
Abstract of “Simulated Annealing Based Local Search for Sport Scheduling Problems” by Ioannis

Vergados, Ph.D., Brown University, May 2007.

Sport Scheduling is an important area of Combinatorial Optimization of great practical and the-

oretical significance, that features some extremely challenging optimization problems. This thesis

focuses on two important sport scheduling problems: the Break Minimization Problem (which arises

in scheduling European soccer leagues) and the Traveling Tournament Problem (TTP), proposed

by Easton, Nemhauser, and Trick (2001), which captures the essence of scheduling Major League

Baseball in the United States. For the TTP, no exact solution has been found for most benchmarks,

even by employing state-of-the-art combinatorial optimization tools. In this thesis, we develop two

sophisticated simulated annealing schemes, BMSA and TTSA, and successfully apply them to Break

Minimization and TTP, respectively, improving the best-known solutions to most benchmarks pro-

posed in the literature. Then we embed TTSA in an original population-based framework featuring

diversification and intensification, to significantly improve most TTSA results. The main contribu-

tions of this thesis are the following: we show that, contrary to common belief, Local Search is an

effective method for Sport Scheduling; we design a sophisticated neighborhood that captures the

problem’s special structure; we successfully adapt tabu search ideas such as strategic oscillation,

intensification and diversification into simulated annealing; and, we develop advanced local search

schemes with original modelings and sophisticated metaheuristics, that produce the best currently

known solutions on most benchmarks.

Simulated Annealing Based Local Search for Sport Scheduling Problems

by

Ioannis Vergados

Diploma, Computer Engineering and Informatics Department, University of Patras, Greece, 1999

Sc. M., Computer Engineering and Informatics Department, University of Patras, Greece, 2001

Sc. M., Brown University, Providence, RI, USA, 2002

Submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy in the

Department of Computer Science at Brown University

Providence, Rhode Island

May 2007

c© Copyright 2007 by Ioannis Vergados

This dissertation by Ioannis Vergados is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Pascal Van Hentenryck, Director

Recommended to the Graduate Council

Date
Meinolf Sellmann, Reader

Date
Michael Trick, Reader

(Tepper School of Business, Carnegie Mellon University)

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Vita

Ioannis (Yannis) Vergados was born in Patras, Greece, on April 9th, 1976. After graduating from

the 9th Lyceum of Patras in June 1994, he entered the Computer Engineering and Informatics

Department of the Polytechnic School of the University of Patras. He received his Diploma from the

Computer Engineering and Informatics Department in September 1999, with a GPA of 8.8/10, and

a Sc.M. from the same department in 2001, under the supervision of Professor Christos Kaklamanis.

In September 2000, he got accepted into the Ph.D. program of the Computer Science Department of

Brown University, from which he received a Sc.M. in Computer Science in 2002, under the supervision

of Professor Pascal Van Hentenryck. While at Brown University, he served as a Teaching Assistant

for CS181 (Computational Molecular Biology), CS157 (Design and Analysis of Algorithms), CS196

(Introduction to Combinatorial Optimization), and CS258 (Solving Hard Problems in Combinatorial

Optimization). He was a recipient of the Paris Kanellakis Fellowship in 2004. His publications

include:

C. Bartzis, I. Caragiannis, C. Kaklamanis, and I. Vergados. “Experimental Evaluation of Hot-

Potato Routing Algorithms on 2-Dimensional Processor Arrays (Research Note).” In Proceedings

of EURO-PAR’00, pp. 877–881, Munich, Germany, 2000. LNCS 1900, Springer-Verlag, 2000.

I. Caragiannis, C. Kaklamanis, and I. Vergados. “Greedy Dynamic Hot-Potato Routing on Arrays.”

In Proceedings of ISPAN’00, pp. 178–185, Dallas, TX, USA, 2000. IEEE Computer Society, 2000.

A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados. “A Simulated Annealing

Approach to the Traveling Tournament Problem.” In CP-AI-OR’03, Montréal, Canada, 2003.

P. Van Hentenryck and Y. Vergados. “Minimizing Breaks in Sport Scheduling with Local Search.”

In Proceedings of ICAPS’05, pp. 22–29, Monterey, CA, USA, 2005.

P. Van Hentenryck and Y. Vergados. “Traveling Tournament Scheduling: A Systematic Evaluation

of Simulated Annealling.” In Proceedings of CP-AI-OR’06, pp. 228–243, Cork, Ireland, 2006.

LNCS 3990, Springer-Verlag, 2006.

P. Van Hentenryck, R. Bent, and Y. Vergados. “Online Stochastic Reservation Systems.” In

Proceedings of CP-AI-OR’06, pp. 212–227, Cork, Ireland, 2006. LNCS 3990, Springer-Verlag, 2006.

A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados. “A Simulated Annealing

Approach to the Traveling Tournament Problem.” In Journal of Scheduling, 9(2):177–193, 2006.

iv

Acknowledgments

In any work of this scale, there are always many people I would like to thank, so I hope to succeed

in paying tribute to everybody. First of all, I don’t think that it would have been possible to reach

this happy ending of my long adventure in the Brown Computer Science Department, without the

support of my advisor, Professor Pascal Van Hentenryck. I feel really honored to have collaborated

with Pascal, for multiple reasons. It was he who believed in me and supported me at difficult

moments. Most importantly, he gave me the freedom to pursue my own research interests, and he

was always available to offer help and guidance.

I was really happy to have Professor Meinolf Sellmann in my committee. Meinolf’s office door

was always open, and he was always willing to discuss with me, both on strictly technical matters

and on more general topics, often offering me enlightening views.

Professor Michael Trick only joined my committee about two years ago; however, his involvement

in my thesis has been a great honor to me. With his deep knowledge of Optimization and Operations

Research, and his pleasant personality, it has been a pleasure to collaborate with him. I wish to

thank Mike for helping me significantly broaden my understanding in the area of Sport Scheduling.

In the course of the Ph.D. program, it was invaluable to be able to interact so freely with the

Brown CS Professors. Professors in our department combine impressive academic credentials with an

excellent sense of all other aspects of life, constantly demonstrating that research lies not so much in

isolation as in active involvement. In this respect, I want to thank all the Computer Science faculty.

However, I wish to make a special mention to the following professors, considering myself lucky for

getting the opportunity to meet and work with them: Professor Philip Klein, who was my advisor

for two years, and significantly contributed to my research development; Professor Eli Upfal, whose

involvement with the CS optimization group made its meetings really exciting and productive; and,

finally, Professors Franco Preparata and John Savage, who are not only outstanding scientists and

teachers, but, more importantly, they are ideal role models for any young scientist.

I also wish to thank General and Mrs. Kanellakis for their great support and encouragement, at

a very critical point of my studies at Brown.

With regards to my thesis research, big thanks go to my collaborators and co-authors, while at

Brown: Aris Anagnostopoulos, Russell Bent and Laurent Michel, all of which are fun people to work

with. Over the years, I got the chance to meet many prominent researchers in the area of Combi-

natorial Optimization, especially in the area of Sport Scheduling. I would like to cordially thank

v

Matthias Elf, Luca Di Gaspero, Irv Lustig, Rasmus Rasmussen, for our many fruitful discussions. I

want to specially thank Matthias Elf for providing us with instances, solutions, and important ideas

related to the Break Minimization problem. This work has been partially supported by NSF ITR

Awards DMI-0121495 and ACI-0121497. I would also like to thank the many anonymous reviewers

for their creative criticism, that contributed to improving this work.

The administrative and technical staff have been great in ensuring that everything rolls smoothly

in the Department, and, for this, they deserve a big “thank you”. It would have been really difficult

to complete my thesis work without them.

Having reached this point of my studies, I can now appreciate the contribution of my teachers,

starting from the very first grade of elementary school. Of course, this is too long a list of people to

mention fully, but, to a smaller or greater degree, each of them made me realize the importance of

learning and of devotion to academic pursuits, even in the face of hardships and adversities.

I would like to take this opportunity to thank my undergraduate advisor in Greece, Professor

Christos Kaklamanis, for all his guidance and support in my first steps in research; Professor Ioannis

Caragiannis and Dr. Evi Papaioannou, for the excellent research collaboration and, in general, for the

very positive environment they maintained in our common lab with Professor Kaklamanis, during

the time I was doing research for my Master’s degree in the University of Patras; Professor Efstratios

Gallopoulos, with whom I worked for the first time on a research project beyond regular course work,

and from whom I also learned a lot; Professor Athanasios Tsakalidis, for the interesting discussions

we had during my time in the University of Patras. These people taught me in many ways about

research, and they also gave me invaluable help in taking the big step to pursue a Ph.D. in the

United States.

Overall, studying at Brown was an amazing experience for me, especially given the many inter-

esting people I got to meet. I would like to thank the following people, for making life at Brown

and Providence enjoyable: Aris Anagnostopoulos, Yanif Ahmad, Ionuţ Aron, Don Carney, Cleopa-

tra Christoforou, Socrates Dimitriadis, Ioanna Grypari, Paschalis Karageorgis, Yannis Katsoulis,

Dimitris Kazazis, Yannis Kontoyiannis, Panayiotis Mertikopoulos, Dimitris Nikitopoulos, Olga Pa-

paemmanouil, Manos Renieris, Stefan Roth, Nikos Triandopoulos, Yannis Tsochantaridis.

It is said that you truly appreciate real friendship, only in the light of distance. Having left from

my home-country seven years ago, it is extremely meaningful to me to still be close to people, with

whom we have been friends for longer than 15 years. Sofia, Monika, Mathie, Stefane, Louka, Rania,

I am grateful that you have always been there, as a reference point, a shelter, a connecting line going

through a carefree childhood, an enquiring adolescence, a unique college experience, and an always

optimistic future. . .

I would also like to give a big hug to Carmen, my precious love, who brings balance and happiness

to my life.

Finally, there are not enough ways for me to thank my parents, Froso and Nikos, my sister, Eva,

and the rest of my family, for their endless and unconditional love and encouragement during all

these years, and most importantly for the priceless moments we have spent together.

vi

As a token of gratitude for all the sacrifices they have made and for everything they

have imparted to me about life, I would like to dedicate this thesis to my beloved

parents, Froso and Nikos.

vii

Contents

List of Tables xi

List of Figures xiii

1 Related Work 3

1.1 Local Search . 3

1.1.1 Local Search Algorithms . 3

1.1.2 Illustration . 5

1.1.3 Formalization . 7

1.1.4 Properties of Neighborhood . 8

1.2 Heuristics and Metaheuristics . 10

1.3 Heuristics . 11

1.3.1 Systematic Heuristics . 11

1.3.2 Random Walks . 12

1.4 Metaheuristics . 13

1.4.1 Iterated Local Search . 13

1.4.2 Simulated Annealing . 14

1.4.3 Variable Neighborhood Search . 15

1.4.4 Tabu Search . 16

1.5 Cooperative Parallel Search . 19

1.6 Sport Scheduling . 21

1.6.1 Break Minimization Problem . 21

1.6.2 Traveling Tournament Problem . 22

2 The Break Minimization Problem 24

2.1 Problem Description . 24

2.2 Neighborhood Definition . 26

2.3 The BMSA Algorithm . 27

2.3.1 The Metropolis Heuristic . 27

2.3.2 The Simulated Annealing Meta-Heuristic . 28

viii

2.3.3 Analogy with Statistical Physics . 28

2.3.4 Estimating the Statistical Measures . 28

2.3.5 The Initial Temperature . 29

2.3.6 Updating the Temperature . 29

2.3.7 Early Phase Termination . 29

2.3.8 Early Termination of the Cooling Process and Reheats 30

2.3.9 The Simulated Annealing Algorithm (BMSA) 30

2.4 Experimental Results with BMSA . 32

2.4.1 The Instances . 32

2.4.2 Experimental Setting for BMSA . 33

2.4.3 Quality of the Schedules . 33

2.4.4 Performance of the Algorithm . 34

2.4.5 Restarting . 35

2.4.6 Quality under Strict Time Constraints . 35

3 The Traveling Tournament Problem 37

3.1 The Basic TTP Problem . 37

3.1.1 Overall Design of Local Search . 38

3.1.2 Initial Solutions . 39

3.1.3 The Neighborhood . 41

3.1.4 Simulated Annealing . 44

3.1.5 The Objective Function . 45

3.1.6 Strategic Oscillation . 46

3.1.7 Reheats . 46

3.2 Experimental Results on the Basic TTP . 47

3.2.1 Quality and Performance of TTSA . 47

3.2.2 Impact of the Components . 50

3.2.3 Solution Quality over Time . 51

3.2.4 Fast Cooling . 51

3.2.5 Best Solutions Since the Beginning of this Research 54

3.3 Comparison with Break Minimization . 55

3.4 Variants of the TTP . 55

3.4.1 Definition of TTP Variants . 56

3.4.2 Handling Mirroring . 57

3.4.3 Handling Different Distance Metrics . 58

3.4.4 Algorithmic Refinements . 59

3.5 Experimental Results on TTP Variants . 60

3.5.1 Mirrored Instances . 61

3.5.2 Non-Mirrored Instances . 61

3.6 Understanding the Neighborhood Structure . 64

ix

3.6.1 Using No Mirrored Moves . 65

3.6.2 Using Only Mirrored Moves . 65

3.7 Time Considerations . 70

3.8 Lower Bounds . 70

4 Population-Based Simulated Annealing 73

4.1 The PBSA Algorithm . 74

4.2 Experimental Results with PBSA . 76

4.2.1 PBSA from High-Quality Solutions . 76

4.2.2 PBSA from Scratch . 79

4.2.3 TTSA versus PBSA . 81

4.2.4 The Effect of Macro-Diversification . 81

4.3 Connections with Related Work . 81

4.3.1 Cooperative Parallel Search . 81

4.3.2 Memetic Algorithms and Scatter Search . 84

4.4 Summary of All Results . 85

Bibliography 90

x

List of Tables

2.1 Quality of the Schedules: Number of Breaks in MCMP and BMSA 33

2.2 Performance Comparison: Computation Times in CPU seconds of MCMP and BMSA 34

2.3 Performance of BMSA-R: Computation Times in CPU seconds 35

2.4 Quality of BMSA with Limited CPU Time: n=24 . 36

2.5 Quality of BMSA when Limited CPU Time: n=26 36

2.6 Quality of BMSA when Limited CPU Time: n=28 36

3.1 Solution Quality of TTSA on the TTP . 49

3.2 Computation Times of TTSA on the TTP . 49

3.3 Parameter Values for the TTSA Instances . 49

3.4 Impact of TTSA Components on Solution Quality (14 Teams) 50

3.5 Parameter Values for Experiments on the Impact of the Components (14 Teams) . . 50

3.6 Impact of Full Moves on the Solution Quality of TTSA (14 Teams) 51

3.7 Solution Quality of TTSA and TTSA(FC) within 2 Hours on 16 Teams 53

3.8 Parameter Values for Experiments on Fast Cooling (16 Teams) 53

3.9 Timeline of Best-Known Solutions: TTSA solutions are shown in bold face 54

3.10 TTSA Parameter Values used in our May 2004 solutions (n = 12, 14) 54

3.11 Solution Quality and Solution Times for NLB Distances with Mirroring 61

3.12 Solution Quality and Solution Times for Constant Distances with Mirroring 62

3.13 Solution Quality and Solution Times for Circular Distances with Mirroring 62

3.14 Solution Quality and Solution Times for NLB Distances without Mirroring 63

3.15 Solution Quality and Solution Times for Constant Distances without Mirroring . . . 63

3.16 Solution Quality and Solution Times for Circular Distances without Mirroring 64

3.17 Summary of TTSA Results for Non-Mirrored Instances Relative to LB 71

3.18 Summary of TTSA Results for Mirrored Instances Relative to LB 72

4.1 Quality and Times in Seconds of PBSA for NLB Distances 78

4.2 Quality and Times in Seconds of PBSA for Circular Distances 78

4.3 Quality and Times in Seconds of PBSA for NFL Distances 78

4.4 Quality and Times in Seconds of PBSA from Scratch for NLB Distances 80

4.5 Quality and Times in Seconds of PBSA from Scratch for Circular Distances 80

xi

4.6 Quality and Times in Seconds of PBSA from Scratch for NFL Distances 80

4.7 Summary of All Results for Non-Mirrored Instances Relative to LB 86

4.8 Summary of All Results for Mirrored Instances Relative to LB 87

xii

List of Figures

1.1 The Local Search Move . 4

1.2 The Basic Local Search Template . 4

1.3 A Graph Partition of Cost 9 . 6

1.4 A Move from Neighborhood N . 6

1.5 A Move from Neighborhood N ′ . 9

1.6 The Generic Local Search Template . 11

1.7 The Iterated Local Search Template . 14

1.8 The Simulated Annealing Template . 14

1.9 The Variable Neighborhood Search Template . 15

1.10 The Generic Local Search Template Revisited . 16

1.11 A Simple Template for the Intensification of a Local Search 19

2.1 The Metropolis Algorithm . 27

2.2 The Metropolis Algorithm Revisited . 31

2.3 The Simulated Annealing Algorithm (BMSA) . 32

3.1 Generation of Random Initial Schedules . 40

3.2 The Basic Simulated Annealing Algorithm . 45

3.3 The Simulated Annealing Algorithm (TTSA) . 48

3.4 Solution Quality over Time for 12 Teams . 52

3.5 Solution Quality over Time for 14 Teams . 52

3.6 Solution Quality over Time for TTSA and TTSA(FC) 53

3.7 Comparison of Using No Mirrored Moves for Circular Instances 66

3.8 Comparison of Using No Mirrored Moves for NLB Instances 67

3.9 Comparison of Using Only Mirrored Moves for Circular Instances 68

3.10 Comparison of Using Only Mirrored Moves for NLB Instances 69

4.1 Illustrating PBSA with k = 4 . 75

4.2 PBSA-P: A Phase of PBSA . 77

4.3 The Population-Based Simulated Annealing Algorithm PBSA 77

4.4 Evolution of the Objective on NLB-16 . 79

xiii

4.5 Comparison of Min-Cost Evolution for TTSA and PBSA on NLB-16 82

4.6 The Effect of Macro-Diversification (NLB-16) . 83

xiv

Introduction

Sport league scheduling [15] has become an important class of combinatorial optimization applica-

tions as it represents significant sources of revenue for television networks and generates extremely

challenging optimization problems.

The Constrained Break Minimization Problem is a classical application in sport scheduling that

has been widely studied (e.g., [45, 43, 48, 17]). Given a schedule for a round-robin tournament

without specifications of the home/away roles, the problem consists of finding out which team plays

at home (respectively away) in each of the games in order to minimize the number of breaks in

the schedule. Breaks are a common quality measure for schedules and arise when a team plays two

consecutive games at home or two consecutive games away. Break minimization problems arise in

many sport scheduling applications, including the scheduling of soccer leagues in Europe.

Sophisticated optimization approaches have been applied to the break minimization problem,

including constraint programming [43], integer programming [48] and, more recently, an elegant

reduction to a cut maximization problem [17]. The recent results indicate that problems with

28 teams can be solved optimally within reasonable times (e.g., about 8 minutes), although some

instances may take significantly longer (e.g., about 30 minutes). Note that most of these solutions are

rather involved conceptually and employ state-of-the-art constraint or mathematical programming

tools.

In 2001, Easton, Nemhauser, and Trick [15] proposed the Traveling Tournament Problem (TTP)

in an attempt to abstract the salient features of Major League Baseball (MLB) in the United States.

Easton et.al [15] argue that, without an approach to the TTP, it is unlikely that suitable schedules

can be obtained for the MLB. The key to the MLB schedule is a conflict between minimizing

travel distances and feasibility constraints on the home/away patterns. Travel distances are a major

issue in MLB due to the number of teams and to the fact that teams go on “road trips” to visit

several opponents before returning home. The feasibility constraints in MLB restrict the number of

successive games that can be played at home or away.

The TTP is an abstraction of the MLB intended to stimulate research in sport scheduling. A

solution to the TTP is a double round-robin tournament which satisfies sophisticated feasibility

constraints (e.g., no more than three away games in a row) and minimizes the total travel distances

of the teams. While both minimizing the total distance traveled, and satisfying the feasibility

constraints, are easy problems when considered in isolation, the combination of the two (which is

1

2

captured by the TTP) makes the problem particularly difficult; even instances with as few as 8 teams

are hard to solve, requiring techniques used by both constraint programming and mathematical

programming communities, and no exact solution has been found for most benchmarks, even by

employing advanced combinatorial optimization techniques.

The main conceptual contribution of this thesis is the following: it shows that, contrary to

common belief in the Sport Scheduling community (at least until the results of this work were

presented), Local Search is, in fact, an effective method for tackling sport scheduling problems.

This is evidenced by the fact that we have been able to produce the best currently known upper

bounds on many problems and instances, through schemes exhibiting robustness and reasonable

speed.

An important technical contribution of the thesis, pertaining to the TTP, is the design of a sophis-

ticated neighborhood that captures the problem’s special structure and exploits the sub-structures

of round-robin schedules. Using the above mentioned neighborhood, we develop an advanced sim-

ulated annealing algorithm (TTSA) for the TTP, featuring original modelings and sophisticated

metaheuristics. TTSA produces matching or improving best-known solutions to most of the bench-

mark instances proposed in the literature. For the Break Minimization problem, we create a simpler

version of TTSA, BMSA, which is adapted to the problem’s simpler structure. BMSA is shown to

have very competitive performance, compared to state-of-art methods used for break minimization.

We then show how we can embed TTSA in a new, more general, population-based framework

(PBSA), that uses simulated annealing in an unconventional way, by introducing diversification and

intensification into the search. Note that, even though TTSA has proven to be highly successful on

most TTP instances, there are still some instances on which it has had limited effectiveness. PBSA

successfully handles almost all of those instances, producing improving upper bounds. Moreover,

it further improves many of the best-known solutions computed using TTSA, even on instances in

which no improvement had been found using any other method, in more than four years.

The ideas of diversification and intensification have previously been used in the context of Tabu

Search; however, to our knowledge, they have not been used effectively in Simulated Annealing. Note

that, even in our simpler schemes, we introduce features from Tabu Search, such as, for example,

strategic oscillation. This underlines another important technical contribution of this thesis, namely

the successful adaptation of ideas from Tabu Search into Simulated Annealing.

Chapter 1

Related Work

Before proceeding to the actual problems and solutions, we give an overview of some of the ideas that

will prove useful in describing our approaches in subsequent chapters of this thesis. After introducing

some central ideas of Local Search, we proceed to describe some more specific techniques used in

practice, including well-known heuristics and meta-heuristics. We then present a brief survey of

Cooperative Parallel Search techniques related to our populated-based simulated annealing scheme,

and conclude the chapter with a short account of some of the research in the area of Sport Scheduling.

This chapter is not aimed at being exhaustive; its goal is simply to set the stage for the main work

of the thesis. Readers interested in a more complete coverage of particular sections are encouraged

to consult the references accompanying each section.

1.1 Local Search

We first present some general concepts about Local Search, putting into context the more specific

techniques that will follow later in the thesis. Local search algorithms are first described generically

in terms of a small set of concepts and operations. Sections 1.3 and 1.4 show how to instantiate

the generic local search algorithm to obtain a variety of well-known heuristics and meta-heuristics.

Thus this presentation stresses the commonalities underlying local search algorithms, not their

differences. Note that Sections 1.1 through 1.4 of this Chapter draw heavily from the introductory

chapters of [52]. Readers interested in more detailed presentations of local search should consult,

for instance, [2, 39].

1.1.1 Local Search Algorithms

A local search algorithm typically starts from a solution (that is, an assignment of values to its

decision variables) and moves from solutions to neighboring solutions in hope of improving a function

f . The function f measures the quality of solutions to the problem at hand. In satisfiability problems,

it typically provides a distance from the current solution to a feasible solution. In a pure optimization

3

4

N(s)

s

L(N(s),s)

Figure 1.1: The Local Search Move

1. function LocalSearch() {
2. s := generateInitialSolution();
3. s∗ := s;
4. for k := 1 to MaxTrials do
5. if satisfiable(s) ∧ f(s) < f(s∗) then
6. s∗ := s;
7. s := S(L(N(s), s), s);
8. return s∗;
9. }

Figure 1.2: The Basic Local Search Template

problem, it expresses the objective of the problem or a function of finer granularity that differentiates

between solutions with the same objective value. In applications composed of both constraints and

an objective, the function f may combine feasibility and optimality measures appropriate for the

problem at hand. We generally assume the availability of a function f to be minimized.

The main operation of a local search algorithm amounts to moving from a solution s to one of

its neighbors. The set of neighboring solutions of s, denoted by N(s), is called the neighborhood of

s. At a specific computation step, some of these neighbors may be legal, in which case they may

be selected, or they may be forbidden. Once the legal neighbors are identified (by operation L),

the local search selects one of them and decides whether to move to this neighbor or to stay at s

(operation S). These concepts, which define the moves in local search, are illustrated in figure 1.1.

It shows the solution s, its neighborhood N(s), its set L(N(s), s) of legal moves, and the selected

solution (the bold thick circle).

Figure 1.2 depicts a simple generic local search template. The search starts from an initial state

s (line 2) and performs a number of iterations (line 4). The move takes place in line 7 and consists

5

of selecting a new solution by composing operations N , L, and S:

s := S(L(N(s), s), s);

Lines 5 and 6 simply keep the best solution s∗ encountered so far.

Some local search algorithms feature very simple implementations of some of these operations.

For instance, in some local search algorithms, all moves may be legal. In other algorithms, these

operations may be rather complex and may rely on sophisticated data structures and algorithms as

well as on randomization.

1.1.2 Illustration

To illustrate the local search schema, we now present a greedy local improvement algorithm in graph

partitioning.

The Problem The graph-partitioning problem consists of finding a balanced partition of the

vertices of a graph that minimizes the number of edges with one endpoint in each partition. More

formally, a balanced partition of a graph G = (V, E) is a pair 〈P1, P2〉 such that P1 ∪ P2 = V and

|P1| = |P2|. The cost of a partition P = 〈P1, P2〉, denoted by f(P), is the number of edges with one

endpoint in each set:

f(〈P1, P2〉) = #{(v, w) ∈ E | v ∈ P1 & w ∈ P2}. (1.1)

The set of feasible solutions, denoted by S, is the set of balanced partitions, and the set of optimal

solutions, denoted by S∗, is specified as

{s ∈ S | f(s) = min
p∈S

f(p)}. (1.2)

Figure 1.3 depicts a balanced partition of cost 9.

The Neighborhood The most natural move for graph partitioning consists of swapping two

vertices, i.e, selecting a vertex a from P1 and a vertex b from P2 and assigning a to P2 and b to

P1. Such a move is depicted in figure 1.4 and produces a partition of cost 5. More formally, the

neighborhood function N is defined as

N(〈P1, P2〉) = {〈P1 \ {a} ∪ {b}, P2 \ {b} ∪ {a}〉 | a ∈ P1 ∧ b ∈ P2}. (1.3)

The neighborhood N has a fundamental property: if the solution s is a balanced partition, all the

solutions in N(s) are balanced partitions as well. As a consequence, any local search starting from a

balanced partition explores only balanced partitions and need not represent the balancing constraint

explicitly. In other words, the local search algorithm considers only feasible solutions.

Legal Moves Local improvement algorithms require the neighbors to improve the objective value.

As a consequence, the legal moves in the local improvement algorithm are specified by

L(N, s) = {n ∈ N | f(n) < f(s)}. (1.4)

6

12 12

Figure 1.3: A Graph Partition of Cost 9

12 12

9

12 12

5

Figure 1.4: A Move from Neighborhood N

7

Selection It remains to specify how to choose the neighbor. Since the algorithm is greedy, the

algorithm selects the best legal neighbor, that is, an element from

S(M, s) = {n ∈M | f(n) = min
s∈M

f(s)}. (1.5)

1.1.3 Formalization

This sub-section formalizes the concepts introduced so far and defines a variety of concepts, which

are referred to in later chapters. It assumes an underlying combinatorial optimization problem P of

the form
min f(~x) subject to

C1(~x)
...

Cn(~x)

(1.6)

where ~x is a vector of n (discrete) decision variables, f is an objective function Nn → N that

associates a performance measure with a variable assignment, and C1, . . . , Cn are constraints defining

the solution space. The concepts of solutions, feasible solutions, and optimal solutions have the

following (natural) meanings.

Definition 1 A solution to P is an assignment of values to the variables in ~x. The set of solutions

to P is denoted by LP .

Definition 2 A feasible solution of P is a solution x̂ that satisfies C1(x̂) ∧ . . . ∧ Cn(x̂). The set of

all feasible solutions of P is denoted by L̃P .

Definition 3 The set of optimal solutions to P, denoted by LP∗ is defined as

LP∗ = {s ∈ L̃P | f(s) = min
k∈L̃P

f(k)} (1.7)

Many local search algorithms consider only solutions that satisfy some of the constraints. This set

of solutions over which the algorithm is defined is called the search space.

Definition 4 A search space for a combinatorial optimization problem P is a set L̂P such that

LP ⊆ L̂P ⊆ Nn. Elements of the set L̂P often satisfy a subset of {C1, . . . , Cn}.

The concepts of neighborhood, transition graph, and local optimality are central in local search,

since they define how to move from solution to solution.

Definition 5 A neighborhood is a pair 〈L̂P , N〉, where L̂P is a search space and N is a mapping

N : L̂P → 2L̂P that defines, for each solution s, the set of adjacent solutions N(s) ⊆ L̂P . Whenever

the relation s ∈ N(j)⇔ j ∈ N(s) holds, the neighborhood is said to be symmetric.

Definition 6 The transition graph G(L̂P , N) associated to a neighborhood 〈L̂P , N〉 is the graph

whose nodes are solutions in L̂P and where an arc a → b exists if b ∈ N(a). The reflexive and

transitive closure of → is denoted by →∗.

8

A solution is locally optimal if none of its neighbors have a smaller cost. Note that local optimality

is always defined with respect to a specific neighborhood function.

Definition 7 A solution s in LP is locally optimal with respect to N if

f(s) ≤ min
i∈N(s)

f(i). (1.8)

The set of locally optimal solutions with respect to N is denoted LP+.

One of the critical issues in local search is to escape local minima, which is why local search

algorithms typically feature interesting legality and selection criteria.

Definition 8 A legality condition L is a function (2L̂P × L̂P) → 2L̂P that filters sets of solutions

from the search space. A selection rule S(M, s) is a function S : (2L̂P × L̂P) → L̂P that picks

an element s from M according to some strategy and decides to accept it or to select the current

solution s instead.

Definition 9 A local search algorithm for P is a path

s0 → s1 → . . .→ sk (1.9)

in the transition graph G(L̂P , N) for P such

si+1 = S(L(N(si), si), si) (1 ≤ i ≤ k). (1.10)

Typically, such a local search produces a final computation state sk that belongs to LP+ (for a given

neighborhood function N). The role of heuristics and metaheuristics is to drive the search toward

high-quality local optima and, ideally, those in LP∗.

1.1.4 Properties of Neighborhood

The effectiveness of a local search algorithm critically depends upon its neighborhood. In what

follows, we briefly review some fundamental properties of neighborhoods.

Neighborhood Size The size of a neighborhood N : L̂P → 2L̂P for a solution s is the set of

solutions in N(s). Typically, large neighborhoods induce shorter paths to high-quality solutions but

also require more time to explore. This trade-off between the length of the paths and the exploration

is a key design decision. Sometimes it is preferable to select a linear neighborhood (in the size of the

problem P) over a quadratic neighborhood, even if the resulting path is longer. Sometimes, however,

the resulting neighborhood is not large enough to produce high-quality solutions in reasonable time.

9

12 12

9

11 13

6

Figure 1.5: A Move from Neighborhood N ′

Neighborhood Connectivity Another fundamental property of a neighborhood is its connec-

tivity. Informally speaking, a neighborhood is connected if there exists a path from any solution s

to an optimal solution s∗. This ensures that the neighborhood is strong enough to reach optimal

solutions, although the heuristic and metaheuristic may prevent the algorithm from reaching them

in practice.

Definition 10 A neighborhood N : L̂P → 2L̂P is weakly connected if and only if, for each solution

s, there exists a path s→∗ s∗ to an optimal solution s∗.

Definition 11 A neighborhood N : L̂P → 2L̂P is optimally connected if and only if, for each pair

of solutions s1, s2, there exists a path s1 →∗ s2.

Using (weakly) connected neighborhoods brings several advantages:

• Local search algorithms typically do not need a restarting strategy to reach optimal solutions,

since there exist paths leading from each solution to an optimal solution.1

• Randomized heuristics, where there is a nonzero probability of accepting a neighbor k ∈ N(s)

for each solution s, may be guaranteed (under certain conditions) to reach a global optimum

(in the limit). In other words, connectivity is a requirement for the convergence proofs of

metaheuristics such as simulated annealing.

Neighborhood Constraints One of the critical issues in local search is to determine how to

combine feasibility and optimality requirements. The simplest option is to maintain feasibility at

all times and explore only feasible solutions in the neighborhood search. This is the approach taken

by neighborhood N in the graph-partitioning problem presented in Figure 1.4. The neighborhood

implicitly maintains the balancing constraint, and it suffices to start with a balanced solution to

1A restarting strategy may still be useful for performance results.

10

maintain feasibility in the local search. In some applications, however, it is preferable to relax a

subset of the constraints and explore a larger search space. Consider, for instance, the neighborhood

N ′ for graph partitioning, in which a single vertex is relocated:

N ′(〈P1, P2〉) = {〈P1 \ {a}, P2 ∪ {a}〉 | a ∈ P1} ∪ {〈P1 ∪ {b}, P2 \ {b}〉 | b ∈ P2} (1.11)

Figure 1.5 illustrates such a move that decreases the cost of the partition from 9 to 6.

The neighbor N ′ induces the local search to explore infeasible solutions or, in other words,

unbalanced partitions. It is thus important to drive the search not only toward high-quality solutions,

but also toward feasibility. There are various ways to approach this issue, depending on the actual

problem’s structure. One possible way is through designing an objective function that combines

feasibility and optimality components. For instance, for a neighborhood N ′ in graph partitioning,

the algorithm may use the objective

α ·#{(x, y) ∈ E | x ∈ P1 & y ∈ P2}+ β ·
(

#{x ∈ E | x ∈ P1} −
n

2

)2

(1.12)

for some well-chosen values of α and β and #V = n. The left member of the objective captures the

cost of the partition, while the right member penalizes its imbalance.

1.2 Heuristics and Metaheuristics

In Sections 1.3 and 1.4, we briefly introduce some heuristics and metaheuristics used or referred

to in the rest of the thesis. The presentation is limited to the basic information necessary for the

following chapters. The heuristics and metaheuristics are described as natural instantiations of the

framework presented in Section 1.1.

Heuristics typically choose the next neighbor based only on local information or, more precisely,

on the current solution and its neighborhood. They typically drive the search toward local minima

(in the case of minimization problems). Metaheuristics, on the contrary, collect information on the

execution sequence(s) and aim primarily at escaping local minima and driving the search toward

global optimality. As a consequence, heuristics are often characterized as memoryless, while meta-

heuristics typically include some form of memory or learning. Both heuristics and metaheuristics

are presented in a unified framework, in terms of the generic local search template. This is simply

a generic version of the local search template presented in Figure 1.2.

Figure 1.6 depicts such a generic version parameterized by the objective function f , as well

as the functions L and S for specifying legal moves and selecting the next neighbor. The generic

implementation also removes the generation of the initial solution so that metaheuristics can apply

the template from different initial solutions.

11

1. function LocalSearch(f, N, L, S, s) {
2. s∗ := s;
3. for k := 1 to MaxTrials do
4. if satisfiable(s)∧ f(s) < f(s∗) then
5. s∗ := s;
6. s := S(L(N(s), s), s);
7. return s∗;
8. }

Figure 1.6: The Generic Local Search Template

1.3 Heuristics

Heuristics focus on choosing the next neighbor to move to. They can be classified in various ways,

including which changes they allow for the objective value and whether they are systematic or

randomized. This section reviews some popular deterministic and randomized heuristics of interest

to this thesis. They are typically specified by instantiations of the selection function S, which can

be combined with some restrictions on the neighborhood (defined by a function L). For instance,

improvement heuristics can be formulated in terms of the following implementation of legal moves:

1. function L-Improvement(N, s)

2. return { n ∈ N | f(n) < f(s) };

Of course, some heuristics potentially consider all neighbors, in which case the L implementation is

simply the identity function:

1. function L-All(N, s)

2. return N ;

1.3.1 Systematic Heuristics

Systematic heuristics perform a (possibly partial) exploration of the neighborhood to determine the

next solution.

Best Neighbor The best-neighbor heuristic, presented earlier, consists of choosing the neighbor

with the best evaluation:

1. function S-Best(N,s)

2. N∗ := { n ∈ N | f(n) = mins∈N f(s) };
3. return n ∈ N∗ with probability 1/#N∗;

where #S denotes the size of S. Observe that line 3 selects one of the best neighbors randomly to

break ties. A best-improvement local search can then be specified as the following instantiation of

the generic local search using the appropriate L and S implementations:

12

1. function BestImprovement(s)

2. return LocalSearch(f ,N ,L-Improvement,S-Best);

First Neighbor The best-improvement heuristic requires a complete scan of the neighborhood,

which may be costly when the neighborhood is large. The first-improvement heuristic simply selects

the first move that improves the current solution s. It assumes, without loss of generality, a function

lex (n) that specifies the lexicographic order of a neighbor n when scanning the neighborhood.

1. function S-First(N,s)

2. return n ∈ N minimizing lex(n);

A first-improvement local search can thus be specified as the following instantiation of the generic

local search:

1. function FirstImprovement(s)

2. return LocalSearch(f ,N ,L-Improvement,S-First);

1.3.2 Random Walks

Systematic heuristics perform a (possibly partial) exploration of the neighborhood to select the next

solution. Random-walk heuristics are quite different: they select an element of the neighborhood

randomly and decide whether to accept it as the next solution.

Random Improvement Random improvement, the simplest example of random-walk heuristics,

accepts a neighbor if it improves the current solution.

1. function S-RandomImprovement(N,s)

2. select n ∈ N with probability 1/#N ;

3. if f(n) < f(s) then

4. return n;

5. else

6. return s;

Note that line 6 returns the current solution s. This means that, in random-walk heuristics, the

current solution is implicitly part of the neighborhood.2 The randomized nature of random-walk

heuristics seems critical in some applications (for instance, for the TTP problem, as shown later

in Chapter 3) to reach high-quality solutions. A random-improvement walk is thus specified as the

following instantiation of the generic local search:

1. function RandomImprovement(s)

2. return LocalSearch(f ,N ,L-All,S-RandomImprovement);

2Alternatively, a random-walk heuristic may be seen as composed of micro-steps that select solutions in the
neighborhood randomly until an appropriate neighbor is found.

13

The Metropolis Heuristic The Metropolis heuristic is an interesting extension of random im-

provement, in which some moves degrading the objective value are allowed. Once again, the Metropo-

lis algorithm selects a random neighbor n. If neighbor n does not degrade the current solution, that

is, if f(n) ≤ f(s), it is accepted as the next solution. If it degrades the objective value, the Metropolis

algorithm accepts the move with a small probability

exp

(−(f(n)− f(s))

t

)

(1.13)

that depends on the distance between f(n) and f(s) and a parameter t (called the temperature). It

rejects n otherwise. More precisely, the Metropolis heuristic is specified by

1. function S-Metropolis[t](N,s)

2. select n ∈ N with probability 1/#N ;

3. if f(n) ≤ f(s) then

4. return n;

5. else with probability exp(−(f(n)−f(s))
t

)

6. return n;

7. else

8. return s;

1.4 Metaheuristics

The heuristics presented in Section 1.3 focus on choosing the next solution from the neighborhood

using only local information on the quality of the neighbors. Their goal is to reach high-quality local

minima quickly. Metaheuristics have a fundamentally different role: they aim at escaping these local

minima and at directing the search toward global optimality. This objective can be approached in

many different ways, which explains the great diversity and the wealth of results in this field. Once

again, this section is not intended to be comprehensive but rather to review the metaheuristics

necessary for the presentation to follow.

1.4.1 Iterated Local Search

Iterated local search is a ubiquitous metaheuristic that iterates a specific local search from different

starting points in order to sample various regions of the search space and to avoid returning a low-

quality local minimum. This idea can be further refined by generating a new starting point from

the local minimum last returned by the local search. For instance, the new starting point may be

generated by perturbing the local minimum.

The template for iterated local search is depicted in figure 1.7. The algorithm generates an

initial solution and then performs a number of iterations (lines 5–8). Each iteration consists of a

local search (line 5) and the generation of a new starting point (line 8) obtained by perturbing the

local minimum s or by generating a new initial solution.

14

1. function IteratedLocalSearch(f, N, L, S) {
2. s := generateInitialSolution();
3. s∗ := s;
4. for k := 1 to MaxSearches do
5. s := LocalSearch(f, N, L, S, s);
6. if f(s) < f(s∗) then
7. s∗ := s;
8. s := generateNewSolution(s);
9. return s∗;
10. }

Figure 1.7: The Iterated Local Search Template

1. function SimulatedAnnealing(f, N) {
2. s := generateInitialSolution();
3. t1 := initTemperature(s);
4. s∗ := s;
5. for k := 1 to MaxSearches do
6. s := LocalSearch(f ,N ,L-All,S-Metropolis[tk],s);
7. if f(s) < f(s∗) then
8. s∗ := s;
9. tk+1 := updateTemperature(s,tk);
10. return s∗;
11. }

Figure 1.8: The Simulated Annealing Template

Observe that there are no restrictions on the embedded local search used in line 5. Hence, iterated

local search is naturally composed with the other metaheuristics presented in this section.

1.4.2 Simulated Annealing

Simulated annealing is a popular metaheuristic based on the Metropolis heuristic. As we saw earlier,

the Metropolis heuristic accepts a degrading move with probability

exp

(−(f(n)− f(s))

t

)

(1.14)

where t is a parameter of the heuristic. Different values of t produce different trade-offs between the

quality of the solutions and the execution time. The key idea underlying simulated annealing is to

iterate the Metropolis algorithm with a sequence of decreasing temperatures

t0, t1, . . . , ti, . . . (tk+1 ≤ tk). (1.15)

The goal is to accept many moves initially in order to sample the search space widely (large values of

tk) and to move progressively toward small values of tk, thus converging toward random improvement

and (we hope) a high-quality local minimum when ti → 0.

15

1. function VariableNeighborhoodSearch(f, N, L, S) {
2. s := generateInitialSolution();
3. s∗ := s;
4. k := 1;
5. while k ≤ MaxShaking do
6. s := select n ∈ Nk(s);
7. s+ := LocalSearch(f ,N ,L,S,s);
8. k := k + 1;
9. if f(s+) < f(s∗) then
10. s := s+;
11. s∗ := s;
12. k := 1;
13. return s∗;
14. }

Figure 1.9: The Variable Neighborhood Search Template

The template for simulated annealing in figure 1.8 indicates that the local search algorithm in

line 6 is a Metropolis algorithm with temperature tk. Two critical decisions in simulated annealing

are the choice of the initial temperature (line 3) and the cooling schedule (line 9) which specifies

how to decrease the temperature. Both of these can be chosen experimentally or can be derived

systematically for specific instances [1, 24]. In particular, the initial temperature and the cooling

schedule can be derived by performing random walks at different temperatures.

1.4.3 Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic featuring an interesting way to escape local

minima. It works with a collection of neighborhoods N1, . . . , Ni to diversify the current solution

(local minimum). The intuition is that the neighborhoods N1, . . . , Ni are increasing in size, providing

more opportunities for significant diversifications over time. Figure 1.9 depicts the template for

variable neighborhood search. At all times, VNS maintains a degree of diversification k specifying

which neighbor to use when the search reaches a local minimum. A VNS iteration then consists in

selecting a solution s in Nk (line 6) and applying a local search on solution s to obtain a solution s+

(line 7). Whenever s+ improves the best solution, VNS moves to s+ and resets the diversification

degree to 1 in order to explore the search region around s+ more extensively (lines 9–12). Otherwise,

the diversification degree is incremented (line 8).

One key issue in VNS is the definition of the neighborhoods N1, . . . , Ni. A traditional technique

is to define all neighborhoods in terms of a unique neighborhood N ′ and its associated functions L′

and A′. Neighborhood Nk then specifies the set of solutions that can be reached in k moves using

N ′, L′, and A′:

N0(x) = N ′(x);

Nk(x) = S′(L′(Nk−1(s), s), s);

16

1. function LocalSearch(f, N, L, S, s1) {
2. s∗ := s1;
3. τ := 〈s〉;
4. for k := 1 to MaxTrials do
5. if satisfiable(s) ∧ f(sk) < f(s∗) then
6. s∗ := sk;
7. sk+1 := S(L(N(sk), τ), τ);
8. τ := τ :: sk+1;
9. return s∗;
10. }

Figure 1.10: The Generic Local Search Template Revisited

1.4.4 Tabu Search

Tabu search is a popular and effective metaheuristic that encompasses a great variety of techniques.

This thesis generally follows Simulated Annealing based approaches. However, given that one of its

main aspects is showing how one can adapt concepts from Tabu Search into Simulated Annealing,

this section reviews some of the concepts necessary for a clearer presentation in subsequent chapters.

To understand the intuition underlying tabu search, it is useful to generalize slightly the generic

local search presented earlier. The new generic local search, presented in figure 1.10, consists mainly

of maintaining the sequence

τ = 〈s0, . . . , sk−1, sk〉 (1.16)

of solutions explored so far. The sequence τ is initialized with s in line 3 and extended in line 8 by

appending solution sk+1. Function L and S are also slightly generalized to accommodate sequences

of solutions instead of single solutions. All the implementations presented thus far extend naturally

to this framework by working on the last solution in the sequence.

With this minor generalization, the intuition behind tabu search can be expressed and formalized

concisely. Indeed, as a first approximation, tabu search can be described as the following strategy:

Given a sequence 〈s0, . . . , sk−1, sk〉, select sk+1 to be the best neighbor in N(sk) that

has not yet been visited.

As a consequence, tabu search can be viewed (in a first approximation) as the combination of a

greedy strategy with a definition of legal moves ensuring that a solution is never visited twice:

1. function TabuSearch(f ,N ,s)

2. return LocalSearch(f ,N ,L-NotTabu,S-Best);

where

1. function L-NotTabu(N ,τ)

2. return { n ∈ N | n /∈ τ };

17

There are two interesting features to highlight here. First, the definition of legal moves imposes

no constraint on the objective value and allows the local search to select moves degrading the quality

of the current solution, thus escaping local minima. Second, the greedy nature of the tabu search

ensures that the objective function does not degrade too much at any step, since the best neighbor

is always chosen.

Short-Term Memory The main difficulty with this tabu-search definition is the need to keep

track of all visited solutions: as the computation proceeds, the memory requirements quickly become

prohibitive. To remedy this limitation, tabu search uses a short-term memory to prevent the search

from returning to recently visited solutions. Such short-term memory may not prevent the local

search from revisiting solutions entirely, however, so it is typically combined with other techniques

that will be described shortly.

The simplest way to implement a short-term memory is to maintain only a small suffix of the

execution sequence, i.e, recently visited solutions. However, even such an implementation may be

too costly in space and time, since it requires the search to compare solutions. As a consequence,

tabu-search algorithms typically maintain an abstraction τ̃ of the sequence suffix. The abstraction

is often problem-dependent, although many guidelines are available for its specification.

A popular technique is the transition abstraction that stores the transitions, not the states,

since moves only involve a few variables in general. The tabu neighbors are then defined as those

solutions obtained through the inverse of stored transitions. Consider graph partitioning again and

a transition

s1 → s2 (1.17)

based on neighborhood N . It follows that there exist two vertices a and b such that s2 is the partition

s1 in which a and b have been swapped:

s2 = swap(s1, a, b). (1.18)

As a consequence, the transition can be abstracted by remembering the pair of vertices (a, b) to

avoid swapping a and b again in the near future. More generally, a sequence

s0 → . . .→ sk (1.19)

can be abstracted by a sequence of pairs

〈(a1, b1), . . . , (ak, bk)〉 (1.20)

such that

si+1 = swap(si, ai, bi). (1.21)

A solution n ∈ N(sk) is then defined as tabu if can be obtained from sk by swapping a pair

(ai, bi), that is, if there exists i (1 ≤ i ≤ k) such that

n = swap(sk, ai, bi). (1.22)

18

Intuitively, this means that the local search cannot swap two vertices that have been swapped

recently. Moreover, each iteration of the local search then drops an old pair, say (a1, b1), and adds

a new pair, say (ak+1, bk+1). Note that, in tabu search, the abstract sequence τ̃ is called a tabu list

and may contain the transitions, the inverse transition, or both.

As a consequence, with short-term memory, the legal moves can be specified as follows:

1. function L-NotTabu(N ,τ̃)

2. return { n ∈ N | ¬tabu(n, τ̃) };

where, informally speaking, tabu(n, τ̃) holds if the neighbor is tabu with respect to the tabu list

(abstract sequence) τ̃ . Formally, tabu(n, τ̃) can be specified as

tabu(n, τ̃) ≡ ∃τ ∈ γ(τ̃) : n ∈ τ. (1.23)

where γ(τ̃) is the set of sequences abstracted by τ̃ .

It is important to observe that transition abstractions are at the same time too weak and too

strong. On the one hand, transition abstractions are too weak because they cannot prevent the tabu

search from revisiting solutions, since only a sequence suffix is abstracted. On the other hand, they

are too strong since they forbid moves that should be allowed. Indeed, a transition abstraction τ̃

represents a set of sequences γ(τ̃) that may be very different from τ but cannot swap the vertices

in the tabu list.

Transition abstractions do not abstract any information about the states of a transition s1 → s2.

As a result, as mentioned, they may forbid too many transitions to unvisited nodes and prevent

the search from reaching high-quality solutions. It is possible to be more discriminating by storing

information about the states as well. For instance, in graph partitioning, the tabu search may

abstract the states by their objective values3 and store quadruples (f1, f2, a, b) to capture a transition

s1 → s2 where

s2 = swap(s1, a, b) ∧ f(s1) = f1 ∧ f(s2) = f2. (1.24)

As a consequence, a move s→ n is tabu if it reverses an earlier move:

n = swap(s, b, a) ∧ f(s) = f2 ∧ f(n) = f1. (1.25)

Aspiration Since the tabu search stores sequence abstractions and not the sequences themselves,

it may forbid transitions s1 → s2, in which s2 has not been visited before. Some of these transitions

may be quite desirable, for instance when s2 would be the best solution found so far (that is,

f(s2) < f(s∗)). To overcome this limitation, tabu search algorithms often feature an aspiration

criterion that specifies when the tabu status may be overridden. The simplest and most widely used

aspiration criterion overrides the tabu status of those moves that improve the best solution found

so far. The resulting legal moves are specified as

1. function L-NotTabu-Asp(N ,τ̃)

2. return { n ∈ N | ¬tabu(n, τ̃) ∨ f(n) < f(s∗) };

3The objective value is often called a witness in this context.

19

1. function IntensifiedLocalSearch(f, N, L, S) {
2. s := generateInitialSolution();
3. s∗ := s;
4. for k := 1 to MaxSearches do
5. s := LocalSearch(f, N, L, S, s); {
6. if f(s) < f(s∗) then
7. s∗ := s;
8. s := s∗;
9. return s∗;
10. }

Figure 1.11: A Simple Template for the Intensification of a Local Search

Long-Term Memory The tabu list abstracts a small suffix of the solution sequence and cannot

capture long-term information. As a consequence, it cannot prevent the search from taking long

walks, whose solutions have low-quality objective values, or spending too much time in the same

region, leaving other parts of the search space unexplored. Many tabu-search algorithms are thus

enhanced with additional long-term memory structures to intensify and diversify the search.

Intensification entails storing high-quality solutions during the search and returning to these

solutions periodically. It makes it possible to explore extensively the region of the search space in

which the best solutions so far have been found. The simplest intensification scheme consists of

returning to the best solution found so far. Its template is depicted in figure 1.11; the intensification

takes place in line 8. Interestingly, although the template is often used in the context of Tabu Search,

it is not specific to tabu search. For example, in Chapter 4, we show an intensification scheme in

the framework of Simulated Annealing.

Diversification entails directing the search towards other regions of the search space. Once again,

there are many possible ways to achieve such a goal. They include iterative local search to perturb or

restart the search, as well as strategic oscillation, which consists of changing the objective function

to balance the time spent in the feasible and infeasible regions.

1.5 Cooperative Parallel Search

Given the low speed often exhibited by meta-heuristics such as simulated annealing, especially for

larger instances, many researchers have attempted to take advantage of parallelization, in order to

speed up or even improve the solution quality of such meta-heuristics. The population-based scheme

we are proposing in Chapter 4 falls, to a great extent, into this category of cooperative parallel search

schemes.

In this section, we give a brief overview of the various ways in which parallelism has been combined

with local search schemes, and, in particular, schemes that are related to the one we propose. We

are going to explore these relationships in further detail in the corresponding chapter of the thesis.

There is a great variety of proposed parallel search schemes, a large number of which is based

20

on simulated annealing. The most straight-forward schemes are attempts to parallelize sequential

versions of simulated annealing (e.g., [47]). However, the schemes appearing in the literature cover

a much broader spectrum than that.

Onbaşoğlu et. al. 2001 [37] provide an extensive survey of parallel simulated annealing algorithms

and compare them experimentally on global optimization problems. They also classify those schemes

into application-dependent and application-independent parallelization.

In the first category, the problem instance is divided among several processors, which commu-

nicate only to deal with dependencies. For instance, in VLSI design, the processors specialize on

different areas of the circuit. See [22] for a detailed account of parallel simulated annealing techniques

for VLSI design. In the second category, Onbaşoğlu et. al. further distinguish between asynchronous

parallelization with no processor communication, synchronous parallelization with different levels of

communication, and highly-coupled synchronization in which neighborhood solutions are generated

and evaluated in parallel. In the first two cases, processors work on separate Markov chains while,

in the third case, they cooperate on a single Markov chain.

Communication patterns between processors can take the form of simple transmission of cost

values, occasional exchange of (possibly partial) solutions, or even intensive exchanges of solutions.

Hybrid schemes combining different forms of communication have also been developed (e.g., [27]).

There are schemes that cannot be easily classified, such as the parallel simulated annealing in [8], in

which the processors work on highly inter-dependent Markov chains by mixing states.

In Chapter 4, we propose a scheme that can be viewed as an application-independent algorithm

with synchronous parallelization and periodic exchange of solutions. The scheme proposed in [25]

(which only exchanges partial solutions) and the SOEB-F algorithm [37] are probably the closest

to ours, although we include some important structural features, that are missing from these two

approaches. It is also noteworthy to observe that SOEB-F typically fails to produce sufficiently good

solutions [37].

It is also useful to point out that the above classification is not limited to simulated annealing. A

cooperative parallel scheme based on tabu search is presented in [5] and is applied to the generalized

assignment problem.

We conclude this section with a very short mention of two important types of search algorithms

related to our scheme: scatter search and memetic algorithms. In scatter search [29], solutions are

not combined but only intensified. Scatter search also features the concept of elite solutions. One

could also view our scheme as a degenerated form of memetic algorithms [36], where there is no

mutation of solutions: existing solutions are either replaced by the best solution found so far or are

“preserved”.

21

1.6 Sport Scheduling

One of the most intriguing features of Sport Scheduling is the big diversity of research interest within

the field. Sport Scheduling research ranges from purely theoretical problems in discrete mathematics

and combinatorics to large-scale real life applications, involving scheduling big sport leagues in the

United Stated and Europe. It also serves as an important showcase of different mathematical and

combinatorial optimization techniques, often combined in hybrid approaches to different problems.

A common theme in Sport Scheduling applications is the constant challenge for effective modeling.

Real life sport applications impose complicated constraints, often contradictory, and not necessarily

of the same significance. It takes a lot of effort and experience to design benchmarks that are, at the

same time, meaningful from a researcher’s point of view and representative of the salient features of

real life problems.

There are many good references in the area. A rich source of theory-oriented information con-

nected to sport scheduling can be found in [57]. A more recent survey on sport scheduling, focusing

on round-robin scheduling and also covering representative practical problems, can be found in [42].

In this thesis we focus on two important representative problems in the area of Sport Scheduling.

It is interesting to observe that, until recently, local search was not as commonly applied to sport

scheduling problems. Moreover, the first local-search based approaches to these two problems did

not prove to be as successful as other techniques. As shown in the current work, Local Search can,

in fact, be a method of choice for problems in this area.

1.6.1 Break Minimization Problem

Early results on Break Minimization are due to Schreuder [45] who studied the Dutch soccer league.

In that paper, Schreuder proved that, for every n, there is a schedule with exactly n− 2 breaks and

that this number is optimal. Schreuder also gave a polynomial time algorithm for constructing such

a schedule. This version of the problem is called the Unconstrained Break Minimization Problem

since the schedule is not fixed. The problem studied in this thesis, in which the schedule is given

but not the home/away decisions, is called the Constrained Break Minimization Problem.

Régin[43] proposed a constraint programming (CP) approach for Break Minimization. This

approach solved the unconstrained version efficiently, but was limited to 20 teams for the constrained

version (at least at the time). Trick [48] proposed an integer programming approach which provided

solutions to instances with at most 22 teams in times comparable to the CP approach. In relatively

recent work, Elf et al., [17] presented a reduction of the constrained version to a cut maximization

problem. With the aid of a specialized MAX-CUT solver, they found optimal solutions in reasonable

times (e.g., less than 10 minutes) for problems with up to 28 teams.

Elf et. al. also conjectured that the constrained problem is NP -hard, in general, but in P

for schedules which have an actual home/away assignment with n − 2 breaks. This conjecture

was (positively) closed in [32] by a transformation to 2SAT. Miyashiro and Matsui [33] also proved

that the problem with n breaks are also in P . Moreover, more recently, Miyashiro and Matsui

22

Miyashiro [34] modeled Break Minimization as a MAX RES CUT problem and applied Goemans

and Williamson’s approximation algorithm based on semi-definite programming [21]. The resulting

solutions are not optimal and the distance with respect to the optimum increases with the size of

the instances. In particular, they reported solutions with an additional 3.5 breaks on 24 teams.

Among other advanced techniques, one can also mention the Benders decomposition approach to

minimizing breaks, proposed by Rasmussen and Trick in [41].

As one can see, these approaches use rather “heavy machinery”, involving specialized integer

programming solvers and constraint programming tools. Moreover, the results were obtained by

experts in the underlying technologies and/or in modeling sport scheduling applications. In con-

trast, the simulated annealing approach that we proposed in [53] is conceptually simple and easy to

implement. Yet, it produces optimal solutions and is significantly faster for large instances.

1.6.2 Traveling Tournament Problem

The Traveling Tournament Problem (TTP) has raised significant interest in recent years since the

challenge instances were proposed. The work in [15] described both constraint and integer program-

ming approaches to the TTP which generate high-quality solutions. The combination of Lagrangian

relaxation and constraint programming proposed in [6] improved some of the results. Other lower

and upper bounds are given in [49], although the details of how they are obtained do not seem to

be available in all cases. Note that, similarly to Section 1.6.1 these results were obtained with rela-

tively heavy machinery and state-of-the-art techniques (for example, CP, IP, incorporated in solvers

combining different methods).

In 2003, we proposed a simulated algorithm, TTSA, exploring a large neighborhood that pro-

duced most of the best-known solutions to the instances [3]. Our neighborhood, or a subset of it,

was reused in subsequent work (e.g., [11, 12, 30, 44]) within tabu-search and GRASP approaches or,

even, simulated annealing. Recently, Rasmussen and Trick also considered Benders decomposition

approaches to the TTP [41]. A more detailed version of the work we proposed in 2003 can be found

in [4]. In addition, an enhanced version of the original TTSA algorithm was used in some of our

recent work [54], in order to solve more general variants of the TTP.

Unlike research in the direction of improving the best-known upper bounds, research on improv-

ing upon the best-known lower bounds for TTP instances has shown much slower progress. Two

main reasons for this are: first, the high degree of dependencies between problem variables and, sec-

ond, the increased complication arising from feasibility patterns involved. Some first lower bounds

on TTP instances were proven by Easton et.al. [15], through the computation of what they define

as the Independent Bound. These lower bounds were further improved by the same authors in [16].

The most success in obtaining lower bounds has been seen for a simpler class of TTP instances,

namely the CONST instances, which we describe later in Chapter 3. Lower bounds for this class of

instances have been given by Rasmussen and Trick [41], by Fujiwara et.al. [19], and by Urrutia and

Ribeiro in [50]. Finally, in a recent paper, Urrutia et.al. [51], utilizing the CONST bounds found

above, further improved the best-known lower bound on several of the harder TTP instances.

23

In both problems (Break Minimization and TTP), our results demonstrate the ability of simulated

annealing to successfully attack hard combinatorial optimization problems with much simpler ma-

chinery, compared to traditionally employed methods. In the following chapters, we are going to

describe our simulated annealing based schemes in more detail starting from simpler schemes, and

moving on to more complex ones.

Chapter 2

The Break Minimization Problem

In this chapter, we present a simulated annealing algorithm (BMSA) for Break Minimization, fol-

lowing the presentation of our ICAPS’05 paper [53].

The neighborhood used is very simple and consists of swapping the home/away teams of a

particular game, thus maintaining feasibility at all times. Its meta-heuristic fully automates the

cooling schedule and the termination criteria by collecting statistics online during the search process.

BMSA was applied to the instances proposed in [17]. It finds optimal solutions to all instances

regardless of its (random) starting schedules. On the larger instances involving more than 20 teams,

it produces significant performance improvements. In particular, it solves instances with 28 teams

in less than 20 seconds in average and never takes more than 2 minutes. Moreover, the experimental

results indicate that BMSA finds optimal or near-optimal solutions to these large instances within 10

seconds on a 1.66GHz PC. This is an important functionality, since sport scheduling often requires

a close interaction between the modeler and the optimization software.

The results are interesting for a number of reasons. First, they show that there exists a local

search algorithm for Break Minimization that is both conceptually simple and easy to implement.

Second, they indicate that the performance and the quality of the algorithm are excellent, even when

CPU time is severely limited. Third, and most intriguingly, this work complements our previous

work in [3], in identifying another sport scheduling application, after the TTP, where simulated

annealing is a very effective solution technique.

2.1 Problem Description

The sport scheduling application considered in this chapter consists of minimizing breaks in single

round-robin tournaments. In a round-robin tournament with n teams (n even), each team plays

against every other team over the course of n− 1 consecutive rounds. Every round consists of n/2

games, each team plays exactly once in a round and each game is played in one of the two opponents’

home. In other words, a feasible schedule satisfies the following constraints:

24

25

• Every team plays exactly once against every other team.

• Every team plays exactly once in every round.

• If team i plays at home against team j in round k, then team j plays against i away, i.e., at

i’s home.

Feasible schedules are represented by a n× (n−1) matrix S, such that S[i, k] = j if team i is playing

against team j at home in round k, and S[i, k] = −j if team i is playing against team j away in

round k. The following matrix

T\R 1 2 3 4 5

1 6 -2 4 3 -5

2 5 1 -3 -6 4

3 -4 5 2 -1 6

4 3 6 -1 -5 -2

5 -2 -3 6 4 1

6 -1 -4 -5 2 -3

is a feasible schedule with 6 teams. The schedule of team i is depicted in row i. For instance, team 3

plays team 4 away, then teams 5 and 2 at home, against team 1 away, and finishes at home against

team 6. The columns represent the various rounds.

One way to measure quality for schedules is the number of breaks. A break occurs when a team

plays two consecutive games at home or two consecutive games away. For instance, in the above

example, the games in rounds 2 and 3 of team 3 are both at home, contributing one break. The

total number of breaks in the example is 12. More formally, the number of breaks in a schedule is

equal to

#{(i, j) : S[i, j] · S[i, j + 1] > 0 , 1 ≤ i ≤ n , 1 ≤ j ≤ n− 2} (2.1)

and the goal is to minimize the number of breaks.

More precisely, we consider the minimization of breaks for a fixed schedule where only the

home/away decisions have been omitted. For instance, the problem may receive, as input, the

matrix

T\R 1 2 3 4 5

1 6 2 4 3 5

2 5 1 3 6 4

3 4 5 2 1 6

4 3 6 1 5 2

5 2 3 6 4 1

6 1 4 5 2 3

26

and must produce an assignment of home/away teams minimizing the number of breaks. More

formally, the input is a matrix S and the Break Minimization Problem amounts to finding a feasible

schedule So satisfying

∀i ∈ Teams , k ∈ Rounds : |So[i, j]| = S[i, j] (2.2)

and minimizing the number of breaks, where Teams = 1..n and Rounds = 1..n− 1 .

2.2 Neighborhood Definition

The neighborhood in the simulated annealing algorithm is remarkably simple: It consists of swapping

the home and away teams of a game in a given week. Since a schedule consists of n(n−1)/2 matches,

the neighborhood size is O(n2). In other words, the neighborhood consists only of the SwapHomes

move, which is defined in a similar way with Section 3.1.3 (the only difference being that we now

consider single round-robin schedules).

SwapHomes(S, Ti, Tj) The move swaps the home/away roles of teams Ti and Tj . In other words,

if team Ti plays at home (respectively away) against team Tj in round rk, SwapHomes(S, Ti, Tj) is

the same schedule as S, except that team Ti now plays away (respectively at home) against team

Tj at round rk. Consider the schedule S:

T\R 1 2 3 4 5

1 6 -2 4 3 -5

2 5 1 -3 -6 4

3 -4 5 2 -1 6

4 3 6 -1 -5 -2

5 -2 -3 6 4 1

6 -1 -4 -5 2 -3

The move SwapHomes(S, T3, T5) produces the schedule

T\R 1 2 3 4 5

1 6 -2 4 3 -5

2 5 1 -3 -6 4

3 -4 -5 2 -1 6

4 3 6 -1 -5 -2

5 -2 3 6 4 1

6 -1 -4 -5 2 -3

It is important to note that the neighborhood is connected and that the quality of a move can be

evaluated in constant time, since there are at most 2 adjacent teams on each affected line. As a

27

1. function Metropolis(S, T) {
2. bestCost ← cost(S)
3. best ← S
4. c ← 0
5. while c ≤ phaseLength do
6. select S′ ∈ neighborhood (S)
7. ∆← cost(S′)− cost(S)
8. if ∆ ≤ 0 then
9. accept ← true
10. else
11. accept← true with probability exp(−∆/T),
12. false otherwise
13. end if

14. if accept then
15. S ← S′

16. if cost(S) < bestCost then
17. bestCost ← cost(S)
18. best ← S
19. end if
20. c++
21. end if
22. end while
23. return S
24. }

Figure 2.1: The Metropolis Algorithm

result, the simulated annealing algorithm can evaluate a large number of moves over the course of

its computations.

Other, more complex, neighborhoods were considered, but they do not compare to the effec-

tiveness of this simple neighborhood when it is combined with simulated annealing. These more

complex neighborhoods swap (partial) rounds and (partial) team schedules and are very effective

for the TTP problem.

2.3 The BMSA Algorithm

We now present the simulated annealing algorithm used for Break Minimization, by gradually in-

troducing its building blocks.

2.3.1 The Metropolis Heuristic

The core of the algorithm is a Metropolis heuristic which selects schedules randomly from the

neighborhood [31]. The algorithm moves to the neighboring schedule if it decreases the number of

breaks or with probability exp(−∆/T) where ∆ = cost(S′)− cost(S), S is the current schedule, and

28

S′ is the selected neighbor. The algorithm is depicted in Figure 2.1. It receives, as input, a schedule

and the parameter T (the temperature). Note the termination condition (line 5) which specifies a

maximum number of iterations and lines 11-12 which define when to accept moves increasing the

number of breaks. The meaning of parameter phaseLength will become clear in the next section.

2.3.2 The Simulated Annealing Meta-Heuristic

To control the temperature T in the Metropolis heuristic, the algorithm uses a simulated annealing

meta-heuristic. More precisely, the simulated annealing algorithm iterates the Metropolis algorithm

for different values of T . It starts with high temperatures, where many non-improving moves are

accepted, and progressively decreases the temperature to focus the search.

The choice of the initial temperature and its updating rule is fully automated in the algorithm and

does not require any user intervention. These operations, as well as various termination conditions,

are derived from analogies with statistical physics. The rest of this section describes these elements in

detail, starting from the analogy with statistical physics in order to provide the necessary intuition.

(For an extensive treatment of the analogy, see [55, 56].)

2.3.3 Analogy with Statistical Physics

The analogy consists in viewing the search process (the Metropolis algorithm) as a physical system.

Given a temperature T and a starting state ST , the physical system performs a number of transitions

moving from state to state. The sequence of transitions is called a phase and the number of transitions

is called the phase length. It can be shown that, under some assumptions, the physical system

will reach an equilibrium. This means that, as the phase length goes to infinity, the probability

distribution of the states (i.e., the probability that the system be in a given state) converges to a

stationary distribution.

As a consequence, for a given temperature T , it makes sense to talk about the statistical measures

of the equilibrium, including its expected cost µT (C) and its variance σ2
T (C). Obviously, since the

search algorithm is finite, it does not reach an equilibrium in general, which is why one generally

talks about quasi-equilibria (which approximate the “real” equilibria).

2.3.4 Estimating the Statistical Measures

To automate the choice of the temperatures and the termination conditions, the algorithm esti-

mates the values µT (C) and σ2
T (C) for various pairs (T, ST). The estimation process is simple: It

simply consists of performing a relatively large number of transitions. If N denotes the number of

transitions and Ck denotes the cost after k transitions, the estimations can be specified as shown in

29

Equations 2.3 and 2.4. The value N is simply chosen as the phase length of the Metropolis algorithm.

µT (C) ≃ CT =
1

N

N
∑

k=1

Ck (2.3)

σ2
T (C) ≃ σ2

T =
1

N

N
∑

k=1

(Ck − CT)2 (2.4)

2.3.5 The Initial Temperature

Now that the values µT (C) and σ2
T (C) can be estimated, the temperature T is simply initialized to

α×σ∞, i.e., a constant times the estimation of the standard deviation when all moves are accepted.

This initialization is, in fact, a variation of the scheme proposed in [24].

2.3.6 Updating the Temperature

When the quasi-equilibrium is reached for a temperature T , simulated annealing decreases T before

applying the Metropolis algorithm again. The stationary distribution of the schedules generated

during a phase generally depends on the temperature T and, whenever the temperature is decreased,

the algorithm will move away from the previous equilibrium and reach a new one. Intuitively,

one would expect that significant decreases in the temperature (and hence few phases) require

longer phases to reach their quasi-equilibria. Therefore, there is a tradeoff between the temperature

decreases and the length of the phases.

As we saw in the experimental results on the TTP, slow cooling schedules, together with short

phases, produce high-quality solutions in reasonable time. The algorithm presented here adopts,

and automates, the same design decision. Informally speaking, the idea is to strive for a smooth

evolution of the equilibria. More precisely, the probabilities qk(S) of having a schedule with cost S

in the stationary cost distribution in phase k should be close to the same probabilities in phase k+1

or, in symbols,

∀S :
1

1 + β
<

qk(S)

qk+1(S)
< 1 + β, k = 1, 2, . . . , (2.5)

for some constant β.

Aarts and van Laarhoven [1], show that, under some reasonable assumptions, Equation 2.5 yields

the temperature update rule shown on Equation 2.6:

Tk+1 = Tk ·
(

1 +
ln(1 + β) · Tk

3σTk
(C)

)−1

(2.6)

where Tk is the temperature of phase k.

2.3.7 Early Phase Termination

A phase typically terminates when it has performed its maximum number of iterations. However,

now that estimations of the statistics of the quasi-equilibria are available, it is possible to speed up

30

the algorithm by detecting that the search process is close to a quasi-equilibrium [24]. Assuming

a normal distribution for the costs,1 the probability, for a chosen δ, of the cost being within the

interval

[µT (C)− δ · σT (C), µT (C) + δ · σT (C)] (2.7)

is equal to

erf(δ/
√

2)

where

erf(x) =
2√
π

∫ x

0

e−t2dt (2.8)

is the error function of the normal distribution. Thus, when the number of the schedules with costs

in the above interval divided by the number of transitions performed in the current phase gets close

enough to erf(δ/
√

2) (e.g., within 1%), the phase is terminated prematurely.

2.3.8 Early Termination of the Cooling Process and Reheats

The cooling process itself can also be terminated early. This happens when the temperature or the

variance estimation are too low, in which case the algorithm is typically stuck in a local optimum.

When this happens and additional computing time is available, the simulated annealing algorithm

performs a reheat, i.e., it resets the temperature to three times the temperature of the current best

schedule.2 The algorithm terminates when the computing time available is exhausted or when it has

performed a fixed number of reheats without improvement to the best solution.

2.3.9 The Simulated Annealing Algorithm (BMSA)

Figure 2.2 revisits the Metropolis algorithm to remove some of the initializations which are no longer

necessary and to incorporate the early termination criterion (line 3). Figure 2.3 depicts the complete

simulated annealing scheme (BMSA). The algorithm can be viewed as a hybridization of the schemes

proposed in [24, 1], together with some extensions to improve performance. Line 2 initializes the

schedule randomly, i.e., it assigns the home/away decisions randomly. Lines 3-6 performs a number

of initializations, including the temperature in line 5. Lines 8-24 iterate the core of the algorithm.

Each iteration consists of a number of phases (lines 9-21) and a reheat (lines 22-23). Line 22

simply increases the reheat counters, while line 23 resets the temperature to a constant times the

temperature of the best solution found so far. The phases are executed for maxPhases iterations

or until the temperature or the standard deviation are too small (line 21). A phase estimates the

mean and variance for the specific temperature (as indicated earlier in Subsection “Estimating the

Statistical Measures”), applies the (revised) Metropolis algorithm, and decreases the temperature.

If the cost has improved during the Metropolis algorithm, the reheat and phase counters are reset.

1Normal distribution assumptions are supported by numerical experiments for large random combinatorial opti-
mization problems; see also Section 4.3 in [55].

2This value was chosen based on very limited experimentation.

31

1. function Metropolis-Rev(S, T, µT , σ2
T , bestCost, best) {

2. c ← 0
3. while c ≤ phaseLength ∧ ¬equilibrium(µT , σ2

T) do
4. select S′ ∈ neighborhood (S)
5. ∆← cost(S′)− cost(S)
6. if ∆ ≤ 0 then
7. accept ← true
8. else
9. accept← true with probability exp(−∆/T),
10. false otherwise
11. end if
12. if accept then
13. S ← S′

14. if cost(S) < bestCost then
15. bestCost ← cost(S)
16. best ← S
17. end if
18. end if
19. c++
20. end while
21. return S
22. }

Figure 2.2: The Metropolis Algorithm Revisited

32

1. function BMSA() {
2. S ← a random initial schedule
3. bestCost ← cost(S)
4. best ← S
5. T ← α · σ∞

6. bestTemp ← T
7. reheat ← 0
8. while reheat ≤ maxReheats do
9. k ← 0
10. repeat
11. compute µT (C) and σ2

T (C)
12. oldBestCost ← bestCost
13. S ←Metropolis-Rev(S, T, µT (C), σ2

T (C))
14. if bestCost < oldBestCost then
15. reheat ← 0
16. k ← 0
17. bestTemperature ← T
18. end if

19. T ← T ·
(

1 + ln(1+β)·T
3σT (C)

)−1

20. k++
21. until k > maxPhases

∨

T ≤ ǫ
∨

σT (C) = 0

22. reheat++
23. T ← γ · bestTemperature
24. end while
25. return S
26. }

Figure 2.3: The Simulated Annealing Algorithm (BMSA)

2.4 Experimental Results with BMSA

This section presents the experimental results of the simulated annealing algorithm (BMSA), com-

pares them to the state-of-the-art algorithm presented in [17, 34] (MCMP), and indicates that BMSA

clearly dominates earlier approaches.

2.4.1 The Instances

The instances used in the experimental results were provided by the authors of [17]. For some

reason, these instances are not exactly the same as those they used in [17], although they are

generated in the same fashion. However, the authors also gave us their optimal solutions, as well as

their computation times on a double processor PC running Linux with two Intel Pentium 4 CPU

at 2.80GHz with 512 KB cache and 1GB RAM. Their code uses CPLEX 7.1 and runs only on one

CPU. Note also that these authors ran their code without any parameter tuning, leaving some room

33

MCMP BMSA
n Minimum Average Maximum Minimum Average Maximum

4 2 2.0 2 2 2.0 2
6 4 4.0 4 4 4.0 4
8 6 7.2 8 6 7.2 8
10 10 12.2 14 10 12.2 14
12 14 17.6 20 14 17.6 20
14 22 24.8 28 22 24.8 28
16 28 31.0 34 28 31.0 34
18 38 41.4 46 38 41.4 46
20 48 52.0 54 48 52.0 54
22 56 61.0 66 56 61.0 66
24 66 73.6 78 66 73.6 78
26 82 85.0 90 82 85.0 90
28* 94 99.2 104 94 99.2 104
28 - - - 92 98.00 106
30 - - - 110 116.23 124

Table 2.1: Quality of the Schedules: Number of Breaks in MCMP and BMSA

for possible improvements [18].

The instances are generated as follows [17]. For every value of n, an optimal schedule with n− 2

breaks is computed using Schreuder’s algorithm. Then, 10 different instances are created by random

permutations of the columns. The resulting schedules typically feature many more breaks in their

optimal solutions.

2.4.2 Experimental Setting for BMSA

The experimental results for BMSA were obtained as follows. For each instance, BMSA was applied

on 20 different random initial schedules with 100 phases of length

20 ∗ |neighborhood| = 20 ∗ n ∗ (n− 1)/2, (2.9)

maxReheats = 200, α = 0.5, β = 0.1, γ = 3, δ = 1.2. No special effort has been spent tuning these

parameters, which are rather natural. To increase performance, the algorithm also terminates early

when BMSA has not improved the best solution for 2t seconds, where t is the CPU time BMSA

took to find the current best solution. For instance, if BMSA found the current best solution after

t = 15 CPU seconds, it will terminate in the next 2t = 30 seconds if no better solution is found.

BMSA was run on an AMD Athlon MP 2000+ at 1.66GHz.

2.4.3 Quality of the Schedules

Table 2.1 depicts the quality results. It compares MCMP, a complete search method, and BMSA. A

line in the table corresponds to a number of teams n and the results report the minimum, maximum,

and average number of breaks for all instances with n teams. Interestingly, for every number of teams

34

MCMP BMSA
n Minimum Average Maximum Minimum Average Maximum

4 0.0 0.00 0.0 0.0 0.00 0.0
6 0.0 0.00 0.0 0.0 0.00 0.0
8 0.0 0.00 0.0 0.0 0.00 0.1
10 0.0 0.01 0.0 0.0 0.10 0.2
12 0.0 0.01 0.0 0.1 0.29 0.5
14 0.0 0.04 0.1 0.3 0.57 1.3
16 0.0 0.08 0.1 0.7 1.02 3.1
18 0.1 0.43 1.6 1.2 2.36 16.0
20 0.3 0.68 2.1 1.8 3.06 24.8
22 0.4 3.05 18.0 2.6 4.42 25.3
24 0.8 24.00 179.9 3.6 9.52 71.4
26 2.2 53.04 435.6 4.9 13.30 92.2
28* 7.0 465.60 1905.0 6.8 18.76 104.9
28 - - - 5.6 22.07 296.9
30 - - - 8.2 78.58 684.1

Table 2.2: Performance Comparison: Computation Times in CPU seconds of MCMP and BMSA

n and every instance with n teams, BMSA finds the optimal number of breaks and this regardless of

the starting point. In other words, for every number of teams, BMSA finds the optimal solution for

all instances and all the starting points. For this reason, we isolate these last rows in the table for

clarity. Note that there are two lines for the results for 28 teams. The line 28* reports only results

on the five instances that MCMP can solve optimally. Note also that, for 30 teams, the BMSA

solutions are 6 breaks below those reported in [34].

2.4.4 Performance of the Algorithm

Table 2.2 depicts the computation times in seconds for both MCMP and BMSA. One has to bear

in mind that the results for MCMP are on a 2.8GHz machine, while the results for BMSA are for a

1.66GHz machine (about 40% slower). When n ≤ 20, MCMP is extremely fast and BMSA does not

bring any advantage besides its simplicity.

For larger number of teams, BMSA brings significant benefits and it scales much better than

MCMP. For n = 28, BMSA is about 25 times faster than MCMP without even accounting for the

faster speed of their machine. For up to 28 teams, BMSA is also faster than the approximation

algorithm and produces superior solutions. The efficiency of the algorithm seems comparable on 30

teams, although BMSA once again significantly reduces the number of breaks. As a consequence,

the performance, and the scaling, of BMSA is quite remarkable, especially in light of the simplicity

of the implementation, its generality, and the quality of the results.

35

BMSA-R
n Minimum Average Maximum

4 0.0 0.00 0.0
6 0.0 0.00 0.0
8 0.0 0.00 0.0
10 0.0 0.07 0.1
12 0.1 0.17 0.3
14 0.2 0.33 0.8
16 0.3 0.57 1.1
18 0.7 1.36 17.2
20 1.0 1.86 9.1
22 1.4 2.96 18.0
24 2.0 6.18 42.5
26 2.8 11.41 95.2
28 3.1 16.10 116.5
30 4.2 61.39 719.8

Table 2.3: Performance of BMSA-R: Computation Times in CPU seconds

2.4.5 Restarting

It is also interesting to study the impact of restarting the algorithm from scratch, periodically. Table

2.3 reports the quality and performance results for BMSA-R where maxReheats = 20 but the re-

computation is restarted from scratch after that for a number of times. Note that the results are

given for all instances with 28 and 30 teams. On the average, BMSA-R slightly dominates BMSA,

although some instances are solved faster with BSMA. The quality of the solutions of BMSA and

BMSA-R is the same on these instances.

2.4.6 Quality under Strict Time Constraints

It is often the case in sport scheduling that users like very fast interactions with the scheduler to

find and evaluate different schedules quickly (e.g., [35]). It is thus interesting to see how BMSA

behaves when the CPU time is limited. Tables 2.4, 2.5, and 2.6 depict the results for large number

teams (n = 24, 26, 28) under different time constraints, where the CPU time is limited to at most

1, 2, 5, 10, . . . seconds. Interestingly, for 24, 26, and 28 teams, BMSA finds near-optimal results in

about 10 seconds. This clearly shows that BMSA outperforms the approximation algorithm in [34],

both in quality and efficiency.

36

n = 24 BMSA under Restricted CPU times
sec Minimum Average Maximum

1 138 160.38 170
2 102 125.31 140
5 66 75.02 82
10 66 74.02 78
20 66 73.80 78
50 66 73.63 78
100 66 73.60 78

Table 2.4: Quality of BMSA with Limited CPU Time: n=24

n = 26 BMSA under Restricted CPU times
sec Minimum Average Maximum

1 192 206.28 216
2 142 169.35 184
5 82 95.54 110
10 82 85.74 92
20 82 85.32 92
50 82 85.08 90
100 82 85.00 90

Table 2.5: Quality of BMSA when Limited CPU Time: n=26

n = 28 BMSA under Restricted CPU times
sec Minimum Average Maximum

1 230 251.85 266
2 198 217.77 230
5 98 131.11 148
10 92 98.84 108
20 92 98.62 106
50 92 98.17 106
100 92 98.05 106
200 92 98.02 106

Table 2.6: Quality of BMSA when Limited CPU Time: n=28

Chapter 3

The Traveling Tournament

Problem

In this chapter, we give a detailed account of our simulated annealing approach to the Traveling

Tournament Problem, both in the original version of the problem, introduced by Easton et.al.

in [49, 15], and in variants of the problem that have been proposed over the years (and can also be

found in [49].)

Our first approach to the TTP was presented at the CP’AI’OR’03 workshop [3]. A more complete

version of that work can be found in [4]. In CP’AI’OR’06 [54] we used an enhanced version of the

scheme presented in [4] to deal with different TTP variants.

Our main simulated annealing algorithm, TTSA, uses a large neighborhood with complex moves,

and includes advanced techniques, such as strategic oscillation and reheats to balance the exploration

of feasible and infeasible regions and to escape local minima at very low temperatures. Our solu-

tions match the best-known solutions on small instances, and significantly improve over previous

approaches on most of the larger instances. Moreover, TTSA is shown to be robust, in terms of

worst solution quality over a large number (∼ 50) of independent runs.

This chapter provides a more comprehensive coverage of our work in [3, 4, 54], and also explores,

in a detailed fashion, issues not previously addressed in our work.

3.1 The Basic TTP Problem

The Traveling Tournament Problem was introduced by Easton, Nemhauser and Trick [49, 15], which

contains many interesting discussions on Sport Scheduling. An input consists of n teams (n even)

and an n×n symmetric matrix d, such that dij represents the distance between the homes of teams Ti

and Tj . A solution is a schedule in which each team plays with each other twice, once in each team’s

home. Such a schedule is called a double round-robin tournament. It should be clear that a double

round-robin tournament has 2n− 2 rounds. It turns out that tournaments with 2n− 2 rounds can

37

38

be constructed for every n and we only consider tournaments with this minimal number of rounds.

In such tournaments, the number of games per round is always n.

For a given schedule S, the cost of a team is the total distance that it has to travel starting from

its home, playing the scheduled games in S, and returning back home. The cost of a solution is

defined as the sum of the cost of every team.

The goal is to find a schedule with minimum cost satisfying the following two constraints:

1. Atmost Constraints: No more than three consecutive home or away games are allowed for

any team.

2. Norepeat Constraints: A game of Ti at Tj’s home cannot be followed by a game of Tj

at Ti’s home.

Thus, a double round-robin schedule is feasible if it satisfies the atmost and norepeat constraints

and is infeasible otherwise.

In this work, a schedule is represented by a table indicating the opponents of the teams. Each

line corresponds to a team and each column corresponds to a round. The opponent of team Ti at

round rk is given by the absolute value of element (i, k). If (i, k) is positive, the game takes place

at Ti’s home, otherwise at Ti’s opponent home. Consider, for instance, the schedule S for 6 teams

(and thus 10 rounds).

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6

2 5 1 -3 -6 4 3 6 -4 -1 -5

3 -4 5 2 -1 6 -2 1 -6 -5 4

4 3 6 -1 -5 -2 1 5 2 -6 -3

5 -2 -3 6 4 1 -6 -4 -1 3 2

6 -1 -4 -5 2 -3 5 -2 3 4 1

Schedule S specifies that team T1 has the following schedule. It successively plays against teams T6

at home, T2 away, T4 at home, T3 at home, T5 away, T4 away, T3 away, T5 at home, T2 at home, T6

away. The travel cost of team T1 is

d12 + d21 + d15 + d54 + d43 + d31 + d16 + d61. (3.1)

Observe that long stretches of games at home do not contribute to the travel cost but are limited

by the atmost constraints. This kind of tension is precisely why this problem is hard to solve in

practice.

3.1.1 Overall Design of Local Search

This thesis proposes an advanced simulated annealing algorithm (TTSA) for the TTP. As usual, the

algorithm starts from an initial configuration. Its basic step moves from the current configuration c

to a configuration in the neighborhood of c. TTSA is based on four main design decisions:

39

1. Constraints are separated into two groups: hard constraints, which are always satisfied by the

configurations, and soft constraints, which may or may not be satisfied. The hard constraints

are the round-robin constraints, while the soft constraints are the norepeat and atmost con-

straints. In other words, each configuration in the search represents a double round-robin

tournament, which may or may not violate the norepeat and atmost constraints. Exploring

the infeasible region seems to be particularly important for this problem. Obviously, to drive

the search toward feasible solutions, TTSA modifies the original objective function to include

a penalty term.

2. TTSA is based on a large neighborhood of size O(n3), where n is the number of teams. In

addition, these moves may affect significant portions of the configurations. For instance, they

may swap the schedule of two teams, which affects 4(n − 2) entries in a configuration. In

addition, some of these moves can be regarded as a form of ejection chains which is often used

in tabu search [28, 40].

3. TTSA dynamically adjusts the objective function to balance the time spent in the feasible and

infeasible regions. This adjustment resembles the strategic oscillation idea [20] successfully

in tabu search to solve generalized assignment problems [13], although the details differ since

simulated annealing is used as the meta-heuristics.

4. TTSA also uses reheats (e.g., [9]) to escape local minima at low temperatures. The “reheats”

increase the temperature again and divide the search in several phases.

We next explore some of these aspects in more detail. Since configurations are double round-robin

tournaments, they are called schedules in the following.

3.1.2 Initial Solutions

The algorithm to generate random schedules satisfying the hard constraints is depicted in Figure

3.1. The algorithm uses a set Q containing all possible 〈Team,Week〉 pairs necessary for defining

a complete round-robin schedule. The set Q is initialized in line 2, before calling the recursive

procedure generateSchedule.

This procedure returns true (and the schedule S) whenever Q is empty (lines 7-9). Otherwise,

it selects the pair 〈t, w〉, which is lexicographically smallest in Q (line 10), and attempts to assign a

value to table entry S[t, w], by considering all possible choices in random order (lines 11-12). The

set of possible choices contains all teams t′ 6= t, both at home and away (in other words, all values

t′ and −t′, for t′ 6= t).

If there is no scheduled game for the selected opponent |o| in week w, then the schedule S is

updated and the algorithm is called recursively with the set Q where 〈t, w〉 and 〈|o|, w〉 have been

removed (line 20). If no value can be assigned to S[t, w], then the procedure returns false (line 25).

This procedure is very simple and can be improved considerably; however, it appears sufficient for

finding schedules satisfying the hard constraints reasonably fast, for n ≤ 16.

40

1. function RandomSchedule() {
2. Q← {〈t, w〉 | t ∈ Teams & w ∈Weeks}
3. generateSchedule(Q, S)
4. return S
5. }

6. function generateSchedule(Q, S) {
7. if Q = ∅ then
8. return true
9. end if

10. select 〈t, w〉 ∈ Q such that ∀〈t′, w′〉 ∈ Q : 〈t′, w′〉 ≥ 〈t, w〉
11. Choices ← {1,−1, . . . , t− 1,−(t− 1), t + 1,−(t + 1), . . . , n,−n}
12. forall o ∈ Choices in random order do
13. if 〈|o|, w〉 /∈ Q then
14. S[t, w]← o
15. if o > 0 then
16. S[o, w]← −t
17. else
18. S[−o, w]← t
19. end if
20. if generateSchedule(Q \ {〈t, w〉, 〈|o|, w〉}, S) then
21. return true
22. end if
23. end if
24. end forall
25. return false
26. }

Figure 3.1: Generation of Random Initial Schedules

41

3.1.3 The Neighborhood

The neighborhood of a schedule S is the set of the (possibly infeasible) schedules which can be

obtained by applying one of five types of moves. The first three types of moves have a simple

intuitive meaning, while the last two generalize them.

SwapHomes(S, Ti, Tj) This move swaps the home/away roles of teams Ti and Tj . In other

words, if team Ti plays home against team Tj at round rk, and away against Tj ’s home at round

l, SwapHomes(S, Ti, Tj) is the same schedule as S, except that now team Ti plays away against

team Tj at round rk, and home against Tj at round rl. There are O(n2) such moves. Consider the

schedule S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6

2 5 1 -3 -6 4 3 6 -4 -1 -5

3 -4 5 2 -1 6 -2 1 -6 -5 4

4 3 6 -1 -5 -2 1 5 2 -6 -3

5 -2 -3 6 4 1 -6 -4 -1 3 2

6 -1 -4 -5 2 -3 5 -2 3 4 1

The move SwapHomes(S, T2, T4) produces the schedule:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6

2 5 1 -3 -6 -4 3 6 4 -1 -5

3 -4 5 2 -1 6 -2 1 -6 -5 4

4 3 6 -1 -5 2 1 5 -2 -6 -3

5 -2 -3 6 4 1 -6 -4 -1 3 2

6 -1 -4 -5 2 -3 5 -2 3 4 1

42

SwapRounds(S, rk, rl) The move simply swaps rounds rk and rl. There are also O(n2) such

moves. Consider the schedule S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6

2 5 1 -3 -6 4 3 6 -4 -1 -5

3 -4 5 2 -1 6 -2 1 -6 -5 4

4 3 6 -1 -5 -2 1 5 2 -6 -3

5 -2 -3 6 4 1 -6 -4 -1 3 2

6 -1 -4 -5 2 -3 5 -2 3 4 1

The move SwapRounds(S, r3, r5) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 -5 3 4 -4 -3 5 2 -6

2 5 1 4 -6 -3 3 6 -4 -1 -5

3 -4 5 6 -1 2 -2 1 -6 -5 4

4 3 6 -2 -5 -1 1 5 2 -6 -3

5 -2 -3 1 4 6 -6 -4 -1 3 2

6 -1 -4 -3 2 -5 5 -2 3 4 1

SwapTeams(S, Ti, Tj) This move swaps the schedule of Teams Ti and Tj (except, of course, when

they play against each other). There are O(n2) such moves again. Consider the schedule S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6

2 5 1 -3 -6 4 3 6 -4 -1 -5

3 -4 5 2 -1 6 -2 1 -6 -5 4

4 3 6 -1 -5 -2 1 5 2 -6 -3

5 -2 -3 6 4 1 -6 -4 -1 3 2

6 -1 -4 -5 2 -3 5 -2 3 4 1

The move SwapTeams(S, T2, T5) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -5 4 3 -2 -4 -3 2 5 -6

2 5 -3 6 4 1 -6 -4 -1 3 -5

3 -4 2 5 -1 6 -5 1 -6 -2 4

4 3 6 -1 -2 -5 1 2 5 -6 -3

5 -2 1 -3 -6 4 3 6 -4 -1 2

6 -1 -4 -2 5 -3 2 -5 3 4 1

43

Note that, in addition to the changes in lines 2 and 5, the corresponding lines of the opponents of Ti

and Tj must be changed as well. As a consequence, there are four values per round (column) that

are changed (except when Ti and Tj meet).

It turns out that these three moves are not sufficient for exploring the entire search space and,

as a consequence, they lead to suboptimal solutions for large instances. To improve these results, it

is important to consider two more general moves. Although these moves do not have the apparent

interpretation of the first three, they are similar in structure and they significantly enlarge the

neighborhood, resulting to a more connected search space. More precisely, these moves are partial

swaps: they swap a subset of the schedule in rounds ri and rj or a subset of the schedule for teams Ti

and Tj . The benefits from these moves come from the fact that they are not as global as the “macro”-

moves SwapTeams and SwapRounds. As a consequence, they may achieve a better tradeoff between

feasibility and optimality by improving feasibility in one part of the schedule, while not breaking

feasibility in another one. They are also more “global” than the “micro”-moves SwapHomes.

PartialSwapRounds(S, Ti, rk, rl): This move considers team Ti and swaps its games at rounds

rk and rl. Then the rest of the schedule for rounds rk and rl is updated (in a deterministic way) to

produce a double round-robin tournament. Consider the schedule S

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 2 3 -5 -4 -3 5 4 -6

2 5 1 -1 -5 4 3 6 -4 -6 -3

3 -4 5 4 -1 6 -2 1 -6 -5 2

4 3 6 -3 -6 -2 1 5 2 -1 -5

5 -2 -3 6 2 1 -6 -4 -1 3 4

6 -1 -4 -5 4 -3 5 -2 3 2 1

and the move PartialSwapRounds(S, T2, r2, r9). Obviously, swapping the game in rounds r2 and r9

would not lead to a round-robin tournament. It is also necessary to swap the games of team 1, 4,

and 6 in order to obtain:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 4 2 3 -5 -4 -3 5 -2 -6

2 5 -6 -1 -5 4 3 6 -4 1 -3

3 -4 5 4 -1 6 -2 1 -6 -5 2

4 3 -1 -3 -6 -2 1 5 2 6 -5

5 -2 -3 6 2 1 -6 -4 -1 3 4

6 -1 2 -5 4 -3 5 -2 3 -4 1

This move, and the next one, can thus be regarded as a form of ejection chain [28, 40].

Finding which games to swap is not difficult: it suffices to find the connected component which

contains the games of Ti in rounds rk and rl in the graph where the vertices are the teams and where

44

an edge contains two teams if they play against each other in rounds rk and rl. All the teams in

this component must have their games swapped. Note that there are O(n3) such moves.

PartialSwapTeams(S, Ti, Tj , rk) This move considers round rk and swaps the games of teams

Ti and Tj . Then, the rest of the schedule for teams Ti and Tj (and their opponents) is updated to

produce a double round-robin tournament. Note that, as was the case with SwapTeams, four entries

are affected for each round considered. There are also O(n3) such moves. Consider the schedule S

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6

2 5 1 -3 -6 4 3 6 -4 -1 -5

3 -4 5 2 -1 6 -2 1 -6 -5 4

4 3 6 -1 -5 -2 1 5 2 -6 -3

5 -2 -3 6 4 1 -6 -4 -1 3 2

6 -1 -4 -5 2 -3 5 -2 3 4 1

The move PartialSwapTeams(S, T2, T4, r9) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 2 3 -5 -4 -3 5 4 -6

2 5 1 -1 -5 4 3 6 -4 -6 -3

3 -4 5 4 -1 6 -2 1 -6 -5 2

4 3 6 -3 -6 -2 1 5 2 -1 -5

5 -2 -3 6 2 1 -6 -4 -1 3 4

6 -1 -4 -5 4 -3 5 -2 3 2 1

3.1.4 Simulated Annealing

TTSA uses a simulating annealing meta-heuristic to explore the neighborhood graph [26]. TTSA

starts from a random initial schedule (which can be obtained through the use of RandomSchedule,

for example). TTSA then follows the traditional simulating algorithm scheme. Given a temperature

T , the algorithm randomly selects one of the moves in the neighborhood and computes the variation

∆ in the objective function produced by the move. If ∆ < 0, TTSA applies the move. Otherwise,

it applies the move with probability exp(−∆/T).

As typical in simulated annealing, the probability of accepting a non-improving move decreases

over time. This behavior is obtained by decreasing the temperature as follows. TTSA uses a variable

counter which is incremented for each non-improving move and reset to zero when the best solution

found so far is improved. When counter reaches a particular upper limit, the temperature is updated

to T · β (where β is a fixed constant smaller than 1) and counter is reset to zero.

Figure 3.2 depicts the simulated annealing algorithm in some more detail. The algorithm keeps

an implicit representation of the neighborhood as a set of pairs and triplets, since all moves can be

45

1. function TTSA-BASIC(S, T, w) {
2. find random schedule S
3. bestSoFar ← cost(S)
4. counter ← 0
5. while phase ≤ maxP do
6. phase ← 0
7. counter ← 0
8. while counter ≤ maxC do
9. let S′ a random schedule in neighborhood (S)
10. if cost(S′) < cost(S) then
11. accept ←true
12. else
13. accept ← true with probability exp(−∆/T),
14. false otherwise
15. end if
16. if accept then
17. S ← S′

18. if cost(S′) < bestSoFar then
19. counter ← 0; phase ← 0
20. bestSoFar ← cost(S ′)
21. else
22. counter++
23. end if
24. end if
25. end while
26. phase++
27. T ← T · β;
28. end while
29. }

Figure 3.2: The Basic Simulated Annealing Algorithm

characterized this way. For instance, the partialSwapTeam(S, Ti, Tj, rk) are characterized by triplets

of the form 〈Ti, Tj, rk〉. Note that a Metropolis algorithm can be obtained by removing line 27 which

updates the temperature.

The algorithm, as presented in Figure 3.2, only provides the basic structure of the TTSA algo-

rithm and doesn’t show how constraints are handled, or other advanced features, such as reheats or

strategic oscillation. In the following paragraphs, after spending some time explaining those features,

we are going to give the pseudo-code for the full version of TTSA.

3.1.5 The Objective Function

As mentioned earlier, the configurations in algorithm TTSA are schedules which may or may not

satisfy the norepeat and atmost constraints. In addition, the moves are not guaranteed to maintain

feasibility even if they start with a feasible schedule. The ability to explore infeasible schedules

appears critical for the success of simulated annealing on the TTP.

46

To drive toward feasible solution, the standard objective function function cost is replaced by a

more complex objective function which combines travel distances and the number of violations. The

new objective function C is defined as follows:

C(S) =

cost(S), if S is feasible,
√

cost(S)2 + [w · f(nbv(S))]
2
, otherwise

(3.2)

where nbv(S) denotes the number of violations of the norepeat and atmost constraints, w is a weight,

and f : N → N is a sub-linear function such that f(1) = 1.

It is interesting to give the rationale behind the choice of f . The intuition is that the first

violation costs more than subsequent ones, since adding 1 violation to a schedule with 6 existing

ones does not make much difference. More precisely, crossing the feasible/infeasible boundary costs

w, while v violations only cost wf(v), where f(v) is sub-linear in v. In our experiments, we chose

f(v) = 1 +
√

v ln v/2 (3.3)

This choice ensures that f does not grow too slowly to avoid solutions with too many violations.

Of course, it should be clear that TTSA applies the simulated annealing meta-heuristic, not on

the travel distance function cost, but on the function C. Also, TTSA must keep track of the best

feasible solution found so far.

3.1.6 Strategic Oscillation

TTSA also includes a strategic oscillation strategy which has been often used in tabu search when

the local search explores both the feasible and infeasible region (e.g., [20, 13]). The key idea is to

vary the weight parameter w during the search. In advanced tabu-search applications (e.g., [13]),

the penalty is updated according to the frequencies of feasible and infeasible configurations in the

last iterations. Such a strategy is meaningful in that context, but is not particularly appropriate

for simulated annealing since very few moves may be selected. TTSA uses a very simple scheme.

Each time it generates a new best solution (line 28 of the algorithm), TTSA multiplies w by some

constant δ > 1, if the new solution is infeasible, or divide w by some constant θ > 1, if the new

solution is feasible.

The rationale here is to keep a balance between the time spent exploring the feasible region

and the time spent exploring infeasible schedules. After having spent a long time in the infeasible

region, the weight w, and thus the penalty for violations, will become large and it will drive the

search toward feasible solutions. Similarly, after having spent a long time in the feasible region, the

weight w, and thus the penalty for violations, will become small and it will drive the search toward

infeasible solutions. In our experiments, we chose δ = θ for simplicity.

3.1.7 Reheats

The last feature of TTSA is the use of reheating, a generalization of the standard simulated annealing

cooling schemes that has been proposed by several authors (see, for example, [38]). The basic idea

47

is that, once simulated annealing reaches very low temperatures, it has difficulties escaping from

local minima, because the probability of accepting non-decreasing moves is very low. Reheating is

the idea of increasing the temperature again to escape the current local minimum.

TTSA uses a relatively simple reheating method. The idea is to reheat upon completion of the

outermost loop by increasing the temperature to a constant γ (typically γ = 2) times its value when

the best solution was found. TTSA now terminates when the number of consecutive reheats, without

improving the best solution, reaches a given limit. The algorithm including all these modifications

is shown in Figure 3.3.

3.2 Experimental Results on the Basic TTP

This section describes the experimental results on TTSA. It first reports the results for the standard

version, which aims at producing the best possible schedules. The impact of the various components

is then studied in detail. The next set of experimental results describes how the solution quality

evolves over time. The section continues with a discussion on a fast cooling version of TTSA, which

improves TTSA’s ability to find good solutions quickly. Section 3.2 concludes with the best solutions

found using the standard version of TTSA, over the course of this research.

3.2.1 Quality and Performance of TTSA

TTSA was applied to the National League benchmark described in [15, 49] (we did not consider

n = 6, since TTSA always finds the optimal solution). We experimented with different values

for the parameters described previously. The most successful version of the algorithm uses a very

slowly cooling system (β ≃ .9999), a large number of phases (so that the system can reach low

temperatures), and long phases. In order to avoid big oscillations in the value of the penalty weight

w, the parameters δ and θ were chosen to be close to 1 (≃ 1.03). For each instance set (i.e., for

every value of n), in all 50 runs, the parameters had the same initial values.

Table 3.1 describes the quality of the results for 50 runs of TTSA on each of the instances.

The first column gives the number of teams, the second column gives the best known solutions

at the time of writing our CP-AI-OR’03 paper [3] (January 12, 2003), as shown in [49]. These

solutions are obtained using a variety of techniques, including constraint and integer programming,

and Lagrangian relaxation. It is not clear, however, how some of these, and newer, results have been

obtained. See [49] for more details. The next columns give the best solution found over the 50 runs,

the worst solution, the average quality of the solutions, and the standard deviation.

Table 3.2 gives the CPU time in seconds needed by TTSA for producing these results on an

AMD Athlon(TM) at 1544 MHz. It gives the time to find the best solution, T for min, the average

time, mean(T), and the standard deviation over 50 runs, std(T). The parameter values for obtaining

the results are shown on Table 3.3.

48

1. function TTSA(S, T, w) {
2. S ← RandomSchedule()
3. bestFeasible ←∞; nbf ←∞
4. bestInfeasible ←∞; nbi ←∞
5. reheat ← 0; counter ← 0
6. while reheat ≤ maxR do
7. phase ← 0
8. while phase ≤ maxP do
9. counter ← 0
10. while counter ≤ maxC do
11. let S′ a random schedule in neighborhood (S)
12. if C(S′) < C(S) or
13. nbv(S′) == 0 and C(S′) < bestFeasible or
14. nbv(S′) > 0 and C(S′) < bestInfeasible
15. then
16. accept ← true
17. else
18. accept← true with probability exp(−∆C/T),
19. false otherwise
20. end if
21. if accept then
22. S ← S′

23. if nbv(S) == 0 then
24. nbf ← min(C(S), bestFeasible)
25. else
26. nbi ← min(C(S), bestInfeasible)
27. end if
28. if nbf < bestFeasible or nbi < bestInfeasible then
29. reheat ← 0; counter ← 0; phase ← 0
30. bestTemperature ← T
31. bestFeasible ← nbf
32. bestInfeasible ← nbi
33. if nbv(S) == 0 then
34. w ← w/θ
35. else
36. w ← w · δ
37. end if
34. else
35. counter++
36. end if
37. end while
38. phase++
39. T ← T · β
40. end while
41. reheat++
42. T ← γ · bestTemperature
43. end while
44. }

Figure 3.3: The Simulated Annealing Algorithm (TTSA)

49

n Best (Nov. 2002) min(D) max(D) mean(D) std(D)

8 39721 39721 39721 39721 0
10 61608 59583 59806 59605.96 53.36
12 118955 112800 114946 113853.00 467.91
14 205894 190368 195456 192931.86 1188.08
16 281660 267194 280925 275015.88 2488.02

Table 3.1: Solution Quality of TTSA on the TTP

n T for min mean(T) std(T)

8 596.6 1639.33 332.38
10 8084.2 40268.62 45890.30
12 28526.0 68505.26 63455.32
14 418358.2 233578.35 179176.59
16 344633.4 192086.55 149711.85

Table 3.2: Computation Times of TTSA on the TTP

n T0 β w0 δ θ maxC maxP maxR γ

8 400 0.9999 4000 1.04 1.04 5000 7100 10 2
10 400 0.9999 6000 1.04 1.04 5000 7100 10 2
12 600 0.9995 10000 1.03 1.03 4000 1385 50 1.6
14 600 0.9999 20000 1.03 1.03 4000 7100 30 1.8
16 700 0.9999 60000 1.05 1.05 10000 7100 50 2

Table 3.3: Parameter Values for the TTSA Instances

50

Method Best Worst Mean Std

TTSA 190,514 196,989 194,560 1,631
TTSA(PS) 191,145 197,383 194,694 1,304
TTSA(NR) 196,561 205,094 200,680 2,152
TTSA(150) 197,781 211,347 203,621 3,157
TTSA(300) 195,627 202,158 198,004 964
TTSA(450) 204,872 215,485 206,862 1,428
TTSA(600) 213,938 218,879 216,412 1,096

Table 3.4: Impact of TTSA Components on Solution Quality (14 Teams)

Method T0 β w0 δ θ maxC maxP maxR γ

TTSA 1100 0.999 18000 1.03 1.03 3000 710 1000 1.4
TTSA(PS) 1100 0.999 18000 1.03 1.03 3000 710 1000 1.4
TTSA(NR) 1100 0.9999 18000 1.03 1.03 3000000 ∞ 0 1
TTSA(150) 150 1 18000 1.03 1.03 ∞ 0 0 1
TTSA(300) 300 1 18000 1.03 1.03 ∞ 0 0 1
TTSA(450) 450 1 18000 1.03 1.03 ∞ 0 0 1
TTSA(600) 600 1 18000 1.03 1.03 ∞ 0 0 1

Table 3.5: Parameter Values for Experiments on the Impact of the Components (14 Teams)

TTSA improved all the best-known solutions (at the time of the experiments) on instances with

at least 10 teams. TTSA was the first algorithm to go lower than 60,000 on 10 teams, 190,000 for

14 teams and 270,000 for 16 teams. The improvements ranged between 2% to 5%. The table also

shows that the worst solution of TTSA was always smaller than or equal to the best-known solution,

indicating the robustness of TTSA.

3.2.2 Impact of the Components

TTSA includes a variety of components and it is interesting to measure how important they are in the

performance and quality of the algorithm. Table 3.4 compares various versions of the algorithm on

14 teams with the parameters shown on table 3.5. Each version leaves out some component of TTSA:

TTSA(PS) considers partial moves only, TTSA(NR) does not include reheats, and the TTSA(T)

versions are not based on simulated annealing but on a Metropolis algorithm with temperature

T. All versions were executed at least 35 times, for 100,000 seconds each time. The table reports

the minimum, maximum, and mean solution values, as well as the standard deviation. It is of

interest to observe that considering only one of the partial moves degrades solution quality. It was

apparent early on in our research that both moves bring benefits, since most of our best solutions

were obtained when we added PartialSwapTeams.

It is interesting to observe that TTSA outperforms all other versions on these experiments.

51

Time Method Best Worst Mean Std

TTSA 192,040 198,140 195,349 1,311
50,000 sec

TTSA(PS) 193,144 202,435 196,112 1,755

TTSA 190,514 196,989 194,560 1,631
100,000 sec

TTSA(PS) 191,145 197,383 194,694 1,304

TTSA 190,514 196,989 194,186 1,550
150,000 sec

TTSA(PS) 191,060 196,665 194,300 1,289

Table 3.6: Impact of Full Moves on the Solution Quality of TTSA (14 Teams)

TTSA(PS) is slightly outperformed by TTSA, although the full moves can be thought as a combina-

tion of partial moves. The full moves seem to bring some benefit because of their ability to diversify

the schedule more substantially. The use of reheats produce significant benefits. The performance

of the algorithm degrades significantly when they are not used, raising the mean from about 194,000

to about 200,000. Similar observations hold for the Metropolis version which are largely dominated

in general.

Since the results with and without full moves were rather close, another set of experiments was

carried out to understand their effect more precisely. These results are shown in Table 3.6 which

evaluates TTSA and TTSA(PS) when the time limit is varied. Interestingly, the results seem to

indicate that full swaps are beneficial early in the search and become marginal when long runs are

considered.

3.2.3 Solution Quality over Time

As earlier results demonstrate, TTSA is computationally intensive, at least to find very high-quality

solutions . It is thus important to study how solution quality evolves over time in TTSA. Figures

3.4 and 3.5 depict the solution values over time for many runs with 12 and 14 teams. The figures

depict the superposition of the curves for many runs.

It is interesting to observe the sharp initial decline in the solution values which is followed by a

long tail where improvements are very slow. Moreover, at the transition point between the decline

and the tail, TTSA typically has improved the previous best solutions. In particular, TTSA takes

about 1,000 seconds to beat the previous best results for 12 teams, after which improvements proceed

at a much slower rate. The same phenomenon arises for 14 teams.

3.2.4 Fast Cooling

As mentioned earlier, the parameters of TTSA were chosen to find the best possible solutions without

much concern about running times. The experimental results indicate that TTSA generally exhibits

a sharp initial decline followed by a long tail. Hence it is intriguing to evaluate the potential of

TTSA to find “good” solutions quickly by using a fast cooling.

52

0 1000 2000 3000 4000 5000 6000 7000
 111916

 114151

 116386

 118620

 120855

 123090

 125324

 127559

 129794

 132028

 134263

 136498

 138733

 140967

 143202

 145437

 147671

 149906

 152141

 154375

 156610

 158845

 161079

 163314

 165549

Solution value vs. time for 12 teams

seconds

Figure 3.4: Solution Quality over Time for 12 Teams

0 1000 2000 3000 4000 5000 6000 7000
 188498
 193817
 199136
 204454
 209773
 215092
 220410
 225729
 231048
 236366
 241685
 247004
 252322
 257641
 262960
 268278
 273597
 278916
 284234
 289553
 294872
 300190
 305509
 310828
 316146

Solution value vs. time for 14 teams

seconds

Figure 3.5: Solution Quality over Time for 14 Teams

53

Method Best Worst Mean Std

TTSA 282,948 331,014 312,102 7,200
TTSA(FC) 277,626 295,299 286,527 4,125

Table 3.7: Solution Quality of TTSA and TTSA(FC) within 2 Hours on 16 Teams

Method T0 β w0 δ θ maxC maxP maxR γ

TTSA 700 0.9999 60000 1.05 1.05 10000 7100 50 2
TTSA(FC) 700 0.98 60000 1.05 1.05 5000 70 10000 2

Table 3.8: Parameter Values for Experiments on Fast Cooling (16 Teams)

 0 25000 50000 75000 100000 125000
 258635

 262882

 267130

 271377

 275624

 279872

 284119

 288366

 292613

 296861

 301108

 305355

 309603

 313850

 318097

 322345

 326592

 330839

 335086

 339334

 343581

 347828

seconds

Best Cost Over Time for 16 teams

TTSA
TTSA(FC)

Figure 3.6: Solution Quality over Time for TTSA and TTSA(FC)

Table 3.7 depicts the results of TTSA(FC), a fast cooling version of TTSA, with parameters

shown in Table 3.8. TTSA(FC) uses a cooling factor (beta) of .98, phases of length (maxC) 5000

and a number of non-improving phases before reheating (maxP) of 70. Table 3.7 compares TTSA

and TTSA(FC) on the 16 teams instance for a running time of 2 hours. The results clearly show the

benefits of a fast cooling schedule for obtaining high-quality solutions quickly. Within two hours,

the best run of TTSA(FC) outperforms the previous best solution for 16 teams, while its average

solution is less than 2% above this solution.

Figure 3.6 depicts the solution quality over time, for the best runs of TTSA and TTSA(FC).

Observe the sharper initial decline of TTSA(FC), which significantly outperforms TTSA for short

runs. Of course, over time, TTSA(FC) is slightly dominated by TTSA. These results seem to indicate

the versatility of TTSA and its potential to find high-quality solutions reasonably fast.

54

n Nov 2002 Jun 2003 Apr 2004 May 2004 Sep 2005 Apr 2006 May 2006

8 39721 (E) 39721 (E) 39721 (E) 39721 (E) 39721 (E) 39721 (E) 39721 (E)

10 61608 (Z) 59583 59583 59583 59436 (L) 59436 (L) 59436 (L)

12 118955 (C) 112800 112298 (L) 111248 111248 111248 111248

14 205894 (C) 190368 190056 (L) 189766 189766 189759 (D) 189156

16 281660 (S) 267194 267194 267194 267194 267194 267194

Table 3.9: Timeline of Best-Known Solutions: TTSA solutions are shown in bold face

n T0 β w0 δ θ maxC maxP maxR γ

12 158 1 10000 1.03 1.03 ∞ 0 0 1
14 193 1 18000 1.03 1.03 ∞ 0 0 1

Table 3.10: TTSA Parameter Values used in our May 2004 solutions (n = 12, 14)

3.2.5 Best Solutions Since the Beginning of this Research

Table 3.9 reports the evolution of the best-known solutions on the standard NLB instances, since

we started this research in November 2002. The table summarizes the history of updates to the

best-known upper bounds. Each column corresponds to a time point where an improvement took

place on one or more instances, and shows the best-known upper bounds at that time. TTSA

solutions are shown in bold face. Other solutions are followed by a letter in parenthesis referring to

the corresponding authors, according to the following:

• E: Easton, Nemhauser, and Trick [15]

• Z: Lim, Rodrigues, and X. Zhang [30]

• C: Cardemil and Durán [7]

• S: Shen and H. Zhang [46]

• L: Langford [49]

• D: Dorrepaal and Chackman [49]

Our May 2004 solutions for n = 12 and n = 14, were produced by running TTSA at a fixed

temperature, as shown in Table 3.10, which shows the parameters for each instance. The fixed

temperature in each case was determined in the following way. For every n, we ran 50 experiments

starting from different random points, all with the same parameters used in obtaining our previous

best solution for that n. Then, we computed the average over the 50 experiments of the temperature

at which the best solution was found for every experiment. This average gave us the starting

temperature used in obtaining these results.

For n = 16, although we did not improve the best-known solution using this approach, the results

were very close to the value of the best-known solution. In particular, after running 50 experiments,

we got a minimum cost of 268137 and a maximum cost of 272376. This is very interesting, considering

55

the following: Until June 2005, when Di Gaspero and Schaerf [11] gave a solution of value 270063,

the best-known solution not produced with TTSA was still worse than that maximum cost (the

closest to it was by Langford, who gave a solution of value 272902 in January 2004).

Note that our 189156 solution for NLB14 was produced using a more enhanced version of TTSA

(although still following the same framework), which will be presented in Section 3.4. Also, note

that, using the population-based simulation annealing framework presented in Chapter 4, we have

recently been able to produce further improvements to the best-known upper bounds for instances

NLB12, NLB14 and NLB16.

3.3 Comparison with Break Minimization

At this point, it might be interesting to make some remarks on the neighborhood structure used

in the TTP and the Break Minimization Problem. Observe that, contrary to simpler problems

such as Break Minimization [53], we found it critical to explore the infeasible region in the TTP

and to consider moves that significantly alter the schedules. In our experiments with the TTP,

neighborhoods consisting of simpler moves or considering only feasible schedules tend to produce

local minima of low quality. Of course, this does not necessarily mean that such neighborhoods do not

exist; however, it appears to be very difficult to design an efficient neighborhood, without including

the infeasible region. This difference between the TTP and the Break Minimization Problem stems

from the fact that Break Minimization assumes a fixed schedule: only the home/away patterns

must be determined. In contrast, the objective function in the TTP must not only determine the

home/away patterns; it must also determine the schedule of each team to minimize the total travel

distance. This additional difficulty, together the tension with the feasibility constraints it produces,

is what makes the TTP particularly challenging.

3.4 Variants of the TTP

The Traveling Tournament Problem, as originally introduced in [15], was first studied only for

benchmarks based on the distances between cities of the 16 teams of National League Baseball.

The solution space consisted of all double round-robin schedules and did not include mirroring. In

recent years, increased attention to the problem has led to the study of a variety of variants. On

one hand, the problem was studied under the additional constraint that the schedule be a mirrored

double round-robin tournament. On the other hand, alternative sets of distances between cities were

considered. Furthermore, the problem has been studied for larger number of teams (up to 24). This

section describes the TTP in its different variants.

On the original TTP instances, our original simulated algorithm has remained most effective in

producing best-known solutions, but it had not been applied to the variants proposed subsequently.

However, these variants may fundamentally alter the combinatorial structure of the problem. For

instance, with constant distances, the order of the games in a sequence of away games is irrelevant,

56

which is obviously not the case with the original distances. Similarly, mirroring requires that the

second half of the schedule be similar to the first half but with the home-away patterns of the games

reversed. Mirroring imposes severe feasibility constraints on the schedule, making it harder to find

feasible tournaments and to remain in the feasible region. As a result, it was not clear at all that

the algorithm would scale and perform effectively on the entire spectrum of TTP instances.

Our recent paper in CP-AI-OR 2006 [54], originated as an attempt to determine the effectiveness

and limitations of our algorithm across all TTP instances. From a practical standpoint, the paper’s

main contribution was to show that the original algorithm can be enhanced to be effective across all

distance metrics and mirroring. More precisely, the enhanced algorithm matched or improved most

of the best-known solutions for all variants and it also produced numerous new best solutions for

many of the variants. From a technical standpoint, the research led to new insights into the nature

of the TTP and to the following contributions:

• It showed that the algorithm can smoothly handle mirroring constraints as soft constraints

by including new neighborhood moves that preserve the mirroring structure of the candidate

tournament;

• It showed that the algorithm can successfully accommodate all distance metrics by including

new neighborhood moves that preserve the distance structure of the candidate tournament;

• It showed how to refine the original strategic oscillation scheme to the instances where feasi-

bility constraints are much stronger.

In what follows, we are going to see these variants in more detail, and describe the enhance-

ments introduced to the original TTSA algorithm, in order to deal with the additional cases. The

presentation will assume that the original TTSA is the starting point, and will only describe the

points in which the enhanced version differs from the original one. For example, in the case of the

neighborhood, the previously defined moves are still used, and the enhancements consist of simply

adding new moves to the neighborhood.

3.4.1 Definition of TTP Variants

Mirroring In some sports leagues (e.g., in most European soccer leagues), it is common practice

to adopt a two-stage mirrored schedule. If n is the number of participating teams, each stage has

n−1 rounds and the n−1 rounds of the second stage are simply a copy of the the first-stage rounds

with a swap of home/away patterns of each game. In terms of the table representation, a schedule

is mirrored if

∀i, j : 1 ≤ j ≤ n− 1 : S[i, j + n− 1] = −S[i, j] (3.4)

Distance Metrics All the distance metrics studied in this section can be found on web page [49].

They are defined as follows:

57

• [NLBn:] For n = 4, 6, . . . , 16, NLBn is the set of distances between the subset of the first n

teams of National League Baseball.

• [Circular:] The n teams are labeled with numbers 0 through n− 1 and are placed on a circle

in this order. Then, for any two teams, the distance is given by the length of the shortest

arc connecting the teams. The formula for the distance between any i and j is given by the

formula:

dij = min{i− j, j − i + n} (3.5)

• [Constant:] The n teams are at unit distance to one another, i.e., dij = 1, for all i, j.

For each distance metric, we are interested in solutions to both the mirrored and the non-mirrored

version of the TTP.

3.4.2 Handling Mirroring

At this point, we review the enhancements of the algorithm to find mirrored tournaments.

Mirroring Constraints

Mirroring constraints, like atmost and norepeat constraints, are considered soft constraints in the

algorithm, since restricting the neighborhood graph to only mirrored schedules was not found ef-

fective. In other words, the neighborhood graph consists of nodes representing both mirrored and

non-mirrored schedules and it is the role of the objective function to drive the search toward mir-

rored schedules. More precisely, the algorithm associates a soft mirroring constraint with each entry

S[i, j] (1 ≤ i ≤ n & 1 ≤ j < n− 1) and the constraint holds when

S[i, j] = −S[i, j + n− 1] (3.6)

It is thus possible to include the violations of these constraints in the objective function as was the

case for the atmost and norepeat constraints.

Unfortunately, this simple modeling is not directly effective given the large number of mirroring

constraints that can be violated in candidate schedules. As a result, the algorithm appropriately

weighs the mirroring constraints and uses a modified version of the function nbv(S) appearing in

the objective function C(S), as defined in Equation 3.2. nbv(S) is rewritten as the sum

nbv(S) = nbva(S) + nbvr(S) +
nbvm(S)

µ
(3.7)

where nbva, nbvr, and nbvm represent the violations of the atmost, norepeat, and mirroring con-

straints respectively, while µ is a weighting factor that depends on the size of the instance. The

number of violations of the mirroring constraints is simply defined as

nbvm(S) = |{(i, j) : S[i, j] 6= −S[i, j + n− 1] & 1 ≤ i ≤ n & 1 ≤ j ≤ n− 1}| (3.8)

58

Mirrored Moves

Once the algorithm reaches a (possibly infeasible) mirrored schedule, it is beneficial to let the

search explored neighboring mirrored schedules with fewer violations of the remaining constraints or

smaller distances. The simulated-annealing algorithm, with its present moves, has a low probability

of exploring such moves. It is thus important to design mirrored versions of the moves that affect

the mirroring constraints: the SwapRounds, PartialSwapRounds, and PartialSwapTeams moves. The

basic idea behind the aggregate moves is to apply the original moves to both parts of the schedule

simultaneously. For instance, the new move SwapRoundsMirrored(S, rk, rl) for 1 ≤ rk < rl ≤ n− 1

is the aggregate

(SwapRounds(S, rk, rl),SwapRounds(S, Ti, rk + n− 1, rl + n− 1)).

Mirroring constraints are invariant with respect to mirrored moves: in particular, if the schedule is

mirrored, it remains so. As a result, the algorithm is able to preserve the structure of the schedule

with respect to mirroring constraints, while performing transformations that affect the remaining

constraints or the distances.

3.4.3 Handling Different Distance Metrics

This section presents two additional composite moves that affect the distances in interesting ways.

Once again, the novel moves aggregate sequences of existing moves that have a low probability of

taking place in the original algorithm. Hence, they also preserve some significant structure in the

schedule, while performing some interesting transformations.

The key idea underlying the novel moves is to reverse subsequences of away moves. Recall that

travel only occurs for successive pairs of away games and for successive pairs of (home,away) and

(away,home) games. Thus, by reversing a subsequence of away games, we preserve a significant part

of the distance structure, while modifying it in a way that is difficult to achieve by sequences of

original moves. In particular, the distances in the reversed subsequence, as well as the distances

in the sequence of the other teams that must also be reversed to maintain a double round-robin

tournament, remain the same. It is only at the beginning and at the end of the subsequences that

distances are changing. In fact, moves similar in spirit are also used in car sequencing [10] but

they are simpler since they do not have to account for the round-robin constraints and the distance

structure.

The algorithm thus considers moves of the form ReverseAwayRun(S, Ti, rk, m) where team Ti

plays an away sequence from round rk to round rk+m. The effect of the move is similar to the

sequence of p = (m + 1)/2 moves

PartialSwapRounds(S, Ti, rk, rk+m)

PartialSwapRounds(S, Ti, rk+1, rk+m−1)

. . .

PartialSwapRounds(S, Ti, rk+p−1, rk+m+1−p)

59

For instance, consider the schedule S

T\R 1 2 3 4 5 6 7 8 9 10

1 6 2 4 3 -5 -4 -3 -6 -2 5

2 5 -1 -3 -6 4 3 6 -5 1 -4

3 -4 5 2 -1 6 -2 1 4 -5 -6

4 3 6 -1 -5 -2 1 5 -3 -6 2

5 -2 -3 6 4 1 -6 -4 2 3 -1

6 -1 -4 -5 2 -3 5 -2 1 4 3

The move ReverseAwayRun(S, T1, r6,4) produces the schedule S′:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 2 4 3 -5 -2 -6 -3 -4 5

2 5 -1 -3 -6 4 1 -5 6 3 -4

3 -4 5 2 -1 6 -5 4 1 -2 -6

4 3 6 -1 -5 -2 -6 -3 5 1 2

5 -2 -3 6 4 1 3 2 -4 -6 -1

6 -1 -4 -5 2 -3 4 1 -2 5 3

When d52 + d41 < d54 + d21, the move improves the distance with respect to team T1, without

affecting the atmost violations of team T1 and the distance structure inside the subsequence. There

are several points worth highlighting here. First, reversing entire sequences of away games for a

team Ti does not change the total distance Ti has to travel and should not be considered. Second,

the value m is never very large in the TTP instances, since the atmost constraints drive the search

toward small subsequences of away games. Finally, the algorithm must include a mirrored version

ReverseAwayRunMirrored of the moves since they affect the mirroring constraints.

In both variants, the novel neighborhood moves are in fact sequences of existing moves. As such,

they do not improve the connectivity of the neighborhood for the TTP. Their significance comes

from the fact that, in the original algorithm, these sequences have a low probability of taking place,

although they capture fundamental aspects of the problem structure.

3.4.4 Algorithmic Refinements

Finally, we discuss some additional refinements to the original TTSA algorithm, that were necessary

for dealing with the new instance sets. We first describe a small change in the definition of the

objective function C using by TTSA, that allows for more flexibility, especially as the number of

teams, n, grows. In particular, the sub-linear function f(v) is now more generally defined as

f(v) = 1 + (
√

v ln v)/λ (3.9)

(In the original TTSA algorithm, we always used λ = 2). In our experiments, we chose λ equal to

2 on small instances (up to n = 16) and 1 on larger ones. The reason was that larger instances

60

tended to generate an increased number of violations, and choosing a smaller λ was observed to

better control this increase.

Strategic Oscillation

The mirroring constraints make it harder to find feasible tournaments and the search may spend

considerable time in the infeasible region, before finding its first feasible solution. As a result, even

small values for µ and λ, the strategic oscillation scheme will overly inflate the violation weight

w, leading the search to stagnation. To alleviate this pathological case, the algorithm now takes

a two-step approach. In a first phase, which lasts until the first feasible tournament is found, no

oscillation takes place. In the second phase, the strategic oscillation scheme is activated as before

and balances the time spent in the infeasible and feasible regions. Note also the synergy between

this scheme and the new neighborhood moves. By including mirrored moves, the algorithm is able

to better balance the time it spends in the feasible and infeasible regions in presence of mirroring

constraints.

Initial Schedules

The simple backtrack search used in [3] to find initial schedules does not scale well when the num-

ber of teams increases, which is the case in the constant and circular variants. As a result, like

in [44], the algorithm now uses a randomized version of the hill-climbing algorithm for generating 1-

factorizations [14]. The initial schedules generated by this randomized algorithm are more diversified

than perturbations of schedules obtained by the polygon algorithm. The algorithm in [14] works

for single round-robin schedules but a double round-robin schedule can be obtained by a simple

mirroring.

3.5 Experimental Results on TTP Variants

The enhanced version of the TTSA algorithm was run on all the mirrored and non-mirrored instances

given on Michael Trick’s webpage [49], with the exception of the NFL instances posted in December

2005, shortly before our CP-AI-OR’06 paper [54] was completed. For each instance, 20 experiments

were carried out from randomly chosen schedules on an AMD Athlon 64 at 2Ghz. The results

are reported in two tables for each variant. The first table reports the best, mean, and worst

solutions found by the algorithm, as well as the standard deviation and the best-known solution

value at the time of writing. The second table reports the time to reach the best solution, the mean

time of each experiment, and the standard deviation. Bold face indicates improved results. It is

also important to mention that many authors (e.g., [11, 12, 30, 44]) now use the neighborhood we

originally proposed in [3] which makes it much more difficult to improve the results (since, in a sense,

we are also competing with ourselves). Our 2006 implementation is also slightly more incremental

than the 2003 one, but this is not seen as a major factor in these results in contrast to the new

moves proposed in Section 3.4.

61

n Old Best min(D) max(D) mean(D) std(D)

8 41928 41928 43025 42037.65 291.98
10 63832 63832 64409 63860.85 125.75
12 120665 119608 120774 120121.55 417.07
14 208086 199363 210599 202400.50 2883.39
16 279618 279077 297173 284036.95 4770.61

n T for min mean(T) std(T)

8 0.1 1555.55 1880.94
10 477.2 8511.29 17132.49
12 15428.1 49373.31 32834.88
14 34152.3 70898.90 48551.27
16 55640.8 47922.16 36948.40

Table 3.11: Solution Quality and Solution Times for NLB Distances with Mirroring

3.5.1 Mirrored Instances

Tables 3.11, 3.12, and 3.13 report the results for mirrored instances, which are particularly impres-

sive. The algorithm matches or improves all best-known solutions (but one). It produces 8 new best

solutions and the improvements essentially occur for larger instances. This was a surprising result

for us, since we thought that mirroring instances would be significantly more challenging for the

algorithm. Some of the improvements may also be quite large and reach more than 4%.

3.5.2 Non-Mirrored Instances

Tables 3.14, 3.15, and 3.16 report the results for the non-mirrored instances. On the NLBn and

constant distance metrics, the algorithm is once again impressive, it matches or improves all the

best-known solutions, and improves 6 instances. It is interesting to note that, even though we did

not extensively experiment with the non-mirrored NLBn instances, we were able to further improve

upon the results of the standard TTSA algorithm in two cases (for n = 10 and n = 14). Once again,

the higher gains are obtained on the larger instances.

The results on the circular instances are somewhat disappointing. The algorithm cannot match

the best-known results on the larger instances, although it is often very close to the best-known

solutions. This could be due to the fact that the algorithm only uses mirrored starting schedules,

which may bias the search. In fact, the best solutions found by our algorithm for 16 and 20 teams

are mirrored schedules. These instances may need to be investigated more carefully, to determine

whether this failure is related to the instances’ structure or simply to bad parameter tuning.

However, as we will show in Chapter 4, incorporating our algorithm into a more advanced

framework for Simulated Annealing can lead to big improvements in solution quality, improving the

best-known results for all n ≥ 12.

62

n Old Best min(D) max(D) mean(D) std(D)

8 80 80 80 80 0
10 130 130 130 130 0
12 192 192 192 192 0
14 253 253 253 253 0
16 342 342 342 342 0
18 432 432 432 432 0
20 524 522 522 522 0
22 650 650 650 650 0
24 768 768 768 768 0

n T for min mean(T) std(T)

8 0.1 0.06 0
10 0.1 0.10 0
12 0.3 0.56 0.38
14 6.0 154.26 147.95
16 2.7 3.29 1.53
18 8.1 24.60 19.20
20 1106.3 12556.20 10347.58
22 24.3 45.42 22.90
24 813.3 1791.77 983.47

Table 3.12: Solution Quality and Solution Times for Constant Distances with Mirroring

n Old Best min(D) max(D) mean(D) std(D)

8 140 140 140 140 0
10 272 272 276 273.60 1.01
12 456 432 444 434.90 3.12
14 714 696 726 708.90 7.05
16 978 968 1072 1001.60 28.55
18 1306 1352 1364 1357.80 3.40
20 1882 1852 2198 2017.60 60.64

n T for min mean(T) std(T)

8 0.2 74.18 55.13
10 28160.0 12527.18 12208.25
12 93.1 4658.58 3560.27
14 53053.5 23549.14 16311.15
16 38982.7 23360.81 14451.53
18 178997.5 106139.77 57175.01
20 59097.9 43137.13 22515.46

Table 3.13: Solution Quality and Solution Times for Circular Distances with Mirroring

63

n Old Best min(D) max(D) mean(D) std(D)

8 39721 39721 39721 39721 0
10 59436 59436 59583 59561.63 48.33
12 111483 111248 116018 112663.32 738.55
14 189759 189156 195742 193187.85 1432.99
16 270063 267194 282005 273552.64 3461.49

n T for min mean(T) std(T)

8 1169.0 1639.33 332.38
10 2079.6 27818.24 64873.91
12 202756.2 150328.30 92385.48
14 90861.4 77587.86 40346.49
16 344633.4 476191.65 389371.71

Table 3.14: Solution Quality and Solution Times for NLB Distances without Mirroring

n Old Best min(D) max(D) mean(D) std(D)

8 80 80 80 80 0
10 124 124 124 124 0
12 181 181 181 181 0
14 252 252 252 252 0
16 327 327 329 328 0.31
18 418 417 418 417.65 0.47
20 521 520 522 520.90 0.53
22 626 626 629 628.80 0.77
24 757 749 753 750.60 0.96

n T for min mean(T) std(T)

8 0.2 0.14 0.14
10 4.6 3.96 2.43
12 128.7 1126.85 1480.45
14 26.1 95.32 59.42
16 82884.1 16042.20 22332.36
18 10362.8 7091.27 6614.78
20 7781.7 22850.72 25094.76
22 57487.2 25082.01 21426.11
24 95516.2 29727.86 24904.04

Table 3.15: Solution Quality and Solution Times for Constant Distances without Mirroring

64

n Old Best min(D) max(D) mean(D) std(D)

8 132 132 132 132.00 0
10 242 242 256 252.70 3.24
12 408 420 432 427.13 3.43
14 654 662 690 679.70 5.14
16 928 968 1072 1001.60 28.55
18 1306 1352 1364 1357.80 3.40
20 1842 1852 2198 2017.60 60.64

n T for min mean(T) std(T)

8 3.2 589.23 590.74
10 19261.6 14491.27 7937.21
12 151459.1 96717.13 52788.38
14 127942.1 88381.18 68978.05
16 38982.7 23360.81 14451.53
18 178997.5 106139.77 57175.01
20 59097.9 43137.13 22515.46

Table 3.16: Solution Quality and Solution Times for Circular Distances without Mirroring

3.6 Understanding the Neighborhood Structure

In order to get a better understanding of the neighborhood and, in particular, how different subsets

of the neighborhood affect the efficiency of the search algorithm, we performed a series of experiments

with varying neighborhood subsets.

We ran two kinds of experiments: We first compared the whole neighborhood (including mirrored

moves) with the subset of the neighborhood that includes no mirrored moves. We then compared

the whole neighborhood with its subset consisting only of mirrored moves (in which case we had to

start from a mirrored initial schedule).

The test bed for our experiments were the mirrored NLBn and CIRCn instances, for n = 14

and n = 16. On all the experiments, the maximum running time was set to 40,000 seconds for

n = 14 and 60,000 for n = 16. The main reason for this choice was that these instance size are big

enough to be representative of the whole set of instances, and small enough to allow for relatively

extensive experimentation. One caveat, before trying to draw any definite conclusions, is the inherent

dependence of Simulated Annealing on good tuning. Although we did our best in determining a

good tuning, these results can only serve as good indications and not as conclusive proofs. With

this in mind, we proceed with a detailed account of our findings in the following subsections.

65

3.6.1 Using No Mirrored Moves

The goal in these experiments was to explore whether it is beneficial to include mirrored moves,

when dealing with mirrored instances. Our methodology was as follows. For every instance set, in

the first phase, we executed 20 runs using the whole neighborhood starting from different random

schedules. In the second phase, for every instance set we executed three sets of 20 runs using no

mirror moves, each time starting from the same 20 starting points we used in the first phase. In

every set of runs we used exactly the same parameters as in the first phase, only varying the Markov

chain length of the Simulated Annealing (given the smaller neighborhood size). For each instance

set, our conclusions are based on the best of the three second-phase experiments.

Figures 3.7 and 3.8, compare the cost evolution over time for each instance set, when using

each neighborhood subset. As one can deduce from the graphs, including mirrored moves in the

neighborhood leads to better efficiency in terms of mean cost over time. Moreover, in two cases

(CIRC14 and NLB16), using no mirrored moves does not allow for matching the best solution found

using the whole set of moves (at least in the given time limitations). This is a clear indication that

using mirrored moves really enhances the algorithm’s search capability.

3.6.2 Using Only Mirrored Moves

We use the same methodology as in Section 3.6.1, while only changing the subset of the neighborhood

used: instead of the subset consisting only of non-mirrored moves, we use the subset consisting only

of mirrored moves. The corresponding graphs are depicted in Figures 3.9 and 3.10. As seen in the

figures, the picture is not as clear, in this case: In particular, although, in terms of mean cost, using

only mirrored moves seems to be more efficient, in terms of best cost, there are cases in which using

only mirrored moves leads to worse solutions within the set time limits.

The general pattern seems to be the following: using only mirrored moves leads to increased

efficiency in the beginning of the search; however, using the whole set of moves seems to have better

performance, in the long run. This indicates a direction for future work: for instance, one could

design more elaborate search schemes, that start with the restricted neighborhood of only mirrored

moves, and gradually enhance it by including increasing subsets of the full neighborhood (possibly

in a framework of Variable Neighborhood Search (VNS) [23]

Also, we note that, as a positive side-effect of the above sets of experiments, we were able to

further improve on two of the mirrored instances: for the mirrored NLB16 we found a solution of

value 278,305, and for the mirrored CIRC14 a solution of value 672.

66

 0 5000 10000 15000 20000 25000 30000 35000
 669

 673

 678

 682

 686

 691

 695

 700

 704

 708

 713

 717

 722

 726

 730

 735

 739

 744

 748

 752

seconds

Cost graph for 14CIRC−MIR (experiment 1c)

allMovesUsed, mean cost
allMovesUsed, best cost
noMirrorMoves, mean cost
noMirrorMoves, best cost

(a) CIRC14-MIR

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
 939

 949

 958

 968

 978

 987

 997

 1007

 1017

 1026

 1036

 1046

 1056

 1065

 1075

 1085

 1095

 1104

 1114

 1124

seconds

Cost graph for 16CIRC−MIR (experiment 1a)

allMovesUsed, mean cost
allMovesUsed, best cost
noMirrorMoves, mean cost
noMirrorMoves, best cost

(b) CIRC16-MIR

Figure 3.7: Comparison of Using No Mirrored Moves for Circular Instances

67

 0 5000 10000 15000 20000 25000 30000
 196448

 197420

 198391

 199363

 200335

 201306

 202278

 203250

 204221

 205193

 206165

 207136

 208108

 209080

 210051

 211023

 211995

 212966

 213938

 214910

seconds

Cost graph for 14NLB−MIR (experiment 1c)

allMovesUsed, mean cost
allMovesUsed, best cost
noMirrorMoves, mean cost
noMirrorMoves, best cost

(a) NLB14-MIR

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
 272403

 274370

 276338

 278305

 280272

 282240

 284207

 286175

 288142

 290109

 292077

 294044

 296012

 297979

 299946

 301914

 303881

 305849

 307816

 309783

seconds

Cost graph for 16NLB−MIR (experiment 1a)

allMovesUsed, mean cost
allMovesUsed, best cost
noMirrorMoves, mean cost
noMirrorMoves, best cost

(b) NLB16-MIR

Figure 3.8: Comparison of Using No Mirrored Moves for NLB Instances

68

 0 5000 10000 15000 20000 25000 30000 35000
 656

 662

 667

 672

 677

 682

 688

 693

 698

 703

 708

 714

 719

 724

 729

 734

 740

 745

 750

 755

seconds

Cost graph for 14CIRC−MIR

allMovesUsed, mean cost
allMovesUsed, best cost
onlyMirror, mean cost
onlyMirror, best cost

(a) CIRC14-MIR

 0 5000 10000 15000 20000 25000 30000
 936

 947

 957

 968

 979

 989

 1000

 1010

 1021

 1031

 1042

 1052

 1063

 1073

 1084

 1094

 1105

 1115

 1126

 1137

seconds

Cost graph for 16CIRC−MIR

allMovesUsed, mean cost
allMovesUsed, best cost
onlyMirror, mean cost
onlyMirror, best cost

(b) CIRC16-MIR

Figure 3.9: Comparison of Using Only Mirrored Moves for Circular Instances

69

 0 5000 10000 15000 20000 25000 30000 35000
 196149

 197220

 198292

 199363

 200434

 201506

 202577

 203648

 204719

 205791

 206862

 207933

 209004

 210076

 211147

 212218

 213289

 214361

 215432

 216503

seconds

Cost graph for 14NLB−MIR

allMovesUsed, mean cost
allMovesUsed, best cost
onlyMirror, mean cost
onlyMirror, best cost

(a) NLB14-MIR

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
 272063

 274144

 276224

 278305

 280386

 282466

 284547

 286627

 288708

 290789

 292869

 294950

 297030

 299111

 301192

 303272

 305353

 307433

 309514

 311595

seconds

Cost graph for 16NLB−MIR

allMovesUsed, mean cost
allMovesUsed, best cost
onlyMirror, mean cost
onlyMirror, best cost

(b) NLB16-MIR

Figure 3.10: Comparison of Using Only Mirrored Moves for NLB Instances

70

3.7 Time Considerations

In the course of our work on the TTP (including variants), our main focus was on acquiring solutions

of as high quality as possible, and not so much on efficiency. For this reason, the question remained

as to whether we could get the same solution quality faster. That has been pointed out in some

related work. For example, Di Gaspero and Schaerf [11, 12] embedded a subset of our neighborhood

in a tabu-search algorithm and obtained high-quality solutions much faster (although their best

solutions still do not match our best found solutions).

However, we have recently been able to resolve this question to a great degree. Looking back into

our TTSA code more carefully, we realized that there was substantial room for improvement in its

incremental structure. After spending some time doing a new, more incremental, implementation of

the moves, we were, in fact, able to obtain the same results shown in Section 3.5 in times faster by

a factor of 5 to 6. This indicates that the aforementioned question may not pertain as much to our

search scheme as to implementation issues.

3.8 Lower Bounds

Although the focus of this work is on obtaining high-quality upper bounds for the different instances,

it is of high interest to give a short summary of the results appearing in the references regarding

lower bounds.

Unlike research on improving the best-known upper bounds, research on improving the best-

known lower bounds for TTP instances has shown much slower progress, since the problem was

introduced. Two main reasons for this are: first, the high degree of dependencies between individual

team schedules and, second, the increased complication arising from the feasibility patterns involved.

Some first lower bounds on TTP instances were proven by Easton et.al. [15], through the com-

putation of what they define as the Independent Bound. These lower bounds were further improved

by the same authors in [16].

The most success in obtaining lower bounds has been seen for the simplest class of TTP instances,

namely the CONST instances described earlier in Section 3.4. Rasmussen and Trick [41] gave lower

bounds for most of the CONST instances mentioned on the website [49]. Fujiwara et.al. [19],

were able to prove improved lower bounds for some of the larger CONST instances. For mirrored

instances, many of the best-known lower bounds have been proven by Urrutia and Ribeiro in [50].

An interesting aspect of CONST instances is the connection with the problem of minimizing or

maximizing breaks under given constraints, which further illustrates the significance of the problem

we described in Chapter 2.

One can point out that, in most CONST instances, the above mentioned lower bounds match

the best-known upper bounds, indicating that these instances are relatively easier. However, this

does not undermine the significance of the lower bounds: for instance, in a recent paper, Urrutia

et.al. [51], utilizing the CONST bounds found above, further improved the best-known lower bound

on several of the harder TTP instances.

71

Instance Best other LB min %G

nlb8 39721 39479 39721 0
nlb10 59436 57500 59436 0
nlb12 111483 107494 111248 5.9
nlb14 189759 182797 189156 8.7
nlb16 270063 249477 267194 13.9

circ8 132 128 132 0
circ10 242 228 242 0
circ12 408 384 420 -50.0
circ14 654 590 666 -18.8
circ16 928 846 968 -48.8
circ18 1306 1188 1352 -39.0
circ20 1842 1600 1852 -4.1

const8 80 80 80 0
const10 124 124 124 0
const12 181 181 181 0
const14 252 252 252 0
const16 327 327 327 0
const18 418 414 417 25.0
const20 521 520 520 100
const22 626 626 626 0
const24 757 744 749 61.5

Table 3.17: Summary of TTSA Results for Non-Mirrored Instances Relative to LB

Tables 3.17 and 3.18 summarize the results found in this chapter, setting them in the context of

the corresponding best-known upper bounds. The tables describe the previous best solution (Best

other) (found by other researchers), the best-known lower bound (LB), the best solution found using

TTSA (min) and the reduction of the optimality gap (best - LB) in percentage (%G). Many of the

conclusions described earlier, regarding TTSA performance, are more vividly illustrated by looking

at the optimality gap reduction (%G).

For example, for non-mirrored instances, we have seen that TTSA performs well only on NLB

and CONST instances, while having poor performance for CIRC instances. This is clearly illustrated

in the last column of Table 3.17. As we can see, TTSA solutions usually have more than 40% worse

optimality gap, compared to solutions computed using other methods.

On the other hand, as mentioned in earlier sections of this chapter, TTSA is highly successful on

mirrored instances, and this is also reconfirmed by Table 3.18, where it is shown that TTSA often

improves the optimality gap by more than 30%.

72

Instance Best other LB min %G

nlb8-mir 41928 41928 41928 0
nlb10-mir 63832 58277 63832 0
nlb12-mir 120655 110519 119608 10.3
nlb14-mir 208086 182996 199363 34.8
nlb16-mir 279618 253957 278305 5.1

circ8-mir 140 140 140 0
circ10-mir 272 240 272 0
circ12-mir 456 384 432 33.3
circ14-mir 714 590 672 33.9
circ16-mir 978 876 968 9.8
circ18-mir 1306 1188 1352 -39.0
circ20-mir 1882 1600 1852 10.6

const8-mir 80 80 80 0
const10-mir 130 130 130 0
const12-mir 192 192 192 0
const14-mir 253 253 253 0
const16-mir 342 342 342 0
const18-mir 432 432 432 0
const20-mir 524 520 522 50.0
const22-mir 650 650 650 0
const24-mir 768 768 768 0

Table 3.18: Summary of TTSA Results for Mirrored Instances Relative to LB

Chapter 4

Population-Based Simulated

Annealing

Looking back at Table 3.9, shown in Chapter 3, or spending some time on the result sections of

the web page found in [49], an interesting observation is that progress in improving the beat-known

upper bounds on TTP instances seems to have slowed down in recent years. In fact, some of the

early instances have not been improved for several years.

This chapter reconsiders the Traveling Tournament Problem by proposing a population-based

simulated annealing algorithm, PBSA, with both intensification and diversification components, in

an a successful attempt to reverse the situation. The chapter leverages the simulated annealing

algorithm TTSA presented in Chapter 3, which is used as a black-box.

The core of the algorithm is organized as a series of waves, each wave consisting of a collection

of simulated annealing runs. At the end of each wave, a (macro-)intensification takes place: a

majority of the simulated annealing runs are restarted from the best found solution. Diversification

is achieved through the concept of elite runs, a generalization of the concept of elite solutions. More

precisely, at the end of each wave, the simulated annealing runs that produced the k-best solutions

so far continue their execution opportunistically from their current states. This core procedure is

terminated when a number of successive waves fail to produce an improvement and is then restarted

at a lower temperature.

A parallel implementation of PBSA on a cluster of workstations exhibits remarkable results. It

produces new best solutions on all TTP instances considered, sometimes reducing the optimality

gap by about 60%, including the larger NLB instances which had not been improved for several

years, the circular instances, and the NFL instances for up to 26 teams. Although TTSA is not

the most appropriate algorithm for circular instances, the population-based algorithm has improved

all best solutions for 12 teams or more on these instances. The improvements are often significant,

reducing the optimality gap by almost 40% on some circular instances. In addition, the parallel

implementation also obtained these results in relatively short times, compared to the version of

73

74

TTSA used in [54].

The broader contributions of the current chapter are twofold. First, it demonstrates the poten-

tial complementarity between the macro-intensification and macro-diversification typically found in

tabu-search and population-based algorithms and the micro-intensification (temperature decrease)

and micro-diversification (threshold acceptance of degrading move) featured in simulated annealing.

Second, it indicates the potential benefit of population-based approaches for simulated annealing,

in contrast to recent negative results in [37].

4.1 The PBSA Algorithm

The core of the population-based simulated annealing receives a configuration S (e.g., a schedule) and

a temperature T . It executes a series of waves, each of which consists of n executions of the underlying

simulated annealing algorithm (in this case, TTSA). The first wave simply executes SA(S,T) N

times (where N is the size of the population). Subsequent waves consider both opportunistic and

intensified executions. The simulated annealing runs that produced the k-best solutions so far

continue their executions: hopefully, they will produce new improvements and they provide the

macro-diversification of the algorithm. The N − k remaining runs are restarted from the best

solution found so far and the temperature T .

Figure 4.1 illustrates the core of the algorithm for a population of size N = 20 and k = 4. Figure

4.1(a) shows that all executions start from the same configuration and Figure 4.1(b) depicts the

behavior during wave 1. The best solution obtained is S∗
8,1 (solid square in figure). Several other

executions also produce solutions (S∗
2,1, S∗

5,1, S∗
10,1, S∗

13,1, S∗
18,1) that improve upon their starting

points (circles in figure). The best 3 of these (solid circle), together with the best solution found so

far, define the elite runs used for diversification (i.e., S∗
2,1, S∗

8,1, S∗
13,1, S∗

18,1). Figure 4.1(c) depicts

the start of the second wave. It highlights that the elite runs continue their execution from their

current state, while the remaining 16 executions restart from the best solution S∗
8,1 and the initial

temperature. Figure 4.1(d) shows the executions of the first two waves. The second wave found a

new best solution S∗
13,2 (produced by one of the elite runs), while several executions improve upon

their starting points. Execution 18, which had produced elite solution S∗
18,1 after the first wave,

further improves upon its best solution, producing solution S∗
18,2. However, it is not among the best

4 solutions. These are now S∗
7,2, S∗

8,1, S∗
13,2, and S∗

15,2, and the simulated annealing executions that

produced them are now the set of elite runs. Figure 4.1(e) depicts the launch of the third wave.

Observe that the two elite runs (those that produced S∗
8,1 and S∗

13,2) will now execute for the third

successive wave, while two new ones have emerged. This core procedure terminates after a number

of stable waves, i.e., successive waves that have not improved the best solution. It is embedded in

an outermost loop that progressively decreases the temperature T .

75

(a) Launch of first wave

(b) After first wave

(c) Launch of second wave

(d) End of second wave

(e) Launch of third wave

Figure 4.1: Illustrating PBSA with k = 4

76

The overall algorithm is depicted in Figures 4.2 and 4.3. Figure 4.2 describes the core procedure

PBSA-P for a population P of size N = |P|. For each member p of the population, the algorithm

maintains its current starting configuration Sp and temperature Tp, as well as the value fp of the best

solution p has generated. These variables are initialized in lines 2–6. The algorithm also maintains

the best overall solution S∗ and the number, stable, of successive waves without improvement to

S∗. Lines 8–23 are concerned with the execution of a wave. For each p ∈ P , PBSA-P applies the

simulated annealing algorithm for t units of time on configuration Sp with starting temperature Sp.

The simulated annealing execution returns the best solution S∗
p of this run and the final configuration

S+
p and temperature T +

p (line 8). If the run improves its starting solution, i.e., f(S∗
p) < f(Sp),

PBSA-P updates variable fp (line 11). If these runs have not improved the best solutions, the next

wave continues each of the runs from their current state (see the instructions in lines 12–13 that

implement this behavior). Otherwise, the runs that produced the k-best solutions (the elite runs)

continue their executions, while the remaining N − k runs (the set R in line 19) are restarted from

their current best solution S∗ and the initial temperature T (line 20–22). Figure 4.3 shows that

PBSA-P is embedded in a loop which progressively decreases the temperature (lines 3–6). The

overall algorithm PBSA also starts from a solution produced by simulated annealing or, possibly,

by any other algorithm.

4.2 Experimental Results with PBSA

The algorithm was implemented in parallel, to execute each run in a wave concurrently. The experi-

ments were carried out on a cluster of 60 Intel-based, dual-core, dual-processor Dell Poweredge 1855

blade servers. Each server has 8GB of memory and a 300G local disk. Scheduling on the cluster is

performed via the Sun Grid Engine, version 6. The tested instances are the non-mirrored NLBn,

CIRCn and NFLn instances described in [49].

The experiments use a population of size N = 80 and the number k of elite runs is in the range

[10,30]. The time duration t of each wave is in the range of [60,150] seconds depending on the size

of the instances. PBSA-P terminates after a maximum number of successive non-improving waves

chosen in the range of [5,10]. PBSA is run for 10 phases with β = 0.96. We report two types of

results starting from either low or high-quality TTSA solutions. All results reported are averaged

over 10 runs.

4.2.1 PBSA from High-Quality Solutions

The experimental results are summarized in Tables 4.1, 4.2, and 4.3, which report both on solution

quality and execution times. With respect to solution quality, the tables describe the previous best

solution (best) (not found by PBSA), the best lower bound (LB), the minimum (min) and average

(mean) travel distances found by PBSA, and the improvement in the optimality gap (best - LB) in

percentage (%G). The results on execution times report the times (in seconds) taken for the best

run (Time(Best)), the average times (mean(T)), and the standard deviation (std(T)).

77

1. function PBSA-P(S, T) {
2. forall p ∈ P do
3. Sp = S;
4. fp = f(S);
5. Tp = T ;
6. S∗ = S;
7. stable = 0;
8. while stable < maxStableWaves do
9. forall p ∈ P do
10. 〈S∗

p , S+
p , T +

p 〉 = SAt(Sp, Tp);
11. if f(S∗

p) < f(Sp) then fp = f(S∗
p);

12. Sp = S+
p ;

13. Tp = T +
p ;

14. b = argminp∈P fp;
15. if f(S∗) > f(S∗

b) then
16. S∗ = S∗

b ;
17. stable = 0;
18. fk = k- minp∈P fp;
19. R = {p ∈ P : fp > fk};
20. forall p ∈ R do
21. Sp = S∗;
22. Tp = T ;
23. else stable = stable + 1;
24. return S∗;
25. }

Figure 4.2: PBSA-P: A Phase of PBSA

1. function PBSA(S) {
2. T ← T0;
3. S ← SAt(S,T);
4. for phase = 1 to maxPhases do
5. S ←PBSA-P(S, T);
6. T ← T · β;
7. end for
8. return S;
9. }

Figure 4.3: The Population-Based Simulated Annealing Algorithm PBSA

78

n Best LB min mean %G

14 189156 182797 188728 188728.0 6.7
16 267194 249477 262343 264516.4 27.3

n Time(Best) mean(T) std(T)

14 360 264.0 139.94
16 600 468.0 220.94

Table 4.1: Quality and Times in Seconds of PBSA for NLB Distances

n Best LB min mean %G

12 408 384 406 414.5 8.3
14 654 590 632 645.2 34.3
16 928 846 916 917.8 14.6
18 1306 1188 1294 1307.0 10.1
20 1842 1600 1732 1754.4 45.4

n Time(Best) mean(T) std(T)

12 1440 787.5 706.39
14 1080 402.0 287.81
16 180 342.0 193.58
18 4680 3380.0 1950.86
20 10270 8437.0 1917.18

Table 4.2: Quality and Times in Seconds of PBSA for Circular Distances

n Best LB min mean %G

16 235930 223800 231483 232998.4 36.7
18 296638 272834 285089 286302.9 48.5
20 346324 316721 332041 332894.5 48.2
22 412812 378813 402534 404379.7 30.2
24 467135 - 463657 465568.7 -
26 551033 - 536792 538528.0 -

n Time(Best) mean(T) std(T)

16 2220 1356.0 998.31
18 3120 2412.0 1811.52
20 6750 4419.0 1349.06
22 8100 4365.0 2484.79
24 5490 4113.0 2074.70
26 6480 3024.0 1927.42

Table 4.3: Quality and Times in Seconds of PBSA for NFL Distances

79

267538

267194

266849

266505

266160

265816

265472

265127

264783

264439

264094

263750

263406

263062

262717

 0 500 1000 1500 2000 2500

C
os

t

Time elapsed (sec)

Instance: 16nlb (time interval t: 60s, maxC: 6)

T=212.3

T=230.4

T=240.0

Figure 4.4: Evolution of the Objective on NLB-16

As far as solution quality is concerned, PBSA improves on all best-known solutions for the

circular instances with 12 teams or more. It also improves on the NLB instances with 14 and

16 teams. These NLB instances had not been improved for several years despite new algorithmic

developments and approaches. It also improves the NFL instances for 16 to 26 teams (larger instances

were not considered for lack of time). The improvement in the optimality gap is often substantial.

For NLB-16, CIRC-20, and NFL-20, the improvements are respectively about 27%, 45%, and 48%.

As far as solution times are concerned, PBSA typically finds its best solutions in times signif-

icantly shorter than TTSA. On the NLB instances, PBSA found its new best solutions within 10

minutes, although these instances had not been improved for a long time. Typically, the new best

solutions are found within an hour for problems with less than 20 teams and in less than two hours

otherwise. These results are quite interesting as they exploit modern architectures to find the best

solutions in competitive times, the elapsed times being significantly shorter than TTSA.

It is also interesting to look at PBSA’s running behavior. Figure 4.4 depicts the evolution of its

objective function over time for NLB-16 and is representative of the typical behavior of the algorithm.

The execution exhibits alternating sequences of fast-improving and stagnant periods. Intuitively,

repeated intensifications and diversifications allow the search to escape from very “difficult” local

minima and to start improving again rapidly.

4.2.2 PBSA from Scratch

Tables 4.4, 4.5, and 4.6 describe the performance of PBSA when the TTSA is only run for a

short amount of time to produce a starting point. These results are particularly interesting. PBSA

improves the best-known solutions for the NLB instances for 12, 14, and 16 teams, for the circular

instances 12 and 14, and for NFL instances 16, 18, 20, 22, and 26.

For the NLB, the improvement for 14 teams is the same as when PBSA starts from a high-quality

solution, while the improvement for 12 and 16 teams is even better, producing new best solutions.

80

n Best LB min mean %G

12 111248 107494 110729 112064.0 13.8
14 189156 182797 188728 190704.6 6.7
16 267194 249477 261687 265482.1 31.0

n Time(Best) mean(T) std(T)

12 2370 1501.5 816.73
14 3045 2491.5 1067.94
16 18150 12858.0 3190.31

Table 4.4: Quality and Times in Seconds of PBSA from Scratch for NLB Distances

n Best LB min mean %G

12 408 384 404 418.2 16.6
14 654 590 640 654.8 21.8
16 928 846 958 971.8 -36.5
18 1306 1188 1350 1371.6 -37.2
20 1842 1600 1856 1874.0 -5.7

n Time(Best) mean(T) std(T)

12 2200 1102.0 560.31
14 1720 1396.0 457.10
16 7260 4962.0 1743.11
18 6660 5994.0 4070.67
20 12930 9587.1 2364.97

Table 4.5: Quality and Times in Seconds of PBSA from Scratch for Circular Distances

n Best LB min mean %G

16 235930 223800 233419 234847.9 20.7
18 296638 272834 282258 285947.6 60.4
20 346324 316721 333429 337280.3 43.5
22 412812 378813 406201 411967.5 19.4
24 467135 - 471536 476446.6 -
26 551033 - 545170 553175.5 -

n Time(Best) mean(T) std(T)

16 14010 14325.0 1626.11
18 19320 17097.0 2164.13
20 19680 18771.0 2053.67
22 23730 17691.0 4199.72
24 22110 18645.0 2150.32
26 18600 24621.0 3448.87

Table 4.6: Quality and Times in Seconds of PBSA from Scratch for NFL Distances

81

The optimality gap is reduced by about 14%, 7%, and 31% respectively. For the circular instances,

the improvement is better than when PBSA starts from a high-quality solution, for 12 teams, but

not as good for more teams. In fact, starting from scratch improves upon the best-known solution

only for n = 14, and is not very competitive for a larger number of teams. Finally, for the NFL

instances, it is interesting to note that, in the case of n = 18, PBSA produces a better solution

starting from scratch rather than from a high-quality solution.

In addition, it is important to note that, in all cases, the elapsed times are more significant

compared to starting from a given high-quality solution, but are still lower than the times for

TTSA.

4.2.3 TTSA versus PBSA

Figure 4.5 depicts the behavior of TTSA over a long time period (three days) and compares it with

PBSA. In this experiment, 80 independent TTSA processes run concurrently with no information

exchange and the figure shows the evolution of the best found solution over time. The results show

that TTSA achieves only marginal improvement after the first few hours. However, in about five

hours, PBSA achieves a substantial improvement over the best solution found by TTSA in the three

days.

4.2.4 The Effect of Macro-Diversification

In order to assess the extent to which macro-diversification affects solution quality, we ran PBSA

(for 10 iterations) on NLB-16 starting from scratch, varying the number of elite runs k. Note that

k = 0 corresponds to no macro-diversification. The table in Figure 4.6(a) depicts the minimum and

the mean cost, and the gap reduction. The results seem to indicate a nice complementarity between

macro-intensification and macro-diversification. The same data is illustrated in Figure 4.6(b), in

which the trend is even more obvious.

4.3 Connections with Related Work

At this point, it would be of interest to explore in a bit more detail the relationships between PBSA

and the cooperative parallel search, scatter search, and memetic algorithms mentioned in Chapter 1

4.3.1 Cooperative Parallel Search

Population-based simulated annealing can be viewed as a cooperative parallel search. There is a

great variety of proposed schemes of this kind, a large number of which is based on simulated

annealing. The most straight-forward schemes are attempts to parallelize sequential versions of

simulated annealing (e.g., [47]). However, the schemes appearing in the literature range over a much

broader spectrum.

82

0 0.5 1 1.5 2 2.5 3
LB=249477

253547
257617
261687
265757
269827
273897
277967
282037
286107
290177
294247
298317
302387
306457
310527
314597
318667
322737
326807

days

Min−cost of PBSA vs.TTSA on 16NLB

TTSA
PBSA

(a) Min-Cost Graph for TTSA and PBSA on NLB-16

0 1 2 3 4 5 6
LB=249477

253547
257617
261687
265757
269827
273897
277967
282037
286107
290177
294247
298317
302387
306457
310527
314597
318667
322737
326807

hours

Min−cost of PBSA vs.TTSA on 16NLB

TTSA
PBSA

(b) Min-Cost Graph for TTSA and PBSA on NLB-16 (Zoomed)

Figure 4.5: Comparison of Min-Cost Evolution for TTSA and PBSA on NLB-16

83

k Best LB min mean %G

0 267194 249477 266130 268538.6 6.0
10 267194 249477 264472 267261.0 15.3
20 267194 249477 263304 267563.1 21.9
30 267194 249477 261687 265482.1 31.0

(a) Tabular Form

0 10 20 30
LB=249477

251512

253547

255582

257617

259652

261687

263722

265757

267792

269827

271862

273897

Number of elite solutions (k)

Effect of macro−diversification on 16NLB

mean cost
min cost

(b) Graph Representation

Figure 4.6: The Effect of Macro-Diversification (NLB-16)

84

Onbaşoğlu et. al. 2001 [37] provide an extensive survey of parallel simulated annealing algorithms

and compare them experimentally on global optimization problems. They also classify those schemes

into application-dependent and application-independent parallelization.

In the first category, the problem instance is divided among several processors, which commu-

nicate only to deal with dependencies. For instance, in VLSI design, the processors specialize on

different areas of the circuit. See [22] for a detailed account of parallel simulated annealing techniques

for VLSI design. In the second category, Onbaşoğlu et. al. further distinguish between asynchronous

parallelization with no processor communication, synchronous parallelization with different levels of

communication, and highly-coupled synchronization in which neighborhood solutions are generated

and evaluated in parallel. In the first two cases, processors work on separate Markov chains while,

in the third case, they cooperate on a single Markov chain.

Communication patterns between processors can take the form of simple transmission of cost

values, occasional exchange of (possibly partial) solutions, or even intensive exchanges of solutions.

Hybrid schemes combining different forms of communication have also been developed (e.g., [27]).

There are schemes that cannot be easily classified, such as the parallel simulated annealing in [8], in

which the processors work on highly inter-dependent Markov chains by mixing states.

PBSA can thus be viewed as an application-independent algorithm with synchronous paralleliza-

tion and periodic exchange of solutions. The scheme proposed in [25] (which only exchanges partial

solutions) and the SOEB-F algorithm [37] are probably the closest to PBSA; however, they do not

use diversification and elite runs. An interesting observation is also that SOEB-F typically fails to

produce sufficiently good solutions [37].

It is also useful to point out that the above classification is not limited to simulated annealing. A

cooperative parallel scheme based on tabu search is presented in [5] and is applied to the generalized

assignment problem. In this context, we can point out that PBSA could be lifted into a generic

algorithm providing macro-intensification and macro-diversification for any meta-heuristic. Whether

such a generic algorithm would be useful in other contexts remains to be seen, however.

4.3.2 Memetic Algorithms and Scatter Search

PBSA can be seen as a degenerated form of scatter search [29] where solutions are not combined

but only intensified. Moreover, the concept of elite solutions is replaced by the concept of elite runs

which maintains the state of the local search procedures. PBSA can also be viewed as a degenerated

form of memetic algorithms [36], where there is no mutation of solutions: existing solutions are either

replaced by the best solution found so far or are “preserved”. Once again, PBSA does more than

preserving the solution: it also maintains the state of the underlying local search through elite

runs. Obviously, an interesting research direction would be to study how to enhance PBSA into

an authentic scatter search and memetic algorithm. The diversification so-obtained may further

improve the results.

85

4.4 Summary of All Results

We conclude this chapter with an updated version of the tables summarizing the best upper bounds

for mirrored and non-mirrored instances, taking into consideration both TTSA and PBSA results.

Note that, unlike similar tables presented earlier in Chapter 4, gap reduction percentages are now

computed by comparing the best upper bound produced by any of our approaches (TTSA or PBSA)

to the best-known upper bound published by other researchers.

Table 4.7 shows results for non-mirrored instances, while Table 4.8 shows the corresponding

results for mirrored instances. For the non-mirrored case, we are able to produce matching or

improving upper bounds on all cases considered, with a significant gap reduction, which often reaches

above 60%.

Because of time constraints, we have very few results using PBSA on mirrored instances: we only

have results for the NFL16-MIR and NFL24-MIR instances, and also for the BRAZ24-MIR instance

(posted on [49]), which uses cities in the 2003 Brazilian soccer championship, with 24 teams. The

most recent improvement to this last instance was posted two years ago. On all three instances,

PBSA was able to improve upon the best-known upper bound, which indicates that it is worth

devoting some future work into fully assessing the effectiveness of PBSA on mirrored instances.

Since we did not apply PBSA on other mirrored instances, Table 4.8 is almost identical to the

corresponding Table 3.18 presented in Chapter 3; we include it here for the sake of completeness.

Once again, the high effectiveness of simulated annealing based techniques is evident, since there is

only a single case (CIRC18-MIR), in which we do not match the best-known upper bound. In all

other cases, we find matching or improving solutions, often reducing the gap from the lower bound

by more than 30%.

86

Instance Best other LB min %G

nlb8 39721 39479 39721 0
nlb10 59436 57500 59436 0
nlb12 111483 107494 110729 18.9
nlb14 189759 182797 188728 14.8
nlb16 270063 249477 261687 40.7

circ8 132 128 132 0
circ10 242 228 242 0
circ12 408 384 404 16.7
circ14 654 590 632 34.4
circ16 928 846 916 14.6
circ18 1306 1188 1294 10.2
circ20 1842 1600 1732 45.5

const8 80 80 80 0
const10 124 124 124 0
const12 181 181 181 0
const14 252 252 252 0
const16 327 327 327 0
const18 418 414 417 25.0
const20 521 520 520 100
const22 626 626 626 0
const24 757 744 749 61.5

nfl16 235930 223800 231483 36.7
nfl18 296638 272834 282258 60.4
nfl20 346324 316721 332041 48.2
nfl22 412812 378813 402534 30.2
nfl24 467135 - 463657 -
nfl26 551033 - 536792 -

Table 4.7: Summary of All Results for Non-Mirrored Instances Relative to LB

87

Instance Best other LB min %G

nlb8-mir 41928 41928 41928 0
nlb10-mir 63832 58277 63832 0
nlb12-mir 120655 110519 119608 10.3
nlb14-mir 208086 182996 199363 34.8
nlb16-mir 279618 253957 278305 5.1

circ8-mir 140 140 140 0
circ10-mir 272 240 272 0
circ12-mir 456 384 432 33.3
circ14-mir 714 590 672 33.9
circ16-mir 978 876 968 9.8
circ18-mir 1306 1188 1352 -39.0
circ20-mir 1882 1600 1852 10.6

const8-mir 80 80 80 0
const10-mir 130 130 130 0
const12-mir 192 192 192 0
const14-mir 253 253 253 0
const16-mir 342 342 342 0
const18-mir 432 432 432 0
const20-mir 524 520 522 50.0
const22-mir 650 650 650 0
const24-mir 768 768 768 0

nfl16-mir 251289 228251 248818 10.7
nfl24-mir 467135 - 465863 -

braz24-mir 503158 - 500756 -

Table 4.8: Summary of All Results for Mirrored Instances Relative to LB

Conclusion

Sport league scheduling has received considerable attention in recent years, since these applications

involve significant revenues for television networks and generate challenging combinatorial optimiza-

tion problems. In the following paragraphs, we first summarize the most important conclusions

drawn from previous chapters of the dissertation; we then indicate possible extensions and future

research directions related to this thesis; we conclude with some general remarks.

As a conceptual contribution, this thesis shows that, contrary to common belief, Local Search

is, in fact, an effective method for tackling sport scheduling problems. This is demonstrated by our

approach to two very important problems in Sport Scheduling: the Break Minimization problem

and the TTP.

For the Break Minimization Problem, we propose a simulated annealing scheme, BMSA, based

on a simple connected neighborhood and a systematic scheme for cooling the temperature and

deciding termination. The resulting algorithm is conceptually simple and easy to implement; yet,

it always finds optimal solutions on the instances used in evaluating the state-of-the-art algorithm

of [17], regardless of its starting points. More importantly, BMSA exhibits excellent performance

and significantly outperforms earlier approaches on instances with more than 20 teams.

In the case of the Traveling Tournament Problem proposed in [49, 15], our simulated annealing

algorithm, TTSA, is able (with suitable enhancements) to match or significantly improve the best-

known solutions for most instances of the TTP, both in its original form, and in a number of

variants, including different distance metrics and mirroring constraints. The gains are higher for

larger instances. The key to these results is the design of a sophisticated neighborhood that is

very well adapted to the problem’s particular structure. Moreover, further enhancing TTSA by

embedding it within the PBSA population-based scheme leads to even more impressive results.

Our PBSA results shed some light on the complementarity between the micro-intensification

and micro-diversification inherent to simulated annealing and the macro-intensification and macro-

diversification, typically found in other meta-heuristics or frameworks. They also illustrate another

technical contribution of this work: the successful adaptation of ideas of tabu search into simulated

annealing. In addition, an important feature of the PBSA scheme is that it is general enough to be

applied to other problems or instances, or even use search methods other than TTSA.

88

89

A technical novelty that came out of studying variants of the TTP problem was the introduction

of novel neighborhood moves that capture sequences of earlier moves. As such, these novel moves

do not improve the connectivity of the neighborhood for the TTP. Their significance comes from

the fact that, in the original algorithm, these sequences have a low probability, although they

capture fundamental aspects of the mirroring or distance structure. An interesting direction of

future research would be to explore to which extent this “aggregation” technique for introducing

new moves capturing the special structure of a problem can lead to improved solutions. From a

theoretical aspect, it would also be interesting to determine if the original TTSA neighborhood is

actually connected.

An obvious extension would be to assess the general applicability of the PBSA scheme, through its

application to different problems. A potentially more exciting branch of future research would be to

expand our understanding of how to combine TTP solutions to produce scatter search and memetic

algorithms for the TTP. Alternatively, one could study how to enhance PBSA into an authentic

scatter search and memetic algorithm. These techniques will have the benefit of producing structural

diversification, which may be fundamental in improving the TTP results even further.

From the overall discussion in this work, it follows that simulated annealing appears to be the

method of choice for finding high-quality solutions to sport scheduling problems, especially for large-

scale problems. Its efficiency can be significantly boosted through its incorporation into broader

population-based schemes.

From a practical standpoint, this is extremely significant, especially given the fast-increasing

commercial interest in sport scheduling applications and the corresponding increase in complexity

and problem sizes that this entails.

This aside, it is very crucial, from a research-oriented perspective, to develop highly efficient

local search schemes that, combined with other established advanced techniques, will broaden our

understanding in the general field of combinatorial optimization.

Bibliography

[1] E. Aarts and P. van Laarhoven. Statistical Cooling: A General Approach to Combinatorial

Optimization Problems. Philips Journal of Research, 40(4):193–226, 1985.

[2] E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. Wiley-Interscience

Series in Discrete Mathematics and Optimization, John Wiley & Sons Ltd, England, 1997.

[3] A. Anagnostopoulos, L. Michel, P. Van Hentenryck and Y. Vergados. A Simulated Annealing

Approach to the Traveling Tournament Problem. In the Fifth International Workshop on Inte-

gration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems (CP-AI-OR’03), Montréal, Canada, May 2003.

[4] A. Anagnostopoulos, L. Michel, P. Van Hentenryck and Y. Vergados. A Simulated Annealing

Approach to the Traveling Tournament Problem. Journal of Scheduling, 9(2):177–193, April

2006.

[5] Y. Asahiro, M. Ishibashi and M. Yamashita. Independent and Cooperative Parallel Search Meth-

ods for the Generalized Assignment Problem. Optimization Methods and Software, 18(2):129–

141, April 2003.

[6] T. Benoist, F. Laburthe and B. Rottembourg. Lagrange Relaxation and Constraint Program-

ming Collaborative Schemes for Travelling Tournament Problems. In the Third International

Workshop on Integration of AI and OR Techniques in Constraint Programming for Combina-

torial Optimization Problems (CP-AI-OR’01), Wye College (Imperial College), Ashford, Kent,

UK, April 2001.

[7] A. Cardemil and G. Durán. Un algoritmo tabú sarch para el traveling tournament problem.

(In Spanish). In Revista Ingenieŕıa de Sistemas, 18(1):95–115, June 2004.

[8] K. W. Chu, Y. Deng and J. Reinitz. Parallel simulated annealing by mixing of states. Journal

of Computational Physics, 148(2):646–662, January 1999.

[9] D. T. Connolly. General Purpose Simulated Annealing. Journal of the Operational Research

Society, 43(5):495–505, May 1992.

90

91

[10] A. Davenport and E. Tsang. Solving Constraint Satisfaction Sequencing Problems by Iterative

Repair. In Proceedings of the First International Conference on the Practical Applications

of Constraint Technologies and Logic Programming (PACLP’99), pp. 345–357, London, UK,

April 1999.

[11] L. Di Gaspero and A. Schaerf. A Tabu Search Approach to the Traveling Tournament Prob-

lem. In Proceedings of RCRA 2005, Associazione Italiana per l’Intelligenza Artificiale (AI*IA),

pp. 23–27, Ferrara, Italy, June 2005.

[12] L. Di Gaspero and A. Schaerf. A Composite-Neighborhood Tabu Search Approach to the

Traveling Tournament Problem. Journal of Heuristics, 13(2):189–207, April 2007.

[13] J. A. Dı́az and E. Fernández. A Tabu Search Heuristic for the Generalized Assignment Problem.

European Journal of Operational Research, 132(1):22–38, July 2001.

[14] J. H. Dinitz and D. R. Stinson. A Hill-Climbing Algorithm for the Construction of One-

Factorizations and Room Squares. SIAM Journal on Algebraic and Discrete Methods, 8(3):430–

438, July 1987.

[15] K. Easton, G. Nemhauser and M. Trick. The Traveling Tournament Problem Description

and Benchmarks. In T. Walsh, editor, Proceedings of the 7th International Conference on the

Principles and Practice of Constraint Programming (CP’01), pp. 580–584, Paphos, Cyprus,

2001. LNCS 2239, Springer-Verlag, 2001.

[16] K. Easton, G. Nemhauser and M. Trick. Solving the Travelling Tournament Problem: A

Combined Integer Programming and Constraint Programming Approach. In E. Burke and P. De

Causmaecker, editors, Practice and Theory of Automated Timetabling IV, 4th International

Conference (PATAT’02), Selected Revised Papers, pp. 100–112, Gent, Belgium, 2002. LNCS

2740, Springer-Verlag, 2003.

[17] M. Elf, M. Jünger and G. Rinaldi. Minimizing Breaks by Maximizing Cuts. Operations Research

Letters, 31(3):343–349, May 2003.

[18] M. Elf, M. Jünger and G. Rinaldi. Personal communication, 2004.

[19] N. Fujiwara, S. Imahori, T. Matsui and R. Miyashiro. Constructive Algorithms for the Constant

Distance Traveling Tournament Problem. In E. Burke and H. Rudova, editors, Proceedings

of the 6th International Conference on the Practice and Theory of Automated Timetabling

(PATAT’06), pp. 402–405, Masaryk University, Brno, Czech Republic, August 2006.

[20] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[21] M. Goemans and D. Williamson Improved Approximation Algorithms for Maximum Cut and

Satisfiability Problems using Semidefinite Programming. Journal of the ACM, 42(6):1115–1145,

November 1995.

92

[22] D. R. Greening. Parallel Simulated Annealing Techniques. Physica D: Non-linear Phenomena,

42(1-3):293–306, June 1990.

[23] P. Hansen and N. Mladenovic. An Introduction to Variable Neighborhood Search. In S. Voss,

S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-heuristics, Advances and Trends in

Local Search Paradigms for Optimization, pp. 433–458. Kluwer Academic Publishers, 1998.

[24] M. Huang, F. Romeo and A. Sangiovanni-Vincentelli. An Efficient General Cooling Schedule for

Simulated Annealing. In Proceedings of the IEEE International Conference on Computer-Aided

Design, pp. 381–384, Santa Clara, CA, USA, November 1986.

[25] D. Janaki Ram, T. H. Sreenivas and K. Ganapathy Subramaniam. Parallel Simulated Annealing

Algorithms. Journal of Parallel and Distributed Computing, 37(2):207–212, September 1996.

[26] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi. Optimization by Simulated Annealing.

Science, 220(4598):671–680, May 1983.

[27] G. Kliewer and S. Tschöke. A General Parallel Simulated Annealing Library and its Application

in Airline Industry. In Proceedings of the 14th International Parallel and Distributed Processing

Symposium (IPDPS’00), pp. 55–62, Cancun, Mexico, May 2000.

[28] M. Laguna, J. P. Kelly, J. L. Gonzalez-Velarde and F. Glover. Tabu Search for the Multilevel

Generalized Assignment Problems. European Journal of Operational Research, 82(1):176–189,

April 1995.

[29] M. Laguna and R. Mart́ı. Scatter Search: Methodology and Implementations in C. Kluwer

Academic Publishers, Boston, USA, 2003.

[30] A. Lim, B. Rodrigues and X. Zhang. A Simulated Annealing and Hill-Climbing Algorithm for

the Traveling Tournament Problem. European Journal of Operational Research, 174(3):1459–

1478, November 2006.

[31] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller. Equation of

State Calculation by Fast Computer Machines. Journal of Chemical Physics, 21(6):1087–1092,

June 1953.

[32] R. Miyashiro and T. Matsui. Round-Robin Tournaments with a Small Number of Breaks.

Technical Report, Mathematical Engineering Technical Reports, METR 2003-29, Department

of Mathematical Informatics, Graduate School of Information Science and Technology, the

University of Tokyo, 2003.

[33] R. Miyashiro and T. Matsui. A Polynomial-Time Algorithm to Find an Equitable Home-Away

Assignment. Operations Research Letters, 33(3):235–241, May 2005.

93

[34] R. Miyashiro and T. Matsui. Semidefinite Programming Based Approaches to the Break Min-

imization Problem. Computers and Operations Research, 33(7):1975–1982. Elsevier Science

Ltd., Oxford, UK, July 2006.

[35] G. Nemhauser and M. Trick. Scheduling a Major College Basketball Conference. Operations

Research 46(1):1–8, January 1998.

[36] M. G. Norman and P. Moscato. A Competitive and Cooperative Approach to Complex Com-

binatorial Search. In Proceedings of the 20th Informatics and Operations Research Meeting,

pp. 3.15–3.29, Buenos Aires, Argentina, August 1991.

[37] E. Onbaşoğlu and L. Özdamar. Parallel Simulated Annealing Algorithms in Global Optimiza-

tion. Journal of Global Optimization, 19(1):27–50, January 2001.

[38] I. H. Osman. Metastrategy Simulated Annealing and Tabu Search Algorithms for the Vehicle

Routing Problem. Annals of Operations Research (Special issue on Tabu search), 41(1–4):421–

451, 1993.

[39] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.

Prentice-Hall, Englewood Cliffs, NJ, USA, 1982.

[40] E. Pesch and F. Glover. TSP Ejection Chains. Discrete Applied Mathematics, 76(1–3):165–181,

June 1997.

[41] R. Rasmussen and M. Trick. A Benders Approach to the Constrained Minimum Break Problem.

European Journal of Operational Research, 177(1):198–213, February 2007.

[42] R. Rasmussen and M. Trick. Round Robin Scheduling - A Survey. European Journal of Oper-

ational Research (Accepted for publication), 2007.

[43] J. C Régin. Minimization of the Number of Breaks in Sports Scheduling Problems Using Con-

straint Programming. In E. C. Freuder and R. J. Wallace, editors, Constraint Programming and

Large Scale Discrete Optimization, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, 57:115–130. American Mathematical Society Publications, 2001.

[44] C. C. Ribeiro and S. Urrutia. Heuristics for the Mirrored Traveling Tournament Problem.

Proceedings of the 5th International Conference on the Practice and Theory of Automated

Timetabling (PATAT’04), pp. 323–342, Pittsburgh, PA, USA, August 2004.

[45] J. A. M. Schreuder. Combinatorial Aspects of Construction of Competition Dutch Professional

Football Leagues. Discrete Applied Mathematics, 35(3):301–312, March 1992.

[46] H. Shen and H. Zhang. Greedy Big Steps as a Meta-Heuristic for Combinatorial Search. Avail-

able online at http://goedel.cs.uiowa.edu/AR-group/readings/aaai ttp.pdf, 2004.

94

[47] A. Sohn. Parallel n-ary Speculative Computation of Simulated Annealing. IEEE Transactions

on Parallel and Distributed Systems, 6(10):997–1005, October 1995.

[48] M. A. Trick. A Schedule-Then-Break Approach to Sports Timetabling. In E. Burke and W. Er-

ben, editors, Practice and Theory of Automated Timetabling III, Third International Conference

(PATAT’00), Selected Papers, pp. 242–253, Konstanz, Germany, August 2000. LNCS 2079,

Springer-Verlag, 2001.

[49] M. Trick. http://mat.gsia.cmu.edu/TOURN/ on-line reference. 2002-2007, last visited in

May 2007.

[50] S. Urrutia and C. C. Ribeiro. Maximizing Breaks and Bounding Solutions to the Mirrored Trav-

eling Tournament Problem. Discrete Applied Mathematics, 154(13):1932–1938, August 2006.

[51] S. Urrutia, C. C. Ribeiro and R. Melo. A New Lower Bound to the Traveling Tournament

Problem. Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling

(CI-Sched 2007), pp. 15–18, Honolulu, HI, USA, April 2007.

[52] P. Van Hentenryck and L. Michel Constraint-Based Local Search. The MIT Press, 2005.

[53] P. Van Hentenryck and Y. Vergados. Minimizing Breaks in Sport Scheduling with Local Search.

In S. Biundo, K. L. Myers and K. Rajan, editors, Proceedings of the 15th International Con-

ference on Automated Planning and Scheduling (ICAPS’05), pp. 22–29, Monterey, CA, USA,

June 2005.

[54] P. Van Hentenryck and Y. Vergados. Traveling Tournament Scheduling: A Systematic Eval-

uation of Simulated Annealling. In J. C. Beck and B. M. Smith, editors, Proceedings of the

Third International Conference on Integration of AI and OR Techniques in Constraint Program-

ming for Combinatorial Optimization Problems (CP-AI-OR’06), pp. 228–243, Cork, Ireland,

May 2006. LNCS 3990, Springer-Verlag, 2006.

[55] P. van Laarhoven and E. Aarts. Simulated Annealing: Theory and Applications. D. Reidel

Publishing Company, Dordrecht, The Netherlands, 1987.

[56] P. van Laarhoven. Theoretical and Computational Aspects of Simulated Annealing. Stichting

Mathematisch Centrum, Amsterdam, The Netherlands, 1998.

[57] W. D. Wallis. One-factorizations. Kluwer Academic Publishers, Dordrecht, The Netherlands,

1997.

