ib−k2Ig))) (5.2)

αFr,g = αIr,g (5.3)

αFb = min(αIb,k2Ig) (5.4)

whereki are scene-specific constants set by a user. Increasingk2 improves selectivity at the expense

of blue-spill; it is typically on the range0.5< k2 < 1.5 [89]. The “no blue” requirement for the fore-

ground object is more formally given as color channels related byFb≤ k2Fg. The user interactively

adjusts the constants based on the scene until the matte is visually attractive.

For such a simple system and algorithm, the blue screen process has proven remarkably easy

for users to tune, is robust and temporally coherent, and gives good fractional alpha values at the

borders of the foreground. The color restrictions intentionally avoid shades of gray and human flesh

tones, which are the most likely colors for the foreground object in film production.

In subsequent patents [89, 23], Vlahos and his colleagues at Ultimatte refined the formula. These

refinements targeted a narrower area of the color space and addressed the major sources of artifacts:

blue spill (reflected blue light on the foreground object and around the edges),backing shadows

(foreground shadows on the background that should be considered part of the foreground object),

andbacking impurities(arising from an imperfectly blue background screen).

The blue screen technique has since been applied with other uniform background colors includ-

ing orange, black, and green. Green is the most popular for digital video (although it is common

to refer to all colored-screens as “blue screens” in deference to Vlahos’ original method). This is

primarily because the Bayer pattern of a digital camera has double resolution and sensitivity in the
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green channel [8]. It is also fortunate for daylight and other full-spectrum illumination, which tends

to have more energy in the center of the spectrum where the green wavelengths lie.

In practice, blue-screen matting requires more than a uniform-color screen–the screen must be

carefully lit to avoid shadows, maintain uniform intensity, and avoid reflecting blue light on the

subject. Of course the actor, lighting, and costume are restricted to avoid the uniform color of the

background. This means no blue eyes or blue jeans!

Blue-screen matting is so popular that artifacts due to violating these restrictions can occasion-

ally be observed during a television news cast. A weatherman commonly stands in front of a blue

background and the weather map is digitally composited in behind him. When the weatherman

wears a blue or green tie, the tie may disappear in the final composite and appear as a hole in his

chest. If the weatherman touches the screen and is poorly lit his shadow will be a darker shade

of blue than the rest of the screen and be non-zero in the matte. Instead of a shadow cast on the

composited map, the shadow then appears as a blue shape superimposed on the weather map.

Because colored screens are the best-of-breed practical solution for film production, the industry

has adapted its techniques and training to accommodate them. Sound stages are well equipped with

pull-down screens. Lighting, costume, and camera operator professionals are well-educated in their

use to avoid artifacts [78]. Thus the weatherman’s occasional artifacts are almost never observed in

feature films where there are many takes and sufficient editing time to remove footage with artifacts.

In 1995, it was estimated that 70% of a ChromaKey [58] operator’s time is spent retouching mattes

to correct artifacts [60].

5.2.4 Global Color Models

Smith and Blinn [82] note that blue screen matting algorithms create a ternary partition in the three

dimensional space of all RGB colors. The three RGB subspaces produced by this partitioning are

the background subspace whereα = 0, the foreground subspace whereα = 1, and the fractional

subspace that lies between them. Within this fractional subspace, the value ofα is linearly inter-

polated between the foreground and background subspace. Such a partition can also be viewed as

creating a mapping from (R,G,B) colors in the input composite directly toα values in the matte.
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Smith and Blinn call the RGB partitionsseparating surfaces. For blue-screen matting, the

separating surfaces are polyhedra close to theb = 1.0 plane. Because the separating surface is

based on a global color assumption (e.g., the background is blue everywhere), blue-screen matting

is considered aglobal color model. Several other global color models exist.

The simplest global color model is the threshold orluminance matte. It assumes a bright fore-

ground and dark (black) background. It then chooses the matte and pre-multiplied foreground as

α = kr Ir +kgIg +kbIb > θ (5.5)

αF = αI (5.6)

for a scene-specific intensity threshold0< θ ≈0.25< 1and color space constantskrgb≈ (0.3,0.6,0.1).

In the case of luminance matting the separating surface is simply a plane through RGB space with

normalkrgb and offsetθ .

Luminance matting can also be viewed asblack-screen matting, since it assumesB≈ 0. Lu-

minance matting is rarely used in film production today as a matting algorithm; however, it is a

common trick exploited by artists in paint programs like Photoshop to quickly strip a background.

Several global color model matting algorithms have been developed as derivatives of the original

blue-screen matting, such as ChromaKey, the Ultimatte, and Priamatte. These are all variations

on the colored-screen idea. The advantages they offer over Vlahos’ original colored screen arise

from better discrimination through a more detailed separating surface. For example, Mishima’s

ChromaKey[58, 59] begins with the two blue-screen polyhedra in color space centered around

the mean of the (user-specified) background color distribution. The user interactively moves the

vertices to grow the foreground partition and shrink the background partition as much as possible.

If the background actually is a uniformly lit colored screen, the background partition will shrink to a

point and the foreground partition will grow to the largest possible polyhedron that does not enclose

any observed foreground color. However, if the background has a wider distribution, its partition

will have non-zero area. As with other global color models,α is defined as the normalized distance

of a given input composite image pixel between the foreground and background partitions in color

space.
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The lighting and scene restrictions of global color models are unacceptable for on-location film-

ing and the potential artifacts make it undesirable for professional live television applications and

for use by amateurs on home movies. To approach the ideal matting algorithm, more sophisticated

methods have been developed. These address thenatural image mattingproblem, where the back-

ground and lighting are uncontrolled. Specifically, these new methods are appropriate for scenes

where the background color distribution is heterogeneous and is therefore not well-approximated

by a global color model.

5.2.5 Local Color Models

A global model of the separating surface means that the separating surface is invariant to pixel

position. This naturally restricts global models to operating on scenes where the global color dis-

tributions of foreground and background are distinct. In images of natural scenes, theglobal color

distributions of foreground and background commonly overlap. The distinction between objects is a

local one. For these scenes, foreground and background distributions are distinct only within small

neighborhoods. To address the natural image matting problem it is necessary to allow the surface to

vary between pixels as the background color changes, forming alocal color model.

Difference matting(also known asbackground subtractionandvideo replacement) uses a straight-

forward local color model. Assume that the background is static throughout a sequence, i.e., it does

not move, the lighting does not change as the foreground moves, and that the camera is static. Pho-

tographing the background before the foreground object is present in the scene directly produces

the background imageB. This is a perfect local color model for the background; at each pixel, the

precise background color is known. From this color model, a simple matte can then be pulled by

the observation thatα is small whereI ≈ B and large elsewhere. Formally,

α = min(1,max(0,k∑
rgb

|I −B|)), (5.7)

where scene-dependent constantk≈ 20is chosen based on the actual difference between foreground

and background color distributions.

Qian and Sezan’s method [76] extends the basic difference matting approach with a more so-

phisticated probabalistic model on normalized color data. The results of this model are rounded
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to a binaryα = 0,1 matte. To fill holes and produce fractional alpha values, they introduce an

anisotropic diffusion model at the border between foreground and background.

Difference matting assumes a known, constant background. This limits its application. For

scenes with dynamic backgrounds the assumption fails completely and a method for forming a

local color model without such perfect information is required.

5.2.6 User-Assisted Local Color Models

For other methods that use local color models more sophisticated than difference matting, the back-

ground is unknown (not blue, not static) and the camera is not static. Without those constraints,

the matting problem is again underconstrained and the major challenge is forming a good local

color model using only the input composites. Matting techniques that use local color models must

therefore introduce additional knowledge or assumptions about the background to give a unique

solution. Because human operators are very successful at solving the matting problem (e.g., with a

rotoscope), a good source of this additional information is a user. A successful strategy for matting

is to have the user paint a coarse matte for an image and then refine that matte using an algorithm.

User assistance casts matting as a machine learning problem. In this context the coarse matte is

the training set and the separating surface is a learned model of local background color statistic.

Because of the need for user input, the learning approaches are consideredtools instead of closed

systems or algorithms [80].

Tools are often employed within an iterative workflow. The user steers the algorithm by repeat-

edly modifying the training set until the matting system learns the correct model. It is common to

provide the user with a set of tools for painting corrects into the final matte where the algorithm still

produces artifacts, as it is often easier to fix a few small errors manually than reverse engineer the

ideal training set.

The hand-painted coarse matte is called atrimap segmentation because it partitions the the

image into three mutually-exclusive and collectively exhaustive spatial regions. The three regions

are namedknown background, where the user asserts thatα = 0; known foreground, where the

user asserts thatα = 1; and theunknown regionin which the alpha values are unknown and likely
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fractional. These regions are frequently represented as sets of(x,y) locations writtenΩB,ΩF , andΩ

and manipulated with set operators. The vertical bar operator,e|S, binds loosely and used to express

a relation that holds for expressioneon setS. It is a compact notation fore|xy∈S. The horizontal bar

is set inverse, so that̄Ω andΩ are mutually exclusive and collectively exhaustive.

Note well that the foreground, background, and unknownregionsof a trimap are a partitioning

of XY positions on the input composite. They are a completely distinct concept from the similarly

named foreground, background, and fractionalRGB subspacescreated by separating surfaces.

Let T be the scalar trimap image that is painted by the user with three values such that

T =





0 | ΩB

1
2 | Ω

1 | ΩF

(5.8)

Boundaries are also written in set notation, using the tightly-binding partial operator,∂ . Let ∂ΩF be

the boundary betweenΩF andΩ, ∂ΩB be the boundary betweenΩB andΩ, and the entire boundary

of Ω be

∂Ω = ∂ΩB∪∂ΩF (5.9)

Assume thatΩF andΩB never meet directly. Figure 5.2 shows a trimap painted in Photoshop for

an image of an actor’s head and shoulders with the regions and boundaries labeled. The black

region is the known background and the white region is the known foreground. The gray region

between is the unknown. Incorrectly classified pixels in the trimap cause incorrect training, but it is

desirable for the user to be able to paint the trimap quickly, without tracing around every feature of

the silhouette. It is therefore common practice to paint a very wide unknown region as shown, even

though the actual fractional alpha values may lie within a narrow strip. In the figure, the red lines

indicate the boundaries between regions.

The current best model for learning a separating surface is Chuang’s Bayesian matting [20, 19].

His significant matting thesis [18] compares the four major learning models in detail. Figure 5.3,

adapted from that thesis, summarizes the main differences between the Ultimatte corporation’s

Knockout algorithm [10, 11] by Berman et al. (packaged commercially as Corel Knockout), Ruzon
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Figure 5.2: Sample trimap and notation.

and Tomasi’s algorithm [80], Hillman’s algorithm [43], and Bayesian matting. Misihima’s Chro-

maKey [59] blue-screen matting algorithm is shown at the far left for comparison. The top row of

subfigures depicts a small area of trimap in XY image space. The gray band through the center of

each isΩ. ΩB is to the right in black andΩF is to the left in white. The bottom row of subfigures

depicts the separating surfaces learned by each model. The surfaces are shown in a 2D slice of RGB

color space and are intended to be abstract rather than concrete examples (the images from which

the surfaces have been learned are not shown in the figure).

Knockout computes the expected foreground color in a neighborhood around an unknown pixel

as the weighted average of pixels on∂ΩF . The nearest known foreground pixel receives the highest

weight and weights fall off linearly with distance to a minimum of zero at twice the distance of

the nearest foreground pixel. The expected background color is computed in a similar manner

using∂ΩB. In color space (Figure 5.3g), the local separating surfaces are through these expected

points and perpendicular to the line between them. Variations on this basic approach, including

more sophisticated projections in color space, are described in the patents [10, 11]. Knockout is

packaged as a plug-in tool for Adobe Photoshop and is traditionally applied to still images only.

The other methods are used with video, which is a harder problem because the mattes for successive

frames must be temporally coherent. Knockout was the first of the learning models (although its

learning method is a simple weighting). Compared to the more aggressive methods that followed,

the contributions of Knockout are in being both the first and most practical learning method–the

others have yet to see such widespread commercial usage.
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Ruzon and Tomasi use a more probabalistic model than the explicit surfaces of Knockout. They

were the first to use a sophisticated learned model. For each sub-region ofΩ, they counstruct a

bounding box that penetrates a small distance intoΩF andΩB. The foreground and background

colors in the box are treated as samples from unknown distributions. They fit an axis-aligned 3D

(RGB) Gaussian mixture model to both the foreground and background distributions. Each of the

foreground Gaussians is paired with a background Gaussian to form a probabalistic separating sur-

face. Figure 5.3h shows one such pair. Heuristics based on coherence and angle are used for both

the pairing and the color-space clustering into a small number of Gaussians. A third Gaussian mix-

ture model is fitted to the unknown pixels; theα value is the one that yields a distribution with the

maximum likelihood.

Figure 5.3: Learned separating surfaces from user-assisted matting algorithms.

Hillman observed that the Gaussians in Ruzon and Tomasi’s method are typically long and

skinny and simplified their model to oriented line segments fitted by principle component analysis

(PCA). Allowing orientation better captures transitions between colors and darkening of colors due

to lighting falloff, which is along the diagonals of RGB space. He also introduced the notion of pixel

marching, where the unknown values immediately adjacent to∂ΩF and∂ΩF are first recovered, and

the model is then re-evaluated to include that new data. Instead of a bounding box, the bounding

region is a circle, which helps eliminate directional dependence in XY space. There is still some
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order dependence because Hillman chose to march along rasters instead of strictly perpendicular to

∂Omega. Foreground, background, andα are recovered in a similar manner to Ruzon and Tomasi.

Bayesian matting extends Hillman’s ideas–pixel marching and oriented distributions–with a

Bayesian learning model. A Gaussian model is used, as in Ruzon and Tomasi, but the Gaussians

are oriented and learned by Bayes’ rule. A simple sum-squares metric of the difference over clus-

tered points in color space from their average gives the mean and covariance of the Gaussians for

foreground and background distributions. The distributions are paired off. A point inΩ is tested

against all pairs of Gaussians to recoverα and the one with the highest maximum liklihood is cho-

sen. A true mixture model would fit the point to all pairs and combine their results, but the simple

exclusion test was found to be sufficient and is mathematically simpler. Like Hillman, Bayesian

matting solves for a single pixel and then refines the color space model using that new value. Unlike

Hillman, Chuang chose to march inwards from∂Ω producing an orientation independent solution.

In order to produce video mattes, Chuang et. al [19] have extended Bayesian matting with a

method for interpolating trimaps between keyframes approximately nine frames apart. This reduces

the amount of user interaction required, however the user must still view the final sequence and

introduce new keyframes to correct artifacts. Chuang has also used Bayesian matting to build al-

gorithms that address other interesting matting problems including shadow matting [21] and more

effective blue-screen matting [18].

It is hard to compare the learning based approaches in a fair manner because they are highly

dependent on user input. If the user chooses a good trimap, all of these methods produce excellent

results. The common mode of operation is for the user to refine the trimap until a satisfactory result

is achieved. This is a strength of the learning approach, since the control is intuitive and visual.

5.2.7 User-Assisted Gradient Methods

A separating color model is not the only way to solve the matting problem. An alternative family

of matting algorithms based on the partial derivatives of the composition equation has proven very

successful. Like the learning methods, these gradient methods also employ user input in the form

of trimaps to reduce the scope of the problem.
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Mitsunaga et al.’s Autokey system [60] pulls a matte from an image and a trimap by making

assumptions about the gradient and frequency content. Autokey assumes that the scene is low

frequency. Specifically, it assumes that bothF andB contain no high frequencies near a curveC.

CurveC runs throughΩ such thatα = 1
2

∣∣ C, makingC mostly parallel to∂Ω. CurveC is oriented

so thatΩB is on the left andΩF is on the right as the curve is traversed (i.e., the background is

outside a clockwise-winding). In Mitsunaga et al.’s original implementation, the user paints theC

path directly and the system infers the foreground, background, and unknown regions, however it is

easier to describe the system using the explicit trimap regions.

By AutoKey’s low-frequency scene assumption, high frequencies inI within unknown regionΩ

can be attributed only to changes inα. These frequency constraints can be expressed as constraints

on the gradients of the images:

∇F ≈ 0
∣∣ Ω

∇B ≈ 0
∣∣ Ω. (5.10)

The gradient of Porter and Duff’s over composition is given by the chain rule:

I = αF +(1−α)B (5.11)

I = α(F−B)+B (5.12)

∇I = ∇B+(∇α)(F−B)+α(∇F−∇B) (5.13)

Substituting the constraints from Mitsununga et al.’s low-frequency assumption equation 5.10 into

the gradient of the composition equation, the expression for the composite image gradient simplifies

to:

∇I ≈ (F−B)∇α
∣∣ Ω, (5.14)

which gives a partial differential equation for theα gradient,

∇α ≈ 1
F−B

∇I
∣∣ Ω. (5.15)

To simplify this to a scalar equation, Mitsunaga et al. reduce color images to grayscale. Any

linear combination of color channels is sufficient, however, by projecting the differenceF−B onto
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a color axis approximately perpendicular to the average difference over the whole image, AutoKey

increases the signal-to-noise ratio. AutoKey further increases selectivity by computing weighing

the gradient computed from this grayscale image. The weight factor is the dot product of the actual

and expectedα gradients, where the expected gradient is perpendicular to pathP. This weighting

effectively diminishes the gradient magnitude in areas that have small hue variation and are therefore

likely entirely from the foreground or background. LetG be the single-channel projected, weighted

difference image ofF andB.

Given a pathP : p(t) = (x,y), α is related to its gradient∇α by:

α(p(t)) = α0 +
∫

P
∇α(x,y) ·dp(t). (5.16)

Substituting theα gradient approximation from equation 5.15 and the enhanced imageG for F−B

gives the following solution to the partial differential equation forα:

α(p(t)) = α0 +
1
G

∫

P
∇I(x,y) ·dp(t), (5.17)

whereα0 is determined by the boundary constraints,

α0 =





0 | ∂ΩB

1 | ∂ΩF

(5.18)

Figure 5.4 shows mattes pulled for four frames by AutoKey (figure from [60], at approximately

the same resolution as the original paper). The input composites,I , are on the top row. They show

consecutive frames of a player in a sporting event. The player is viewed from behind with his yellow

pants prominent in the frame. Result mattes,α, are on the bottom row of the figure. The red curves

on the input images are piecewise cubic curves comprisingC. The leftmost curve is drawn by the

user, who has chosen to pull a matte where the player’s pants are the foreground and the stadium

and player’s upper body are the “background.” The curves in subsequent frames are propagated

forward by the system through an assumption of temporal coherence. They are adjusted by the user

before the final matte is pulled.

The AutoKey results are good for the sequence in figure 5.4. The mattes are clean, with sharp

edges, and appear time coherent. As has been the case throughout the history of matting, the mo-

tivation for further research was not that previous results were poor, but that previous results were
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Figure 5.4: AutoKey matting result from Mitsunaga et al. [60].

excellent and it was desirable to achieve similar results for a larger class of scenes and with less user

input. In the case of AutoKey, the next more general step was to obtain good results for scenes with

fine features like hair and large areas of fractionalα values. The Poisson Matting method [84] builds

on AutoKey by first extending the gradient math and then adding trimaps to help solve it (although

I have described it using trimaps, the original AutoKey implementation used directed parametric

curves nearα = 0.5 as user input).

The low-frequency scene approximation (equation 5.15) can be expressed as a Laplace problem

of the form

α = argmin
α

∫

Ω
||∇α−∇I ||2dA (5.19)

with Dirichlet boundary condition

α = α0
∣∣ ∂Ω. (5.20)

whereα0 is given by equation 5.18 as before.

The advantage to casting theα equation as a Laplace problem is that this is a well-known partial

differential equation form. The solution to the Laplace problem is given by Poisson’s equation,

∆α = div(∇I). (5.21)

Many Poisson solvers exist. For a smallΩ, α may be obtained by directly solving a linear

system. For ill-conditioned systems or largeΩ, the Gauss-Seidel solver is frequently applied.
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This Laplace/Poisson formulation is popular in computer graphics. It has been used by Fattal et

al. [30] to create high dynamic range imagery, by Perez et al. [71] to seamlessly insert patches into

images, and by Raskar et al. [77] to fuse day and night images of the same scene. As noted by Perez

et al., there are many other seamless editing techniques (e.g., [15, 28, 51]) that are mathematically

equivalent to solving the Laplace problem.

Sun et al.’s Global Poisson Matting [84] applies the Poisson formulation to matting. They further

provide a suite of local tools to manually clean up the resulting matte, which are not discussed here.

Poisson matting solves the Poisson problem forα on Ω, where the boundary conditions are given

by the trimap, and the gradient is given by equation 5.13. That is, high frequencies inα come from

the pinhole image and low-frequencies from the user-drawn trimap.

Standard practice for solving the Poisson equation is as follows. Laplace’s equation constrains

real-valued functionα over regionΩ to have boundary values given byL and gradient given by∇I :

∇α = ∇I
∣∣ Ω (5.22)

α = α0
∣∣ ∂Ω (5.23)

That is, the low frequencies should come fromL and the high frequencies fromI . One cannot

usually satisfy both constraints simultaneously, so this becomes a minimization problem. LetE(α)

be the real-valued function measuring the squared error in the gradient ofα compared to the desired

gradient,

E(α) =
∫

Ω
||∇α−∇I ||2dA (5.24)

One can now solve the minimization problem onE(α):

α = argmin
x

E(x)
∣∣ Ω (5.25)

α = α0
∣∣ ∂Ω (5.26)

Suppose there is a functionh that is zero on the boundary ofΩ and nonzero elsewere. Letα? be

the unknownα that minimizesE and letg(e) = E(α? +eh), the error of perturbing the minimizing
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solution by scalare times functionh. Sinceα∗minimizesE, clearly for arbitraryh, e= 0 minimizes

g, so

∂g(e)
∂e

∣∣
e=0 = 0 (5.27)

The partial derivative with respect toe is given by:

∂g
∂e

=
∂
∂e

∫

Ω
||∇(α? +eh)−∇H||2dA (5.28)

=
∫

Ω
2(∇(α? +eh)−∇I) · ∂

∂e
(∇α? +e∇h)dA (5.29)

= 2
∫

Ω
∇(α? +eh− I) · (∇h)dA (5.30)

Substituting into equation 5.27, ate= 0:

∫

Ω
h∇(α?− I) · (∇h)dA= 0 (5.31)

Integration by parts gives:

∫

∂Ω
h∇(α?− I)−

∫

Ω
∇∇(α?− I) ·h dA (5.32)

The left-most term is zero because we assumedh = 0|∂Ω, so

∫

Ω
∇2(α?− I) ·h dA= 0∀h (5.33)

This is true if and only if:

∇2α? = ∇2I , (5.34)

which is Poisson’s constraint, frequently written as

∆α? = div(v) (5.35)

where div= ∇·= ∂
∂x + ∂

∂y, ∆ = ∇2, andv = ∇I is theguidance vector field(denoting that only the

gradient ofI is important).

With the Poisson and boundary constraints, solve a linear system forα that minimizes the sum-

squared error. Assume discreteI , α0, andα unwrapped into vectors of lengthn. Let m be the mask
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vector forΩ̄ such thatm= 0
∣∣ Ω andm= 1

∣∣ Ω̄. Let M = diag(~m) be the diagonal matrix formed

from the unraveled mask. Using the mask, the constraints can be written with matrix products

instead of set notation as

M~α = M~α0 and

(I−M)∇2~α = (I−M)∇2~I . (5.36)

Let Λ be the matrix that computes the Laplace of a matrix unwrapped into a vector. BothM and

Λ are sizen×n, but are sparse with only O(n) elements each. The solution toα is now the solution

to the sparse2n×n system:


 M~α

(I−M)Λ~α


 =


 M~α0

(I−M)Λ~I


 (5.37)


 M

(I−M)Λ





 ~α

~α


 =


 M

(I−M)Λ





 ~α0

~I


 (5.38)

Note that the constraints in equation 5.36 apply to different elements of the vectors sinceM and

I−M are disjoint. This allows us to simplify the system to ann×n problem on sparse matrices:

(MΛ+ I−M)~α = MΛ~I +(I−M)~α0 (5.39)

~α = (MΛ+ I−M)†(MΛ~I +(I−M)~α0). (5.40)

For smallΩ (2000 unknown pixels) and images (256× 256), a modern CPU can solve this

system in about 20 seconds. Bolz [14] reports great success at solving similar sparse problems even

faster using graphics hardware. For largeΩ the specialized Gauss-Seidel solver has been reported

to give good results for this problem [84, 71].

5.2.8 Defocus

Thus far I have described work in the computer graphics literature that directly targets the matting

problem. The general problems of scene reconstruction and object recognition are the core of com-

puter vision. The new matting method presented in chapter 8 combines ideas from graphics like the
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trimap and theα, F , B scene model, with ideas from vision like defocus and regularization. This

subsection reviews the vision work that underlies the matting in this thesis.

A simple characterization of a defocussed object is that it is blurry. Chapter 3 showed that this

is because the lens camera image of a defocussed plane of constant depth is the convolution of an

image of the aperture with the pinhole image of the plane.

Both Asada et al. [5] and Bhasin and Chaudhuri [12] observe that the image of a defocussed

plane in front of a focussed plane is similar but not identical to the image produced by blurring

the near plane and then compositing. They examine the discrepancies between ideal optics, various

Fourier approximations, and real images. Asada et al. propose an approximation called the reversed

projection blurring for modeling defocus near object edges. From it, Asada et al. developed a

method [6] for reconstructing object depth at sharp edges by comparing images with different planes

of focus. Figure 5.5 shows the main result from that technique. The five images on the left are from

a static scene captured with varying focus parameters. The scene contains two toy dinosaurs about

1m apart on a desk. On the right is an image in which depth discontinuities have been marked as

black. Depths are computed at each of the black pixels. The results are very precise for the table

edge, where the depth slope is nearly perfectly linear and the standard deviation is 3.5 mm from a

fitted line. Asada et al. contrast this with previous depth from defocus approaches on a single image

(e.g., [46])which tended to produce less stable output.

Figure 5.5: Depth edges from defocus by Asada et al. [5].

In general, the problem of depth-from-defocus is well studied [92, 64, 39, 17, 81, 62, 69, 29, 24].
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The best video results are by Nayar et. al [62], who report better than 99% accuracy for 30 fps

512×480video of scenes containing small polyhedral objects using active illumination.

Figure 5.6: Depth from defocus video with structured active illumination by Nayar et al. [62].

Favaro and Soatto [31] created a depth-from-defocus scene reconstruction method that models

a scene as a set of surfaces at different depths. Using a still camera, they capture a series of images

focussed progressively deeper into the scene. Given that all images must come from the same

underlying scene, they use a non-linear optimizer to search for a set of surfaces and depths that

plausibly model the scene. To constrain the problem they assume that the background object is

either wholly visible or wholly occluded at each pixel and that there is strong depth coherence. This

is equivalent to finding a level set for the matte in the matting problem and producing a binaryα

result. In addition, they introduce regularization terms on the color channels that helps the optimizer

converge to a plausible solution. Figure 5.7 shows a typical input scene and the capture system. The

scene consists of a highly textured background containing the acronym “IEEE” and a highly textured

foreground.

Figure 5.8 shows the reconstructed depth and color information for the scene. Although the

scene is assumed to comprise a set of objects at different depths, the depth within an object may

vary. As with other depth-from-defocus methods, the scene chosen is small in order to obtain large

PSFs and is highly textured to aid in detecting defocus.

Schechner et al. [81] were the first to use a depth-from-focus system to recover overlapping ob-

jects with fractional alpha. They drive a motorized CCD axially behind the lens to capture hundreds

of images with slightly varying points of focus. Depth is recovered by selecting the image plane

location that gave the best focussed image (this is similar to how autofocus works in commercial
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Figure 5.7: Multi-focus capture setup and input by Favaro and Soatto [31].

cameras). This method is limited to static scenes and requires very high frequencies everywhere.

In contrast, our optimizer is driven towards a correct solution even in low-frequency areas by the

regularization terms.

For defocus experiments, it is common to use small objects. Small objects are good because

the aperture is large compared to them, so the PSFs are large and the defocus effect is magnified.

Chapter 8 discusses techniques that extract information from defocussed images of human-sized

objects where the PSFs are relatively small.

Chapter 8 describes a new algorithm that extends Favaro and Soatto’s ideas to solve the matting

problem. The major challenges are working with small PSFs and large objects, recovering a matte

with accurate fractional values, and solving the problem efficiently in both space and time.
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Figure 5.8: Scene reconstructed from defocus by Favaro and Soatto [31].



Chapter 6

Optical Splitting Trees

Beam splitting is a widely used method for creating multiple geometrically similar but radiometri-

cally controlled images of a scene. However, acquiring a large number of such images is known to

be a hard problem. This chapter introduces optical splitting trees that can recursively split a monoc-

ular view of a scene a large number of times. In this tree, the internal nodes are optical elements

like beam splitters, filters, and lenses, and the leaves are video sensors. Varying the optical elements

allows one to capture at each virtual pixel multiple samples that vary not only in wavelength but

also in other sampling parameters like focus, aperture, polarization, exposure, subpixel position,

and frame time. I begin with a motivation of splitting trees, present a diagram system for describing

them, discuss desirable properties of a tree, and then show several interesting trees.

This chapter concludes with a discussion of the physical layout necessary to implement an op-

tical splitting tree. I offer a good layout for eight cameras with up to 15 filters inside the tree. This

may be the optimal layout; I prove that it is impossible to implement a splitting tree with an arbi-

trarily larger number of nodes in a finite number of dimensions (e.g., 2D or 3D) if the components

are restricted to integer grid points.

6.1 Multiple Views

In the context of computer vision, multiple images that are geometrically similar but radiometrically

controlled are useful for many applications. These include such as high dynamic range imaging, fo-

cus/defocus analysis, multispectral imaging, high speed videography, and high resolution imaging.

84
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Beam splitting is widely used to create multiple reduced-amplitude copies of the plenoptic field, so

that similar sets of light rays may be captured by different imaging systems at the same time. This

allows different images of the same scene from the same viewpoint, the goal of the SAMPL camera.

I informally refer to this process as “creating multiple copies of an image” and “creating multiple

views.”

In order to create multiple copies of an image, one must ensure that the optical paths to the

sensors are geometrically similar. All paths must have the sameoptical length, so that the image at

each sensor has the same size. The optical axis must enter the sensor perpendicular to the imager.

Prior to introducing filters, each path should have the same transport characteristics, i.e., the path

itself should not produce filtering unless that is explicitly desired.

Creating the geometrically similar paths is a challenge because it requires precisely locating

all elements, which have six degrees of orientation freedom and are each subject to manufacturing

abberations that distort the plenoptic function away from the ideal. Creating multiple copies of an

image has been demonstrated in various contexts that were reviewed in chapter 5. Rarely have more

than three copies of an image been created. This chapter develops a scheme for expressing and

building systems that contain more than three views. I have used this scheme, the splitting tree,

to capture as many as eight simultaneous views in practice. With640×480×30f pssensors, this

allows capture of a multi-parameter video with640×480pixels×3 colors×8 arbitrarily different

parameter settings per frame.

6.2 Light Amplitude is Precision

To generalize the notion of making multiple copies of a view, I introduce the concept of anoptical

splitting tree. The splitting tree is any set of optical elements that can recursively split a monocular

view of a scene a large number of times without excessive loss of light. Light is a resource, so

my philosophy is to direct light that cannot be measured at one sensor to another sensor instead of

discarding it. This contrasts with previous approaches to, say, HDR, that use neutral-density filters

to intentionally reflect light away from the sensor.

Consider the motivation for capturing multiple copies of an image–it is to later to combine them
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in interesting ways. The combined image hashigh precisionbecause it combines the precision of its

inputs. However, the combined image cannot have more information than the original incipient light

field, since that is what was sampled. From an information theory point of view, every split directs

some information down the left branch of the tree and some down the right (and, unfortunately, some

information is lost at a non-ideal splitter). The splitting tree is therefore not creating information

but partitioning the available information according to a predetermined measurement plan. The

splitting tree implements the measurement plan, allocating measurement precision proportional to

the amount of light transported along each path. In a physical implementation of a splitting tree it is

easy to observe when a measurement is imprecise because it appears noisy (for example, compare

the relatively low-light pinhole images in to the large aperture images chapter??). Under the photon

model of light it is obvious why light amplitude is equivalent to precision–more light means more

photons per pixel, which means smaller variance in the measured value per unit time.

A splitting tree is literally a tree in the graph sense. It has the topology of a tree, and the physical

layout of the components in such a system naturally assumes the geometry of a regular tree. More

importantly, from an analytic perspective, it can be represented by a filter system that is a tree. The

edges of the splitting tree are light paths and the nodes are optical elements. Nodes with a single

child represent filters and lenses. Nodes with multiple children are beam splitters. Leaf nodes

are image sensors (e.g., CCD arrays). The plenoptic field enters the system at the root. Although

the physical path length to each sensor’s optical center is identical, thetree-depthof a sensor (the

number of internal nodes between it and the root) may differ.

6.3 Abstract Representation

Figure 6.1 shows a schematic of a full binary splitting tree, viewed from above. Light from the

scene enters the tree at the dotted line near the center. The diagonal red elements represent half-

mirrors. Each mirror reflects some light at 90-degrees to the incipient optical axis, absorbs a small

amount, and transmits the remaining light along the optical axis. The gray disks represent lenses and

apertures. They are immediately before the sensors, which are represented by small cyan rectangles.

I designed this layout is designed to pack components into a small form factor without occluding any



87

Figure 6.1: Physical layout schematic for a full binary splitting tree with eight sensors.

optical path. The grey rotated rectangle is the boundary of the optical table to which the components

are bolted. Later in this chapter I explain why it is rotated relative to the optical axis.

Figure 6.2 (top) shows an abstract representation of same splitting tree. Because all paths from

the root to the leaves have the same physical length, the abstract representation need not preserve

distances. Angles are an artifact of building the physical system and also need not be represented.

What is left is a diagram in which only graph topology is significant. The tree has a branch factor

of at most two when the beam splitters are half-mirrors (as in our implementation). Other splitting

elements can produce higher degree nodes. When a set of internal nodes serve only to create copies

of an image and does not filter the view, we can collapse their representation into a single node with

many children, as shown in figure 6.2 (bottom). This representation also abstracts the nature of the

of splitting element that is being employed.

6.4 Filters

Creating multiple views is only interesting if the views are captured in different ways. Different

images can be captured by slight phase shifts in space and time. Slight translations of the imager

perpendicular to the optical axis produce sub-pixel phase shifts. These are useful for capturing

super-resolution images, e.g., [9]. Slight translations parallel to the optical axis produce a scale

difference in the image and focus at a different depth. The scale change is typically undone in
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Figure 6.2: Two abstract representations of the full binary optical splitting tree.

software, leaving focus as the only difference. Multi-focus images have applications for scene

reconstruction, e.g., [92]. Adjusting the timing offset between cameras produces high speed video,

e.g., [41].

Filter and lens components inserted as tree nodes can also differentiate the paths in a tree.

Figure 6.3 shows a tree with supplemental internal nodes that are band-pass wavelength filters. Each

filter transmits only a narrow range of wavelengths to the monochrome sensor at the leaf below it.

This tree produces multispectral video with eight color samples per pixel.

Figure 6.3: Band-pass multispectral splitting tree.

The drawback of using filters in this way is that they discard light. Assume a theoretically ideal

splitter with no loss and orthogonal band-pass filters with 100% transmission in their pass band.

Even with theoretically ideal components, each sensor receives only1
64 of the original light. Even

worse, 7
8 of the incident light is lost (converted to heat) by the system. This is because the eight-

way split immediately reduces each path to1
8 of the available light (conserving all energy), but the

band-pass filters each reflect7
8 of the 1

8 that they receive away from their corresponding sensors.
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Figure 6.4 shows an alternative splitting tree for multispectral imaging. This tree also produces

eight color samples per pixel. However, with ideal components it has zero light loss and each

sensor receives18 instead of 1
64 of the original light. The difference from previous tree is that this

efficient tree uses dichroic mirrors as splitting elements. Dichroic mirrors divides the spectrum,

transmitting half and reflecting the remainder. Stacking them allows creation of the same pass

bands as the previous tree, but without light loss. For a given budget, the filter-based tree may still

be preferable, however. Manufacturing large dichroic mirrors is expensive and band-pass filters are

readily available. Decisions like this are core to the process of designing a multi-view camera. The

splitting tree diagrams aid in the process because they strip the irrelevant aspects of camera design

and leave what is important–filters, lenses, sensors, splitting elements, and topology.

Figure 6.4: Theoretical optimally light preserving multispectral splitting tree.

For some applications like multispectral capture it is desirable to construct these balanced binary

trees in which sensors have the same tree depth and the beam splitters divide incident light evenly

between their children. In other applications it is useful to unbalance the tree. One may do so either

by using beam splitters with an uneven division ratio, or by creating a structurally unbalanced tree

where the tree-depths of the sensors vary.

Figure 6.5 shows one such an unbalanced tree. With the exception of the right-most leaf, there

are no filters in this tree, and the splitting elements are ordinary half-mirrors. The images produced

at each sensor are therefore identical except for amplitude–each sensor receives half the light of

its upstream nearest relative. The application for this tree is high-dynamic range video capture.

Chapter 9 shows results using this tree with tone mapping software to create range compressed

images.
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This brings out an important property of the splitting tree. For 50-50 beam-splitters, leaves in

the tree with the same depth receive the same fraction of the original of light.

Figure 6.5: Unbalanced splitting tree.

6.5 Physical Layout

The tightly packed physical layout in figure 6.1 is not accidental. It took several design iterations

to construct a tree that did not occlude itself (as an exercise, put away the figure and try to draw

an eight-leaf tree with equal path lengths and right angle splits; you’ll quickly see the challenge!)

The first viable layout that I discovered was several times larger than the one in figure 6.1 and

very awkward to use because most cameras blocked physical access to their neighbor’s calibration

screws.

The final layout satisfies several geometric and practical design goals and was arrived at through

design and experimentation. The design goals are:

• Pack as many leaves as possible in the smallest footprint

• Place nodes at integer grid points on the optical table

• No node can obstruct another’s line of sight

• Nodes occupy slightly more than one grid point of space

• Leaves must allow enough clearance access to calibration screws

• All leaves must be the same optical distance from the root
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• All sub-paths meet at right angles

The final design meets these goals. Optical tables are square with a cartesian grid of mounting

holes. By placing the optical axes of the system at a 45-degree angle to this grid I was able to

pack the components more tightly (1 grid square was too little spacing, but
√

(2)/2 squares was

just enough) and use a small optical table because the tree’s bounding box is inherently rotated.

This layout supports eight leaves and15= 8+4+2+1 internal nodes (since a filter can be placed

immediately before the leaf). It is essentially a recursive layout, where each subtree rotates 90-

degrees away from its siblings to avoid obstruction.

The layout is good, but it raises the question of whether one can do better. Can the recursive

pattern iterate indefinitely, or is there a limit to the number of leaves that can be packed by this

scheme?

6.5.1 Proof

Theorem: It is impossible to build ann-leaf splitting tree on a regular rectangular grid in 2D or

3D for arbitrarily large n.

Geometric Proof: Consider a fully balanced binary tree withn leaf nodes to be built in 2D. The

leaves contain half the nodes of a binary tree, so there are an additionaln internal nodes arranged

in logn tiers radiating away from the root (plus or minus; all numbers in this proof suffer some

rounding error for specific values ofn). Assume a regular rectangular grid like the optical table, so

that nodes are located at integer locations, and that each node fully occupies one grid square.

In the layout of this tree, the distance from the root to each leaf must be proportional to the

height of the the tree. The distance must also be the same for all leaves, since the optical paths

must have uniform length. The grid constraint requires that the root-leaf distance be measured as

manhattan distance. The distance from the root to any leaf is thereforek logn grid units, wherek is

an integer.

Without loss of generality, assume the root is at the center of the layout. The leaves must lie

within a rotated square (diamond) shape about the root dictated by the constant-manhattan distance

requirement for the optical paths. The diagonals of this square (which are purely horizontal and
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vertical on the grid) have length2k logn because leaves may lie to either side of the root. The

area of the square within which all components must lie is therefore2k2(logn)2. A total of 2n

components are required to build the tree, and each component occupies one unit of space. For any

constantk and large values ofn, the area is required less than the space available since:

k logn <
√

n (6.1)

2k2(logn)2 < 2n. (6.2)

It is therefore impossible to build an arbitrarily large tree in 2D with regular rectangular grid spacing

between components. The same argument holds for 3D and higher; only the exponent on the log

changes.

Note: It may be possible to solve the layout problem in 3D using non-unit spacing. The difficulty

with a non-unit scheme is that the spacing between elements needs to fall off quickly, which tends

to bunch the components together so that there is no space. Other potential schemes are to allow

optical paths to cross one another, as is done in a fiber optic cable, or to allow non-right angles.

While it is interesting to speculate on the theory of such unusual designs, unfortunately they seem

impractical for a real camera.



Chapter 7

Capture System

Previous chapters described the theory of light, images, and camera design. This chapter marks the

transition from theory to applications in the thesis. It gives the concrete details of how to build a

reconfigurable splitting tree system that can be quickly adjusted to implement any particular splitting

tree.

The reconfigurable capture system hardware comprises:

• 8 color and 8 monochrome sensors

• 8 high-quality objectives (“lenses”)

• IR, visible band pass, and neutral-density filters

• 1 hot-mirror and 10 half-mirrors

• Computer with GeForce FX 6800 graphics and 1 TB of storage

• 24” × 36” aluminum optical benchplate

• Wheeled cart

• Battery pack for several hours of remote operation

• Custom mounting stages for all components

• Synchronization, data, and power cabling

93
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• Several thousand watts of lighting

• High-power digital projector

• Tripods, color charts, and other photographic apparati

Including labor costs, the total camera cost is about $25,000. Half of that cost is in the filters

and lenses (fortunately, many parts were already available in the laboratory at MERL). This is a

prototype and an extensive setup for experimenting with camera design; a non-mobile, eight-sensor

system with fewer filters could probably be produced for about half the cost.

I used standard components wherever possible. In a few places no existing part met the design

specifications at a reasonable price, so I manufactured a new component. This was the case for the

mobile workbench, the 6-dof mounting for the sensors, the hardware synchronizer, and of course

the calibration and capture software.

7.1 Mobile Workbench

In order to perform a wide range of experiments in and out of the laboratory, the entire camera

system is built onto the wheeled cart shown in figure 7.1. The cart is 2 ft wide so that it can pass

through standard doorways. The lowest level of the cart supports two battery packs and 100 ft of

extension cord to power the system in any circumstance. Above that is a rack holding the PC and

a shelf that supports the LCD monitor, mouse, keyboard, and utility tray. The utility tray houses

components that are not currently in use. The benchplate is bolted to the top shelf, at eye level.

The smallest optical benchplate that supports the eight-leaf splitting tree layout from the previ-

ous chapter is2 f t×3 f t with 1/2 inch in hole spacing (Edmund Optics part NT03-680). The cart

itself weighs about 60 lbs. The batteries and PC in a rugged all-metal case add another 60 lbs. The

benchplate weighs 40lbs, and the cart is typically loaded with tripods, lights, and props. The entire

setup is about 150 lbs. However, large pneumatic tires enable one person to move the cart and the

weight is an advantage when filming because it stabilizes the platform. When filming outside walk-

ing distance from the laboratory it is necessary to disassemble the system and transport the pieces

in a cargo van.
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Figure 7.1: The mobile optical workbench with the splitting tree system on top, at eye level.
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A custom foam case (not shown in the figure) fits over the benchplate to protect the system

and block stray light. Because the cameras are sensitive in the IR range as well as the visible

range, the case is painted black on the inside and covered with aluminum foil on the outside. An

unfortunate side effect of the aluminum covering is that the case appears amateur despite being

extremely functional.

7.2 Mounting Stages

The optical benchplate provides a high degree of precision in translation, however the sensors them-

selves have very loose manufacturing tolerance along all three translation axes and all three rotation

axes and do not align properly if simply bolted to the table. To overcome this deficiency I attach each

sensor to a 6-degrees-of-freedom mount and physically calibrate the system using video feedback.

The mount has several design restrictions:

1. Short (smally-dimension) for stability

2. Small footprint (smallx− andz− dimensions) for filter size

3. Low mass to reduce resistance

4. Inexpensive

5. Precise for micro calibration

6. Stable to maintain calibration

7. Independent axis control.

It is desirable that the mount be short because placement precision is controlled by the table. The

higher that components rise above the table, the longer the lever arms on which they pivot and the

less placement precision available. Also, high placement leads to more susceptibility to vibration

and miscalibration while shooting. It is desirable that the mount be small in other dimensions so

that the sensors can be packed close together. Close sensors mean a shorter path from the common

aperture to the sensors, which allows the beam splitters and filters to intersect the view cone at a
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smaller cross-section. Beam-splitters and filters have cost proportional to area, so a small mount

allows more affordable optical components.

The mount must have low mass so that higher stages do not place extraordinary stress on lower

stages. Ideally, the mass of the mount should be negligible compared to the mass of the sensor.

Since most possible designs involve either tensions or springs to resist adjustment screws, low mass

reduces the resistance strength required. All parts on the camera must be replicated at least eight

times, so expense is a constant constraint even for the prototype system.

The mount must be precise in order to allow adjustment on the order of tenths of a millimeter

and tenths of a degree because the CCD pixels are on approximately that scale. It must be able to

maintain its position stably so that the system does not need to be recalibrated too frequently. The

calibration system requires the ability to adjust each axis with a fair level of independence so that

error along each dimension can be reduced in sequence.

I investigated commercially available 6-dof stages. All were expensive and lacked stability for

the mass of our sensors (200g with an objective). Most of the commercial designs were focussed

on providing a larger range of motion but lower degree of stability compared to the requirements

for this project. The screw based translation mounts lacked convenient mounting mechanisms and

rotation systems. Ball-and-socket designs lacked independent axis control.

MERL engineers William Yerazunis, consultant John Barnwell and I collaborated to design a

comparatively inexpensive mount system satisfying the design constraints. We rejected several de-

signs involving ball bearings that introduced too much instability and imprecision and ones with

external springs that had large footprints before arriving at the following design. The detailed engi-

neering specifications for the parts are given in appendix B.

Figure 7.2 shows a complete sensor mount in false color, with a Basler video camera for refer-

ence. The mount contains three stages. Each stage allows translational adjustment of±30 mm and

rotational adjustment of±10◦ via thumbscrews (gold). The stage comprises a base and two moving

parts, the slide and T-plate, constructed of aluminum and two screws and springs. The light yellow

L-brackets provide 90◦ rotations between axes. The entire bracket bolts to the optical benchplate at

the cyan L-brackets.
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Figure 7.2: Sensor mount comprising three stages, seen from behind.

Thebase(figure B.1) is a rectangular slab with a U-gouge that runs the length and a hole straight

through the base at one end of the U-gouge. Theslide(figure B.2) rides in the U-gouge and provides

translational motion. It is a slab the width of the U-gouge with a cube tab that hangs down into the

hole at the end of the U-gouge, which is the width of the tab but longer along the translation axis.

The translation thumbscrew presses against one side of the tab and a strong spring opposes it. The

design is intentionally asymmetric: tab and the hole that it sits in are far to one side of the translation

axis. This is because the translation spring has a minimum length when compressed that must be

concealed within the body of the base to avoid interfering with other stages.

TheT-plateis bolted to the slide and may rotate freely about the bolt. The arms of the T project

slightly past one side of the short axis of the base. The rotation thumbscrew and opposing spring

mount through holes on the top of the slide and press against opposing arms of the T. The rotation

spring must be much shorter than the translation spring because the base is narrower than it is long.

This leaves the mount with less stability on the rotation axes and slight pressure can compress the

rotation spring, an undesirable quality. It is therefore crucial that the pitch stage is oriented so that

the weight of the sensor is opposed by the screw and not the spring.
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The entire mount is held to the table by a clamp consisting of a large plate and a bolt. This

allows gross translational alignment of the entire mount inxz and rotation abouty by sliding the

mount relative to the bolt-hole before tightening. The space between the two feet of the mount is

greater than1
2 inch, so that every possible translation over the surface of the optical table can be

achieved by sliding relative to the bolt hole or moving to the next adjacent hole.

7.3 Beam-Splitters and Filters

A beam-splitter is thin slab of glass that mirror reflects about 50% of incident light and transmits

about 50% to be transmitted. As previously discussed, manufactured beam-splitters are not ideal.

There is some light loss to absorbtion and diffuse reflection, and the mirror reflection and transmis-

sion ratios are not perfectly uniform over frequency and polarization. The beam-splitters are rated

for collimated, coherent light and not natural light. They are not perfectly flat, so minor distortion of

the viewed image can occur. In total, for a real system we can expect about 10% light loss on each

path and the reflected light to be slightly polarized. Image distortions are generally smaller than a

pixel; precise placement and orientation of the beam-splitter is a larger problem than imprecision

in the shape. Square beam-splitters in 25mm increments are standard optical equipment and are

readily available. The cost of manufacturing a beam-splitter is roughly linear in the surface area,

although splitters larger than 200mm on a side are rare and may incur special order costs.

Placing a beam-splitter on the optical path for an image sensor at 45-degree angle allows a

second image sensor to observe the same path (albeit left-to-right inverted). The two sensors then

share a virtual center of projection. The configuration is symmetric, so each sensor will image the

sum of two views. The first is along the original optical path, and the second is a garbage view of

somewhere inside the SAMPL camera, at a right angle to optical axis. I place a matte black card in

that second view. The net image captured is thus the view around the original path, albeit with only

50% of the original intensity.

For a splitting tree of depth three, the largest beam splitter (at the root) must be about100×
100mm2 and the smallest (close to the leaves)75×75mm2. Splitters any larger cannot pack closely

and are expensive; smaller splitters would restrict the field of view excessively.
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The hot mirror is a special beam-splitter that transmits visible light and reflects IR. I use a

100mm square hot mirror (a larger variation of Edmund Optics part NT46-388) for multi-modal

capture of IR and visible light.

Neutral density filters block light at a uniform rate across the visible spectrum. They are used

to match the amplitude of images captured with the same exposure time but different apertures (as

is done in the next chapter). The neutral density filters (Edmund Optics part NT54-737) used on the

SAMPL camera have an optical density of 0.6.Optical densityis the negative base-10 logarithm

of the transmission ratio, so this is a10−0.6 ≈ 25%transmissive filter. Less transmissive filters are

created by gluing multiple filters together.

7.4 Sensors

The video sensors are Basler a601fc Bayer filter color cameras and Basler a601f monochrome cam-

eras with640×480resolution at30 fps. The specifications for these cameras are those given at the

end of chapter 3. The cameras connect to the computer through the IEEE 1394 (FireWire) bus. PCI

adapter cards for the computer accept three FireWire devices each. The computer is equipped with

three of these, providing one port for each of the eight sensors and a final port for the external Lacie

hard drive on which recorded video is stored.

7.4.1 Objectives

Each camera is equipped with a50mmC-mount objective for a narrow field of view that matches

the100mm square root beam-splitter. Cosmicar and Pentax both produce high quality objectives;

the Cosmicar one was chosen because it had the larger aperture (f/1.4). Radial distortion and

chromatic abberation are negligible for these lenses.

7.4.2 Synchronization

The Basler cameras are synchronized through an external hardware trigger cable. Although com-

mercial triggering devices are available, I chose to build a hardware interface that allowed the com-

puter to directly control the hardware trigger. This was significantly less expensive (commercial
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trigger devices cost about $3000 and my solution contains about $20 worth of parts and 4 hours of

labor). It also allows independent computer control of the trigger signal for each sensor, which is

necessary for high-speed video capture.

The hardware interface is a cable that connects each of the eight data pins (numbered 2 - 9) of

the PC’s parallel port to the trigger pin (number 5 on the 10-pin RJ-45 port) of a different sensor.

The ground wire (pins number 18 - 25 on the parallel port, pin 6 on the camera’s RJ-45 port) is

shared between all sensors and the parallel port. Using a custom device driver1, the computer sends

bit patterns directly to the sensor through the parallel port. Because each sensor corresponds to

one bit, it can either trigger cameras independently, for example, to create a high-speed camera, or

simultaneously in order to provide synchronized video. Between trigger signals the parallel port

data bits must return to zero so that subsequent triggers can be distinguished.

The synchronizer is based on one Matusik built for the 3DTV system [53]; the variation used on

the SAMPL camera was so successful that a later version of the 3DTV demonstrated at SIGGRAPH

2005 incorporated my modifications.

The Basler cameras are designed to wait 1/30th of a second between frames, and then capture

a frame on the rising edge of the next square wave. This means that unless the triggering square

wave is precisely 30 Hz and synchronized with cameras, the frame rate may drop as low as 15 fps (a

similar problem occurs in rendering if one waits for the video refresh before updating the display).

I clock the trigger signal at 1000 Hz, which allows the cameras to asymptotically approach the ideal

30fps capture rate. At this30−ε fps rate, the cameras may have slightly longer than half the period

of 60 Hz fluorescent lights, producing the impression of pulsing lighting in the recorded video. I

therefore illuminate scenes with halogen bulbs or daylight.
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Figure 7.3: Optical components implementing a full binary optical splitting tree.
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7.5 Configurations

7.5.1 Full Tree

The optical path is visualized using a superimposed green beam. In the side view, the black backing

cards have been removed from the beam splitters to give a clearer view of the system.

The trees used in other experiments (except for multi-axis) are all subsets of this tree.

7.5.2 Matting

Figure 7.4 shows the configuration used by the matting application described in the next chapter.

The figure is oriented so that light from the scene enters on the right. The red line is a visualization

of the optical axis. It forks at the beam-splitter, which has been false-colored light blue for the

figure. The transmissive path leads to a pinhole video camera on the far left. The reflective path hits

a second beam-splitter and then passes through two neutral density filters (shown in yellow) along

each branch. Two sets of two filters are used because the filters are not large enough to cover the

entire field of view in front of the second beam-splitter. This is an important property of the splitting

tree–the filtering effects of the tree as a whole is unchanged if any filtering node is duplicated and

then pushed down into its child branches. This is equivalent to distribution in algebra; in practice,

passive optical filters are also associative and commutative, so filters may be freely moved through

the tree for implementation reasons so long as the total set of nodes along every path to a leaf

remains unchanged.

The camera on the lower right is focussed on the background of the scene; the camera in the

center is focussed on an actor. The black backing cards are visible behind the beam splitters in the

photograph.

7.5.3 Multi-Axis

This thesis describes single-axis video. Multi-axis arrays are also useful. Figure 7.5 shows an

eight-camera array I designed that is driven by the same capture system, creating a multi-axis, or

1There are many commercial and freeware drivers that allow direct access to ports under Microsoft Windows; in-
pout32.dll is the freeware solution I use.
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Figure 7.4: Pinhole, foreground-, and background-focussed camera for defocus matting.

“MAMPL,” camera. Applications for the array camera are not discussed further in this document.

See Vetro et al. [85] for the results captured with this configuration.

7.6 Computer

The system is driven by a single 3 GHz Pentium 4 PC running the Windows XP operating system.

A small LCD screen connected to the PC outputs the individual video streams for rapid feedback

during calibration and video capture (e.g., see figure 7.6).

The computer has 2 GB of RAM and 1 TB of disk. All data is recorded to pre-allocated buffers

in memory and then dumped to disk. For Bayer eight streams at full resolution the camera can

capture about 15 seconds of video before exhausting main memory. Zitnick et al. report that on

their system they are able to record eight high resolution streams directly to disk [95]. It should be

possible to achieve the same bandwidth with the SAMPL camera given more software infrastructure

and a faster disk.

7.6.1 Calibration

The difficulty of calibrating an optical system naturally increases with the number of elements.

Cameras that share an optical center are also more difficult to calibrate than systems using stereo
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Figure 7.5: Eight camera array for multi-axis multi-parameter video.

Figure 7.6: Screenshot of the Multi-parameter Video Player software.
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pairs where the images are not expected to align. I calibrate our system in three stages: First, I align

the beam splitters; second, I align the cameras; and third, I compute a homography to correct the

remaining mis-registration in software.

Rotations of cameras relative to the optical path can be perfectly corrected (up to the sampling

precision) by the homography. The optical paths within the system are generally short compared

to depths in the scene, so the position of cameras along the optical path (say, within the tolerances

provided by an optical table) is not critical. So the primary concern for calibration of the physical

components is translation of the sensors perpendicular to the optical axis, which produces parallax

that cannot be corrected in software.

I use half-mirrors for beam splitting, which must be rotated at 45-degrees to the optical axis. To

orient these, I place a lens cap over each camera and shine a laser through the first beam splitter.

This produces a single dot near the center of each lens cap. Working through the splitting tree from

the root to the leaves, I rotate the beam splitters until each dot appears in the center of the lens cap.

I then construct a scene containing a target image (five bulls eyes) printed on transparent plastic

as a foreground element and a background element of the enlarged target printed on poster board.

I move the foreground target until its pattern exactly overlaps the background target in the view

of camera 0. I then translate all other cameras until the target patterns also overlap in their views,

rotating the cameras as needed. Because our camera mounts do not rotate around the camera’s

optical center, the rotation can introduce a new translation error, making it necessary to repeat this

process several times.

Finally, I compute a homography matrix for each camera to map its view to the view of camera 0.

The matrix is computed from corresponding points that are either chosen manually or automatically

by imaging the movement of a small LED light throughout the scene. The automatic method is

convenient in cases where it is hard to visually choose corresponding points, such as when the

cameras are focused at different depths or receive different amounts of light for HDR capture. I

compute an affine matrix by solving the standard least squares problem given the corresponding

points. Although I have not done so, it is also possible to compute an arbitrary deformation from

the corresponding points to account for lens abberation.
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The calibration process takes about four hours for a single human operator. Most of the time is

spent adjusting the orientation of components on the optical table using wrenches and screwdrivers.

Fortunately, components can be locked down once a large splitting tree is built and calibrated.

Changing filters, focusing, adjusting apertures, and many other adjustments do not affect the branch

structure of the tree. Recomputing the homography takes about one minute.

I calibrate the physical cameras to within a few pixels and then correct remaining error in soft-

ware. The process is repeated after relocation because our camera mounts are easily disturbed.

The primary challenge is aligning the optical axes so that there is no parallax between cameras.

I place a large white poster of a quincunx pattern of five black bull’s eyes8m from the camera. I

place a transparent sheet printed with a small version of the pattern2m from the camera so that it

precisely occludes the distant pattern in one camera’s view. I translate the remaining cameras until

the distant pattern is overlapped by the near one in each view. As with the sights on a rifle, the

alignment of points on two planes under projection guarantees no parallax.

Focusing a camera also changes the size of the image produced, so even perfectly aligned cam-

eras produce differing images. I correct for this with an affine transformation in software. I have

used two methods with equal success. Before capturing data I shoot a scene containing a bright LED

moving perpendicular to the optical axis at the foreground camera’s midfield depth. The LED’s cen-

troid is easy to track (even when defocused) and provides a set of points from which I solve for the

least-squares transformation (called a homography matrix). I repeat the process for the far plane.

When it is inconvenient to use the LED (e.g., the far plane is in the center of a busy street), I can

also manually select feature points in a single set of three still frames after capture. Note that the

calibration process is performed only when the camera has been physically disrupted—I do not

calibrate each video sequence.

I color correct the images by solving a similar problem in color space. Here, the feature points

are the colors of an image of a color chart (figure 7.7 and the affine transformation is a color matrix.

I apply color and position correction in real-time to all streams in OpenGL on a GeForceFX

6800 GPU for both preview and capture. Each video frame is loaded into a rectangular texture

and rendered with the homography as the texture-coordinate transformation matrix and a fragment
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Figure 7.7: Color calibration chart.

shader that multiplies each texel value by the color matrix.



Chapter 8

Defocus Matting

This is the first of two chapters that discuss applications of the system, theory, and framework

presented previously in this thesis. Applications solve a problem, and one does not need to look

hard to find new problems in graphics and vision. Many of the classic problems that began these

fields have never been solved in a sufficiently general context. Thus most good new problems are

really old problems addressed without the simplifications that were introduced in the past.

This chapter tackles the classic matting problem of separating an image into foreground and

background elements. This is one of the oldest in computer graphics, which was first investigated in

the 1950’s. The practical solution to the matting problem is well-known to every film aficionado: the

blue-screen. More recent solutions use machine learning and gradient analysis techniques. These

compute mattes for natural images filmed without blue screens, but they require a user to edit most

of the frames and correct the final results.

There are three applications in this chapter: a practical solution to the static background mat-

ting problem called Defocus Difference Matting, a method for automatically computing trimaps

from multi-parameter video, and a more ambitious general matting algorithm called Defocus Video

Matting. The latter application uses ideas from the first two. It solves the classic matting problem

in the general case for the first time. Defocus Video Matting operates on video of fully dynamic

scenes, without the artificial constraint of a static or blue screen, and it requires no user interaction.

The key idea behind all three applications is to separate foreground and background using defocus

information encoded in multi-parameter video.

109
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Although it has not been previously used in the matting literature, using focus to discriminate

foreground and background is logical and intuitive. The foreground is the focussed area of an

image and the background is the defocussed area. However, making an accurate depth estimate

for objects based on defocus is an open hard problem in computer vision with a large body of

literature [12, 6, 5, 83, 92, 39, 69, 46, 29, 24, 81, 17, 62].

The object-depth from defocus problem is hard despite the seemingly intuitive process for solv-

ing it because the human visual system is very good at identifying defocussed objects but it does so

in a subjective high-level manner that depends on common sense reasoning that is not easy to re-

produce with an algorithm. Figure 8.1 demonstrates the difficulty. The goal is to classify the pixels

at the centers of the two marked boxes in (a) as focussed or defoccused. In the full image (a), it is

obvious to a human observer that the actor in the red sweater is in sharp focus and the background

is defocussed. Parts (b) and (c) of the figure show the square subregions under high magnification.

This is how an image processing system views the scene. Examining only these zoomed-in pixels,

it is no longer obvious that the center of region (b) is defocussed and the center of region (c) is in

focus. The hue and intensity gradients are small in each image, and none of the sharp edges that

people associate with in-focus images are visible in either. The red sweater is simply too uniform

and fuzzy of an object to appear sharply focussed. The subregions shown have hundreds of pixels,

which makes them very large compared to the neighborhoods that most image processing filters

use as kernels. A typical gradient discriminator has a 5×5 or smaller kernel and has no chance

of correctly classifying these images. To solve the matting problem efficiently, it is necessary to

not only determine that the red sweater pixel at the center of (c) is in focus with a real-time (small

kernel) filter, but to make that determination at a sub-pixel resolutionand to produce results that are

coherent over a sequence of video frames so that the edges of objects do not shimmer.

To solve this problem, I begin with an easier sub-problem of pulling mattes from images with

known, high-frequency backgrounds. The defocus difference matting algorithm in this chapter

solves this sub-problem and offers many of the practical advantages of blue-screen matting without

some of the disadvantages.

Defocus difference matting is based purely on the algebra of image formation. To solve the truly
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Figure 8.1: Closeup demonstrating the difficulty of determining focus at the pixel level.

general matting problem, the ultimatedefocus video mattingtechnique presented in this chapter

must go beyond the pure derivation to include terms based on the likelihood of a given solution.

This is analogous to how the human visual system probably solves the quandary of Figure 8.1: the

observed area of the red sweater islikely in focus even though it has no sharp features because other

connected parts of the image have the same hue and contain sharp edges. That is, adjacent and

similarly-colored pixels are likely from the same object and must therefore all be in or out of focus

together. In defocus video matting, “common sense” heuristics like this join expressions derived

directly from the image formation equations. The heart of the algorithm is a non-linear optimizer

for a huge sparse system of equations that seeks the a likely matte for an video sequence.

This chapter uses the notation introduced in chapters 5, 4, and 6. Table 8.1 is a reference for the

variables used in this chapter.

8.1 The Matting Problem

Previous work on the matting problem was reviewed extensively in chapter 5. A brief summary

follows in the next two sections to refresh the salient points for this chapter.

Video matting is the process of pulling a high-quality alpha matte and foreground from a video

sequence. Current techniques require either a known background (e.g., a blue screen) or extensive

user interaction (e.g., to specify known foreground and background elements). The matting problem
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α [·] Matte image for the foreground plane
δ Impulse function or small step, depending on context
B[·] Image of the background plane
β Manually-tuned regularization coefficient
C(·)[·] Image composition equation mimickingI
~E(·) Error vector function to be minimized (eq. 8.12)
ε Regularization term or small value, depending on context
φ ,γ Regularization terms
F [·] Image of the foreground plane
g[·],h[·] Point spread functions (eq. 8.25)
IP[·] Pinhole image (eq. 8.1)
IF [·] Foreground-focussed image
IB[·] Background-focussed image
I [·] Multi-parameter image combiningIF , IP, andIB
J Matrix of error partial derivatives (eq. 8.19)
K Number of pixels in the input image
N Number of pixels in the output matte
Q(·) Error function to be minimized (eq. 8.13)
∇ Gradient operator
⊗ Convolution operator
u Reconstructed scene; unknown in the optimization (eq. 8.11)
Ω Unknown region of trimap (eq. 8.8)

Table 8.1: Symbols used in defocus matting.

is generally under-constrained, since not enough information has been collected at capture time. I

describe a novel, fully autonomous method for pulling a matte using multiple synchronized video

streams that share a point of view but differ in their plane of focus. The solution is obtained by

directly minimizing the error in filter-based image formation equations, which are over-constrained

by a rich multi-parameter data stream. This new system solves the fully dynamic video matting

problem without user assistance: both the foreground and background may be high frequency and

have dynamic content, the foreground may resemble the background, and the scene is lit by natural

(as opposed to polarized or collimated) illumination.

Matting and compositing are some of the most important operations in image editing, 3D pho-

tography, and film production. Matting or “pulling a matte” refers to separating a foreground ele-

ment from an image by estimating a colorF and opacityα for each foreground pixel. Compositing
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is used to blend the extracted foreground element into a new scene.α measures the coverage of the

foreground object at each pixel, due to either partial spatial coverage or partial temporal coverage

(motion blur). The set of allα values is called the alpha matte or the alpha channel.

Because of its importance, the history of matting is long and colorful [82]. The original matting

approaches require a background with known, constant color, which is referred to asblue screen

matting, even though green is preferred when shooting with digital cameras. Blue screen matting

has been perfected for half a century and is still the predominant technique in the film industry.

However, it is rarely available to home users, and even production houses would prefer a lower-

cost and less intrusive alternative. On the other end of the spectrum, rotoscoping [?] permits non-

intrusive matting but involves painstaking manual labor to draw the matte boundary on many frames.

Ideally, one would like to pull a high-quality matte from an image or video with an arbitrary (un-

known) background, a process known asnatural image matting. Recently there has been substantial

progress in this area [80, 43, 20, 19, 84]. Unfortunately, all of these methods require substantial

manual intervention, which becomes prohibitive for long video sequences and for non-professional

users.

The difficulty arises because matting from a single image is fundamentally under-constrained [82].

The matting problem considers the input image as thecompositeof a foreground layerF and a back-

ground layerB, combined using linear blending [73] of radiance values for a pinhole camera:

IP[x,y] = αF +(1−α)B, (8.1)

whereαF is the (pre-multiplied) image of the foreground element against a black background, and

B is the image of the (opaque) background in the absence of the foreground. Matting is the inverse

problem with seven unknowns (α,Fr ,Fg,Fb,Br ,Bg,Bb) but only three constraints (IPr, IPg, IPb). Note

that blue screen matting is easier to solve because the background colorB is known.

This chapter advocates adata-rich imagingapproach to video matting. It introduces a novel

imaging setup that records additional information during capture, thereby constraining the original

ill-posed problem. This preserves the flexibility of non-intrusive techniques since only the imaging

device is modified, not the scene, while offering full automation. The additional information comes

from defocus: three pixel-aligned video streams are recorded with different focusing distance and
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depth of field.

8.2 Related Work

Most natural image matting approaches [20, 43, 19, 79] require user-defined trimaps to compute the

color distributions ofF andB in known regions. Using these distributions they estimate the most

likely values ofF andB for the unknown pixels and use them to solve the matting equation (8.1).

Bayesian matting [20] and its extension to video [19] arguably produce the best results in many

cases. But user-painted trimaps are needed at keyframes; this becomes tedious for long video se-

quences. We propose a solution that operates without user assistance and that can be applied as a

batch process for long video clips today and will eventually run in real-time on live video as it is

recorded.

In addition, robust estimation of color distributions works only ifF andB are sufficiently dif-

ferent in the neighborhood of an unknown pixel. The new techniques in this thesis can pull a matte

where foreground and background have similar color distributions if there exists sufficient texture

to distinguish them in defocused images. In cases where there are neither high frequencies nor

color differences, the natural image matting problem is insoluble. Where the defocus problem is

ill-conditioned, defocus matting introduces regularization terms inspired by previous matting algo-

rithms to guide the solver to a physically probable solution.

Poisson matting [84] solves a Poisson equation for the matte by assuming that the foreground

and background are slowly varying compared to the matte. Their algorithm interacts closely with

the user by beginning from a hand-painted trimap and offering painting tools to correct errors in the

matte. Defocus matting works best with high-frequency backgrounds, so it complements Bayesian

and Poisson matting, which are intended for low-frequency backgrounds.

The basic strategy of acquiring more pixel-aligned image data has been successfully used in

other computer graphics and computer vision applications, such as high-dynamic range [27, 61],

confocal [50], super-resolution [9], depth estimation from defocus [62, 92], depth estimation from

focus [70, 5, 92, 64]. The focus-based depth estimation techniques inspired our approach. How-

ever, they are not directly applicable to the natural video matting problem. First, reconstruction
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techniques cannot produce fractional alpha values, so they are limited to opaque super-pixel struc-

tures. Second, depth-from-focus requires hundreds of defocussed images for a single frame so it is

only appropriate for stills. Third, depth-from-defocus is only reliable with active illumination, and

for natural matting a passive technique that does not interfere with the scene is desirable. Infrared il-

lumination avoids visible patterns but does not work many scenes. This is because like radar, active

techniques work best with diffusely reflective surfaces and can give poor results on mirror reflective

or absorptive (black) surfaces that do not reflect the active illumination towards the camera, or in the

presence of IR interference, e.g., from direct sunlight. These drawbacks apply to active IR systems

like the Zcam [93].

The closest work to defocus matting is a scene reconstruction method by Favaro and Soatto

[31]. Both methods use defocussed images and both use gradient descent minimization of sum-

squared error, a common framework in both graphics and vision. They solved for coarse depth

and binary alpha; defocus matting solves for alpha only but achieve sub-pixel results and an orders

of magnitude speedup (precisely, O(image size)) by using exact differentiation. I work with color

video instead of monochrome still images, which necessitates a new capture system and calibration.

Color is needed to over-constrain the problem and video to reconstruct partly occluded background

pixels. I also extend Favaro and Soatto’s regularization terms; because matting equations can be

ill-conditioned at some pixels, finding good regularization terms continues to be an active area of

research, e.g., [4, 13].

Zitnick et al. [95] were the first to create a passive, unassisted natural video matting system.

They capture video on a horizontal row of eight sensors spaced over about two meters. They com-

pute depth from stereo disparity using sophisticated region processing, and then construct a trimap

from depth discrepancies. The actual matting is computed by the Bayesian matting [20] algorithm

on a single view; Zitnick et al.’s contributions are the physical system and stereo trimap extraction.

The defocus system described in this chapter also uses multiple sensors, but they share an optical

axis using beam splitters. This avoids view dependence problems associated with stereo sensors

(e.g., reflections, specular highlights, occlusions) and allows for an overall smaller camera. The

defocus matting system pulls a trimap using defocus and uses information from all of the cameras
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during matting. In this chapter, I concentrate on the matting problem instead of the trimap problem.

My trimap region processing is simple compared to that of Zitnick et al. A hybrid trimap method

combining this depth-from-defocus with their depth-from-stereo and region processing would likely

be superior to either alone.

My automatic trimap extraction method extends the idea of depth detection from multiple defo-

cussed images. Compared to Asada et al., the trimap algorithm’s goal is to produce a less precise

depth result (since it needs only three distinct values), but to compute that result everywhere, not

just at edges. The input has about the same precision between the algorithms, in the multi-parameter

sense. The trimap algorithm’s input is higher precision in some ways. It has more data available for

each image because those images are higher-resolution, color, and video. It is also lower precision

because it uses fewer images.

The major challenge in extending Asada et al.’s work to trimaps is not the input but in producing

good results with comparatively small PSFs. Asada et al. originally worked with small objects and

large PSFs. (On small objects it is possible to produce large PSFs because they are nearly the size

of the aperture.) For the matting problem it is necessary to work with human-sized figures and

backgrounds containing cars and trees. For these it is hard to produce very large PSFs; one needs

either a huge aperture, very high resolution, or an actor close to the camera. None of these are

appropriate, and it is unacceptable to perform matting only on small objects. So reconstructing

crude depths from small PSFs, which has not previously been reported, is an important part of

creating trimaps for matting from defocus.

Others have recently built systems that can produce a set of differently-focussed images as out-

put. Ng et al. [67] describe a still-camera that captures a low-resolution light field and then produces

a series of higher-resolution defocussed images using Fourier methods [66]. Cohen also described a

new unpublished still camera for capturing multi-focus images in a recent talk citeCohen05. To the

best of my knowledge, Nayar et al. was the first (and only other group) to build multi-focusvideo

camera [62], and I am the first to create a color camera with three different simultaneous focus pa-

rameters. In the next chapter I take this camera to the extreme and capture eight simultaneous focus

parameters in color.
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8.3 Defocus Splitting Tree

For all three algorithms: DDM, trimap extraction, and DVM; the tree in figure 8.2 is used. However,

DDM does not exercise the background-focussed branch. This tree is the one implemented by the

capture system pictured in figure 7.4 of the previous chapter.

Figure 8.2: Splitting tree used for defocus matting.

Note that the distribution property of the splitting tree is employed; in the abstract tree there is a

single neutral density filter, but for the actual implementation two filters are used but they are closer

to the leaves.

8.4 Known Static Background

Matting is a classic problem in both computer graphics and vision. Practical solutions that yield

high quality results are important for special effects in the movie industry. In the defocus difference

matting (DDM) approach, I assume that the background is known, typically because it is static and

pre-recorded. In this respect, our work is related to blue-screen matting. Two common problems

with blue-screen matting are the limitations imposed on the color of the foreground, e.g., the actor

cannot wear a blue shirt, and more importantly a color spill of the background on the foreground,

which considerably changes the lighting of the scene. Our method alleviates both of these problems.

DDM is different from background subtraction because it operates on defocus (color derivative)
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differences instead of image differences, which allows it to pull mattes even at pixels where the

foreground and background colors are identical. When the background is known, pulling the matte

is still an underconstrained problem. Smith and Blinn’s triangulation method [82] used two different

backgrounds, which is not practical for live subjects. I instead constrain the solution by using two

video streams that share a common center of projection but different focus characteristics.

I have obtained excellent results for synthetic images with both patterned and natural back-

grounds. For real images the results are acceptable but not ideal. This is because of the primary

drawback of DDM; it is very sensitive to color and alignment calibration of the cameras, which I

currently achieve only by physical adjustment. As future work I intend to make the method more ro-

bust by adding software correction via optical flow estimation, which has been applied successfully

in other matting algorithms.

8.4.1 Algorithm

Assume a scene containing a foreground object whose image isαF and background whose image

is B. The image formation equations for a pinhole camera (I1) and a narrow-depth-of-field camera

focussed on the foreground (I2) are well-approximated by:

I1 = α(F−B1)+B1 (8.2)

I2 = α(F−B2)+B2 (8.3)

The foreground appears identical in these images and the background differs only by defocus. The

camera has previously captured images of the background by both cameras, thenB1 andB2 are

known and it is possible to solve directly for the matte and matted foreground:

α = 1− I1− I2
B1−B2

(8.4)

αF = I1 +(α−1)B1 (8.5)

When the difference between the two background images is small, these equations are ill-conditioned.

A post process detects pixels where the result is ill-conditioned and replaces the matte at those pixels

with a value interpolated from well-conditioned neighbors.
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8.4.2 Post Processing

For real data miscalibration can introduce noise into theα ≈ 1 regions, so a post-processing pass

improves region coherence. Theα ≈ 0 areas are stable because camera 2’s background circle of

confusion was chosen to be twice the highest background frequency, which itself should ideally be

less than half the sampling frequency (resolution) of camera 1.

8.4.3 Results

For perfectly calibrated data, defocus difference matting can obtain excellent results. Figure 8.3

shows results on synthetic data composed from real photographs (the defocus is from the real cam-

era). The top row shows the input images and backgrounds. To create these synthetic images, the

actor was photographed in-focus with a lens camera and a large aperture. The actor and matte were

pulled manually. The background object is digitally generated color noise. The mean is gray and the

colors vary uniformly from black to white along each color channel. This background was projected

on a white wall and photographed with a pinhole and a lens camera. Different cameras were used

to image the foreground and background, so the camera parameters are not precisely identical. This

allows ground truth for the experiment.

The center row of the figure shows the recovered matte and foreground with ill-conditioned

pixels marked red. The bottom row of images matte and foreground reconstructed from well-

conditioned samples.

8.5 Trimaps from Defocus

A trimap segments a pinhole image into three mutually exclusive and collectively exhaustive re-

gions expressed as sets of pixels. These sets limit the number of unknowns and steer initial esti-

mates. Hand-painted trimaps are common in previous work; I instead produce them automatically

as follows.

Areas in the scene that have high-frequency texture produce high-frequency image content in

IP and exactly one ofIF andIB. I use this observation to classify pixels with high-frequency neigh-

borhoods into three regions based on thez values for which they appear sharp, as shown in the
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Figure 8.3: Input and results for defocus difference matting
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Figure 8.4: Input and result for a synthetic image with a natural background and for a real image
with a striped background.

sample trimap in Figure 8.5. SetsΩB andΩF contain pixels that are respectively “definitely back-

ground” (α = 0) and “definitely foreground” (α = 1). SetΩ contains “unknown” pixels that may

be foreground, background, or some blend. This is the set over which I solve for the matte.

Many surfaces with uniform macro appearance actually have fine structural elements like the

pores and hair on human skin, the grain of wood, and the rough surface of brick. This allows us

to detect defocus for many foreground objects even in the absence of strong macro texture. It is

necessary to use lower thresholds to detect high frequencies in the background, where only macro

texture is visible.

The algorithm first creates classification of the foreground and background regions by measuring

the relative strength of the spatial gradients:

Let D = disk

Let D = disk(max(rF , rB))

ΩF1 = erode(close((|∇IF |> |∇IB|)⊗D > 0.6,D)),D) (8.6)

ΩB1 = erode(close((|∇IF |< |∇IB|)⊗D > 0.4,D)),D) , (8.7)

whereerodeandcloseare morphological operators [40] used to achieve robustness. The disk should

be approximately the size of the PSFs. The algorithm then classifies the ambiguous locations either

in bothΩF1 andΩB1 or in neither:

Ω = (Ω̃F1∩ Ω̃B1)∪ (ΩF1∩ΩB1). (8.8)
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Finally, enforce the mutual exclusion property:

ΩF = ΩF1∩ Ω̃ (8.9)

ΩB = ΩB1∩ Ω̃ . (8.10)

Figure 8.5: Initial estimates for defocus video matting.

Clockwise from upper left: Trimap from defocus, foreground “outpainted” to fill space, back-

ground reconstructed from adjacent frames and inpainted, and matte via pinhole composition.

8.6 Unconstrained Case

The trimaps computed in the previous section are good, but not tight enough for previous algorithms

like Poisson matting to use for pulling mattes from arbitrary video. The problem is partly that the

trimap generation algorithm uses wide filters that provide an over-conservative estimate ofΩ. This

same problem also occurs for the Poisson algorithm when a user generates the trimap manually,

however, in that case the user can also recognize a poor result and adjust the trimap appropriately.

The Poisson algorithm was intended to be used as part of a tool workflow, not as an autonomous

system.

Recall that the ideal algorithm is not only autonomous but operates on scenes where the fore-

ground and background are both unknown and potentially dynamic. To approach this ideal result it
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is necessary to use a larger and more robust set of relations between input and output than Poisson

matting’s assumption that∇α = ∇I .

Defocus Video Matting(DVM) relates input and output using the full reverse-projection blurring

model described in chapter 3 and operates on multi-parameter video. This richer imaging model and

data set provide enough information to solve the matting problem autonomously for natural scenes.

Because a blurring model of defocus is central to the algorithm, DVM requires some high frequency

texture in the scene. However, it can succeed even if that texture is not present everywhere in the

video. This complements Poisson and Bayesian matting, which assume a scene with primary low-

frequency texture everywhere.

Like previous matting approaches, DVM poses matting as a error minimization problem and

has a constrained, non-linear optimizer at its heart. However, to accommodate the multi-parameter

input stream, the form of the optimizer and the error function differ significantly from previous

techniques. The output is a solution to the matting problem. For each frame, the algorithm produces

a model of the scene as a color foreground imageF and a scalar matte imageα.

In addition to recovering the traditionalF andα values, DVM is also able to reconstruct the

color background imageB. It even produces values for the background in areas that are occluded by

the foreground. The fully occluded parts of the background are reconstructed from adjacent frames

and by Laplace smoothness constraints similar to those used in Poisson matting. A fascinating

property of the image produced by a lens camera is that when the background is in focus, the edges

of the foreground object are partially transparent due to defocus. This allows a lens camera to record

information about points on the background that would be occluded in the image produced by a

pinhole camera. The amount of background observed is proportional to the aperture radius. Asada et

al. [?], Isaksen et al. [45], Favaro and Soatto [31], and others have previously noted that this property

effectively allows a lens camera with a large aperture to see slightly behind a foreground object at

its edges, and allows a camera with a huge aperture to seethroughthe foreground everywhere. We

exploit this property for the first time as part of a matting algorithm and use it to accurately recover

the partly occluded background pixels. The background reconstruction is of course limited. It is

lower quality than the extracted foreground image and is inaccurate in cases where background
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pixels are never observed. Those cases are where the apertures used in capturing the input are fairly

small and where the foreground object never moves to reveal some background locations.

The error function minimized by the optimizer is the sum-squared difference between the real

multi-parameter video and one rendered from the scene model. The rendered multi-parameter video

is a function of the camera parameters, the depths of the foreground and background planes, and

the values of the pixels in the foreground, matte, and background images. The camera parameters

are known and recorded at capture time. The approximate depths of the planes are also known at

capture time (since without them, the camera cannot be properly focussed!). The free variables are

therefore only the pixel values, which are constrained to the range[0,1] for each channel.

In practice, the foreground and background are rarely perfect planes and need not be. For the

approximations used in the algorithm to hold, the foreground and background objects need only be

constrained to lie within the foreground and background camera depth fields. Because depth of field

is related hyperbolically to depth, the background depth field may even stretch to infinity.

8.6.1 Optimization Setup

The defocus video matting algorithm is straightforward: minimize the error function. The derivation

is interesting because the error function is based on image composition equations. Complexity arises

in the implementation because the optimization problem is huge and requires some mathematical

sophistication to solve efficiently. An optimization problem is characterized by the input, unknowns,

error function, and constraints.

Input: As before, letI [x,y,λ , ...] be a frame of multi-parameter video. This is the input to the

matting problem. It is captured using a multi-parameter camera. A discussion of exactly which

camera parameters are sampled forI follows in the next subsection. For now all that is important is

that there are many of them. Let each frame haveK pixels and let there beM samples per pixel. Let

~I be the column vector of lengthMK that is the unraveling ofI .

Unknowns: Let α[x,y], F [x,y,λ ], andB[x,y,λ ] be the unknown matte, foreground, and back-

ground images for a single frame of video. Each image has a total ofN pixels. Assume that the
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foreground and background have three color samples at each pixel; I discuss higher sampling den-

sity in chapter 10. Letu be the column vector of lengthN+3N+3N = 7N that packs together the

unraveled unknowns:

u =




~α

~B

~F




(8.11)

i.e., u is a compact representation of the scene. The input and outputs have different sizes because

the matting algorithm uses defocus. Defocus effects have wide filters, so some pixels at the edge

of the image frame will not appear in the output because the filter taps fall outside the input. Thus

N < M.

Error Function: Let image composition functionC(·) generate a multi-parameter image

C(α,B,F)[x,y,λ , ...] of the scene. The parameters ofC(·) must exactly match those ofI , so that

when α, B, andF are an accurate model of the real scene,C(α,B,F) = I . Any photorealistic

renderer, such as a ray tracer, can be used to implementC(·). In practice DVM uses a highly

optimized renderer that exploits the simplicity of the scene.

Let ~C(·) be the corresponding unraveled function that instead maps an unraveled scene to an

unraveled multi-parameter image. Like~I , column vector~C(u) has lengthMK.

The goal of matting is to find the input scene that reproduces the input image under the compo-

sition equations. Let error function~E(u) produce the length-MK vector of differences between the

unraveled composite and input,

~E(u) = ~C(u)−~I . (8.12)

Let scalar-valued functionQ(u) be the norm of the error vector,

Q(u) = ∑
k

1
2
~E2

k (u). (8.13)

Later in this section,Q is extended with small-magnitude regularization terms that help stabilize the

algorithm in the presence of ambiguous input.

To simplify the notation, functionsQ, ~E, and~C are frequently written without theu argument

as if they were vectors.
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Because~I is known at the beginning of the problem, evaluating~E(u) andQ(u) is only as com-

putationally hard as evaluating~C(u). This chapter therefore discusses the cost of~C(u) exclusively

and assumes that the subtraction and summation for the error metrics are negligible compared to the

cost of rendering an image from the scene data.

In optimization terminology, there are two kinds of constraints. The error vector is a set of

constraints, in the sense that it gives rise to a set of equations that limit the possible values for the

unknowns. There are also so-called hard constraints about the individual values.

Constraints: All elements ofα are inherently constrained to the unit interval[0,1]. All ele-

ments of imagesF , B, andI must be non-negative, since images are a measure of radiance. IfI is

a properly exposed and normalized image, then all of its elements are less than 1. In this case, it is

likely that all elements ofF andB are also less than 1. However it is possible for them to be outside

the range yet produce a properly exposed image sinceF is always modulated byα. Thusu≥ 0 is

a hard constraint in all cases, butu≤ 1 is a hard constraint only if the scene is known to be well

within the dynamic range of the camera.

The solution to the matting problem is a scene vectoru? that minimizesQ(u):

u? = argmin
u

Q(u) . (8.14)

This equation has7N unknowns andMK constraints. The problem is constrained at7N = MK,

overconstrained when7N < MK and underconstrained when7N > MK. For the matting problem, it

is best to overconstrain the problem since local areas of image data are often ambiguous with respect

to focus and the data are likely noisy as well. Overconstraining is accomplished by increasing

the precision of the multi-parameter imageI . Assuming conventional video sensors with three

wavelength samples per pixel (RGB) and focus filters that are not too wide (K ≈ N), a minimum of

three sensors (M = 3×3 = 9) are required to overconstrain the system of equations.

Regardless of the choices of camera parameters and method for computingC, the image compo-

sition equations inC must contain terms of the formαF . Thus the norm of the error must (at least)

contain terms of the form(αF)2. In unraveled notation, these terms are(uiui+3 jN)2. Index4≤ j ≤ 6

arises because the unraveling packs~α first and follows it by the color channels ofB andF . Ignoring
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the subscript relations,Q must generally contain fourth-order terms inu. FunctionQ is therefore

non-linear in the unknowns, and is in fact quartic. The optimization problem at hand is therefore

non-linear and constrained with regard to the unknowns. It is also important and intentional that the

form of the error function is a summation of squares (of non-linear functions) because that form has

been studied extensively in the optimization literature.

The minimization problem is also large. For640× 480 color video,N = 640× 480× 3 =

921,600. Equation 8.14 therefore holds about 6 million unknowns and 8 million constraints. The

previous section demonstrated that trimaps can be obtained automatically using defocus information

from a multi-parameter image. A typical trimap reduces the number of unknown pixels by about

80%, so that only about 150,000 unknowns need to be considered per frame. To further reduce the

size, it is possible to solve the matting problem on small subregions (typically, blocks) of an image

and then resolve inconsistencies at the borders of the blocks. However, using subregions makes the

problem harder to solve because less information is available at each block and the ratio of border

pixels to interior pixels increases with the number of regions. In practice, the problem still presents

at least 15 thousand unknowns and closer to 20 thousand constraints, which is considered a large

non-linear problem.

It may help the reader to be aware of the following notation conventions:C is a mnemonic for

“constraints” or “composite,”u is for “unknowns,” andI is for “input” or ”image.” Index0≤ n< 9N

appears exclusively as a subscript for unknowns (u) and index0≤ k< 9K is for constraints (~E,~C,~I ).

8.6.2 Solver

There are many1 iterative methods for solving equation 8.14. All non-linear solvers begin with an

initial estimate foru and perturb that guess in successive iterations until some convergence criteria is

met. In many cases it is a good idea to begin with several initial estimates to avoid local minima. The

solvers differ in the amount of memory (and time) that they consume per-iteration, their convergence

properties for certain kinds of error functions, and whether they require explicit derivatives of the

error function.
1See Numerical Recipes [75] chapter 10 for a detailed discussion of non-linear solvers.
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Most solvers require either linear or quadratic memory, where the quadratic-space methods are

generally forming locally linear systems and storing them as matrices. Even when the problem

has been reduced by a trimap and subregions, with tens of thousands of unknowns and constraints

stored in 32-bit floating point format, a solver using quadratic storage requires more than a terabyte

of memory! A solver requiring quadratic storage in the size of the problem therefore appears unac-

ceptable. Yet there are two subtleties of the quadratic storage cost. First, the matrix may be sparse,

so the quadratic-space requirement may only hold for solver ignorant of the structure of the con-

straints. Second, if the solver inverts the matrix, the inverse of an arbitrary sparse matrix is dense

and the storage problem rises again. In this latter case, theO(N3) time cost of computing the dense

inverse is likely even more unacceptable than the storage cost of the result. So there are really three

cases of significance regarding storage: linear-space (good), sparse quadratic-space (acceptable),

and dense quadratic-space (unacceptable).

Conjugate gradient descent methods, particularly the popular Gauss-Newton and Levenberg-

Marquardt [37, 49, 52] variations, are in the category that requires quadratic space to store the

dense pseudo-inverse of a matrix when implemented naively. I experimented with the Matlab im-

plementation of the Levenberg-Marquardt optimizer for defocus video matting and found that the

convergence properties were indeed attractive. However, only uselessly small regions would fit in

memory, so I abandoned that line of research in favor of the lighter-weight gradient descent method.

It is possible to implement these more efficiently, as is discussed in the future work chapter.

Gradient descent is generally considered a poor solver because of its convergence properties.

However, it has ideal space and time behavior. Where derivatives of the error function are available

and can be expressed as a sparse matrix, gradient descent requires only linear space and time per

iteration.

A gradient descent solver begins at a current sceneu and chooses a new sceneu+∆u, where∆u
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is opposite the gradient ofQ(u) in order to descend quickly towards the minimum:

∆u = −∇Q (8.15)

substituting for the gradient,

= −∇∑
k

1
2
~E2

k (8.16)

so that a given element is

∆un = −∂ ∑k
1
2
~E2

k

∂un
(8.17)

= −∑
k

(
~Ek

∂~Ek

∂un

)
. (8.18)

Equation 8.18 contains the vector dot product~E · ∂~E
∂un

. It can be written for alln as a vector-matrix

product using the matrix of all~E partial derivatives. Such a matrix is known as theJacobian. Let

J(u) be the function that computes the Jacobian matrix for~E(u). It contains the partial derivative of

each element of~E(u) with respect to each element ofu such that

Jk,n(u) =
∂~Ek(u)

∂un
. (8.19)

For the matting problem, the size of the Jacobian is9K×7N. UsingJ gives a compact expression

for the direction of steepest descent,

∆u = −~ETJ. (8.20)

When explicit derivatives are not available, it is common practice to computeJ by numerical

differentiation:

Jk,n(u) =
~Ek(u+δ )−~Ek(u−δ )

ε
. (8.21)

whereδ a small step in thenth dimension:

δi =





ε/2 i = n

0 elsewhere
(8.22)

With the Jacobian thus defined, a basic gradient descent algorithm for matting is as shown in

Figure 8.6.
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1. Choose a randomu vector

2. While Q(u) > threshold

(a) Let ∆u =−~ET(u)J(u)

(b) u←max(min(1,u+(step)∆u,0)

3. Let u? = u

4. Unravel and unpackα, B, andF from u?

Figure 8.6: Matting algorithm with a gradient descent solver.

Stepand thresholdare scalar constants that control the convergence properties; they are dis-

cussed later in this chapter. Themin andmax functions enforce the hard constraints onu at each

iteration.

The structure of the algorithm is fine as given (although later in this chapter I use generated

trimaps to reduce the size of the problem and choose the initialu, and post-processu? to remove

artifacts). The problem with implementing the algorithm as stated is that computingJ by numerical

differentiation in step 2a is too expensive. It would require7×9×2NK = 126NK = O(N2) evalua-

tions of~E(u) as presented. Computing the error function requires non-zero time (it must compute a

photorealistic image~C(u)!), and even if it were trivial to compute, the quadratic space and number

of error function calls required is prohibitive. Thus computingJ numerically undoes the claimed

space and time advantage of gradient descent.

Fortunately, the quadratic space and time bounds for computing∆u are upper bounds. When

J is sparse with known structure and~C(·) is symbolically differentiable, both bounds are linear in

the number of non-zero elements ofJ. The as a whole, composition function must have at least7N

terms because it uses2 every element ofu. Thus the computation time and space forJ is bounded

below byΩ(N) and above byO(N2). The linear lower bound is of course preferable. This guides

the choice of composition function; it is desirable that~C(·) have the following properties:

• Three samples per pixel (to produce9K constraints),

2Technically, the composition function may ignore some elements of the background that are occluded and elements
of the foreground whereα = 0, but at the start of the problemα is itself unknown so the composition function is
general and no input elements can be ignored.
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• ExactlyΘ(N) non-zero terms (... which implies a constant number of terms per pixel),

• Efficient to compute (small constants in the asymptotic bound), and

• Easily differentiable (to computeJ).

I previously deferred defining how~C is implemented, offering only bi-directional ray tracing as

a straw-man. It should be clear at this point that ray tracing is in fact a poor way of computing~C(u),

since it has none of the desirable properties!

For the matting problem, a much more efficient method is available using Fourier model of

image formation described in chapter 3. The next section describes a choice of camera parameters

and image model that leads to a good~C(·). It is no accident that the chosen camera parameters

effectively vary the amount of defocus– the defocus difference algorithm for solving matting in the

known background case and the automatic trimap generator have already shown that the defocus

composites are compact and useful. Also, in order to use the trimap generator to reduce the size

of the general matting problem for defocus video matting it is necessary to use compatible multi-

parameter videos as input for both algorithms.

8.6.3 Defocus Composites

Let a[x,y] be a 2D matrix,F [x,y,λ ] andB[x,y,λ ] be 3D matrices. We generalize the two-plane

compositing expression with a function of the scene that varies over two discrete spatial parameters,

a discrete wavelength (color channel) parameterλ , and a discrete focus parameterz∈ {1,2,3}:

C(α,F,B)[x,y,λ ,z] = (αF [λ ])⊗h[z]+ (1−α⊗h[z])(B[λ ]⊗g[z])
∣∣
[x,y] , (8.23)

where 3D matricesh andg encode the PSFs:

h[x,y,z] =





δ [x,y], z=1

disk(rF)[x,y], z=2

δ [x,y], z=3

(8.24)

g[x,y,z] =





δ [x,y], z=1

δ [x,y], z=2

disk(rB)[x,y], z=3.

(8.25)
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ConstantsrF andrB are the PSF radii for the foreground and background planes when the camera

Figure 8.7: The point spread function is the intersection of a cone and the imager.

is focused on theoppositeplane.

Equation 8.23 can be evaluated efficiently: for small PSF radii, we can simulate a320×240

lens camera image in ten milliseconds.

8.6.4 Exact Differentiation of~E

I now derive a simple expression for the elements of the Jacobian from the chosen defocus~C(·).
This expression shows that the Jacobian is sparse, so that computing∆u in equation 8.20 is feasible.

By definition, the elements of the Jacobian are:

Jk,n =
∂ (~Ck(u)−~Ik)

∂un
=

∂~Ck(u)
∂un

. (8.26)

To evaluate this, expand the convolution from equation 8.23. It is necessary to change variables

from packed 1D vectors indexed byk back to multi-parameter images indexed byx (andy, but I

only show a single spatial parameter to improve readability):

C[x,z,λ ] = ∑
s

α[s]F [s,λ ]h[x − s,z] +
(

1−∑
s

α [s]h[x−s,z]
)

∑
s

B[s,λ ]g[x − s,z] . (8.27)

Examination of this expansion shows thatJ is both sparse and simple. For example, consider the

case where unknownun corresponds toF [i,λ ]. In a full expansion of equation 8.27, only one term
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containsF [i,λ ], so the partial derivative contains only one term:

∂C[x,λ ,z]
∂F [i,λ ]

= α[i]h[x− i,z] . (8.28)

The expressions forα andB derivatives are only slightly more complicated, with (potentially) non-

zero elements only at:

∂C[x,λ ,z]
∂α [i]

= h[x− i,z]
(

F [i,λ ]−∑
s

B[λ ,s]g[x−s,z]
)

= h[x− i,z] (F [i,λ ]− (B[λ ]⊗g[z]) [x]) (8.29)

∂C[x,λ ,z]
∂B[i,λ ]

= g[x− i,z]
(

1−∑
s

α[s]h[x−s,z]
)

= g[x− i,z] (1− (α⊗h[z]) [x]) . (8.30)

Note that the summations in these last two cases are just elements of convolution terms that

appear in~E, so there is no additional cost for computing them. Figure 8.8 shows the structure of an

actual Jacobian matrix computed in Matlab and rendered with thespyfunction. Background colors

in the diagram represent the color channel corresponding to each term. Dark blue marks non-zero

elements. The non-zero elements are in blocks along diagonals because of the unraveling process.

Each column is effectively an unraveled image of several PSFs.

8.6.5 Trust Region and Weights

The gradient gives the direction of the step to apply tou to reduce the error function. I use a so-called

dogleg trust region scheme (see [68] for discussion) to choose the magnitude of the step.

The idea is to take the largest step that also most decreases error. Begin with a trust region of

radiusS= 1. Let u′ = max(0,min(1,u+ S∆u
|∆u|)). If |~E(u′)| < |~E(u)|, then assume that the solver

has not overshot the minimum and repeatedly doubleS until the error increases above the lowest

level seen this iteration. If|~E(u′)| > |~E(u)|, then assume that the solver has overshot and take the

opposite action, repeatedly halvingS until the solver passes the lowest error seen this iteration.

WhenSbecomes very small (e.g.,10−10) or the error norm shrinks by less than 0.1%, the solver is

may assume that it is at the local minimum and terminate the optimization process.



134

Figure 8.8: Sparsity structure ofJ.
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Because the initial estimates are frequently good, the algorithm weigh the firstN elements of

∆u by constantβα ≈ 3 to influence the optimizer to take larger steps inα. This speeds convergence

without shifting the global minimum. The algorithm also reduces the magnitude of~E elements

corresponding toIP by a factor ofβP ≈ 1
4. The narrow aperture and long exposure of the pinhole

image produce more noise and motion blur thanIF andIB, and this prevents over-fitting the noise.

It also reduces the over-representation in~E of in-focus pixels that occurs becauseF andB are in

focus in two of the constraint images and defocused in one each.

8.6.6 Regularization

In foreground areas that are low frequency or visually similar to the background, there are many

values ofu that will satisfy the constraints. We bias the optimizer towards likely solutions. This

is regularizationof the optimization problem, which corresponds to having a different prior for a

maximum likelihood problem. Regularization also helps pull the optimizer out of local minima in

the error function and stabilizes the optimizer in areas where the global minimum is in a flat region

of many possible solutions.

Extend the error vector~E with p new entries, each corresponding to the magnitude of a7N-

componentregularization vector. Calling these regularization vectorsε ,φ ,γ, . . ., the error function

Q now has the form:

Q(u) = ∑
k

~E2
k =

[
9K

∑
k=1

~E2
k

]
+~E2

9K+1 +~E2
9K+2 + . . . (8.31)

=
9K

∑
k=1

~E2
k +β1

9K
7N

7N

∑
n

ε2
n +β2

9K
7N

7N

∑
n

φ2
n + . . . . (8.32)

Let e be one of the regularization vectors. Each summation overn appears as a new row in~E andJ

for somek > 9K:

~Ek =
(

β
9K
7N ∑

n
e2

n

) 1
2

(8.33)

Jk,n =
∂~Ek

∂un
=

β
~Ek

9K
7N ∑

i

[
ei

∂ei

∂un

]
. (8.34)

The factor of 9K
7N makes the regularization magnitude invariant to the ratio of constraints to

unknowns and the scaling factorβ allows us to control its significance. We use small weights on
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the order ofβ = 0.05 for each term to avoid shifting the global minimum. The outer square root

in the~E expression is canceled by the square in the global error functionQ. In the computation of

~ETJ, the~Ek factor in the denominator of Equation 8.34 cancels; in what follows, we will give, for

each regularization vector, bothen and(~ETJ)n. We choose regularization vectors that are both easy

to differentiate and efficient to evaluate: the summations overi generally contain only one non-zero

term.

Straightforward but tedious differentiations lead to the expressions for(~ETJ)n in each of the

following regularization terms; the details are omitted.

Coherence:spatial gradients are small,

en =
∂un

∂x
; (~ETJ)n =−∂ 2un

∂x2 . (8.35)

I apply separate coherence terms toα, F , andB, for each color channel and for directionsx

andy. Theα gradient constraints are relaxed at edges (large values of|∇IP|) in the original image.

TheF gradient constraints are increased by a factor of ten where|∇α| is large. These allow sharp

foreground edges and prevent noise inF where it is ill-defined.

Discrimination: α is distributed mostly at 0 and 1,

en = un−u2
n;(~ETJ)n = (un−u2

n)(1−2un)
∣∣∣∣ 1≤ n≤ N . (8.36)

Background Frequencies should appear inB:

Let G = IB− IF ⊗disk(rF)

en =
∂un

∂x
− ∂ ~Gn

∂x
;(~ETJ)n =−∂ 2un

∂x2

∣∣∣∣ 4N+1≤ n≤ 7N. (8.37)

8.6.7 Results on Synthetic Data

A Matlab implementation of this method pulls mattes in about seven minutes per frame, comparable

to the time for a recent user-assisted matting technique [84].

Because defocus matting is unassisted and each frame is computed independently, so frames

can be processed in parallel. I built a “matting farm” of eight PCs for an amortized processing

time under one minute per frame. The method could someday execute in real-time; over 95% of
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the solution is obtained within thirty seconds of optimization per frame and the hardware assisted

trimap computation already produces a real-time preview.

I tested the method on both still images and video, and on both synthetic (rendered) and real

scenes. A review of the results begin with the synthetic scenes, which allows comparison to previous

work, measure deviation from a known ground truth, and to measure the effect of error sources on

the result. Synthetic scenes are constructed from three images,α, F , andB using the filter-based

synthesis approximation and reasonable foreground and background depths (e.g., 2m and 6m).

Figure 8.9: Correctly recovering the scene with no trimap, where every pixel is unknown.

Figure 8.10: Good mattes pulled in the absence of high-frequency texture.

Figure 8.9 shows a hard “corner case” in which foreground and background are both noise. This

is a synthetic scene. The foreground object is the ACM SIGGRAPH created by cutting it out of a
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Figure 8.11: Pinhole image, recovered matte, and two recomposited images for a challenging case
with fine hair structure.

different noise image. The top row shows the images seen by the three cameras. The bottom row

shows a trimap that treats all pixels as unknown and the final matting result. Although the system

can pull a very good trimap for this scene, I intentionally replaced the trimap with one in which the

unknown region encompasses the whole image. Despite the lack of a good trimap, defocus matting

is still able to pull a good matte. This demonstrates that the quality of the result is independent

of the trimap, unlike previous approaches that learn a color model from the trimap. Because there

is no trimap, convergence is slow and processing time was 3 hours for320×240pixels. Because

both foreground and background have identical color distributions, this scene is an impossible case

for color model approaches. Moreover, in the pinhole image, the foreground and background are

indistinguishable! A matting approach working from a that image alone could not succeed because

there is no information.
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Figure 8.12: Comparison of the synthetic ground truth to the recovered scene for the hair from the
inset box of figure 8.11.

Figure 8.10 shows a yellow square in front of a green screen. Neither foreground nor background

contains any high-frequency texture. This is an ideal case for blue screen, Bayesian, and Poisson

matting, which all assume a low frequency background. Given a hand-painted trimap, the defocus

matting algorithm recovers a perfect matte as well. It cannot, however, pull an automatic trimap

for this scene because of the artificial lack of texture. This demonstrates that the minimization still

converges even in the absence of texture, relying mostly on regularization terms.

To compare against scenes used in previous work I use the published recoveredα andαF . I

reconstruct the occluded part of the background in a paint program to formB. An ideal result in this

case is a reconstruction of the matte from the previous work; we cannot exceed their quality because

we use their result as ground truth.

Figure 8.11 uses data that is now standard for matting papers, a difficult case with complex

hair structure (data set from [20], ground truth from [84]). We pull a good matte in 30 seconds

at 320× 240 and 5 minutes at640× 480. The nonlinear performance falloff occurs because the

smaller resolution can be solved as two large blocks while the larger requires solving many more
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Figure 8.13: Good mattes pulled from bad (noise) initial estimates.

subproblems and letting information propagate. Figure 8.12 shows an enlarged area of the hair

detail from figure 8.11. Our matte reflects the single-pixel hair structures from the ground truth

structure. The contrast level is slightly higher in our matte than the ground truth matte because the

regularization terms reject the broadα ≈ 0.1 areas as statistically unlikely.

Figure reffig:blond-noise demonstrates that even in the absence of good initial values it is pos-

sible to pull a good matte. Here, the foreground and background in theΩ region were seeded with

noise but the algorithm still converged (albeit slowly) to a correct result. This matte took three

minutes to pull. This shows that results can be independent of the quality of the initial estimates.

8.6.8 Sources of Error

There are many sources of error in a real multi-parameter images that lead to errors in the recovered

mattes. The most significant are translation (parallax) error between sensors, over- and under-

exposure, and different exposure times (i.e., amounts of motion blur) between cameras. These lead

to pixels in different sensors that are not close to the values predicted by the composition equation.

Other sources of error have less impact. Our approach appears to be robust to color calibration error,
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which does not affect the gross intensity magnitudes and yields the same least-squares solution.

Radial distortion by the lenses is small compared to the translation errors observed in practice due

to miscalibration. DDM’s gradient constraints and the inherently wide filter support of defocus

tend to minimize the impact of sensor noise. Figure 8.14 shows a case where the inputs have been

shifted a few pixels, one has been rotated about 2 degrees, and the colors of two have been shifted;

remarkably, the algorithm still converges, although the result is not very satisfactory.

Figure 8.14: Defocus matting is robust against rotation, translation, and hue-shift.

8.6.9 Results on Real Data

In real images, the sources of error discussed in the previous section produce low-order noise near

the boundaries of the trimap, as holes in the matte, and as opaque regions that should have been

transparent in the matte. This can be seen in figure 8.16, where a light-colored building panel blends

into over-exposed hair in the foreground during one frame of a video sequence. The “bloom” from

over-exposed hair on the right is conflated with defocus; the bright building panel in the background

has no texture, and happens to align with the specular highlights from the hair. Coherence terms

in the regularization mislead the optimizer into classifying the panel as foreground and create an

artifact too large to correct. On the left side there is also small amount of noise, at the border of

ΩB. This is correctable; we overcome small amounts of noise by modulating the recovered matte
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towards black within 3 pixels ofΩB and removing disconnected components, i.e., tiny, brightα

regions that do not touch the region enclosingΩF . We likewise fix holes well within objects by

filling the region 12 pixels inside theα < 0.1 isocurve. The matte results in this paper are the

unprocessed optimization result unless otherwise noted; in the video they are all post-processed.

When the sources of error are small so that the problem is well-posed, defocus matting succeeds at

pulling good mattes for real images and video.

Figure 8.17 again shows an example of matting with hair, this time from a real image. The top

of the figure shows the pinhole image, extracted matte, extracted foreground, and composition over

novel backgrounds. Note motion blur near the nose has been detected in theα image. The bottom

of the figure shows three frames of the matte from the video of the moving dark hair. For this data

set, the algorithm pulls a good matte, reconstructing both the fine hair structure and the motion blur

on the left side of the face.

To experiment with automatic trimap extraction in the absence of background texture, this scene

was intentionally constructed with no high frequencies in the background. I drew a trimap for the

first frame and then propagated the trimap forward, so that areas well within theα = 0 andα = 1

regions (at least 10 pixels in) of the final matte for framei becameΩB andΩF for frame i + 1.

This works well on the hair, but cannot account for objects moving in from off-camera. It is also

prone to propagate any matte errors forward. The lower part of the figure shows a selections from

a good result. The images are three frames of the pulled matte from at different points in the video

sequence.

We observed “checkerboard” artifacts in the matte under two circumstances. We originally used

Figure 8.15: Ringing in the matte when the coherence terms are too large.
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a fast Bayer interpolation that produced a half-pixel shift in the red and blue channels. Because

the beam-splitters mirror the image left-to-right, this shift was inverted between cameras and led to

inconsistent alpha values in a checkered pattern. Better Bayer interpolation removes this artifact.

A similar but independent artifact occurs at sharpα edges when the magnitude of theα coherence

regularization term is too large. Figure 8.15 shows a closeup of the matte pulled for the actor’s

shoulder from Figure??. The subimage on the left has a large magnitude (β = 0.3) α coherence

term, which leads to both excessive blurring and ringing. The ringing is a checkerboard because

horizontal and vertical derivatives are handled separately. The subimage on the right shows the

correct matte pulled with a reasonable (β = 0.05) coherence magnitude.

Figure 8.18 shows three frames of video on the left and their automatically extracted trimaps

on the center. Pinhole images are shown on the left, extracted trimaps at the center, and the final,

post-processed mattes pulled are on the right. The foreground and background-focussed images are

not shown in the figure. Because there is less information available at the edges of the image the

algorithm tends to conservatively classify border pixels as unknown. Defocus is generally unreliable

at the edge of an image, the algorithm crops final results by the larger PSF radius.

As one would expect, the trimap estimation fails as the foreground object moves beyond the

depth of field, and then the optimizer cannot proceed. Given a hand-painted trimap, the optimizer

degrades more gracefully and tends to estimate a blurry foreground object and matte. At some point

the defocus is too severe and the foreground object becomes classified as part of the background.

This is desirable, since I define background as “beyond the depth of field.”
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Figure 8.16: Noise on the left at the trimap border can be corrected by post-processing.
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Figure 8.17: Pulling a matte from fine hair.
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Figure 8.18: Automatic trimap-extraction in a video sequence.
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Figure 8.19: Four frames of input for a matting problem.
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Figure 8.20: Computed intermediates and results: Trimap, matte, post-processed matte, foreground,
and background.



Chapter 9

Video Synthesis

As mentioned earlier, the general SAMPL framework allows us to create lots of different applica-

tions; in this chapter I describe several of these, albeit in less detail than the defocus matting work.

These applications support the claim that the capture framework is general and practical: I imple-

mented the various video capture applications described here using different splitting trees for data

acquisition, and was able to reconfigure and calibrate the system for each of these applications in a

couple of hours, even when working outside of the laboratory.

9.1 Compositing

9.1.1 Novel Background

The standard application of compositing is to combine a foreground and matte with a novel back-

ground. Porter and Duff’s [73] linear compositing (equation 5.1) is applied as if the new image was

captured with a pinhole camera.

It is common practice to select a defocussed image for the background image so that the final

composite appears natural and emphasizes the actor. Because the pinhole equation performs com-

positing, the composite can be thought of as an in-focus picture of a background that is inherently

blurry. As discussed in chapter 3, the linear composite of a sharp foreground with a blurred back-

ground (equation 3.37) is not identical to the image that would be produced by photographing an

actual scene. The discrepancy is at the borders of the foreground object, where the linear composite

149
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produces a blurrier background than should be observed. Potmesil and Chakravarty [74] among

others showed that the difference is insignificant to the human visual system, and linear composit-

ing has been used for half a century in visual effects without perceived loss of realism due to the

incorrect blur. Figure?? shows a real photograph of an actor in front of trees (left) and a linear

composite of the actor against a blurred background (right). The images do not match exactly be-

cause the background on the right was photographed in-focus and blurred for the composite, and

the foreground on the right is from a rotoscoped matte and retouching in Adobe PhotoShop. The

point is that both images look plausible and the highly textured background appears about equally

blurry in both images. Readers experienced at finding visual artifacts will detect that the image on

the right is a composite, but it is not likely that they will make that determination by examining the

defocus.

Figure 9.1: Comparison of real and linearly composited images.

Figure 9.2 shows a matte and foreground recovered by defocus video matting, and a new back-

ground image against which they are to be composited1. Note the fractional values in the matte

where fine strands of hair create a translucent surface.

Figure 9.3 is the final linear composite. The inset detail (red box, zoomed in on the right) shows

that the fractional alpha recovered by defocus video matting leads to the appearance of a realistic

photograph, with the background appearing between hairs and blended smoothly into the hair where

there is partial coverage.

1All novel background images are photographs by Shriram Krishnamurthi used with permission.
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Figure 9.2: Inputs for the compositing process.

Figure 9.3: Result and detail from the compositing process.

9.1.2 Self-Compositing

The traditional application of compositing chooses the novel background be a completely new im-

age. There, the matte is interpreted as partial coverage. I propose considering the matte pulled by

defocus to be a selection region on the input multi-parameter video. With the notion of selection-

by-matting, one can then perform video edits separately on the foreground and background. The

defocus matting approach reconstructs the background as well as the foreground, so these edits can

include operations that reveal a small area of background.

The simplest edit is zoom or translation of the foreground relative to the background. Figure 9.4

shows a matte and foreground pulled by defocus matting that have been manually translated and

zoomed to form variationsα ′ and F ′. The original backgroundB is preserved. These images

correspond to frame 19 from the same sequence depicted in figure 8.20.

Figure 9.5 shows the original pinhole image from frame 19 on the left and the edited composite

imageC+ α ′F ′ + (1−α ′)B on the right. The edited image contains the desired change of scale
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Figure 9.4: Scene edited by zooming and translating the foreground.

and position for the actor. It is also sharper and less noisy than the original–this is because the

original was filmed with a pinhole camera and long exposure time while the composite draws the

foreground primarily from the foreground-focussed sensor and the background primarily from the

background-focussed sensor.

Figure 9.5: Original and edited frame of a multi-parameter video.

9.2 High Dynamic Range

High dynamic range (HDR) image acquisition is an important technique in computer vision and

computer graphics to deal with the huge variance of radiance in most scenes. There have been

various solutions, from commercial HDR imaging sensors (National, Silicon Vision, SMaL Camera,

Pixim), to varying the exposure settings in two or more captured frames [47, 27,?], to changing the

amount of light that is captured using a mosaic of filters [?]. The solution most like the one described

here is by Aggarwal and Ahuja [2, 3]. They use a pyramid mirror beam-splitter and uneven offsets

to direct light unevenly to three sensors. They note that this design wastes no light and achieves
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Figure 9.6: Right-Balanced Tree for HDR.

identical exposures (i.e., identical motion blur) across all cameras. I introduce a fourth sensor.

More significantly, the SAMPL camera also achieves identicalaperturesacross all sensors, so that

the images differ solely in whole-image intensity.

An optical splitting tree has various advantages for HDR imaging. The setup naturally lends

itself for HDR and only requires off-the-shelf cameras and optics. The amount of motion blur and

the point spread function in each view are constant. Very little light is discarded by building an

unbalanced tree of beam splitters. Figure 9.6 shows a schematic of the SAMPL camera system

configured for HDR capture. For four cameras, the layout is simply the full binary tree with four

beam splitters removed and a neutral-density filter inserted. Because it is a subset of the full binary

tree, the HDR design easy to configure and calibrate from a pre-built full tree. More cameras can

be added by extending the right subtree.

Each 50-50 beam splitter directs half the light to each of its children. The left sub-tree always

terminates at a sensor. The right sub-tree recurses. Before the rightmost sensor we insert a single

neutral-density 50% filter. The only light lostby designis 1/16 of the original at this filter. In

practice, each beam splitter has also about 10% absorption. Our cameras have 10-bits of precision

internally and only an 8-bit output, so we shift the gain by a factor of four from the brightest to

the dimmest camera. The theoretical dynamic range for this system is thus 8192:1 for cameras that



154

Figure 9.7: Frames from two HDR sequences.

measure linear radiance. In practice, we also vary our exposure time and apertures slightly to obtain

a ratio closer to 20000:1.

For HDR, intensity and color calibration are not as important as spatial and temporal calibra-

tion because intensities will be adjusted and merged by the tone mapping process. The intensity

difference between cameras can be inferred from the video streams after capture as long as some

unsaturated pixels overlap between them.

Figure 9.7 shows results from two HDR experiments.The small images on the left show the

data captured for a single frame by each of the four sensors. The large images on the right are the

corresponding tone-mapped composites. In sequence number one (top), the actor is brightly lit and

the city lights are dim in the background. In sequence number two (bottom), the actor is inside a
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Figure 9.8: Splitting tree for capturing multi-parameter video with multiple focus samples.

dark office and the sky and city in the distance are bright. On the right are resulting tone-mapped

HDR images. These combine frames from four different sensors to keep all scene elements visible

and within the dynamic range of the display.

9.3 Multiple Focus and Defocus

Images focused at multiple depths can be used to recover depth information [62, 17, 92] and to form

images with an infinite [83] or discontinuous [95] depth of field. Many systems (e.g., [62]) split the

view behind the lens. Splitting in front of the lens allows us not only vary the location but the depth

of the field by changing the aperture. This allows, for example, the use of a pinhole camera as well

as a narrow depth of field camera, which has been shown to have applications in matting [?].

The SAMPL camera captures images with varying focus depths like those in figure 9.9 using the

tree in figure 9.8. This is the full binary tree containing with eight sensors. Each sensor is focused

at a different depth, ranging hyperbolically from 20 cm from the optical center (which is only about

4 cm from the first beam splitter) to 20 m (which is effectively infinity). I open the apertures of each

sensor tof/1.4, giving a narrow depth of field and maximizing the PSF radii.

It is critical that the cameras for the more distant depths have near-perfect physical calibration,

since parallax errors will be extremely large for scenes with large depth ranges. The sensors focused

at nearer depths need not be calibrated as closely for most applications. This is because the extent

of the depth of field falls off as the midfield depth moves closer, so a sensor focused at 20 cm has

a depth of field of a few centimeters and more distant objects will be so defocused that calibration

becomes irrelevant.
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I have implemented two ways of visualizing multi-focused images. The first is a virtual focus

depth. By blending between the two closest focused cameras, it is possible to move focusing from

capture time to edit time (see figure 9.9). A single frame captured by different sensors at the same

time, where each sensor has a different focus depth.

The second is an artificially wide depth of field. For this, compute a weighted sum of each

sensor’s image for each frame. At each pixel, the weight of a sensor’s image proportional to the

local contrast (high frequency information in a small neighborhood), squared. Figure 9.9 (bottom)

shows the result of fusing the images in this manner.

9.4 High Speed

High speed cameras capable of 2000 fps and higher are now commercially available. Yet producing

a high speed camera by combining multiple sensors remains an interesting alternative and active area

of research. Wilburn et al. [91] have build a side-by-side array of 64 cameras for high speed capture

and explored the issues involved with raster shutters for multi-sensor cameras. Their solution scales

easily and requires less illumination than using an optical splitting tree (we must flood the scene

with light). The advantage of a splitting tree approach (at least for a moderate number of cameras)

is that the sensors share an optical center. This means that they accurately capture view-dependent

effects and do not suffer from occlusion between views.

There are other benefits to a high-speed solution using optical splitting trees for some applica-

tions. Because adjacent frames are captured by different sensors, the exposure time and frame rate

are not linked. We can capture8×30= 240fps video with an exposure time of1/30 s, producing

smooth movement with motion blur. Even when it is desirable to lock frame rate and exposure time,

a single-sensor high speed frame camera’s exposure can only asymptotically approach the frame

rate–it must pause to discharge and measure the sensor pixels. A multi-sensor camera can discharge

one sensor while capturing with another.

The data rate from a single high speed camera is enormous. Multiple sensors naturally lend

themselves to parallel processing and each camera is connected using separate FireWire cables. Us-

ing multiple sensors it is also possible to combine high-speed with filters, creating for instance a
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Figure 9.9: Multifocus images.
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Figure 9.10: 240 fps video of a soda can opening.

combination of high-speed and multi-spectral video (see next section). Finally, for research pro-

totyping it is attractive to have multiple sensors that can be temporarily configured for high speed

without investing in a single-purpose high speed camera.

Compared to a single-sensor solution, the drawbacks of our high-speed splitting tree are the

calibration problem and the loss of light. In the worst case, 7/8 of the illumination is directed at

sensors that are not measuring it.

I configured the system for high speed by implementing the balanced splitting tree from Figure

6.2 with eight cameras and matching lens parameters. Figure 9.10 shows eight frames from a high

speed sequence of a soda can opening. Each frame has an exposure time of1/120s, and the entire

sequence is captured at 240 fps. Each of the eight sequential frames shown was captured by a

different sensor. The sensors have 1/120s exposure times, shorter than allowed by the frame rate for

a single sensor.

9.5 Multimodal High Speed

Previous imaging devices have been constructed to increase the sampling resolution of particular

parameter, like wavelength. What is interesting about a general purpose high-dimensional imaging

system is that it can trade resolution between parameters by creating hybrid trees with many kinds

of filters. Hybrids are more application oriented than imaging systems that undersample all other
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Figure 9.11: High-speed + IR Splitting Tree.

parameters in order to capture one at high fidelity.

Put another way, HDR, high speed, etc. are sampling strategies. They are useful for building

high-level applications, like surveillance in an HDR range environment. It is natural to build hy-

brid sampling strategies, which are easy to express and experiment with within our splitting tree

framework.

We use configuration shown in Figure 9.11 to capture high-speed visible light and IR video. A

hot-mirror directs IR down the right sub-tree and visible light down the left sub-tree. Each subtree

has four cameras with temporal phase offsets, so the entire system yields 120 fps video with four

color channels. Figure 9.12 shows a few frames from a sequence in which a person catches a

tumbling remote control, points it at the camera, and presses the power button. Note the tumbling

remote control. The remote control’s IR beam is not visible on the color sensors, but appears clearly

when imaged by set of IR sensors. Because the configuration captures four color channels at 120

fps, the high-frequency binary IR pattern transmitted by the remote control is accurately recorded,

as is the fast tumbling motion at the beginning of the sequence.
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Figure 9.12: High-speed + IR Results.



Chapter 10

Discussion

This chapter begins with a recap of the contributions of this thesis. It then discusses of the broader

benefits and limitations of the work. As with any research, every solved problem gives birth to new

ideas on how to extend the mathematics and technology. I finish with a discussion of future work

related to this project and my own continuing projects in the field.

10.1 Summary and Conclusion

This thesis introduced a multi-parameter video as new way of thinking about richly sampled image

data. Multi-parameter video generalizes previous work and promotes consideration of the sampling

and precision issues behind multi-view camera design. Multi-parameter video can be captured with

a single-axis, multi-parameter lens (SAMPL) camera system.

Chapter 3 derived the mathematics governing the image produced by a SAMPL camera, and

showed how to efficiently approximate the image captured for the particularly interesting case of a

scene containing two planes of constant depth.

Chapter 6 introduced optical splitting trees as a framework to describe the important character-

istics of SAMPL camera configurations. Guided by this body of theory, I built a physical SAMPL

camera and captured many multi-parameter video sequences. This camera incorporates many prac-

tical design elements. It uses custom hardware to allow close physical calibration, implements a

layout well-suited to experimentation, and is self-powered, physically robust, and mobile to allow

that experimentation to occur outside the walls of a laboratory.
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The later chapters described applications of the video sequences. The matting chapter presented

two novel solutions to the classic computer graphics matting problem of separating foreground and

background objects within an image. The video synthesis chapter demonstrated that the framework

and SAMPL camera are a general solution for imaging problems. It reports results using the same

capture system for several classic vision applications: high-dynamic range video, high-speed video,

and multi-modal video; and reports on high-speed multi-modal video as an example of the ease of

constructing experimental hybrids using the system.

The SAMPL camera and theory are a general platform for computer vision and computer graph-

ics research. I have demonstrated their generality in my own research on novel computer graphics

algorithms and by reproducing previous results. Parts of this work have already been picked up

by other research groups. Most of my thesis research was performed at the Mitsubishi Electric

Research Laboratory with Hanspeter Pfister and Wojciech Matusik. I’ve since collaborated with

Anthony Vetro’s group at the same company which has captured video sequences for the MPEG

working group on multi-view video [85] using a variation on the SAMPL camera. The frameless

rendering ideas (e.g., Dayal et al. [25]) of David Luebke’s group at the University of Virginia are

‘synthesis by sampling’ in the same way that multi-parameter video is ‘analysis by sampling’. The

approaches are complimentary; they are now working with the data from this thesis. A final data

point on generality: Fŕedo Durand is one of my co-authors from the SIGGRAPH matting paper. He

plans to continue using the software I developed with his graphics group at MIT.

10.2 Discussion

The splitting tree and multi-parameter framework provides a forum for discussion of what is really

important in rich imaging. During camera design, there must be decisions to about how to partition

the incoming light into samples of several parameters. I believe that the right way to design multi-

view cameras is to make that decision consciously by treating incident light as a scarce resource

and considering all camera parameters as equally interesting potential samples. An output multi-

parameter video is the goal and the splitting tree is a way of achieving that goal. The diagramming

notation for splitting trees keeps the designer’s focus on distributing light precision.
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With this goal of on preserving light precision, consider limitation of light loss in the defocus

video matting system. As mentioned previously in the related work section, Doug Roble tells me

that filmmakers do not like putting beam splitters in front of cameras because it reduces the light

that reaches their cameras [78]. The matting system is intended for film and television production,

and it uses two beam splitters. Will the industry reject it? There are many factors at work. Although

unpopular for film, beam splitters are widely used in television production–TelePrompTers place

a monitor and the camera behind a giant beam splitter. The matting system uses beam splitters to

divide light, but it also uses all of the light captured by the cameras to form the final image. Thus

the precision directed away from the foreground camera and towards the background and pinhole

cameras still affects the foreground image. In the matting results, several of the computedF images

are sharper and less noisy than the input images. These are the mitigating factors. The limiting one

is that only about1
16 of the originally available light reaches the foreground camera. Is1

16 of the

incident light too small a factor for film? While under indoor (office) lighting the camera produced

underexposed images, working outside in direct sunlight it actually produced overexposed images.

In the Boston winter, an overcast day provided the happy medium. The lighting on a film set is

artificial and incredibly bright–much more like that of outdoors than an that of an office setting–so

while light loss still leads to imprecision, film sets likely so much light available that the matting

technique is viable.

The dynamic range problem just mentioned is another limitation of the current camera. Basler

produces very expensive computer vision cameras, but they are simply not up to the job of capturing

the dynamic range of a typical outdoor scene. In fact, I suspect that the limited range is an asset

for traditional vision work in robotics, where saturation helps with object classification and edge

detection. The Cannon Digital Rebel camera used in the defocus difference matting experiments

has much greater dynamic range, but it is a still camera. The ideal camera of course provides high

resolution, high dynamic range, and high speed for less than $1000. Today the choices at that

price level is640×480×30fps with eight bits and twelve-bits at two frames per second. Camera

prices are falling fast due to increasing consumer demand and new manufacturing technologies, so

I believe that the affordable cameras will soon catch up with the splitting tree approach.
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The defocus difference matting (static background) approach is more likely to see immediate

application in industry than the defocus video matting one. It uses a single beam-splitter and the

pinhole camera has a larger aperture than in defocus video matting, so the foreground camera re-

ceives closer to one quarter of the original light. The technique is computationally inexpensive, so it

can easily run in real-time. Recall that the state of the art in production is still blue-screen matting.

Defocus difference matting avoids the blue-spill problem and even allows the use of an arbitrary

background, as long as the background is static and has high frequency texture. It is well-suited to

replace the blue-screens for television weather reports.

Like other natural image matting methods, the defocus approaches is limited to scenes where

the foreground and background are visually distinguishable. If the boundaries of an actor, say, in

a white shirt against a white wall, are hard to distinguish visually in an image, no natural image

matting technique can succeed. Adding wavelength samples outside the visible spectrum (e.g.,

near field infra-red) increases the probability that similarly- colored materials can be distinguished.

Investigating such a configuration is interesting future work, as is further experimentation with other

optimization methods for solving the matting problem. Because only the Jacobian expressions are

based on our choice of camera parameters, the defocus matting framework can be naturally extended

to incorporate other camera parameters like variable focal length, high dynamic range, and stereo

video.

Technologies that are today too exotic and limited (e.g., holographic aperture, active optics)

for the purposes of this thesis offer great promise that in the future it will be able to build systems

that are both compact and can virtualize most image parameters. Thus the limitations of the proto-

type camera are not necessarily impediments to the application in future devices with smaller form

factors of the multi-parameter video processing algorithms developed with it.

10.3 Future Work

On the theory side, the next step is a methodology for achieving formal design considerations in a

SAMPL camera. I envision a design process with a set of constraints as input and an optical splitting

tree topology as output. The constraints describe the relative weights of different parameters. The
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process of finding an optimal splitting tree is one that balances light loss, variance, component

price, tree footprint, and the input constraints. If the design process can be formalized, then it

can be automated. For complex constraint sets, an optimization algorithm more likely to produce

light-efficient splitting tree designs than a person is. I’m working right now with Shree Nayar, John

Hughes, Hanspeter Pfister, and Wojciech Matusik, to create such an optimizer. If we are successful,

then future vision researchers will be able to enter their design goals and budget into a computer that

will compute a camera design to meet their goals. The design should take the form of a list of part

numbers from standard optical catalogs like Edmund’s and a blueprint showing how to assemble

the system. I expect that the catalog manufacturers will appreciate automated design as well!

It is hard to calibrate large numbers of cameras sharing a view through half-silvered mirrors.

This is because there are many degrees of freedom for each component and the optical path is long

compared to the size of the components. I used several calibration and correction techniques: the

rifle sighting approach that uses patterns at different depths, laser pinchers for visualizing the optical

path, rapid toggling between cameras, difference images, and user feature-based software correction

of registration errors. I believe there is more work to be done on the calibration problem for large

numbers of single-axis views.

In addition to solving calibration, it is possible to simply avoid or ignore the problem. The

generic SAMPL camera is good for prototyping camera design in the laboratory because it is recon-

figurable, but for deploying solutions it is desirable to freeze the design and build the splitting tree

with the fewest possible components and smallest possible footprint.

For defocus difference matting, I am currently exploring matting-only cameras with Wojciech

Matusik at MERL. One way of creating multiple views that I have not previously discussed is time

multiplexing. The idea is to implement a splitting tree using a single imager and different filters,

where each filter is used for a single frame and then the next is swapped in. This continues until all

filters have been used, and then the cycle repeats. Kang et al. [47] recently demonstrated HDR video

by this approach, using different exposures for alternate frames and fusing the results. For defocus

difference matting, all camera parameters are constant betweenIF andIP, except for aperture. To

obtain the temporal sampling fidelity of 30 fps video, time-multiplexed DDM requires 60 fps and



166

some motion compensation. The challenge is changing aperture size that fast. Computer driven

irises take about14 second to adjust, and we will have to change the iris from fuly-open to fully-

closed in less than1
120 of a second in order to avoid cutting into the exposure time. Shree Nayar

is currently working with lensless cameras that use an LCD grid as a rapidly adjustable aperture.

Wojciech and I believe that something similar may work for our camera.

Defocus video matting is very exciting as a radically new approach to the matting problem.

The results are comparable to previous research techniques, but not yet good enough to replace

blue-screen matting. A number of areas of future work suggest themselves.

Although DVM does not depend on high-frequency texture, it performs best when objects in

the scene are textured. This makes it complementary to Bayesian and Poisson matting, which work

best on low-frequency scenes. A natural next step is to combine the algorithms.

I chose the optimizer for DVM based on time and space constraints for the implementation.

Strict gradient descent is known to be inferior to other algorithms with regard to convergence, how-

ever. Random restarts to avoid local minima in the error function are a good start at improving

the optimizer. The larger question is how to get the convergence properties of conjugate gradient

descent or monte carlo methods without incurring unacceptable memory costs.

Because it uses an optimizer, DVM has the potential to ignore the physical calibration process

entirely. I am investigating allowing the position of the cameras to be a free variable in the opti-

mization. This can be done easily by injecting an affine transformation intoC(u). The challenge

here is making the affine transformation fast (given the complicated indexing schemes) and pushing

it through the symbolic derivatives.

Temporal and spatial coherence methods and learning methods have proven powerful tools

in computer vision, and they have previously been successfully applied to the matting problem.

Hanspeter Pfister and I are now looking at using those tools on defocussed images to further im-

prove DVM.

In conclusion, the field of digital video capture and processing is wide open and every con-

ference brings exciting new results. To create the SAMPL camera and explore its applications in

computational videography I collaborated with researchers from many backgrounds at Columbia,
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MIT, Brown, and MERL. This kind of collaboration is the direction of future research in videog-

raphy, because the problems and solutions are end-to-end ones involving capture and processing,

analysis and synthesis. The significant results lie not in the areas of image processing, graphics,

vision, and optics, but in the spaces for collaboration between them.
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Gradient Computation Code

The following is C-code that computes the gradient of the error function (∇Q =−~ETJ) for defocus

video matting. This is the key inner loop body of the optimizer. The code follows the math and

notation directly. A major challenge in implementing the algorithm is using an efficient indexing

scheme for the sparse Jacobian elements and managing the associated book-keeping that results.

The code is in two parts, each prepared as a MEX file for use with Matlab. The first part computes

the indices of the (potentially) non-zero elements of the Jacobian. The second part

A.1 Indices of Non-zero Elements
/∗∗
@file computeJacobianIndicesImpl.c

This is a MEX−file for MATLAB. Compile at the Matlab prompt with:

compileIfOutOfDate(’computeJacobianIndicesImpl ’);

The calling syntax is :

[J hgind , JFBind, J Bconvgind, Jaind , J aconvhind, Jrows2, Jcols2 , t ] = ...

computeJacobianIndicesImpl(N, K, yxToCind, h, ...

g, Omega, alphaOmegaInds, R, a, F, sz)

See also computeJacobianIndices.m.

Throughout the code, ’sz ’ is the variable ’ oldsz ’ ( i .e ., the preallocation size )

that appears in optimizeblock .m.

∗/

/∗ mymex defines the Matrixf64/Matrixi32 structs , which allow both 1−based

indexing through the melt (Matlab−Element) pointer and 0−based indexing

through the elt (C−Element) pointer.∗/

#include ”mymex.h”

/∗∗ The function implemented by this MEX file∗/ static void

computeJacobianIndicesImpl(

/∗ Input arguments∗/

168
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const int N,

const int K,

const Matrixf64 yxToCind,

const Matrixf64 h,

const Matrixf64 g,

const Matrixf64 Omega,

const Matrixi32 alphaOmegaInds,

const int R,

const Matrixf64 a,

const Matrixf64 F,

const int sz ,

/∗ Output arguments (must be preallocated , data referenced by them will be mutated).∗/

Matrixi32 J hgind ,

Matrixi32 J FBind,

Matrixi32 J Bconvgind,

Matrixi32 J aind ,

Matrixi32 J aconvhind ,

Matrixi32 Jrows2,

Matrixi32 Jcols2 ,

int ∗ t ptr ) {

int t = 0;

int i , j , k, x, y, z, L, n a , n F, n B;

double vh, vg;

/∗ Size of F extended with a z dimension∗/

int FzSize [4];

/∗ Size of a extended with a z dimension∗/

int azSize [4];

FzSize[0] = F. size [0];

FzSize[1] = F. size [1];

FzSize[2] = F. size [2];

FzSize[3] = 3;

azSize [0] = a. size [0];

azSize [1] = a. size [1];

azSize [2] = 3;

azSize [3] = 1;

if (J hgind . size [0] != sz){
ERROR(”Jhgind output matrix was allocatedwith the wrong size.”);

}

if (J FBind. size [0] != sz){
ERROR(”JFBind output matrix was allocatedwith the wrong size.”);

}

if (J Bconvgind. size [0] != sz){
ERROR(”JBconvgind output matrix was allocatedwith the wrong size.”);

}

if ( J aind . size [0] != sz){
ERROR(”Jaind output matrix was allocatedwith the wrong size.”);

}

if (J aconvhind . size [0] != sz){
ERROR(”Jaconvhindoutput matrix was allocatedwith the wrong size.”);

}

if (Jrows2. size [0] != sz∗3) {
printf (”sz∗3 = %d, size = %d x %d x %d\n”, sz∗3, Jrows2.size[0], Jrows2.size[1], Jrows2. size [2]);

ERROR(”Jrows2output matrix was allocatedwith the wrong size.”);

}
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if ( Jcols2 . size [0] != sz∗3) {
ERROR(”Jcols2output matrix was allocatedwith the wrong size.”);

}

/∗ The t index is 0−based in this code because it is in C, but all other indices

are 1−based for Matlab routines .∗/

/∗ Iterate over unknowns∗/

for (n a = 1; na <= N; ++n a){

/∗ For each na there are seven rows with potentially

nonzero entries in J ( the rows may overlap with other

values of na ).

∗/

/∗ Pixel coordinates of u(na) ∗/

ind2sub2(Omega.size, Omega.dims, alphaOmegaInds.melt[na], &j, &i);

for (L = 1; L <= 3; ++L){

/∗ The indices for F start after the indices for alpha.

There are three colors for each pixel .∗/

n F = n a + N + (L−1) ∗ N;

n B = n a + 4∗N + (L−1) ∗ N;

/∗ Iterate over constraints∗/

for (y = j − R; y <= j + R; ++y) {
for (x = i − R; x <= i + R; ++x) {

for (z = 1; z <= 3; ++z){

/∗ Values of the point spread functions at k, n.

We’ll end up looking these up again later , but

we have to avoid elements outside the PSF radius.

∗/

vh = get3f64(&h, y− j + R + 1, x − i + R + 1, z );

vg = get3f64(&g, y− j + R + 1, x − i + R + 1, z );

/∗ Only operate on areas with non−zero terms∗/

if (vh != 0.0 || vg != 0.0) {

/∗ Find k such that C(y, x, L, z) = C( constraintInds [k]) = Cvec[k].

(k is a 1−based index)∗/

k = ( int )get2f64(&yxToCind, y, x) + K∗ (L−1) + (3 ∗ K) ∗ (z − 1);

Jrows2. elt [ t ] = k;

Jrows2. elt [ t+sz] = k;

Jrows2. elt [ t+sz∗2] = k;

Jcols2 . elt [ t ] = na;

Jcols2 . elt [ t+sz] = nF;

Jcols2 . elt [ t+sz∗2] = n B;

J aind . elt [ t ] = sub2ind2(a. size , a.dims, j , i );

J FBind. elt [ t ] = sub2ind3(F. size , F.dims, j , i , L);

J hgind . elt [ t ] = sub2ind3(h. size , h.dims, y− j + R + 1, x − i + R + 1, z );

/∗ Note that we add 3 z values to the size of F

and a for the convolution results against h and g.∗/

J Bconvgind. elt [ t ] = sub2ind4(FzSize, 4, y, x, L, z );

J aconvhind . elt [ t ] = sub2ind3(azSize , 3, y, x, z );

t = t + 1;

}
}

}
}
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}
}

/∗ Return as a Matlab−style 1−based index.

We went one past the end of the C−array,

but then backed up by one.∗/

∗ t ptr = t ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Interface to Matlab

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗ Input arguments∗/

enum{
N IN = 0,

K IN,

YXTOCIND IN,

H IN,

G IN,

OMEGA IN,

ALPHAOMEGAINDS IN,

R IN,

A IN,

F IN,

SZ IN,

NARGIN

};

/∗∗ Output arguments∗/

enum{
J HGIND OUT = 0,

J FBIND OUT,

J BCONVGIND OUT,

J AIND OUT,

J ACONVHIND OUT,

JROWS2OUT,

JCOLS2OUT,

T OUT

};

void mexFunction(

int nlhs ,

mxArray∗ plhs [],

int nrhs ,

const mxArray∗ prhs []) {

int sz , R, i , N, K;

int dims[4];

/∗∗ This code miscompiles on WinXP unless we extract the input

arguments before the function call .∗/

Matrixi32 alphaOmegaInds, Jrows2,Jcols2 ;

Matrixf64 h,g,Omega,xyToCind,a,F;

/∗ Check for proper number of arguments.∗/

if (nrhs != NARGIN){
ERROR(”Not enoughinput arguments.”);

}

sz = scalarInteger (prhs[SZIN]);

R = scalarInteger (prhs[RIN]);
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/∗ Allocate output arguments, which are int32 vectors of indices∗/

dims[0] = sz ; dims[1] = 1; dims[2] = 1; dims[3] = 1;

plhs [JHGIND OUT] = mxCreateNumericArray(2, dims, mxINT32CLASS, mxREAL);

plhs [JFBIND OUT] = mxCreateNumericArray(2, dims, mxINT32CLASS, mxREAL);

plhs [JBCONVGIND OUT] = mxCreateNumericArray(2, dims, mxINT32CLASS, mxREAL);

plhs [JAIND OUT] = mxCreateNumericArray(2, dims, mxINT32CLASS, mxREAL);

plhs [JACONVHIND OUT] = mxCreateNumericArray(2, dims, mxINT32CLASS, mxREAL);

dims[0] = sz∗ 3;

plhs [JROWS2OUT] = mxCreateNumericArray(2, dims, mxINT32CLASS, mxREAL);

plhs [JCOLS2OUT] = mxCreateNumericArray(2, dims, mxINT32CLASS, mxREAL);

dims[0] = 1;

plhs [T OUT] = mxCreateNumericArray(2, dims, mxINT32CLASS, mxREAL);

N = scalarInteger (prhs[NIN]);

K = scalarInteger (prhs[KIN]);

alphaOmegaInds = intMatrix(prhs[ALPHAOMEGAINDSIN]);

h = doubleMatrix(prhs[HIN]);

g = doubleMatrix(prhs[GIN]);

Omega = doubleMatrix(prhs[OMEGAIN]);

xyToCind = doubleMatrix(prhs[YXTOCINDIN]);

F = doubleMatrix(prhs[FIN]);

a = doubleMatrix(prhs[AIN]);

Jrows2 = intMatrix (plhs [JROWS2OUT]);

Jcols2 = intMatrix (plhs [JCOLS2OUT]);

/∗ Invoke the actual function∗/

computeJacobianIndicesImpl(

/∗ Input arguments∗/

N,

K,

xyToCind,

h,

g,

Omega,

alphaOmegaInds,

R,

a,

F,

sz ,

/∗ Output arguments∗/

intMatrix (plhs [JHGIND OUT]),

intMatrix (plhs [JFBIND OUT]),

intMatrix (plhs [JBCONVGIND OUT]),

intMatrix (plhs [JAIND OUT]),

intMatrix (plhs [JACONVHIND OUT]),

Jrows2,

Jcols2 ,

( int ∗)mxGetData(plhs[TOUT]));

}

A.2 Sparse Jacobian-Dense Error Vector Product

/∗∗
@file computeJacobianProductImpl.c

This is a MEX−file for MATLAB. Compile at the Matlab prompt with:

compileIfOutOfDate(’computeJacobianProductImpl’);

See also computeJacobianProduct.m.

∗/
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#include ”mymex.h”

double square(double x) {
return x ∗ x;

}

/∗∗ The xth non−zero element of the Jacobian is described by the J∗ arrays ,

e.g ., Jhgind[x]∗/

void jacobianProduct (

/∗ Input arguments∗/

int N,

int K,

const Matrixi32 J hgind ,

const Matrixi32 J FBind,

const Matrixi32 J Bconvgind,

const Matrixi32 J aind ,

const Matrixi32 J aconvhind ,

const Matrixi32 alphaOmegaInds,

const Matrixi32 Jrows,

const Matrixi32 Jcols ,

const Matrixf64 Bconvg,

const Matrixf64 aconvh,

const Matrixf64 h,

const Matrixf64 g,

const Matrixf64 a,

const Matrixf64 F,

const Matrixf64 B,

const Matrixf64 u,

const Matrixf64 E,

const Matrixf64 FminusB,

const Matrixf64 dadx,

const Matrixf64 dady,

const Matrixf64 d2adx2,

const Matrixf64 d2ady2,

const Matrixf64 dFdx,

const Matrixf64 dFdy,

const Matrixf64 d2Fdx2,

const Matrixf64 d2Fdy2,

const Matrixf64 dBdx,

const Matrixf64 dBdy,

const Matrixf64 d2Bdx2,

const Matrixf64 d2Bdy2,

const double pinholeErrorWeight ,

const double alphaErrorWeight ,

const double aDiscriminationBias ,

const double FBDiscriminationBias,

const double aGradientBias ,

const double FGradientBias,

const double BGradientBias,

/∗ Output arguments∗/

Matrixf64 EJ) {

int i , n, k, X, L, sz ;

double C1, C2, Ek, u n, ratio ;

/∗ Intialize to zero∗/

for (n = 1; n <= EJ.size[0]∗ EJ. size [1]; ++n){
EJ.melt[n] = 0.0;

}
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sz = Jhgind . size [0];

/∗∗∗∗∗∗∗∗∗∗∗∗ Sum−squared pixel differences terms∗∗∗∗∗∗∗∗∗∗∗/

for ( i = 1; i <= sz; ++i) {
/∗∗∗∗ dC/da = h∗ (F − B x g) ∗/

k = Jrows.melt[ i ];

n = Jcols .melt[ i ];

/∗ Decrease the scaling for the pinhole constraints∗/

C1 = (k <= 3∗K) ? pinholeErrorWeight : 1.0;

EJ.melt[n] += h.melt[Jhgind .melt[ i ]] ∗
(F.melt[JFBind.melt[ i ]] −

Bconvg.melt[JBconvgind.melt[ i ]]) ∗
E.melt[k] ∗ C1;

/∗∗∗∗ dC/dF = a∗ h ∗/

k = Jrows.melt[ i + sz ];

n = Jcols .melt[ i + sz ];

C1 = (k <= 3∗K) ? pinholeErrorWeight : 1.0;

EJ.melt[n] += a.melt[ Jaind .melt[ i ]] ∗ h.melt[Jhgind .melt[ i ]] ∗ E.melt[k] ∗ C1;

/∗∗∗∗ dC/dB = g∗ (1− a x h) ∗/

k = Jrows.melt[ i + sz∗2];

n = Jcols .melt[ i + sz∗2];

C1 = (k <= 3∗K) ? pinholeErrorWeight : 1.0;

EJ.melt[n] += g.melt[Jhgind .melt[ i ]] ∗ (1 − aconvh.melt[Jaconvhind .melt[ i ]]) ∗
E.melt[k] ∗ C1;

}

/∗ The alpha elements receive a scaling factor .∗/

for (n = 1; n <= N; ++n){
EJ.melt[n] ∗= alphaErrorWeight;

}

/∗∗∗∗∗∗∗∗∗∗∗∗ Bias terms∗∗∗∗∗∗∗∗∗∗∗/

/∗ All bias derivatives terms have Ek in the denominator, which cancels in the product E’J.∗/

ratio = (9.0 ∗ K) / (7.0 ∗ N);

/∗
Color discrimination Bias

de n/du n = +/− 1. Note that color discrimination is a 1−eˆ2 term, so the derivative

is negated relative to other terms.

∗/

k = 9 ∗ K + 1;

for ( i = 1; i <= 3∗N; ++i) {
C1 = FminusB.melt[i]∗ FBDiscriminationBias∗ ratio ;

n = N + i ;

EJ.melt[n] +=−C1;

n = 4∗N + i;

EJ.melt[n] += C1;

}

/∗
Alpha coherence bias (two rows)

∗/

k += 2;

for (n = 1; n <= N; ++n){
EJ.melt[n] += aGradientBias∗ ratio ∗ (
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/∗ x ∗/

dadx.melt[alphaOmegaInds.melt[n]]∗
d2adx2.melt[alphaOmegaInds.melt[n]] +

/∗ y ∗/

dady.melt[alphaOmegaInds.melt[n]]∗
d2ady2.melt[alphaOmegaInds.melt[n]]

);

}

/∗
F coherence bias ( six rows)

∗/

/∗ We’re going to offset the alpha (red) indices by multiples of X

to access the green and blue channels .∗/

X = F. size [0] ∗ F. size [1];

/∗ Iterate over color channels∗/

for (L = 1; L <= 3; ++L){
k += 2;

for ( i = 1; i <= N; ++i) {
n = L∗N + i;

EJ.melt[n] +=

FGradientBias∗ ratio ∗ (

/∗ x ∗/

dFdx.melt[alphaOmegaInds.melt[i ] + X∗(L−1)] ∗
d2Fdx2.melt[alphaOmegaInds.melt[i] + X∗(L−1)] +

/∗ y ∗/

dFdy.melt[alphaOmegaInds.melt[i ] + X∗(L−1)] ∗
d2Fdy2.melt[alphaOmegaInds.melt[i] + X∗(L−1)]

);

}
}

/∗
B coherence bias (two rows)

∗/

/∗ Iterate over color channels∗/

for (L = 1; L <= 3; ++L){
k += 2;

for ( i = 1; i <= N; ++i) {
n = (L+3)∗N + i;

EJ.melt[n] +=

BGradientBias∗ ratio ∗ (

/∗ x ∗/

dBdx.melt[alphaOmegaInds.melt[i] + X∗(L−1)] ∗
d2Bdx2.melt[alphaOmegaInds.melt[i] + X∗(L−1)] +

/∗ y ∗/

dBdy.melt[alphaOmegaInds.melt[i] + X∗(L−1)] ∗
d2Bdy2.melt[alphaOmegaInds.melt[i] + X∗(L−1)]

);

}
}

/∗
Alpha distribution bias (one row)

∗/

k += 1;

for (n = 1; n <= N; ++n){
u n = u.melt[n ];

EJ.melt[n] +=

aDiscriminationBias∗ ratio ∗
(u n − square(un)) ∗
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(1.0 − 2.0 ∗ u n );

}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Interface to Matlab

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗ Input arguments∗/

enum{
N IN = 0,

K IN,

J HGIND IN,

J FBIND IN,

J BCONVGIND IN,

J AIND IN,

J ACONVHIND IN,

ALPHAOMEGAINDS IN,

JROWSIN,

JCOLSIN,

BCONVG IN,

ACONVH IN,

H IN,

G IN,

A IN,

F IN,

B IN,

U IN,

E IN,

FMINUSB IN,

DADX IN,

DADY IN,

D2ADX2 IN,

D2ADY2 IN,

DFDX IN,

DFDY IN,

D2FDX2 IN,

D2FDY2 IN,

DBDX IN,

DBDY IN,

D2BDX2 IN,

D2BDY2 IN,

PINHOLEERRORWEIGHTIN,

ALPHAERRORWEIGHTIN,

ADISCRIMINATIONBIAS IN,

FBDISCRIMINATIONBIAS IN,

AGRADIENTBIAS IN,

FGRADIENTBIAS IN,

BGRADIENTBIAS IN,

NARGIN

};

/∗∗ Output arguments∗/

enum{
EJ OUT = 0,

NARGOUT

};
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void mexFunction(

int nlhs ,

mxArray∗ plhs [],

int nrhs ,

const mxArray∗ prhs []) {

int N, K;

int dims[4];

/∗ Check for proper number of arguments.∗/

if (nrhs != NARGIN){
ERROR(”Not enoughinput arguments.”);

}
if (nlhs != NARGOUT){

ERROR(”Not enoughoutput arguments.”);

}

N = scalarInteger (prhs[NIN]);

K = scalarInteger (prhs[KIN]);

/∗ Allocate output arguments.∗/

dims[0] = 1; dims[1] = 7∗N; dims[2] = 1; dims[3] = 1;

plhs [EJOUT] = mxCreateNumericArray(2, dims, mxDOUBLECLASS, mxREAL);

/∗ Invoke the actual function∗/

jacobianProduct (

N,

K,

intMatrix (prhs[JHGIND IN]),

intMatrix (prhs[JFBIND IN]),

intMatrix (prhs[JBCONVGIND IN]),

intMatrix (prhs[JAIND IN]),

intMatrix (prhs[JACONVHIND IN]),

intMatrix (prhs[ALPHAOMEGAINDSIN]),

intMatrix (prhs[JROWSIN]),

intMatrix (prhs[JCOLSIN]),

doubleMatrix(prhs[BCONVGIN]),

doubleMatrix(prhs[ACONVHIN]),

doubleMatrix(prhs[HIN]),

doubleMatrix(prhs[GIN]),

doubleMatrix(prhs[AIN]),

doubleMatrix(prhs[FIN ]),

doubleMatrix(prhs[BIN]),

doubleMatrix(prhs[UIN]),

doubleMatrix(prhs[EIN]),

doubleMatrix(prhs[FMINUSBIN]),

doubleMatrix(prhs[DADXIN]),

doubleMatrix(prhs[DADYIN]),

doubleMatrix(prhs[D2ADX2IN]),

doubleMatrix(prhs[D2ADY2IN]),

doubleMatrix(prhs[DFDXIN]),

doubleMatrix(prhs[DFDYIN]),

doubleMatrix(prhs[D2FDX2IN]),

doubleMatrix(prhs[D2FDY2IN]),

doubleMatrix(prhs[DBDXIN]),

doubleMatrix(prhs[DBDYIN]),

doubleMatrix(prhs[D2BDX2IN]),

doubleMatrix(prhs[D2BDY2IN]),

scalarDouble (prhs[PINHOLEERRORWEIGHTIN]),

scalarDouble (prhs[ALPHAERRORWEIGHTIN]),
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scalarDouble (prhs[ADISCRIMINATIONBIASIN]),

scalarDouble (prhs[FBDISCRIMINATIONBIASIN]),

scalarDouble (prhs[AGRADIENTBIASIN]),

scalarDouble (prhs[FGRADIENTBIASIN]),

scalarDouble (prhs[BGRADIENTBIASIN]),

doubleMatrix(plhs [EJOUT]));

}
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Figure B.1: Base of the sensor mount stage. A thin slide translates along one axis inside the U-gouge
of the mount. A T-bar bolted to the slide rotates about one axis. The translation spring mounts in
the large hole visible at one end of the long axis; the translation screw mounts in the small hole on
the opposite end.
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Figure B.2: Slide that rides inside the U-gouge of a sensor mount stage base. Note the cube tab that
hangs below the body of the slide. The translation thumbscrew presses against this tab on the side
where the tab is flush with the slide. A strong spring opposes the tab on the opposite side. The two
holes running across the short axis of the slide are for the rotation thumbscrew and the spring that
opposes it. The rotation spring is weak compared to the translation one because it must be shorter.
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Figure B.3: T-plate that bolts to the slide in a sensor mount stage. The L-bracket for the next stage
is screws into the top of the T-plate. The rotation screw and spring press against opposing arms of
the T.



Bibliography

[1] Color correction for image sensors. Technical Report MTDPS-0534-2, October 2003.

http://www.kodak.com/global/plugins/acrobat/en/digital/ccd/applicationNotes/ColorCorrectionforImageSensors.pdf.

[2] M. Aggarwal and N. Ahuja. Split aperture imaging for high dynamic range. InICCV01, pages

II: 10–17, 2001.

[3] M. Aggarwal and N. Ahuja. Split aperture imaging for high dynamic range.IJCV, 58(1):7–17,

June 2004.

[4] N. E. Apostoloff and A. W. Fitzgibbon. Bayesian video matting using learnt image priors.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

407–414, 2004.

[5] N. Asada, H. Fujiwara, and T. Matsuyama. Seeing behind the scene: analysis of photometric

properties of occluding edges by the reversed projection blurring model.IEEE Transactions

on Pattern Analysis and Machine Intelligence, 20(2):155–67, 1998.

[6] Naoki Asada, Hisanaga Fujiwara, and Takashi Matsuyama. Edge and depth from focus.Int.

J. Comput. Vision, 26(2):153–163, 1998.

[7] M. Bajcsy, A. S. Zibrov, and M. D. Lukin. Stationary pulses of light in an atomic medium.

Nature, (426):638–641, December 2003.

[8] Bryce Bayer. Color imaging array, July 1976. United States Patent 3,971,065.

[9] M. Ben-Ezra and S.K. Nayar. Jitter camera: High resolution video from a low resolution

detector. InIEEE CVPR, pages 135–142, June 2004.

183



184

[10] Arie Berman, Arpag Dadourian, and Paul Vlahos. Method for removing from an image the

background surrounding a selected object, 2000. U.S. Patent 6,134,346.

[11] Arie Berman, Paul Vlahos, and Arpag Dadourian. Comprehensive method for removing from

an image the background surrounding a selected object, 2000. U.S. Patent 6,134,345.

[12] S. S. Bhasin and S. Chaudhuri. Depth from defocus in presence of partial self occlusion.

Proceedingsof the International Conference on Computer Vision, 1(2):488–93, 2001.

[13] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmentation using an

adaptive gmmrf model.Proceedings of the European Conference on Computer Vision (ECCV),

2004.

[14] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroder. Sparse matrix solvers on the gpu:

conjugate gradients and multigrid.ACM Trans. on Graphics, 22(3):917–924, 2003.

[15] Peter J. Burt and Edward H. Adelson. A multiresolution spline with application to image

mosaics.ACM Trans. Graph., 2(4):217–236, 1983.

[16] Xiaochun Cao and Mubarak Shah. Creating realistic shadows of composited objects. Jan

2005.

[17] S. Chaudhuri and A.N. Rajagopalan.Depth from Defocus: A Real Aperture Imaging Approach.

Springer-Verlag, 1998.

[18] Yung-Yu Chuang. New models and methods for matting and compositing, 2004. Ph.D. Thesis,

University of Washington.

[19] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H. Salesin, and Richard Szeliski.

Video matting of complex scenes.ACM Trans. on Graphics, 21(3):243–248, July 2002.

[20] Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard Szeliski. A bayesian approach

to digital matting. InProceedings of IEEE CVPR 2001, volume 2, pages 264–271. IEEE

Computer Society, December 2001.



185

[21] Yung-Yu Chuang, Dan B Goldman, Brian Curless, David H. Salesin, and Richard Szeliski.

Shadow matting and compositing.ACM Trans. Graph., 22(3):494–500, 2003.

[22] Yung-Yu Chuang, Douglas E. Zongker, Joel Hindorff, Brian Curless, David H. Salesin, and

Richard Szeliski. Environment matting extensions: towards higher accuracy and real-time

capture. InProceedings of the 27th annual conference on Computer graphics and interactive

techniques, pages 121–130. ACM Press/Addison-Wesley Publishing Co., 2000.

[23] A. Dadourian. Method and apparatus for compositing video images (u.s. patent 5,343,252),

August 1994.

[24] T.J. Darrell and K. Wohn. Depth from focus using a pyramid architecture.PRL, 11:787–796,

1990.

[25] Abhinav Dayal, Cliff Woolley, Ben Watson, and David Luebke. Adaptive frameless rendering.

In Eurographics Symposium on Rendering, June 2005.

[26] Paul Debevec, Andreas Wenger, Chris Tchou, Andrew Gardner, Jamie Waese, and Tim

Hawkins. A lighting reproduction approach to live-action compositing.ACM Trans. on Graph-

ics, 21(3):547–556, July 2002.

[27] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from pho-

tographs. InProceedings of the 24th annual conference on Computer graphics and interactive

techniques, pages 369–378. ACM Press/Addison-Wesley Publishing Co., 1997.

[28] James H. Elder and Richard M. Goldberg. Image editing in the contour domain.IEEE PAMI,

23(3):291–296, 2001.

[29] J. Ens and P. Lawrence. An investigation of methods for determining depth from focus.PAMI,

15(2):97–108, February 1993.

[30] Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient domain high dynamic range

compression. InProceedings of the 29th annual conference on Computer graphics and inter-

active techniques, pages 249–256. ACM Press, 2002.



186

[31] P. Favaro and S. Soatto. Seeing beyond occlusions (and other marvels of a finite lens aperture).

In IEEE CVPR, pages 579–586, 2003.

[32] Sidney Fels, Eric Lee, and Kenji Mase. Techniques for interactive video cubism (poster ses-

sion). In MULTIMEDIA ’00: Proceedings of the eighth ACM international conference on

Multimedia, pages 368–370, New York, NY, USA, 2000. ACM Press.

[33] R. Fielding. The Technique of Special Effects Cinematography, 3rd edition. Focal/Hastings

House, 1972.

[34] Graham D. Finlayson, Steven D. Hordley, and Mark S. Drew. Removing shadows from images.

In ECCV ’02: Proceedings of the 7th European Conference on Computer Vision-Part IV, pages

823–836, London, UK, 2002. Springer-Verlag.

[35] Max Fleischer. Method of producing moving picture cartoons, 1917. US Patent no. 1,242,674.

[36] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Computer Graphics,

Principles and Practice, Second Edition. Addison-Wesley, Reading, Massachusetts, 1990.

[37] P. R. Gill, W. Murray, and M. H. Wright.The Levenberg-Marquardt Method, chapter 4.7.3,

pages 136–137. Academic Press, 1981.

[38] Y. Goto, K. Matsuzaki, I. Kweon, and T. Obatake. Cmu sidewalk navigation system: a

blackboard-based outdoor navigation system using sensor fusion with colored-range images.

In Proceedings of 1986 fall joint computer conference on Fall joint computer conference, pages

105–113. IEEE Computer Society Press, 1986.

[39] P. Grossmann. Depth from focus.PRL, 5(1):63–69, 1987.

[40] R. M. Haralick, S. R. Sternberg, and X. Zhuang. Image analysis using mathematical morphol-

ogy. IEEE PAMI, 9(4):532–550, 1987.

[41] R. P. Harvey. Optical beam splitter and electronic high speed camera incorporating such a

beam splitter. United States Patent US5734507, 1998.



187

[42] Euguene Hecht.Optics Third Edition. Addison Wesley Longman, Inc., 1998.

[43] P. Hillman, J. Hannah, and D. Renshaw. Alpha channel estimation in high resolution images

and image sequences. InProceedings of IEEE CVPR 2001, volume 1, pages 1063–1068. IEEE

Computer Society, December 2001.

[44] E. Ikeda. Image data processing apparatus for processing combined image signals in order to

extend dynamic range. U.S. Patent 5801773, September 1998.

[45] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically reparameterized light

fields. InProceedings of the 27th annual conference on Computer graphics and interactive

techniques, pages 297–306. ACM Press/Addison-Wesley Publishing Co., 2000.

[46] B. Jahne and P. Geissler. Depth from focus with one image. InCVPR94, pages 713–717, 1994.

[47] Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and Richard Szeliski. High dynamic

range video.ACM Trans. Graph., 22(3):319–325, 2003.

[48] Allison W. Klein, Peter-Pike J. Sloan, Adam Finkelstein, and Michael F. Cohen. Stylized video

cubes. InSCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on

Computer animation, pages 15–22, New York, NY, USA, 2002. ACM Press.

[49] K. Levenberg. A method for the solution of certain problems in least squares.Quart. Appl.

Math., (2):164–168, 1944.

[50] Marc Levoy, Billy Chen, Vaibhav Vaish, Mark Horowitz, Ian McDowall, and Mark Bolas.

Synthetic aperture confocal imaging.ACM Trans. Graph., 23(3):825–834, 2004.

[51] J. Lewis. Lifting detail from darkness. InSIGGRAPH 2001 Sketch, 2001.

[52] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. (11):431–

441, 1963.

[53] Wojciech Matusik and Hanspeter Pfister. 3d tv: a scalable system for real-time acquisition,

transmission, and autostereoscopic display of dynamic scenes.ACM Trans. on Graphics,

23(3):814–824, 2004.



188

[54] Morgan McGuire, John F. Hughes, Wojciech Matusik, Hanspeter Pfister, Frédo Durand, and
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