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The idea of a unifying framework for optimization has been around for about a decade, but

very few attempts have been made at providing a description of the major components

and their interaction in such a framework. A notable exception is the recent book by

HOOKER[50], which builds on the earlier work of CHANDRU AND HOOKER[28], HOOKER[48]

and ARON, HOOKER AND YUNES[6] to provide a consistent view of optimization techniques

as they are used in mathematical and constraint logic programming. The framework we

describe here has evolved from a joint work with HOOKER AND YUNES[6], and it provides

the basic blocks for a modeling language of metaconstraints, as well as the mechanisms

that a generic metasolver needs in order to solve a problem according to the specification

given by the metaconstraints. The thesis on which this framework is based is that problem

solving is a combination of two fundamental steps, search and inference, whose efficient

utilization requires modeling and logical deduction across theory lines. Such deduction is

made possible by equipping metaconstraints with reformulation rules for multiple theories

and using these rules throughout the search to draw inference from each of those theories.
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Chapter 1

Introduction

Whenever we are faced with a new problem, we attempt to identify existing theories, or

perhaps create new ones that would provide us with (1) a language to express the problem

and (2) axioms, inference rules and theorems to reason about it. There may be more than

one suitable theory, so part of the problem solving process is to also decide which one

is best equipped (perhaps has more advanced theorems, and therefore might require the

smallest number of extra inference steps) to solve the problem at hand as efficiently and

conveniently as possible. For instance, there are problems to which a geometric reasoning

is best, and thus we have geometry, with a language, axioms and theorems as a tool for

solving such problems. Other problems are better suited for an algebraic reasoning, and

for them we use algebra. There are problems where set theory is best, and so on. It is also

not uncommon to see elements of two or more theories being used in solving a problem.

This is particularly true for optimization problems. Even though we have specific theories

for certain classes of problems, such as linear programming, pure and mixed integer linear

programming, nonlinear programming and constraint programming, the literature is rich

in examples in which elements of these theories are combined in various ways in order to

obtain solutions to difficult problems. The particular combination depends on the prob-

lem and even though it could be done in arbitrary ways, certain patterns are used more

frequently than others.

1
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A unifying framework

The scope of this thesis is to provide a unifying framework under which these common

patterns can be employed in a systematic manner in order to solve computational opti-

mization problems. This framework is based on the following thesis:

The problem solving process, in optimization in particular, is a combination of

two fundamental steps, search and logical inference, whose efficient utilization

requires modeling and deduction across theory lines.

The search step is used to advance towards a proof (solution) and it generally involves

making uninformed decisions. Logical inference, or simply inference, plays a dual role, by

detecting infeasible search directions and, when possible, preventing the search from even

trying directions which can be proved wrong a priori.

1.1 Theories: language and logic

A scientific theory is a system of sentences which are accepted as true and which may

be called laws or statements. In mathematics, these statements follow one another in a

definite order according to certain principles (syntax) and are accompanied by consider-

ations intended to establish their validity (semantics). More precisely, a theory consists

of a linguistical part (language) and a logical part (logic). The language includes ele-

mentary symbols (constants, variables and logical connectives), as well as more complex

constructions such as terms, formulas and sentences, all described by a grammar (syntax)

and having a well defined meaning (semantics). The logical part allows us to manipulate

elements of the language in order to establish new laws. It consists of logical axioms and

inference rules. In order to solve a given problem with a particular theory, we must first

state it using the linguistical elements of the theory and then apply the logical elements

to construct a proof that the formed statement is either true or false. In the context of

optimization, the language provides the tools we need to create a model of the problem,

while the logic gives us the tools to use during the solution process.



3

Searching for a proof: variable elimination

Among the symbols occurring in mathematical models (as well as in theorems and proofs)

we distinguish constants and variables. For instance, in arithmetic, which is the theory con-

cerned with the investigation of the general properties of numbers, relations between num-

bers and operations on numbers, we encounter such constants as ”number”, ”zero”/”0”,

”one”/”1”, ”sum”/”+” and so on. Constants have a well determined meaning, which

remains unchanged throughout the course of proofs. Variables, on the other hand, do not

posses any meaning by themselves. Thus, while questions like ”Is zero an even number?”

can always be answered in the affirmative or negative (the answer may be true or false,

but at any rate it is meaningful), a question concerning a variable ”x” , for example the

question ”Is x an even number?”, cannot be answered meaningfully. So even though they

are syntactically correct with respect to the linguistical part, constructions like ”x is an

even number” do not actually express a definite assertion and can neither be confirmed

or refuted. We only obtain a sentence whose truth value can be established within the

theory if we somehow manage to remove the variable ”x” from the statement and replace

it with symbols whose meaning is well defined.

One way in which we can achieve this is to directly replace ”x” with a constant

denoting a definite number; thus, for instance, if ”x” is replaced by the symbol ”1”, the

result is a false statement whereas a true statement arises on replacing ”x” by ”2” or

”10”. A more desirable (but not always possible) way is to apply symbolic manipulation

to the statement in order to obtain an equivalent one without variables. For example,

in order to decide whether the statement ”∃x ∈ R : ax2 + bx + c = 0” is true, we

know that it is sufficient to examine the equivalent statement ”b2− 4ac ≥ 0”, which can

be obtained from the original through symbolic manipulation (elimination of variables,

or, more precisely, of quantifiers). For simple problems, like the one above, this type of

variable elimination (through symbolic manipulation) is possible, but for more complex

problems, we need to rely on the first method, that of directly replacing variables with

symbols. This method is known in the optimization and artificial intelligence communities

as search. It typically involves two decisions: which variable to eliminate at a given stage,
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and what constant to replace it with.1 Since there are no general rules for either of these

decisions that would guarantee a short proof, search needs to rely on guidance from the

logical part of the theory at hand. This guidance comes in the form of inference and

allows the search to avoid looking at all possible variable-constant substitutions.

Using inference to guide the search

In a given theory, logical axioms are universally true formulas and inference rules are

elementary steps of the logical reasoning. For example, in propositional calculus, logical

reasoning is driven by rules like modus ponens (”from A → B and A, infer B”) and

modus tollens (”from A → B and not B, infer not A”). A theorem is either an axiom

or an immediate consequence of other theorems (by application of some inference rule).

A proof is a sequence of theorems such that each theorem is either and axiom or an

immediate consequence of the theorems before it. The process through which we find the

immediate consequences of the existing theorems is called inference.

Inference assists the solution process in two important, distinct ways. One one hand,

the search should be prevented from attempting directions which can be proved a priori

to lead to false statements. When such a priori proofs of infeasibility are not possible, the

inference step is called upon after the search picks a direction and commits to it, since the

effects of that decision may be easier to evaluate a posteriori. This time, inference plays a

corrective role: it checks whether the most recent decision has created a false statement

and if so it informs the search component that the decision must be undone.

Inference from multiple theories

While the choice of a language to express the problem at hand is very important, there

is no reason why the inference step should be based on a single theory. Indeed, if we

manage to properly express the current state of the proof (search) in multiple languages,

we could use each of the corresponding theories in order to decide on the validity of the

proof so far and on the best way to proceed.

1For some problems it may actually be more effective to first restrict the number of available options
for a given variable, without replacing it immediately with any of them.
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1.2 Towards a unified method: previous work

A particulary interesting possibility is to use both logic and mathematical modeling and

attempt to draw inference from both theories. Early ideas hinting at the benefits of

combining logic and mathematical programming can be traced back to the late 1960s, in

the work of HAMMER AND RUDEANU[40] and later in the work of JEROSLOW[54] on logic-

based decision support. Jeroslow’s mixed background and interests, initially in logic and

later in polyhedral theory, played a key role in his pathbreaking work towards the application

of mathematical programming techniques in artificial intelligence and viceversa. He was

the first to articulate the vision that we could create more effective systems, by exploiting

the potential of polyhedral techniques to assist in logic based approaches and, conversely,

the potential for results in applied logic to be relevant in mixed integer programming.

The research community followed suit and in the 1990s we witnessed an abundance

of research on the path of integration of logic methods with optimization, much of which

was captured in two books by CHANDRU AND HOOKER[28], HOOKER[47], a paper collection

by MILANO[65] and most recently another, more crystallized book by HOOKER[50]. Not only

did the research community realize that Jeroslow’s vision was of great practical interest,

but it became apparent that logic and optimization methods essentially share the same

ingredients. The names of these ingredients vary from author to author, such as branch and

infer in BOCKMAYR AND KASPER[23], branch and bound in LAND AND DOIG[60], branch and

cut in CAPRARA AND FISCHETTI[25], branch and relax, branch and price in BARNHART ET

AL[17], branch and prune in VAN HENTENRYCK[73] and VU ET AL[74], augment and branch

and cut in LETCHFORD AND LODI[61], search and infer and relax in HOOKER[48], ARON,

HOOKER AND YUNES[6], HOOKER[50], etc. At their core, however, these methods employ

a common solution process, which relies on two basic components: (1) one driving the

search (branching in most of them), and (2) one2 restricting the search (cutting planes,

relaxations, bounding techniques, pruning techniques, variable pricing and so on).

2Some of them break up this component into various tasks, such as cut-and-price, or infer-and-relax.
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1.2.1 General purpose solvers

The first general method based on a combination of search and inference is due to LAND

AND DOIG[60], who proposed what became known as the branch-and-bound method for

solving integer programs, as an alternative to the apparently more sophisticated cutting

plane method of GOMORY[38]. This was a method restricted to mixed integer programming

at the time, but when looked at carefully, it can be easily seen as being a particular

case of a more general method. In fact, many of the existing techniques enumerated

above, and not just branch and bound, are particular cases of a more general scheme, as

pointed out by HOOKER[47]. This recognition has led to several attempts to bring these

ideas to life and prove that unified systems can be as useful and powerful as various

specialized methods when implemented in a carefully engineered computer software. A

majority of these attempts focused on particular applications and were therefore typically

restricted to them. They include applications such as matching in FOCACCI ET AL[35],

traveling salesman in FOCACCI ET AL[33] or scheduling in REFALO[19] and MARAVELIAS

AND GROSSMANN[62]. A few, however, were geared towards producing general purpose

solvers, by focusing on the common aspects of the methods. These include the branch

and cut framework ABACUS[56], the hybrid CP-IP solver ECLIPSE[2], the IP-CP solver

SCIP[1] and the CP-IP-NLP metasolver SIMPL[6].

1.2.2 Modeling languages

In order for the integration to be effective, general purpose solvers need to rely on an

expressive enough language, which can provide the modeler with sufficient opportunities to

reveal problem structure to the underlying inference engine. The most successful existing

implementations of integrated methods are accompanied by fairly rich languages, some of

which even provide mechanisms for specifying how the search should be conducted, not

only how inference should be drawn.3

3Such languages are called procedural, because the modeler can provide, to some extent, a procedure,
or recipe on how the problem is to be solved. They are clearly more powerful, but require more
expertise from the modeler, than the declarative languages, which only allow the specification of the
problem, not of the search procedure.
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Among the most well known modeling languages for optimization we count, for in-

stance, OPL[44], which provides the modeling layer for the ILOG optimization suite, namely

the mixed integer programming solver ILOG CPLEX[52] and the constraint programming

solver ILOG SOLVER[51]. A similar language, MOSEL[29], comes with the Dash Optimization

suite, again a combination of several separate solvers: one for mixed integer programming,

XPRESS-OPTIMIZER[31], one for constraint programming, XPRESS-KALIS[32], as well as two

more recent solvers for stochastic and nonlinear programming. Several other languages

have been created in the 1990s for various special purpose solvers. Examples include

HELIOS[45], NEWTON[46] and NUMERICA[43], which were tailored for global optimization

with nonlinear constraints using interval analysis, AMPL[36], GAMS[24] and AIMMS[22]

for mathematical programming and PLAM[18] for algebraic modeling of integer programs

and constraint logic programs.

Several of these languages support ideas related to the integration of optimization

methods, some to a larger extent than others. Even though it would be possible to create

hybrid models in these languages, this task is not always simple, since in fact none of

them was created with the stated goal of bringing together multiple methods under one

roof, at least not at the level where inference and search interact. The modeling aspect

of optimization is an ongoing research issue and it is reasonable to expect that languages

of the future would pay significantly more attention to the integration process, especially

that we can already see such integrated methods being used with increasing frequency.

1.3 Organization

The material in this thesis is organized as follows. Chapter 2 introduces the notion of re-

formulation and establishes its connection with logical inference. Chapter 3 then presents

an overview of integer programming and constraint programming, with an in-depth dis-

cussion of the pervasive disjunctive constraints and techniques for reformulating them as

linear inequalities and using the derived inequalities for inference. Chapter 4 describes a

unifying modeling and solution framework that can immediately incorporate linear pro-

gramming, integer programming, disjunctive programming and constraint programming.
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The key concept of this framework is that of metaconstraints, which can be equipped

with reformulation rules so that inference is derived using multiple theories at each step

of the process. The modeling concepts and solution process of this framework are illus-

trated using three application examples: production planning, product configuration and

machine scheduling. Finally, Chapter 5 presents a more in-depth discussion of a robust

optimization problem, which emphasizes the advantages of modeling using higher level

metaconstraints. The results shown at the end of this chapter compare the performance of

a constraint programming approach to that of a pure mixed integer approach. They show

that the additional inference obtained by using graph theoretical arguments at each step

of the solution process is instrumental in obtaining results for larger problem instances, as

well as getting significantly faster results on small instances.



Chapter 2

Inference via reformulation

It is often the case that in order to prove that a given statement is false, it may be

useful to restate it in a different language and use different types of arguments. Such

a reformulation, which is in essence a syntactic translation, cannot be done in arbitrary

ways. It must be done such that the resulting statement is always an implication, if not

an equivalence, of the original. The relaxation techniques used in optimization are perfect

examples of syntatic translations which result in such an implication. If the implication

is then found to be false, we can infer by application of the modus tollens rule that the

original statement is false too.

2.1 The importance of reformulation

Reformulation is a valuable tool in problem solving, whose role cannot be understated.

To illustrate its power, let us look at an instructive example, the pigeonhole problem,

adapted from MCALOON ET AL[64]. Further examples of inference via reformulation will be

discussed later in the context of disjunctive programming, where we look at two impor-

tant reformulation techniques: conjunction elimination from systems of linear inequalities

(known as the derivation of surrogates) and disjunction elimination from systems of linear

inequalities (known as the derivation of disjunctive cuts). In the pigeonhole problem, we

have m pigeons and must place them in n holes such that only one pigeon is in any one

hole. The problem can be easily modeled using the language of propositional logic, and

9
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we could attempt to solve it within that theory, but as it will become clear, the solution

process (proof) can be substantially shortened if we use reformulation.

A propositional logic model

Let pij be a variable with possible values { true, false } that indicates whether the ith

pigeon is in the jth hole. Then ∧
i

∨
j

pij (2.1)

states that ”every pigeon has to be placed in (at least) one hole”, and

∧
j

∧
i

(
pij →

∧
k<i

¬pkj

)
(2.2)

states that ”any hole can contain at most one pigeon”. Note that we are not able to

state the condition ”at most one pigeon can be in hole j”, using a single formula for each

j, since propositional logic does not have a connective for this.

If we now step back and read the description of the problem again, we can immediately

see that the problem admits a solution if and only if m ≤ n. We know this because we

subconsciously use some additional arguments, namely counting arguments, which are

actually not part of the propositional logic theory. In particular, we use knowledge about

the ”sum” (+) and ”greater than” (>) operators: we add up the pigeons, then the holes,

then we compare the resulting values and decide that the problem is unsolvable if there

are more pigeons than holes. However, without these two operators, classical theorem

provers may find it very hard to prove that no solution exists in the case when m > n.

The shortest resolution proof that detects the unsatifiability of this problem involves a

number of steps that is exponential in n, as shown in HAKEN[39].

Since it appears that counting arguments can be quite effective in detecting the infea-

sibility of this problem, let us attempt to translate this propositional model into a theory

which allows such arguments. Integer 0-1 programming is a good candidate, because we

have a set of simple rules which can translate from proposition logic syntax to 0-1 integer

programming syntax (see, for example, HAMMER AND RUDEANU[40]).
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A 0-1 integer programming reformulation

Let xij be a variable with possible values { 0, 1 }, such that xij = 1 iff pij = true and

xij = 0 iff pij = false. Using these variable translation rules, it is easy to verify that the

propositinal logic condition ∨
j

pij (2.3)

implies the 0-1 integer programming condition∑
j

xij ≥ 1 (2.4)

Thus, we can deduce the following:

∧
i

∨
j

pij →
∧
i

∑
j

xij ≥ 1→

(∑
j

xij ≥ 1,∀i

)
(2.5)

which essentially translates the statement that ”every pigeon has to be placed in (at least)

one hole” from propositional logic to 0-1 integer programming.

In order to translate the second condition, let us first rewrite it as a conjunction of

disjunctions, so that we can apply the same translation rule as above. This is known as

writing the formula in conjunctive normal form (CNF). To obtain this form, we use the

following equivalences, which are easily obtained starting from the axioms of propositional

calculus and applying the modus ponens inference rule:

(A→ B)↔ (¬A ∨B) (2.6)

and

A ∨ (B ∧ C)↔ (A ∧B) ∨ (A ∧ C) (2.7)

Now we can write∧
j

∧
i

(
pij →

∧
k<i

¬pkj

)
→
∧
j

∧
i

(
¬pij

∨∧
k<i

¬pkj

)
→
∧
j

∧
i

∧
k<i

(¬pij ∨ ¬pkj)

The variable mapping we established above allows us to say that ¬pij is true iff 1−xij = 1,

so we can now rewrite the condition that any hole can contain at most one pigeon using



12

O(nm2) linear inequalities:

(1− xij) + (1− xkj) ≥ 1,∀j,∀i,∀k < i (2.8)

A linear programming reformulation

In this form, the problem still remains quite difficult to solve for integer programming

systems, even for small values of m > n. However, we are now able to express the

condition that at most one pigeon can be in hole j quite naturally with a single formula

for each j: ∑
i

xij ≤ 1,∀j (2.9)

which we can use in place of the above O(nm2) inequalities. Together with the condition

that each pigeon be placed in at least one hole,∑
j

xij ≥ 1,∀i (2.10)

and with a further reformulation of the x variables into continuous y variables, we obtain

the linear program ∑
i

yij ≤ 1,∀j∑
j

yij ≥ 1,∀i

whose feasible region is the empty set if m > n.

Thus, the fact that the problem does not have any solutions for m > n can be

established without performing any search by working with an appropriate theory: in this

case, the theory of continuous linear programming.

2.2 A special case: relaxation

In general, reformulation does not have to be done for the entire problem, and even when

it is done, individual constraints could be reformulated in different theories. However, it

is often the case that in practice all (or a subset of) the constraints are reformulated in

the same target language, leading to what is usually referred to as a relaxation of the
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original problem. This, for example, is the way integer programming solvers approach the

inference step of the solution process. The use of discrete variables introduces discontinu-

ities and nonconvexity, which makes it considerably more difficult to reason about them

than it would be to reason about continuous variables. Therefore the original constraints

(including the integrality constraints) are reformulated into linear inequalities (the inte-

grality constraints x ∈ Dx ⊆ Z are reformulated into the conjunction of linear inequalities

inf{Dx} ≤ x
∧

x ≤ sup{Dx}) and then the simpler linear programming theory can be

used to derive inference. Such inference comes in various forms, but serves the two basic

roles we mentioned earlier: (a) refutation of the statement represented by the current

search state, or (b) guidance for restricting and continuing the search.

Using relaxation to detect infeasibility

A continuous view of the problem can provide an easy proof that the search has gone

wrong, if it detects that its own feasible region is empty. Secondly, if the region is not

empty, nothing can be said about the feasibility of original problem, but due to the special

properties of the continuous relaxation, we might be able to say something about its

optimality (which could also be regarded as feasibility). Thus, if the original problem

includes an objective function in its statement, the continuous relaxation could still help

us decide that there is no point in continuing with this search direction, if we can show that

there could be no solution inside the continuous relaxation which provides a better value

than whatever best solution we may have found previously. This conclusion of infeasibility

can be reached in two ways: either the best solution of the continuous relaxation is already

worse than our best discrete solution, or we could show that it would become worse no

matter what search decisions we make from here. The first is easy to check, by simply

evaluating the objective function on the most extreme point of the continuous feasible

region. The second involves evaluating the changes in the objective function by plugging

in some of the values for the original variables which the search has not yet explored.

Values which would make the objective worse than the best discrete solution so far can

be safely discarded. A similar technique is used in constraint programming, where it is

known as reduced-cost based filtering (see FOCACCI ET AL[34]).
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Using relaxation to avoid infeasibility

Note here the second role played by the continuous view of the problem, that of prevention,

or guidance: even if we are unable to refute the current state, because perhaps we cannot

rule out all remaining values using the objective function, we can still safely remove some

of them, essentially reducing the number of (bad) choices the search would have to try

from this point.

An additional (and particularly useful) preventive inference technique based on a con-

tinuous view of the problem involves cutting planes. These are linear inequalities meant

to help the bounding process through which we attempt to detect infeasible (sub-optimal)

search states, as indicated before. Cutting planes can be viewed as being of two types,

depending on how they are inferred: (1) either directly from the problem, or (2) from

an implication of the problem (which could be the continuous linear relaxation). In the

first case, they are called structural cuts (or sometimes polyhedral cuts), because they are

implied by the structure of the problem and depend neither on the language in which the

problem is stated, nor on the search state. These cuts are direct linear implications of the

original problem. The well-known comb inequalities for the traveling salesman problem

(see APPLEGATE ET AL[3]) are a perfect example of such inequalities. The second type

of cuts are inferred from the continuous view of the problem, by focusing on removing a

tentative solution if it fails to satisfy all the constraints of the original problem. They are

derived at some stage during the search, using two basic inference rules: (1) non-negative

combinations of linear inequalities (this is where the continuous view plays a role) and

(2) integer rounding (this is where the original integrality constraints play a role). As

such, these cuts are indirect linear implications of the problem and are valid only during

subsequent stages of the search (although they can be made valid everywhere through

a process called lifting). Examples of such cuts include Gomory cuts (see GOMORY[38]),

mixed integer rounding cuts (see MARCHAND ET AL[63]), intersection cuts (see BALAS[9])

and disjunctive cuts (see BALAS[10]). We will have a chance to look at this type of cut-

ting planes in more detail in Section 3.1.3 when we discuss inference based on a special

subclass of disjunctive cuts, namely lift-and-project cuts (see BALAS[7]).



Chapter 3

Optimization theories

In this chapter we review two commonly used optimzation theories: integer programming

(IP) and constraint programming (CP). They constitute the starting point for the unifying

framework presented in Chapter 4, since they share many features in terms of solution

method, but at the same time complement each other in terms of inference capabilities.

Even though the scope of the framework we propose is in no way limited to these two

theories, we restrict the discussion to them for the following reasons: (1) they are both

well studied and understood, (2) they have been successfully applied to a wide range of

practical applications, (3) they are among the most frequently used theories in various

hybrid solutions proposed in the last decade and (3) our implementation of this framework

is currently limited1 to these two theories.

3.1 Integer and disjunctive programming

Integer programming is linear programming with the additional constraints that some of

the variables must take integer (discrete) values. For this reason, integer programs are

typically much more difficult to solve than pure linear programs. It is interesting to point

out here that it was unknown for a long time whether even solving a pure linear program

can be done efficiently. The original proof proposed by DANZIG[30] in 1947, based on linear

1This limitation refers to available and tested functionality.

15
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algebraic arguments, required an exponential number of steps in the worst case, as shown

by KLEE AND MINTY[58]. Three decades later, however, the soviet mathematician LEONID

KHACHYAN[57] was able to show that linear programming does admit a polynomial length

proof, but for that he had to use arguments from mathematical analysis, as opposed to

just linear algebra. No such proof has been found for integer programming, and it is widely

believed that none exists.

Disjunctive programming goes one step further from integer programming, by allowing

in the language an additional type of constraints, namely disjunctive (linear) constraints.

These constraints naturally capture the idea of choice, which is inherent to all combi-

natorial optimization problems. Integer programs, pure and mixed, and a host of other

non-convex programming problems can be stated more naturally as linear programs with

logical conditions, more precisely statements about linear inequalities involving the oper-

ators ”or”. For a good introduction to disjunctive programming see BALAS[11].

Modeling and solution process

Integer programming solvers typically solve a linear program at every node of the search

tree in order to obtain bounds on the objective function (and sometimes with the hope

that the resulting solution is also feasible with respect to the integrality constraints).

There are no integer programming solvers that deal directly with disjunctive constraints

at the modeling level. Instead, these constraints are either enforced implicitly, through a

branching mechanism, or reformulated (relaxed) into linear constraints that integer solvers

can deal with. In the remaining of this section, we focus on this reformulation and present

one type of linear inequalities (cuts) that can be derived from disjunctions and can be used

as an inference tool in an integrated solver. The algorithm discussed here is an extension

of the one created by BALAS AND PERREGAARD[8], and it is the latest development in a

field of research that originated in the work on intersection cuts (also known as convexity

cuts) by YOUNG[77], BALAS[9], GLOVER[37] and OWEN[67].
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3.1.1 Disjunctive linear constraints

Consider the family of inequalities { aix ≥ bi }i∈I , with x ∈ R+, ai ∈ R, bi ∈ R. A linear

disjunction (or simply, disjunction) is a proposition which states that ”at least one of the

inequalities in this family is satisfied” and has the form:∨
i∈I

aix ≥ bi (3.1)

Note that when bi > 0, which is always the case when we derive cuts from a (feasible

basic solution in a) simplex tableau, disjunction (3.1) is clearly equivalent with one in

which we multiply each disjunct with the inverse of its right hand side:∨
i∈I

aix ≥ bi ⇔
∨
i∈I

ai

bi
x ≥ 1 (3.2)

It is often convenient to represent a disjunction in the form (3.2) whenever bi > 0, because

it allows us to compare the coefficients (and hence the strength) of inferred inequalities

one by one without having to worry about the right hand side. We say that disjunctions

in this form, as well as the inequalities implied by them, are normalized. We will later see

that it is also desirable, not just convenient, to represent disjunctions in normalized form.

More generally, we can define disjunctions for systems (conjunctions) of linear inequal-

ities ∨
i∈I

Aix ≥ bi (3.3)

where A is an m× n matrix, bi ∈ Rm, x ∈ Rn, with the important special case m = 1∨
i∈I

aix ≥ bi (3.4)

with ai ∈ Rn. Note also that the normalization argument used in (3.2) can be easily

generalized to apply to these cases as well.

Disjunctive programming is closely related to linear programming, since a sentence

involving the disjunctive connective ”∨” can be replaced by an implication using only

linear connectives. This is a reformulation process, and it can help detecting when a

disjunctive model is infeasible.
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3.1.2 Inference via reformulation

We now discuss the basic translation rules that allow us to convert a disjunction into a

linear inequality. By conversion, it is understood that we want to derive an inequality such

that all solutions that satisfy the original disjunction, also satisfy that inequality. In other

words, the derived inequality should be an implication of the disjunction, and as such, if

it turns out to be a false statement, then we can say the same about the disjunction.

Linear implications that eliminate disjunction

The following basic translation rules provide the main instrument used to derive a class

of linear inequalities known as disjunctive cuts (see BALAS[11, 12]). These inequalities are

reformulations of the original disjunction, into a language from which the ”∨” connective

has been eliminated, and as such, they can be reasoned about using the simpler theory of

linear programming.

Proposition 3.1.1. If the disjunction
∨
i∈I

aix ≥ bi is true, then the following linear in-

equality must hold:

max
i
{ai}x ≥ min

i
{bi} (3.5)

Similarly, if
∨
i∈I

aix ≤ bi is true, then

min
i
{ai}x ≤ max

i
{bi} (3.6)

is also true.

These rules can be easily generalized to the case when a and x are n-dimensional, as

well as to disjunctions of systems of linear inequalities, such as (3.3) and (3.4). .

Proposition 3.1.2. Let Ai be an m× n matrix, ai ∈ Rn, bi ∈ Rm, for any i ∈ I, and

x ∈ Rn
+. Then the following implications hold:

∨
i∈I

aix ≥ bi →
n∑

j=1

max
i
{ai

j}xj ≥ min
i
{bi} (3.7)

∨
i∈I

aix ≤ bi →
n∑

j=1

min
i
{ai

j}xj ≤ max
i
{bi} (3.8)
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∨
i∈I

Aix ≥ bi →
n∑

j=1

max
i
{Ai

j}xj ≥ min
i
{bi} (3.9)

∨
i∈I

Aix ≤ bi →
n∑

j=1

min
i
{Ai

j}xj ≤ max
i
{bi} (3.10)

where Ai
j represents the jth column of matrix Ai and v (respectivelly v) represents the

largest (respectivelly smallest) element of vector v.

The reformulation rules in Proposition 3.1.2 are of central importance in disjunctive

(and therefore integer) programming, because they can be used to derive a large family

of cutting planes, including ones for mixed integer programming, such as mixed integer

Gomory cuts and mixed integer rounding (MIR) cuts (see NEMHAUSER AND WOLSEY[66]

and MARCHAND AND WOLSEY[63]), where the Chvatal-Gomory rounding procedure (see

SCHRIJVER[70]) fails. The consequents of these implications are called disjunctive cuts

(see BALAS[11]).

Linear implications that eliminate conjunction

The other reformulation rule which plays a key role in integer and linear programming is

the following:

Proposition 3.1.3. Let A be an m×n matrix, b ∈ Rm and x ∈ Rn
+. Then the following

implication holds:

(Ax ≥ b ∧ u ≥ 0)→ uAx ≥ ub (3.11)

This property allows us to summarize an entire system (conjunction) of inequalities

with a single inequality, which is much easier to check against infeasibility. The above

implication is clearly a reformulation, since it removes from the language the conjunction

connective ”∧”, and therefore allows us to use a simpler theory in order to detect if the

original system is inconsistent. The resulting inequality, uAx ≥ ub, is called a surrogate.

It is used to derive so-called valid inequalities for the linear programming relaxation of an

integer program.

Definition 3.1.4 (Valid inequality). An inequality αx ≥ β is said to be valid for a set

S ⊆ Rn if it is satisfied by all the points x ∈ S.
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Clearly, all surrogates uAx ≥ ub are valid for the set P =
{

x ∈ Rn
+ : Ax ≥ b

}
. The

requirement that u ≥ 0 ensures that the sense of the inequalities is preserved. Obviously,

this requirement can be relaxed to ui ∈ R if the ith inequality of the system Ax ≥ b is

in fact an equality (because a negative multiplier would not affect its sense).

Stronger inference via a combination of these rules

If we now look back at the linear inequalities obtained through Propositions 3.1.1 and

3.1.2, it is not difficult to see that they are not the strongest inferences we can make from

a disjunction of linear inequalities. Indeed, let us take a very simple example, to illustrate

what can be done in order to obtain a stronger inequality from such a disjunction. Consider

the disjunction:

4x ≥ 3 ∨ x ≥ 1 (3.12)

If we simply apply Proposition 3.1.1 to this disjunction, we obtain the valid inequality

4x ≥ 1. However, we can do better. Notice that if we multiply the second disjunct with

3, we obtain an equivalent disjunction:

4x ≥ 3 ∨ 3x ≥ 3 (3.13)

But the inequality we can now infer from this disjunction by applying Proposition 3.1.1 is

much stronger: 4x ≥ 3. This is so because it has the same left hand side, but a tighter

right hand side (that is, there are fewer values of x that satisfy it). We say that this

inequality dominates the one we had obtained before.

Definition 3.1.5 (Dominating inequality). An inequality αx ≥ β is said to dominate

another inequality α′x ≥ β′ if α ≤ α′ and β ≥ β′.

What did actually happen in the transformation from (3.12) to (3.13)? We managed

to infer a tighter valid inequality by:

1. collecting together all the inequalities of the disjuncts into a system (conjunction)

of inequalities:  4x ≥ 3

x ≥ 1


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2. then carefully choosing a non-negative multiplier u = (u1, u2) = (1, 3) for this

system such that to preserve (or decrease) the maximum coefficient of x in the left

hand side, and to increase (or preserve) the minimum value on the right hand side: 4x ≥ 3 | ×1

x ≥ 1 | ×3

⇔
 4x ≥ 3

3x ≥ 3


3. and finally applying disjunction elimination to the resulting inequalities:

(4x ≥ 3 ∨ 3x ≥ 3)→ 4x ≥ 3 (3.14)

Note that when we derived the weaker 4x ≥ 1 from the original disjunction, we in fact

used a default multiplier, namely u = (u1, u2) = (1, 1). The new multiplier is certainly

better, and we can tell that because it reduced the difference between the left hand side

and the right hand side of the resulting inequality. The fact that we were able to increase

the right hand side means that the original inequality, although valid, was not maximal.

Definition 3.1.6 (Maximal inequality). A maximal valid inequality is one which is not

dominated by any other valid inequality.

Such inequalities are also known as face defining, or supporting inequalities. Our goal

is to devise a technique to find valid inequalities that are as strong as possible (maximal).

Remark 3.1.7. We said before that it is often convenient to normalize the disjunction

when the right hand side is strictly positive. It should be clear by now that it is not just

convenient. Note that the effect of this normalization is the same as what we have done

with the multiplier u in order to strengthen the inferred inequality. Indeed, had we first

normalized the disjunction, we would have obtained:

4

3
x ≥ 1 ∨ x ≥ 1

which now leads directly (by Proposition 3.1.2) to the stronger valid inequality (3.14). So

it is always a good idea to normalize disjunctions that satisfy this condition.
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Connection with linear programming duality

You might have recognized already the principle at work here (and perhaps the connection

with linear programming duality). Indeed, in linear programming, we try to find a non-

negative multiplier u for a system of inequalities Ax ≥ b which transforms it into an

implied inequality uAx ≥ ub, such that we keep uA below some predetermined objective

vector c (i.e. uA ≤ c) and at the same time increase the right hand side ub by as much

as possible. We can find such a multiplier u by solving a linear programming dual of the

original LP:

LP Dual

min cx

s.t Ax ≥ b

x ≥ 0

max ub

s.t uA ≤ c

u ≥ 0

There is a difference, however, with finding the multiplier u that strengthens an inequality

inferred from a disjunction of single linear inequalities aix ≥ bi (collected into a system

of inequalities Ax ≥ b). The difference is that we are not computing the dot products

uAj and ub, as we do in the dual linear program, but instead we take the maximum and

minimum of the element-wise products u�A and u� b, where:

u�A =


u1a11 u1a12 . . . u1a1n

u2a21 u2a22 . . . u2a2n

...
...

...
...

umam1 umam2 . . . umamn

 ,u� b =


u1b1

u2b2

...

umbm


So if we denote

α = u�A =
(
max

i
{uiai1 } , max

i
{uiai2 } , . . . , max

i
{uiain }

)
∈ Rn

β = u� b = min
i
{uibi } ∈ R

then finding the strongest inferred inequality αx ≥ β amounts to solving the following

problem:

max β

s.t α ≤ c

u ≥ 0

(3.15)
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where the unknown is the multiplier u and where the bounding vector c = 1�A contains

the coefficients of the inequality obtained using the default multiplier u = 1.

Finding valid inequalities for a disjunction of conjunctions

It is easy to verify that an inequality αx ≥ β is valid for the set P =
{

x ∈ Rn
+ : Ax ≥ b

}
if and only if it is dominated by a surrogate of Ax ≥ b. Furthermore, if we have a

disjunction of such sets, written as∨
i∈I

x ∈ P i ⇔
∨
i∈I

Aix ≥ bi (3.16)

a theorem by BALAS[11] says that αx ≥ β is valid for (3.16) if an only if it is dominated

by a surrogate uiAix ≥ uibi of each of the disjuncts i ∈ I. In other words, if and only if

it is valid for each of the sets P i =
{

x ∈ Rn
+ : Aix ≥ bi

}
. So, in order to find a valid

inequality for (3.16), it is enough to find a set of multipliers ui with this property, and

then use Proposition 3.1.2. We obtain the following valid inequality:∑
j

max
i∈I

{
uiAi

j

}
xj ≥ min

i∈I

{
uibi

}
(3.17)

To find these multipliers, we can set up a simple linear program and require that they

define inequalities uiAix ≥ uibi which dominate some αx ≥ β:

max 0

s.t α ≥ uiAi ∀i ∈ I

β ≤ uibi ∀i ∈ I

ui ≥ 0 ∀i ∈ I

α, β ∈ Rn

(3.18)

The unknowns in this system are ui, α and β. The first two inequalities simply state that

the surrogates uiAix ≥ uibi, for all i ∈ I, dominate αx ≥ β, which implies that αx ≥ β

will be valid for (3.16). Solving this system for u (α and β being unconstrained in sign,

can be eliminated), we obtain the coefficients of valid inequalities of the form αx ≥ β

that obviously satisfy:

αj = max
i∈I

{
uiAi

j

}
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and

β = min
i∈I

{
uibi

}
In other words, we have obtained the same inequality as we would (if we knew ui) using

the reformulation rules in Proposition 3.1.2, namely (3.17).

Finding stronger inequalities

We obviously wrote (3.18) such that it finds one set of multipliers ui in order to obtain

a valid inequality. We saw before that it may be possible to find stronger inequalities, by

finding better multipilers. In order to do this, note first that we can rewrite the system

(3.18), by moving all the variables on the left hand side, in the following form:

max 0

s.t α− uiAi ≥ 0 ∀i ∈ I

−β + uibi ≥ 0 ∀i ∈ I

ui ≥ 0 ∀i ∈ I

α, β ∈ Rn

(3.19)

which makes it apparent that this is a polyhedral cone. This observation becomes useful

if we want to optimize a more interesting function than max 0, one which could involve α

and β.2 It tells us that we would have to truncate this cone with some bounding inequality

(or inequalities) in order to prevent α and β from scaling up indefinitely. Evidently, the

choice of the bounding constraints used to truncate the cone could have an impact on

the type (and quality) of solutions we obtain, so it is important to pay attention to this

aspect.

BALAS ET AL[14] consider adding one of three possible bounding constraints (which they

call normalizations) to the system (3.19) in order to guarantee that optimal solutions exist

when the objective function involves the unknowns α and β (i.e. the coefficients of the

valid inequality). Their bounding constraints focused on one of these variables only, and

they were: (i) |β| ≤ 1, or (ii) |αj| ≤ 1,∀j, or (iii)
∑

j |αj| ≤ 1. Clearly, by imposing such

constraints, we limit the class of inequalities that we can obtain with (3.19), but at least

2Therefore it could help us find better valid inequalities αx ≥ β, in some sense.
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we hope that the system has a (finite, nontrivial) solution. In the computational study

of the original lift-and-project method by BALAS ET AL[15], which generated cuts from

0-1 disjunctions on a single variable (i.e. xk ≤ 0 ∨ xk ≥ 1 for some integer constrained

xk), the bounding constraint |β| ≤ 1 was the best (in terms of cut quality) among the

three. Unfortunately, the problem with this constraint is that α can still be unbounded.

Indeed, to find a cut which is (maximally) violated at some point x̃, we would use an

objective like min αx̃ − β. But if there exists a valid cut of the form α′x ≥ 0 with

α′x̃ < 0, then the objective is clearly unbounded. The other two bounding constraints

pose different problems. Even though they both achieve the goal of bounding α, they

either produce cuts of lesser quality (as BALAS ET AL[15] found for |αj| ≤ 1), or they are

are computationally more demanding, by increasing the size of the linear program (as it

is the case with
∑

j |αj| ≤ 1, which in order to be used inside a linear solver requires that

we split the unrestricted variables α into two positive variables α = α+ − α−).

A better bounding constraint was proposed by CERIA AND PATAKI[26]:∑
i∈I

∑
j

ui
j ≤ 1 (3.20)

Because the multipliers ui are non-negative, and because α and β are obtained as lin-

ear combinations of ui, this constraint is sufficient to bound all the variables in (3.19).

This and the previous three bounding constraints are discussed in detail by CERIA AND

SOARES[27]. They also give some nice interpretations of the dual formulation of (3.19)

when the different constraints are used.

Generating the deepest cuts

The problem of finding better valid inequalities arises when we have a certain reference

point x ∈ Rn which does not satisfy disjunction (3.16). In this case, we want to derive

an inequality αx ≥ β which is valid for the disjunction, but is maximally violated by this

point. To find this inequality, we can use the linear program (3.19), to which we add

the bounding constraint (3.20) and the objective function min αx − β. We obtain the
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following linear program, which BALAS ET AL[14] call cut generating linear program:

min αx− β

s.t α− uiAi ≥ 0 ∀i ∈ I

−β + uibi ≥ 0 ∀i ∈ I

ui ≥ 0 ∀i ∈ I∑
i u

i · 1 ≤ 1

α, β ∈ Rn

(CGLP)

Solving this system yields an inequality αx ≥ β, with

αj = max
i∈I

{
uiAi

j

}
and β = min

i∈I
{uibi } (3.21)

where Aj is the jth column of A. This inequality (cut) maximizes the amount β − αx

by which x is cut off (separated from) the solutions of the original disjunctive program.

Making the cuts valid for the original problem

If separating inequalities such as (3.21) are generated at nodes other than the root of a

search tree, they subsume the decisions that search has made so far, by assigning values to

components of x. Those components xj of x that have been fixed no longer participate

actively in the selection of the dual multipliers ui in (CGLP), since their corresponding

columns from Ai
j have been moved (added as a constant factor) to the right hand side

bi. Thus, the fact that αx ≥ β is dominated by the surrogates uiAix ≥ uibi (which

makes it a valid inequality) is likely to change when we undo those assignments (during

backtracking). So these inequalities are valid only in the subtree where the assignments

hold, and cannot be used in other parts of the search space.

In principle, however, it is possible to make them valid for the whole search space,

by calculating appropriate values for the coefficients of the fixed variables. This process

is called lifting. In general, this is a difficult task, which may require the solution of an

integer program for every missing coefficient. Fortunately, the cuts we are looking at here

have an important advantage: we can use the multipliers u obtained (along with the cut

coefficients α and β) by solving (CGLP) to calculate, by closed form expressions, the

objective coefficients αj whose corresponding variable xj has been fixed by search. The



27

expressions for these coefficients are given by:

αj = max
i∈I

{
uiAi

j

}
(3.22)

as shown by BALAS ET AL[14, 15].

3.1.3 Lift and project as an inference technique

We now have the background necessary to discuss a more effective algorithm for generating

disjunctive cuts. We focus here on lift and project cuts (see BALAS ET AL[14]), which

are a special class of disjunctive cuts, derived from a two term disjunction of the form

(xk ≤ 0 ∨ xk ≥ 1) imposed to the set P =
{

x ∈ Rn
+ : Ax ≥ b

}
. In other words, they

are valid inequalities for the set of solutions of:

Ax ≥ b

x ≥ 0

xk ≤ 0 ∨ xk ≥ 1

(3.23)

or, equivalently, 
Ax ≥ b

x ≥ 0

−xk ≥ 0

 ∨


Ax ≥ b

x ≥ 0

xk ≥ 1

 (3.24)

for some k ∈ {1, . . . , n} such that 0 < x̃k < 1, where xk is the value of variable xk in the

current solution of the LP relaxation. We want to impose the (nonlinear and non-convex)

condition that xk ∈ { 0, 1 }. But since integer solvers cannot handle it in the model, we

have to obtain a linear implication of this condition, one which is hopefully strong enough

that it removes (at least) the current reference point x from further consideration.

Unstrengthened lift and project cutting planes

Note that disjunction (3.24) has the same form as the general disjunction (3.16), which

means that we can find valid inequalities implied by (3.24) using the linear program defined

in (3.19). In other words, we find a non-negative multiplier for each of the disjuncts, require

that αx ≥ β be dominated by the resulting surrogates, and then check to see whether



28

the current solution x of P violates αx ≥ β. If it does (and it should, because we also

took into account the two inequalities that forbid the current value of xk), that means

we have a cut already, and we can try to find an even better one (one which x violates

“more”) by trying a new multiplier. This, in essence, is the same procedure as the one

described in BALAS ET AL[15]. They call the resulting system, together with the bounding

constraint (3.20) and the objective function min αx− β a cut generating linear program

for variable xk (CGLPk). For each binary variable that happens to have a fractional value

in the current LP solution, they solve one such system and add the resulting inequality to

the problem formulation.

The cut generating linear program

Let us illustrate the process of constructing the cut generating LP and finding the right

multipliers for the two disjuncts. To simplify notation, we can include the non-negativity

constraints x ≥ 0 together with the rest, Ax ≥ b, to obtain a new system A′x ≥ b′,

where A′ =
(

A
I

)
and b′ =

(
b
0

)
. Now we can write the disjunction (3.24) as A′x ≥ b′

−xk ≥ 0

 ∨
 A′x ≥ b′

xk ≥ 1

 (3.25)

In fact, let us make life even easier and simply drop the notation A′ and b′. We will use the

original notation, A and b, but implicitly assume that Ax ≥ b includes the non-negativity

constraints x ≥ 0. So (3.25) becomes simply: Ax ≥ b

−xk ≥ 0

 ∨
 Ax ≥ b

xk ≥ 1

 (3.26)

To find an inequality αx ≥ β which is implied by this disjunction, and at the same

time is maximally violated by the current solution x, we need to find some corresponding

non-negative multipliers (u, u) ∈ Rm ×R for the first disjunct

u×
u×

 Ax ≥ b

−xk ≥ 0

⇔
 uAx ≥ ub

−uxk ≥ 0

 (3.27)
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and (v, v) ∈ Rm ×R for the second disjunct

v×
v×

 Ax ≥ b

xk ≥ 1

⇔
 vAx ≥ vb

vxk ≥ v

 (3.28)

such that the resulting surrogates dominate αx ≥ β. In other words, we need to solve

the following linear program:

min αx− β

s.t α− uA + uek ≥ 0

−β + ub ≥ 0

α− vA − vek ≥ 0

−β + vb + v ≥ 0

u ≥ 0

u · 1 + v · 1 + u + v ≤ 1

α, β ∈ Rn

(CGLPk)

where ek is the kth unit vector. Note that in order to guarantee that an optimal solution

to (CGLPk) exists, we have also added the bounding constraint
∑

i (ui + vi)+u+v ≤ 1,

which is the same as (3.20) proposed by CERIA AND PATAKI[26].

As we have already seen in (3.21), solving this system yields a cut αx ≥ β, with

αj =

 max{ uAj , vAj } j 6= k

max{ uAj − u , vAj + v } j = k

and

β = min{ub,vb + v}

where Aj is the jth column of matrix A.

Strengthening cuts using integrality conditions

We have so far focused on strenthening the derived inequality by finding better multipliers

u using the linear program (CGLP). However, a further strengthening is possible, by

exploiting the integrality conditions on variables. For instance, inequality (3.21) can be
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further strengthened using this technique, as shown by BALAS AND JEROSLOW[16]. This

can be done by replacing each coefficient αj with

α′
j = min {uAj + u0dmje,vAj − v0bmjc } (3.29)

where

mj =
vAj − uAj

u0 + v0

Note that this strengthening can be applied to more general disjunctions (i.e. not neces-

sarily two term disjunctions, or involving just 0-1 variables). However, in that case, the

expression for mj is no longer a closed form, but has to be computed procedurally, in

O(p), where p is the number of terms in the disjunction. For details, see BALAS AND

JEROSLOW[16].

Lift and project cuts without lifting and projection

Since the size of the cut generating linear program can be quite large relative to the size

of the original disjuncts, solving it may prove too expensive for practical purposes. In

fact, the experiments of BALAS ET AL[15] showed that the most efficient way to generate

cuts using (CGLPk) is to stop short of solving it to optimality. This was achieved by

ignoring the multipliers (variables of (CGLPk)) that correspond to constraints of Ax ≥ b

not tight at the optimum x (except for the lower and upper bounding constraints on

the 0-1 variables). The cuts were then lifted to the full x space using the closed form

expression (3.22).

However, even when cuts are generated in a subspace as described above, this method

still remains computationally challenging, due to the large size of (CGLPk). Recent work

by BALAS AND PERREGAARD[8] showed that it is in fact possible to compute the coefficients

of α and β without actually solving the linear program (CGLPk). The implication of this

result is that we no longer need to lift the problem, by formulating it as a linear program,

into the much higher dimensional space of (u,v, u, v, α, β) ∈ Rm×Rm×R×R×Rn×Rn

and then project it back onto the x ∈ Rn space, but rather obtain the same inequalities

directly in the x space. By performing certain pivots in the original simplex tableau, we

can essentially simulate one or more pivots in the higher dimensional (CGLPk). In other



31

words, we can determine the reduced costs of the dual multipliers u and v in (CGLPk) by

simply looking at a closed formula based on the current simplex tableau in the x space.

Therefore, we can simply start with the original (optimal) LP solution x and perform a

sequence of pivots while monitoring what happens to these reduced costs. As long as

there is at least one negative reduced cost, this means that we could further improve the

objective function min αx−β of (CGLPk), which in turn means that we can improve the

distance by which the inequality cuts off x. Due to this correspondence, the cut obtained

in the end is exactly the cut we would have obtained by actually doing the pivoting in

(i.e. solving to optimality) the larger (CGLPk). This procedure is illustrated in Figure 3.1.

More detailed steps of the algorithm can be found in Section A.1.

Algorithm Lift and project (k)

1 optimal ← false /* will be set to true when we have an optimal lift-and-project cut from row k */

2 while (not optimal) do
/* Are there negative reduced costs corresponding to the dual multipliers in CGLPk? */

3 if (i∗ ← find cut improving pivot row (k) ) then
4 j∗ ←find best pivot column (k, i∗)
5 change basis (i∗, j∗)
6 else
7 optimal ← true /* we are done, the cut is optimal */

8 end if
9 end while

10 (α, β) ← create intersection cut (Ã, k) /* (α, β) is now a lift-and-project cut */

11 strengthen cut (Ã, k, α) /* apply integrality strengthening */

12 return (α, β)

Figure 3.1: Generating lift-and-project cuts in the lower dimensional space

Two term simple disjunctions

Let us start our discussion of this algorithm by looking at the simple disjunction which is

the one used to derive lift and project cuts, namely (xk ≤ 0∨ xk ≥ 1). This belongs to a

very useful special class of disjunctions, namely two term simple disjunctions. They have

the general form:

ax ≤ a0 ∨ bx ≥ b0 (3.30)
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where a ∈ Rn, b ∈ Rn and x ∈ Rn
+. When the two hyperplanes are parallel (that is,

a = b and b0 = a0 + ε, where ε > 0), these disjunctions are called split disjunctions.

An important special case of split disjunctions is when a, b, a0 and b0 are integer and

ε = 1. This case is particularly interesting because there are no integer solutions between

the hyperplanes, so by applying them to an integer program we lose no feasible points.

Split disjunctions and branching

Branching on an integer constrained variable xk, whose value x̃k in the solution of the

LP relaxation P =
{

x ∈ Rn
+ : Ax ≥ b

}
is fractional, is equivalent to adding the split

disjunction:

xk ≤ bx̃kc ∨ xk ≥ bx̃kc+ 1 (3.31)

to the original formulation of the problem. In a typical branch and bound algorithm,

however, the disjunction cannot be added explicitly, and it is instead enforced implicitly by

creating two branches to be explored independently, one for each term of the disjunction.

Since the language of integer programming does not include the ∨ logical connective, if we

want to take advantage of its semantics (other than enforcing it through branching), we

have to derive an implication of this disjunction that takes the form of a linear inequality.

Note that (3.31) does not exclude any integer solution that is feasible for the original

problem. Indeed, its job is limited to preventing the fractional value xk = x̃k, and in fact

any other fractional value bx̃kc < xk < bx̃kc+ 1, from ever being considered again. This

means that any implication we derive directly from this disjunction will be valid for the

convex hull of integer points that satisfy the original problem.

Intersection cuts from the current simplex tableau

A good point to start is the current LP solution, which is readily available in the simplex

tableau. Let us extract the expression of xk from the simplex tableau corresponding to

the current solution x̃

xk = ãk0 −
∑
j∈J

ãkjsj (3.32)

and plug it in (3.31). We obtain the following equivalent disjunction, which enforces
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ãk0 −
∑
j∈J

ãkjsj ∈ Z:

ãk0 −
∑
j∈J

ãkjsj ≤ bx̃kc
∨

ãk0 −
∑
j∈J

ãkjsj ≥ bx̃kc+ 1 (3.33)

We can now derive an inequality which is implied by this disjunction, by first changing the

sign of the first disjunct, replacing ãk0− bx̃kc with fk0 to simplify the notation, and then

using the inference rule (3.7):∑
j∈J

ãkjsj ≥ fk0∑
j∈J

−ãkjsj ≥ 1− fk0∑
j∈J

|ãkj|sj ≥ min {fk0, 1− fk0}

(3.34)

Note that the current LP solution x̃ indeed violates this inequality, because the nonbasic

variables sj are all zero, while 0 < fk0 < 1 (because ãk0 = x̃k is the value of xk in the

current solution and x̃k is fractional). Since we were careful to construct (3.34) such

that it remained valid for the convex hull of integer feasible points, we have essentially

obtained a cut (a hyperplane that separates the current infeasible solution x̃ from the set

of feasible points). Because we derived it by intersecting the disjunction (3.31) with the

polyhedral cone obtained by relaxing P (i.e. dropping all the nonbasic inequalities), this

cut is called an intersection cut (see BALAS[9]), and its coefficients can be computed in

O(n) from the kth row of the simplex tableau: αj = |ãkj| ∀j ∈ J

β = min{fk0, 1− fk0}
(3.35)

Since fk0 > 0, we can use Remark 3.1.7 to normalize the disjunction before taking the

cut in (3.34), and we obtain the following (generally) stronger cut: αj = max
{

ãkj

fk0
,
−ãkj

1−fk0

}
∀j ∈ J

β = 1
(3.36)

Note that this is not necessarily the only (or the best) normalization. For example, one

that could be (computationally) more advantageous is obtained by multiplying the first
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inequality with 1− fk0 and the second with fk0. We get: αj = max { ãkj(1− fk0),−ãkjfk0 } ∀j ∈ J

β = fk0(1− fk0)
(3.37)

Expressing the cut in terms of the original variables

There is one more step we need to complete in order to be able to add this cut to the

original model as an inferred inequality. We need to make sure that we have the cut

expressed in terms of the original model variables. As it is now, αsJ ≥ β, we have

no guarantee that the variables sj appearing in the expression of (3.34) are all part of

the original problem description (they could also be slack or surplus variables added by

the simplex algorithm when it relaxed the problem to eliminate the ≤ and ≥ relational

operators and transform it into a system of equations). So we now need to run Gaussian

elimination again, this time to eliminate these extra variables (i.e. express them in terms

of the originals). To perform this substitution of variables, note that originally, for each

inequality ax ≤ b (ax ≥ b), the simplex algorithm added a slack (surplus) variable s to

transform it into the equality ax + s = b (ax − s = b). So, for those nonbasic variables

sj that are not part of the original problem, we can simply replace sj with the equation

of the original row to which they were added as slack (surplus). That is, sj = bi − aix

(sj = aix − bi) for some row i. This way we obtain a cut α′x ≥ β′ expressed solely

in terms of the original variables and we can safely add it to the model as an inequality

implied by the original ones (and, of course, by the decisions we have made so far).

Special case: cuts from disjunctions on binary variables

Binary variables are a very useful modeling device in integer programming. For such

variables xk ∈ { 0, 1 }, we have that bx̃kc = 0 in (3.34), so the intersection cut obtained

by applying the disjunction xk ≤ 0 ∨ xk ≥ 1 has the same coefficients as (3.35), but a

simpler right hand side: β = min{ãk0, 1− ãk0}. When derived at the end of the pivoting

procedure shown in Figure 3.1, this cut is a deepest lift and project cut (as shown by

BALAS AND PERREGAARD[8]).
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Strengthened lift and project cuts

The precise correspondence between the bases of the lower dimensional simplex tableau

and those of the corresponding CGLP tableau enables us to find deepest lift and project

cutting planes without going through the trouble of explicitly setting up and solving

(CGLPk) for each binary variable xk which has a fractional value in the optimal LP

solution. When and optimal solution to (CGLPk) is found, through either procedure,

we know that the cut can no longer be improved by finding better multipliers u and

v (in other words, by adding multiples of inequalities in Ax ≥ b to either term of the

simple disjunction xk ≤ bx̃kc ∨ xk ≥ bx̃kc + 1). However, a further strengthening is

possible by using integrality conditions on the remaining variables, as shown in Section

3.1.3. This, in fact, is the way to obtain mixed integer Gomory cuts from the optimal

simplex tableau: we first derive an intersection cut from the tableau, without performing

any additional pivots, as shown in (3.35) (or the stronger version (3.36)) and then apply

integrality strengthening to it. On the other hand, the procedure outlined by BALAS AND

PERREGAARD[8] for finding lift and project cuts, performs first a sequence of pivots and at

the very end applies integrality strengthening to the resulting cut. This leaves open the

following question: would it not be possible to obtain a better cut by mixing the pivots

with integrality strengthening steps? This is the question we address in what follows.

Disjunctive modularization

BALAS[13] calls the strengthening procedure (3.29) disjunctive modularization. In order

to implement it, we can modify the procedure of BALAS AND PERREGAARD[8] in the fol-

lowing way. Instead of pivoting all the way to optimality of (CGLPk), and then applying

disjunctive modularization to the resulting cut, we will apply it to the row of the simplex

tableau corresponding to xk after each pivot. This way, we effectively combine the two cut

strengthening methods: surrogates (represented by pivots) and integrality (represented by

disjunctive modularization (3.29)).

Cut generation procedure

The idea of the procedure is the following. We start from the optimal solution x of
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the LP relaxation (i.e. a vertex of the relaxed feasible region), derive an intersection

cut from each fractional component xk of x and try to improve that cut by pivoting

on the original LP tableau, using rules for pivot selection derived from the properties of

(CGLPk). The original procedure of BALAS AND PERREGAARD[8] generates lift and project

cuts by first applying several rounds of strengthening by combination (i.e. pivots) and

a final strengthening by integer rounding. We now use a modified version in which we

apply the two strengthening methods in an interleaved manner: we apply integer rounding

immediately after each pivot. Moreover, the intermediate (strengthened) cut is added to

the model, which means that subsequent pivots (i.e. strengthening by combination) will

take it into account. The process is repeated as long as there are negative reduced costs

for the variables u and v of (CGLPk).

Note that our goal is not to maintain feasibility and improve the objective function of

the LP (which is essentially the goal of pivoting in the traditional simplex method), but

to obtain a better cut, by stepping around (and possibly outside) the feasible region of

LP. Therefore, our pivots will quite likely take us to points in space where one or more

constraints of the original LP don’t hold. For this reason, we need to save the optimal

basis of the LP before starting generating cuts and restore it when we are done with cut

generation, so that the integer programming solver does not get confused when trying to

make search decisions.

Experimental results

We ran experiments the evaluate the effectiveness of interleaving the two cut strengthening

methods. For these experiments, we used the latest version of the MIPLIB library of

benchmark problems, MIPLIB 2003. Table A.1 shows the characteristics of the problems

used: the number of rows and columns in A, the number of binary components and the

number of integer (non-binary) components of x. All results reported here were obtained

using XPRESS-MP version 15.3. In order to evaluate the impact of the resulting lift and

project cuts in the cleanest possible way, we turned off the presolve and cut generation

functions of XPRESS. For details on both the algorithm and on the results of these

experiments, please see Appendix A.1.
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3.2 Constraint programming

The theory of constraint programming (CP) represents a significant departure from the

philosophy of its predecessors. We are no longer restricted to a closed language, as it

was the case with linear, mixed integer linear and disjunctive programming, but we can

now freely define new operators (constraints), with their own semantics and possibly new

inference rules. The most obvious such operator would be 6=, which now allows us for

the first time to reason about linear disequations (if you remember our discussion of

linear and mixed integer linear programming, such reasoning is not possible within the

framework of those theories). There are already several hundred such operators, some

more frequently encountered than others. The interested reader can find more information

about these operators (global constraints in the CP community) in the catalog maintained

by BELDICEANU[20].

3.2.1 Modeling and solution process

The fact that constraint programming allows a higher degree of modeling flexibility makes

it an attractive alternative to linear and integer programming. However, before a new

operator can can be added to the language, it must be equipped with specialized inference

algorithms in order to be useful in deriving proofs. Such inference algorithms are commonly

referred to as filtering algorithms, or domain reduction algorithms in the CP community.

For many operators, there may exist multiple such algorithms, with varying complexity

and performance guarantees. For instance, some algorithms guarantee completeness (that

is, after they are applied, no values are left in the domains of their variables which do not

belong to some feasible solution). This property is known as hyper-arc consistency. Others

do not provide such guarantees, but execute much faster, and are therefore preferable

under certain circumstances.

Constraint solvers employ a seemingly different approach than integer solvers, in the

sense that at every step of the process, each constraint is responsible for drawing inference

in isolation. In integer programming, inference is typically obtained from a collection of

constraints and from the objective function, considered together. When no more inference
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is possible, the search process is invoked. This time, the process is similar to the one used

in integer programming: they both share a divide and conquer type of strategy. The CP

community, however, was far more active in this area than the IP community, and so there

are many more variants of divide and conquer search encountered in CP than in IP, such

as limited discrepancy search (see HARVEY AND GINGSBERG[75]) and first-fail search (see

HARALICK AND ELLIOTT[42]).

One important drawback of constraint programming, when compared with integer

programming, is that it cannot generate useful bounds on the value of an objective func-

tion, if one is present. In integer programming, the simplicity of constraints allows the

solver to automatically generate a convex reformulation of the problem (by linearizing

the integrality constraints), which can then be used to compute a bound on the value

of the objective. CP constraints do not offer this flexibility, and this is the main reason

why CP-based methods have not been as successful for optimization problems as IP-based

methods. However, when dealing with pure feasibility questions, CP solvers are typically

much more effective than IP solvers, since they have access to more information about

the nature of problem (and therefore its solutions) than pure IP models can provide.

This contrast of capabilities, together with the fact that parts of their solution pro-

cesses overlap, makes the combination of the two techniques desirable. This is the starting

point of our discussion of a unifying framework, in which these two (and other) methods

can work together, at each step of the solution process, in order to take advantage of

their complementary and common strenghts.



Chapter 4

A unifying framework

The idea of a unifying framework for optimization has been around for over a decade, but

very few attempts have been made at providing a description of its major components and

their interaction. A notable exception is the recent book of HOOKER[50], which builds on

some of the earlier work of CHANDRU AND HOOKER[28], HOOKER[48] and ARON, HOOKER

AND YUNES[6] to provide a consistent view of optimization techniques as they are used

in mathematical and constraint logic programming. The framework we describe here has

evolved from a joint work with HOOKER AND YUNES[6], and it provides the basic blocks

for a modeling language of metaconstraints, as well as the mechanisms that a generic

metasolver needs in order to solve a problem according to the specification given by the

metaconstraints. The solution process employed by this framework is an interleaving of

two fundamental steps, search and inference, each of which is reflected at the modeling

level in the language of metaconstraints. Inference can be drawn using multiple techniques

from (a) individual constraints (similar to domain reduction in constraint programming

or bound preprocessing in integer programming) or (b) groups of constraints (similar to

relaxation solving in mathematical programming). Search is performed using constraint

selection rules and search direction selection rules, which can be statically specified by

the modeler and dynamically prioritized by the inference component during the solution

process.

39
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4.1 Modeling

A key decision in optimization is the choice of a modeling language. Modeling must be

done at a high enough level so that the problem statement appears clear to the modeler

and at the same time provides sufficient structural information to the underlying solver.

We saw earlier that in order to efficiently prove that the pigeonhole problem does not

admit solutions if there are more pigeons than holes, we needed to state the problem in a

language whose semantics offered powerful enough tools for such inference. We needed

to communicate to the solver that it should use counting arguments. In this case, we

reformulated the problem from a statement in propositional logic to one in 0-1 integer

programming, and later to a continuous linear programming problem. It happened that in

this case the translation was straightforward. The difficulty, however, is that we cannot

efficiently represent any arbitrary problem in propositional logic. So we need a more

expressive language, but which still allows us to easily reformulate problems into perhaps

continuous linear programming, or even other paradigms.

Representability

One language which could easily provide such immmediate reformulation rules is the

language of mixed integer programming. However, mixed integer programming itself is

not expressive enough to allow one to efficiently state all the problems one might need to

solve. In fact, JEROSLOW[55] showed that the expressiveness of mixed integer programming

is surpisingly limited, by proving that a set S ⊂ Rn is mixed integer representable if and

only if it is a finite union of polyhedra whose set of recession directions coincide. In

other words, even simple statements such as ”x is different from 3” (x 6= 3) have no

representation in mixed integer programming. Constraint programming, on the other

hand, provides an open language, in which problem characteristics can be encoded into

new constraints, as necessary. Thus, an unrestricted combination of theories can be used

when deriving inference, which is a very desirable property. This is the model we want for

a language of metaconstraints, since it gives us the flexibility to add specialized inference

algorithms to these constraints, or create new constraints when the existing ones are not

expressive enough.
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4.1.1 Metaconstraints

Informally speaking, a metaconstraint is a relation. It operates on the variables of a prob-

lem and produces a true or false answer depending on whether there exists a replacement

of the variables with constants which turns the relation into a true statement. A meta-

constraint can itself be viewed as an independent problem and considered in isolation.

This is an important observation, because it tells us that even if we have a very complex

problem, consisting of a large set of metaconstraints, proving that the problem represents

a false statement (that is, it has no solution) could be as easy as proving that any one of

these metaconstraints, or subproblems, is false (infeasible). This in fact is the approach

taken in constraint programming. The solution process there is based solely on this type

of infeasibility proof: the specialized inference algorithm(s) of each constraint are queried

in isolation, and if one of them responds with false, the problem itself is false. What con-

straint programming notably lacks is the second type of inference, which is mostly used

in mathematical programming, namely inference via reformulation. Besides providing ad-

ditional tools for inference which are not available in the original language, reformulation

has the great advantage that, if constraints are reformulated into a common language,

then we could draw inference based on all at once, rather than querying each of them

separately, as it is the case in constraint programming. This way we obtain a more global

view of the problem, which may not necessarily be available in the original language. This

global view is actually what’s behind HOOKER[50]’s choice to distinguish between inference

and relaxation, since the relaxation is precisely a collection of constraints that have been

reformulated into the same language.

Multiple reformulations

It should be clear by now that it is useful to equip metaconstraints with translation rules,

preferably rules that translate into some common language. In fact, not only can we

associate with a metaconstraint one set of translation rules for each given target language,

but we can create alternative translations of that metaconstraint into the same language.

To see why this is advantageous, let us examine the following example.
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Suppose that we want to reformulate the following metaconstraint

n∑
i=1

|xi| ≤ 1 (C1)

into an integer program. As it is stated, this constraint cannot be used in an integer

programming solver, because the ”absolute value” (|x|) is not part of the language of

integer programming. One plausible reformulation would be to enumerate all possible

cases of signs. For example, for n = 2, the constraint

|x1|+ |x2| ≤ 1

would be reformulated as the system of four inequalities

−x1 −x2 ≤ 1

−x1 +x2 ≤ 1

x1 −x2 ≤ 1

x1 +x2 ≤ 1

(C1 → R1)

representing all possible cases. Clearly, this is not a desirable representation for practical

purposes, as it requires all the 2n inequalities in the general case (see JEROSLOW[54]).

However, an alternative reformulation is possible, with a much more compact repre-

sentation. If we define a new variable yi ≥ 0, then we can write a reformulation of (C1)

which is linear in size:
n∑

i=1

yi ≤ 1

xi ≤ yi ∀i
−xi ≤ yi ∀i

(C1 → R2)

Note that this new model is much smaller in size than (C1 → R1), even though it actually

requires more variables.1

Constraint syntax

We can now define a new metaconstraint based on (C1) which knows how to reformulate

itself in the language of integer programming (and therefore automatically into linear

programming).

1So it is not always a good idea to stick to models with fewer variables!
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C1 {
sum i of | x[i] | <= 1
infer using C1 → R2

}

Figure 4.1: Modeling: example of a metaconstraint with reformulation rules

In doing this, we implicitly assume that the implication C1 → R2 is known to the

language, via a keyword which links to the special translation procedure outlined above

for the reformulation of the metaconstraint (C1) into (C1 → R2). This procedure is stored

in a module, which does not need to be seen or used directly by the modeler. Upon reading

the model, the metasolver brings in the module and uses it to obtain the system described

by (C1 → R2).

Note that there is nothing to prevent us from reformulating the constraint in multiple

ways. For instance, we could declare it as in Figure 4.2. However, this does not make

C1 {
sum i of | x[i] | <= 1
infer using C1 → R1, C1 → R2

}

Figure 4.2: Modeling: metaconstraint with multiple reformulation rules

much sense and would not be useful at all in this case, for two reasons. One, we saw that

the first reformulation we came up with, namely (C1 → R1), had an exponential number

of constraints. Secondly, even if it had a more reasonable size, it would still not be of

much use since both (C1 → R1) and (C1 → R2) translate the constraint into the same

language, which is somewhat redundant. The idea is to be able to obtain reformulations in

a variety of languages, and not multiple reformulations into the same language. However,

of course, having more than one reformulation into a given language allows us to choose

the one better suited to the problem at hand.
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4.2 Solution process

We have argued so far that the solution process in optimization is a combination of two

fundamental steps: search and inference. These two steps are interleaved and rely on each

other in order to advance towards a solution of the problem or prove that none exists. The

advancing process is done by the search component, while the verification of feasibility is

handled by the inference part. Figure 4.3 gives an outline of this solution process.

Algorithm solve (P )

1 I ←∅ /* I is the set of inferences made by the inference component */

2 D ←∅ /* D is the set of decions made by the search component */

3 while (∃ unexplored 〈variable, constant〉 substitutions) do
4 I ← infer (P, I,D)
5 if (false) then

/* The inference component decided that we made some wrong decisions along the way, so we must backtrack */

6 (D, I) ←backtrack (P, I,D)
7 else
8 if (P is TRUE) then

/* All variables have been eliminated and we have determined that P is true (consistent) */

9 return true
10 else

/* We are not done yet, but no further inference is possible, so we’ll have to make some new decisions */

11 D ← search (P, I,D)
12 end if
13 end if
14 end while
15 return false /* All possible elimnations were tried and none turns P into a true statement */

Figure 4.3: General algorithm to solve an optimization problem P

The algorithm starts with the statement of P and searches over all possible ways to

eliminate variables from P . The search is kept in check by the inference module, which is

called at every stage in order to (a) detect wrong decisions made earlier, and (b) help the

search avoid new ones. The state of the algorithm is kept in two sets, I and D. The set

I contains all the inferences made by the inference module up to this stage. Similarly, D
is the set of all decisions made by the search module up to now. Note that new elements

are added to I only by the inference module, while D is augmented only by the search
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module. However, whenever a dead end is detected during inference (that is, the inference

module decides that the combination of the original statement P with I and D leads to

a false statement), both sets are modifed by the backtrack module. This module has the

role of reversing some of the decisions made by the search module, and with them the

inferences from I that were made on the basis of these decisions. The algorithm ends

when all possible decisions have been either explored by the search or ruled out by the

inference module. The decision that P is true is made when at least one elimination was

found which leads to a true statement and either we exhausted all other eliminations or

inference tells us that there are no others which could provide a better conclusion (in the

case of optimization, no other eliminations will provide a solution with a better value).

Note that there is no reference to an objective function. This is because the only

role of the objective function in optimization is to help the inference process, by using

bounding arguments, and so all references to such a function are captured inside the

inference module.

4.2.1 Search

Search becomes useful when inference alone cannot decide on the feasibility or infeasibility

of the problem. In general, search takes the form of variable elimination, in the sense

that it attempts to remove variables from the problem statement by replacing them with

constants from their corresponding domains. However, other ways to conduct search are

possible, and it may be the case than sometimes a better decision is not to eliminate a

variable, but instead to just restrict the number of possible replacements we can make for

that variable. This is because sometimes inference is able to determine infeasibility even

if the variable is still in the problem, based only on its restricted domain.

The typical search process is mostly unguided. Inference may try to suggest ways

for the search to proceed, but this is in general not well understood and poorly used in

most existing solvers. In integer programming, the way search proceeds in most solvers

is by looking at the solution of the relaxation, which in general has little or nothing to

do with what we are in fact looking for. There are examples in which such a solution is

arbitrarily far from any feasible integer solutions, and using it as a guide for the search is
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indeed a very poor decision. The integer solver will attempt to search so that it corrects

a problem it sees in the solution of the relaxation. It does so by choosing some variable

xk which does not have an integer value in the relaxation and creating a disjunction of

the type xk ≤ bx̃kc ∨ xk ≥ dx̃ke, where x̃k is the value of xk in the solution found by the

continuous solver. This is a very weak way of searching, since there is no guarantee that

either (1) xk will receive an integer value, or (b) any of the variables which happened to

be integral in the current relaxation solution will remain so.

Search rules

A better way to search is to exploit knowledge about the problem itself, and the best

handle we have into the problem structure is the collection of metaconstraints. Let us

illustrate this with a simple example (which happens to be useful also in the context of

integer solvers). Consider the linear constraint

x1 + x2 + x3 ≤ 1 (C2)

where xi ∈ { 0, 1 } ,∀i and suppose that one of the variables was assigned a fractional

(non-integer) solution by the continuous solver during the inference process (remember

that the solver attempts to bound the current problem using the objective function, and in

the process it finds the most extreme point of the polyhedron - that point is the solution

we are using here). One option is to create two search directions (branches), using the

disjunction we mentioned above, in order to ”avoid” this particular fractional solution in

the future. A wiser choice would be to avoid all fractional solutions in the future, not

just this one. We can do so by creating four search directions, each of which eliminates

all three variables at once:

direction 1: x1 ← 0, x2 ← 0, x3 ← 0

direction 2: x1 ← 1, x2 ← 0, x3 ← 0

direction 3: x1 ← 0, x2 ← 1, x3 ← 0

direction 4: x1 ← 0, x2 ← 0, x3 ← 1

(C2 :: S1)

This way of searching covers all feasible cases, and avoids potential fractional (and there-

fore infeasible) ones. It could therefore lead to a much shorter proof, although this

generally depends, of course, on the rest of the problem.
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C2 {
sum i of x[i] <= 1
search using C2 :: S1

}

Figure 4.4: Modeling: example of a metaconstraint with search rules

So we could also equip this metaconstraint with a search rule, which we can later refer to

when we use it in the statement of a problem. The resulting metaconstraint is shown in

Figure 4.4. Just as it was the case with inference rules, the language is now aware of the

keyword C2 :: S1, and it uses it to make search decisions based on this metaconstraint.

Note that this way of specifying search rules for individual constraints does not prevent

us from using the already existing strategy from integer programming, namely adding the

disjunction xk ≤ bx̃kc∨xk ≥ dx̃ke, when the value x̃k of xk is fractional in the continuous

linear relaxation. Indeed, we can use a metaconstraint called integer(xk), whose search

rule produces:

direction 1: xk ≤ bx̃kc
direction 2: xk ≥ dx̃ke

(int :: frac)

The metaconstraint could then be declared as in Figure 4.5.

integer {
x is int
search using int::frac

}

Figure 4.5: Modeling: example of a metaconstraint enforcing integrality of variables

Rule selection

Since a model is a collection of metaconstraints, and each metaconstraint has its own

search rule, we must be able to decide which rule to use at a given point during the search.

Obviously we can only use one, but which one we choose can have dramatic effects on

the length of the search. The rule selection is performed dynamically by the underlying
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metasolver. As pointed out earlier, the main task of inference is to come come up with

a proof of infeasibility. If it fails, there are still some positive side effects of the inference

process, such as reduced variable domains, cutting planes, new bounds on the objective

function, and so on. This additional information can be used in order to come up with

recommendations for the search. One possible strategy, which is also the one we employ

in our implementation (see ARON ET AL[6]), is to evaluate how close to infeasibility each

metaconstraint is (given the new information) and then select the one which is closest

to infeasibility (or feasibility) in order to decide the next search direction. Once such a

constraint is selected, the particular search decisions, and their order, are left to its search

rule. In order to allow the modeler some flexibility in choosing what the inference module

search {
create using least::{C2, C3}, most::{C1, C4}, first::all
explore using best::bound::dive

}

Figure 4.6: Modeling: example of search module specification

should recommend, one must either allow procedural elements into the language, or at

least provide some declarative means of choosing among the most common alternatives.

In ARON ET AL[6], we opt for the latter, since the goal is to provide a framework that

is powerful enough while still easy to grasp and use. The statement in Figure 4.6 says

that search should first consider the rules of constraints C2 and C3, and use the search

rule of the least feasible of the two. If the two are feasible, then search will consider the

next group of constraints, C1 and C4, and use the one which is closest to feasibility, as

indicated by the keyword most (feasible). If both these constraints are feasible as well,

then it selects the first infeasible (first) from the remaining constraints (all) to continue

the search. If no infeasible constraint exists, a solution (and perhaps a new incumbent)

has been found, so the search can now focus on some unexplored direction, as discussed

next.

Direction selection
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As it is clear from the previous examples, each search rule will generally add more than one

direction to the search. Since only one such direction can be explored at a time, the rest are

kept in a pool. This pool can be prioritized in various ways, which are indicated by keywords

like best::bound::dive, or best::bound::explore (see Figure 4.6) representing commonly

used pool management strategies. The search module always picks the direction which is

at the top of this pool. Internally, the pool is stored as a multiple key priority queue, to

allow ordering based on several characteristics, including search depth (number of decisions

made from the original problem statement), objective bound, degree of infeasibility, etc.

The main search procedure takes a very simple form, as shown in Figure 4.7, since most

of the search related decisions are left to the constraints. This is the procedure being

called in line 11 of Figure 4.3.

Algorithm search (P, I,D)

/* Find the one constraint which the inference engine has ranked first as most promising for search */

1 foreach (constraint group Gi of P ) do
2 if (∃c ∈ Gi | c is infeasible according to I) then
3 select the first such constraint c and break
4 end if
5 end for

/* Generate new search directions based on the search rule of the selected constraint */

6 D ←D ∪ c.search rule ()

/* D now reflects the current state of the search, plus the new alternatives generated by the search rule of c */

7 return D

Figure 4.7: Search algorithm based on metaconstraint search rules

4.2.2 Inference

The inference module is called upon before and after a search decision is made. The role

of this module is to decide whether the current state of the search is infeasible. While

attempting to prove infeasibility, the module can use a variety of tools and techniques, as

instructed by the metaconstraints. It may happen, and it is often the case, that inference
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cannot (yet) conclude that the problem is infeasible, so further search is required. Even

when this is the case, important information becomes available as a result of attempting to

prove infeasibility, which can be used to further limit the number of possibilities available

to the search module.

Using multiple reformulations

As we have seen, each metaconstraint is equipped with special inference rules, all of which

essentially reinterpret the constraint in some theory and attempt to prove its infeasibility

using that theory. For instance, symbolic constraints such as alldifferent(x) can be re-

formulated as graph theoretical problems, and solved using theorems from graph theory

(see RÉGIN[69]). Others have better translations into continuous linear programming, and

many can even be reformulated efficiently in multiple languages. We could, for instance,

draw inference from the alldifferent(x) constraint both by using the graph theoretical re-

formulation, as well as by reformulating it as a linear programming problem, although the

linear reformulation is not nearly as useful in practice for this constraint. However, it is

an instructive exercise.

The alldifferent(x) constraint states that the components of an n-dimensional vector

of discrete variables x ∈ { 1, . . . ,m }n must be pairwise different. In other words, no two

xi and xj with i 6= j can have the same value. We could start a reformulation process

by first stating the constraint using a simpler relation, ”6=” in place of the more complex

”alldifferent”. Thus, we can write

xi 6= xj,∀1 ≤ i < j ≤ n

which is semantically equivalent to the original constraint. Since the ”6=” relation is not

part of the language of linear programming, we must replace it with inequalities. An

equivalent statement involving inequalities would be

xi 6= xj ↔ xi < xj ∨ xi > xj

but this is still not representable as a linear program (neither ”<” nor ”∨” are part of

that language). Fortunately, since xi and xj can only take discrete values, we can escape
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the ”<” relation and replace it with ”≤”, which is allowed in linear programming:

xi < xj ∨ xi > xj ↔ xi ≤ xj − 1 ∨ xi ≥ xj + 1

We still need to eliminate the ”either-or” disjunction relation ”∨”. One way to do this is

to introduce additional variables into the model, one for each disjunct, to play the role of

selectors for which disjunct is true. Let zij ∈ { 0, 1 } be such a variable to indicate which

of the two inequalities xi ≤ xj − 1 and xi ≥ xj +1 holds true. We can now write a linear

system which is implied by the original constraint:

xi − xj + 1 ≤ mzij ∀1 ≤ i < j ≤ n

xj − xi + 1 ≤ m(1− zij) ∀1 ≤ i < j ≤ n
(aldiff → linear)

Whenever zij = 0, the system is equivalent to xi ≤ xj−1 (the second inequality becomes

true since no two numbers in the set { 1, . . . ,m } can be m units apart), and when

zij = 1, it is equivalent with xi ≥ xj + 1 (the first inequality becomes true). Thus,

alldifferent {
alldiff(x)
infer using linear::default, specialized::default

}

Figure 4.8: Modeling: alldifferent with reformulation in multiple languages

we can declare a metaconstraint alldifferent using two different inference (reformulation)

rules, as shown in Figure 4.8. The first reformulation (default linear) points to a procedure

which creates aldiff → linear. The second reformulation (specialized) of alldifferent(x),

into a graph theoretical problem, converts the statement of alldifferent into a bipartite

matching problem. On one side of the graph are the variables xi, on the other side

their possible values. Then alldifferent is infeasible if there is no matching that covers all

variables. To determine that no such matching exists, the algorithm proposed by RÉGIN[69]

attempts to remove all edges from the graph that are not part of a maximum cardinality

matching, using a theorem due to BERGE[21]. This algorithm is what is invoked by the

framework upon encountering the specialized::default rule in the definition of the

alldifferent metaconstraint in Figure 4.8.
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There is an interesting distinction to be made here between the two reformulations of

the alldifferent(x) metaconstraint, which in fact is behind HOOKER[50]’s view of relaxation

and inference as being different. The graph theoretical reformulation, aldiff → regin,

is a specialized one, meaning that it was not intended to be used in combination with

reformulations of other metaconstraints into graph theory (although it could, in theory, but

nobody has looked in that direction so far). The other reformulation, into continuous linear

programming, aldiff → linear, can in fact be used in conjunction with reformulations of

other metaconstraints as linear programs, in order to strengthen the inference by taking

more aspects of the problem into account at the same time. Hooker’s definiton of a

relaxation is based precisely on this property of the continuous reformulation: namely

that it can collect implications from more than one constraint and attempt to prove

infeasibility based on all of them at once. In fact, the definition he uses starts from

an alternative, equivalent viewpoint: it regards a relaxation as being obtained from the

original problem by dropping some of the original constraints form the problem statement.

Regardless of the viewpoint, there is a clear advantage in using relaxations (as collections

of constraint implications), since in many cases it may be difficult to prove infeasibility

by looking at constraints in isolation, but once two or more constraints are considered

together, infeasibility becomes much easier to detect.

Relaxation as a special case

The framework proposed here includes the notion of relaxation as a special case, since

it allows for reformulations of individual constraints to also be collected into a common

implication whenever the target theory allows it. In particular, this is done automatically

for continuous linear reformulations, as well as reformulations into propositional logic. For

specialized reformulations such as Régin’s graph theoretical view of alldifferent, inference

is drawn only in isolation from each such reformulation at a time. In fact, this is also done

for general reformulations: the method first attempts to prove that at least one of the

individual reformulations is infeasible and only if no infeasibility is detected, the globalized

reformulation (which could be quite large for some problems) is considered. The outline

of the inference algorithm is given in Figure 4.10.
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infer {
linear using gomory::60 , lnp::10 , mir , flow
logic using robinson

}

Figure 4.9: Modeling: example of global inference specification

Inference from relaxations

In order to take better advantage of relaxation as a special case of reformulation, we should

instruct the underlying solver on what sort of inference it must draw from such relaxations.

For instance, with a collection of linear constraints, we can derive cutting planes of various

types and strengths, bounds, etc. For a collection of logical clauses, we can use resolution.

The default behaviour is to use all the available techniques for a given theory, but this

can be further specialized by adding another section to the model, as shown in Figure

4.9. This says that for the collection of linear implications of the problem (that is, the

linear relaxation) inference should use cutting plane generators, and in particular Gomory

mixed integer cuts (see GOMORY[38]), lift-and-project cuts (the algorithm described in

Chapter 3.1.3), mixed integer rounding cuts (see MARCHAND ET AL[63]) and flow cover

cuts. Furthermore, it should only keep the best 60% of the Gomory cuts and 10% of the

lift and project cuts that are generated, ranked by the distance from the solution of the

linear relaxation (this limitation ensures that subsequent inference steps will not take too

long, which can happen when too many such cuts are being added to the formulation).

Guiding the search

The degree of feasibility of each constraint is determined by the inference module, which

also provides a ranking of the constraints according to feasibility degrees. As shown in

Figure 4.6, constraints can be grouped by priority, in which case the inference module ranks

constraints in each group separately, to allow for even more specialized search decisions.

Using this ranking mechanism, the search module can make a deterministic decision. This

decision is based on as much information as we can obtain during the inference process

and therefore reflects the problem structure as revealed by the metaconstraints.
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Algorithm infer (P, I,D)

This first loop is similar to what constraint programming solvers do - run inference on each constraint in isolation. However, the

procedure described here is more general, because it allows multiple reformulations of the same constraint to be used.

/* Try each individual constraint reformulation and see if any comes back infeasile */

1 foreach (metaconstraint Ci ∈ P ) do
2 foreach (reformulation rule Ci → Ri) do
3 if ( I ← infeasible (Ci → Ri, I) ) then
4 return false
5 end if
6 end for
7 end for

The remaining part is similar to what mathematical programming solvers do - run inference on a relaxation of the entire problem.

The procedure described here is more general, because it also allows multiple reformulations of the problem to be used.

/* No individual constraint could be proved infeasible, so we construct problem reformulations */

8 foreach (reformulation rule Ci → Ri) do
9 if (theory T Ri of Ri allows global inference) then

10 PT Ri ←PT Ri∪ Ri /* Add the reformulation Ri of Ci to relaxation PT
Ri

*/

11 end if
12 end for

/* Try each problem reformulation now and see if any comes back infeasile */

13 foreach (reformulation PT Ri
of P ) do

14 if ( I ← infeasible (PT Ri
, I) ) then

15 return false
16 end if
17 end for

/* No infeasibility detected, so we just return the inferences made along the way */

18 return I

Figure 4.10: Inference algorithm based on metaconstraint inference rules
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4.3 Example: Production planning

Let us illustrate these concepts with a practical example, namely a production planning

problem. The objective is to manufacture several products on a line of limited capacity

C so as to maximize net income. Each product must be manufactured in one of several

production scale modes (small, medium, large), or not manufactured at all, and only a

certain range of production quantities are possible for each product in each mode. Thus

if xi units of product i are manufactured in mode k, xi ∈ [Lik, Uik]. The income fi(xi)

obtained from making product i is linear in each interval [Lik, Uik], which means that fi

is a semicontinuous piecewise linear function (Figure 4.11):

fi(xi) =
1

Uik − Lik

[(Uik − xi)cik + (xi − Lik)dik] , if xi ∈ [Lik, Uik] (4.1)

The mode k = 0, for which [Li0, Ui0] = [0, 0], corresponds to the case when product i is

not produced at all.
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Figure 4.11: Production planning: a semicontinuous piecewise linear function fi(xi).
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4.3.1 Modeling

An integer programming approach to modeling this problem requires the introduction of

some indicator (0-1) variables yik to select the production mode of each product. The

functions fi can be modeled by assigning weights λij, µik to the endpoints of each interval

k, and so a linear model for this problem could look like the following:

max
∑
ik

λikcik + µikdik∑
i

xi ≤ C

xi =
∑
k

λikLik + µikUik, all i∑
k

λik + µik = 1, all i

0 ≤ λik ≤ yik, all i, k

0 ≤ µik ≤ yik, all i, k∑
k

yik = 1, all i

yik ∈ {0, 1}, all i, k

(4.2)

CP model

However, a perhaps more natural way to model this problem is to use conditional con-

straints of the form A ⇒ B, which means that whenever the antecedent A is true, the

consequent B must be enforced. Note that this is not the same as an implication, since

it does not say that whenever B is not true, A must also be false. In this case, it simply

acts as an on-off switch for constraint B based on the truth value of A. Furthermore,

the piecewise linear cost function fi(xi) can be coded much as it appears in (4.1), so the

new model looks like:

max
∑
i

ui∑
i

xi ≤ C (a)

xi ∈ [Lik, Uik]⇒ ui = 1
Uik−Lik

[(Uik − xi)cik + (xi − Lik)dik] , all i, k (b)

(4.3)
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Note that no discrete variables are required, and the model is quite simple. This model

can now be solved by branching on the continuous variables xi in a branch-and-bound

method. In this case the domain of xi is an interval of real numbers. The search branches

on an xi by splitting its domain into two or more smaller intervals, much as is done in

continuous global solvers, so that the domains become smaller as one descends into the

search tree. The solver processes the conditional constraints (b) by adding the consequent

to the constraint set whenever the current domain of xi lies totally within [Lik, Uik].

A model based on metaconstraints

Although the above model is a perfectly legitimate approach to solving the problem and

might appear as quite natural initially, it does not fully exploit the problem’s structure.

Note that for each product i, the point (xi, ui) must lie on one of the line segments

defined by consequents of constraint (b). If the solver were aware of this fact, it could

construct a tight linear relaxation by requiring (xi, ui) to lie in the convex hull of these line

segments, thus resulting in a (potentially) faster solution. This can be accomplished by

equipping the modeling language with a metaconstraint piecewise which models continu-

ous or semicontinuous piecewise linear functions. A single piecewise constraint represents

the constraints in (b) that correspond to a given i. The model now becomes

max
∑
i

ui∑
i

xi ≤ C (a)

piecewise(ui, xi, Li, Ui, ci, di), all i (b)

(4.4)

Here Li is an array containing Li0, Li1, . . ., and similarly for Ui, ci, and di. Each piecewise

constraint enforces ui = fi(xi). The high level representation of this model, in compilable

form, is shown in Figure 4.12. The key points in the model are the inference rules on the

piecewise constraint (which is linearized using the default available algorithm and produces

the convex hull (4.5) of feasible values of xi and ui given the current state of the search),

the search rules that say we should branch on the least feasible piecewise constraint (and

use the algorithm ”three split” in order to create new branches) and the branch selection

rule which says that we should select the branch with the best bound and then dive from
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there until a leaf is reached in the search tree. The degree of infeasibility of each piecewise

constraint is calculated by measuring how far the values of xi and ui obtained from the

linear solver are from the closest linear segment (piece) of the function.

maximize {
income = sum i of u[i]

}

capaticy {
sum i of x[i] <= C

}

piecewise {
piecewise(x[i],u[i],L[i],U[i],c[i],d[i]) forall i

infer using specialized::default, linear::default
search using three split

}

infer {
linear using gomory::40 , mir::15

}

search {
create using least::{ piecewise }
explore using best::bound::dive

}

Figure 4.12: Production planning: integrated model

4.3.2 Solution process

Let us suppose the solver is instructed to solve the problem by best::dive (a variant of

branch and bound), which is defined as a direction exploration strategy in the search

component of the model in Figure 4.12. The search proceeds by enumerating restrictions

of the problem, each one corresponding to a node of the search tree. At each node, the

solver infers a domain [ai, bi] for each variable xi. Finally, the solver generates bounds

(necessary for inference on the linear reformulation, as well as for ordering new restrictions

in a pool as indicated best::bound::dive) by solving a linear relaxation of the problem. This
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relaxation is (4.5). The solver branches whenever a constraint is violated by the solution of

the relaxation. The nature of the branching is dictated by the constraint that is violated.

Specialized inference

It is useful to examine these steps in more detail. At a given node of the search tree,

the solver first applies inference methods to each constraint. Constraint (a) triggers a

simple form of interval propagation. The upper bound bi of each xi’s domain is adjusted

to become min

{
bi, C −

∑
j 6=i

aj

}
. Constraint (b) can also reduce the domain of xi, as

will be seen shortly. Domains reduced by one constraint can be cycled back through the

other constraint for possible further reduction. As branching and propagation reduce the

domains, the problem relaxation becomes progressively tighter until its solution is feasible

in the original problem.

Inference via reformulation

The solver creates a linear relaxation at each node of the search tree by pooling linear

reformulations of the various constraints. For example, it reformulates each constraint in

(b) by generating linear inequalities to describe the convex hull of the graph of each fi,

as illustrated in Figure 4.13. The fact that xi is restricted to [ai, bi] permits a tighter

relaxation, as shown in the figure. Similar reasoning reduces the domain [ai, bi] of xi to

[Li1, bi]. The linear constraint (a) also contributes to the relaxation, by simply sending a

reformulation of itself (identity). These relaxations, along with the domains, combine to

form a linear relaxation of the entire problem:

max
∑
i

ui∑
i

xi ≤ C

conv(piecewise(ui, xi, Li, Ui, ci, di)), all i

ai ≤ xi ≤ bi, all i

(4.5)

where conv denotes the convex hull description just mentioned.

The solver next finds an optimal solution (x̄i, ūi) of the relaxation (4.5) by calling a
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linear programming solver. This solution will necessarily satisfy (a), but it may violate

(b) for some product i, for instance if x̄i is not a permissible value of xi, or ūi is not the

correct value of fi(x̄i). The latter case is illustrated in Fig. 4.13, where the search creates

three branches by splitting the domain of xi into three parts: [Li2, Ui2], everything below

Ui1, and everything above Li3. Note that in this instance the linear relaxation at all three

branches will be exact, so that no further branching will be necessary.

The problem is therefore solved by combining ideas from three optimization areas: (1)

search by splitting intervals, from continuous global optimization, (2) domain reduction,

from constraint programming and (3) polyhedral relaxation, from integer programming.

xi

fi(xi)

ai bi
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Figure 4.13: Production planning: convex hull relaxation (shaded area) of fi(xi).

4.3.3 Experimental results

We ran both the pure MILP model (4.2) and the above integrated model over 10 randomly

generated instances with the number of products n ranging from 5 to 50. In all instances,

products have the same cost structure with five production modes. In order to break

symmetry, the models also include constraints of the form xi ≤ xi+1 for i ∈ {1, . . . , n−1}.
The number of search nodes and CPU time (in seconds) required to solve each of the ten
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instances to optimality are shown in Table 4.1. As the number of products increases, one

Number of IP (CPLEX 9.0) Integrated
Products Searched nodes Time (s) Searched nodes Time (s)

5 93 0.03 13 0.09
10 423 0.12 40 0.35
15 1321 0.34 33 0.58
20 4573 1.14 53 1.00
25 5105 2.43 19 0.30
30 4504 2.10 43 0.82
35 6089 3.30 33 1.11
40 7973 4.06 36 1.15
45 23414 14.72 40 1.76
50 18795 9.45 47 1.77

Table 4.1: Production planning: search nodes and CPU time.

can see that the number of search nodes required by a pure MILP approach can be more

than 500 times larger than the number of nodes required by the integrated approach.

This can be explained by the fact that more powerful inference is applied before creating

new nodes, and furthermore the search process uses more specific problem knoweldge (by

exploiting the properties of the piecewise constraint). A MILP solver may find it very hard

(and many times impossible) to uncover this information from a purely linear model. The

integrated approach is also superior in all (but the three smallest) instances with respect

to CPU time. The fact that CPLEX can solve the smaller IP instances faster than the

integrated solver, despite the larger number of nodes explored, can be explained if we take

into account the additional bookkeeping that goes on underneath the integrated solver at

each node, like automatically reformulating (tightening the convex hull linearization of)

the piecewise constraint. In general, the integrated solver will spend significantly more

time at a node that a MILP solver does, but the hope is that this time is well spent

and will reduce the number of nodes (and therefore the total solution time) considerably.

This transpires quite clearly from Table 4.1, where the number of nodes required by the

integrated solver does not grow nearly as fast as it does for the IP solver (in fact, a nice

feature of this model seems to be that it results in a more robust behavior across problem

instances, whereas the IP model’s performance degrades significantly with problem size).
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4.4 Example: Product configuration

In the second example we consider, the problem is to choose an optimal configuration of

components for a product, such as a personal computer. For each component i, such as a

memory chip or power supply, one must decide how many qi to install and what type ti to

install. Only one type of each component may be used. The types correspond to different

technical specifications, and each type k of component i supplies a certain amount Aijk

of attribute j. For instance, a given type of memory chip might supply a certain amount

of memory, generate a certain amount of heat, and consume a certain amount of power;

in the last case, Aijk < 0 is used to represent a negative supply. There are lower and

upper bounds Lj, Uj on each attribute j. Thus there may be a lower bound on total

memory, an upper bound on heat generation, a lower bound of zero on net power supply,

and so forth. Each unit of attribute j produced incurs a (possibly negative) penalty cj.

4.4.1 Modeling

A straightforward integer programming model introduces 0-1 variables xik to indicate

when type k of component i is chosen. The total penalty is
∑
j

cjvj, where vj is the

amount of attribute j produced. The quantity vj is equal to
∑
ik

Aijkqixik. Since this is a

nonlinear expression, the variables qi are disaggregated, so that qik becomes the number

of units of type k of component i. The quantity vj is now given by the linear expression∑
ik

Aijkqik. A big-M constraint can be used to force qij to zero when xij = 0. The model

becomes,

min
∑
j

cjvj

vj =
∑
ik

Aijkqik, all j (a)

Lj ≤ vj ≤ Uj, all j (b)

qik ≤Mixik, all i, k (c)∑
k

xik = 1, all i (d)

(4.6)
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where each xij is a 0-1 variable, each qij is integer, and Mi is an upper bound on qi. If

the modeling language accommodates specially ordered sets of nonbinary variables, the

variables xij can be eliminated and constraints (c) and (d) replaced by a stipulation that

{qi1, qi2, . . .} is a specially ordered set of type 1 for each i.

A model based on metaconstraints

An integrated model uses the original notation ti for the type of component i, without the

need for 0-1 variables or disaggregation. The key is to permit ti to appear as a subscript:

min
∑
j

cjvj

vj =
∑
i

qiAijti , all j
(4.7)

where the bounds Lj, Uj are reflected in the initial domain assigned to vj.

A variable index is a very versatile modeling device. If an expression has the form

uy, where y is a variable, then y is a variable index or variable subscript. The modeling

system automatically decodes variably indexed expressions with the help of the element

metaconstraint, which is frequently used in constraint programming. In this case the

variably indexed expression has the indexed linear form uay, where u is an integer variable

and y a general discrete variable. An expression of this form is replaced with a new variable

z and an additional constraint

element(y, (ua1, . . . , uan), z) (4.8)

This constraint in effect forces z = uay. The solver can now apply a domain reduction

(or filtering) algorithm to (4.8) and generate a relaxation for it.

4.4.2 Solution process

Filtering for (4.8) is straightforward. If z’s domain is [z, z], y’s domain is Dy, and u’s

domain is {u, u + 1, . . . , u} at any point in the search, then the reduced domains [z′, z′],
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D′
y, and {u′, . . . , u′} are given by

z′ = min
{
z, mink

{
akq
}}

, z′ = max {z, maxk {akq}} ,

D′
y = Dy ∩

{
k | [z′, z′] ∩ [akq, akq] 6= ∅

}
u′ = min {u, mink {dz′/ake}} , u′ = max {u, maxk {bz′/akc}}

Inference via reformulation

Since (4.8) implies a disjunction
∨

k∈Dy
(z = aku), it can be given the standard convex

hull relaxation for a disjunction, which in this case simplifies to

z =
∑
k∈Dy

akuk, u =
∑
k∈Dy

uk

where uk ≥ 0 are new variables. Based on this idea, the relaxation of (4.7) becomes

min
∑
j

vj

vj =
∑
i

∑
k∈Dti

Aijkqik, all j

qi =
∑

k∈Dti

qik, all i

Lj ≤ vj ≤ Uj, all j

q
i
≤ qi ≤ qi, all i

qik ≥ 0, all i, k

(4.9)

Preventing future infeasibilities

There is also an opportunity for post-relaxation inference, which in this case takes the

form of reduced cost variable fixing. Suppose the best feasible solution found so far has

value z∗, and let ẑ be the optimal value of (4.9). If ẑ + rik ≥ z∗, where rik is the reduced

cost of qik in the solution of (4.9), then k can be removed from the domain of ti. In

addition one can infer

qi ≤ min
k∈Dyi

{b(z∗ − ẑ)/rikc} , all i

Post-relaxation inference can take other forms as well, such as the generation of separating

cuts.
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Search

The problem can be solved by branch and bound. In this case it is enough to branch on

the domain constraints ti ∈ Dti . Since ti does not appear in the linear relaxation, it does

not have a determinate value until it is fixed by branching. The domain constraint ti ∈ Dti

is viewed as unsatisfied as long as ti is undetermined. The search branches on ti ∈ Dti

by splitting Dti into two subsets. Branching continues until all the Dti are singletons, at

which point the solution of the relaxation will necessarily be feasible.

4.4.3 Experimental results

For our computational experiments, we used ten of the problem instances proposed by

THORSTEINSSON AND OTTOSSON[71], which have 26 components, up to 30 types per com-

ponent, and 8 attributes. We also used the same branching strategy on qi as they sug-

gested: let q̄i be the closest integer to the fractional value of qi in the current solution of

the LP relaxation; we create up to three descendents of the current node by adding each

of the following constraints in turn (if possible): qi = q̄i, qi ≤ q̄i − 1 and qi ≥ q̄i + 1.

The number of search nodes and CPU time (in seconds) required to solve each of the ten

IP Solver (CPLEX 9.0) Integrated solver
Instance Nodes Time (s) Nodes Time (s)

1 1 0.06 61 6.64
2 1 0.08 34 3.08
3 184 0.79 164 20.42
4 1 0.04 27 2.53
5 723 4.21 30 2.91
6 1 0.05 30 1.99
7 111 0.59 32 2.97
8 20 0.19 29 2.94
9 20 0.17 18 0.97
10 1 0.03 32 2.60

Table 4.2: Product configuration: search nodes and CPU time.



66

instances to optimality are shown in Table 4.2. Although the integrated model solves con-

siderably slower than the pure MILP model, it again appears to be more robust than the

MILP model in terms of the number of search nodes required, as was also the case in the

production planning example. It is worth noting that THORSTEINSSON AND OTTOSSON[71]

used CPLEX 7.0 to solve the MILP model (4.6) and it managed to solve only 3 out of

the above 10 instances with fewer than 100,000 search nodes. The average number of

search nodes explored by CPLEX 7.0 over the 3 solved instances was around 77,000.

4.5 Example: Logic-based Benders decomposition

A third example we consider involves a decomposition approach for a machine scheduling

problem. A set of n jobs must be assigned to machines, and the jobs assigned to each

machine must be scheduled subject to time windows. Job j has release time rj, deadline

dj, and processing time pij on machine i. It costs cij to process job j on machine i.

It generally costs more to run a job on a faster machine. The objective is to minimize

processing cost.

4.5.1 Modeling

An integer programming model can be written by discretizing time and letting xijt = 1 if

job j starts processing at time t on machine i.

min
∑
ijt

cijxijt

∑
i,t

xijt = 1, all i

∑
j

∑
t′∈Tijt

xijt ≤ 1, all i, t

xijt = 0, all i, j, t with dj − pij < t < rj or t > N − pij

xijt ∈ {0, 1}

(4.10)

where N is the number of discrete times (beginning with time 0), and

Tijt = {t′ | t− pij < t′ ≤ t}
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is the set of times at which a job j in progress on machine i at time t might start processing.

There is also a continuous-time IP model suggested by TÜRKAY AND GROSSMANN[72], but

computational testing (HOOKER[49]) indicates that it is much harder to solve than (4.10).

A model based on metaconstraints

A hybrid model can be written with the cumulative metaconstraint, which is widely used

in constraint programming for “cumulative” scheduling, in which several jobs can run

simultaneously but subject to a resource constraint and time windows. Let tj be the time

at which job j starts processing and uij the rate at which job j consumes resources when

it is running on machine i. The constraint

cumulative(t, pi, ui, Ui)

requires that the total rate at which resources are consumed on machine i be always less

than or equal to Ui. Here t = (t1, . . . , tn), pi = (pi1, . . . , pin), and similarly for ui.

In the present instance, jobs must be run sequentially on each machine. Thus each

job j consumes resources at the rate uij = 1, and the resource limit is Ui = 1. Thus if

yj is the machine assigned to job j, the problem can be written

min
∑

j

cyjj

rj ≤ tj ≤ dj − pyjj, all j

cumulative((tj|yj = i), (pij|yj = i), e, 1), all i

(4.11)

where e is a vector of ones.

4.5.2 Solution process

This model is adequate for small problems, but solution can be dramatically accelerated by

decomposing the problem into an assignment portion to be solved by IP and a subproblem

to be solved by CP. The assignment portion becomes the Benders master problem, which
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allocates job j to machine i when xij = 1:

min
∑
ij

cijxij∑
i

xij = 1, all j

relaxation of subproblem

Benders cuts

xij ∈ {0, 1}

(4.12)

Inference

The solution x̄ of the master problem determines the assignment of jobs to machines.

Once these assignments are made, the problem (4.11) separates into a scheduling feasi-

bility problem on each machine i:

rj ≤ tj ≤ dj − pȳjj, all j

cumulative((tj|ȳj = i), (pij|ȳj = i), e, 1)
(4.13)

where ȳj = i when x̄ij = 1. If there is a feasible schedule for every machine, the problem

is solved. If, however, the scheduling subproblem (4.13) is infeasible on some machine i,

a Benders cut is generated to rule out the solution x̄, perhaps along with other solutions

that are known to be infeasible. The Benders cuts are added to the master problem,

which is re-solved to obtain another assignment x̄.

The simplest sort of Benders cut for machine i rules out assigning the same set of

jobs to that machine again: ∑
j∈Ji

(1− xij) ≥ 1 (4.14)

where Ji = {j | x̄ij = 1}. A stronger cut can be obtained, however, by deriving a

smaller set Ji of jobs that are actually responsible for the infeasibility. This can be done

by examining the proof of infeasibility and noting which jobs actually play a role in the

proof (see HOOKER[49]). In CP, an infeasibility proof generally takes the form of edge

finding techniques for domain reduction, perhaps along with branching. Such a proof of

infeasibility can be regarded as a solution of the subproblem’s inference dual. (In linear
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programming, the inference dual is the classical linear programming dual.) Logic-based

Benders cuts can also be developed for planning and scheduling problems in which the

subproblem is an optimization rather than a feasibility problem. This occurs, for instance,

in minimum makespan and minimum tardiness problems.

It is computationally useful to strengthen the master problem with a relaxation of the

subproblem. The simplest relaxation requires that the processing times of jobs assigned

to machine i fit between the earliest release time and latest deadline:∑
j

pijxij ≤ max
j
{dj} −min

j
{rj} (4.15)

A Benders method (as well as any nogood-based method) fits easily into this unifying

framework. It solves a series of problem restrictions in the form of subproblems. The

search is directed by the solution of a relaxation, which in this case is the master problem.

The inference stage generates Benders cuts.

The decomposition is communicated to the solver by writing the model

min
∑
ij

cijxij (a)∑
i

xij = 1, all j (b)

(xij = 1)⇔ (yj = i) , all i, j (c)

rj ≤ tj ≤ dj − pyjj, all j (d)

cumulative((tj|yj = i), (pij|ȳj = i), e, 1), all i (e)

(4.16)

where the domain of each xij is {0, 1}. Each constraint is associated with a relaxation

parameter and an inference parameter. The relaxation parameters for the master prob-

lem constraints (a) and (b) indicate that these constraints are themselves part of an IP

relaxation of the problem. The relaxation parameter for (d) adds the inequalities (4.15)

to the relaxation. The inference parameter for (e) specifies the type of Benders cuts to

be generated. When the solver is instructed to use a Benders method, it automatically

adds the Benders cuts to the relaxation.
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4.5.3 Experimental results

For our computational experiments, we used the instances proposed by JAIN AND GROSS-

MANN[53] and we created three additional instances with more than 20 jobs. These are

the last instance in Table 4.3 and the last two instances in Table 4.4. Although state-

of-the-art IP solvers have considerably improved since Jain and Grossmann’s results were

published, these instances are still intractable with the IP model (4.10). In addition to

being orders of magnitude faster in solving the smallest problems, the integrated Benders

approach can easily tackle larger instances as well. After 48 hours of CPU time and more

than 5 million branch-and-bound nodes, the best solution found by the IP model to the

last instance of Table 4.3 had value 176, whereas the optimal solution has value 175.

When processing times are shorter the problem tends to become easier, and we report

IP Solver (CPLEX 9.0) Integrated
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2 1 0.00 2 1 0.00
7 3 1 0.02 12 14 0.09
12 3 11060 16.50 26 37 0.58
15 5 3674 14.30 22 31 0.96
20 5 159400 3123.34 30 52 3.21
22 5 > 5.0M > 48h 38 59 6.70

Table 4.3: Parallel machine scheduling: long processing times.

results for this case in Table 4.4. Even here, the IP model is still much worse than the

integrated Benders approach as the problem size grows. For instance, after 16.9 million

search nodes the IP solver could not find a single feasible solution to the instance with 22

jobs and 5 machines. The best solution it found for the last instance, after 48 hours and

4.5 million search nodes, had value 181, and the optimal value is 179.

IP Solver (CPLEX 9.0) Integrated
Jobs Machines Nodes Time (s) Iterations Cuts Time (s)

3 2 1 0.00 1 0 0.00
7 3 1 0.01 1 0 0.01
12 3 4950 1.98 1 0 0.01
15 5 14000 19.80 1 0 0.03
20 5 140 5.73 3 3 0.12
22 5 > 16.9M > 48h 5 4 0.38
25 5 > 4.5M > 48h 16 22 0.86

Table 4.4: Parallel machine scheduling: short processing times.



Chapter 5

Applications

5.1 The robust spanning tree problem

Given an undirected graph with interval edge costs, a robust spanning tree is one whose

cost is as close as possible to that of a minimum spanning tree under any possible as-

signment of costs. This section defines the problem formally and introduces the main

concepts and notations necessary to understand the proposed solution.

Let G = (V, E) be an undirected graph with |V | = n nodes and |E| = m edges and

an interval [ce, ce] for the cost of each edge e ∈ E. A scenario s is a particular assignment

of a cost ce ∈ [ce, ce] to each edge e ∈ E. We use cs
e to denote the cost of edge e under

a given scenario s. Recall that a spanning tree for G = (V, E) is a set of edges T ⊆ E

such that the subgraph G′ = (V, T ) is acyclic and ∀ i ∈ V, ∃ j ∈ V : (i, j) ∈ T . The

cost of a spanning tree T for a scenario s, denoted by cs
T , is the sum of the costs of all

edges under scenario s:

cs
T =

∑
e∈T

cs
e.

A minimum spanning tree for scenario s, denoted by MST s, is a spanning tree with

minimal cost for scenario s and its cost is denoted by cMST s . Following YAMAN ET AL[76],

we now define the worst case scenario for a spanning tree T and the robust deviation of

T , two fundamental concepts for this section.

71
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Definition 5.1.1 (Relative worst case scenario). Given a spanning tree T , a scenario

w(T ) which maximizes the difference between the cost of T and the cost of a minimum

spanning tree under w(T ) is called a relative worst case scenario for T . More precisely, a

relative worst case scenario w(T ) satisfies

w(T ) ∈ arg- max
s∈S

(cs
T − cMST s) (5.1)

where S is the set of all possible scenarios.

Note that arg- maxs∈S f(s) denotes the set

{e ∈ S | f(e) = max
s∈S

f(s)}.

and arg-min is defined similarly.

Definition 5.1.2 (Robust Deviation). The robust deviation of a spanning tree T , denoted

by ∆T , is the distance between the cost of T and the cost of a minimum spanning tree

under the relative worst case scenario of T :

∆T = c
w(T )
T − cMST w(T ) . (5.2)

The goal is to compute a robust spanning tree, i.e., a spanning tree whose robust deviation

is minimal.

Definition 5.1.3 (Robust Spanning Tree). A (relative) robust spanning tree is a spanning

tree T ∗ whose robust deviation is minimal, i.e.,

T ∗ ∈ arg- min
T∈ΓG

max
s∈S

(cs
T − cMST s)

where ΓG is the set of all spanning trees of G and S is the set of all possible scenarios.

According to the definition of w(T ) (Eq. 5.1), this is equivalent to:

T ∗ ∈ arg- min
T∈ΓG

(c
w(T )
T − cMST w(T )).

Figure 5.1 depicts these concepts graphically. The horizontal axis depicts various scenarios.

For each scenario s, it shows the cost cs
T of T under s and the cost cMST s of an MST

under s. In the figure, scenario s5 is a worst-case scenario, since the distance cs5
T −cMST s5
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cost

scenario

relative worst case scenario for tree T

CMSTS5
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CMSTS3

CMSTS2

CMSTS1

CMSTS6

CMSTS7

CMSTS8

CT
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S2
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S8

CT
S5
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S1
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S6

CT
S7

∆T

S1 S2 S3 S4 S5 S6 S7 S8

Figure 5.1: Robust spanning tree: robust deviation

is maximal and this distance is then the robust deviation of T . Such a figure can be drawn

for each spanning tree and we are interested in finding the spanning tree with the smallest

robust deviation. KOUVELIS AND YU[59] conjectured that the robust spanning tree problem

with interval edges is NP-complete, and ARON AND VAN HENTENRYCK[5] proved that this

conjecture was true.

Prior Work

YAMAN ET AL[76] proposed an elegant MIP formulation for the RSTPIE problem. The

formulation combines the single commodity model of the minimum spanning tree with

the dual of the multicommodity model for the same problem. In addition, they introduced

the concept of weak and strong edges and used them for preprocessing. They showed

that preprocessing significantly enhances the performance of their MIP implementation.

We now summarize their relevant results.

We first introduce the concept of weak edges, i.e., the only edges that need to be

considered during the search.

Definition 5.1.4 (Weak Tree). A tree T ⊆ E is weak if there exists at least one scenario

under which T is a minimum spanning tree of G.

Definition 5.1.5 (Weak Edge). An edge e ∈ E is weak if it lies on at least one weak

tree.
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Strong edges are edges that are necessarily part of a robust spanning tree.

Definition 5.1.6 (Strong Edge). An edge e ∈ E is strong if it lies on a minimum spanning

tree of G for all possible scenarios.

The following propositions characterize weak and strong edges in terms of the minimum

spanning trees of two scenarios.

Proposition 5.1.7. An edge e ∈ E is weak if and only if there exists a minimum spanning

tree using edge e when its cost is at the lowest bound and the costs of the remaining

edges are at their highest bounds.

Proposition 5.1.8. An edge e ∈ E is strong if and only if there exists a minimum

spanning tree using edge e when its cost is at the highest bound and the costs of the

remaining edges are at their lowest bounds.

As a consequence, YAMAN ET AL[76] showed that it is possible to use a slightly modified

version of Kruskal’s algorithm to find all the weak and strong edges of a given graph

in O(m2 log m) time. In Section 5.1.1, we give an improved algorithm for finding weak

edges, which runs in O(m log m). The following two propositions capture the intuition

we gave earlier on weak and strong edges.

Proposition 5.1.9. A relative robust spanning tree T is a weak tree. Thus an edge can

be part of a relative robust spanning tree only if it is a weak edge.

Proposition 5.1.10. There exists a relative robust tree T such that every strong edge in

the graph lies on T.

The next result is also fundamental: it makes it possible to characterize precisely the worst

case scenario of a spanning tree T .

Proposition 5.1.11. The scenario in which the costs of all edges in a spanning tree T

are at upper bounds and the costs of all other edges are at lower bounds is a relative

worst case scenario for T . In other words, w(T ) is specified as

cw(T )
e =

 ce, e ∈ T

ce, e ∈ E \ T
(5.3)
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In other words, once we select a tree T , we can easily find the worst-case scenario for T

by assigning to the edges in T their upper bounds and to the edges not in T their lower

bounds. We use Proposition 5.1.11 in our new algorithm. In the rest of this section, we

also use the notation w(S) to denote the scenario where ce = ce if e ∈ S and ce = ce

otherwise even when S is not a tree.

Solution process

Algorithm Search (〈S, R〉)

1 if (|S| < n− 1) then
2 〈S, R〉 ←PruneInfeasible (〈S, R〉)
3 〈S, R〉 ←PruneSuboptimal (〈S, R〉)
4 if (LB(〈S, R〉) ≤ f∗) then
5 e ←SelectEdge (E \ (S ∪R))
6 Search (〈S, R ∪ { e }〉)
7 Search (〈S ∪ { e } , R〉)
8 else
9 if (∆S < f∗) then

10 T ∗ ←S
11 f∗ ←∆S

12 end if
13 end if
14 end if

Figure 5.2: Robust spanning tree: the search algorithm

Figure 5.2 gives a high-level description of the search algorithm. A node in the search

tree is called a configuration to avoid confusion with the nodes of the graph. A configu-

ration is a pair 〈S, R〉, where S represents the set of selected edges and R represents the

set of rejected edges. The algorithm receives a configuration as input. If the configuration

is not a spanning tree, the algorithm prunes infeasible and suboptimal edges. Both steps

remove edges from E \ (S ∪R) and adds them to R. If the lower bound of the resulting

configuration is smaller than the best found solution, the algorithm selects an edge and

explores two subproblems recursively. The subproblems respectively reject and select the
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Notation Definition

cs
T the cost of tree T under scenario s

cs
T =

∑
e∈T cs

e

w(T ) worst case scenario for edge set T :

c
w(T )
e =

{
ce, e ∈ T
ce, e ∈ E \ T

ΓG the set of all spanning trees of graph G
T (S, R) the set of spanning trees derived from 〈S, R〉

T (S, R) = {T ∈ ΓG|S ⊆ T ⊆ E \R }
Ms(S, R) the set of spanning trees from T (S, R) with mimimal cost under scenario s

Ms(S, R) = arg- minT∈T (S,R) cs
T

MST s(S, R) an arbitrary tree from Ms(S, R)
Ms Ms(∅, ∅)

MST s an arbitrary tree from Ms(∅, ∅)

Table 5.1: Robust spanning tree: notations

edge. The best found solution and upper bound are updated each time a spanning tree

with a smaller robust deviation is obtained.

5.1.1 Inference

Infeasibility pruning is relatively simple in our algorithm. It ensures that S can be extended

into a spanning tree and removes edges that would create cycles. We do not discuss

infeasibility further and instead focus on the lower bound and suboptimality pruning.

Before doing so, we introduce some additional notations. We use T (S, R) to denote the

set of all spanning trees that can be derived from configuration 〈S, R〉, i.e.,

T (S, R) = {T ∈ ΓG | S ⊆ T ⊆ E \R}.

Given a scenario s, Ms(S, R) denotes the set of all minimum spanning trees which are

derived from configuration 〈S, R〉 under scenario s and MST s(S, R) is a representative

ofMs(S, R). For simplicity, we useMs and MST s when S = ∅ and R = ∅. All relevant

notations are summarized in Table 5.1 for convenience.

The Lower Bound

We now present a lower bound to the robust deviation of any spanning tree derived from
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〈S, R〉. In other words, we need to find a lower bound on the value of ∆T (as defined by

Eq. 5.2), for any tree T ∈ T (S, R). Recall that, for any such tree T , the robust deviation

is given by ∆T = c
w(T )
T − cMST w(T ) . We can approximate ∆T by finding a lower bound to

c
w(T )
T and an upper bound to cMST w(T ) . Since S ⊆ T ⊆ S ∪ L where L = E \ (S ∪ R),

both bounds can be obtained by considering the scenario w(S ∪ L). As a consequence,

we define the lower bound LB(〈S, R〉) of a configuration 〈S, R〉 as

LB(〈S, R〉) = cMST w(S∪L)(S,R) − cMST w(S∪L) .

The following proposition proves that LB(〈S, R〉) is indeed a lower bound.

Proposition 5.1.12. Let 〈S, R〉 be an arbitrary configuration and let L = E \ (S ∪ R).

Then, for all T ∈ T (S, R), we have

∆T ≥ cMST w(S∪L)(S,R) − cMST w(S∪L) .

Proof: Since T ∈ T (S, R), it follows that S ⊆ T ⊆ E −R = S ∪ L. Therefore,

cMST w(T ) ≤ cMST w(S∪L)

On the other hand, by the definition of a minimum spanning tree and since T ⊆ S ∪ L,

we have that

cMST w(S∪L)(S,R) ≤ c
w(S∪L)
T = c

w(T )
T .

The result follows since

cMST w(S∪L)(S,R) − cMST w(S∪L) ≤ c
w(T )
T − cMST w(T ) = ∆T .

Observe that this lower bound only requires the computation of two minimum spanning

trees and hence it can be computed in O(m log m) time. Interestingly, cMST w(S∪L) can

use any edge in the graph and is thus independent of the edges selected in S and R. Of

course, the scenario w(S ∪L) is not! It is easy to see that this lower bound is monotone

in both arguments

LB(〈S, R〉) ≤ LB(〈S ∪ {e}, R〉)
LB(〈S, R〉) ≤ LB(〈S, R ∪ {e}〉).
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Suboptimality Pruning

A fundamental component of our algorithm is suboptimality pruning, i.e., the ability to

remove all non-weak edges at every configuration of the search tree. The results in YAMAN

ET AL[76] allow us to detect all weak edges in time O(m2 log m) by solving m MSTs. This

cost is prohibitive in practice. We now show how to detect all weak edges by solving a

single MST and performing a postprocessing step for each edge. The overall complexity

is O(n2 + m log m), which is O(m log m) on dense graphs.

The key idea is to characterize all weak edges in terms of a unique scenario. The

characterization is based on the following results, which specify when a tree remains an

MST under cost changes and the cost of an MST which must contain a specified edge.

Proposition 5.1.13. Let s be a scenario and T ∈Ms. Let e = (u, v) /∈ T and f = (x, y)

be the edge of maximal cost on the path from u to v. Consider ŝ the scenario s where cs
e

is replaced by cŝ
e, all other costs remaining the same. Then T ∈Mŝ if cŝ

e ≥ cŝ
f .

Proof: By contradiction. Assume that there exists a tree T ′ containing e such that

cŝ
T ′ < cŝ

T . Removing e from T ′ produces two connected components C1 and C2. If

x ∈ C1 and y ∈ C2, then we can construct a tree

T ′′ = T ′ \ {e} ∪ {f}

and we have

cŝ
T ′′ = cŝ

T ′ − (cŝ
e − cŝ

f ) < cŝ
T ′ < cŝ

T .

Since e ∈ T ′′ and e ∈ T , we have

cs
T ′′ = cŝ

T ′′ < cŝ
T = cs

T

which contradicts the fact that T ∈ Ms. If x, y ∈ C1 (resp. C2), since there exists a

cycle in the graph containing e and f , there exists at least one edge g on the path from

u to v in T such that g ∈ T ′ (otherwise T ′ would not be a tree). By hypothesis, cs
g ≤ cs

f

and hence cŝ
e ≥ cŝ

g. We can thus apply the same construction as in the case x ∈ C1 and

y ∈ C2 with f replaced by g.
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Proposition 5.1.14. Let s be a scenario and T be an MST s. Let e = (u, v) /∈ T and

f = (x, y) be the edge of maximal cost on the path from u to v. Then, T \ {f} ∪ {e} ∈
Ms({e}, ∅).

The proof of this result is similar to the proof of Proposition 5.1.13. We are now ready to

present a new characterization of weak edges. The characterization only uses the scenario

s̄ where all costs are at their upper bounds.

Proposition 5.1.15. Let s̄ be the scenario where all costs are at their upper bounds and

T ∈ Ms̄. An edge e = (u, v) is weak if e ∈ T or if an edge f of maximal cost on the

path from u to v in T satisfies ce ≤ cf .

Proof: Let ŝ the scenario s̄ where cs̄
e is replaced by cŝ

e. If e ∈ T , then T ∈Mŝ as well and

hence e is weak by Proposition 5.1.7. If e /∈ T and ce > cf , then T ∈Mŝ by Proposition

5.1.13. By Proposition 5.1.14, T \ {f} ∪ {e} ∈ Ms̄({e}, ∅) and its cost is greater than

cT since ce > cf . Hence e is not weak. If e /∈ T and ce = cf , then T \ {f} ∪ {e} is an

MST s̄ and hence e is weak. The same holds for the case where e ∈ T and ce < cf .

Algorithm MaxCost (u, v)

1 if (u = v) then
2 return 0
3 else
4 if (level(u) < level(v)) then
5 return max{ cost(v, p(v)) , MaxCost (u, p(v)) }
6 else
7 if (level(u) > level(v)) then
8 return max{ cost(u, p(u)) , MaxCost (p(u), v) }
9 else

10 maxedge ←max{ cost(u, p(u)) , cost(v, p(v)) }
11 return max{ maxedge , MaxCost (p(u), p(v)) }
12 end if
13 end if
14 end if

Figure 5.3: Robust spanning tree: finding the largest cost of an edge

We now describe how to use Proposition 5.1.15 to obtain an O(m log m) algorithm

on dense graphs. The key idea is to compute MST s̄, i.e., the MST when all costs are at
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their upper bounds. All edges in this MST are weak. In addition, for each e = (u, v) not

in the MST, we compute the largest cost of any edge on the path from u to v. This can

be done easily by upgrading Prim’s algorithm slightly to associate a level and a parent to

each vertex. When an edge e = (u, v) with u ∈ T and v /∈ T is added to T in Prim’s

algorithm, we set

level(v) = level(u) + 1;

parent(v) = u;

These modifications do not affect the complexity of the algorithm. It now suffices to

apply the algorithm depicted in Figure 5.3 to compute the cost of the maximal edge and

to apply Proposition 5.1.15. The algorithm in Figure 5.3 simply follows the paths from

u and v to their common ancestor, computing the cost of the maximal edge on the way.

Since algorithm MaxCost takes O(n) in the worst case, the overall complexity becomes

O(m log m + mn). However, it is easy to reduce this complexity to O(m log m + n2)

by amortizing the computation of the maximal costs. It suffices to cache the results of

MaxCost in an n × n matrix M . For each edge e = (u, v) ∈ E \ T we first examine

entry M [u, v] and call MaxCost(u,v) only if this entry is uninitialized. Since there are at

most n2 entries and each call to MaxCost(u,v) costs O(1) per entry it fills, the overall

complexity complexity becomes O(m log m + n2). We proved the following theorem.

Theorem 5.1.16. All weak edges of a graph can be computed in O(m log m+n2) time.

5.1.2 Search

It is well-known that a good branching heuristic may improve performance significantly.

We now show a branching heuristic adapting the first-fail principle (see HARALICK AND

ELLIOTT[41]) to robust optimization. The key idea is to explore the most uncertain edges

first, i.e., to branch on an edge e with the maximal difference ce − ce. Indeed, rejecting

e (i.e., adding e to R) allows MSTw(S∪L) to select e at a low cost, possibly giving a

large deviation. Hence this branch is likely to fail early. However, this is only important if

MSTw(S∪L) is likely to select e which may not necessarily the case if ce is large compared to
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Figure 5.4: Robust spanning tree: a class 7 network

other “similar” edges. Hence, it seems appropriate to select first an edge e ∈MSTw(S∪L)

whose difference ce − ce is maximal. This justifies the following branching strategy.

Definition 5.1.17 (Branching Strategy). Let 〈S, R〉 be a configuration, L∗ = L ∩
MSTw(S∪L), and L− = L \ MSTw(S∪L). The branching strategy selects an edge s

defined as follows:

s =

 arg- maxe∈L∗ ce − ce if L∗ 6= ∅
arg- maxe∈L− ce − ce otherwise.

5.1.3 Experimental results

We now report experimental results comparing the constraint satisfaction and the MIP

approaches. The comparison uses the instances in YAMAN ET AL[76], as well as some new

instances which capture additional structure arising in practical applications.

The experimental setting of YAMAN ET AL[76] uses complete graphs with n vertices

and six classes of problems. Three of the six classes use tight intervals for edge costs,
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Figure 5.5: Robust spanning tree: a class 8 network

while the other three allowed larger differences between the lower and upper bounds. The

edge intervals were chosen as follows. The values of ce and ce are uniformly distributed

in the intervals:

class 1: ce ∈ [0, 10], ce ∈ (ce, 10]

class 2: ce ∈ [0, 15], ce ∈ (ce, 15]

class 3: ce ∈ [0, 20], ce ∈ (ce, 20]

class 4: ce ∈ [0, 10], ce ∈ (ce, 20]

class 5: ce ∈ [0, 15], ce ∈ (ce, 30]

class 6: ce ∈ [0, 20], ce ∈ (ce, 40]

Note that the size of the search space to explore is O(2300) for a complete graph of 25

nodes. Of course, our constraint satisfaction algorithm will only explore a small fraction

of that space. In addition to these six classes, we also generate instances (Classes 7 and

8) whose cost structure is not the same for all the edges. Class 7 contains instances which

represent a two-level network. The lower level consists of clusters of 5 nodes whose edges

are generated according to Class 1 above. The upper level links the clusters and these

edges have higher costs, i.e., Class 1 costs shifted by a constant which is larger than the

Class 1 edges. This captures the fact that, in networks, there are often various types

of edges with different costs. See Figure 5.4 for an instance of Class 7 with 35 nodes.

Class 8 contains instances which are similar to Class 7, except that the upper-level layer

is organized as a binary tree. See Figure 5.5 for an instance of Class 8 with 35 nodes. In
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Edges(Nodes) Algo. Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

CSR 0.12 0.07 0.08 0.08 0.06 0.07 0.06 0.06
45(10) CSF 0.14 0.10 0.12 0.12 0.09 0.11 0.07 0.07

MIP 6.59 3.95 4.10 4.38 4.68 3.83 2.29 2.02

CSR 1.82 1.96 1.09 0.36 0.86 0.33 1.76 1.15
105(15) CSF 2.53 3.06 2.15 0.86 2.01 0.77 1.83 1.35

MIP 245.19 184.14 136.88 109.30 91.33 87.62 730.20 88.66

CSR 39.72 33.80 8.91 3.43 2.09 3.12 7.37 9.51
190(20) CSF 74.86 61.08 12.66 7.56 4.69 7.05 5.28 6.77

MIP 8620.66 5517.75 14385.55 3344.95 12862.29 22855.82 18547.27 1399.48

CSR 121.85 181.57 68.42 20.41 12.23 13.26 91.89 61.71
300(25) CSF 244.18 272.63 145.11 50.37 30.55 32.41 97.94 36.21

CSR 926.65 415.07 942.38 133.90 63.85 177.47 1719.61 721.28
435(30) CSF 2100.43 909.15 1811.88 359.72 167.58 418.41 804.78 284.39

CSR 4639.55 5095.71 2304.36 383.34 188.36 419.56 32511.77 6356.78
595(35) CSF 10771.37 11906.01 4183.22 1100.88 548.01 1115.83 14585.73 2149.58

CSR 27206.38 16388.12 15059.39 1103.50 1122.57 1071.62 57309.23 33390.67
780(40) CSF 29421.70 34666.84 22084.00 3456.84 3241.04 3031.55 28432.91 11339.59

Table 5.2: Robust spanning tree: average CPU time

general, classes 7 and 8 are significantly harder than classes 1 to 6, since preprocessing

is less effective than in Classes 1 to 6 because of the additional structure. Observe also

that these instances are sparser for the same number of nodes.

Table 5.2 compares the efficiency of the two approaches. It reports the computation

times in CPU seconds of the MIP implementations, the constraint satisfaction algorithm

with suboptimality pruning at the root node only (CSR), and the constraint satisfaction

algorithm with suboptimality pruning at every node (CSF). The times are given on a Sun

Sparc 440Mhz processor and the average is computed over 10 instances for each class

and each size. We used CPLEX 6.51 for solving the MIP, after preprocessing of the weak

and strong edges. Note that the constraint programming approach produces dramatic

speedups over the pure integer programming approach. On Class 1, CSR runs about 134

times faster than the MIP on graphs with 15 nodes and about 217 times faster on graphs

with 20 nodes. On Classes 7 and 8, the speed-ups are even more impressive. On graphs

with 20 nodes for classes 7 and 8, CSR runs about 3500 and 200 times faster than the

MIP. (Recall that these graphs are not complete). The MIP times are not given for graphs

with more than 20 nodes, since they cannot be obtained in reasonable time. The results

indicate that the constraint satisfaction approach is also better at exploiting the network

structure, which is likely to be fundamental in practice. Observe also that the constraint
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satisfaction approach is able to tackle much large instances in reasonable times.
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Figure 5.6: Robust spanning tree: results using CP on class 1.
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Figure 5.7: Robust spanning tree: results using CP on class 7.

Figures 5.6, 5.7, and 5.8 plot the execution times of the two constraint satisfaction

algorithms. Observe also that applying suboptimality pruning at every node is not cost-

effective on Classes 1 to 6. This is due to the fact that graphs are complete and costs are

uniformly distributed in these instances. Classes 7 and 8, which add a simple additional

cost structure, clearly indicate that suboptimality pruning becomes increasingly important

when the network is more heterogeneous. The benefits of suboptimality pruning clearly

appears on large graphs for class 8, where CSF is about three times as fast in the average.
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Figure 5.8: Robust spanning tree: results using CP on class 8.

In fact, CSF is significantly faster (e.g., 10 times faster) than CSR on some instances,

while the two algorithms are similar on others. It is important to mention that systematic

suboptimality pruning is useless without Theorem 5.1.16. Indeed, the pruning benefit is

often offset by the high pruning cost otherwise.

Overall, it is clear that the constraint satisfaction approach is much more effective on

these problems than the MIP approach. It produces extremely dramatic speed-ups and

substantially enlarge the class of instances that are amenable to effective solutions. The

constraint satisfaction approach is able to solve large-scale problems (over 1,000 edges).

Since networks are often organized in hierarchies, it should scale up nicely to larger real-life

instances. There is still considerable room for improvement in the implementation, since

incremental MST algorithms (see RAUCH ET AL[68]) and enhanced feasibility pruning may

decrease runtime significantly.
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[69] Régin, J.-C. A filtering algorithm for constraints of difference in CSPs. In Pro-

ceedings of 12th National Conference on AI (AAAI’94) (Seattle, July 31 - August 4

1994), vol. 1, pp. 362–367.

[70] Schrijver, A. On cutting planes. Annals of Discrete Mathematics 9 (1980),

291–296.

[71] Thorsteinsson, E. S., and Ottosson, G. Linear relaxations and reduced-cost

based propagation of continuous variable subscripts. Annals of Operations Research,

115 (2001), 15–29.



93

[72] Türkay, M., and Grossmann, I. E. Logic-based minlp algorithms for the

optimal synthesis of process networks. Computers and Chemical Engineering 20

(1996), 959–978.

[73] Van Hentenryck, P., McAllester, D., and Kapur, D. Solving polynomial

systems using a branch and prune approach. SIAM Journal on Numerical Analysis

34, 2 (1997), 797–827.

[74] Vu, X.-H., Silaghi, M.-C., Sam-Haroud, D., and Faltings, B. Branch-

and-prune search strategies for numerical constraint solving, 2005.

[75] William D. Harvey, M. L. G. Limited discrepancy search. In Proceedings of

the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95);
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Appendix A

A.1 Lift and project cut generator: algorithm details

The procedure for generating lift and project cuts, as outlined in the current document,

deals only with binary variables. That is we only generate disjunctive cuts for fractional

binary variables). The method can be extended to handle non-binary (general integer

constrained) variables, but this is beyond the scope of this work. However, with this

extension in mind, we shall refer to these variables as constrained variables, rather than

just binary. Wherever the assumption that a variable is binary is made in the pseudocode,

we say so in a comment. Since the procedure involves pivoting, which starts from an

optimal simplex tableau and at each step ends up with a new tableau, we adopt the

following notation: all objects that are related to the initial (optimal) solution of the LP

relaxation are denoted as x. The objects related to the subsequent (current) LP tableau

(whether optimal or not, feasible or not) are denoted with x̃. This is a slight departure

from the notation used by BALAS AND PERREGAARD[8], in the sense that they use ãij to

refer to the coefficient for nonbasic variable j in row i of the current tableau. We use

ãij instead (and reserve aij, as well as x and B for the case when we talk about the

optimal LP tableau). We also use the term slack for both slack and surplus variables, but

whenever the distinction is necessary, we point it out.
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Algorithm pivot cuts (LP, rounds, max pivots, strengthen)

rounds number of times we solve the LP and generate cuts for each fractional variable of the optimal solution
max pivots maximum number of pivots allowed in order to strengthen each cut
strengthen if true, we apply disjunctive modularization (i.e. integrality strengthening) to row k after each pivot

B̃ the current basis (which, sometimes, may be infeasible)
(x̃, s̃) the current solution (structural and slack)

1 for (1 ≤ t ≤ rounds) do
/* Solve LP and let x be the optimal solution */

2
(
x, s,B, A

)
← optimal solution (LP )

/* Generate optimal lift-and-project cuts for all fractional components of x */

/* NOTE! Since the new cuts could make the primal tableau infeasile, we must use dual-simplex from this point */

3 foreach (structural, constrained variable k : xk is fractional) do

4 (π, π0) ← create lift and project cut (k, x, s,B, Ã, strengthen)
/* add the L&P cut derived from xk ≤ 0 ∨ xk ≥ 1 to the LP relaxation */

5 add cut (π, π0, LP )
6 end for
7 end for

Figure A.1: Algorithm for generating cuts via pivoting
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Algorithm create lift and project cut (k, x, s,B, Ã, strengthen)

1 optimal ← false /* will be set to true when we have an optimal lift-and-project cut from row k */

2 degeneracy ← false /* will be set to true if we need to perturb row k to avoid degeneracy in CGLP */

3 (B̃, Ã) ← (B, A) /* we start from the optimal LP tableau and pivot until we obtain the optimal cut from row k */

4 if (strengthen) then
/* Apply disjunctive modularization to row k */

5 (φJ , φ0) ← create strengthened row (Ã, J, k)
6 Ã ← add LP tableau row (Ã, φJ , φ0) /* add the new row to the tableau */

WARNING! The index k has changed as a result of appending a new modularized row (we now have a new variable, yk , on

which we will work instead of xk).

7 k ← index of the newly added row /* this new row becomes our cut generation row! */

8 end if

9 J ←{ indices of all non-basic variables in the current solution }

10 pivots ← 0 /* We use this to limit the number of pivots (which will lead to a suboptimal cut) */

11 while (not optimal and pivots < max pivots) do
/* the cut is not yet an optimal lift-and-project cut */

/* Can we strengthen the cut (i.e. improve the solution of CGLP) by pivoting in the current LP tableau? */

12 if (i∗ → find cut improving pivot row (Ã, B̃, J, k) ) then
13 j∗ ←find best pivot column (Ã, B̃, J, k, i∗, strengthen)
14 (Ã, B̃, J) ← change basis (Ã, B̃, J, i∗, j∗, strengthen)
15 pivots ← pivots + 1
16 else /* in practice, this branch can be skipped, since the cut obtained without it has roughly the same strength */

17 if (row k has no 0 entries) then
18 optimal ← true /* we are done, the cut is optimal */

19 else /* we must perturb row k such that the partition (Mi
1, Mi

2) (i.e. the basis in CGLP) becomes unique */

20 degeneracy ← true

21 Ã ←perturb row (Ã, k)
22 end if
23 end if
24 end while

25 if (degeneracy) then
26 Ã ← remove perturbation from row (Ã, k)
27 end if

28 (π, π0) ← create intersection cut (Ã, J, k) /* (π, π0) is now a L&P cut */

29 π ← strengthen cut (Ã, J, k, π) /* (π, π0) is now a strengthened L&P (MIG) cut */

30 return (π, π0)

Figure A.2: Algorithm for generating lift-and-project cuts
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Procedure find cut improving pivot row (Ã, B̃, J, k)

/* choose a row i, some multiple of which will be added to row k */

1 foreach (row i 6= k of Ã) do
/* First, assume xi will go to its lower bound (i.e. replace x′i = UBi − xi */

2 adjustTableauRow (A, i, UB)

3 rui ← compute CGLP reduced cost (Ã, B̃, J, k, x, s, i, 1)
/* Should be computed only if rui

≥ 0 */

4 rvi
← compute CGLP reduced cost (Ã, B̃, J, k, x, s, i, 2)

/* Now, assume xi will go to its lower bound (i.e. replace x′i = xi − LBi */

5 adjustTableauRow (A, i, LB)

6 rui
← compute CGLP reduced cost (Ã, B̃, J, k, x, s, i, 1)

/* Should be computed only if rui
≥ 0 */

7 rvi
← compute CGLP reduced cost (Ã, B̃, J, k, x, s, i, 2)

8 if (rui < 0 ∨ rvi < 0) then
/* solution of CGLP (i.e. lift-and-project cut) can be improved */

9 return i
/* Pivoting on row i in LP (i.e. pivoting xi out) corresponds to pivoting one of ui or vi into the basis of CGLP */

10 end if
11 end for

/* No pivoting row found! */

12 return 0

Figure A.3: Finding a pivoting row (i.e. variable to be removed from B̃)
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Procedure find best pivot column (Ã, B̃, J, k, i, strengthen)

We want to choose a column j to decide the sign and magnitude of the multiplier with which row i will be added to row k:

j∗i ← min

j∈J

˛̨̨̨
− ãk0

ãi0
<γj=−

ãkj
ãij

<
1−ãk0

ãi0

(
min

j∈J|γj>0
f+

i (γj), min
j∈J|γj<0

f−i (γj)

)

1 m∗ ← 0, j∗i ← 0 /* j∗i = 0 means that column j∗i is undefined */

2 foreach (j ∈ J
∣∣∣− ãk0

ãi0
< γ = γj = − ãkj

ãij
< 1−ãk0

ãi0
) do

3 mj ←CGLP objective function (A, J, i, j, γ, x, s, strengthen)
4 if (mj < m∗) then
5 m∗ ←mj , j∗i ← j
6 end if
7 end for

8 return j∗i

Figure A.4: Finding the best pivoting column in the current basis B̃

Procedure change basis (Ã, B̃, J, i, l, strengthen)

1 (Ã, B̃, J) ←pivot (Ã, B̃, J, i, l)

2 if (strengthen) then
/* Apply disjunctive modularization to row k */

3 (φJ , φ0) ← create strengthened row (Ã, J, k) /* Replace row k with the newly computed row */

4 Ã ← remove LP tableau row (Ã, k)
5 Ã ← add LP tableau row (Ã, φJ , φ0) /* add the new row to the tableau */

6 k ← index of the newly added row /* this new row becomes our cut generation row! */

7 end if

8 return (k, Ã, B̃, J)

Figure A.5: Changing the current basis B̃ in the LP tableau



99

Procedure CGLP objective (Ã, J, i, l, γ, x, s, strengthen)

If we pivot on row i and column l (i.e. γ = − ãkl
ãil

) then:

New row k:
ã

γ

ki ← γ

ã
γ

kj ← new row coefficient (ãkj , ãij , γ) , for j ∈ J \ { l }

ã
γ

k0 ← new row coefficient (ãk0, ãi0, γ)

New strengthened row k (after modularization):

ã
γ

ki ← strengthened row coefficient (γ, ã
γ

k0, typeof ({ i } , i) )

ã
γ

kj ← strengthened row coefficient (ã
γ

kj , ã
γ

k0, typeof (J \ { l } , j) ) , for j ∈ J \ { l }

ã
γ

k0 ← ã
γ

k0

IMPORTANT! Note that we apply disjunctive modularization to ã
γ

kj (i.e. the new row), NOT to ãkj (i.e. the row

before pivoting). This means that when we compute the CGLP objective to determine which column to pivot on, we must BOTH

simulate the pivot (i.e. compute ã
γ

kj ) and apply disjunctive modularization to the new (simulated) row! Of course, the second

step is only necessary when we use disjunctive modularization.

New simple disjunctive cut from new row k:

π
γ

i ← intersection cut coefficient (γ, ã
γ

k0)

π
γ

j ← intersection cut coefficient (ã
γ

kj , ã
γ

k0) , for j ∈ J \ { l }

π
γ

0 ← intersection cut rhs (ã
γ

k0)

New strengthened intersection cut from new row k:

π
γ

i ← strengthened intersection cut coefficient (γ, ã
γ

k0, typeof ({ i } , i) )

π
γ

j ← strengthened intersection cut coefficient (ã
γ

kj , ã
γ

k0, typeof (J \ { l } , j) ) , for j ∈ J \ { l }

π
γ

0 ← intersection cut rhs (ã
γ

k0)

Objective function of (CGLP)k corresponding to the cut π
γ

i xi + π
γ

J sJ ≥ π
γ

0 :

f
CGLP

=

−π
γ

0 +
P

j∈(J\{ l })∪{ i }
π

γ

j sj

1 +
P

j∈(J\{ l })∪{ i }

˛̨̨
ã

γ
kj

˛̨̨

IMPORTANT! Note that using |γ| in the denominator as in [8] is misleading (and not always correct)! Thus, the formula:

π
γ

i xi + π
γ

J sJ − π
γ

0

1 + |γ| +
P

j∈J\{ l }
|ãγ

kj
|

is not correct if we use disjunctive modularization, because γ stands for the value of ã
γ

ki, which, when we use disjunctive modu-

larization is no longer just γ! The correct formula is shown below:

1 return
−π

γ

0 +π
γ

i xi+π
γ

J′sJ′

1+|ãγ

ki|+
P

j∈J′
|ãγ

kj|
, where J ′ = J \ { l }

Figure A.6: Computing the CGLP objective given by a prospective pivot (γ)
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Procedure intersection cut coefficient (α, β)

1 return max {α(1− β),−αβ } = −αβ + max {α, 0 }

Figure A.7: Computing coefficients for intersection cuts

Procedure strengthened intersection cut coefficient (α, β, vartype)

/* Strengthen the coefficients that correspond to constrained (i.e. structural) non-basic variables */

/* using the integrality conditions on these variables */

1 return

 min { (α− bαc) (1− β) , (dαe − α) β } vartype is constrained

intersection cut coefficient (α, β) vartype is continuous

Figure A.8: Computing strengthened coefficients for intersection cuts

Procedure new row coefficient (ãkj , ãij , γ, strengthen, vartype)

If we pivot on row i and column l (i.e. γ = − ãkl
ãil

) then:

New row k:

ã
γ

ki ← γ

ã
γ

kj ← new row coefficient (ãkj , ãij , γ) , for j ∈ J \ { l }

ã
γ

k0 ← new row coefficient (ãk0, ãi0, γ)

New strengthened row k (after modularization):

ã
γ

ki ← strengthened row coefficient (γ, ã
γ

k0, typeof ({ i } , i) )

ã
γ

kj ← strengthened row coefficient (ã
γ

kj , ã
γ

k0, typeof (J \ { l } , j) ) , for j ∈ J \ { l }

ã
γ

k0 ← ã
γ

k0

1 ã
γ

kj ← ãkj + γaij

2 if (strengthen) then
3 ã

γ

kj ← strengthened row coefficient (ã
γ

kj , ã
γ

k0, vartype) /* Strengthen the new coefficient */

4 end if
5 return ã

γ

kj

Figure A.9: Computing the coefficient of a row after a prospective pivot (γ)
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Procedure pivot (Ã, B̃, J, i, l)

If we pivot on row i and column l (i.e. γ = − ãkl
ãil

) then:

New row k:

ã
γ

kj ← ãkj + γãij

ã
γ

k0 ← ãk0 + γãi0

1 foreach (row k 6= i) do
/* row k = row k + γ row i */

2 γ ←− ãkl

ãil

3 foreach (j ∈ J ∪ { l }) do
4 ã

γ

kj ← ãkj + γãij

5 end for
6 ã

γ

k0 ← ãk0 + γãi0

7 end for
8 return B̃

Figure A.10: Pivoting in the B̃ tableau
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Procedure strengthened row coefficient (α, β, vartype)

/* Strengthen the coefficients that correspond to constrained (i.e. structural) non-basic variables */

/* using the integrality conditions on these variables */

1 return


α− bαc vartype is constrained and α ≤ β , where α = α− bαc

α− dαe vartype is constrained and α > β , where α = α− bαc

α vartype is continuous

Figure A.11: Computing row coefficients resulting from disjunctive modularization

Procedure compute CGLP reduced cost (Ã, B̃, J, k, x, s, i, selector)

/* selector = 1 means we compute the reduce cost for ui */

1 M i
1 ←

{
j ∈ J

∣∣∣∣ ãkj < 0 ∨ (ãkj = 0 ∧ ãij > 0) if selector = 1
ãkj < 0 ∨ (ãkj = 0 ∧ ãij < 0) otherwise

}
2 M i

2 ← J \M i
1

REMARK: J corresponds to a basis in the original LP, while the partition (Mi
1, Mi

2) corresponds to a basis in CGLP. Note that when

there are no 0 entries in row k, the partition (Mi
1, Mi

2) is unique (i.e. same for all rows i)!

IMPORTANT! The notation sj does NOT (necessarily) mean that j indexes a slack variable!!!! Because xj − sj = 0 (from

x ≥ 0), Balas and Perregaard unified the notation by including under sJ the structural nonbasic variables (xN∩J ) too! This

is why we pass the whole x to this function (instead of just xk , which seems to be the only component of x needed)

3 σ ←

P
j∈Mi

2

ãkj s̃j−ãk0(1−xk)

1+
P

j∈J

|ãkj | , ρ ←
∑

j∈Mi
2

ãij −
∑

j∈Mi
1

ãij

4 r ←


σ (+ρ− 1)−

∑
j∈Mi

2

ãij s̃j + ãi0(1− xk) if selector = 1

σ (−ρ− 1)−
∑

j∈Mi
1

ãij s̃j + ãi0xk otherwise

5 return r

Figure A.12: Compute CGLP reduced cost
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Procedure typeof (J, j)

1 return


constrained j ∈ J and xj is constrained (structural only)

continuous j ∈ J and xj is continuous (structural and slack/surplus)

ERROR j /∈ J

Figure A.13: Determining the type of a variable

Procedure intersection cut rhs (β)

1 return β(1− β)

Figure A.14: Computing rhs for intersection cuts

Procedure create intersection cut (Ã, J, k)

1 π0 ← intersection cut rhs (ãk0) /* π0 ← ãk0(1− ãk0) */

2 π
j∈J
← intersection cut coefficient (ãkj , ãk0) /* π

j∈J
←max

˘
ãkj(1− ãk0),−ãkj ãk0

¯
*/

πsJ ≥ π0 is the unstrengthened simple disjunctive cut derived from the disjunction xk ≤ 0 ∨ xk ≥ 1 applied to row k:

xk = ãk0 −
P

j∈J
ãkjsj

3 return (π, π0)

Figure A.15: Intersection cut

Procedure create strengthened row (Ã, J, k)

1 φ0 ← ãk0

2 φ
j∈J
← strengthened row coefficient (ãkj , ãk0, typeof (J, j) )

3 return (φ, φ0)

Figure A.16: Disjunctive modularization (integrality based strengthening)
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Procedure create mixed integer gomory cut (Ã, J, k)

1 (π, π0) ← create intersection cut (Ã, J, k)
2 π ← strengthen cut (Ã, J, k, π) /* Strengthen the cut using the integrality conditions on xj∈J\{ k } */

3 return (π, π0)

Figure A.17: Mixed integer Gomory cut

Procedure strengthen cut (Ã, J, k, π)

/* Strengthen the coefficients that correspond to constrained (i.e. structural) non-basic variables */

/* using the integrality conditions on these variables */

1 π
j∈J∩{ 1,...,p } ← strengthened intersection cut coefficient (ãkj , ãk0, typeof (J, j) )

2 return π

Figure A.18: Cut strengthening using integrality conditions

Procedure perturb row (Ã, B̃, k)

1 ãkj ← εt, ∀ j : ãkj = 0, t = 1, 2, . . .

2 return Ã

Figure A.19: Perturb a row of the B̃ tableau

Procedure remove perturbation from row (Ã, B̃, k)

1 ãkj ← 0, ∀ j : ãkj = εt, t = 1, 2, . . .

2 return Ã

Figure A.20: Remove perturbation from a row of the B̃ tableau
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Procedure XPRESS Get Tableau Row (i)

Var Size Meaning

y rows temporary array to store eiB−1

z rows + cols + 1 array in which we compute row i’s coefficients (and right and side)

Aj rows temporary array in which we retrieve column j
b rows temporary array in which we retrieve the right hand side

1 y ← ei /* Set up y = ei to pick row i */

2 y ←XPRESSbtran (y) /* y = eiB−1 */

3 foreach (0 ≤ j ≤ rows− 1) do
/* z = yA for each slack column of A */

4 zj ← yj

5 end for

6 foreach (rows ≤ j ≤ cols− 1) do
/* zrows+j = yAj for each sructural column j of A */

7 Aj ←XPRESSgetcols (j) /* Retrieve column j from XPRESS */

8 zrows+j ← yAj

9 end for
/* zrows+cols = yb - compute right hand side of row i */

10 b ←XPRESSgetrhs () /* Retrieve RHS from XPRESS */

11 zrows+cols ← yb

Important! We now need to bring all nonbasic variables at a lower/upper bound of zero, because all formulas in the paper assume

this fact!

12 z ←XPRESS adjust row (z)

13 return z

Figure A.21: Retrieving the tableau from XPRESS
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Procedure XPRESS Get var bound (j)

1 vj ←


UBj , j is structural, at its upper bound
LBj , j is structural, at its lower bound

RANGErow(j) , j is slack, at its upper bound
0 , j is slack, at its lower bound

2 return vj

Figure A.22: Function which returns the current bound of variable xj

Procedure XPRESS adjust row (row)

/* row has rows + cols elements, the last one being the RHS */

1 foreach (0 ≤ j ≤ rows + cols− 1|j ∈ J) do
/* bring each non-basic variable at a zero bound */

2 boundj ←XPRESS Get var bound (j)
3 if (var j is at UB) then

/* Var is at UB, replace with x′j = UBj − xj */

4 rowj ←−rowj

5 else /* Var is at LB, replace with x′j = xj − LBj */

6 end if
7 rowrows+cols ← rowrows+cols + rowjboundj /* adjust rhs to reflect the change of variable */

8 end for
9 return row

Figure A.23: Adjusting a row to reflect that all nonbasics are at a bound of zero
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Procedure XPRESS Get RHS ()

We want to compute:

B
−1

b−
X

j∈U

B
−1

vjA
j

= B
−1

0@b−
X

j∈U

vjA
j

1A
where U is the set of nonbasic variables at one of their bounds and vj is the value of the bound at which variable j is (clearly,

this only makes sense when variable j is at a bound (upper or lower) and that bound is non-zero.

1 b ←XPRESSgetrhs () /* Retrieve RHS from XPRESS */

/* Compensate for non-basic variables with non-zero values */

2 U ←{ j ∈ J |variable (or slack) j is at a (non-zero) bound }

3 foreach (j ∈ U) do
/* look at all structural nonbasic variables at non-zero bounds */

4 boundj ←XPRESS Get var bound (j)

5 if (boundj 6= 0) then
/* This test is here for efficiency, since a zero value would leave things unchanged! */

6 if (j is structural) then

7 Aj ←XPRESSgetcols (j) /* Retrieve column j from XPRESS */

8 b ← b− boundjA
j

/* Note that this is a vector operation! */

9 else /* j is a slack, there is no column to retrieve */

Note! There is no need (or possibility) to retrieve column j - it’s the identity column with 1 in position i, where i is

the row to which slack j corresponds. In fact, this column cannot even be retrieved from XPRESS - it is not stored

explicitly (since we are dealing with columns of the original matrix, in which slacks don’t exist)!

10 bi ← bi − boundj , for i = row(j)
/* Note! This is the same as above, with Aj = ei, where i = row(j) */

11 end if
12 end if
13 end for

/* We now have b−
P

j∈U
Aj , so we multiply this with B−1 */

14 b ←XPRESSftran (b) /* rhs = B−1

 
b−

P
j∈U

boundjAj

!
*/

15 return b

Figure A.24: Computing the right hand side from XPRESS
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Experimental results on cut modularization

The first experiment shows the effect of one round of cuts, with modularization applied

only at the end of the pivoting sequence. In the second experiment, we apply modulariza-

tion after each pivot. Both experiments were run with a limit of 50 cuts, and a maximum

number of 20 pivots per cut. Tables A.2 (experiment 1) and A.4 (experiment 2) show

the number of lift and project cuts generated for each problem, how many of them were

actually optimal (i.e. we reached the CGLP minimum before exhausting the limit on the

number of pivots), how many pivots we executed on average per cut, the density of the

resulting cut (the number of non-zero coeffiecients in α), as well as the average and total

cut generation time, in CPU seconds. Finally, the amount of gap closed by cuts at the

root node is shown in Tables A.3 and A.5.
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Problem name Rows Columns Binary vars Integer vars
10teams 231 2025 1799 0
a1c1s1 3313 3648 191 0
aflow30a 480 842 411 0
aflow40b 1443 2728 1358 0
air04 824 8904 8903 0
air05 427 7195 7194 0
arki001 1049 1388 414 123
cap6000 2177 6000 3974 0
danoint 665 521 55 0
disctom 400 10000 10000 0
ds 657 67732 67731 0
fast0507 508 63009 63008 0
fiber 364 1298 1240 0
fixnet6 479 878 377 0
gesa2 1393 1224 381 168
glass4 397 322 301 0
liu 2179 1156 1088 0
manna81 6481 3321 18 3303
markshare1 7 62 49 0
markshare2 8 74 59 0
mas74 14 151 148 0
mas76 13 151 130 0
misc07 213 260 258 0
mkc 3412 5325 5322 0
mod011 4481 10958 104 0
modglob 292 422 97 0
momentum2 24238 3732 1819 1
momentum3 56823 13532 6772 1
mzzv11 9500 10240 9988 251
mzzv42z 10461 11717 11479 235
net12 14022 14115 5946 0
noswot 183 128 74 25
nw04 37 87482 9078 0
opt1217 65 769 767 0
p2756 756 2756 2689 0
pk1 46 86 54 0
pp08a 137 240 63 0
pp08aCUTS 247 240 63 0
protfold 2113 1835 1834 0
qiu 1193 840 47 0
roll3000 2296 1166 243 492
rout 292 556 299 15
set1ch 493 712 234 0
seymour 4945 1372 1371 0
sp97ar 1762 14101 14100 0
stp3d 159489 204880 204880 0
swath 885 6805 6723 0
t1717 552 73885 73884 0
timtab1 172 397 63 107
timtab2 295 675 111 181
vpm2 235 378 333 0

Table A.1: Lift and project: properties of the problems in MIPLIB 2003
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Problem L&P Optimal L&P Avg pivots Avg cut Avg cut Total
name cuts cuts per cut density time cut time
10teams 50 0 20 0.94 0.197 9.85
a1c1s1 50 47 1 0.0008 0.396 19.8
aflow30a 31 8 15 0.0917 0.1061 3.29
aflow40b 41 2 19 0.0847 0.3134 12.85
air04 50 0 20 0.979 0.432 21.6
air05 50 0 20 0.985 1.18 59.1
arki001 46 19 11 0.0761 0.118 5.43
cap6000 2 0 20 0.999 0.595 1.19
danoint 35 0 20 0.85 0.0571 2
ds 50 0 20 0.53 5.723 286.1
fast0507 50 0 20 0.911 7.35 368
fiber 46 45 1 0.0424 0.198 9.11
fixnet6 50 40 4 0.027 0.053 2.65
gesa2 38 34 2 0.0067 0.155 5.88
glass4 50 50 0 0.0215 0.0224 1.12
liu 50 40 4 0.00311 0.092 4.6
manna81 2 2 0 0.0009 0.35 0.7
markshare1 6 5 4 0.903 0.00333 0.02
markshare2 7 4 10 0.905 0.00857 0.06
mas74 12 1 18 0.994 0.035 0.42
mas76 11 0 20 0.993 0.0182 0.2
misc07 20 7 14 0.611 0.0665 1.33
mkc 50 49 1 0.0272 1.42 71
mod011 18 8 11 0.0549 1.38 24.8
modglob 29 17 8 0.0343 0.0197 0.57
momentum2 50 27 9 0.0712 0.8538 42.69
mzzv11 50 6 17 0.0955 2.126 106.3
mzzv42z 50 35 8 0.0216 5.513 275.6
net12 50 34 7 0.0111 3.552 177.6
noswot 27 15 8 0.0573 0.00852 0.23
nw04 8 0 20 0.994 4.57 36.6
opt1217 28 1 19 0.238 0.09607 2.69
p2756 35 35 0 0.0128 0.176 6.15
pk1 15 6 13 0.814 0.00933 0.14
pp08a 50 43 2 0.0212 0.0112 0.56
pp08aCUTS 45 10 15 0.275 0.0122 0.55
protfold 50 0 20 0.923 0.2428 12.14
qiu 36 0 20 0.269 0.0514 1.85
roll3000 50 23 11 0.249 0.162 8.1
rout 31 4 18 0.307 0.0942 2.92
set1ch 50 50 0 0.003 0.0528 2.64
seymour 50 43 4 0.0854 0.747 37.4
sp97ar 50 5 18 0.873 2.699 135
swath 49 43 4 0.215 1.19 58.5
t1717 50 0 20 0.979 8.13 406.5
timtab1 50 40 4 0.0097 0.0214 1.07
timtab2 50 48 0 0.0062 0.0522 2.61
vpm2 50 44 3 0.0282 0.0408 2.04

Table A.2: Lift and project: properties of non-modularized cuts
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Problem L&P LP bound LP bound Best known Gap closed Percentage of gap
name cuts before after integer solution by cuts closed by cuts
10teams 50 917 917 924 0 0 %
air04 50 5.559e+04 5.561e+04 5.614e+04 26 4.71 %
air05 50 2.591e+04 2.593e+04 2.637e+04 20.47 4.44 %
arki001 46 7.58e+06 7.58e+06 7.581e+06 1.977 0.163 %
cap6000 2 -2.451e+06 -2.451e+06 -2.451e+06 27.91 30.8 %
danoint 35 62.69 62.69 65.67 0 0 %
fast0507 50 172.3 172.32 174 0.02 1.44 %
fiber 46 1.572e+05 2.721e+05 4.059e+05 1.149e+05 46.2 %
fixnet6 50 1326 1679 3983 353 13.3 %
gesa2 38 2.554e+07 2.561e+07 2.578e+07 7.663e+04 31.4 %
markshare1 6 0 0 1 0 0 %
markshare2 7 0 0 1 0 0 %
mas74 12 1.051e+04 1.058e+04 1.18e+04 65.18 5.05 %
misc07 20 1415 1425 2810 10 0.717 %
mkc 50 -605.2 -602.4 -553.8 2.8 5.58 %
mod011 18 -6.171e+07 -6.064e+07 -5.456e+07 1.067e+06 14.9 %
modglob 29 2.043e+07 2.049e+07 2.074e+07 5.231e+04 17.1 %
noswot 27 -43 -43 -43 0 0 %
nw04 8 1.631e+04 1.662e+04 1.686e+04 309.6 56.3 %
p2756 35 2699 2703 3124 4 0.875 %
pk1 15 0 0 11 0 0 %
pp08a 50 2981 5053 7350 2072 47.4 %
pp08aCUTS 45 5542 6109 7350 567 31.4 %
qiu 36 -931.6 -886 -132.9 45.6 5.72 %
rout 31 981.9 984.2 1078 2.3 2.41 %
set1ch 50 3.532e+04 3.833e+04 5.454e+04 3005 15.6 %
seymour 50 404.3 404.9 423 0.6 2.77 %
swath 49 334.6 374.8 497.6 40.2 24.7 %
vpm2 50 10.29 10.3 13.75 0.01 0.213 %

Table A.3: Lift and project: gap closed by non-modularized cuts
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Problem L&P Optimal L&P Avg pivots Avg cut Avg cut Total
name cuts cuts per cut density time cut time
10teams 50 0 20 0.951 0.14 7.02
a1c1s1 50 47 1 0.000828 0.3376 16.88
aflow30a 31 4 17 0.1 0.05935 1.84
air05 50 0 20 0.994 0.481 24.1
arki001 46 18 12 0.0861 0.111 5.1
cap6000 2 2 6 1 1.11 2.23
ds 50 0 20 0.531 3.689 184.4
fast0507 50 0 20 0.911 4.01 201
fiber 46 45 0 0.0537 0.109 5.02
fixnet6 50 40 4 0.027 0.0514 2.57
gesa2 38 31 3 0.00894 0.107 4.05
gesa2-o 38 33 2 0.00862 0.1103 4.19
glass4 50 50 0 0.0215 0.0208 1.04
liu 50 40 4 0.00346 0.1054 5.27
manna81 2 2 0 0.000903 0.355 0.71
markshare1 6 6 0 0.903 0.00167 0.01
markshare2 7 7 2 0.905 0.00429 0.03
misc07 20 8 14 0.651 0.0385 0.77
mod011 18 7 12 0.0549 1.15 20.6
modglob 29 17 8 0.0343 0.019 0.55
momentum1 50 24 10 0.0439 1.674 83.69
momentum2 50 27 9 0.0739 0.8624 43.12
msc98-ip 50 3 18 0.0488 2.298 114.9
noswot 27 15 8 0.0602 0.00593 0.16
nsrand-ipx 50 42 3 0.479 1.132 56.59
nw04 8 0 20 0.999 11.4 90.8
opt1217 28 0 20 0.524 0.06821 1.91
p2756 35 34 0 0.0135 0.248 8.67
pp08a 50 43 2 0.0212 0.0152 0.76
pp08aCUTS 45 11 15 0.276 0.0147 0.66
qiu 36 0 20 0.267 0.0417 1.5
rd-rplusc-21 50 19 12 0.0125 2.983 149.2
roll3000 50 22 11 0.254 0.2078 10.39
rout 31 1 19 0.385 0.0519 1.61
set1ch 50 50 0 0.00303 0.0674 3.37
seymour 50 37 6 0.158 0.99 49.5
t1717 50 4 18 0.991 15.93 796.3
timtab1 50 40 4 0.00972 0.0344 1.72
timtab2 50 48 0 0.00619 0.0758 3.79
tr12-30 50 50 0 0.00185 0.1018 5.09

Table A.4: Lift and project: properties of modularized cuts
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Problem L&P LP bound LP bound Best known Gap closed Percentage of gap
name cuts before after integer solution by cuts closed by cuts
10teams 50 917 917 924 0 0 %
air05 50 2.591e+04 2.593e+04 2.637e+04 17.41 3.78 %
arki001 46 7.58e+06 7.58e+06 7.581e+06 1.977 0.163 %
cap6000 2 -2.451e+06 -2.451e+06 -2.451e+06 16.38 18.1 %
fast0507 50 172.3 172.32 174 0.02 1.27 %
fiber 46 1.572e+05 2.311e+05 4.059e+05 7.388e+04 29.7 %
fixnet6 50 1326 1679 3983 353 13.3 %
gesa2 38 2.554e+07 2.561e+07 2.578e+07 7.363e+04 30.2 %
markshare1 6 0 0 1 0 0 %
markshare2 7 0 0 1 0 0 %
misc07 20 1415 1425 2810 10 0.717 %
mod011 18 -6.171e+07 -6.068e+07 -5.456e+07 1.028e+06 14.4 %
modglob 29 2.043e+07 2.049e+07 2.074e+07 5.235e+04 17.1 %
noswot 27 -43 -43 -43 0 0 %
nw04 8 1.631e+04 1.639e+04 1.686e+04 74.19 13.5 %
p2756 35 2699 2702 3124 3 0.73 %
pp08a 50 2981 5044 7350 2063 47.2 %
pp08aCUTS 45 5542 6103 7350 561 31 %
qiu 36 -931.6 -886.2 -132.9 45.4 5.69 %
rout 31 981.9 983.6 1078 1.7 1.77 %
set1ch 50 3.532e+04 3.833e+04 5.454e+04 3005 15.6 %
seymour 50 404.3 404.9 423 0.6 2.78 %

Table A.5: Lift and project: gap closed by modularized cuts


