
Efficient Non-Interactive Zero-Knowledge Proofs for Privacy Applications

by

Melissa Chase

B. S., Harvey Mudd College, 2003

Sc. M., Brown University, 2005

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2008

c© Copyright 2008 by Melissa Chase

This dissertation by Melissa Chase is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Anna Lysyanskaya, Director

Recommended to the Graduate Council

Date
Roberto Tamassia, Reader

Date
Leonid Reyzin, Reader

(Boston University)

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Vita

Melissa Chase was born in Seattle, Washington in 1981, and in 1984 she moved to Southern California,

where she spent the rest of her childhood. She was introduced to computer programming at an after-school

club in sixth grade, and spent much of her middle school and high school years writing computer games with

her younger brother. In 1999 she left home to attend Harvey Mudd College, intending to major in Computer

Science or Medieval History. In 2003, she graduated with a B.S. with High Honors in Mathematics and

Computer Science. She was awarded the National Science Foundation Graduate Research Fellowship, and

began graduate study at Brown University. At Brown she discovered cryptography, and immediately decided

that that was the area in which she wanted to work, as it combined number theory, algorithms, and complexity

theory with practical applications. In the fall of 2006, she was awarded a fellowship from the Institute for

Pure and Applied Mathematics at the University of California, Los Angeles, and spent the semester there

attending a program on “Securing Cyberspace: Applications and Foundations of Cryptography and Computer

Security”. While at Brown, her work has appeared in numerous conference articles, and she has presented her

research internationally in Great Britain, Denmark, Switzerland, and the Netherlands, as well as at a number

of locations within the United States.

iv

Acknowledgements

I would like to thank Anna Lysyanskaya for being a spectacular advisor, for introducing me to cryptography,

and for encouragement and guidance over the last five years. I would also like to thank Leo Reyzin and

Roberto Tamassia for being on my committee and for offering helpful advice. I thank my other collaborators

both at Brown (Mira Belenkiy, Alptekin Kupcu, Chris Erway, and John Jannotti), and away (Jan Camenisch

and Markulf Kohlweiss) for many interesting and enjoyable discussions. I would like to thank my parents,

who have always been there for me, and my brother Jason for being my first collaborator. Finally, many

thanks to Will Headden, Jenine Turner, Naomi Feldman, and especially Greg Cooper for being wonderful

supportive and patient friends.

v

Contents

1 Introduction 1

2 Preliminaries 6
2.1 Basic Cryptographic Primitives . 6

2.1.1 Commitment Schemes . 6

2.1.2 Secure Digital Signature . 7

2.1.3 Non-interactive Proof Systems . 8

2.2 Bilinear Maps . 11

2.3 Assumptions . 12

2.3.1 Previous Assumptions . 12

2.3.2 New Assumptions . 13

3 New Properties of the Groth-Sahai Proof System 16
3.1 An Overview of the Groth-Sahai Proof System . 16

3.1.1 Groth-Sahai Commitments [57] . 17

3.1.2 Groth-Sahai Pairing Product Equation Proofs [57] 17

3.2 Details of the Groth-Sahai Proof System . 19

3.3 Instantiating the Groth-Sahai Proofs System . 20

3.4 Efficiency . 22

3.5 Zero-Knowledge Proof of Equality of Committed Values 25

3.6 F-Extraction . 26

3.6.1 Definition . 27

3.6.2 Notation . 27

3.7 Randomizability . 28

3.7.1 Concatenated and Projected Proofs . 28

3.7.2 Randomized NIZK Proofs of Knowledge . 29

3.7.3 Groth-Sahai Proofs Are Randomizable . 29

3.7.4 Proof that Groth-Sahai Proofs Are Randomizable 30

vi

4 NIZK Proofs for Signature Schemes 34
4.1 P-signatures: Definitions . 35

4.2 P-signatures: Constructions . 39

4.2.1 Construction of P-Signature Scheme from IHSDH 39

4.2.2 Construction of P-Signature Scheme from TDH and HSDH 42

4.2.3 P-signatures with Multiple Messages from HSDH and TDH 48

4.2.4 P-signatures with Multiple Messages and Small Keys from BB-HSDH and BB-CDH 52

4.3 P-signatures with Extra Properties . 53

4.3.1 Certification Unforgeability . 54

4.3.2 Other Protocols . 54

4.3.3 Construction . 55

4.3.4 Proof of Security . 58

5 NIZK Proofs for Pseudorandom Functions 68
5.1 On Defining sVRFs . 69

5.1.1 Simplifying the Definition . 70

5.1.2 Weak Trapdoor-Indistinguishable sVRF . 71

5.2 Simulatable Verifiable Random Functions: Constructions 74

5.2.1 Construction from Composite Order Bilinear Groups 75

5.2.2 Construction from DDHI and GS proofs . 79

5.2.3 Construction Based on General Assumptions . 82

5.3 NIZK Proofs of Pseudorandom Functions . 83

6 Application to Non-Interactive Anonymous Credentials 86
6.1 Anonymous Credentials Based on P-Signatures . 86

6.2 Efficiency . 89

6.3 Proof of Security . 89

6.3.1 Unforgeability . 89

6.3.2 Anonymity . 90

7 Application to Delegatable Anonymous Credentials 92
7.1 Definition of Delegatable Credentials . 94

7.1.1 Definitions of Delegatable Anonymous Credentials: A Sketch 96

7.2 Formal Definition of Delegatable Credentials . 98

7.3 Construction of Delegatable Credentials . 104

7.3.1 Efficiency . 106

7.4 Adding Attributes . 107

7.5 Security Proof for Delegatable Credential Construction . 108

7.5.1 Correctness . 108

7.5.2 Anonymity . 108

vii

7.5.3 F -Unforgeability . 110

8 Application to Efficient NIZK for Other Languages 114
8.1 Efficient Transformation based on sVRFs . 116

8.2 Efficiency . 117

8.3 Proof of Security . 118

9 Application to E-cash 120
9.1 Definitions . 122

9.2 NIZK Proofs for a More Complex Language . 125

9.2.1 Efficiency . 127

9.2.2 Security . 127

9.3 New Compact E-Cash Scheme . 128

9.4 Efficiency . 130

9.5 Proof of Security of Our Compact E-Cash Scheme . 131

A Generic Group Security for BB-SDH and BB-CDH 136
A.0.1 BB-HSDH . 136

A.0.2 BB-CDH . 139

Bibliography 141

viii

Chapter 1

Introduction

Modern cryptography focuses on the idea of provable security. We begin with the idea that there are certain

problems that we can assume to be hard, e.g. factoring or hard-on-average NP-hard problems, then show

that a successful attack on a particular cryptosystem would imply a solution to an underlying a hard prob-

lem. As long as the underlying problem is sufficiently hard, we can as a result guarantee that breaking our

cryptosystem is also difficult.

However, it can be very difficult to analyze an entire system at once. Thus, we often find it useful to

take a more modular approach: we break the system down into smaller building blocks, and show that if

these building blocks satisfy certain properties, then the larger system is secure. This simultaneously makes

proving security much simpler, and makes the basic intuition behind the construction of the system more

apparent.

My research is concerned with provably secure cryptography. This work focuses on two new building

blocks which we believe will be useful in a variety of privacy applications. The first defines a signature

scheme for which we can issue efficient proofs that a message has been signed, without revealing any ad-

ditional information. We show that this has applications in the area of anonymous credential systems —

systems where users can anonymously obtain and prove possession of various types of credentials.

The second building block is a pseudo-random function together with an efficient proof system that allows

users to prove that values have been computed correctly according to this function. This gives the privacy

benefits of pseudorandomness while still preventing malicious behavior. We show that this results in the first

provably secure compact e-cash scheme, and in addition that it can be used to build efficient proof systems

for other languages.

Background

In many applications, maintaining privacy means allowing users to prove that they are acting according to a

given protocol and yet to reveal only what information is necessary. One might, for example, want to prove

that one has voted according to protocol without revealing one’s vote, or to show that one has permission to

access certain data without revealing one’s entire identity. One solution in such cases is to use zero knowledge

1

2

proof systems [53], in which a user can prove that a statement is true without revealing any other information.

In general, zero knowledge proof protocols are interactive in that the prover and verifier must exchange

several rounds of communication before the verifier determines whether to accept the proof. However, certain

applications require these proofs to be noninteractive – the prover must post a proof in such a way that any

other user can verify it given access only to the proof and some trusted public parameters [8, 42, 7].

Blum et al. [7] introduced the notion of non-interactive zero knowledge (NIZK) proof systems and

showed that such proof system exist for all languages in NP. However, the original NIZK proof systems [7, 46]

were extremely inefficient, serving as proofs of concept rather than potentially usable constructions. Recent

work has made general noninteractive zero knowledge (NIZK) proof systems significantly more efficient

[56]. However, we can achieve systems which are far more efficient if we consider specialized NIZK proof

systems for the specific types of statements required for individual privacy applications. A large part of this

thesis focuses on identifying useful classes of statements for which we can give such proof systems.

Tools and Techniques.

One underlying tool in many of the proof systems I have worked on is the Groth-Sahai proof system[57].

Groth and Sahai give a particular commitment scheme1 for bilinear groups, and a proof system in which a

user can provide a list of commitments and then give a NIZK proof that these commitments can be opened

to values that satisfy a given equation. The only requirement is that the equation must be of a particular

form, which they refer to as “a tractable pairing product equation”[57]. Groth and Sahai show that this proof

system is perfectly sound, computationally witness indistinguishable and in some cases computationally zero

knowledge.

Here we will also define two additional properties satisfied by the Groth-Sahai proof system. The first is f -

extraction, which generalizes the standard definition of extractability for proofs of knowledge and formalizes

the notion that a prover can prove that he knows some function of a valid witness for a given statement (while

he may not know the witness itself). The second is a property which we call randomizability, in which any

proof can be “rerandomized” to produce what appears to be a completely fresh and independent proof for

the same statement. Randomizability in particular seems to be a completely new concept in the context of

non-interactive proofs. Finally, we will show several applications of our primitives which make crucial use

of these properties.

P-signatures

Camenisch and Lysyanskaya [23, 24, 25] defined and constructed a primitive for a signature scheme with

special properties. These CL signatures allow a user to obtain a signature on a committed message, and to

prove knowledge of such a signature, in both cases without revealing any information about the message.

1In a cryptographic commitment scheme, a user first chooses a value and some randomness, and combines them to compute some-
thing called a commitment, which he can then publish. At some later point, he can decide to “open” the commitment by revealing
the value and the randomness used. We require that the commitment scheme be hiding, which means that the commitment reveals
no information about the value used to create it. At the same time, we require that it be binding, in that once a commitment is
published, there should be at most one value to which he can successfully “open” the commitment.

3

They have been shown to be useful in a variety of privacy preserving applications [23, 24, 25, 2, 21, 75, 22,

29, 20].. However, these schemes require that the proofs be interactive; in cases where interaction is not

possible, the proofs become only heuristically, not provably, secure.

In joint work with Belenkiy, Kohlweiss, and Lysyanskaya, I present a new signature and proof system

that allows noninteractive provably secure proofs of knowledge of a signature, which we call P-signatures

[5]. Our P-signature can be seen as the analog of CL signature in the non-interactive proof setting.

However, the non-interactive proof setting brings additional complications, particularly when combined

with proof systems which are only f -extractable. Note that the underlying signature scheme must have a

unforgeability property which is strictly stronger than the standard notion introduced by Goldwasser, Micali,

and Rivest[54]. We must show not only that an adversarial party cannot produce a message and a forged sig-

nature, but also that he cannot produce a commitment and a proof of a forged signature on the corresponding

message, which is potentially a much stronger statement. We provide several constructions for signatures that

satisfy this stronger notion. This results in several P-signatures schemes based on different assumptions and

applicable in a variety of different settings.

Application to Anonymous credentials

Anonymous credential systems allow a user to prove that he has valid credentials for a service without re-

vealing his identity, or any other information about himself. Camenisch and Lysyanskaya [23] developed an

anonymous credential system based on CL signatures.

We show that our P-signatures signatures can give a credential system in which a user can issue noninter-

active proofs of valid credentials, which suggests that they can be used in place of CL signatures in situations

where we need secure noninteractive proofs. Previously, the only known constructions for such a primitive

were based on CL signatures and only heuristically secure (in that they require the random oracle model). We

also show that these P-signatures can solve a problem for which no solution was previously known to exist in

any setting: the problem of delegatable anonymous credentials.

Application to Delegatable anonymous credentials

Delegatable anonymous credentials are a logical extension of anonymous credentials. Consider the following

scenario: Suppose we want to use anonymous credentials to implement an anonymous review system for

some conference. The program chair can issue reviewer credentials for the appropriate papers to each member

of the committee, who then can prove to the server that they are entitled to upload reviews without revealing

their identities. These committee members can in turn issue credentials to any sub-reviewers they recruit.

The sub-reviewer does not need to know to whom the paper was originally assigned, only that that person

asked them to sub-review. (Note that this is different from traditional credential systems where the user

always knows the identity of the party that issues his credentials.) The sub-reviewer could in turn delegate

the paper to a second level sub-reviewer, and so on. The server should keep track of which reviews are made

by committee members, which by sub-reviewers, and which by sub-sub-reviewers, but should not receive any

information about the identities of the reviewers. Thus, we have a credential chain, from chair, to committee

4

member, to sub-reviewer, to sub-sub-reviewer, and each participant in the chain does not know who gave

him/her the credential. However, each participant (1) knows the length of his credential chain and knows that

this credential chain is rooted at the program chair; and (2) can extend the chain and issue a credential to the

next person. Furthermore, we consider an even stronger notion where the issuer or delegator only knows a

pseudonym of the person to whom they’re delegating, so that the credentials are anonymous both from the

point of view of the delegator and of the recipient.

In joint work with Lysyanskaya [31], I gave the first solution to this problem by showing that such a

system could be constructed from a primitive that we called signatures of knowledge. However, this con-

struction relies on general simulation sound NIZK proof systems which are extremely inefficient. Here in

joint work with Belenkiy, Camenisch, Kohlweiss, Lysyanskaya, and Shacham [3], I show that an extension

of P-signatures can be used to build efficient delegatable anonymous credentials. The key to this construction

is the randomizability property mentioned above.

Simulatable Verifiable Random Functions

As a second direction, I have been looking at ways to allow a user to choose pseudorandom values and to

prove that this has been done honestly. Randomness has been shown to be essential for cryptographically

secure privacy, but, as it is considered an expensive resource, often a short random seed is used to generate a

pseudorandom function (PRF) [50] — a function which is indistinguishable from a truly random function —

giving many seemingly random values. When pseudorandom functions are used as part of larger protocols, it

is often possible that a party can cheat by choosing a value in some adversarial way rather than according to

the pseudorandom function. Verifiable random functions (VRFs)[66] begin to solve this problem by giving a

public key corresponding to each seed and allowing the party to prove that a value has been computed cor-

rectly according to a particular public key. However, this comes at the cost of some of the pseudorandomness

guarantees — as soon as a proof for a particular value has been published, that value is no longer guaranteed

to be pseudorandom.

Thus, in joint work with Lysyanskaya, I introduce a new primitive called simulatable verifiable random

functions (sVRFs) [32]. Simulatable verifiable random functions are essentially pseudorandom functions for

which a party can efficiently give a NIZK proof that the output was computed correctly (although we also

consider somewhat weaker definitions). We now have several constructions for this primitive — the first

based on composite order bilinear groups, a newer construction based on the Groth-Sahai proof system, and

a proof of concept construction based on general assumptions.

Application to E-cash.

One practical application is that of electronic cash or e-cash [36]. Here we want an electronic currency that

is both anonymous (the recipient of a coin cannot tell which user the coin came from, or whether two coins

were spent by the same person, even if he colludes with the bank), and unforgeable (a user can only spend

as many coins as he has withdrawn from the bank). Camenisch, Hohenberger, and Lysyanskaya [21] gave an

e-cash scheme in which users can efficiently withdraw and store large wallets of coins. To withdraw a wallet,

5

the user obtains a signature from the bank on two random seeds. Then each coin spent is identified with

a serial number generated by a pseudorandom function using one of the two seeds. The user must provide

a proof that this value has been computed correctly and that the seed used has been signed. In the current

constructions, this proof system is only heuristically secure. In joint work with Belenkiy, Kohlweiss, and

Lysyanskaya, I show that if we replace the PRF with an sVRF and use a P-signature to prove knowledge of a

signature on the seed, we can construct an e-cash scheme which is actually provably secure.

What makes this more complex is that each coin must also include a second value called the double

spending equation. For the ith coin in a user’s wallet, this value is computed as a function of a second PRF

F with seed s2, some transaction specific information R, and an identifier ID which uniquely identifies the

user, as follows: T = Fs2(i)
R ∗ ID. Note that if the same coin is used in two different transactions, we can

use the two transaction values R and R′ together with the double spending equations T and T ′ from each

transaction to determine the identity of the doublespender.

Thus, we also need each user to include a proof that the doublespending equation was computed correctly,

even though it is not the direct output of F , but rather a function of that output. In general, it seems that there

might be many other protocols in which the user must prove, not that a certain value was generated honestly

at random, but rather that the value was the result of some computation one of whose inputs was chosen

pseudorandomly. We show that we can generalize one of our sVRF constructions to deal which such a

situation.

Application to efficient NIZK for other languages

Finally, in joint work with Lysyanskaya [32], I show that sVRFs can be used to help build efficient NIZK

proof systems. If a particular language has an efficient proof system that can prove in zero knowledge that a

single statement holds, then we can use sVRFs to build an efficient proof system for many statements. This

leaves open the problem of finding useful languages with efficient single statement proof systems (which

seems to be a much easier problem than finding efficient multi-statement proof systems).

Organization

In Chapter 2, we will summarize our notation, review definitions for basic cryptographic primitives and for

cryptographic bilinear maps, and present and discuss the assumptions on which our constructions will be

based. In Chapter 3, we summarize the Groth-Sahai proof system [57], describe our two new properties

(f -extraction and randomizability), and prove that they are satisfied. Chapter 4 presents definitions and

constructions for P-signatures, while Chapter 5 presents definitions and definitions for our sVRFs. Finally,

Chapters 6, 7, 8, 9 describe applications to non-interactive anonymous credentials, delegatable anonymous

credentials, efficient NIZK for other languages, and provably secure e-cash, respectively.

Chapter 2

Preliminaries

2.1 Basic Cryptographic Primitives

Here we will review several basic cryptographic primitives. We will present basic intuition and definitions

for commitment schemes, digital signatures, and non-interactive proof systems.

2.1.1 Commitment Schemes

In a non-interactive commitment scheme, one user can “commit” to a value x, using the algorithm Commit

on input x and some randomness r to produce a commitment c which he can then send to a verifier. At some

later point, the user can choose to “open” the commitment by sending x and r to the verifier, who checks that

those values correctly correspond to the initial commitment c. At a high level, the properties we want are (1)

hiding: when the verifier has received only the commitment c, he should have no information about which

value x the user committed to, and (2) binding: once the user has formed and sent the commitment c, there

should be at most one value x to which he can “open” the commitment, i.e. at most one value x for which he

can produce an r such that x, r will be accepted by the verifier. (The randomness r is often referred to as the

opening information for this commitment.)

More formally, a non-interactive commitment scheme consists of PPT algorithm ComSetup and deter-

ministic polynomial time algorithm Commit as follows:

ComSetup(1k) takes as input the security parameter and outputs public parameters paramsCom for the com-

mitment scheme.

Commit(paramsCom , x, open) is a deterministic function that takes as input a value x and randomness open ,

and outputs comm , a commitment to x using randomness open .

We will need commitment schemes that are perfectly binding and strongly computationally hiding:

Definition 1. A commitment scheme (ComSetup,Commit) is perfectly binding if for every bitstring comm ,

there exists at most one value x such that there exists randomness open so that comm = Commit(params, x,

open).

6

7

More formally, for all (potentially unbounded) adversaries A,

Pr[paramsCom ← ComSetup(1k); comm, x, x′, open, open ′ ← A(paramsCom)

: x 6= x′ ∧ comm = Commit(x, open) ∧ comm = Commit(x′, open ′)] = 0

Definition 2. A commitment scheme (ComSetup,Commit) is strongly computationally hiding if there exists

an alternate setup HidingSetup(1k) that outputs parameters (computationally indistinguishable from the

output of ComSetup(1k)) so that the commitments become information-theoretically hiding. More formally,

we require that the following properties hold:

(1) {params← ComSetup(1k) : params} ≈ {params← HidingSetup(1k) : params}
(2) let R be the set from which the randomness open is chosen. Then for all x1, x2 in the domain of the

commitment scheme

{params← HidingSetup(1k); open ← R; c = Commit(params, x1, open) : c}

= {params← HidingSetup(1k); open ← R; c = Commit(params, x2, open) : c}

2.1.2 Secure Digital Signature

In a digital signature scheme, a signer can generate a private signing key sk and publish a corresponding

public verification key pk . The signer can use sk to generate a signature σ for each message m, and any

recipient can use pk to verify that a given signature σ was generated by the owner of the corresponding sk as

a signature on the message m.

In the common parameters model, a signature scheme consists of four algorithms:

SigSetup(1k) takes as input the security parameter, and produces system parameters paramsSig .

Keygen(paramsSig) takes as input the system parameters and produces a secret key sk and a public key pk .

Sign(paramsSig , sk ,m) takes as input the system parameters, a signing key sk , and a message m . It produces

a signature σ.

VerifySig(paramsSig , pk ,m, σ) takes as input the system parameters, a verification key pk , a message m ,

and a candidate signature σ. It outputs 1 if σ is a valid signature on message m under verification key

pk , and 0 otherwise.

Definition 3 (Secure Signature Scheme [54]). We say that a signature scheme is secure (against adaptive

chosen message attacks) if it is Correct and Unforgeable.

Correctness. All signatures obtained using the Sign algorithm should be accepted by the VerifySig algo-

rithm. More formally, for all m ,

Pr[paramsSig ← SigSetup(1k); (pk , sk)← Keygen(paramsSig);

σ ← Sign(paramsSig , sk ,m) : VerifySig(paramsSig , pk ,m, σ) = 1] = 1

8

Unforgeability. No adversary should be able to output a valid message/signature pair (m, σ) unless he has

previously obtained a signature on m . Formally, for every PPTM adversaryA, there exists a negligible

function ν such that

Pr[paramsSig ← SigSetup(1k); (pk , sk)← Keygen(paramsSig);

(QSign,m, σ)← A(paramsSig , pk)OSign(paramsSig ,sk ,·) :

VerifySig(paramsSig , pk ,m, σ) = 1 ∧m 6∈ QSign] < ν(k).

OSign(paramsSig , sk ,m) records m on QSign and returns Sign(paramsSig , sk ,m).

2.1.3 Non-interactive Proof Systems

In this section, we review security definitions for non-interactive proof systems in the common reference

string model [7]. Here we assume that some trusted party has computed a set of public parameters according

to an algortihm Setup, and posted them so that they are accessible to all parties in the system. The prover

wants to prove some statement of the form “x ∈ L” for an NP language L. Equivalently, we can say that for a

given x and a given polynomial time Turing machine ML, the prover wants to prove a statement of the form

“∃w such that ML(x,w) = 1”.

Thus, we have three probabilistic polynomial time (PPT) algorithms:

Setup(1k) takes as input a security parameter k. It produces public parameters params. If these parameters

are chosen at random from {0, 1}l(k) for some polynomial l, then this is said to be the common random

string model (rather than the common reference string model).

Prove(params, x, w,ML) takes as input the public parameters for the system, and an instance x and a

witness w such that ML(x,w) = 1. It outputs a proof π.

VerifyProof(params, x, π,ML) takes as input the public parameters for the system, an instance x, a TM

ML and a candidate proof of the statement: “∃w such that ML(x,w) = 1”. It outputs accept if it

accepts the proof and reject otherwise.

When the language is clear from context, we will omit the input ML.

We consider proof systems with a variety of different security properties, which we will summarize below.

Completeness

Informally, we say that a proof system satisfies the completeness property if any proof produced by an honest

prover with a valid witness for the given statement will be accepted by an honest verifier.

Definition 4. A non-interactive proof system (Setup,Prove,VerifyProof) for language L is complete if the

following holds:

For all x,w such that ML(x,w) = 1

Pr[params← Setup(1k);π ← Prove(params, x, w,ML) : VerifyProof(params, x, π,ML) = 1] = 1

where ML is the TM which accepts x,w iff w is a witness for the statement x ∈ L

9

Soundness

Informally, a proof system is computationally sound if for any x /∈ L, a PPT adversary has only negligible

probability of producing a proof for x ∈ L that will be accepted by the honest verifier. A proof system is

perfectly sound if no (potentially unbounded) adversary can produce a proof for a x /∈ L that will be accepted

by the honest verifier.

Definition 5. A non-interactive proof system (Setup,Prove,VerifyProof) for language L is called computa-

tionally sound if the following holds:

For all probabilistic polynomial time adversaries A,

Pr[params← Setup(1k); (π, x, L)← A(params, x)

: x /∈ L ∧ VerifyProof(params, x, π,ML) = 1] ≤ ν(k),

where ML is the TM which accepts (x,w) iff w is a witness for the statement x ∈ L.

We sometimes say that such a proof system has soundness error ν(k).

Definition 6. A non-interactive proof system (Setup,Prove,VerifyProof) is called perfectly sound if the

above holds for ν(k) = 0 for all (potentially unbounded) adversaries.

Witness Indistinguishability

Informally, witness indistinguishability says if there exist two witnesses w1, w2 for the statement x ∈ L, no

PPT adversary can tell whether a given proof was produced using w1 or w2.

Definition 7. A non-interactive proof system (Setup,Prove,VerifyProof) is witness indistinguishable (WI)

for language L if the following holds:

For all PPT adversaries A1,A2, there exists a negligible function ν such that:

Pr[params← Setup(1k); (x,w1, w2, state)← A1(params, x,ML); b← {0, 1};

π ← Prove(params, x, wb,ML); b′ ← A2(state, π) : ML(x,w1) = ML(x,w2) = 1 ∧ b = b′]

=
1
2

+ ν(k),

where ML is the TM which accepts x,w iff w is a witness for the statement x ∈ L.

Definition 8. A proof system is perfectly witness indistinguishable if the above holds for ν(k) = 0 for all

(potentially unbounded) adversaries.

Zero Knowledge

Zero knowledge is a somewhat stronger notion in which we require (informally) that the verifier should learn

nothing besides that the statement is true. We say that there should be simulator who can create proofs given

only the statement x ∈ L (but not the witness w) such that these proofs are indistinguishable from those

given by an honest prover. Note that the simulator must have some power that an adversarial prover would

10

not have, as a prover should not be able to produce such a proof. Thus, we also allow the simulator to choose

the common reference string and to store some trapdoor information about it, with the requirement that the

resulting string should be indistinguishable from the output of the original Setup algorithm.

Here we distinguish between proof systems which are zero knowledge when the common reference string

is used only for a single proof, and those which allow for many proofs using the same common reference

string.

Definition 9. A non-interactive proof system (Setup,Prove,VerifyProof) is a single-theorem zero knowledge

proof system for language L if there exists PPT simulator algorithm SimProveOne such that the following

holds:

For all x ∈ L and all w such that ML(x,w) = 1, for all adversaries A, the following two distributions

are indistinguishable:

Real(k) = {params← Setup(1k);π ← Prove(params, x, w,ML) : (params, π)}
and Sim(k) = {(params, π)← SimProveOne(1k, x,ML) : (params, π)}.

Definition 10. A non-interactive proof system (Setup,Prove,VerifyProof) is a multi-theorem zero knowledge

(NIZK) proof system for language L if there exists PPT simulator algorithms SimSetup,SimProve such that

the following holds:

For all PPT adversaries A, there exists a negligible function ν such that:

|Pr[params← Setup(1k); b← AProve(params,·,·,ML) : b = 1]

− Pr[(params, s)← SimSetup(1k); b← AOSim(s,params,·,·,ML) : b = 1]| < ν(k)

whereML is the TM which accepts x,w iffw is a witness for the statement x ∈ L, andOSim(s, params, x, w,

ML) checks that ML(x,w) = 1 and then runs SimProve(params, s, x,ML) and returns the resulting proof

π.

In what follows, if we say simply “zero knowledge” or NIZK, we will be referring to multi-theorem

zero-knowledge.

Finally, we recall the notion of composable zero knowledge introduced by Groth [55] which is satisfied by

some of the GS proofs. The idea is that it is easier to prove zero knowledge if we do not have to consider the

entire multi-theorem zero knowledge game (in which we generate parameters and then prove many theorems)

at once. Instead, we first show that the simulated parameters are indistinguishable from the real parameters.

Then we consider a setting where both the honest prover and the simulated prover use the simulated parame-

ters. We show that each individual simulated proof is indistinguishable from an honest proof even when the

adversary is given the simulation trapdoor. It can be shown by a simple hybrid argument that this implies the

multi-theorem zero-knowledge property described above.

Definition 11. A non-interactive proof system (Setup,Prove,VerifyProof) is a composable zero knowledge

(NIZK) proof system for language L if there exists PPT simulator algorithms SimSetup,SimProve such that

the following holds:

(1) The following two distributions are indistinguishable:

11

Realparams(k) = {params← Setup(1k) : params}
and Simparams(k) = {(params, s)← SimSetup(1k) : params}

(2) For all x ∈ L with valid witness w, the following distributions are indistinguishable:

Rproof(k) = {(params, s)← SimSetup(1k);π ← Prove(params, x, w,ML) : π}
and Simproof(k) = {(params, s)← SimSetup(1k);π ← SimProve(params, s, x,ML) : π},

where ML is the TM which accepts x,w iff w is a witness for the statement x ∈ L.

Proofs of Knowledge

We review the definition of a noninteractive proof of knowledge (NIPK) introduced by De Santis et al. [71].

Here we want to prove not only that a statement is true, but also that the prover “knows” a valid witness for

the statement. We formalize this by saying that there is a PPT extractor algorithm which, given a proof for

a given statement which is accepted by an honest verifier together with some trapdoor information about the

common reference string, can extract a valid witness for the statement.

Definition 12 (Extractability). A non-interactive proof system (Setup,Prove,VerifyProof) is a proof of

knowledge for language L if there exists a polynomial-time extractor (ExtractSetup,Extract) such that the

following hold: (1)

{params← Setup(1k) : params} ≈ {(params, t)← ExtractSetup : params}

and (2) For all PPT adversaries A there exists negligible ν such that,

Pr[(params, t)← ExtractSetup; (x, π)← A(params);w ← Extract(params, t, x, π)

: VerifyProof(params, x, π,ML) = 1 ∧ML(x,w) = 0] = ν(k)

where ML is the TM which accepts x,w iff w is a witness for the statement x ∈ L.

Definition 13. We have perfect extractability if the above holds for ν(k) = 0 even for potentially unbounded

adversaries.

2.2 Bilinear Maps

Let G1, G2, and GT be groups. A function e : G1 × G2 → GT is called a cryptographic bilinear map

if it has the following properties: Bilinear. ∀a ∈ G1, ∀b ∈ G2, ∀x, y ∈ Z the following equation holds:

e(ax, by) = e(a, b)xy . Non-Degenerate. If a and b are generators of their respective groups, then e(a, b)

generates GT . Let BilinearSetup(1k) be an algorithm that generates the groups G1, G2 and GT , together

with algorithms for sampling from these groups, and the algorithm for computing the function e.

The function BilinearSetup(1k) outputs paramsBM = (p,G1, G2, GT , e, g, h), where p is a prime (of

length k),G1, G2, GT are groups of order p, g is a generator ofG1, h is a generator ofG2, and e : G1×G2 →
GT is a bilinear map.

12

2.3 Assumptions

2.3.1 Previous Assumptions

Boyen and Waters [14] defined the Hidden SDH assumption over bilinear maps using symmetric groups

e : G × G → GT . We give a definition over asymmetric maps e : G1 × G2 → GT . Note that in the

symmetric setting, this is identical to the Boyen Waters HSDH assumption.

Definition 14 (Hidden SDH). On input g, gx, u ∈ G1, h, hx ∈ G2 and {g1/(x+c`), hc` , uc`}`=1...q, it is

computationally infeasible to output a new tuple (g1/(x+c), hc, uc). Formally, we say the HSDH assumption

holds for groups output by BilinearSetup if there exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k);

u← G1;x, {c`}`=1...q ← Zp;

(A,B,C)← A(p,G1, G2, GT , e, g, g
x, h, hx, u, {g1/(x+c`), gc` , uc`}`=1...q) :

(A,B,C) = (g1/(x+c), hc, uc) ∧ c 6∈ {c`}`=1...q] < ν(k).

When (p,G1, G2, GT , e, g, h) and H = hx are fixed, we refer to tuples of the form (g1/(x+c), hc, uc) as

HSDH tuples.

Note that we can determine whether (A,B,C) form an HSDH tuple using the bilinear map e, as follows:

suppose we get a tuple (A,B,C). We check that e(A,BH) = e(g, h) and that e(u,B) = e(C, h).

We recall the Bilinear Diffie-Hellman Inversion (BDHI) assumption and the Subgroup Decision Assump-

tion (SDA).

Definition 15 ((Q, ν)-BDHI [10]). The groups output by algorithm BilinearSetup satisfy the (Q(k), ν(k))-

bilinear Diffie-Hellman inversion assumption if no PPT A, on input (instance, challenge) can distinguish

if its challenge is of type 1 or type 2 with advantage asymptotically higher than ν(k) where instance and

challenge are defined as follows: instance = (G1, G2, q, e, g, g
α, gα2

, gα3
, . . . , gαQ(k)

) where q is a prime

of length poly(k), G1, G2 are groups of order q returned by BilinearSetup(1k), e : G1 × G1 → G2 is a

bilinear map, g ← G1, α ← Z∗q , challenge of type 1 is e(g, g)
1
α , while challenge of type 2 is e(g, g)R for

random R← Z∗q .

Definition 16 (SDA [13]). The groups output by the algorithm BilinearSetup satisfy the subgroup decision

assumption if no PPTA, on input (instance, challenge) can distinguish if its challenge is of type 1 or type 2,

where instance and challenge are defined as follows: instance = (G1, G2, n, e, h) where n = pq is a

product of two primes of length poly(k) (for k a sec. param.), G1, G2 are groups of order n returned by

BilinearSetup(1k), e : G1×G1 → G2 is a bilinear map, h is a random generator of G1, challenge of type 1

is g, a random generator of G1, while challenge of type 2 is gp, a random order-p element of G1.

The following two assumptions are used to instantiate the Groth-Sahai proof systems described in Chapter

3).

Definition 17 (Decisional Linear Assumption [12]). On input u, v, w, ur, vs ← G1 it is computationally

infeasible to distinguish z0 ← wr+s from z1 ← G1. The assumption is analogously defined for G2.

13

Formally, we say the Decisional Linear Assumption holds with respect to groups output by BilinearSetup

if there exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k); r, s← Zp;u, v, w ← G1;

b← {0, 1}; z0 ← wr+s; z1 ← G1 :

A(p,G1, G2, GT , e, g, h, u, v, w, u
r, vs, zb) = b] < 1/2 + ν(k).

SXDH states that the Decisional Diffie Hellman problem is hard in both G1 and G2. This precludes

efficient isomorphisms between these two groups.

Definition 18 (External Diffie-Hellman Assumption (XDH)). We say the XDH assumption holds with respect

to group G1 output by BilinearSetup if there exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k); r, s← Zp;

b← {0, 1}; z0 ← grs, z1 ← G1 : A(p,G,GT , e, g, g
r, gs, zb) = b] < 1/2 + ν(k).

The XDH assumption can be similarly defined to hold in G2. The SXDH assumption states that XDH

holds in both G1 and G2. The SXDH assumption was first used by Scott [72], and has been discussed and

used extensively since [12, 49, 74, 1].

2.3.2 New Assumptions

Here we introduce several new assumptions.

We relax the HSDH assumption and introduce a new assumption we call the BB-HSDH assumption.

Intuitively speaking, we allow the adversary to obtain the values c` used in his challenge. We call this as-

sumption Boneh-Boyen HSDH, because the adversary is given Weak Boneh Boyen signatures (g1/(x+c`), c`)

for random messages c`.

Definition 19 (BB-HSDH). Let c1 . . . cq ← Zp. On input g, gx, u ∈ G1, h, hx ∈ G2 and {g1/(x+c`),

c`}`=1...q, it is computationally infeasible to output a new tuple (g1/(x+c), hc, uc).

Formally, we say the BB-HSDH assumption holds for groups output by algorithm BilinearSetup if there

exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k);

u← G1;x, {c`}`=1...q ← Zp;

(A,B,C)← A(p,G1, G2, GT , e, g, g
x, h, hx, u, {g1/(x+c`), c`}`=1...q) :

(A,B,C) = (g1/(x+c), hc, uc) ∧ c 6∈ {c`}`=1...q] < ν(k).

It is easy to see that the BB-HSDH implies HSDH. Thus our generic group proof for BB-HSDH (See Ap-

pendix A) also establishes generic group security for HSDH.

We also introduce a new assumption, we call BB-CDH. It is a relaxed version of CDH, in which the

adversary is also given q weak BB signatures as input.

14

Definition 20 (BB-CDH). On input g, gx, gy ∈ G1, h, hx ∈ G2, c1, . . . , cq ← Zq and g
1

x+c1 , . . . , g
1

x+cq , it

is computationally infeasible to output a gxy .

Formally, we say the BB-CDH assumption holds for groups output by algorithm BilinearSetup if there

exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k);

x, y, {c`}`=1...q ← Zp;

A← A(p,G1, G2, GT , e, g, g
x, gy, h, hx, {g1/(x+c`), c`}`=1...q) :

A = gxy] < ν(k).

We can show that this is implied by the SDH assumption (See Appendix A). We present it as separate

assumption, as this simplifies the proofs and intuition behind our constructions. Note that we obtain generic

group security from the generic group proof for SDH.

We extend the HSDH assumption further and introduce a new stronger assumption we call the Interactive

HSDH assumption. We allow the adversary to adaptively query an oracle for HSDH triples on ci of his

choice.

Definition 21 (Interactive Hidden SDH (IHSDH) assumption.). No PPTM adversary can compute a tu-

ple (g1/(x+c), hc, uc) given (g, gx, h, hx, u) and permission to make q queries to oracle Ox(c) that returns

g1/(x+c). The c used by the adversary must be different from the values it used to query Ox(·). Formally, we

say the IHSDH assumption holds for groups output by BilinearSetup if there exists a negligible function ν

such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k);

x← Zp;u← G1; (A,B,C)← AOx(·)(p,G1, G2, GT , e, g, g
x, h, hx, u) :

∃c : (A,B,C) = (g1/(x+c), hc, uc)] < ν(k).

We introduce another new assumption, we call the Triple DH, which is a slightly stronger variant of

BB-CDH.

Definition 22 (Triple DH (TDH)). On input g, gx, gy, h, hx, {ci, g1/(x+ci)}i=1...q, it is computationally in-

feasible to output a tuple (hµx, gµy, gµxy) for µ 6= 0. Formally, we say the TDH assumption holds on groups

output by BilinearSetup if there exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k);

(x, y)← Zp; {ci}i=1...q ← Zp;

(A,B,C)← A(p,G1, G2, GT , e, g, g
x, gy, h, hx, {ci, g1/(x+ci)}i=1...q) :

∃µ 6= 0 : (A,B,C) = (hµx, gµy, gµxy)] < ν(k).

Definition 23 ((Q, ν)-BDHBI). We say the groups output by BilinearSetup satisfy the (Q(k), ν(k)) bilinear

Diffie-Hellman basegroup inversion assumption if no PPT A, on input (instance, challenge) can distinguish

15

if its challenge is of type 1 or type 2 with advantage asymptotically higher than ν(k), where instance and

challenge are defined as follows: instance = (G1, G2, q, e, g, g
α, gα2

, gα3
, . . . , gαQ(k)

, gβ) where q is a

prime of length poly(k), G1, G2 are groups of order q returned by G(q), e : G1 × G1 → G2 is a bilinear

map, g ← G1, α ← Z∗q , β ← Z∗q , challenge of type 1 is g
1

αβ , while challenge of type 2 is gR for random

R← Z∗q .

The assumption in Definition 23 is a new assumption which can be shown to imply Q-BDHI. We will

assume that it holds for the prime order subgroup of composite order bilinear groups that can be efficiently

instantiated [13].

Chapter 3

New Properties of the Groth-Sahai Proof
System

In this section we will describe the basic properties and the main ideas in the construction of the Groth-

Sahai proof system. In addition, we will define two new properties satisfied by this proof system. The first

property generalizes a standard property called extractability, and allows for proofs which are only partially

extractable. The second property, which we call randomizability, says that any user should be able to take an

existing proof for a given statement and produce a new proof for the same statement. As we will see in the

following chapters, these properties can be be used to solve several previously open problems.

3.1 An Overview of the Groth-Sahai Proof System

Groth and Sahai give an efficient commitment scheme Commit and an efficient witness indistinguishable

proof system for statements of the following form (referred to as pairing product equations):

We are given bilinear parameters (p,G1, G2, GT , e, g, h), where G1, G2, GT are groups of prime order

p, with g a generator of G1, h a generator of G2, and e : G1 ×G2 → GT a cryptographic bilinear map. The

statement s to be proven consists of the following list of values: {aq}q=1...Q ∈ G1, {bq}q=1...Q ∈ G2, t ∈
GT , and {αq,m}m=1...M,q=1...Q, {βq,n}n=1...N,q=1...Q ∈ Zp, as well as a list of commitments {cm}m=1...M

to values in G1 and {dn}n=1...N to values in G2. Groth and Sahai show how to construct a proof that for

all m ∈ {1 . . .M}, Cm is a commitment to xm ∈ G1, and for all n ∈ {1 . . . N}, Dn is a commitment to

yn ∈ G2 such that:

Q∏
q=1

e(aq

M∏
m=1

xαq,m
m , bq

N∏
n=1

yβq,n
n) = t

16

17

3.1.1 Groth-Sahai Commitments [57]

We review the properties of the Groth-Sahai [57] commitment scheme. We use their scheme to commit

to elements of a group G of prime order p. Technically, their constructions commit to elements of certain

modules, but we can apply them to certain bilinear groups elements(see Section 3.2). 1

GSComSetup(p,G, g). Outputs a common reference string paramsCom .

GSCommit(paramsCom , x, open). Takes as input x ∈ G and some value open and outputs a commitment

comm . Similarly, we can commit to exponents using GSExpCommit(paramsCom , b, θ, open) which takes

as input θ ∈ Zp and a base b ∈ G and outputs (b, comm), where comm = GSCommit(paramsCom , b
θ,

open).

VerifyOpening(paramsCom , comm, x, open). Takes x ∈ G and open as input and outputs accept if comm

is a commitment to x. To verify that (b, comm) is a commitment to exponent θ check VerifyOpening

(paramsCom , comm, bθ, open).

For brevity, we write GSCommit(x) to indicate committing to x ∈ G when the parameters are obvious and

the value of open is chosen appropriately at random. Similarly, GSExpCommit(b, θ) indicates committing to

θ using b ∈ G as the base.

GS commitments are perfectly binding, strongly computationally hiding, and extractable. They are also

multiplicatively homomorphic. Groth and Sahai [57] show how to instantiate commitments that meet these

requirements using either the SXDH or DLIN assumptions. Commitments based on SXDH consist of 2

elements in G, while those based on DLIN setting require 3 elements in G. Note that while here we have

described commitments for a single group G, in the Groth-Sahai proof system below, this will be used to

commit to elements of each bilinear group. In an asymmetric setting, this means we will have two sets

of parameters, one for committing to elements of G1 and one for committing to elements of G2. In the

symmetric setting, we can have one set of parameters to commit to elements in G1 = G2.

3.1.2 Groth-Sahai Pairing Product Equation Proofs [57]

We formally define the Groth-Sahai proof system. Let paramsBM ← BilinearSetup(1k).

GSSetup(paramsBM). Calls GSComSetup to generate params1 and params2 for constructing commit-

ments in G1 and G2 respectively, and optional auxiliary values paramsπ . Outputs paramsGS =

(paramsBM , params1, params2, paramsπ).

GSProve(paramsGS , s, ({xm}1...M , {yn}1...N , openings)). Takes as input the parameters, the statement s =

{(c1, . . . , cM , d1, . . . , dN), equations} to be proven, (the statement s includes the commitments and the

parameters of the pairing product equations), the witness consisting of the values {xm}1...M , {yn}1...N

and opening information openings . Outputs a proof π.

GSVerify(paramsGS , π). Returns accept if π is valid, reject otherwise. (Note that it does not take the state-

ment s as input because we have assumed that the statement is always included in the proof π.)
1Groth and Sahai also have a construction for composite order groups using the Subgroup Decision assumption; however it lacks the

necessary extraction properties for our applications.

18

GSExtractSetup(paramsBM). Outputs paramsGS and auxiliary information (td1, td2). paramsGS are dis-

tributed identically to the output of GSSetup(paramsBM). (td1, td2) allow an extractor to discover the

contents of all commitments formed using GSCommit.

GSExtract(paramsGS , td1, td2, π). Outputs x1, . . . , xM ∈ G1 and y1, . . . , yN ∈ G2 that satisfy the pairing

product equations and that correspond to the commitments (note that the commitments and the equations

are included with the proof π).

Groth-Sahai proofs satisfy correctness, extractability, and strong witness indistinguishability. We explain

these requirements in a manner compatible with our notation.

Correctness. An honest verifier always accepts a proof generated by an honest prover.

Extractability. If an honest verifier outputs accept, then the statement is true. This means that, given td1,

td2 corresponding to paramsGS , GSExtract extracts values from the commitments that satisfy the pairing

product equations with probability 1.

Strong Witness Indistinguishability. A simulator Sim = (SimSetup,SimProve) with the following two

properties exists: (1) SimSetup(paramsBM) outputs paramsGS
′ such that they are computationally in-

distinguishable from the output of GSSetup(paramsBM). Let params′1 ∈ paramsGS
′ be the parameters

for the commitment scheme in G1. Using params′1, commitments are perfectly hiding – this means that

for all commitments comm , ∀x ∈ G1,∃open : VerifyOpening(params′1, comm, x, open) = accept

(analogous for G2). (2) Using the paramsGS
′ generated by the challenger, GS proofs become per-

fectly witness indistinguishable. Suppose an unbounded adversary A generates a statement s consist-

ing of the pairing product equations and a set of commitments (c1, . . . , cM , d1, . . . , dN). The adver-

sary opens the commitments in two different ways W0 = (x(0)
1 , . . . , x

(0)
M , y

(0)
1 , . . . , y

(0)
N , openings0) and

W1 = (x(1)
1 , . . . , x

(1)
M , y

(1)
1 , . . . , y

(1)
N , openings1) (under the requirement that these witnesses must both

satisfy s). The values openingsb show how to open the commitments to {x(b)
m , y

(b)
n }. (The adversary can

do this because it is unbounded.) The challenger gets the statement s and the two witnesses W0 and W1.

He chooses a bit b ← {0, 1} and computes π = GSProve(paramsGS
′, s,Wb). Strong witness indistin-

guishability means that π is distributed independently of b.

Composable Zero-Knowledge. Note that Groth and Sahai show that if in a given pairing product equation

the constant t can be written as t = e(t1, t2) for known t1, t2, then these proofs can be done in zero knowl-

edge. However, their zero knowledge proof construction is significantly less efficient than the WI proofs.

Thus, in most of what follows, we choose to use only the WI construction as a building block. Then we can

take advantage of special features of our constructions to create much more efficient proofs that still have the

desired zero knowledge properties. (We will however borrow many of the techniques that Groth and Sahai

use in their zero-knowledge contruction.)

19

3.2 Details of the Groth-Sahai Proof System

Groth-Sahai give a construction of the proof system as described above based on modules with certain prop-

erties. By expressing the implementation of non-interactive proofs in the language of modules Groth and

Sahai can remain general with respect to possible instantiations of their proof system. Modules that fulfill the

necessary requirements for their proofs exist both under the SXDH, the DLIN assumption, and with some

restrictions the Subgroup Hiding assumption.

Let (R,+, ·, 0, 1) be a commutative ring. Formally, an R module is a commutative group (M, ·, 1), such

that ∀r, s ∈ R : ∀u, v ∈M : ur+s = urus∧ (uv)r = urvr. In our case, we will want to build a module from

some underlying bilinear group G. Then M will be a direct product of several copies of G (e.g. M = G×G
for the instantiation based on SXDH). If we have a bilinear map e : G1×G2 → GT , we build corresponding

modules from M1,M2,MT , and then we can define a bilinear map E : M1×M2 →MT . (See [57] for more

details.)

The general idea behind the Groth-Sahai proof construction commitment scheme will contain several

module elements, u1...uI ∈ M . A commitment is formed by multiplying the module element that we are

committing to by a random combination of the parameters ui. Thus, if the values ui generate the entire

module, the commitment scheme will be perfectly hiding. On the other hand, if the parameters only generate

some submodule U , then the resulting commitment will be binding within M/U . The idea is to choose the

parameters in such a way that it is computationally difficult to determine whether or not they span the entire

module.

Setup. The public parameters will include descriptions of two modules M1,M2 , and an efficient bilinear

map E between them. The setup will also select some number I of elements ui ∈ M1, and some number J

of elements vj ∈M2. (Note that in the symmetric setting where M1 = M2, one set of elements is sufficient.)

Finally, another set of values {ηh} is also necessary in certain instantiations, although we will not discuss it

here. Thus the parameters will include M1,M2, E, {ui}, {vj}, {ηk}.

Commitments. Commitments are realized using a Zp module. For u1, . . . , uI elements of M , we call

U the submodule of M generated by u1, . . . , uI . To commit to x ∈ G, x is transformed into a unique

element x′ ∈ M that for the perfectly binding setup is not element of U . (For the perfectly hiding setup we

create the parameters such that U = M , so all module elements are in M .) Now we commit by choosing

r1, . . . , rI ∈ Zp at random and computing

comm = x′
I∏

i=1

uri
i .

NIZK Proofs The NIZK proofs require bilinear maps over modules. Let M1, M2, MT be R modules.

Then we define the bilinear map E : M1 ×M2 → MT . Let U generated by u1, . . . , uI be a submodule of

M1 and V generated by v1 . . . vI a submodule of M2. The commitments to xi and yi are defined over M1

and M2 respectively.

20

In order to prove that c1, . . . cQ, d1, . . . dQ are commitments to x1, . . . xQ, y1, . . . yQ respectively, such

that
∏Q

q=1 e(xq, yq) = t, the prover computes values πi and ψi that fulfill the following verification equation:

Q∏
q=1

E(cq, dq) = t′
I∏

i=1

E(ui, πi)
J∏

j=1

E(ψj , vj).

Where t′ is a mapping of t to MT . The values πi and ψi can be computed from the xi and yi together with

their commitments and opening information.

More specifically, the prover chooses random rqi ← Zp for 1 ≤ i ≤ I, 1 ≤ q ≤ Q, random sqj ← Zp for

1 ≤ j ≤ J, 1 ≤ q ≤ Q, random tij ← Zp for 1 ≤ i ≤ I, 1 ≤ j ≤ J , and random th ← Zp for 1 ≤ h ≤ H ,

and computes πi =
∏J

j=1 v
tij

j

∏Q
q=1 d

rqi
q and ψj =

∏I
i=1 u

PH
h=1 thηhij

i

∏I
i=1 u

−tij

i

∏Q
q=1 x

sqj
q .

This can be extended in the logical way to the more complex formulation, which includes constants

am, bn, αq,m, βq,n.

Groth and Sahai show that when the values ui and vj span M1 and M2 respectively, the proofs generated

by different witnesses will be identical (as long as the witnesses are valid). Recall that under these parameters

the commitment scheme is perfectly hiding. Suppose there are two sets of values x1, . . . , xm, y1, . . . , yn and

x′1, . . . , x
′
m, y

′
1, . . . , y

′
n that each satisfy a given pairing product equation. Since the commitment scheme

is perfectly hiding, given commitments c1, . . . cm, d1, . . . dn, we know there there exists openings open

and open ′, which allow these commitments to be opened to either set of values (although it will be hard

for the adversary to find both of these openings). Generating a proof using x1, . . . xm, y1, . . . yn, open or

x′1, . . . x
′
m, y

′
1, . . . y

′
n, open

′ should produce the same distribution.

At the same time, they show that if the values ui generate a submodule U of M , then the proof is sound

within M/U .

3.3 Instantiating the Groth-Sahai Proofs System

In all of our constructions, we choose bilinear groups G1, G2, GT with bilinear map e, and then use the

Groth-Sahai commitments to commit to elements x ∈ G1 or x ∈ G2. However, most of [57] focuses on

commitments and proofs for elements of modules. Here we describe the techniques suggested by Groth and

Sahai for using these commitments to commit to group elements. Using group elements instead of modules

also allows us to get the extraction properties necessary for our constructions. We describe commitment to

group elements in the SXDH and DLIN settings:

SXDH. In the SXDH setting, one commits to elements in G1 as follows (committing to elements in G2 is

similar):

The parameters are generated by choosing random s, z and computing u1 = (g, gz) and u2 = (gs, gsz).

The public parameters are u1, u2. If extraction is necessary, the trapdoor will be s, z.

Groth-Sahai describe commitments to elements in the module M = G × G as follows: To commit to

element X = (x1, x2) ∈ M choose random r1, r2 ∈ Zp, and compute Xur1
1 u

r2
2 (where multiplication

is entry-wise). One can commit to x ∈ G by choosing random r1, r2 ∈ Zp and computing (1, x)ur1
1 u

r2
2 .

21

Opening would reveal x, r1, r2. In this case, given the trapdoor s, z, we will be able to extract x from a

commitment (c1, c2) by computing c2/cz1. Thus, this is perfectly binding and extractable.

Note that because all operations in the module M are entry-wise, any relationship that holds over elements

(1, x), (1, y) ∈ M will also hold over group element x, y ∈ G 2. Groth-Sahai proofs demonstrate that the

proved relationship holds within M/U over any possible opening for the given commitments. Thus, it must

hold for the unique (1, x), (1, y) which are produced by the extraction algorithm described above, and as

mentioned, this means the proved relationships must hold over group elements x, y.

Simulated parameters are generated by choosing random s, z, w ∈ Zp and computing u1 = (g, gz) and

u2 = (gs, gw). The public parameters will be u1, u2. The simulation trapdoor will be s, z, w. Note that these

public parameters will be indistinguishable from those described above by SXDH. Note that when these

simulated parameters are used, the resulting commitment scheme is perfectly hiding. Further, we can form

commitments which are identical to those described above but for which we can use the simulation trapdoor

to open to any value for which we know the discrete logarithm. We compute such a commitment by choosing

random c1, c2 ∈ Zp and computing (gc1 , gc2). To open this commitment to any value gφ, we need only find

a solution (r1, r2) to the equations c1 = r1 + sr2 and c2 = φ+ zr1 + wr2.

DLIN. In the DLIN setting one commits to to elements in G1 as follows (committing to elements in G2 is

similar):

The parameters are generated by choosing random a, b, z, s and computing u1 = (ga, 1, g) and u2 =

(1, gb, g), and u3 = (gaz, gbs, gz+s). The public parameters are u1, u2, u3. If extraction is necessary, the

trapdoor will be a, b, z, s.

Groth-Sahai describe commitments to elements in the module M = G × G × G as follows: To commit

to element X = (x1, x2, x3) ∈ M choose random r1, r2, r3 ∈ Zp, and compute Xur1
1 u

r2
2 u

r3
3 (where mul-

tiplication is entry-wise). One can commit to x ∈ G by choosing random r1, r2, r3 ∈ Zp and computing

(1, 1, x)ur1
1 u

r2
2 u

r3
3 . Opening would reveal x, r1, r2, r3. In this case, given the trapdoor a, b, s, z, we will be

able to extract x from a commitment (c1, c2, c3) by computing c3/(c
1/a
1 c

1/b
2). Note that again any relation-

ship that holds over elements (1, 1, x), (1, 1, y) ∈ M will also hold over group element x, y ∈ G. Thus, we

can using Groth-Sahai proofs on commitments to x, y to prove statements about x, y.

Simulated parameters are generated by choosing random a, b, s, z, w ∈ Zp and computing u1 = (ga, 1, g)

and u2 = (gb, 1, g) and u3 = (gaz, gbs, gw). The public parameters will be u1, u2, and u3. The simulation

trapdoor will be a, b, s, z. Note that these public parameters will be indistinguishable from those described

above by DLIN. Note that when these parameters are used, the resulting commitment scheme is perfectly

hiding. Further, we can form commitments which are identical to those described above but for which we can

use the simulation trapdoor to open to any value for which we know the discrete logarithm. We compute such

a commitment by choosing random c1, c2, c3 ∈ Zp and computing (gc1 , gc2 , gc3). To open this commitment

to any value gφ, we need only find a solution (r1, r2, r3) to the equations c1 = ar1 + azr3, c2 = br2 + bsr3

and c3 = φ+ r1 + r2 + (z + s)r3.

2The bilinear map E over M is not entry-wise, but does still imply that any relationship over E((1, x), (1, y)) also holds over
e(x, y).

22

3.4 Efficiency

We first consider the asymmetric setting, where G1 6= G2. Then we will consider the symmetric setting,

which allows for some efficiency improvements.

The asymmetric setting. Let L1 be the number of elements in G1 used to represent an element of M1, and

let L2 be the number of elements in G2 used to represent an element of M2. Let k be the security parameter.

In the asymmetric setting, our parameters consist of I elements of M1 and J elements of M2, which

means a total of IL1 elements of G1 and JL2 elements of G2. Group elements can generally be represented

in O(k) bits3, so the resulting parameters are O((IL1 + JL2)k) bits, where I, J, L1, L2 are small constants

which depend on the assumption used.

A commitment to module element X ∈ G1 with randomness r1, . . . rI requires computing X
∏I

i=1 u
ri
i .

Thus, the total computation required is I module exponentiations4, which in turn means IL1 exponentiations

in G1. (Similarly committing to an element of G2 will require JL2 exponentiations in G2). This is roughly

equivalent to the computation required to compute the same number of modular exponentiations on k-bit

integers 5. The resulting computation should require O(IL1k) or O(JL2k) k-bit modular multiplications,

where I, J, L1, L2 are small constants which depend on the assumption used. The resulting commitment will

consist of one module element, which means L1 elements of G1 or L2 elements of G2.

To prove that given set of commitments contains values x1, . . . xq, y1, . . . yq that satisfy a pairing product

equation
∏Q

q=1 e(xq, yq) = t, we must compute:

πi =
∏J

j=1 v
tij

j

∏Q
q=1 d

rqi
q and ψj =

∏I
i=1 u

PH
h=1 thηhij

i

∏I
i=1 u

−tij

i

∏Q
q=1 x

sqj
q ,

where all the values tij , rqi, th, sqj are values in Zp. Computing each value πi requires J + Q module

exponentiations, and computing each value ψj requires I + Q module exponentiations. We need to com-

pute I πi’s and J ψj’s, so since all operations are componentwise, this comes to a total of I(J + Q)L2

exponentiations in G2 and J(I + Q)L1 exponentiations in G1. The resulting computation should require

O((IJ(L1 + L2) + (IL2 + JL1)Q)k) k-bit modular multiplications, where I, J, L1, L2 are small constants

which depend on the assumption used.

The resulting proof will contain the I elements πi ∈ M2 and the J elements πj ∈ M1, so the total size

will be IL1 elements in G2 and JL2 elements in G1, or roughly O((IL1 + JL2)k) bits.

Verifying the proof requires computingQ+I+J module pairings, which in the Groth-Sahai instantiations

requires O((Q+ I + J)L1L2) group pairings.

To summarize, we get the following general formulas:

Theorem 1. In the asymmetric setting, the Groth-Sahai witness-indistinguishable proof system will have the

following efficiency: Let L1 be the number of elements in G1 used to represent an element of M1, and let L2

be the number of elements in G2 used to represent an element of M2.

3This is a rough estimate. There are many different constructions for bilinear groups. The exact figure will depend on the choice of
instantiation for the bilinear group, and the security parameter required for the assumption being used.

4The computation also requires an equal number of multiplications, but as this will clearly be dominated by the exponentiations, we
will ignore it here. We will similarly omit mentioning operations which are clearly insignificant from our other computations.

5This is again a rough estimate as the cost of multiplication depends on the instantiation of the underlying group.

23

Parameters The parameters include a description of the groups and IL1 elements of G1 and JL2 elements

of G2.

Commitments Forming a commitment to an element of G1 will require IL1 exponentiations in G1 and the

resulting commitment will be represented by L1 elements of G1. Similarly, committing to an element

of G2 will require JL2 elements of G2, and result in L2 elements of G2.

Proofs For a pairing equation with a product of Q pairings: Generating the proof will require J(I +Q)L1

exponentiations in G1 and I(J +Q)L2 exponentiations in G2. The resulting proof will consist of JL1

elements of G1 and IL2 elements of G2. Verifying the proof will involve computing (Q+ I + J)L1L2

bilinear group pairings.

When instantiated with the SXDH assumption, we get I = J = L1 = L2 = 2. Thus, the following

theorem follows:

Theorem 2. The SXDH instantiation given in Section 3.3 will have the following efficiency:

Parameters The parameters include a description of the groups and 4 elements of G1 and 4 elements of G2.

Commitments Forming a commitment will require 4 exponentiations in either G1 or G2, and the resulting

commitment will be represented by 2 elements of the appropriate group.

Proofs For a pairing equation with a product of Q pairings: Generating the proof will require 8 + 4Q

exponentiations in each of G1 and G2. The resulting proof will consist of 4 elements of each group.

Verifying the proof will involve computing 4Q+ 16 bilinear group pairings.

When instantiated with the DLIN assumption, we get I = J = L1 = L2 = 3. Thus, the following

theorem follows:

Theorem 3. In the asymmetric setting, the DLIN instantiation given in Section 3.3 will have the following

efficiency:

Parameters The parameters include a description of the groups and 9 elements of G1 and 9 elements of G2.

Commitments Forming a commitment will require 9 exponentiations in either G1 or G2, and the resulting

commitment will be represented by 3 elements of the appropriate group.

Proofs For a pairing equation with a product of Q pairings: Generating the proof will require 27 + 9Q

exponentiations in each of G1 and G2. The resulting proof will consist of 9 elements of each group.

Verifying the proof will involve computing 9Q+ 54 bilinear group pairings.

The symmetric setting. The DLIN assumption has also been proposed in the symmetric setting, where

G1 = G2 = G and the corresponding bilinear map is e : G × G → GT . This allows for somewhat more

efficient constructions. Here we will examine the efficiency in the symmetric setting in general, and then

consider the specific instantiation based the DLIN assumption.

Let L be the number of elements inG used to represent an element ofM . Let k be the security parameter.

24

In the symmetric setting, we only need one set of parameters consisting of I elements ofM , which means

a total of IL elements of G. Group elements can generally be represented in O(k) bits6, so the resulting

parameters are O((IL)k) bits, where I, L are small constants which depend on the assumption used.

A commitment to module element X ∈ G is computed as in the asymmetric case. Thus, the total

computation required is IL exponentiations in G. This is roughly equivalent to the computation required

to compute the same number of modular exponentiations on k-bit integers 7. The resulting computation

should require O(ILk) k-bit modular multiplications, where I, L are small constants which depend on the

assumption used. The resulting commitment will consist of one module element, which means L elements

of G.

The asymmetric setting does simplify the resulting proofs, since we now have only one set of parameters.

To prove that given set of commitments contains values x1, . . . xq, y1, . . . yq that satisfy a pairing product

equation
∏Q

q=1 e(xq, yq) = t, we must compute πi =
∏Q

q=1 d
rqi
q

∏I
j=1 u

PH
h=1 thηhji

j

∏Q
q=1 x

sqi
q , where all

the values tij , rqi, th, sqj are values in Zp. Computing each value πi requires I+2Qmodule exponentiations.

We need to compute I πi’s, so since all operations are componentwise, this comes to a total of I(I + 2Q)L

exponentiations in G. The resulting computation should require O((I2L + ILQ)k) k-bit modular multipli-

cations, where I, L are small constants which depend on the assumption used.

The resulting proof will contain the I elements πi ∈ M , so the total size will be IL elements in G, or

roughly O(ILk) bits.

Verifying the proof requires computing Q + I module pairings, which in the Groth-Sahai instantiations

requires O((Q+ I)L2) group pairings.

To summarize, we get the following general formulas:

Theorem 4. In the symmetric setting, the Groth-Sahai witness-indistinguishable proof system will have the

following efficiency: Let L be the number of elements in G used to represent an element of M .

Parameters The parameters include a description of the groups and IL elements of G1.

Commitments Forming a commitment to an element of G will require IL exponentiations in G and the

resulting commitment will be represented by L elements of G.

Proofs For a pairing equation with a product of Q pairings: Generating the proof will require I(I + 2Q)L

exponentiations in G. The resulting proof will consist of IL elements of G. Verifying the proof will

involve computing (Q+ I)L2 bilinear group pairings.

When instantiated with the DLIN assumption, we get I = L = 3. Thus, the following theorem follows:

Theorem 5. In the symmetric setting, the DLIN instantiation given in Section 3.3 will have the following

efficiency:

Parameters The parameters include a description of the groups and 9 elements of G.

6See footnote 3.
7See footnote 5.

25

Commitments Forming a commitment will require 9 exponentiations in G, and the resulting commitment

will be represented by 3 elements of G.

Proofs For a pairing equation with a product of Q pairings: Generating the proof will require 27 + 18Q

exponentiations in G. The resulting proof will consist of 9 elements in G. Verifying the proof will

involve computing 9Q+ 27 bilinear group pairings.

3.5 Zero-Knowledge Proof of Equality of Committed Values

As mentioned above, most of our constructions rely only on the Groth-Sahai witness indistinguishable proofs.

However, we will make heavy use of one particular zero-knowledge proof. Here we are given two commit-

ments, and construct a composable zero-knowledge proof that both commitments can be opened to the same

value. Such a proof can be constructed using Groth-Sahai techniques as follows:

Suppose we know c1 = GSCommit(params1, a) and c2 = GSCommit(params1, a) as well as the

opening information to c1 and c2.8 We want to prove that c1 is a commitment to A and c2 is a commitment

to B such that A = B.

To do this, we calculate d = GSCommit(params2, h). Then we construct two witness indistinguishable

proofs π1, π2. The first shows that c1 commits to A and c2 commits to B and d commits to Y such that

e(A/B, Y) = 1. The second shows that d commits to Y such that e(g, Y) = e(g, h). The final proof is

π1, π2, d.

Extractability. We use GSExtractSetup(params) to generate paramsGS and a trapdoor td that lets us

open all commitments. Suppose an adversary gives us a proof π. We extract a, b, and y from c1, c2, d. By

the soundness of the GS proof system, we have that e(g, y) = e(g, h), so y = h. We can now transform the

clause e(a/b, y) = 1 to e(a/b, h) = 1. Since e is non-degenerate, this means a/b = 1, and thus a = b.

Composable Zero Knowledge. Recall that the definition of composable zero knowledge requires that there

be an alternate setup algorithm SimSetup which produces simulated parameters (which are indistinguishable

from the standard parameters) and a corresponding trapdoor, and an algorithm SimProve which uses this

trapdoor to generate proofs without knowing the corresponding witnesses. The resulting proofs should be

distributed identically to those generated by an honest prover using the simulated parameters. Thus, we need

to show how to construct Sim = (SimSetup,SimProve).

We will use the GSSimSetup algorithm provided by Groth and Sahai. Using the corresponding trapdoor,

we can generate a commitment GSExpCommit(paramsi, h, θ, open) which we can open to any other value

hγ as long as we know the appropriate discrete logarithm γ. (Similarly, for commitments in G1, we can

commit to gθ and open it to any other gγ as long as both θ and γ are known.)

Furthermore, because of the perfect witness indistinguishability property that holds for the Groth-Sahai

proofs under these simulated parameters, we can generate a proof for one equation using one opening for

8Proofs for G2 are done analogously.

26

a given commitment, and a proof for the second equation using a different opening, and the result will be

identical to a proof which uses the same value in both equations.

Thus we get the following algorithm SimProve: The simulator gets as input c1 and c2. All the simulator

needs to do is construct a witness for the individual equations of the proof. It computes d = GSExpCommit

(params2, h, 0, open). Thus, we satisfy the pairing product equation e(A/B, Y) = 1 because Y = h0 = 1,

so we can use these values as a witness to form π1. To satisfy the second pairing product equation, we open

d to Y = h1 = h. Thus, we satisfy e(g, Y) = e(g, h), and we can use this value as a witness to form π2. 9

As described above, the perfect witness indistinguishability under these parameters means that these proofs

will be distributed identically to those generated by an honest prover using the same parameters. Thus we get

composable zero-knowledge.

Efficiency The resulting proof requires one additional commitment and GS proofs for two pairing product

equations, each with Q = 1. Thus, we get the following efficiency results:

Lemma 1. When instantiated using the SXDH instantiation given in Section 3.3 the above proof system

will have the following efficiency: To prove that two commitments commit to the same value in G1 (G2 is

analogous): Generating the proof will require 24 exponentiations in G1 and 28 exponentiations in G2. The

resulting proof will consist of 8 elements of G1 and 10 elements of G2. Verifying the proof will involve

computing 40 bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3, the

above proof system will have the following efficiency: To prove that two commitments commit to the same

value: Generating the proof will require 99 exponentiations in G. The resulting proof will consist of 21

elements in G. Verifying the proof will involve computing 72 bilinear group pairings.

3.6 F-Extraction

Recall that in a traditional proof of knowledge system, there exists an extractor, which can use some trapdoor

information about the parameters to extract an entire valid witness from an accepted proof.

The extractability property of Groth-Sahai commitments and proofs gives us something very similar in

that, given an extraction trapdoor, one can extract values x1, . . . xm and y1 . . . yn from the commitments in-

volved. However, note that here we are only able to extract part of the witness for the statement being proved:

the true witness would also include the opening information for each of the commitments. Furthermore, if

we consider proofs about commitments to elements of Zp formed using GSExpCommit, we get evn less ex-

tractability: given a commitment GSExpCommit(paramsGS , h, α) to α ∈ Zp, we can only extract the group

element gα.

Thus, we introduce the notion of f -extractability to capture this notion of partial extractability. We will

define it more formally, and then give a convenient notation with which to describe such proofs.
9Note that there is an additional subtlety here in that the simulator doesn’t know any opening for the commitments c1, c2. However,
c1, c2 can be seen as commitments with randomness 0 to the module elements c1, c2. Thus, the values 0, c1, c2 can be used as a
witness. Witness indistinguishability means that the resulting proof will be identical to one generated using an opening to a valid
set of group elements.

27

3.6.1 Definition

We first apply a standard generalization to extend the notion of NIPK for a language L to languages param-

eterized by params – we allow the Turing machine ML to receive params as a separate input. Next, we

generalize extractability to f -extractability. We say that a NIPK system is f -extractable if Extract outputs

y, such that there ∃x : ML(params, s, x) = accept ∧ y = f(params, x). If f(params, ·) is the identity

function, we get the usual notion of extractability. (Note, here we have changed our notation from that given

in Section 2.1.3, so that s now represents the statement or instance, and x is the witness.)

More formally:

Definition 24 (Extractability). A non-interactive proof system (Setup,Prove,VerifyProof) is a proof of

knowledge for language L parameterized by params if there exists a polynomial-time extractor

(ExtractSetup,Extract) such that the following hold: (1)

{params← Setup(1k) : params} ≈ {(params, t)← ExtractSetup : params}

and (2) For all PPT adversaries A there exists negligible ν such that,

Pr[(params, t)← ExtractSetup; (s, π)← A(params); y ← Extract(params, t, s, π)

: VerifyProof(params, x, π,ML) = 0 ∨ (∃xs.t.y = f(params, x) ∧ML(params, s, x) = 1)]

= 1− ν(k)

where ML is the TM which accepts params, s, x iff x is a witness for the statement s ∈ L(params).

3.6.2 Notation

We denote an f -extractable proof π obtained by running Prove(params, s, x) as

π ← NIPK{params, s, f(params, x) : ML(params, s, x) = accept}.

We omit the params where they are obvious. In our applications, s is a conditional statement about the

witness x, so ML(s, x) = accept if Condition(x) = accept. Thus the statement π ← NIPK{f(x) :

Condition(x)} is well defined. Suppose s includes a list of commitments cn = Commit(xn, openn) . The

witness is x = (x1, . . . , xN , open1, . . . , openN), however, we typically can only extract x1, . . . , xN . We

write

π ← NIPK{(x1, . . . , xn) :Condition(x)

∧ ∀` ∃open` : c` = Commit(paramsCom , x`, open`)}.

We introduce shorthand notation for the above expression: π ← NIPK{((c1 : x1), . . . , (cn : xn)) :

Condition(x)}. Sometimes we use the alternate notation: π ← NIPK[x1 in c1, . . . , xn, in cn]{(x1, . . . , xn) :

Condition(x)}. We use the notation π ∈ NIPK[x1 in c1, . . . , xn, in cn]{(x1, . . . , xn) : Condition(x)}. to say

that π is a proof that will be accepted by the corresponding verification procedure.

For simplicity, we assume the proof π includes s.

28

3.7 Randomizability

The basic intuition behind the randomizability property is that we would like to have an efficient algorithm

which will take any non-interactive proof generated by our proof system and “rerandomize” it to produce

something that is distributed indistinguishably from a completely independent freshly generated proof of the

same statement.

Here we first formalize the notions of concatenated proofs and projected proofs. Then we formally

describe the randomizability property. Finally, we will show that the Groth-Sahai proofs do satisfy this

property by giving an appropriate randomization algorithm and proving that it acts as desired.

3.7.1 Concatenated and Projected Proofs

Intuitively, we want a randomizable proof system to allow for concatenated and projected proofs:

Concatenated proofs. Informally, given two proofs π and π′ that each prove a statement about a set of

commitments, their concatenation π ◦ π′ is a proof of the AND of the two statements.

Projected proofs. Informally, if a proof π proves a statement about the contents of a set of commitments,

then it also implies a statement about the contents of the subset of the commitments.

Here, we give a formal definition of the concatenation and projection operations on proofs.

Definition 25 (Concatenated proof). Let (C1, . . . , Cn) and (C ′1, . . . , C
′
m) be two sets of commitments, and

suppose that ` is such that Ci = C ′i for 1 ≤ i ≤ `. Let π ∈ NIPK[x1 inC1, . . . , xn inCn]{f(x1, . . . , xn, y) :

Condition(x1, . . . , xn, y)} and π′ ∈ NIPK[x′1 inC ′1, . . . , x
′
m inC ′m]{f(x′1, . . . , x

′
n, y

′) : Condition′(x′1, . . . ,

x′n, y
′)}. Then the concatenated proof π ◦ π′ is the proof of the AND of the two conditions; more precisely:

π ◦ π′ ∈ NIPK[x1 inC1, . . . , x` inC`, x`+1 inC`+1, . . . , x
′
`+1 inC ′`+1, . . .]

{f(x1, . . . , xn, y), f ′(x1, . . . , x`, x
′
`+1, . . . , xm)

: Condition(x1, . . . , xn, y) ∧ Condition′(x1, . . . , x`, x
′
`+1, . . . , x

′
m)}

Note that the concatenated proof is f ′′ extractable, where f ′′ outputs the concatenation of the output of

f and f ′. It also remains zero-knowledge since a simulator for the concatenated proof system will simply

simulate the constituent proofs and then concatenate them.

Definition 26 (Projected proof). Let π ∈ NIPK[x1 inC1, . . . , xn inCn]{f(x1, . . . , xn, y) : Condition(x1,

. . . , xn, y)}. Suppose ` < n. Let π′ be obtained from π by replacing the description of f with that of f ′,

where f ′(x1, . . . , x`, (x` + 1, . . . , xn, y)) = f(x1, . . . , xn, y), and the description of Condition with that of

Condition′ where, similarly, Condition′(x1, . . . , x`, (x` + 1, . . . , xn, y)) = Condition(x1, . . . , xn, y). Then

π′ ∈ NIPK[x1 inC1, . . . , xn inC`]{f ′(x1, . . . , x`, y) : Condition′(x1, . . . , x`, y)}.

It is easy to see that the resulting proof system is f ′-extractable and zero-knowledge.

29

3.7.2 Randomized NIZK Proofs of Knowledge

Let Commit(paramsPK , ·, ·) : X × Y 7→ {0, 1}∗ be a perfectly binding non-interactive commitment

scheme. X denotes the domain of the inputs to the commitment, and Y denotes the domain that the random

value open comes from (both may depend on paramsPK). To commit to x, one chooses open at random from

Y and computes C = Commit(paramsPK , x, open). We say that this commitment scheme is randomizable

if Y is an efficiently samplable group with efficiently computable ’0’ element and ’+’ and ’-’ operations, and

there is an efficient algorithm RandComm that, on input paramsPK , C = Commit(paramsPK , x, open) and

open ′ ∈ Y , outputs C ′ = Commit(paramsPK , x, open + open ′).

Let PKSetup, PKProve, PKVerify constitute a composable proof system as defined above. Then there

exists SimSetup algorithm that outputs (paramsPK , sim) where paramsPK is indistinguishable from the out-

put of PKSetup. Following Groth and Sahai, we require that, when parameterized by paramsPK chosen by

SimSetup, Commit is perfectly hiding. Let RandProof be an efficient algorithm that on input (C1, . . . , Cn),

(open ′1, . . . , open
′
n) and π outputs a proof π′.

Consider the following two experiments. In both experiments we are given paramsPK chosen by

SimSetup(1k), and also y, (x1, . . . , xn), (open1, . . . , openn), (open ′1, . . . , open
′
n), Condition, and a proof

π such that (a) Condition(x1, . . . , xn, y) accepts; (b) π ∈ NIPK[x′1 inC1, . . . , x
′
n inCn]{f(x′1, . . . , x

′
n, y

′)

: Condition(x′1, . . . , x
′
n, y

′)}. Let (C1, . . . , Cn) and (C ′1, . . . , C
′
n) be defined as follows: Ci = Commit(xi,

openi), C ′i = Commit(xi, openi + open ′i).

In the first experiment, π′1 is computed by PKProve on input the commitments {C ′i}, their openings

openi + open ′i, and the values (x1, . . . , xn, y). In the second experiment, π′2 is the output of RandProof

(paramsPK , (C1, . . . , Cn), (open ′1, . . . , open
′
n), π).We say that RandProof randomizes the proof system if

with all but negligible probability over the choice of paramsPK , for all π, (x1, . . . , xn), y, (open1, . . . ,

openn), (open ′1, . . . , open
′
n), Condition satisfying (a) and (b) above, π′1 is distributed identically to π′2 even

given (x1, . . . , xn), (open1, . . . , openn), (open ′1, . . . , open
′
n), the proof π, and the value y.

Finally, we say that RandProof is a correct randomization algorithm if given parameters paramsPK cho-

sen by the real PKSetup, whenever a proof π passes the verification algorithm, then it’s rerandomization will

pass the verification algorithm. More formally, for all commitments C1, . . . , Cn, for all (open ′1, . . . , open
′
n),

for all proofs π ∈ NIPK[x′1 inC1, . . . , x
′
n inCn]{f(x′1, . . . , x

′
n, y

′) : Condition(x′1, . . . , x
′
n, y

′)}, we are

guaranteed that RandProof(paramsPK , (C1, . . . , Cn), (open ′1, . . . , open
′
n), π) produces π′ such that π′ ∈

NIPK[x′1 inRandComm(C1, open ′1), . . . , x
′
n inRandComm(Cn, open ′n)]{f(x′1, . . . , x

′
n, y

′) : Condition

(x′1, . . . , x
′
n, y

′)}.

3.7.3 Groth-Sahai Proofs Are Randomizable

We now show how to randomize Groth-Sahai proofs.

Randomizing commitments. A GS commitment for G1 is a function G1 × RI 7→ M1. The domain of

opening Y = RI is an additive group under element wise addition inR. On input open ′ = (s1, . . . , sI) ∈ RJ

and a commitment C = µ1(x) ·
∏I

i=1 u
ri
i we compute C ′ = C ·

∏I
i=1 u

si
i = µ1(x) ·

∏I
i=1 u

ri+si
i . Similar

properties hold for commitments to elements in G2 except that we use open ′ = (z1, . . . , zJ) ∈ RJ . For

30

simplicity RandComm(paramsGS ,m, open ′) determines the group of m and follows the instructions for the

respective group.

Randomizing Proofs. RandProof gets as input commitments (ˆcomm1, . . . , ˆcomm n̂), (open ′1, . . . , open
′
n̂),

and the proof

[(π1, . . . , πI , ψ1, . . . , ψJ),Π]. Π contains the internal commitments C1, . . . , CM and D1, . . . , DN , and the

pairing product equation.10

First it appropriately rerandomizes the commitments Cm and Dn to C ′m and D′
n, and stores the sm,i and

zn,j it used: It matches the ˆcommm̂ to the Cm and Dn using our statement. If a Cm has a matching ˆcommm̂

it sets (sm,1, . . . , sm,I) = open ′m̂; otherwise it assigns random (sm,1, . . . , sm,I) ← RI . Similarly, it sets

(zn,1, . . . , zn,J) = open n̂ if there is a match, or assigns random (zn,1, . . . , zn,J) ← RJ otherwise. Com-

mitment C ′m = RandComm(paramsGS , Cm, (sm,1, . . . , sm,I)) and C ′m = RandComm(paramsGS , Cm,

(zm,1, . . . , zm,J)).

Then it computes ŝq,i =
∑M

m=1 sm,i · αq,m and ẑq,j =
∑N

n=1 zn,j · βq,n. Next, the prover sets π′i ←
πi ·

∏Q
q=1(D

′
q)

ŝq,i and ψ′j ← ψj ·
∏Q

q=1(Cq)ẑq,j . These π′i and ψ′j will satisfy the verification equation for

the new commitments. See Appendix 3.7.4 for details.

Now the prover must make a certain technical step to fully randomize the proof. Intuitively, for every set

of commitments, there are many proofs (π1, . . . , πI , ψ1, . . . , ψJ) that can satisfy the verification equation.

Given one such proof, we can randomly choose another: The prover chooses ti,j , th ← R, and multiplies

each πi := πi ·
∏J

j=1 v
ti,j

j and each ψj := ψj ·
∏I

i=1 u
PH

h=1 thηh,i,j

i

∏I
i=1 u

ti,j

i . The value ηh,i,j is defined by

Groth and Sahai, see [57, Section 5, Equation 1] for a detailed explanation of this operation.

The algorithm outputs the new proof [(π′1, . . . , π
′
I , ψ

′
1, . . . , ψ

′
J),Π′] where Π′ contains the internal com-

mitments C ′1, . . . , C
′
M and D′

1, . . . , D
′
N , and the description of the original pairing product equation.

Efficiency

From the algorithms above, it follows that it takes an equal amount of time to randomize a commitment or a

proof as it does to to generate a fresh commitment or proof for the same type of statement. Thus, we refer to

Section 3.4 for full details on the efficiency of the operations.

3.7.4 Proof that Groth-Sahai Proofs Are Randomizable

Correctness. Suppose an honest prover gets as input commitments {cm} and {dn}, and a valid proof {πi}
and {ψj}. The prover randomizes it and sends the verifier the new commitments {c′m} and {d′n}, the new

proof {π′i} and {ψ′i}, and the original pairing product equation.

The verifier computes c′q ← µ1(aq) ·
∏M

m=1 c
′αq,m

m and d′q ← µ2(bq) ·
∏N

n=1 d
′βq,n

n .

10The internal commitments are needed because the GS proof system uses a commitment for every value it proves something about.
In some sense saying that a statement is about a commitment is just assigning a name to this commitment.

31

Because the prover is honest, we know that

∀q : c′q = µ1(aq) ·
M∏

m=1

c′
αq,m

m

= µ1(aq) ·
M∏

m=1

(
cm

I∏
i=1

u
sm,i

i

)αq,m

=
(
µ1(aq) ·

M∏
m=1

cαq,m
m

)
·
(M∏

m=1

I∏
i=1

u
sm,iαq,m

i

)
= cq ·

I∏
i=1

u
ŝq,i

i

∀q : d′q = dq ·
J∏

j=1

v
ẑq,j

j .

Before the prover fully randomizes the {π′i} and {ψ′j}, we have that

π′i = πi ·
Q∏

q=1

(d′q)
ŝq,i ψ′j = ψj ·

Q∏
q=1

(cq)ẑq,j .

Due to the results of Groth and Sahai, we know that if a prover starts with a valid proof {πi} and {ψj}
and multiplies each πi by

∏J
j=1 v

ti,j

j and each ψj by
∏I

i=1 u
PH

h=1 thηh,i,j

i

∏I
i=1 u

ti,j

i the result is still a valid

proof. Therefore, all we need to show is that if the prover skips this multiplication step, that the verification

formula
∏Q

q=1E(c′q, d
′
q) = µT (t) ·

∏I
i=1E(ui, π

′
i) ·

∏J
j=1E(ψ′j , vj). holds.

32

Q∏
q=1

E(c′q, d
′
q) =

Q∏
q=1

E(cq
I∏

i=1

u
ŝq,i

i , dq

J∏
j=1

v
ẑq,j

j)

=
[Q∏

q=1

E(cq, dq)
]
·
[Q∏

q=1

E(cq,
J∏

j=1

v
ẑq,j

j)
]
·
[Q∏

q=1

E(
I∏

i=1

u
ŝq,i

i , dq)
]
·
[Q∏

q=1

E(
I∏

i=1

u
ŝq,i

i ,

J∏
j=1

v
ẑq,j

j)
]

=
[Q∏

q=1

E(cq, dq)
]
·
[Q∏

q=1

E(cq,
J∏

j=1

v
ẑq,j

j)
]
·
[Q∏

q=1

E(
I∏

i=1

u
ŝq,i

i , dq)
]
·
[Q∏

q=1

I∏
i=1

E(uŝq,i

i ,

J∏
j=1

v
ẑq,j

j)
]

=
[Q∏

q=1

E(cq, dq)
]
·
[J∏

j=1

E(
Q∏

q=1

cẑq,j
q , vj)

]
·
[I∏

i=1

E(ui,

Q∏
q=1

dŝq,i
q)

]
·
[I∏

i=1

E(ui,

Q∏
q=1

J∏
j=1

v
ẑq,j ŝq,i

j)
]

=
[Q∏

q=1

E(cq, dq)
]
·
[J∏

j=1

E(
Q∏

q=1

cẑq,j
q , vj)

]
·
[I∏

i=1

E(ui,

Q∏
q=1

(dq

J∏
j=1

v
ẑq,j

j)ŝq,i)
]

=
[Q∏

q=1

E(cq, dq)
]
·
[J∏

j=1

E(
Q∏

q=1

cẑq,j
q , vj)

]
·
[I∏

i=1

E(ui,

Q∏
q=1

(d′q)
ŝq,i)

]

=
[
µT (t) ·

I∏
i=1

E(ui, πi) ·
J∏

j=1

E(ψj , vj)
]
·
[J∏

j=1

E(
Q∏

q=1

cẑq,j
q , vj)

]
·
[I∏

i=1

E(ui,

Q∏
q=1

d′q
ŝq,i)

]

= µT (t) ·
[I∏

i=1

E(ui, πi)
I∏

i=1

E(ui,

Q∏
q=1

d′q
ŝq,i)

]
·
[J∏

j=1

E(ψj , vj)
J∏

j=1

E(
Q∏

q=1

cẑq,j
q , vj)

]

= µT (t) ·
[I∏

i=1

E(ui, πi

Q∏
q=1

d′q
ŝq,i)

]
·
[J∏

j=1

E(ψj

Q∏
q=1

cẑq,j
q , vj)

]

= µT (t) ·
I∏

i=1

E(ui, π
′
i) ·

J∏
j=1

E(ψ′j , vj)

Thus we see that the verification equation holds.

Extractability. The Groth-Sahai extractor works by using the trapdoor to “decrypt” the commitments. Recall

that a commitment is of the form c = Commit(x, (r1, . . . , rI)) = x ·
∏I

i=1 u
ri
i for an arbitrary vector

(r1, . . . , rI). When we randomize c, we compute

c′ ← c ·
I∏

i=1

usi
i

= x ·
I∏

i=1

uri
i ·

I∏
i=1

usi
i

= x ·
I∏

i=1

uri+si
i .

Thus, we still have a commitment to x.

Randomness. First we consider the randomization of commitments. As we saw above, each new commit-

ment is set to c′ ← x ·
∏I

i=1 u
ri+si
i . The randomness of c′ depends on how the si are chosen. If the si

33

are chosen at random, then c′ is a randomly chosen commitment for x. If the si are not chosen at random

(especially if they are all set to 0!), then we have no such guarantees.

Now we argue about the randomization of proofs. When the prover computes π′i ← πi ·
∏Q

q=1(d
′
q)

ŝq,i and

ψ′j ← ψj ·
∏Q

q=1(cq)
ẑq,j , the result is a valid proof (as we demonstrated above). Then the prover multiplies

the {π′i} and {ψ′i} by a certain factor. Groth and Sahai show that the result is a randomly chosen proof from

the space of all valid proofs, given that the commitments and pairing product equation are fixed. Since, as

we showed above, the commitments are completely randomized, the result is a randomly chosen proof given

a fixed solution {xm}, {yn} to a particular pairing product equation.

Chapter 4

NIZK Proofs for Signature Schemes

In a series of papers, Camenisch and Lysyanskaya [23, 24, 25] identified a key building block commonly

called “a CL-signature”, which has been used in many privacy applications. These include constructions for

anonymous credentials [23, 24, 25], for electronic cash [2, 21, 75, 22, 29], and for anonymous authentica-

tion [20]. A CL-signature is a signature scheme with a pair of useful protocols.

The first protocol, called Issue, lets a user obtain a signature on a committed message without revealing

the message. The user wishes to obtain a signature on a value x from a signer with public key pk . The user

forms a commitment comm to value x and gives comm to the signer. After running the protocol, the user

obtains a signature on x, and the signer learns no information about x other than the fact that he has signed

the value that the user has committed to.

The second protocol, called Prove, is a zero-knowledge proof of knowledge of a signature on a committed

value. The prover has a message-signature pair (x, σpk (x)). The prover has obtained it by either running the

Issue protocol, or by querying the signer on x. The prover also has a commitment comm to x. The verifier

only knows comm . The prover proves in zero-knowledge that he knows a pair (x, σ) and a value open such

that VerifySig(pk , x, σ) = accept and comm = Commit(x, open).

It is clear that using general secure two-party computation [76] and zero-knowledge proofs of knowledge

of a witness for any NP statement [51], we can construct the Issue and Prove protocols from any signature

scheme and commitment scheme. Camenisch and Lysyanskaya’s contribution was to construct specially

designed signature schemes that, combined with Pedersen [69] and Fujisaki-Okamoto [48] commitments,

allowed them to construct Issue and Prove protocols that are efficient enough for use in practice. In turn,

CL-signatures have been implemented and standardized [18, 16]. They have also been used as a building

block in many other constructions [60, 2, 21, 22, 40, 20, 73, 29, 26].

A shortcoming of the CL signature schemes is that the Prove protocol is interactive. Rounds of interaction

are a valuable resource. In certain contexts, proofs need to be verified by third parties who are not present

during the interaction. For example, in off-line e-cash, a merchant accepts an e-coin from a buyer and later

deposits the e-coin to the bank. The bank must be able to verify that the e-coin is valid.

There are two known techniques for making the CL Prove protocols non-interactive. We can use the

Fiat-Shamir heuristic [47], which requires the random-oracle model. A series of papers [30, 45, 52] show

34

35

that proofs of security in the random-oracle model do not imply security. The other option is to use general

techniques: [8, 42, 7] show how any statement in NP can be proven in non-interactive zero-knowledge. This

option is prohibitively expensive.

We give the first practical non-interactive zero-knowledge proof of knowledge of a signature on a com-

mitted message. We have two constructions using two different practical signature schemes and a special

class of commitments due to Groth and Sahai [57]. Our constructions are secure in the common reference

string model.

Due to the fact that these protocols are so useful for a variety of applications, it is important to give a

careful treatment of the security guarantees they should provide. In this paper, we introduce the concept

of P-signatures — signatures with efficient Protocols, and give a definition of security. The main differ-

ence between P-signatures and CL-signatures is that P-signatures have non-interactive proof protocols. (Our

definition can be extended to encompass CL signatures as well.)

TECHNICAL ROADMAP. We use Groth and Sahai’s f -extractable non-interactive proofs of knowledge [57]

to build P-signatures. Groth and Sahai give three instantiations for their proof system, using SXDH, DLIN,

and SDA assumptions. We can use either of the first two instantiations. The SDA-based instantiation does

not give us the necessary extraction properties.

Another issue we confront is that Groth-Sahai proofs are f -extractable and not fully extractable. Suppose

we construct a proof whose witness x contains a ∈ Zp and the opening of a commitment to a. For this

commitment, we can only extract ba ∈ f(x) from the proof, for some base b. Note that the proof can be

about multiple committed values. Thus, if we construct a proof of knowledge of (m, σ) where m ∈ Zp and

VerifySig(pk ,m, σ) = accept, we can only extract some function F (m) from the proof. However, even

if it is impossible to forge (m, σ) pairs, it might be possible to forge (F (m), σ) pairs. Therefore, for our

proof system to be meaningful, we need to define F -unforgeable signature schemes, i.e. schemes where it is

impossible for an adversary to compute a (F (m), σ) pair on his own.

Our first construction uses the Weak Boneh-Boyen (WBB) signature scheme [11]. Using a rather strong

assumption, we prove that WBB is F -unforgeable and our P-signature construction is secure. Our second

construction uses a weaker assumption and is based on the Full Boneh-Boyen signature scheme [11]. In

this case we had to modify the Boneh-Boyen construction, however, because the GS proof system would

not allow the knowledge extraction of the entire signature. Our first construction is much simpler, but it’s

security relies on an interactive and thus much stronger assumption, thus, we believe that both constructions

are interesting. We also give two constructions which allow signatures on multiple messages, one in which

the public key size grows linearly with the number of messages, and a second in which the public key size

can remain fixed independent of the number of messages (although the underlying security assumption will

depend on this number).

4.1 P-signatures: Definitions

A non-interactive P-signature scheme extends a signature scheme (Setup,Keygen,Sign,VerifySig) and a

non-interactive commitment scheme (Setup,Commit). It consists of the following algorithms (Setup,

36

Keygen,Sign,VerifySig,Commit,ObtainSig, IssueSig,Prove,VerifyProof,EqCommProve,VerEqComm).

Setup(1k). Outputs public parameters params . These parameters include parameters for the signature scheme

and the commitment scheme.

ObtainSig(params, pk ,m, comm, open)↔ IssueSig(params, sk , comm). These two interactive algorithms

execute a signature issuing protocol between a user and the issuer. The user takes as input (params, pk ,m,

comm, open) such that the value comm = Commit(params,m, open) and gets a signature σ as output.

If this signature does not verify, the user sends “reject” to the issuer. The issuer gets (params, sk , comm)

as input and gets nothing as output.

Prove(params, pk ,m, σ). Outputs the values (comm, π, open), such that comm = Commit(params,m,

open) and π is a proof of knowledge of a signature σ on m .

VerifyProof(params, pk , comm, π). Takes as input a commitment to a message m and a proof π that the

message has been signed by owner of public key pk . Outputs accept if π is a valid proof of knowledge of

F (m) and a signature on m , and outputs reject otherwise.

EqCommProve(params,m, open, open ′). Takes as input a message and two commitment opening values.

It outputs a proof π that comm = Commit(m, open) is a commitment to the same value as comm ′ =

Commit(m, open ′). This proof is used to bind the commitment of a P-signature proof to a more permanent

commitment.

VerEqComm(params, comm, comm ′, π) . Takes as input two commitments and a proof and accepts if π is a

proof that comm , comm ′ are commitments to the same value.

Definition 27 (Secure P-Signature Scheme). Let F be a efficiently computable bijection (possibly parame-

terized by public parameters). A P-signature scheme is secure if (Setup,Keygen,Sign,VerifySig) form an

F -unforgeable signature scheme, if (Setup,Commit) is a perfectly binding, strongly computationally hiding

commitment scheme, if (Setup,EqCommProve,VerEqComm) is a non-interactive proof system, and if the

Signer privacy, User privacy, Correctness, Unforgeability, and Zero-knowledge properties hold:

Correctness. An honest user who obtains a P-signature from an honest issuer will be able to prove to an

honest verifier that he has a valid signature.

∀m ∈ {0, 1}∗ : Pr[params ← Setup(1k); (pk , sk)← Keygen(params);

σ ← Sign(params, sk ,m); (comm, π)← Prove(params, pk ,m, σ) :

VerifyProof(params, pk , comm, π) = 1] = 1

Signer privacy. No PPTM adversary can tell if it is running IssueSig with an honest issuer or with a simulator

who merely has access to a signing oracle. Formally, there exists a simulator SimIssue such that for all

PPTM adversaries (A1,A2), there exists a negligible function ν so that:

37

∣∣ Pr[params ← Setup(1k); (sk , pk)← Keygen(params);

(m, open, state)← A1(params, sk);

comm ← Commit(params,m, open);

b← A2(state)↔ IssueSig(params, sk , comm) : b = 1]

−Pr[params ← Setup(1k); (sk , pk)← Keygen(params);

(m, open, state)← A1(params, sk);

comm ← Commit(params,m, open);σ ← Sign(params, sk ,m);

b← A2(state)↔ SimIssue(params, comm, σ) : b = 1]
∣∣ < ν(k)

Note that we ensure that IssueSig and SimIssue gets an honest commitment to whatever m, open the

adversary chooses.

Since the goal of signer privacy is to prevent the adversary from learning anything except a signature on the

opening of the commitment, this is sufficient for our purposes. Note that our SimIssue will be allowed to

rewind A. to Also, we have defined Signer Privacy in terms of a single interaction between the adversary

and the issuer. A simple hybrid argument can be used to show that this definition implies privacy over

many sequential instances of the issue protocol.

User privacy. No PPTM adversary (A1,A2) can tell if it is running ObtainSig with an honest user or with a

simulator. Formally, there exists a simulator Sim = SimObtain such that for all PPTM adversariesA1,A2,

there exists negligible function ν so that:∣∣ Pr[params ← Setup(1k); (pk ,m, open, state)← A1(params);

comm = Commit(params,m, open);

b← A2(state)↔ ObtainSig(params, pk ,m, comm, open) : b = 1]

−Pr[(params, sim)← Setup(1k); (pk ,m, open, state)← A1(params);

comm = Commit(params,m, open);

b← A2(state)↔ SimObtain(params, pk , comm) : b = 1]
∣∣ < ν(k)

Here again SimObtain is allowed to rewind the adversary.

Note that we require that only the user’s input m is hidden from the issuer, but not necessarily the user’s

output σ. The reason that this is sufficient is that in actual applications (for example, in anonymous

credentials), a user would never show σ in the clear; instead, he would just prove that he knows σ. An

alternative, stronger way to define signer privacy and user privacy together, would be to require that the pair

of algorithms ObtainSig and IssueSig carry out a secure two-party computation. This alternative definition

would ensure that σ is hidden from the issuer as well. However, as explained above, this feature is not

necessary for our application, so we preferred to give a special definition which captures the minimum

properties required.

Unforgeability. We require that no PPTM adversary can create a proof for any message m for which he has

not previously obtained a signature or proof from the oracle.

38

A P-signature scheme is unforgeable if an extractor (ExtractSetup,Extract) and a bijection F exist such

that (1) the output of ExtractSetup(1k) is indistinguishable from the output of Setup(1k), and (2) no

PPTM adversary can output a proof π that VerifyProof accepts, but from which we extract F (m), σ such

that either (a) σ is not valid signature on m , or (b) comm is not a commitment to m or (c) the adversary

has never previously queried the signing oracle on m . Formally, for all PPTM adversaries A, there exists

a negligible function ν such that:

Pr[params0 ← Setup(1k); (params1, td)← ExtractSetup(1k) : b← {0, 1} :

A(paramsb) = b] < 1/2 + ν(k), and

Pr[(params, td)← ExtractSetup(1k); (pk , sk)← Keygen(params);

(QSign, comm, π)← A(params, pk)OSign(params,sk ,·);

(y, σ)← Extract(params, td , π, comm) :

VerifyProof(params, pk , comm, π) = accept

∧ (VerifySig(params, pk , F−1(y), σ) = reject

∨ (∀open, comm 6= Commit(params, F−1(y), open))

∨ (VerifySig(params, pk , F−1(y), σ) = accept ∧ y /∈ F (QSign)))] < ν(k).

Oracle OSign(params, sk ,m) runs the function Sign(params, sk ,m) and returns the resulting signature σ

to the adversary. It records the queried message on query tape QSign. By F (QSign) we mean F applied

to every message in QSign.

Zero-knowledge. There exists a simulator Sim = (SimSetup,SimProve,SimEqComm), such that for all

PPTM adversaries A1,A2, there exists a negligible function ν such that under parameters output by

SimSetup, Commit is perfectly hiding and (1) the parameters output by SimSetup are indistinguishable

from those output by Setup, but SimSetup also outputs a special auxiliary string sim; (2) when params

are generated by SimSetup, the output of SimProve(params, sim, pk) is indistinguishable from that of

Prove(params, pk ,m, σ) for all (pk ,m, σ) where σ ∈ σpk (m); and (3) when params are generated

by SimSetup, the output of SimEqComm(params, sim, comm, comm ′) is indistinguishable from that of

EqCommProve(params,m, open, open ′) for all (m, open, open ′) where comm = Commit(params,m,

open) and comm ′ = Commit(params,m, open ′).

In GMR notation, this is formally defined as follows:

|Pr[params ← Setup(1k); b← A(params) : b = 1]

− Pr[(params, sim)← SimSetup(1k); b← A(params) : b = 1]| < ν(k), and

|Pr[(params, sim)← SimSetup(1k); (pk ,m, σ, state)← A1(params, sim);

(comm, π, open)← Prove(params, pk ,m, σ); b← A2(state, comm, π) : b = 1]

−Pr[(params, sim)← SimSetup(1k); (pk ,m, σ, state)← A1(params, sim);

(comm, π)← SimProve(params, sim, pk); b← A2(state, comm, π)

: b = 1]| < ν(k), and

39

|Pr[(params, sim)← SimSetup(1k); (m, open, open ′)← A1(params, sim);

π ← EqCommProve(params,m, open, open ′); b← A2(state, π) : b = 1]

−Pr[(params, sim)← SimSetup(1k); (m, open, open ′)← A1(params, sim);

π ← SimEqComm(params, sim,Commit(params,m, open),

Commit(params,m, open ′));

b← A2(state, π) : b = 1]| < ν(k).

4.2 P-signatures: Constructions

4.2.1 Construction of P-Signature Scheme from IHSDH

An F -unforgeable signature scheme

Our first construction of a P-signature scheme uses the Weak Boneh-Boyen signature scheme (WBB) signa-

ture scheme [11] as a building block. The WBB scheme is as follows:

WBB-SigSetup(1k) runs BilinearSetup(1k) to get the pairing parameters (p,G1, G2, GT , e, g, h). In the se-

quel, by z we denote z = e(g, h).

WBB-Keygen(paramsSig) The secret key is α← Zp. pk = (v, ṽ), where v = hα, ṽ = gα.1 The correctness

of the public key can be verified by checking that e(g, v) = e(ṽ, h).

WBB-Sign(paramsSig , sk ,m) calculates σ = g1/(α+m), where sk = α.

WBB-VerifySig(paramsSig , pk ,m, σ) outputs accept if the public key is correctly formed and if e(σ, vhm) =

z, where pk = (v, ṽ). Outputs reject otherwise.

Boneh and Boyen proved that the Weak Boneh-Boyen signature is only weakly secure given SDH, which

is insufficient for our purposes.

In Appendix 4.2.1, we show that the weak Boneh-Boyen signature scheme is F -secure given IHSDH

(which implies standard [54] security).

Theorem 6. Let F (x) = (hx, ux), where u ∈ G1 and h ∈ G2 as given in the statement of the IHSDH

assumption. The Weak Boneh-Boyen signature scheme is F -secure given IHSDH.

Proof. The proof of security is trivial given the IHSDH assumption. Correctness is straightforward. To prove

unforgeability, we create a reduction to the IHSDH assumption. The reduction gets as input (p,G1, G2, GT ,

e, g,G, h,H, u), where G = gx and H = hx for some secret x. The reduction sets up the public parameters

of the Boneh Boyen signature scheme params = ((p,G1, G2, GT , e, g, h) and a public-key pk = (H,G). To

answer a signature query on message m`, the reduction sends a query to Ow(m`) and sends g1/(x+m`) back

to the adversary. Eventually, the adversary will output a forgery (σ, y), where σ = g1/(x+m), y = F (m) =

(hm, um), and m 6= msg` for all `. The reduction can then output the IHSDH tuple (σ, hm, um).
1The shadow value ṽ does not exist in [11] and is needed to prove zero-knowledge of our P-signatures in pairing settings in which

no efficient isomorphisms exist.

40

A P-signature scheme

We extend the WBB scheme to obtain our first P-signature scheme (Setup,Keygen,Sign,VerifySig,Commit,

ObtainSig, IssueSig,Prove,VerifyProof,EqCommProve,VerEqComm), as follows:

Setup(1k) First, obtain paramsBM = (p,G1, G2, GT , e, g, h)← BilinearSetup(1k). Next, obtain

paramsGS = (paramsBM , params1, params2, paramsπ) ← GSSetup(paramsBM). Pick u ← G1.

Let params = (paramsGS , u). As before, z is defined as z = e(g, h).

Keygen(params) Run WBB-Keygen(paramsBM) and outputs sk = α, pk = (hα, gα) = (v, ṽ).

Sign(params, sk ,m) Run WBB-Sign(paramsBM , sk ,m) to obtain σ = g1/(α+m) where α = sk .

VerifySig(params, pk ,m, σ) Run WBB-VerifySig(paramsBM , pk ,m, σ).

Commit(params,m, open) To commit to m , compute C = GSExpCommit(params2, h,m, open). (Recall

that GSExpCommit(params2, h,m, open) = GSCommit(params2, hm , open), and params2 is part of

paramsGS .)

ObtainSig(params, pk ,m, comm, open)↔ IssueSig(params, sk , comm). The user and the issuer run the

following protocol:

1. The user chooses ρ← Zp.

2. The user and issuer engage in a secure two-party computation protocol [61]2, where the user’s private

input is (ρ,m, open), and the issuer’s private input is sk = α. The issuer’s private output is x =

(α+ m)ρ if comm = Commit(params,m, open), and x = ⊥ otherwise.

3. If x 6= ⊥, the issuer calculates σ′ = g1/x and sends σ′ to the user.

4. The user computes σ = σ′ρ = g1/(α+m). The user checks that the signature is valid.

Prove(params, pk ,m, σ) Check if pk and σ are valid, and if they are not, output ⊥. Else, pick appropriate

open1, open2, open3 and form the following three GS commitments: Mh = GSExpCommit(params2, h,

m, open1), Mu = GSExpCommit(params1, u,m, open2), Σ = GSCommit(params1, σ, open3). Com-

pute the following proof: π = NIPK{((Mh : a), (Mu : b), (Σ : x)) : e(u, a) = e(b, h) ∧ e(x, va) = z}.
Output (comm, π) = (Mh, π).

VerifyProof(params, pk , comm, π) Outputs accept if the proof π is a valid proof of the statement described

above for Mh = comm and for properly formed pk = (v, ṽ).

EqCommProve(params,m, open, open ′) Let commitment comm = Commit(params,m, open) =

GSCommit(params2, hm , open) and comm ′ = Commit(params,m, open ′) = GSCommit(params2,

hm , open ′). Use the GS proof system as described in Section 3.5 to compute π ← NIZKPK{((comm :

a), (comm ′ : b) : a = b}.

VerEqComm(params, comm, comm ′, π) Verify the proof π using the GS proof system as described in Chap-

ter 3.
2Jarecki and Shmatikov give a protocol for secure two-party computation on committed inputs; their construction can be adapted

here. In general using secure two-party computation is expensive, but here we only need to compute a relatively small circuit on the
inputs.

41

Efficiency

The P-signature proof system generates 3 new commitments (2 in G1 and 1 in G2) and GS proofs for 2

pairing product equations, one with Q = 2, and one with Q = 1. Applying the efficiency formulas given in

Section 3.4, we get the following lemma:

Lemma 2. When instantiated using the SXDH instantiation given in Section 3.3 the P-signature proofs will

have the following efficiency: Generating the proof will require 36 exponentiations in G1 and 32 exponentia-

tions in G2. The resulting proof will consist of 12 elements of G1 and 10 elements of G2. Verifying the proof

will involve computing 44 bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3, the

above proof system will have the following efficiency: Generating the proof will require 135 exponentiations

in G. The resulting proof will consist of 27 elements in G. Verifying the proof will involve computing 81

bilinear group pairings.

Note that obtaining a full zero knowledge proof system will require a combination of the Prove algorithm

and the EqCommProve, whose efficiency is discussed in Section 3.5.

Security

Theorem 7 (Security). Our first P-signature construction is secure for Fparams(m) = (hm, um) given

IHSDH and the security of the GS commitments and proofs.

Proof. Correctness follows from correctness of GS proofs.

Signer Privacy. We must construct the SimIssue algorithm that is given as input params, a commitment

comm and a signature σ and must simulate the adversary’s view. SimIssue will invoke the simulator for the

two-party computation protocol. Recall that in two-party computation, the simulator can first extract the input

of the adversary: in this case, some (ρ,m, open). Then SimIssue checks that comm = Commit(params,

m, open); if it isn’t, it terminates. Otherwise, it sends to the adversary the value σ′ = σ1/ρ. Suppose the

adversary can determine that it is talking with a simulator. Then it must be the case that the adversary’s input

to the protocol was incorrect which breaks the security properties of the two-party computation.

User privacy. The simulator will invoke the simulator for the two-party computation protocol. Recall

that in two-party computation, the simulator can first extract the input of the adversary (in this case, some

α′, not necessarily the valid secret key). Then the simulator is given the target output of the computation (in

this case, the value x which is just a random value that the simulator can pick itself), and proceeds to interact

with the adversary such that if the adversary completes the protocol, its output is x. Suppose the adversary

can determine that it is talking with a simulator. Then it breaks the security of the two-party computation

protocol.

Zero knowledge. Consider the following algorithms. SimSetup runs BilinearSetup(1k) to get paramsBM

= (p,G1, G2, GT , e, g, h) and GSSimSetup(paramsBM) to get paramsGS , simGS . It then picks t ← Zp

and sets up u = gt. The final parameters are params = (paramsGS , u, z = e(g, h)) and sim = (t, simGS).

Note that the distribution of params is indistinguishable from the distribution output by Setup. Also note

that using these parameters, the commitments generated by GSCommit are perfectly hiding.

42

SimProve receives params , sim , and public key (v, ṽ) and can use trapdoor sim = t to create a random

P-signature forgery as follows. Pick s ← Zp and compute σ = g1/s. We implicitly set m = s − α. Note

that the simulator does not know m and α. However, he can compute hm = hs/v and um = (gs/ṽ)t. Now

he can use σ, hm , and um to create commitments. The proof π is computed in the same way as in the real

Prove protocol using σ, hm , and um and the opening information of the commitments as witnesses. By the

witness indistinguishability of the GS proof system, a proof using the faked witnesses is indistinguishable

from a proof using a real witness, thus SimProve is indistinguishable from Prove.

Finally, we need to show that we can simulate proofs of EqCommProve given the trapdoor simGS . This

follows from composable zero knowledge of EqCommProve. See Section 3.5.

Unforgeability. Consider the following algorithms: ExtractSetup(1k) outputs the usual params , except

that it invokes GSExtractSetup to get alternative paramsGS and the trapdoor td = (td1, td2) for extracting

from GS commitments in G1 and G2. The parameters generated by GSSetup are indistinguishable from

those generated by GSExtractSetup, so we know that the parameters generated by ExtractSetup will be

indistinguishable from those generated by Setup.

Extract(params, td , comm, π) extracts the values from commitment comm and the commitments Mh,

Mu contained in the proof π using the GS commitment extractor. If VerifyProof accepts then comm = Mh.

Let F (m) = (hm , um).

Now suppose we have an adversary that can break the unforgeability of our P-signature scheme for

this extractor and this bijection. We create a reduction to break the IHSDH assumption. The reduction

gets (p,G1, G2, GT , e, g, X̃, h,X, u), where X = hx, X̃ = gx for some unknown x. The reduction runs

GSExtractSetup(p,G1, G2, GT , e, g, h) to get paramsGS and td . It otherwise creates params in the same

way as Setup (and ExtractSetup). Note that td lets it open all commitments. The reduction gives (params,

td , pk = (X, X̃)) to the adversary. Whenever the adversary queries OSign on m , the reduction returns

σ ← Ox(m) and stores m in QSign.

Eventually, the adversary outputs a proof π. Since π is f -extractable and perfectly sound, Extract

(params, td , comm, π) will return a = hm, b = um, and σ = g1/(x+m). Thus we have a valid IHSDH

tuple and m = F−1(a, b) will always fulfill VerifySig. We also know that since VerifyProof accepts,

comm = Mh = Commit(params,m, open) for some open . Thus, since this is a forgery, it must be

the case that (a, b) = F (m) 6∈ F (QSign). This means that we never queried Ox on m and the reduction has

generated a fresh IHSDH tuple.

4.2.2 Construction of P-Signature Scheme from TDH and HSDH

In this section, we present a new signature scheme and then build a P-signature scheme from it.

An F -unforgeable signature scheme

The new signature scheme is inspired by the full Boneh-Boyen signature scheme, and is as follows:

New-SigSetup(1k) runs BilinearSetup(1k) to get the pairing parameters (p,G1, G2, GT , e, g, h). In the se-

quel, by z we denote z = e(g, h).

43

New-Keygen(params) picks a random α, β ← Zp. The signer calculates v = hα, w = hβ , ṽ = gα, w̃ = gβ .

The secret-key is sk = (α, β). The public-key is pk = (v, w, ṽ, w̃). The public key can be verified by

checking that e(g, v) = e(ṽ, h) and e(g, w) = e(w̃, h).

New-Sign(params, (α, β),m) chooses r ← Zp − {α−m
β } and calculates C1 =

g1/(α+m+βr), C2 = wr, C3 = ur. The signature is (C1, C2, C3).

New-VerifySig(params, (v, w, ṽ, w̃),m, (C1, C2, C3)) outputs accept if e(C1, vh
mC2) = z, e(u,C2) =

e(C3, w), and if the public key is correctly formed, i.e., e(g, v) = e(ṽ, h), and e(g, w) = e(w̃, h).3

Theorem 8. Let F (x) = (hx, ux), where u ∈ G1 and h ∈ G2 as in the HSDH and TDH assumptions. Our

new signature scheme is F -secure given HSDH and TDH. (See full version for proof.)

Theorem 9. Let F (x) = (hx, ux), where u ∈ G1 and h ∈ G2 as in the HSDH and TDH assumptions. Our

new signature scheme is F -secure given HSDH and TDH.

Proof. Correctness is straightforward. Unforgeability is more difficult. Suppose we try to do a straightfor-

ward reduction to HSDH. The reduction will setup the parameters for the signature scheme. Whenever the

adversary queries OSign, the reduction will use one of the provided tuples (g1/(x+c`), gc` , vc`) to construct a

signature for input message m`. We choose r` such that c` = m` + βr`. Thus, C1 = g1/(x+c`), C2 = wr`

and C3 = ur` . (The actual proof will be more complicated, because we don’t know c` and therefore cannot

calculate r` directly).

Eventually, the adversary returns F (m) = (hm, um) and a valid signature (C1, C2, C3). Since the sig-

nature is valid, we get that C1 = g1/(x+m+βr), C2 = wr = hβr, and C3 = ur. We can have two types of

forgeries. In Type 1, the adversary returns a forgery such that m+ βr 6= m` + βr` for all of the adversary’s

previously queried messages m`, in which case we can easily create a new HSDH tuple. In Type 2, the ad-

versary returns a forgery such that m+ βr = m` + βr`. In this case, we cannot use the forgery to construct

a new HSDH tuple. Therefore, we divide our proof into two categories. In Type 1, we reduce to the HSDH

assumption. In Type 2, we reduce to the TDH assumption.

Type 1 forgeries: βr + m 6= βr` + m` for any r`,m` from a previous query. The reduction gets an

instance of the HSDH problem (p,G1, G2, GT , e, g, v, ṽ, h, u, {C`,H`, U`}`=1...q), such that v = hx and

ṽ = gx for some unknown x, and for all `, C` = g1/(x+c`), H` = hc` , and U` = uc` for some unknown

c`. The reduction sets up the parameters of the new signature scheme as (p,G1, G2, e, g, h, u, z = e(g, h)).

Next, the reduction chooses β ← Zp and calculates w = hβ , w̃ = gβ . The reduction gives the adversary the

public parameters and the public-key (v, w, ṽ, w̃).

Suppose the adversary’s `th query is to Sign message m`. The reduction will implicitly set r` to be such

that c` = m` + βr`. This is an equation with two unknowns, so we do not know r` and c`. The reduction

sets C1 = C`. It computes C2 = H`/h
m` = hc`/hm` = wr` . Then it computes C3 = (U`/u

m`)1/β =

(uc`/um`)1/β = u(c`−m`)/β = ur` . The reduction returns the signature (C1, C2, C3).

Eventually, the adversary returns F (m) = (F1, F2) and a valid signature (C1, C2, C3). Since this is a

valid F -forger, we get that F1 = hm, F2 = um and C1 = g1/(x+m+βr), C2 = wr = hβr, and C3 = ur.

3The latter is needed only once per public key, and is meaningless in a symmetric pairing setting.

44

Since this is a Type 1 forger, we also have that m + βr 6= m` + βr` for any of the adversary’s previous

queries. Therefore, (C1, F1C2, F2C
β
3) = (g1/(x+m+βr), hm+βr, um+βr) is a new HSDH tuple.

Type 2 forgeries: βr + m = βr` + m` for some r`,m` from a previous query. The reduction receives

(p,G1, G2, GT , e, g, h,X,Z, Y, {σ`, c`}), where X = hx, Z = gx, Y = gy , and for all `, σ` = g1/(x+c`).

The reduction chooses γ ← Zp and sets u = Y γ . The reduction sets up the parameters of the new signature

scheme as (p,G1, G2, e, g, h, u, z = e(g, h)). Next the reduction chooses α ← Zp, and calculates v = hα,

w = Xγ , ṽ = gα, w̃ = Zγ . It gives the adversary the parameters and the public-key (v, w, ṽ, w̃). Note that

we set up our parameters and public-key so that β = xγ, for some unknown β and u = gγy .

Suppose the adversary’s `th query is to Sign message m`. The reduction sets r` = (α + m`)/(c`γ)

(which it can compute). The reduction computes C1 = σ
1/(γr`)
` = (g1/(x+c`))1/(γr`) = g1/(γr`(x+c`)) =

g1/(α+m`+βr`). Since the reduction knows r`, it computes C2 = wr` , C3 = ur` and send (C1, C2, C3) to A.

Eventually, the adversary returns F (m) = (F1, F2) and a valid signature (C1, C2, C3). Since this is an

F -forgery, we get that F1 = hm, F2 = um and that C1 = g1/(x+m+βr), C2 = wr = hβr, and C3 = ur.

Since this is a Type 2 forger, we also have that m + βr = m` + βr` for one of the adversary’s previous

queries. (We can learn m` and r` by comparing F1C2 to hm`wr` for all `.) We define δ = m − m`. Since

m + βr = m` + βr`, we also get that δ = β(r` − r). Using β = xγ, we get that δ = xγ(r` − r). We

compute: A = F1/h
m` = hm−m` = hδ , B = ur`/C3 = ur`−r = uδ/γx = gyδ/x and C = (F2/u

m`)1/γ =

u(m−m`)/γ = uδ/γ = gδy . We implicitly set µ = δ/x, thus (A,B,C) = (hµx, gµy, gµxy) is a valid TDH

tuple.

A P-signature Scheme

We extend the above signature scheme to obtain our second P-signature scheme (Setup,Keygen,Sign,

VerifySig,Commit,ObtainSig, IssueSig,Prove,VerifyProof,EqCommProve,VerEqComm). The algorithms

are as follows:

Setup(1k) First, obtain paramsBM = (p,G1, G2, GT , e, g, h)← BilinearSetup(1k). Next, obtain

paramsGS = (paramsBM , params1, params2, paramsπ) ← GSSetup(paramsBM). Pick u ← G1.

Let params = (paramsGS , u). As before, z is defined as z = e(g, h).

Keygen(params) Run the New-Keygen(paramsBM) and output sk = (α, β), pk = (hα, hβ , gα, gβ) =

(v, w, ṽ, w̃).

Sign(params, sk ,m) Run New-Sign(paramsBM , sk ,m) to obtain σ = (C1, C2, C3) where

C1 = g1/(α+m+βr), C2 = wr, C3 = ur, and sk = (α, β)

VerifySig(params, pk ,m, σ) Run New-VerifySig(paramsBM , pk ,m, σ).

Commit(params,m, open) To commit to m , compute C = GSExpCommit(params2, h,m, open). (Recall

that GSExpCommit(params2, h,m, open) = GSCommit(params2, hm , open), and params2 is part of

paramsGS .)

ObtainSig(params, pk ,m, comm, open)↔ IssueSig(params, sk , comm). The user and the issuer run the

following protocol:

1. The user chooses ρ1, ρ2 ← Zp.

45

2. The issuer chooses r′ ← Zp.

3. The user and the issuer run a secure two-party computation protocol where the user’s private inputs

are (ρ1, ρ2,m, open), and the issuer’s private inputs are sk = (α, β) and r′.

The issuer’s private output is x = (α+ m + βρ1r
′)ρ2 if comm = Commit(params,m, open), and

x = ⊥ otherwise.

4. If x 6= ⊥, the issuer calculates C ′1 = g1/x, C ′2 = wr′ and C ′3 = ur′ , and sends (C ′1, C
′
2, C

′
3) to the

user.

5. The user computes C1 = C ′ρ2
1 , C2 = C ′ρ1

2 , and C3 = C ′ρ1
3 and then verifies that the signature

(C1, C2, C3) is valid.

Prove(params, pk ,m, σ) Check if pk and σ are valid, and if they are not, output ⊥. Then the user com-

putes commitments Σ = GSCommit(params1, C1, open1), Rw = GSCommit(params1, C2, open2),

Ru = GSCommit(params1, C3, open3), Mh = GSExpCommit(params2, h,m, open4) = GSCommit

(params2, hm , open4) andMu = GSExpCommit(params1, u,m, open5) = GSCommit(params1, um ,

open5).

The user outputs the commitment comm = Mh and the proof

π = NIPK{((Σ : C1), (Rw : C2), (Ru : C3)(Mh : a), (Mu : b)) :

e(C1, vaC2) = z ∧ e(u,C2) = e(C3, w) ∧ e(u, a) = e(b, h)}.

VerifyProof(params, pk , comm, π) Outputs accept if the proof π is a valid proof of the statement described

above for Mh = comm and for properly formed pk .

EqCommProve(params,m, open, open ′) Let commitment comm = Commit(params,m, open) =

GSCommit(params2, hm , open) and comm ′ = Commit(params,m, open ′) = GSCommit(params2,

hm , open ′). Use the GS proof system as described in Section 3.5 to compute π ← NIZKPK{((comm :

a), (comm ′ : b) : a = b}.

VerEqComm(params, comm, comm ′, π) Verify the proof π using the GS proof system as described in Sec-

tion 2.1.3.

Efficiency

The P-signature proof system generates 5 new commitments (3 in G1 and 2 in G2) and GS proofs for 3

pairing product equations, one with Q = 1, and two with Q = 2. Applying the efficiency formulas given in

Section 3.4, we get the following lemma:

Lemma 3. When instantiated using the SXDH instantiation given in Section 3.3 the P-signature proofs will

have the following efficiency: Generating the proof will require 56 exponentiations in G1 and 52 exponentia-

tions in G2. The resulting proof will consist of 18 elements of G1 and 16 elements of G2. Verifying the proof

will involve computing 68 bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3, the

above proof system will have the following efficiency: Generating the proof will require 216 exponentiations

46

in G. The resulting proof will consist of 42 elements in G. Verifying the proof will involve computing 126

bilinear group pairings.

Security

Theorem 10 (Security). Our second P-signature construction is secure given HSDH and TDH and the secu-

rity of the GS commitments and proofs.

Proof. Correctness. VerifyProof will always accept properly formed proofs.

Signer Privacy. We must construct the SimIssue algorithm that is given as input params, a commitment

comm and a signature σ = (C1, C2, C3) and must simulate the adversary’s view. SimIssue will invoke

the simulator for the two-party computation protocol. Recall that in two-party computation, the simulator

can first extract the input of the adversary: in this case, some (ρ1, ρ2,m, open). Then SimIssue checks that

comm = Commit(params,m, open); if it isn’t, it terminates. Otherwise, it sends to the adversary the

values (C ′1 = C
1/ρ2
1 , C ′2 = C

1/ρ1
2 , C ′3 = C

1/ρ1
3). Suppose the adversary can determine that it is talking with

a simulator. Then it must be the case that the adversary’s input to the protocol was incorrect which breaks the

security properties of the two-party computation.

User Privacy. The simulator will invoke the simulator for the two-party computation protocol. Recall that

in two-party computation, the simulator can first extract the input of the adversary (in this case, some (α′, β′),

not necessarily the valid secret key). Then the simulator is given the target output of the computation (in this

case, the value x which is just a random value that the simulator can pick itself), and proceeds to interact

with the adversary such that if the adversary completes the protocol, its output is x. Suppose the adversary

can determine that it is talking with a simulator. Then it breaks the security of the two-party computation

protocol.

Zero knowledge. Consider the following algorithms. SimSetup runs BilinearSetup to get paramsBM =

(p,G1, G2, GT , e, g, h). It then picks t ← Zp and sets up u = ga. Next it calls GSSimSetup(paramsBM)

to obtain paramsGS and sim . The final parameters are params = (paramsGS , u, z = e(g, h)) and sim =

(a, sim). Note that the distribution of params is indistinguishable from the distribution output by Setup.

SimProve receives params , sim , and public key (v, ṽ, w, w̃) and can use trapdoor sim to create a random

P-signature forgery in SimProve as follows. Pick s, r ← Zp and compute σ = g1/s. We implicitly set

m = s−α−rβ. Note that the simulator does not know m and α. However, he can compute hm = hs/(vwr)

and um = us/(ṽaw̃ar). Now he can use σ, hm , um , wr, ur as a witness and construct the proof π in the same

way as the real Prove protocol. By the witness indistinguishability of the GS proof system, a proof using the

faked witnesses is indistinguishable from a proof using a real witness, thus SimProve is indistinguishable

from Prove.

Finally, we need to show that we can simulate proofs of EqCommProve given the trapdoor simGS . This

follows directly from composable zero knowledge of EqCommProve. (See Section 3.5.)

Unforgeability. Consider the following algorithms: ExtractSetup(1k) outputs the usual params , except

that it invokes GSExtractSetup to get alternative paramsGS and the trapdoor td = (td1, td2) for extracting

GS commitments in G1 and G2. The parameters generated by GSSetup are indistinguishable from those

47

generated by GSExtractSetup, so we know that the parameters generated by ExtractSetup will be indistin-

guishable from those generated by Setup.

Extract(params, td , comm, π) extracts the values from commitment comm and the commitments Mh,

Mu contained in the proof π using the GS commitment extractor. If VerifyProof accepts then comm = Mh.

Let F (m) = (hm , um).

Now suppose we have an adversary that can break the unforgeability of our P-signature scheme for this

extractor and this bijection.

A P-signature forger outputs a proof from which we extract (F (m), σ) such that either (1) VerifySig

(params, pk ,m, σ) = reject, or (2) comm is not a commitment to m, or (3) the adversary never queried us

on m. Since VerifyProof checks a set of pairing product equations, f -extractability of the GS proof system

trivially ensures that (1) never happens. Since VerifyProof checks that Mh = comm , this ensures that

(2) never happens. Therefore, we consider the third possibility. The extractor calculates F (m) = (hm, um)

wherem is fresh. Due to the randomness element r in the signature scheme, we have two types of forgeries. In

a Type 1 forgery, the extractor can extract from the proof a tuple of the form (g1/(α+m+βr), wr, ur, hm, um),

where m+ rβ 6= m` + r`β for any (m`, r`) used in answering the adversary’s signing or proof queries. The

second type of forgery is one where m+ rβ = m` + r`β for (m`, r`) used in one of these previous queries.

We show that a Type 1 forger can be used to break the HSDH assumption, and a Type 2 forger can be used to

break the TDH assumption.

Type 1 forgeries: βr + m 6= βr` + m` for any r`,m` from a previous query. The reduction gets an

instance of the HSDH problem (p,G1, G2, GT , e, g,X, X̃, h, u, {C`,H`, U`}`=1...q), such that X = hx and

X̃ = gx for some unknown x, and for all `, C` = g1/(x+c`), H` = hc` , and U` = uc` for some unknown

c`. The reduction sets up the parameters of the new signature scheme as (p,G1, G2, e, g, h, u, z = e(g, h)).

Next, the reduction chooses β ← Zp, sets v = X, ṽ = X̃ and calculates w = hβ , w̃ = gβ . The reduction

gives the adversary the public parameters, the trapdoor, and the public-key (v, w, ṽ, w̃).

Suppose the adversary’s `th query is to Sign message m`. The reduction will implicitly set r` to be such

that c` = m` + βr`. This is an equation with two unknowns, so we do not know r` and c`. The reduction

sets C1 = C`. It computes C2 = H`/h
m` = hc`/hm` = wr` . Then it computes C3 = (U`)1/β/um`/β =

(uc`)1/β/um`/β = u(c`−m`)/β = ur` The reduction returns the signature (C1, C2, C3).

Eventually, the adversary returns a proof π. Since π is f -extractable and perfectly sound, we extract

σ = g1/(x+m+βr), a = wr, b = ur, c = hm, and d = um. Since this is a P-signature forgery, (c, d) =

(hm, um) 6∈ F (QSign). Since this is a Type 1 forger, we also have that m + βr 6= m` + βr` for any of

the adversary’s previous queries. Therefore, (σ, ca, dbβ) = (g1/(x+m+βr), hm+βr, um+βr) is a new HSDH

tuple.

Type 2 forgeries: βr + m = βr` + m` for some r`,m` from a previous query. The reduction receives

(p,G1, G2, GT , e, g, h,X,Z, Y, {σ`, c`}), where X = hx, Z = gx, Y = gy , and for all `, σ` = g1/(x+c`).

The reduction chooses γ ← Zp and sets u = Y γ . The reduction sets up the parameters of the new signature

scheme as (p,G1, G2, e, g, h, u, z = e(g, h)). Next the reduction chooses α ← Zp, and calculates v =

hα, w = Xγ , ṽ = gα, w̃ = Zγ . It gives the adversary the parameters, the trapdoor, and the public-key

(v, w, ṽ, w̃). Note that we set up our parameters and public-key so that β is implicitly defined as β = xγ, and

48

u = gγy .

Suppose the adversary’s `th query is to Sign message m`. The reduction sets r` = (α + m`)/(c`γ)

(which it can compute). The reduction computes C1 = σ
1/(γr`)
` = (g1/(x+c`))1/(γr`) = g1/(γr`(x+c`)) =

g1/(α+m`+βr`). Since the reduction knows r`, it computes C2 = wr` , C3 = ur` and send (C1, C2, C3) to A.

Eventually, the adversary returns a proof π. The proof π is f -extractable and perfectly sound, the re-

duction can extract σ = g1/(x+m+βr), a = wr, b = ur, c = hm, and d = um. Therefore, VerifySig will

always accept m = F−1(c, d), σ, a, b. We also know that if this is a forgery, then VerifyProof accepts,

which means that comm = Mh, which is a commitment to m. Thus, since this is a P-signature forgery,

it must be the case that (c, d) = (hm, um) 6∈ F (QSign). However, since this is a Type 2 forger, we also

have that ∃` : m + βr = m` + βr`, where m` is one of the adversary’s previous Sign or Prove queries.

We implicitly define δ = m − m`. Since m + βr = m` + βr`, we also get that δ = β(r` − r). Using

β = xγ, we get that δ = xγ(r` − r). We compute: A = c/hm` = hm−m` = hδ , B = ur`/b = ur`−r =

uδ/(γx) = gyδ/x and C = (d/um`)1/γ = u(m−m`)/γ = uδ/γ = gδy . We implicitly set µ = δ/x, thus

(A,B,C) = (hµx, gµy, gµxy) is a valid TDH tuple.

4.2.3 P-signatures with Multiple Messages from HSDH and TDH

We will first present an F-unforgeable Multi-Block Signature Scheme, and then build a P-signature scheme

from it.

An F-unforgeable signature scheme

Setup(1k). Let G1, G2, GT be groups of prime order q, such that |q| = k and there exists a bilinear map

e : G1 × G2 → GT . Let g, u be generators for G1, and h be a generator for G2. Let paramsGS

be the parameters for a Groth-Sahai NIZK proof system with either the XDH or DLIN setup. Output

parameters paramsPK = (q,G1, G2, GT , g, h, u, paramsGS). By z we denote z = e(g, h).

Keygen(params) picks a random α, β0, . . . , βn ← Zp. The signer calculates v = hα, wi = hβi , ṽ = gα,

w̃i = gβi . The secret-key is sk = (α, ~β). The public-key is pk = (v, ~w, ṽ, ~̃w). The public key can be

verified by checking that e(g, v) = e(ṽ, h) and e(g, wi) = e(w̃i, h) for all i.

Sign(params, (α, β),m) chooses r ← Zp − {α−(β1m1+···+βnmn)
β0

} and calculates C1 =

g1/(α+β0r+β1m1+···+βnmn), C2 = wr
0, C3 = ur. The signature is (C1, C2, C3).

VerifySig(params, (v, w, ṽ, w̃), ~m, (C1, C2, C3)) outputs accept if e(C1, vC2

∏n
i=1 w

mi
i) = z and e(u,C2)

= e(C3, w).

Theorem 11. Let F (m1, . . . ,mn) = (hm1 , um1 , . . . , hmn , umn). The above signature scheme is F -unforge-

able given the HSDH and TDH assumptions.

Proof. We distinguish two types of forgeries. In a Type 1 forgery the signature consists of a tuple (C1, C2,

C3) where C1 6= C
(q)
1 for any C(q)

1 used in answering the forger’s signature queries. We will show how a

49

Type 1 forger can be used to break the HSDH assumption. In a Type 2 forgery, ∃q : C1 = C
(q)
1 . We will

show how a Type 2 forger can be used to break the TDH assumption.

Type 1 forgeries: The reduction gets as input g, ṽ = gα, u, h, v = hα, {Zq = g1/(α+cq),Hq = hcq , Uq =

ucq}q = 1...Q, as well as a description of the groups q,G1, G2, GT . It needs to compute a new tuple

(g1/(α+c), hc, uc) such that ∀q : c 6= cq.

Setup(1k). The reduction computes paramsGS and gives the adversary public parameters paramsPK =

(q,G1, G2, GT , g, h, u, paramsGS).

Keygen(params). The reduction picks a random β0, . . . , βn ← Zp. It computes, ∀i ∈ [0, n] : wi =

hβi and w̃i = gβ
i . The reduction gives the adversary the public key pk = (v, ~w, ṽ, ~̃w). (The secret key

is sk = (α, ~β), though the reduction does not know α.)

OSign(params, (α, β), ~m). At the first sign query, the reduction sets the counter q = 1, and increments it

after responding to each sign query. The reduction will implicitly set cq = β0r +
∑n

i=1 βimi. Thus,

r = (cq −
∑n

i=1 βimi)/β0. However, the reduction does not know cq and r. The reduction computes

C1, C2, C3 as follows:

C1 = Zq = g1/(α+cq)

C2 = Hq/h
Pn

i=1 βimi = hcq−
Pn

i=1 βimi = hβ0r = wr
0

C3 =
(
Uq/h

Pn
i=1 βimi

)1/β0 = u(cq−
Pn

i=1 βimi)/β0 = ur

Forgery. Eventually, the adversary returns a Type 1 forgery F (~m) = (hm1 , um1 , . . . , hmn , umn) = (A1, B1,

. . . , An, Bn) and C1 = g1/(α+β0r+β1m1+···+βnmn), C2 = wr
0 = hβ0r, and C3 = ur. We implicitly

set c = β0r + β1m1 + · · ·+ βnmn. We now have C1 = g1/(α+c). We compute the rest of the HSDH

tuple:

A = C2

n∏
i=1

Aβi

i = hβ0r
n∏

i=1

hmiβi = hc

B = Cβ0
3

n∏
i=1

Bβi

i = uβ0r
n∏

i=1

umiβi = uc

The tuple (C1, A,B) is a fresh HSDH tuple because this is a Type 1 forgery (∀q : c 6= cq).

Type 2 forgeries: The reduction gets as input g,G = gx, u = gy, h,H = hx, {cq, Zq = g1/(x+cq)}q =

1...Q, as well as a description of the groups q,G1, G2, GT . It needs to compute the tuple (hµα, gµy, gµxy)

such that µ 6= 0.

Setup(1k). The reduction computes paramsGS and gives the adversary public parameters paramsPK =

(q,G1, G2, GT , g, h, u, paramsGS).

50

Keygen(params). The reduction picks a random α, β0, . . . , βn ← Zp. It computes, ∀i ∈ [0, n] : wi =

hβi and w̃i = gβ
i . Then, it chooses a random t ← {1, n} and γ ← Zp, and sets wt = Hγ = hxγ and

w̃t = Gγ = gxγ . The reduction gives the adversary the public key pk = (v, ~w, ṽ, ~̃w). The secret key

is sk = (α, ~β), though the reduction does not know βt = xγ.)

OSign(params, (α, β), ~m). At the first sign query, the reduction sets the counter q = 1, and increments it

after responding to each sign query. The reduction sets cq = (α + βr +
∑n

i=1,i 6=t βimi)/γmt, and

solves for r. Then it is easy to verify that

(x+ cq)γmt = xγmt + α+ β0r +
n∑

i=1,i 6=t

βimi = α+ β0r +
n∑

i=1

βtmt.

This is precisely the inverse of the exponent which forms the first part of the signature, C1. The

reduction sets C1 = Z
1/γmt
q = g1/(x+cq)γmt . Since the reduction knows r, it computes C2 = wr

0 and

C3 = ur.

Forgery. Eventually, the adversary returns a Type 2 forgery F (~m) = (hm1 , um1 , . . . , hmn , umn) = (A1, B1,

. . . , An, Bn) and C1 = g1/(α+β0r+
Pn

i=1 βimi), C2 = wr
0 = hβ0r, and C3 = ur.

Since this is a Type 2 forgery, there the reduction already has a message / signature pair such that

β0r +
∑n

i=1 βimi = β0r
(q) +

∑n
i=1 βim

(q)
i . Since it is a forgery, ∃mi ∈ ~m : mi 6= m(q)

i . With

probability 1/n, i = t.

That means that mt 6= m(q)
t but βtmt + β0r+

∑n
i=1,i 6=t βimi = βtm

(q)
t + β0r

(q) +
∑n

i=1,i 6=t βim
(q)
i .

Now, we will implicitly set µ = (m(q)
t − mt)γ (Note that if we have guessed t correctly, this will

be nonzero). We cannot compute this value, however we will be able to compute hµx, gµy, gµxy as

follows:

Compute the following values:

W1 = (Bt/(um
(q)
t))γ = (umt−m

(q)
t)γ = uµ = gyµ

W2 =
n∏

i=1,i 6=t

(Ai/(hm
(q)
i))βiC2/h

r(q)β0 = h
Pn

i=1,i6=t βi(mi−m
(q)
i)hβ0(r−r(q)) = hβt(m

(q)
t −mt)

= hxγ(m
(q)
t −mt) = hxµ

W3 =
n∏

i=1,i 6=t

(Bi/(um
(q)
i))βi(C3/u

r(q)
)β0 = u

Pn
i=1,i6=t βi(mi−m

(q)
i)uβ0(r−r(q)) = uβt(m

(q)
t −mt)

= uxγ(m
(q)
t −mt) = uxµ = gxyµ

The reduction will output W1,W2,W3, which will be a valid tuple iff this is a type 2 forgery such that

mt 6= m(q)
t .

51

A Multi-Block P-Signature Scheme

We will use the above signature scheme and the commitment scheme obtained by Commit(x, openx) =

GSCommit(hx, openx) where h is the generator of bilinear group G2.

We need to augment the multi-block signature scheme with the three P-Signature protocols.

1. ProveSig(params, (v, ~w, ṽ, ~̃w), (C1, C2, C3), ~m) is defined as follows: We use Groth-Sahai commit-

ments to commit to (hm1 , um1 , . . . , hmn , umn), resulting in commitments (SH1 , SU1 , . . . , SHn , SUn).

We also commit to (wm1
1 , . . . wmn

n) resulting in commitments SW1 , . . . SWn . Next, we commit to the

signature (C1, C2, C3) to get commitments (S1, S2, S3). Finally, we form the Groth-Sahai witness

indistinguishable proof:

π ← NIPK[(H1, U1, . . . Hn, Un) in(CH1 , CU1 , . . . , CHn , CUn), (W1, . . .Wn) in(CW1 , . . . , CWn),

(C1, C2, C3) in(S1, S2, S3)]

{H1, U1, . . . Hn, Un, C1, C2, C3 : e(C1, vC2

n∏
i=1

wmi
i) = z ∧ e(u,C2)e(C3, w

−1) = 1

∧ ∀i, e(u,Hi) = e(Ui, h) ∧ ∀i, e(u,Wi) = e(wi, Ui)}

The final proof is Π = (π, S1, S2, S3, U1, · · · , Un,W1, . . .Wn) and the resulting commitments are

H1, . . . Hn. VerifyProof(params, pk ,Π, (H1, . . . ,Hn)) simply verifies the proof Π.

2. The second protocol is a zero knowledge proof of equality of committed values. See Section 3.5 for

details.

3. The third protocol is a secure two-party computation for signing a committed value. We use the same

technique as in Section 4.2.2 to reduce computing a signature to computing an arithmetic circuit using

the Jarecki and Shmatikov [61] secure two party computation protocol.

Efficiency

The P-signature proof system for a signature scheme which allows n messages generates 3 + 3n new com-

mitments (2+n inG1 and 1+2n inG2) and Groth-Sahai proofs for 2+2n pairing product equations, 1 with

Q = 1, and 1 + 2n with Q = 2. Applying the efficiency formulas given in Section 3.4, we get the following

lemma:

Lemma 4. When instantiated using the SXDH instantiation given in Section 3.3 the P-signature proofs will

have the following efficiency: Generating the proof will require 36+36n exponentiations inG1 and 32+40n

exponentiations in G2. The resulting proof will consist of 12 + 10n elements of G1 and 10 + 12n elements of

G2. Verifying the proof will involve computing 44 + 48n bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3,

the above proof system will have the following efficiency: Generating the proof will require 135 + 153n

exponentiations in G. The resulting proof will consist of 27 + 27n elements in G. Verifying the proof will

involve computing 81 + 90n bilinear group pairings.

52

Security

Theorem 12. The above construction is a secure P-Signature scheme given the HSDH and TDH assumption

and either the SXDH or DLIN assumption.

The proof follows from the F -unforgeability of the multi-block signature scheme and the security of the

Groth-Sahai proofs, which depend on either the SXDH or DLIN assumptions. It is very similar to that given

Section 4.2.2, so we omit it here.

4.2.4 P-signatures with Multiple Messages and Small Keys from BB-HSDH and BB-
CDH

Note that in what follows, we will describe an authentication scheme, however it can easily be converted to a

signature scheme using pk = hsk .

Our authentication construction is loosely inspired by the weak Boneh Boyen signature scheme [11],

in which the signature under a secret key sk on a message m is computed as BBsig(sk ,m) = g
1

sk+m . Our

scheme is more complicated for several reasons. First, we must have a scheme which allows us to authenticate

several messages at once, without increasing the size of the secret key (the secret key space must be a subset

of the message space).

Also, we want this scheme to be F-unforgeable, in the sense that it is also hard to produce F (m) and an

authenticator on m for an m which has not been signed. In this case our bijection F will be the information

which we can extract from a commitment to a message, which will be in the groupG1, while if we emulate the

BB scheme, m must be in the exponent space, Zp. Thus the trivial bijection F (m) = m will not work, and F

unforgeability must be a stronger definition than standard unforgeability. Note, also that if F (m) = gm, and

if the adversary is given v = F (sk) (as he is in our certification definition), the above authentication scheme

is not F unforgeable – for any f ∈ Z∗p , the value g1/f is a valid BB signature for F (m) = gf/v = gf−sk.

Thus, our bijection F must be somewhat more complex.

Finally, the weak BB scheme is only secure for a previously determined polynomial sized message space.

We want to be able to sign arbitrary messages, since we must be able to sign any randomly generated secret

key. (This could be ‘solved’ by using an interactive assumption, however, as interactive assumptions are

generally considered very strong, we would like to avoid them.)

The authentication scheme is as follows:

AuthSetup(1k) generates groups G1, G2, GT of prime order p (where |p| is proportional to k), bilinear

map e : G1 × G2 → GT , and group elements g, u, u∗, u1, . . . , un ∈ G1 and h ∈ G2. It outputs

paramsA = (G1, G2, GT , e, p, g, u, u
∗, u1, . . . , un). Note that the element u is only needed to define

F ; it is not used in creating the authenticator.

AuthKg(paramsA) outputs a random sk ← Zp.

Auth(paramsA, sk , (m1, . . .mn)) chooses random K∗,K1, . . .Kn ← Zp. It outputs

auth = (g
1

sk+K∗ , hK∗
, u∗K∗

, {g
1

K∗+Ki , hKi , uKi
i , g

1
Ki+mi }1≤i≤n) .

53

VerifyAuth(paramsA, sk , (m1, . . . ,mn), auth) Parse auth as (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n). Ver-

ify that e(A∗, hskB∗) = e(g, h), and that e(B∗, u∗) = e(h,C∗). For 1 ≤ i ≤ n verify that

e(Ai, B
∗Bi) = e(g, h), that e(Bi, ui) = e(h,Ci), and that e(Di, Bih

mi) = e(g, h). Accept if and

only if all verifications succeed.

Theorem 13. The message authentication scheme (AuthSetup,AuthKg,Auth,VerifyAuth) is F -unforge-

able for F (mi) = (hmi , umi) under the BB-HSDH and BB-CDH assumption.

We defer the proof to section 4.3.4 where we will show that a stronger property holds.

Furthermore, in Section 4.3.3, we will show protocols for issuing and proving knowledge of the authen-

ticator (or signature) which also satisfy stronger properties.

Efficiency

Let us briefly consider the efficiency of the resulting Prove protocol. We use Groth-Sahai commitments

to commit to F (~m) = (hm1 , um1 , . . . , hmn , umn), resulting in commitments (SH1 , SU1 , . . . , SHn , SUn).

Next, we commit to the signature (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n) to get commitments (SA∗ , SB∗ , SC∗ ,

{SAi , SBi , SCi , SDi}1≤i≤n). Then we form the following witness indistinguishable proof:

π1 ← NIPK[(H1, U1, . . . Hn, Un) in(SH1 , SU1 , . . . , SHn
, SUn

, A∗ inSA∗ , B
∗ inSB∗ , C∗ inSC∗ ,

(A1, B1, C1, D1, . . . An, Bn, Cn, Dn) in(SA1 , SB1 , SC1 , SD1 , . . . SAn , SBn , SCn , SDn)]

{({Hi, Ui}1≤i≤n, A
∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n) :

e(A∗, pkB∗) = e(g, h) ∧ e(B∗, u∗) = e(h,C∗) ∧ {e(Hi, u) = e(h, Ui)}1≤i≤n ∧

{e(Ai, B
∗Bi) = e(g, h) ∧ e(Bi, ui) = e(h,Ci) ∧ e(Di, BiHi) = e(g, h)}1≤i≤n }.

Thus, the P-signature proof system for a signature scheme which allows nmessages will generates 3+6n

new commitments (2 + 4n in G1 and 1 + 2n in G2) and Groth-Sahai proofs for 2 + 4n pairing product

equations, 1 + 2n with Q = 1, and 1 + 2n with Q = 2. Applying the efficiency formulas given in Section

3.4, we get the following lemma:

Lemma 5. When instantiated using the SXDH instantiation given in Section 3.3 the P-signature proofs will

have the following efficiency: Generating the proof will require 36+72n exponentiations inG1 and 32+64n

exponentiations in G2. The resulting proof will consist of 12 + 24n elements of G1 and 10 + 20n elements of

G2. Verifying the proof will involve computing 44 + 88n bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3,

the above proof system will have the following efficiency: Generating the proof will require 135 + 270n

exponentiations in G. The resulting proof will consist of 27 + 54n elements in G. Verifying the proof will

involve computing 81 + 162n bilinear group pairings.

4.3 P-signatures with Extra Properties

In some cases, we will need P-signatures with even stronger properties. Here we describe a stronger notion

of unforgeability, then describe the extra properties that we want from the protocols for issuing and proving

54

knowledge of signatures. We show that the construction presented in section 4.2.4 satisfies these properties.

In Chapter 7, we show an application of P-signatures which requires these stronger properties.

4.3.1 Certification Unforgeability

A message authentication scheme is similar to a signature scheme. However, there is no public-key, and a

user needs to use the secret key to verify that a message has been authenticated. We need an authentication

scheme for a vector of messages ~m. This is reminiscent of signatures for blocks of messages [24].

An authentication scheme in the common parameters model consists of four protocols: AuthSetup(1k)

outputs common parameters paramsA. AuthKg(paramsA) outputs a secret key sk . Auth(paramsA, sk , ~m)

outputs an authentication tag auth that authenticates a vector of messages ~m. VerifyAuth(paramsA, sk , ~m,

auth) accepts if auth is a proper authenticator for ~m under key sk .

The security properties of an authentication scheme are similar to those of a signature scheme. It must be

complete and unforgeable. However, we need to strengthen the unforgeability property to fit our application:

We need the authentication scheme to be unforgeable even if the adversary learns a signature on the secret-

key. This is because an adversary in a delegatable credentials system might give a user a credential – i.e.,

sign the user’s secret-key. For example, if Auth(paramsA, sk ,m) = Auth(paramsA,m, sk), then it is

impossible to tell whether this is the adversary’s signature on the user’s secret-key or the user’s signature on

the adversary’s secret-key. Such a scheme cannot be certification-secure, but might be secure under standard

unforgeability definitions.

Formally, an authentication scheme is F -unforgeable and certification secure if for all PPTM adversaries A:

Pr[paramsA ← AuthSetup(1k); sk ← AuthKg(paramsA);

(~y, auth)← AOAuth(paramsA,sk ,.),OCertify(paramsA,.,(sk ,.,...))(paramsA, F (sk)) :

VerifyAuth(paramsA, sk , F−1(~y), auth) = 1 ∧ F−1(~y) /∈ QAuth] ≤ ν(k).

Oracle OAuth(paramsA, sk , ~m). Outputs Auth(paramsA, sk , ~m) and stores ~m on QAuth.

Oracle OCertify(paramsA, sk∗, (sk ,m2, . . . ,mn)). Outputs Auth(paramsA, sk∗, (sk ,m2, . . . ,mn).

4.3.2 Other Protocols

We also require proof protocols and issuing protocols with stronger properties.

First we require that there exist efficient F -extractable commitment scheme Commit, and algorithms

PKSetup,PKProve,PKVerify which form an efficient, randomizable proof of knowledge system for proving

knowledge of an authenticator under a committed secret key on a committed message.

Additionally, we require that there be a secure two-party protocol in which an issuer who possesses a

secret key and a user who possesses a message can jointly compute a proof of knowledge of a signature under

that secret key on that message. Here both parties are given as public input commitments to the secret key and

to the message as well as the system parameters. We require a strong security property in which the protocol

must be guaranteed secure even if the trapdoor (simulation or extraction) for those parameters is given to both

participants.

55

4.3.3 Construction

Constructing a Certification-secure F-unforgeable Authentication Scheme

We will use the authentication scheme described in section 4.2.4

Zero-Knowledge Proof of Knowledge of an Authenticator

First, we describe the commitment scheme that we will use for the delegatable credentials. A commitment

commx = Commit(x, openx) to an exponent x consists of two GS commitments to group elements such that

Commit(x, (o1, o2)) = (C(1), C(2)) = (GSCommit(hx, o1),GSCommit(ux, o2)) and a proof these commit-

ments are correctly related. This can be done using a randomizable NIPKGS [hx inComm(1);ux inComm(2)]

{(F (x)) : e(hx, u) = e(h, ux)} and allows us to extract F (x), where F is as defined in Section 4.2.4. As the

GS proof system is randomizable for GSCommit and for GSProve, it is also randomizable for Commit.

We need to create a zero-knowledge proof of knowledge of an unforgeable authenticator for messages

~m = (m1, . . . ,mn), where the first ` values ~mh = (m1, . . . ,m`) are hidden in commitments comm ~mh
=

(commm1 , . . . , commm`
) and the values ~mo = (m`+1, . . . ,mn) are publicly known, i.e., a proof

π ← NIZKPK[sk in commsk ; ~mh in comm ~mh
]

{(F (sk), F (~mh), auth) : VerifyAuth(paramsA, sk , ~mh, ~mo, auth) = 1}.

To generate this , we first prove knowledge of a valid authenticator with respect to freshly generated commit-

ments comm ′
sk and comm ′

~mh
, and then we prove that those commitments are to the same values as commsk

and comm ~mh
respectively. The first is a witness indistinguishable proof of knowledge of a pairing product

equation, which we can do using GS proofs (note here we describe the proof in terms of the component GS

commitments as well):

π1 ← NIPKGS [hsk in comm ′(1)
sk ;usk in comm ′(2)

sk ;hm1 in comm ′(1)
m1

;um1 in comm ′(2)
m1

; . . . ;

hm` in comm ′(1)
m`

;um` in comm ′(2)
m`

]

{(hsk , usk), ({hmi , umi}1≤i≤`), (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n)) :

e(u, hsk) = e(usk , h)∧e(A∗, hskB∗) = e(g, h)∧e(B∗, u∗) = e(h,C∗)∧{e(hmi , u) = e(h, umi)}1≤i≤` ∧

{e(Ai, B
∗Bi) = e(g, h) ∧ e(Bi, ui) = e(h,Ci) ∧ e(Di, Bih

mi) = e(g, h)}1≤i≤n }.

Next, we give a zero knowledge proof that these new commitments are to the same values as the originals.

We can prove this for two GS commitments C,C ′ using the proof system given in Section 3.5.

We form proofs π(1)
sk and {π(1)

mi} for commitments C(1)
sk , C

′(1)
sk , and {C(1)

mi , C
′(1)
mi
}, respectively. The final

proof of knowledge of the authenticator is π = π1 ◦ π(1)
sk ◦ π

(1)
m1 ◦ . . . ◦ π

(1)
m` . (Note that this implies that

C
(2)
sk , C

′(2)
sk , and {C(2)

mi , C
′(2)
mi
} are correct as well.)

Zero Knowledge. To see that this proof system is zero knowledge, consider the following simulator:

The simulator first picks sk ′ and ~mh
′ at random and uses them to generate an authentication tag. It uses

the authentication tag as a witness for the witness indistinguishable proof and then fakes the proofs that the

commitments C ′sk , and C ′~mh
are to the same values as the original commitments Csk and C ~mh

.

56

Efficiency. The proof π1 will require 5 + 6` additional Groth-Sahai commitments (3 + 4` in G1 and

2 + 2` in G2), and Groth-Sahai proofs for 3 + 4` pairing product equations , 1 + 2` with Q = 1 and 2 + 2`

with Q = 2. Then we must also include the 1 + ` zero-knowledge proofs of equality of committed values

for elements of G2 as described in Section 3.5. Applying the efficiency formulas given in Section 3.4 and

Section 3.5, we get the following lemma:

Lemma 6. When instantiated using the SXDH instantiation given in Section 3.3 the P-signature proofs will

have the following efficiency: Generating the proof will require 84+100` exponentiations inG1 and 76+88`

exponentiations in G2. The resulting proof will consist of 28 + 34` elements of G1 and 24 + 28` elements of

G2. Verifying the proof will involve computing 108 + 128` bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3,

the above proof system will have the following efficiency: Generating the proof will require 315 + 369`

exponentiations in G. The resulting proof will consist of 63 + 75` elements in G. Verifying the proof will

involve computing 198 + 234` bilinear group pairings.

2PC Protocol for Creating a NIZKPK of an Authenticator

An efficient two-party computation protocol for computing a non-interactive zero-knowledge proof of knowl-

edge (NIZKPK) of an authentication tag is a protocol between a user and a issuer. The user’s private

input is the vector ~mh of committed messages that are to be authenticated and opening vector open ~mh
.

The issuer’s private input is secret key sk and opensk . Both parties agree on the public input: the pub-

lic parameters paramsDC for the proof system and the authentication scheme, the commitments comm ~mh
,

the public messages ~mo, and commsk . The commitments are double commitments as described in Sec-

tion 4.3.3. We also define a commitment to a vector of messages to be the list of commitments to its elements.

The user’s output of the protocol is a proof π ← NIZKPK[sk in commsk ; ~mh inCommit(~mh,~0)]{(F (sk),

F (~mh), auth) : VerifyAuth(paramsA, sk , ~mh, ~mo, auth) = 1} as described in Section 4.3.3. The issuer

only learns about success or failure of the protocol and outputs nothing. If (~mh, open ~mh
), or (sk , opensk)

are inconsistent with comm ~mh
, commsk respectively, the functionality reports failure; otherwise it returns a

correctly formed random proof π.

1. The user proves that she knows ~mh and open ~mh
for comm ~mh

. The issuer aborts if the proof fails.

2. The issuer does a proof of knowledge of sk and opensk for commsk . The user aborts if the proof fails.

3. The issuer chooses random K∗,K1, . . .Kn ← Zp. He computes a partial authentication tag auth ′ =

(g
1

sk+K∗ , hK∗
, u∗K∗

, {g
1

K∗+Ki , hKi , uKi
i }1≤i≤n).

4. Then the issuer computes a fresh commitment comm ′
sk to sk and creates a NIZKPK π′ for a partial

authenticator auth ′:

57

π′ ← NIZKPKGS [hsk in comm ′(1)
sk ;usk in comm ′(2)

sk ;Bi inGSCommit(Bi, 0)]

{(F (sk), (A∗, B∗, C∗, {Ai, Bi, Ci}1≤i≤n, {Di}`+1≤i≤n), hθ) :

e(usk/usk ′ , hθ) = 1 ∧ e(g, hθ) = e(g, h) ∧ e(hsk , u) = e(h, usk)∧

e(A∗, hskB∗) = e(g, h) ∧ e(B∗, u∗) = e(h,C∗)∧

{e(Ai, B
∗Bi) = e(g, h) ∧ e(Bi, ui) = e(h,Ci)}1≤i≤n∧

{e(Di, Bih
mi) = e(g, h)}`+1≤i≤n}.

Note that all authenticator values use random commitments, except for the Bi values, which are com-

mitted using 0 openings. This means that Bi = hKi can be learned from the proof.

5. The issuer sends π′ to the user.

6. The user checks the proof and aborts if the verification fails. Otherwise, she runs ` instances of an

efficient two-party computation protocol with the issuer. On public input commmi
and secret input mi

by the user and Ki by the issuer (1 ≤ i ≤ `) the protocol computes the missing Di = g
1

Ki+mi . The

output is obtained only by the user. We give an efficient implementation of this 2PC protocol using

additively homomorphic encryption in Appendix 4.3.3.

7. The user checks that theDi were computed for the correctKi using theBi from the proof π′, computes

commitments comm(1)
mi = GSCommit(hmi , 0), comm(2)

mi = GSCommit(umi , 0) and fresh commit-

ments comm ′(1)
mi
, comm ′(2)

mi
for each mi and computes the proof:

π′′ ← NIPKGS [hm1 in comm ′(1)
m1

;um1 in comm ′(2)
m1

; . . . ;hm` in comm ′(1)
m`

;um` in comm ′(2)
m`

);

Bi inGSCommit(Bi, 0)]

{(F (~mh) = ({F (mi)}1≤i≤`), {Bi, Di}1≤i≤`) :

{e(Di, Bih
mi) = e(g, h) ∧ e(hmi , u) = e(h, umi)}1≤i≤`},

as well as the zero-knowledge proofs of equality of committed values in comm(1)
mi and comm ′(1)

mi
,

πm1 , . . . πm`
.

8. Finally the user computes π = π′ ◦ π′′ ◦ πm1 ◦ . . . ◦ πm`
and randomizes the combined proof with

opening values opensk = 0 and open ~mh
= 0, and all other openings chosen at random. The resulting

proof π′ is the user’s output.

A Protocol for securely computing g1/(sk+m)

We have a user whose input to the protocol is a secret m and the issuer whose input is a secret sk . Both

parties have common input commm . As a result of the protocol, the user obtains the value g1/(sk+m), and

the issuer obtains no information about m .

We will first describe the protocol for any homomorphic encryption scheme and then instantiate it with

the Paillier encryption scheme (for the latter we refer to Appendix 4.3.4).

58

Let Keygen,Enc,Dec be an additively homomorphic semantically secure encryption scheme, let “⊕”

denote the homomorphic operation on ciphertexts; for e a ciphertext and r an integer, e⊗ r denotes “adding”

e to itself r times.

Let p be the size of the bilinear groups G1, G2, GT given in paramsA.

Now, to issue a signature, the user and the issuer run the following protocol:

1. The issuer generates (skhom , pkhom)← Keygen(1k) in such a way that the message space is of size at

least 2kp2. He then computes e1 = Enc(pkhom , sk) and sends e1, pkhom to the user and engages with

her in a proof that e1 encrypts to a message in [0, p].

2. The user chooses r1 ← Zp and r2 ← {0, . . . 2kp}. The user then computes e2 = ((e1 ⊕ Enc(pkhom ,

m))⊗ r1)⊕ Enc(pkhom , r2p) and sends e2 to the user.

3. The issuer and the user perform an interactive zero knowledge proof in which the user shows that e2 has

been computed correctly using the message in commm , and that r1, r2 are in the appropriate ranges.

4. The issuer decrypts x = Dec(skhom , e2), computes σ∗ = g1/x and sends it to the user.

5. The user computes σ = σ∗r1 and verifies that it is a correct weak BB signature on m .

Remarks. The above protocol can be realized efficiently when using the Paillier homomorphic encryption

scheme [68]. In this case we can employ the well known discrete logarithm related protocols to prove all

the statements the parties have to prove to each other, as is done, e.g., in [27]. Also note that as the issue

protocol is interactive, this works without having to resort to the random oracle model to prove security. See

Appendix 4.3.4.

4.3.4 Proof of Security

Proof of Certification F-unforgeability of Authentication Scheme

Suppose we have an adversary which, can break the certification F -unforgeability property, by outputting a

forgery of the form:

(F (m1), . . . , F (mn)), (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n)

If this is a valid forgery, then the verification equations hold, which implies that ∃b∗, b1, . . . bn such that:

A∗ = g
1

sk+b∗ , B∗ = hb∗ , C∗ = u∗b∗

and for all i ∈ 1, . . . n,

Ai = g
1

b∗+bi , Bi = hbi , Ci = ubi
i , Di = g

1
bi+mi

.

We consider the following cases:

59

Case 1:

Suppose that with nonnegligible probability, the adversary produces a forgery with b∗ = K∗, where K∗ was

used in the response to a previous authentication query.

We divide this into three subcases:

Case 1a: Suppose that with nonnegligible probability, the adversary produces a forgery with b∗ = K∗,

whereK∗,K1, . . . ,Kn were used together in the response to a previous authentication query, but there exists

i such that for all j ∈ {1, . . . , n}, bi 6= Kj .

In this case we will show that the New SDH assumption with q = n+ 1 does not hold.

Our reduction proceeds as follows: We are given the groups G1, G2, GT of order p with bilinear map e,

group elements g,X1 = gx, v ∈ G1 and h,X2 = hx ∈ G2 and the pairs {Ti = g
1

sk+c` , c`}1≤`≤n+1. We

need to produce a new tuple g
1

sk+c , hc, vc.

We first make a guess i∗ for which bi will satisfy the above condition.

We will give the adversary parameters for the authentication scheme as follows: we choose random

z ← Zp, random u ← G1, and random uj ← G1 for all j 6= i∗, and we set ui∗ = v and u∗ = gz .

params = (G1, G2, GT , e, p, g, h, u, u
∗, u1, . . . un).

Next, we set secret key sk = cn+1 and send F (sk) = hsk , usk to the adversary.

Then we must answer the adversary’s signing and certification queries.

First, we make a guess λ for which query’s K∗ the adversary will attempt to reuse. Now, for signing

queries other than query λ, the adversary sends message set (m1, . . .mn). We compute Auth(params, sk,

(m1, . . .mn)) and send the result to the adversary.

For the λth signing query, we will implicitly set K∗ = x. We set Kj = c for all j ∈ {1, . . . , n}. Then we

can compute the authentication: Â∗ = Tn+1, B̂
∗ = X2, Ĉ

∗ = Xz
1 , {Âj = Tj , B̂j = hcj , Ĉj = u

cj

j , D̂j =

g
1

cj+mj }1≤j≤n.

For certification queries, the adversary sends key skA, and messages m2, . . .mn. We compute and return

Auth(params, skA, (sk ,m2, . . .mn)).

When the adversary produces a forgery, with non-negligible probability it will be of the form

F (m1), . . . , F (mn), A∗ = g
1

sk+b∗ , B∗ = hb∗ , C∗ = u∗b∗ ,

{Ai = g
1

b∗+bi , Bi = hbi , Ci = ubi
i , Di = g

1
bi+mi }1≤i≤n .

with b∗ = K̂∗, where K̂∗, K̂1, . . . K̂n were used together in the response to previous authentication query,

but there exists i such that for all j, bi 6= K̂j .

With nonnegligible probability, we will have correctly guessed λ such that b∗ = K∗ for the K∗ returned

in the λth authentication query, and correctly guessed i∗. That means b∗ = x, and Ai, Bi, Ci is a new HSDH

triple.

Case 1b: Suppose that with nonnegligible probability, the adversary produces a forgery with b∗ = K∗,

whereK∗,K1, . . . ,Kn were used together in the response to a previous authentication query, but there exists

i, j, i 6= j such that bi = Kj .

60

In this case we will show that the New CDH assumption with q = 2 does not hold.

Our reduction proceeds as follows: We are given the groups G1, G2, GT of order p with bilinear map

e, group elements g,X1 = gx, Y = gy ∈ G1 and h,X2 = hx ∈ G2, integers c1, c2 ∈ Zp, and values

T1 = g
1

sk+c1 and T2 = g
1

sk+c2 . We need to produce the value gxy .

We first make a guesses j∗ and i∗ for which Kj and bi will satisfy the above condition.

We will give the adversary parameters for the authentication scheme as follows: we choose random

z ← Zp, random u, u∗ ← G1 and random uj ← G1 for all j 6= j∗, j 6= i∗, and we set ui∗ = Y and

uj∗ = gz . params = (G1, G2, GT , e, p, g, h, u
∗, u1, . . . un).

Next, we choose a random key sk and send F (sk) = hsk , usk to the adversary.

Then we must answer the adversary’s signing and certification queries.

First, we make a guess λ for which query’s K∗ the adversary will attempt to reuse.

Now, for signing queries other than query λ, the adversary sends message set (m1, . . .mn). We next

compute Auth(params, sk, (m1, . . .mn)) and send the result to the adversary.

Let (m1, . . .mn) be the message set that the adversary gives in the λth signing query. We will set K∗ =

c2− c1 +mj∗ and implicitly set Kj∗ = x+ c1−mj∗ . (Thus, K∗+Kj∗ = x+ c2 and Kj∗ +mj∗ = x+ c1.)

We randomly chooseKj = zj for all j ∈ {1, . . . , n}. Then we can compute the authentication as follows:

Â∗ = g
1

sk+c2−c1+mj∗ , B̂∗ = hsk , Ĉ∗ = u∗sk , {Âj = g
1

c2−c1+mj∗+zj , B̂j = hzj , Ĉj = u
zj

j , D̂j =

g
1

zj+mj }1≤j≤n,j 6=j∗ , Âj∗ = T2, B̂j∗ = X2h
c1−mj∗ , Ĉj∗ = Xz

1u
c1−mj∗

j , D̂j∗ = T1

For certification queries, the adversary sends key skA, and messages m2, . . .mn. We compute and return

Auth(params, skA, (sk ,m2, . . .mn)).

When the adversary produces a forgery, with non-negligible probability it will be of the form

F (m1), . . . , F (mn)

A∗ = g
1

sk+b∗ , B∗ = hb∗ , C∗ = u∗b∗ , {Ai = g
1

b∗+bi , Bi = hbi , Ci = ubi
i , Di = g

1
bi+mi }1≤i≤n

.

with b∗ = K∗, where K∗,K1, . . . ,Kn were used together in the response to a previous authentication

query, but there exists i, j, i 6= j such that bi = Kj .

With non-negligible probability, we will have correctly guessed λ such that b∗ = K∗ for the K∗ returned

in the λth authentication query, and correctly guessed i∗, j∗. Let Mj∗ be the message that was signed by Kj∗

in the λth authentication query.

That means b∗ = K∗, and bi∗ = Kj∗ from the λth triple, so b∗i = x + c1 −Mj∗ , which means we have

Ci∗ = u
x+c1−Mj∗

i∗ = Y x+c1−Mj∗ . Finally, we compute and return Ci∗/Y
c1−Mj∗ = Y x = gxy .

Case 1c: Suppose that with non-negligible probability, the adversary produces a forgery with b∗ = K∗

where K∗,K1, . . .Kn were used together in the response to a previous authentication query, and for all i ∈
{1, . . . , n}, bi = Ki. Suppose keys K∗,K1, . . .Kn were originally used to sign message set (M1, . . .Mn).

Then since this is a forgery, there must exist at least one index j such that mj 6= Mj .

We break this into two further cases:

Case 1ci: The above forgery is such that mj 6= K∗.

61

In this case we will show that the New SDH assumption with q = 2 does not hold.

Our reduction proceeds as follows: We are given the groups G1, G2, GT of order p with bilinear map e,

group elements g,X1 = gx, v ∈ G1 and h,X2 = hx ∈ G2 and the pairs {T` = g
1

sk+c` , c`}`=1,2. We need to

produce a new tuple g
1

sk+c , hc, vc.

We first make a guess j∗ for which mj will satisfy the above condition.

We will give the adversary parameters for the authentication scheme as follows: we choose random

z ← Zp, random u∗ ← G1, and random uj ← G1 for all j 6= j∗, and we set uj∗ = gz and u = v.

params = (G1, G2, GT , e, p, g, h, u, u
∗, u1, . . . un).

Next, we randomly choose secret key sk ← Zq and send F (sk) = hsk , usk to the adversary.

Then we must answer the adversary’s signing and certification queries.

First, we make a guess λ for which query’s K∗ the adversary will attempt to reuse.

Now, for signing queries other than query λ, the adversary sends message set (m1, . . .mn). We compute

Auth(params, sk, (m1, . . .mn)) and send the result to the adversary.

For the λth signing query, we will implicitly set Kj∗ = x+ c1 −mj∗ . We set K∗ = c2 − c1 +mj∗ and

randomly choose choose Kj ← Zp for all j ∈ {1, . . . , n}, j 6= j∗. Then we can compute the authentication:

Â∗ = g
1

sk+c2−c1+mj∗ , B̂∗ = hc2−c1+mj∗ , Ĉ∗ = u∗c2−c1+mj∗ , {Âj = g
1

c2−c1+mj∗+Kj , B̂j = hKj , Ĉj =

u
Kj

j , D̂j = g
1

Kj+mj }1≤j≤n,j 6=j∗ , Âj∗ = Y2, B̂j∗ = X2h
c1−mj∗ , Ĉj∗ = Xz

1u
c1−mj∗

j∗ , D̂j∗ = Y1.

For certification queries, the adversary sends key skA, and messages m2, . . .mn. We compute and return

Auth(params, skA, (sk ,m2, . . .mn)).

When the adversary produces a forgery, with non-negligible probability it will be of the form

F (m1), . . . , F (mn)

A∗ = g
1

sk+b∗ , B∗ = hb∗ , C∗ = u∗b∗ , {Ai = g
1

b∗+bi , Bi = hbi , Ci = ubi
i , Di = g

1
bi+mi }1≤i≤n

.

with b∗ = K̂∗, where K̂∗, K̂1, . . . K̂n were used together in the response to previous authentication query

to sign message set M1, . . .Mn, and for all i, bi = K̂i, and there exists j such that mj 6= Mj and mj 6= K̂∗.

With non-negligible probability, we will have correctly guessed λ such that b∗ = K∗ for the K∗ returned

in the λth authentication query, and correctly guessed j∗. That means bj∗ = x + c1 − mj∗ , and Dj∗ =

g
1

bj∗+mj∗ = g
1

x+c1−Mj∗+mj∗ . Since we have said that mj∗ 6= Mj∗ and that mj∗ 6= K∗ = c2 − c1 +Mj∗ ,

we are guaranteed that Dj∗ , h
c1−Mj∗+mj∗ , u

c1−Mj∗+mj∗

j∗ is a new HSDH triple.

Case 1cii: The above forgery is such that mj = K∗.

In this case we will show that the New CDH assumption does not hold for q = n+ 1.

Our reduction proceeds as follows: We are given the groups G1, G2, GT of order p with bilinear map e,

group elements g,X1 = gx, Y = gy ∈ G1 and h,X2 = hx ∈ G2, and n+1 pairs {c`, T1 = g
1

sk+c` }1≤`≤n+1.

We need to produce the value gxy .

We first make a guess j∗ for which mj will satisfy the above condition.

We will give the adversary parameters for the authentication scheme as follows: we choose random

z ← Zp, random u ← G1 and random uj ← G1 for all j ∈ {1, . . . , n}, and we set u∗ = Xz
1 and u = Y .

params = (G1, G2, GT , e, p, g, h, u, u
∗, u1, . . . un).

62

Next, we set secret key sk = cn+1 and send F (sk) = hsk , usk to the adversary.

Then we must answer the adversary’s signing and certification queries.

First, we make a guess λ for which query’s K∗ the adversary will attempt to reuse.

Now, for signing queries other than query λ, the adversary sends message set (m1, . . .mn). We compute

Auth(params, sk, (m1, . . .mn)) and send the result to the adversary.

Let (m1, . . .mn) be the message set that the adversary gives in the λth signing query, we will setKj = cj

for j ∈ {1, . . . , n} and implicitly set K∗ = x.

Then we can compute the authentication: Â∗ = Tn+1, B̂
∗ = X2, Ĉ

∗ = Xz
1 , {Âj = Tj , B̂j = hcj , Ĉj =

u
cj

j , D̂j = g
1

cj+mj }1≤j≤n.

For certification queries, the adversary sends key skA, and messages m2, . . .mn. We compute and return

Auth(params, skA, (sk ,m2, . . .mn)).

When the adversary produces a forgery, with non-negligible probability it will be of the form

F (m1) = (hm1 , um1), . . . , F (mn) = (hmn , umn)

A∗ = g
1

sk+b∗ , B∗ = hb∗ , C∗ = u∗b∗ , {Ai = g
1

b∗+bi , Bi = hbi , Ci = ubi
i , Di = g

1
bi+mi }1≤i≤n

.

with b∗ = K̂∗, where K̂∗, K̂1, . . . K̂n were used together in the response to previous authentication query

to sign message set M1, . . .Mn, and for all i, bi = K̂i, and there exists j such that mj = K̂∗.

With non-negligible probability, we will have correctly guessed λ such that b∗ = K∗ for the K∗ returned

in the λth authentication query, and correctly guessed i∗, j∗.

That means mj = K∗ = x, and so we can simply return umj = ux = Y x = gxy .

Case 2:

Suppose that with non-negligible probability, the adversary produces a forgery with b∗ = Ki, where Ki was

returned by a previous certification query.

In this case we will show that the New CDH assumption does not hold for q = 2.

Our reduction proceeds as follows: We are given the groups G1, G2, GT of order p with bilinear map e,

group elements g,X1 = gx, Y = gy ∈ G1 and h,X2 = hx ∈ G2, and n+1 pairs {c`, T1 = g
1

sk+c` }1≤`≤n+1.

We need to produce the value gxy .

We first make a guess i∗ for which Ki will satisfy the above condition.

We will give the adversary parameters for the authentication scheme as follows: we choose random

z ← Zp, random u ← G1 and random uj ← G1 for all j ∈ {1, . . . , n}, j 6= i∗, and we set u∗ = Y and

ui∗ = Xz . params = (G1, G2, GT , e, p, g, h, u, u
∗, u1, . . . un).

Next, we set secret key sk = c2 and send F (sk) = hsk , usk to the adversary.

Then we must answer the adversary’s signing and certification queries.

First, we make a guess λ for which certification query’s Ki∗ the adversary will attempt to reuse.

Now, for signing queries the adversary sends message set (m1, . . .mn). We compute Auth(params, sk,

(m1, . . .mn)) and send the result to the adversary.

63

For certification queries other than λ, the adversary sends key skA, and messages m2, . . .mn. We com-

pute and return Auth(params, skA, (sk ,m2, . . .mn)).

Let skA, (m2, . . .mn) be the secret key and message set that the adversary gives in the λth certification

query. We will implicitly set Ki∗ = x, and we will set K∗ = c1. We randomly choose Kj ← Zp for

j ∈ {1, . . . , n}, j 6= i∗.

Then we can compute the certification: Â∗ = g
1

skA+c1 , B̂∗ = hc1 , Ĉ∗ = u∗c1 , {Âj = g
1

c1+Kj , B̂j =

hKj , Ĉj = u
Kj

j , D̂j = g
1

Kj+mj }1≤j≤n,j 6=i∗ , Âi∗ = T1, B̂i∗ = X2, Ĉi∗ = Xz
1 , D̂i∗ = T2.

When the adversary produces a forgery, with non-negligible probability it will be of the form

F (m1), . . . , F (mn)

A∗ = g
1

sk+b∗ , B∗ = hb∗ , C∗ = u∗b∗ , {Ai = g
1

b∗+bi , Bi = hbi , Ci = ubi
i , Di = g

1
bi+mi }1≤i≤n

.

with b∗ = Ki, where Ki was returned by a previous certification query.

With non-negligible probability, we will have correctly guessed λ such that b∗ = Ki for the Ki returned

in the λth certification query, and correctly guessed i∗.

That means b∗ = Ki∗ = x, and so we can simply return B∗ = u∗x = Y x = gxy .

Case 3:

Suppose that with non-negligible probability, the adversary produces a forgery where b∗ =6= K∗ for any

K∗ returned by a previous authentication query, and where b∗ =6= Ki for any Ki returned by a previous

certification query.

Let q be an upper bound on the number of authentication or certification queries that the adversary makes.

In this case we will show that the New SDH assumption does not hold for this q.

Our reduction proceeds as follows: We are given the groups G1, G2, GT of order p with bilinear map e,

group elements g,X1 = gx, v ∈ G1 and h,X2 = hx ∈ G2 and the pairs {Ti = g
1

sk+c` , c`}1≤`≤q. We need

to produce a new tuple g
1

sk+c , hc, vc.

We will give the adversary parameters for the authentication scheme as follows: we choose random z ←
Zp, and random uj ← Gp, and we set u∗ = v and u = gz . params = (G1, G2, GT , e, p, g, h, u, u

∗, u1, . . . ,

un).

We implicitly secret key sk = x. We send F (sk) = X2, X
z
1 to the adversary.

Then we must answer the adversary’s signing and certification queries.

For the γth query:

If it is an authentication query: The adversary sends message set (m1, . . .mn). We will set K∗ = cγ We

choose random Kj ← Zp for all j ∈ {1, . . . , n}. Then we can compute the authentication: Â∗ = Ti, B̂
∗ =

hcγ , Ĉ∗ = u∗cγ , {Âj = g
1

cγ+Kj , B̂j = hKj , Ĉj = u
Kj

j , D̂j = g
1

Kj+mj }1≤j≤n.

If it is a certification query: The adversary sends key skA, and messagesm2, . . .mn. We will setK1 = cγ

We choose random Kj ← Zp for all j ∈ {1, . . . , n}, j 6= 1, and random K∗ ← Zp. Then we can compute

the authentication: Â∗ = g
1

skA+K∗ , B̂∗ = hK∗
, Ĉ∗ = u∗K∗

, {Âj = g
1

K∗+Kj , B̂j = hKj , Ĉj = u
Kj

j , D̂j =

g
1

Kj+mj }2≤j≤n, Â1 = g
1

K∗+cγ , B̂1 = hcγ , Ĉ1 = u
cγ

1 , D̂1 = Tγ .

64

When the adversary produces a forgery, with non-negligible probability it will be of the form

F (m1), . . . , F (mn)

A∗ = g
1

sk+b∗ , B∗ = hb∗ , C∗ = u∗b∗ , {Ai = g
1

b∗+bi , Bi = hbi , Ci = ubi
i , Di = g

1
bi+mi }i=1...n

.

where b∗ =6= K∗ for any K∗ returned by a previous authentication query, and where b∗ =6= Ki for any

Ki returned by a previous certification query.

That means for all ` ∈ {1, . . . , q}, b∗ 6= c`, so A∗, B∗, C∗ is a new HSDH triple.

Proof of Security for the Two-Party Protocol for Authentication Proofs

Theorem 14. The above construction is a secure two-party computation for the parameters and the trapdoor

generated by ExtSetup and SimSetup if the underlying proof systems are secure.

Proof sketch. We need to do a simulation for both ExtSetup and SimSetup.

ExtSetup: A simulator that simulates a dishonest user Ũ proceeds as follows:

• The simulator runs Ũ as a blackbox. He uses the extractor of the proof of knowledge to obtain ~m

and open ~m. If they are consistent with comm ~m he sends them to the ideal functionality. He aborts

otherwise.

• Next, the simulator uses the zero-knowledge simulator to simulate his own proof of knowledge.

The ideal functionality returns a NIZKPK π of an authenticator.

• The simulator uses the trapdoor to extract the authenticator. He uses a subset of the values to build

proof π′.

• Next the simulator uses the simulator of the 2PC subprotocol for weak BB signatures to finish the

simulation. Note that an honest issuer never outputs anything, even in case of protocol failure.

• The simulator outputs whatever Ũ outputs.

As the simulation of the environment for Ũ up to the 2PC subprotocol is perfect, Ũ will behave exactly in

the same way as in the real world. The simulatability of the 2PC subprotocol completes the proof.

A simulator that simulates a dishonest issuer Ĩ precedes as follows:

• The simulator runs Ĩ as a black box. The simulator uses the zero-knowledge simulator to simulate the

proof of knowledge.

• The simulator uses the extractor of the proof of knowledge. If they are inconsistent with comm ~m, he

aborts.

• Now the malicious issuer provides additional values, that the simulator checks in the same way as the

user would.

65

• Then it runs the simulator of the 2PC with the issuer. If the checks or the 2PC fail, he sends ⊥ to the

ideal functionality to force the ideal user to abort. If they pass, he sends ~m and open ~m to the ideal

functionality.

• The simulator outputs whatever Ĩ outputs.

The simulator aborts, when an honest user would abort, and both the ideal world user as well as the real world

user output a random proof. This completes the proof for the extraction parameters.

SimSetup: A simulator that simulates a dishonest user Ũ proceeds as follows:

• The simulator runs Ũ as a blackbox. He uses the extractor of the proof of knowledge to obtain ~m and

open ~m. If the values are consistent with comm ~m, he sends ~m and open ~m to the ideal functionality;

otherwise he aborts.

• Next, the simulator uses the zero-knowledge simulator to simulate his own proof of knowledge.

The ideal functionality returns a NIZKPK π of an authenticator.

• Now, however, we cannot use the returned proof π for the simulation. Luckily, the simulation trapdoor

allows us to fake the proof of equality between the commitments commsk and comm ′
sk , and the sim-

ulator can use a new random key sk ′ to compute the partial authenticator auth ′ and the corresponding

proof.

• The rest of the proof proceeds as for ExtSetup.

The simulation for the dishonest issuer Ĩ is the same as for ExtSetup.

Proof of Security for 2PC for computing WBB signature

Proof. We first simulate a malicious user. Recall that we must define a simulator S which gets as input

parameters params, commitment comm to the message to be signed, and a signature σ on that message

under secret key sk from the ideal functionality, and must impersonate an honest issuer without knowing sk .

Consider the following simulator:

1. S honestly generates a key pair (skhom , pkhom) ← Keygen(1k). It computes e1 = Enc(pkhom , 0). It

sends pkhom , e1 to the adversary.

2. S receives e2 from the adversary.

3. S acts as the verifier for the proof that e2 was computed correctly. He runs the proof of knowledge

extraction algorithm and extracts r1 (note that this might include rewinding the adversary, but not

farther than the beginning of this step). Finally it computes σ∗ = σ1/r1 ands sends it to the adversary.

Now we show that this S does a successful simulation: Consider the following series of games:

• In the first game, sk , pk ,m, open, state, comm are generated as in the definition of the protocol, and

then the adversary A2(state) interacts with the real world party as defined above.

66

• In the second game, sk , pk ,m, open, state, comm are generated the same way, but now A2(state)

interacts with a S ′, which behaves as the real protocol for steps 1 and 2, but then behaves as S for

step 3. The only difference then is that this simulator extracts r1 from the proof, and uses r1 and σ to

form σ∗. Note that if the proof is sound, then this σ∗ will be identical to that produced in the previous

game. Thus this is indistinguishable from the previous game by the extraction property of the ZK proof

system.

• In the last game, sk , pk ,m, open, state, comm are generated the same way, and then A2(state) inter-

acts with S. This differs from the second game only in that the initial encryption e1 is generated by

encrypting 0. Thus, this is indistinguishable from the second game by the security of the encryption

scheme.

Since the first game is indistinguishable from the third, the probability that the adversary A2 can output 1 in

each game can differ only negligibly. Thus, the simulation is successful.

Next, we consider a malicious signer.

Recall that we must define a simulator S which gets as input parameters params, the public key pk of the

signer, and a commitment comm to the message to be signed, and must impersonate an honest user without

knowing the message contained in the commitment m. Consider the following simulator:

1. S receives pkhom , e1 from the adversary.

2. S chooses a random value t ← [0, 2kp2]. It computes e2 = e1 ⊕ Enc(pkhom , t), and sends e2 to the

adversary.

3. S uses the simulator for the zero knowledge proof to interact with the adversary. (details?)

4. S receives σ∗ from the adversary and checks it is a valid signature on m′ = t mod p.

Now we show that this S does a successful simulation: Consider the following series of games:

• In the first game, pk ,m, open, state, comm are generated as in the real protocol, and then the adversary

A2(state) interacts with an honest user as defined above.

• In the second game, sk , pk ,m, open, state, comm are generated the same way, but now A2(state)

interacts with a S ′, which behaves as in the real protocol for steps 1 and 2, but then behaves as S for

step 3. The only difference then is that here we use the zero-knowledge simulator to do the interactive

proof. Thus this is indistinguishable from the previous game by the zero knowledge property of the ZK

proof system.

• In the last game, sk , pk ,m, open, state, comm are generated the same way, and then A2(state) inter-

acts with S. This differs from the second game only in that e2 is generated by computing e1 ⊕ enc(t)
rather than by computing e2 = ((e1 ⊕ enc(m)) ∗ r1)⊕ Enc(r2p). As t is chosen from [0, 2kp] and e1
encrypts a value from Zp, the value encrypted in e1 ⊕ enc(t) will be distributed statistically close to

the uniform distribution over [0, 2kp]. Similarly, the value encrypted in e2 = ((e1 ⊕ enc(m)) ∗ r1) ⊕

67

Enc(r2p) will be distributed statistically close to the uniform distribution over [0, 2kp] and hence this

game is indistinguishable from the previous one.

Since the first game is indistinguishable from the third, the probability that the adversaryA2 can output 1

in each game can differ only negligibly. Thus, User Privacy holds.

Chapter 5

NIZK Proofs for Pseudorandom
Functions

Secure pseudorandomness was first introduced by Blum and Micali with the notion of pseudorandom gener-

ators [9]. Pseudorandom generators are used to generate a long random string from a short random seed. The

definition guarantees that as long as the seed is chosen at random and kept secret, the resulting long string

will be indistinguishable from a truly random string.

Pseudorandom functions introduced by Goldreich, Goldwasser and Micali [50] are an extension of this

idea in which a fixed seed is used to compute values of a function on arbitrary inputs. As long as the seed

is chosen at random, any polynomial time adversary who is not given the seed, but who is allowed to query

the function on arbitrarily many inputs of his choice, will not be able to tell that he is not interacting with a

completely random function.

Verifiable random functions are a more recent variation on this idea introduced by Micali, Rabin, and

Vadhan [66]. In this case, each secret seed is associated with a public key. Thus, the functions can be

publicly indexed by this public key. The owner of the seed can not only compute the value of the function on

arbitrary inputs; he can also choose to provide a proof that the given value is indeed the output of the function

indexed by the corresponding public key. The definition requires that even when we allow a polynomial-time

adversary to request function values and proofs for arbitrary inputs, if he then requests the function value

for an input of his choice without a proof, he should not be able to distinguish the correct output from a

completely random value. At the same time, the functions must be verifiable: for a given public key and a

given input, there should be exactly one output value for which a user can compute a valid proof.

We define another class of functions with stronger pseudorandomness properties. Intuitively, we want

to require that the output of these functions be indistinguishable from truly random values even when the

proofs are given. We capture this by saying that there should be a simulator who can compute the system

parameters in such a way that, for any public key it can choose any random output value and fake a proof

that it is the correct output of the function indexed by this public key. We require that a polynomial-time

adversary who is allowed to query the function on arbitrary inputs should be unable to determine whether

68

69

he is interacting with simulated parameters, random output values and simulated proofs, or whether he is

interacting with honestly generated parameters, output values computed according to the correct function,

and honestly generated proofs. At the same time, when the system parameters are generated honestly, we

have the same verifiability guarantees as in a verifiable random function. That is, no adversary should be able

to find valid proofs of two different output values for the same input and public key. We call functions which

satisfy these requirements simulatable verifiable random functions(sVRFs).

As we define them, the sVRF proofs are not actually zero knowledge. We could define a stronger notion,

where we simply require a PRF where we can efficiently commit to the seed and then prove that a given

value is the correct output for a given input when using the seed contained within a given commitment.

In our definition of sVRFs, we chose instead to give the minimum requirements necessary to capture the

above notion that a given value remains pseudorandom even after a corresponding proof has been given. In

particular, it is possible that our proofs leak some information about the secret seed, as long as this information

does not compromise the pseudorandomness of any of the output values. We will see that this is strong

enough for the application given in Chapter 8. However, in some cases, we will see that the stronger notion

is necessary. Thus in Section 5.3, we will show a construction with fully secure NIZK proofs, and in Chapter

9 we will show an application which makes use of this stronger property.

5.1 On Defining sVRFs

We begin by adapting the definition of Micali, Rabin and Vadhan [66] in the public parameters model.

Definition 28 (VRF in the public parameters model). Let params(·) be an algorithm generating public

parameters p on input security parameter 1k. Let D(p) and R(p) be families of efficiently samplable do-

mains for all p ∈ params. The set of algorithms (G, Eval, Prove, Verify) constitutes a verifiable random

function (VRF) for parameter model params, input domain D(·) and output range R(·) if

Correctness Informally, correctness means that the verification algorithm

Verify will always accept (p, pk , x, y, π) when y = Fpk (x), and π is the proof of this fact generated

using Prove. More formally, ∀k, p ∈ params(1k), x ∈ D(p),

Pr[(pk , sk)← G(p); y = Eval(p, sk , x);π ← Prove(p, sk , x);

b← Verify(p, pk , x, y, π) : b = 1] = 1

Pseudorandomness Informally, pseudorandomness means that, on input

(p, pk), even with oracle access to Eval(p, sk , ·) and Prove(p, sk , ·), no adversary can distinguish

Fpk (x) from a random element of R(p) without explicitly querying for it. More formally, ∀ PPT A, ∃

70

negligible ν such that

Pr[p← params(1k); (pk , sk)← G(p);

(Qe, Qp, x, state)← AEval(p,sk ,·),Prove(p,sk ,·)(p, pk);

y0 = Eval(p, sk , x); y1 ← R(p); b← {0, 1};

(Q′e, Q
′
p, b

′)← AEval(p,sk ,·),Prove(p,sk ,·)(state, yb)

: b′ = b ∧ x /∈ (Qe ∪Qp ∪Q′e ∪Q′p)] ≤ 1/2 + ν(k)

where Qe and Qp denote, respectively, the contents of the query tape that records A’s queries to its

Eval and Prove oracles in the first query phase, and Q′e and Q′p denote the query tapes in the second

query phase.

Verifiability For all k, for all p ∈ params(1k), there do not exist (pk , x, y1, π1, y2, π2) such that y1 6= y2,

but Verify(p, pk , x, y1, π1) = Verify(p, pk , x, y2, π2) = ACCEPT.

Note that verifiability in the definition above can be relaxed so as to only hold computationally (as opposed

to unconditionally).

Simulatability, as defined below, is the novel aspect of sVRFs, setting them apart from VRFs as previously

defined. First, we give the definition, and then we discuss variations.

Definition 29 (Simulatable VRF). Let (params,G, Eval, Prove, Verify) be a VRF (according to Defini-

tion 28). They constitute a simulatable VRF if there exist algorithms (SimParams, SimG, SimProve) such that

for all PPT A, A’s views in the following two games are indistinguishable:

Game Real p ← params(1k) and then A(p) gets access to the following oracle R: On query NewPK, R
obtains and stores (pk , sk) ← G(p), and returns pk to A. On query (pk , x), R verifies that (pk , sk)

has been stored for some sk . If not it returns “error”. If so, it returns y = Eval(p, sk , x) and

π ← Prove(p, sk , x).

Game Simulated (p, t) ← SimParams(1k), and then A(p) gets access to the following oracle Sim: On

query NewPK, Sim obtains and stores (pk , sk)← SimG(p, t), and returns pk toA. On query (pk , x),

Sim verifies if (pk , sk) has been stored for some sk . If not, it returns “error”. If so, Sim (1) checks if x

has previously been queried, and if so, returns the answer stored; (2) otherwise, Sim obtains y ← R(p)

and π ← SimProve(p, sk , x, y, t), and returns and stores (y, π).

5.1.1 Simplifying the Definition

The games in the above definition need to store multiple public keys and secret keys, as well as responses to

all the queries issued so far, and consistently respond to multiple queries corresponding to all these various

keys. It is clear that this level of security is desirable: we want an sVRF to retain its security properties under

composition with other instances within the same system. A natural question is whether we can simplify

the games by restricting the adversary to just one NewPK query or just one (pk , x) query per pk without

71

weakening the security guarantees. In fact, the four possible combinations of such restrictions yield four

distinct security notions, as we show in the full version of this paper.

Although we cannot simplify Definition 29 in this way, we can give a seemingly simpler definition (one

that only allows one NewPK query from the adversary) that is strictly stronger than Definition 29 in that it

requires that the adversary cannot distinguish the real game from the simulated one, even with the knowledge

of the trapdoor t.

Definition 30 (Trapdoor-indistinguishable sVRF). Let (params,G, Eval, Prove, Verify) be a VRF (as in

Definition 28). They constitute a trapdoor-indistinguishable (TI) sVRF if there exist algorithms (SimParams,

SimG, SimProve) such that the distribution params(1k) is computationally indistinguishable from the distri-

bution SimParams(1k) and for all PPT A, A’s views in the following two games are indistinguishable:

Game Real Proofs (p, t) ← SimParams(1k), (pk , sk) ← G(p) and then A(p, t, pk) gets access to the

following oracleR: On query x,R returns y = Eval(p, sk , x) and π ← Prove(p, sk , x).

Game Simulated Proofs (p, t)← SimParams(1k), (pk , sk)← SimG(p, t), and thenA(p, t, pk) gets access

to the following oracle Sim: On query x, Sim (1) checks if x has previously been queried, and if so,

returns the answer stored; (2) otherwise, obtains y ← R(p) and π ← SimProve(p, sk , x, y, t), and

returns and stores (y, π).

By a fairly standard hybrid argument, we have the following lemma (see the full version for the proof):

Lemma 7. If (params,G, Eval, Prove, Verify) is a TI-sVRF, it is an sVRF.

5.1.2 Weak Trapdoor-Indistinguishable sVRF

We now define a somewhat weaker notion of TI sVRFs, in which a simulator can only give fake proofs for

those values of the output range that it has sampled itself in some special way.

Definition 31 (Weak TI-sVRF). Let (G, Eval, Prove, Verify) be a VRF in the params(1k) model with

domain D(·) and range R(·). They constitute a weak trapdoor-indistinguishable (TI) sVRF if there exist

algorithms (SimParams, SimG, SimProve, SimSample) such that the distribution params(1k) is computa-

tionally indistinguishable from the distribution SimParams(1k) and for all PPTA,A’s views in the following

two games are indistinguishable:

Game Real Proofs (p, t) ← SimParams(1k), (pk , sk) ← G(p) and then A(p, t, pk) gets access to the

following oracle: On query x, the oracle returns y = Eval(p, sk , x) and π ← Prove(p, sk , x).

Game Simulated Proofs (p, t)← SimParams(1k), (pk , sk)← SimG(p, t), and thenA(p, t, pk) gets access

to the following oracle: On query x, the oracle (1) checks if x has previously been queried, and

if so, returns the answer stored; (2) otherwise, obtains (y, w) ← SimSample(p, t, sk , x) and π ←
SimProve(p, sk , x, y, t, w), and returns and stores (y, π).

72

We now show that a weak TI-sVRF where SimSample outputs a uniformly random element of a suffi-

ciently large set can be converted to a TI-sVRF with binary range. Let (G, Eval, Prove, Verify) be a weak

TI-sVRF in the params model with domain D(p), and range R(p) ⊆ {0, 1}m(k) for some polynomial m for

all p ∈ params(1k). Consider the following algorithms:

params∗(1k) Pick r ← {0, 1}m(k), p← params(1k); return p∗ = (r, p).

G∗ On input p∗ = (r, p), output (pk∗, sk∗)← G(p).

Eval∗ and Prove∗ On input p∗ = (r, p), sk∗, and x ∈ D(p), compute y = Eval(p, sk∗, x). Let y∗ = y · r,

where by “·”, we denote the inner product, i.e. y · r =
⊕|y|

i=1 yiri. Eval∗ outputs y∗. Prove∗ picks

π ← Prove(p, sk∗, x) and outputs π∗ = (π, y).

Verify∗ On input p∗ = (r, p), pk∗, x ∈ D(p), y∗ ∈ {0, 1}, π∗ = (π, y): accept iff Verify(p, pk , x, y, π)

accepts and y∗ = r · y.

Lemma 8. Suppose (G, Eval, Prove, Verify) is a weak TI-sVRF with (SimParams, SimSample, SimG,

SimProve) as in Definition 31. Let ρ be such that for all (p, t) ∈ SimParams(1k), for all x ∈ D(p), for

all (sk , pk) ∈ SimG(p, t), |SimSample(p, t, sk , x)| ≥ ρ(k), and SimSample is a uniform distribution over its

support. Let µ be such that for all p ∈ params(1k), |D(p)| ≤ µ(k). If there exists a negligible function ν

such that µ(k)ρ(k)−
1
3 = ν(k) then (G∗, Eval∗, Prove∗, Verify∗) as constructed above are a TI-sVRF in

the params∗ model with domain D(p), and range {0, 1}.

Proof. Correctness, verifiability and pseudorandomness follow easily from the respective properties of the

weak TI-sVRF (recall that a weak TI-sVRF is still a VRF – the “weak” part refers to simulatability only). In

particular, pseudorandomness follows by standard techniques such as the leftover hash lemma.

We must show TI-simulatability. We first prove a useful claim. Consider specific values (p, t) ∈
SimParams(1k), (pk , sk) ∈ SimG(p, t). Since t and sk are fixed, the distributions R′(x) = SimSample(p, t,

sk , x) and Bad(x) = {r ∈ {0, 1}m(k) : |Pr[y ← R′(x) : y · r = 1]− .5| ≥ |R′(x)|− 1
3 } are well-defined. In

English, Bad(x) is the set of those r’s for which the random variable y · r (where y is sampled uniformly at

random from R′(x), i.e. sampled according to SimSample(p, t, sk , x)) is biased by at least |R′(x)|− 1
3 from a

random bit.

Claim. ∀x ∈ D(p), Pr[r ← {0, 1}m(k) : r ∈ Bad(x)] ≤ |R′(x)|− 1
3 .

Proof. (Of claim.) Suppose x ∈ D(p) is fixed. Let Weight(r) =
∑

y∈R′(x) y · r. By definition of Bad(x),

r ∈ Bad(x) if and only if |Weight(r)/|R′(x)| − .5| ≥ |R′(x)|− 1
3 . It is easy to see that, if the proba-

bility is taken over the choice of r, then Exp[Weight(r)/|R′(x)|] = .5. On the other hand, for any pair

y1 6= y2 ∈ R′(x), y1 · r is independent from y2 · r, and so Weight(r) =
∑

y∈R′(x) y · r is a sum of

pairwise independent random variables. Thus, Var [Weight(r)] =
∑

y∈R′(x) Var [y · r] = |R′(x)|/4, and

Var [Weight(r)/|R′(x)|] = 1/4|R′(x)|. Plugging Exp and Var for Weight(r)/|R′(x)| into Chebyshev’s

inequality, we get Pr[|Weight(r)/|R′(x)|− .5| ≥ |R′(x)|− 1
3 }] ≤ |R′(x)|− 1

3 which completes the proof.

Now we will show that the simulatability property holds. Consider the following algorithms:

73

SimParams∗ On input 1k, obtain (p, t)← SimParams(1k), r ← {0, 1}m(k). Output p∗ = (r, p), t∗ = t.

SimG∗ On input (p∗, t∗), where p∗ = (r, p) obtain (pk , sk)← SimG(p, t∗). Output pk∗ = pk , sk∗ = sk .

SimProve∗ On input (p∗, sk∗, x, y∗, t∗) where p∗ = (r, p), repeat the following up to k times until y ·r = y∗:

(y, w) ← SimSample(p, t, sk , x). If after k calls to SimSample, y · r 6= y∗, output “fail”. Else obtain

π ← SimProve(p, t, sk , x, (y, w)). Output π∗ = (π, y).

We define two intermediate games in which the adversary is given an oracle that is similar to Game

Simulated Proofs from the TI-sVRF definition in that it does not use Eval and Prove; instead of Eval, it

uses SimSample (from the weak TI-sVRF definition) to obtain (y, w), and then outputs y∗ = y · r. The two

games generate the proofs in different ways: Game Intermediate Real Proof just uses w and SimProve of the

weak TI-sVRF definition to generate π, while Game Intermediate Simulated Proof uses SimProve∗ defined

above. More precisely:

Game Intermediate Real Proofs (p∗, t∗) ← SimParams∗(1k), (pk∗, sk∗) ← SimG∗(p∗, t∗), and then A
(p∗, t∗, pk∗) gets access to the following oracle: On query x, the oracle (1) checks if x has previously

been queried, and if so, returns the answer stored; (2) otherwise, obtains (y, w) ← SimSample(p, t,

sk , x), y∗ = y · r, and π ← SimProve(p, sk , x, y, t, w), π∗ = (π, y), and returns and stores (y∗, π∗).

Game Intermediate Simulated Proofs (p∗, t∗) ← SimParams∗(1k), (pk∗, sk∗) ← SimG∗(p∗, t∗), and

then A(p∗, t∗, pk∗) gets access to the following oracle: On query x, the oracle (1) checks if x has

previously been queried, and if so, returns the answer stored; (2) otherwise, obtains (y′, w′) ←
SimSample(p, t, sk , x), y∗ = y′ · r, and π∗ ← SimProve∗(p, sk , x, y∗, t), and returns and stores

(y∗, π∗).

We now argue that these intermediate games are indistinguishable from Game Real Proofs and Game

Simulated Proofs as specified by the definition of TI-sVRF, instantiated with (SimParams, SimG, SimSample,

SimProve) that follow from simulatability of our weak TI-sVRF, and with (SimParams∗, SimG∗, SimProve∗)

defined above. First, it is straightforward to see that an adversary distinguishing between Game Real Proofs

and Game Intermediate Real Proofs directly contradicts the simulatability property of weak TI-sVRFs.

The only difference between Game Intermediate Simulated Proofs and Game Simulated Proofs, is the

choice of the bit y∗: in the former, it is chosen using SimSample, i.e. indistinguishably from the way it is

chosen in the real game. In the latter, it is chosen at random. If we condition on the event that for all x,

r /∈ Bad(x), these two distributions are statistically close.

The only thing left to show is that the two intermediate games defined above are indistinguishable. If we

condition on the event that we never fail, then the two games are identical. Note that if for all x, r /∈ Bad(x),

then the probability that we fail on a particular query is ≤ (1/2 + |R′(x)|− 1
3)k which is negligible.

Thus we have shown that if the probability that r ∈ Bad(x) for some x is negligible, then Game Real

Proofs is indistinguishable from Game Simulated Proofs. By the union bound, combined with the claim,

Pr[r ← {0, 1}m(k) : ∃x ∈ D(p) such that r ∈ Bad(x)] ≤ |D(p)||R′(x)|− 1
3 , which is equal to ν(k) by the

premise of the lemma.

74

From Lemmas 7 and 8, we see that from a weak TI-sVRF satisfying the conditions of Lemma 8, we can

construct an equally efficient sVRF with range {0, 1}.

Remark. Note that, even though the support of SimSample(p, t, sk , x) is quite large, the construction above

only extracts one bit of randomness from it. Although it can be easily extended to extract a logarithmic

number of random bits, there does not seem to be a black-box construction extracting a superlogarithmic

number of bits. Suppose ext is a procedure that extracts ` bits from y, so y∗ = ext(y) is of length `. Then

how would SimProve∗ work to generate a proof that y∗ is correct? It needs to call SimProve(p, sk , x, y, t, w)

for some y such that y∗ = ext(y) and w is an appropriate witness. It seems that the only way to obtain such

a pair (y, w) is by calling SimSample(p, t, sk , x); in expectation, 2` calls to SimSample are needed to obtain

an appropriate pair (y, w); if ` is superlogarithmic, this is prohibitively inefficient.

5.2 Simulatable Verifiable Random Functions: Constructions

CONSTRUCTING AN SVRF. Our first result is a direct construction of a simulatable VRF based on the Sub-

group Decision assumption (SDA) [13], and an assumption related to the Q-BDHI assumption [11]. Dodis

and Yampolskiy [43] used the Q-BDHI assumption to extend the Boneh-Boyen short signature scheme [10]

and derive a VRF. The Dodis-Yampolskiy VRF is of the form Fs(x) = e(g, g)1/(s+x), where g is a generator

of some group G1 of prime order q, and e : G1 ×G1 7→ G2 is a bilinear map. The secret key is s while the

public key is gs. The DY proof that y = Fs(x) is the value π = g1/(s+x) whose correctness can be verified

using the bilinear map.

Our sVRF is quite similar, only it is in a composite-order group with a bilinear map: the order of G1 is an

RSA modulus n = pq. This is what makes simulatability possible. In our construction, the public parameters

consist of (g,A,D,H), all generators of G1. As before, the secret key is s, but now the public key is As.

Fs(x) = e(H, g)1/(s+x), and the proof is a randomized version of the DY proof: π = (π1, π2, π3), where

π1 = Hr/(s+x)/Dr, π2 = g1/r and π3 = A(s+x)/r. It turns out that, when A generates the entire G1,

there is a unique y = Fs(x) for which a proof exists. However, when A belongs to the order-p subgroup

of G1 (as is going to be the case when the system parameters are picked by the simulator), the verification

tests correctness only as far as the order-p subgroup is concerned, and so the order-q component of Fs(x)

is unconstrained. The proof of security requires that a strengthening of Q-BDHI hold for the prime-order

subgroups of G1, and that the SDA assumption holds so that A picked by the simulator is indistinguishable

from the correct A.

Next, we give a second construction of sVRFs which gives efficient proofs for a pseudorandom function

whose range is the bilinear group G1. In fact, it can be shown that it satisfies a stronger property in that the

proofs are fully zero knowledge. It is based on the Groth-Sahai proofs system combined with the Dodis-

Yampolskiy VRF, and thus, it can be instantiated using SXDH or the decisional linear assumption together

with the assumption that BDHI holds in G1.

Finally, we also give, as proof of concept, a construction under general assumptions, based on general

multi-theorem NIZK.

75

5.2.1 Construction from Composite Order Bilinear Groups

We first present a construction for a weak TI-sVRF with a large output range. As we have shown, this can then

be transformed into an sVRF with range {0, 1}. The security relies on the BDHI and BDHBI assumptions

(see section2.3 for details).

The assumption in Definition 23 is a new assumption which can be shown to imply Q-BDHI. We will

assume that it holds for the prime order subgroup of composite order bilinear groups that can be efficiently

instantiated [13].

Definition 32 (SDA [13]). A family G of groups satisfies the subgroup decision assumption if no PPT A,

on input (instance, challenge) can distinguish if its challenge is of type 1 or type 2, where instance and

challenge are defined as follows: instance = (G1, G2, n, e, h) where n = pq is a product of two primes of

length poly(k) (for k a sec. param.), G1, G2 are groups of order n returned by G(q, p), e : G1 ×G1 → G2

is a bilinear map, h is a random generator of G1, challenge of type 1 is g, a random generator of G1, while

challenge of type 2 is gp, a random order-p element of G1.

The weak TI-sVRF construction is as follows:

params On input 1k, choose groupsG1, G2 of order n = pq for primes p, q, where |p| and |q| are polynomial

in k, with bilinear map e : G1 × G1 → G2. Choose random generators g,H,A,D for G1. params

will output p = (G1, G2, n, e, g,H,A,D).

Domain and range The input domain D(p) consists of integers 1 ≤ x ≤ l(k) where l(k) < 2|q|−1 (We will

later see the connection between l(k) and Q(k) by which our assumption is parameterized.) Note that

D(p) depends only on k, not on p. R(p) = G2.

G On input p, pick s← Z∗n, output sk = s, pk = As.

Eval On input (p, sk , x), output e(H, g)
1

s+x .

Prove On input (p, sk , x), pick r ← Z∗n, and output π = (π1, π2, π3), where π1 = H
r

s+x /Dr, π2 = g
1
r ,

π3 = A
x+s

r .

Verify On input (p, sk , x, y, π), parse π = (π1, π2, π3) and verify that e(π1, π2)e(D, g) = y, e(π3, g) =

e(Axpk , π2), e(π1, π3)e(D,Axpk) = e(H,A).

Lemma 9 (Efficiency). The construction above has the following efficiency: Generating a proof for a given

value y requires 4 exponentiations in the composite order groupG1. The resulting proof consists of 3 elements

of the composite order group G1. Verifying the proof requires 5 composite order bilinear pairings. 1

Theorem 15. (G, Eval, Prove, Verify) as described above constitute a weak TI-sVRF for parameter model

params, input domain D of size l, and output range G2 (where G2 is as output by params) under the SDA

1Note that the resulting construction is only a weak sVRF, and conversion to full sVRF with output range {0, 1}`(k) will decrease
efficiency by a factor of `(k) as described in Section 5.1.2. Also note that here we require composite order bilinear groups, which
are generally considered less secure than prime order bilinear groups of comparable size. This means that in order to get the same
security guarantees, we must use a somewhat larger groups than those considered in our other constructions.

76

assumption combined with the (l(k), ν(k)/l2(k))-BDHBI, where ν is an upper bound on the asymptotic

advantage that any probabilistic polynomial-time algorithm has in breaking the simulatability game of Defi-

nition 31.

Proof. Correctness follows from construction.

Verifiability: Suppose there exists an adversary who, given parameters p = (G1, G2, n, e, g,H = gh, A =

ga, D = gd) generated by params can produce pk , y, y′, π = (π1, π2, π3), π′ = (π′1, π
′
2, π

′
3) such that

Verify(p, pk , y, π) = Verify(p, pk , y′, π′) = 1. Then we will show that y = y′.

Let λ, µ, µ′, σ, φ, θ, σ′, φ′, θ′ ∈ Zn be the exponents such that pk = gλ, y = gµ, y′ = gµ′ , π1 = gσ, π2 =

gφ, π3 = gθ, π′1 = gσ′ , π′2 = gφ′ , π′3 = gθ′ .

If the verifications succeed, then we get that the following equations hold in Zn: σφ + d = µ, θ =

(ax+ λ)φ, θσ + d(ax+ λ) = ha.

Solving this system of equations gives us: ha = µ(ax + λ). Similarly, if (y′, π′) satisfy the verification

equations, then we know that ha = µ′(ax + λ). H,A are generators for G1, so h, a ∈ Z∗n, and therefore,

µ′(ax+ λ) ∈ Z∗n, and µ(ax+ λ) ∈ Z∗n. This in turn means that µ′, µ, (ax+ λ) ∈ Z∗n.

From the solutions to the above equations, we know µ(ax+ λ) = µ′(ax+ λ). Since (ax+ λ) ∈ Z∗n, we

can compute a unique inverse (ax+ λ)−1, and conclude that µ = µ′, and y = y′.

Note that this argument relies crucially on the fact that h, a ∈ Z∗n. In our simulation, we will instead

choose a = 0 mod q, which will allow us to avoid this binding property.

Pseudorandomness follows under theQ-BDHI Assumption from pseudorandomnesss of the Dodis-Yampol-

skiy VRF [43].

Simulatability: Consider the following simulator algorithms:

SimParams(1k) Choose groups G1, G2 of order n = pq for prime p, q, where |p| and |q| are polynomial in

k, with bilinear map e : G1×G1 → G2. LetGp be the order p subgroup ofG1, and letGq be the order

q subgroup of G1. Let (A, gp,Hp, Dp) ← G4
p and (gq,Hq, Dq) ← G3

q . Let g = gpgq, H = HpHq,

and D = DpDq. Output p = (G1, G2, n, e, g,H,A,D), t = (gp, gq,Hp,Hq, Dp, Dq).

This is identical to params except that A ∈ Gp, so that the verification algorithm cannot properly

verify the Gq components of y and π.

SimG(p, t) (sk , pk)← G(p).

SimSample On input (p, t, sk , x), pick w ← Z∗q .

Let y = e(Hp, gp)
1

s+x e(gq, gq)w. Output (y, w). (Note y’s Gp component will be correct, while its Gq

component will be random.)

SimProve On input (p, sk , x, y, t, w), pick r ← Z∗n;

let π1 = (H
r

s+x
p /Dr

p)(g
wr
q /Dr

q), π2 = g
1
r , π3 = A

x+s
r . Output π = (π1, π2, π3). (Note that π’s Gp

components are correct, while its Gq components are chosen so as to allow us to fake the proof.)

Lemma 10. The distribution params(1k) is indistinguishable from the distribution SimParams(1k) by the

Subgroup Decision Assumption.

77

Proof. The only difference between these two distributions is that in params, A is chosen at random from

G1, and in SimParams, A is chosen at random from Gp. Thus, these two distributions are indistinguishable

by the Subgroup Decision assumption by a straightforward reduction.

Lemma 11. For the algorithms described above, Game Real Proofs and Game Simulated Proofs (as in Defi-

nition 31) are indistinguishable with advantage more that ν(k) by the (l(k), ν(k)/l2(k))-BDHBI assumption.

Before we prove this lemma, we will describe and prove an intermediate assumption that follows from

the assumptions that we have already made. We state this assumption in terms of any prime order bilinear

group. However, we will later assume that this assumption (and the Q-BDHBI assumption) holds over the

prime order subgroup of a composite order bilinear group.

Definition 33 ((Q, ν)-Intermediate assumption). A family G of groups satisfies the (Q(k), ν(k))-intermediate

assumption if for all subsets X of Z2a(k)−1 (where a(k) is a polynomial), of size Q(k) − 1 for all x∗ ∈
Z2a(k)−1 \ X , no PPT A, on input (instance, challenge) can distinguish if its challenge is of type 1 or

type 2 with advantage asymptotically higher than ν(k), for instance and challenge defined as follows:

instance = (G1, G2, q, e, g,H,D, {(Hrx
1

s+x /Drx , g
1

rx)}∀x∈X) where q is an a(k)-bit prime, G1, G2 are

groups of order q returned by G(q), e : G1 × G1 → G2 is a bilinear map, (g,H,D) ← G3
1, and {rx}x∈X

and s were all picked at random from Z∗q; challenge of type 1 is (Hr∗ 1
s+x∗ /Dr∗, g

1
r∗) where r∗ ← Z∗q , while

challenge of type 2 is (gR1 , gR2) for R1 and R2 random from Z∗q .

Lemma 12. (l, ν)-BDHBI assumption implies (l, ν)-intermediate assumption.

Proof. Suppose there exists an adversary A who breaks the intermediate assumption for set X of cardinality

l − 1, and x∗ /∈ X . Then we show an algorithm B that can break l-BDHBI Assumption.

Algorithm B will behave as follows: Receive G, q, e, g, gα, . . . gαl

, gβ , and Z = g
1

αβ or Z = gR for

random R ∈ Z∗q .

Choose random values ∆1,∆2 ← Z∗q . Implicitly, let γ = γ(α) = ∆1(α −∆2)
∏

x∈X(α + (x − x∗)).
Compute H = gγ . Note that since this exponent is just an l degree polynomial in α, we can compute

this value using g, . . . gαl

. If we implicitly define s = α − x∗, we will get H = g∆1(α−∆2)
Q

x∈X(s+x).

(Note that now we know neither s, nor α explicitly.) Note that because of ∆1, H is uniformly distributed

over G1, and is independent of g. Now we want to provide D. Implicitly we will define d = γ−δ
α , where

δ = ∆1∆2

∏
x∈X(x− x∗) is the constant term of the polynomial in α (represented by γ(α)). Note now that

δ is a quantity B can compute, while d is only defined implicitly. Since d is a polynomial expression in α,

D = gd can be expressed as a sum of terms g, gα, . . . , gαl−1
, and computed using the given values. Finally,

note that, because of ∆2, D is uniformly distributed over G1, and is independent of (g,H).

For all x̂ ∈ X: Let γ′(x̂) = ∆1(α − ∆2)
∏

x∈X,x 6=x̂(α + (x − x∗)) = γ
x̂+s . Compute v = gγ′(x̂) =

g
γ

s+x̂ = H
1

s+x̂ . We then choose a random rx̂ ← Z∗n. We compute and output (vrx̂/Drx̂ , g
1

rx̂).

For x∗: Implicitly define r∗ = 1
β . Compute u1 = Zδ . If Z = g

1
αβ , then this is equal to g

δ
αβ =

g
γ

αβ−
γ−δ
αβ = g

γ
αβ /g

γ−δ
αβ = Hr∗ 1

s+x∗ /Dr∗ . Otherwise, this is equal to gR1 for random R1. Compute u2 =

(gβ) = (g
1

r∗). Output (u1, u2).

78

Finally, if A guesses that he received (Hr∗ 1
s+x∗ /Dr∗ , g

1
r∗), B guesses that Z = g

1
αβ , else that Z = gR

q .

If A’s guess is correct, then B’s guess is correct.

Proof. (of Lemma 11) We first define a series of hybrid games:

Game Hybrid i: Obtain (p, t)← SimParams(1k), and (pk , sk)←
SimG(p, t) and then A(p, t, pk) gets access to the following oracle: The oracle begins by storing

j = 0. On query x, the oracle (1) checks if x has previously been queried, and if so, returns the

answer stored. Otherwise, (2) if j < i the oracle obtains (y, w) ← SimSample(p, t, sk , x) and π ←
SimProve(p, sk , x, y, w, t), returns and stores (y, π), and increments j. (3) Or if j ≥ i, the oracle

computes y = Eval(p, sk , x) and π ← Prove(p, sk , x), returns and stores (y, π) and increments j.

Note that in this case, G(p) is identical to SimG(p, t) for all p, t, so Game Hybrid 0 is identical to Game

Real Proofs. Game Hybrid Q, where Q is the maximum number of distinct oracle queries (not including

repeated queries) that the adversary is allowed to make, is identical to Game Simulated Proofs. Thus, we

have only to show the following lemma:

Lemma 13. Suppose the (l, ν)-BDHBI Assumption holds in one of the two subgroups of a composite bilinear

group. Then, when the size of the domain is at most l, no PPT adversary can distinguish Game Hybrid i− 1

from Game Hybrid i with advantage higher than νl.

Proof. Suppose there exists an adversary A who can distinguish Game Hybrid i − 1 from Game Hybrid i

when the domain D is of size l. Then we show an algorithm B that can break the l-intermediate assumption

with advantage ε.

First we make a guess x∗ about which input A will give in its ith distinct oracle query. Since |D| = l,

and all values given to A will be independent of x∗, we will be correct with probability 1/l.

Now we will show an algorithm B, which can, with nonnegligible probability, break the intermediate

assumption for set X = D \ {x∗} and the x∗ chosen above. B will receive G, p, q, e, gp, gq,Hq, Dq,

{(H
rx

sq+x

q /Drx
q , g

1
rx
q)}∀x∈X , (Z1, Z2) for gq,Hq, Dq ← Gq, and randomly chosen (but unknown) {rx}x∈X ,

sq ← Z∗q . Here, either (Z1, Z2) = (H
r∗ 1

sq+x∗
q /Dr∗

q , g
1

r∗
q) or (Z1, Z2) = (gR1

q , gR2
q) for random R1, R2 ←

Z∗q .

First, B prepares the parameters as follows: Choose Hp, A,Dp ← Gp and compute g = gpgq, H =

HpHq, D = DpDq. Set p = (G1, G2, n, e, g,H,A,D). Let sp ← Z∗p, and pk = Asp . Implicitly, set

s ∈ Z∗n to the the element such that s mod p = sp, and s mod q = sq. B sends p and trapdoor t =

(gp, gq,Hp,Hq, Dp, Dq) to A.

Now B must answer A’s queries. We assume (WLOG) that A does not repeat queries.

When A sends its jth query, x̂, B proceeds as follows:

If j < i: if x̂ = x∗, then B has guessed wrong about which value A will choose in his ith distinct query (if it

is used again later, it will be repeated and thus not distinct), so B aborts. Otherwise, B chooses a random w′ ∈
Z∗q . Let y = e(H

1
sp+x̂

p , gp)e(Hq, gq)w′ . Choose a random r ← Z∗n. Let π1 = (H
r 1

sp+x̂

p /Dr
p)(H

w′r
q /Dr

q).

Let π2 = g
1
r and π3 = A

x̂+sp
r . If we implicitly set w = w′hq, (where Hq = g

hq
q) then these value will be

distributed as in the output of SimSample and SimProve. Output (y, π = (π1, π2, π3)).

79

If j = i: If x̂ 6= x∗, then B has guessed wrong, so it aborts. Otherwise, choose random rp ← Z∗p.

Implicitly set r ∈ Z∗n to be the element such that r mod q = r∗ and r mod p = rp. Compute π1 =

H
rp

1
x∗+sp

p /D
rp
p Z1. Note that, if Z1 = H

r∗ 1
sq+x∗

q /Dr∗

q , then this is equal to H
r

s+x∗ /Dr. Otherwise, this is

equal to H
rp

1
x∗+sp

p /D
rp
p gR1

q . Now compute π2 = g
1

rp
p Z2, if Z2 = g

1
r∗
q , then this value will be g

1
r . Otherwise

it will be g
1

rp
p gR2

q Compute π3 = A
sp+x∗

rp = A
s+x∗

r . Finally, compute y = e(π1, π2)e(D, g). Output

(y, π = (π1, π2, π3)) to the adversary.

If j > i, we know x̂ 6= x∗, and x̂ ∈ X . Let V1 = H
rx̂

1
sq+x̂

q /Drx̂
q , and V2 = g

1
rx̂ , as provided in B’s

input. B chooses a random rp ← Z∗p. Implicitly, set r ∈ Z∗n for this query to be the element such that r

mod p = rp, and r mod q = rx̂. B computes π1 = (H
rp

1
sp+x̂

p /D
rp
p)V1 = Hr 1

s+x̂ /Dr, π2 = g
1

rp
p V2 = g

1
r ,

and π3 = A
sp+x̂

rp = A
x̂+s

r . Finally, B computes y = e(π1, π2)e(D, g) and outputs (y, π = (π1, π2, π3)) to

A.

Finally, B gets A’s guess bit b. If A guesses that this is Game Hybrid i − 1, B guesses that (Z1, Z2) =

(H
r∗ 1

sq+x∗
q /Dr∗

q , g
1

r∗
q); otherwise B guesses that (Z1, Z2) = (gR1

q , gR2
q). If A guesses correctly, B’s guess

will also be correct.

B has a 1
l probability of not aborting. Suppose that when B aborts, it returns a random bit. Then B’s

guess is correct with probability (1− 1
l) ∗

1
2 + 1

l ∗ (1
2 + ε) = 1

2 + ε
l , where ε is A’s advantage. Thus, if A’s

advantage is ε > νl then B’s advantage is higher than ν, contradicting the assumption.

For the theorem to follow, we observe that the overall reduction from breaking the simulatability game to

breaking the BDHBI assumption uses at most (l + 1) hybrids, and so the adversary’s advantage ε translates

into the reduction’s advantage ε/l2 in breaking BDHBI.

Remark. Since the construction above satisfies the premise of Lemma 8, it can be converted to an sVRF with

binary range using the construction in Section 5.1.2.

5.2.2 Construction from DDHI and GS proofs

Here we present our new construction for sVRFs. Later, we will show that an extension of this construction

(as described in sections 5.3 and 9.2) can be used to construct provably secure e-cash.

Our construction will be in the bilinear group setting where we are given p, g,G1, G2, GT , e such that

G1, G2, GT are multiplicative groups of prime order p, g is a generator of G1, h is a generator of G2, and

e is a bilinear map e : G1 × G2 → GT . We will use the function PRFs(x) = g
1

s+x to build an efficient

Simulatable VRF 2 .

We will show that if PRFs(x) is a pseudorandom function in this setting, and if the Groth-Sahai proof

system is secure for these groups, then we can build an efficient t-sVRF with output range G1. Note that the

base function is similar to the Dodis-Yampolskiy VRF, which uses the function PRFs(x) = e(g, h)
1

s+x and

2This function is also known as a Weak Boneh-Boyen signature [11]

80

thus gives output in GT . Moving our function to output elements in G1 is the crucial step which allows us to

use the Groth-Sahai proof techniques.

Theorem 16. Let Dk ⊂ Z denote a family of domains of size polynomial in k. Let p, g, e,G1, G2, GT

be as described above where |p| = k. If the DDHI assumption holds in G1, then the set {g
1

s+x }x∈Dk
is

indistinguishable from the set {grx}x∈Dk
where s, {rx}x∈Dk

are chosen at random from Zp. The proof is

very similar to that in [43].

We will build an sVRF based on this function as follows:

Setup(1k). Let e : G1 × G2 → GT be a bilinear map of order q. Let g be a generator for G1, and h be

a generator for G2. Let paramsGS be the parameters for a Groth-Sahai NIZK proof system. These

parameters define a perfectly binding commitment scheme GSCommit for committing to elements of

G1 and G2. Output parameters paramsVRF = (q,G1, G2, GT , g, h, paramsGS).

Keygen(paramsVRF). Pick a random seed seed ← Zp and random opening information openseed and output

sk = (seed , openseed) and public key pk = GSCommit(hseed , openseed).

Eval(paramsVRF , sk = (seed , openseed), x). Compute y = g1/(seed+x).

Prove(paramsVRF , sk = (seed , openseed), x). Compute y = g1/(seed+x) and a corresponding commitment

C = GSCommit(y, aux (y)) from random opening aux (y). Next create the following two proofs: π1,

a composable NIZK proof that C is a commitment to y using the Groth-Sahai techniques (see Section

3.5 for details); π2, a GS composable witness indistinguishable proof that C is a commitment to Y and

pk is a commitment to S such that e(Y, Shx) = e(g, h). Output π = (C, π1, π2).

VerifyProof(params, pk , x, y, π = (C, π1, π2)). Use the Groth-Sahai verification to Verify π1, π2 with re-

spect to C, x, pk , y.

Efficiency

The above proof protocol generates 1 new commitment in G1, then produces one Groth-Sahai proof for a

pairing product equation with Q = 1, and finally produces a zero-knowledge proof of equality of committed

values in G1 using the proof system in Section 3.5. Applying the efficiency formulas given in Sections 3.4

and 3.5, we get the following lemma:

Theorem 17. When instantiated using the SXDH instantiation given in Section 3.3 the sVRF proofs will have

the following efficiency: Generating the proof will require 40 exponentiations in G1 and 40 exponentiations

in G2. The resulting proof will consist of 14 elements of G1 and 14 elements of G2. Verifying the proof will

involve computing 60 bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3, the

above proof system will have the following efficiency: Generating the proof will require 153 exponentiations

in G. The resulting proof will consist of 33 elements in G. Verifying the proof will involve computing 108

bilinear group pairings.

81

Security

Theorem 18. This construction with domain size q is a strong sVRF under the q-DDHI for G1 and under the

assumption that the Groth-Sahai proof system is secure.

Proof. Correctness and Verifiability follow from the corresponding properties of the WI and NIZK GS proof

systems.

Pseudorandomness can be shown via an approach very similar to our proof below for Simulatability, so we

will not show it here.

Trapdoor-Indistinguishable Simulatability We define the following simulator algorithms:

SimSetup(1k). Let e : G1 × G2 → GT be a bilinear map of order q. Let g be a generator for G1,

and h be a generator for G2. Let (paramsGS , auxsim) ← GSSimSetup(q,G1, G2, G2, GT , g, h)

be simulated parameters for a Groth-Sahai NIZK proof system. Output parameters paramsVRF =

(q,G1, G2, GT , g, h, paramsGS) and trapdoor t = sim .

SimG(paramsVRF). Pick a random seed seed ← Zp and random opening information openseed and output

sk = (seed , openseed) and public key pk = GSCommit(hseed , openseed).

SimProve(paramsVRF , sk = (seed , openseed), x, y, t). Compute y′ = g
1

s+x and corresponding commit-

ment C = GSCommit(y′). Use the NIZK simulator to compute simulated proof π1 that C is a

commitment to y.

Create π2 as an honest GS witness indistinguishable proof that C is a commitment to y′ and pk is a

commitment to S such that e(y′, Shx) = e(g, h)

Output π = (π1, π2).

Now we need to show that Game Simulated Proofs, when instantiated using this simulator, is indistin-

guishable from Game Real Proofs. We will do this by considering a series of intermediate games.

First consider the following intermediate simulator algorithm:

HybSimProve(paramsVRF , sk = (seed , openseed), x, t). Computes y = g
1

s+x , and then proceeds as

SimProve does: It computes y′ = g
1

s+x and commitment C = GSCommit(y′). It uses the NIZK

simulator to compute simulated proof π1 that C is a commitment to y.

It creates π2 honestly: Create π2 as an honest GS witness indistinguishable proof that C is a commit-

ment to y′ and pk is a commitment to S such that e(y′, Shx) = e(g, h)

It outputs π = (π1, π2).

Game Hybrid Sim 1. Runs as Game Real Proofs except that it uses HybSimProve instead of Prove:

(p, t)← SimParams(1k), (pk , sk)← G(p) and thenA(p, t, pk) gets access to the following oracleR:

On query x,R returns y = Eval(p, sk , x) and π ← HybSimProve(p, sk , x, t).

82

Game Hybrid Sim 1 is indistinguishable from Game Real Proofs by the zero knowledge property of the

GS NIZK and by the perfect WI property of the GS WI proofs.

Now consider a second intermediate game:

Game Hybrid Sim 2. Runs as Game Simulated Proofs except that it computes y correctly:

(p, t)← SimParams(1k), (pk , sk = (seed , openseed))← SimG(p, t), and then A(p, t, pk) gets access

to the following oracle Sim: On query x, Sim (1) checks if x has previously been queried, and if so,

computes π ← SimProve(p, sk , x, y, t) for the stored y and returns (y, π); (2) otherwise, it computes

y = g
1

s+x and π ← SimProve(p, sk , x, y, t), returns (y, π), and stores y.

First note that Game Hybrid Sim 2 is identical to Game Hybrid Sim 1. Next, we can see that by theorem

16, Game Hybrid Sim 2 is indistinguishable from Game Simulated Proofs. Thus, Game Simulated Proofs is

indistinguishable from Game Real Proofs, and the simulatability property holds.

5.2.3 Construction Based on General Assumptions

In the common-random-string (CRS) model, sVRFs can be constructed from any one-way function and an un-

conditionally sound multi-theorem non-interactive zero-knowledge proof system (NIZKProve, NIZKVerify)

for NP (we review the notion of NIZK in Section 8.1). Pseudorandom functions (PRFs) can be obtained from

one-way functions [58, 50] (in the sequel, by Fs(x) we denote a PRF with seed s and input x). In the CRS

model, one-way functions also imply unconditionally binding computationally hiding non-interactive com-

mitment [67] (in the sequel, denoted as comm(x, q, r), where x is the value to which one commits, q is the

public parameter, and r is the randomness). We describe the construction below. In the full version, we prove

it is an sVRF.

params Corresponding to the security parameter k, choose a common random string σ of length `(k), where

`(k) bits suffice for multi-theorem NIZK

[7, 46, 56]. Choose a random 2k-bit string q as the public parameter for the Naor commitment scheme.

The parameters are p = (σ, q).

Domain and range The function has domain D(p) = {0, 1}p1(k), and range R(p) = {0, 1}p2(k), where p1

and p2 are functions bounded by a polynomial.

G Pick a random seed s for a pseudorandom function Fs : {0, 1}p1(k) 7→ {0, 1}p2(k). Let pk =

comm(s, q, r), sk = (s, r), where r is the randomness needed for the commitment.

Eval On input x, output y = Fs(x).

Prove On input x, run NIZKProve using CRS σ to output a NIZK proof π of the following statement:

∃(s, r) | pk = comm(s, q, r) ∧ y = Fs(x).

Verify On input (pk , y, π), verify the proof π using the NIZKVerify algorithm.

83

5.3 NIZK Proofs of Pseudorandom Functions

In some applications, we need something stronger than an sVRF. The simulatability property of an sVRF

guarantees that the public key and corresponding proofs will not compromise the pseudorandomness of the

output values. However, they are not guaranteed to hide all information about the seed corresponding to the

public key. In our ecash application, we need to be certain that the proofs will reveal no information about

which wallet was used, which means that they should completely hide the seed used. Furthermore, we do not

want to reveal which coin in the wallet is being spent, thus we also want to hide the input x.

What we really need is a pseudorandom function for which we can commit to a seed, and commit to an

input, and then issue NIZK proofs that a particular value is the correct output for the given commitments. It

turns out that the construction above can easily be extended to give these stronger properties.

As above, we will use the pseudorandom function PRFs(x) = g
1

s+x , where s is the seed, x is the input,

and g is a group element. Thus, we need to be able to prove statements about the following language.

Let LS(params) be the set of tuples Cs, Cx, y such that y is the correct output with respect to the x, s

contained in Cs, Cx. I.e.

LS = {Cs, Cx, y | ∃x, s, aux (x), aux (s) such that

Cs = Commit(s, aux (s)) ∧ Cx = Commit(x, aux (x)) ∧ y = PRFs(x)}

Note that the commitments here are the same commitments to elements of Zp that are also used by our P-

signature constructions in Chapter 4. We use the same trick to turn a commitment to a group element into a

commitment to a ∈ Zp: Commit(a, aux (a)) = GSCommit(ha, aux (a)) as described in Section 4.2.3.

Here our proof system will also use the Groth-Sahai Setup and SimSetup algorithms, and will satisfy

the requirements for composable zero knowledge (see Section 8.1.) Thus, it can securely be combined with

any other Groth-Sahai based proofs, and in particular, it can share its parameters with the P-signature scheme

given in Section 4.2.3.

We build a NIZK proof system for this language. The construction is as follows:

Setup(1k). Compute the parameters params for the GS proof system.

Prove(params,Cs, Cx, y, s, aux (s), x, aux (x)). We first form new commitments C ′s = GSCommit(hs,

aux (s)′) and C ′x = GSCommit(hx, aux (x)′). Then we compute zero knowledge proof π1 that Cs and

C ′s are commitments to the same value and proof π2 that Cx and C ′x are commitments to the same

value using the techniques described in Section 3.5.

Next, we compute a commitment C ′y = GSCommit(y, aux (y)) to y and a zero knowledge proof π3

that C ′y is a commitment to y as in Section 3.5.

Finally, we compute a GS witness indistinguishable proof π4 that the value committed to in C ′y is the

correct output given the seed in C ′s and the input in C ′x, i.e. that C ′y is a commitment to Y , C ′s is a

commitment to S, and C ′x is a commitment to X such that e(Y, SX) = e(g, h). The final proof is

π = (C ′s, C
′
x, C

′
y, π1, π2, π3, π4).

84

VerifyProof(params,Cs, Cx, y, π = (C ′s, C
′
x, C

′
y, π1, π2, π3, π4)). Uses the Groth-Sahai verification tech-

niques to verify π1, π2, π3, π4 with respect to Cs, Cx, y, C
′
s, C

′
x, C

′
y .

Efficiency

The proof system above generates 3 new commitments (1 in G1 and 2 in G2), Groth-Sahai proofs for 1

pairing product equations with Q = 1, and 3 zero-knowledge proofs of equality of committed exponents (see

Section 3.5), 1 for a pair of commitments to an element of G1, and 2 for commitments to elements of G2.

Applying the efficiency formulas given in Sections 3.4 and 3.5, we get the following lemma:

Theorem 19. When instantiated using the SXDH instantiation given in Section 3.3 the above proof system

will have the following efficiency: Generating the proof will require 96 exponentiations in G1 and 96 expo-

nentiations in G2. The resulting proof will consist of 34 elements of G1 and 34 elements of G2. Verifying the

proof will involve computing 140 bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3, the

above proof system will have the following efficiency: Generating the proof will require 369 exponentiations

in G. The resulting proof will consist of 81 elements in G. Verifying the proof will involve computing 252

bilinear group pairings.

Security

Theorem 20. The proof system Setup,Prove,VerifyProof is a secure composable zero knowledge proof

system for the language LS(params) described above, where params is output by Setup.

Proof. Correctness and Soundness follow from the corresponding properties of the underlying proof systems.

Thus, we need only show zero knowledge. Consider the following simulator:

SimSetup(1k). runs the GS simulation setup to generate simulated parameters params and trapdoor sim .

SimProve(params, sim, Comx, Coms, y). We first choose random s′, x′ ← Zp, random opening infor-

mation aux (s)′, aux (x)′ and form new commitments C ′s = GSCommit(hs′ , aux (s)′) and C ′x =

GSCommit(hx′ , aux (x)′).

Then we use the GS NIZK simulator to compute simulated zero knowledge proof π1 that Cs and C ′s
are commitments to the same value and simulated proof π2 that Cx and C ′x are commitments to the

same value using the techniques described in Section 3.5.

Next, we compute a commitment C ′y to PRFs′(x′) and use the GS NIZK simulator to generate simu-

lated proof π3 that C ′y is a commitment to y as in Section 3.5.

Finally, we compute a GS witness indistinguishable proof π4 that the value committed to in C ′y is the

correct output given the seed in C ′s and the input in C ′x. (Note that this statement is true given our

choice of C ′y, C
′
s, C

′
x.)

The final proof is π = (C ′s, C
′
x, C

′
y, π1, π2, π3, π4).

85

Note that when parameters are generated by SimSetup, the proof π4 and the commitments C ′y, C
′
s, C

′
x

generated by SimProve are distributed identically to those generated by Prove. Further, by the compos-

able zero knowledge properties of the GS NIZK for equality of committed values, the simulated proofs

π1, π2, π3 will also be distributed identically to those generated by the honest Prove algorithm. Thus,

SimSetup,SimProve as described here satisfy the definition of zero knowledge for Setup,Prove,VerifyProof.

Chapter 6

Application to Non-Interactive
Anonymous Credentials

Anonymous credentials [35, 41, 15, 65, 23, 24, 25] let Alice prove to Bob that Carol has given her a certificate.

Anonymity means that Bob and Carol cannot link Alice’s request for a certificate to Alice’s proof that she

possesses a certificate. In addition, if Alice proves possession of a certificate multiple times, these proofs

cannot be linked to each other. Anonymous credentials are an example of a privacy-preserving authentication

mechanism, which is an important theme in modern cryptographic research.

Anonymous credentials are an immediate consequence of P-signatures (and of CL-signatures [64]) as

follows; Suppose there is a public-key infrastructure that lets each user register a public key. Alice registers

unlinkable pseudonyms AB and AC with Bob and Carol. AB and AC are commitments to her secret key,

and so they are unlinkable by the security properties of the commitment scheme. Suppose Alice wishes to

obtain a certificate from Carol and show it to Bob. Alice goes to Carol and identifies herself as the owner of

pseudonym AC . They run the P-signature Issue protocol as a result of which Alice gets Carol’s signature on

her secret key. Now Alice uses the P-signature Prove protocol to construct a non-interactive proof that she

has Carol’s signature on the opening of AB .

6.1 Anonymous Credentials Based on P-Signatures

Recall that the participants in any credential system are users (who obtain credentials), organizations (who

grant credentials) and a certification authority (CA). The existence of a CA allows users and organizations to

register public keys. This is necessary, even if all other transactions are anonymous. Instead of saying “Alice

has a credential” which, in the digital world, is not a well-formed statement, one needs to be able to say

“The owner of pkAlice (i.e. whoever knows skAlicehas a credential.” Then, so long as we believe that Alice

does not reveal her secret key to other entities, there is a reason to believe that indeed it is Alice who has the

credential. Here, it does not matter if we are talking about anonymous credentials or non-anonymous ones:

even when we don’t care about Alice’s anonymity, unless users take steps to protect her secrets, a digital

86

87

credentials system cannot be very meaningful.

An anonymous credential system consists of the following protocols:

Setup System parameters params are generated, users and organizations generate their public and secret

keys (pk , sk) and register their public keys with the CA. We will refer to PKI as the collection of all

the public keys, and to the identity of the user as pk , his public key. As a result of this registration step,

a user (whose private input is his secret key) obtains his root credential CCA.

Pseudonym registration As a result of this protocol, a user and an organization agree on a pseudonym (nym)

N for the user. The user’s private input is his (sk , pk) and his CCA; the organization does not have

any private input. Their common output is N . The user’s private output is aux (N), some auxiliary

information that may be needed later.

Credential issue As a result of this protocol, a user obtains a credential from an organization without re-

vealing his identity, just based on his pseudonym N . The user U ’s private input to the protocol is his

(skU , pkU , auxN), the organization’s private input is its secret key skO, the user’s private output is the

credential C.

Proof of possession of a credential Here, a user who is known to one organization, O1 under pseudonym

N1, and to another, O2, under pseudonym N2, and a credential C1 from O1, proves to O2 that he has a

credential from O1. The user’s private input to this protocol consists of (skU , pkU , P1, auxN1 , auxN2 ,

C1), while the values N2 and pkO1
are public. The organization verifies the proof.

An anonymous credential system should satisfy unforgeability and anonymity.

Informally, unforgeability requires that (1) corresponding to each pseudonym there is a well-defined

identity and (2) if a user with pseudonym P successfully convinces an honest organization that she possesses

a credential from another honest organization O′, then it must be the case that organization O′ has issued a

credential to some pseudonym P ′ such that the identity of P ′ is the same as that of P .

Anonymity, informally, requires that, even an adversary that corrupts the CA and any subset of the orga-

nizations and users cannot distinguish the following two situations (1) it receives honestly generated public

parameters, and is interfacing with honest users who obtain and show credentials as directed by the adversary;

(2) it receives a different set of parameters, and is interfacing with users who obtain and show credentials as

directed by the adversary, but instead of using the correct protocol for showing their credentials, they use a

simulator algorithm that does not receive any inputs whose distribution depends on the identity of the user.

We now proceed to describe how an anonymous credential scheme can be constructed from P-signatures.

Note that the reason that this scheme can be preferable to known schemes is that the proof of possession of a

credential is non-interactive.

Suppose we are given a P-signature scheme. Then consider the following construction for an anonymous

credential system:

Setup The system parameters params are the parameters for the P-signature scheme. Note that they also

include the parameters for Commit.

88

A user U ’s secret key skU will be chosen from the message space of the signature scheme (which

coincides with the message space of the commitment scheme). The user’s public key will be pkU =

PublicKey(skU) for an appropriately defined function PublicKey.

Organizations (including the CA) will generate their key pairs using the key generation algorithm of

the P-signature scheme.

The CA credential will be issued as follows:

1. The user forms his pseudonym with the CA, NCA = Commit(params, skU , open) for an ap-

propriately chosen open . (Note that, since the commitment scheme is perfectly binding, this

automatically guarantees that the identity associated with this pseudonym is well-defined.)

2. The user proves that he has committed to a sk such that his pkU = PublicKey(sk) using an

appropriate designated verifier [59] non-malleable [62] interactive proof.

3. The user and the CA run the protocol for obtaining a signature on a committed value (i.e. they

run the ObtainSig and IssueSig protocols, respectively).

Pseudonym registration The user forms his pseudonym by forming a commitment to his secret key: for

an appropriately chosen open , N = Commit(params, skU , open). (Again, since the commitment

scheme is perfectly binding, this automatically guarantees that the identity associated with this pseudo-

nym is well-defined.) The user proves that he has a credential from the CA for this pseudonym (as

described below). The user then sends N to the organization and proves knowledge of (sk , open)

using an appropriate designated verifier non-malleable interactive proof.1

The user’s private output aux (N) = open .

Credential issue The user U and the organization O run ObtainSig and IssueSig, respectively. The user’s

input is (params, pkO, skU , N, aux (N)), while the organization’s input is (params, skO, N). As a

result, the user obtains a signature σ on his skU , and so his credential is C = σ.

Proof of possession of a credential The user has a credential C = σO1(skU). He is known to organization

O2 as the owner of the pseudonym N . He needs to issue a non-interactive proof that a credential has

been issued to the owner of N . This is done as follows:

1. Compute (comm, π1, open)← Prove(params, pkO1
, skU , C).

2. Compute π2 ← EqCommProve(params, skU , open, aux (N)). (Where EqCommProve is ex-

plained in Section 3.5. It is a non-interactive proof that the two commitments comm and N are

to the same value.)

3. Output (N, comm, π1, π2).

1This ensures that, at registration time, the entity registering the pseudonym knows the secret key associated with this pseudonym,
so that, for example, Alice could not get Bob to commit to his secret key and prove to her that he knows it, only to then have Alice use
this commitment as her own pseudonym with another organization.

89

6.2 Efficiency

We now consider the efficiency of the protocol for proving possession of a credential. The construction above

is very simple – it generates one P-signature proof for signature on a single message, and then it generates

one zero-knowledge proof of equality of committed values in G2 as in Section 3.5.

Since we are not concerned with small key size or with signature on multiple messages, the two logical

P-signature constructions would be those described in Sections 4.2.1 and 4.2.2. The construction in Sec-

tion 4.2.1 is more efficient, while the construction in Section 4.2.2 is based on a seemingly much weaker

assumption. Thus, we will consider both options, in the efficiency theorems below:

Theorem 21. Consider the construction resulting from using the P-signature scheme given in Section 4.2.1.

When instantiated using the SXDH instantiation given in Section 3.3 the above proof system will have the

following efficiency: Generating the proof will require 64 exponentiations in G1 and 56 exponentiations in

G2. The resulting proof will consist of 22 elements of G1 and 18 elements of G2. Verifying the proof will

involve computing 84 bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3, the

above proof system will have the following efficiency: Generating the proof will require 234 exponentiations

in G. The resulting proof will consist of 48 elements in G. Verifying the proof will involve computing 153

bilinear group pairings.

Theorem 22. Consider the construction resulting from using the P-signature scheme given in Section 4.2.2.

When instantiated using the SXDH instantiation given in Section 3.3 the above proof system will have the

following efficiency: Generating the proof will require 84 exponentiations in G1 and 76 exponentiations in

G2. The resulting proof will consist of 28 elements of G1 and 24 elements of G2. Verifying the proof will

involve computing 108 bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3, the

above proof system will have the following efficiency: Generating the proof will require 315 exponentiations

in G. The resulting proof will consist of 63 elements in G. Verifying the proof will involve computing 198

bilinear group pairings.

6.3 Proof of Security

We must now show that the resulting anonymous credentials scheme is secure.

6.3.1 Unforgeability

Theorem 23. The credentials scheme described above is unforgeable given the security of the P-signatures.

Proof. (Sketch) Recall that the commitment scheme is perfectly binding. Therefore, corresponding to any

setting of params, and any commitment N , there is exactly one value sk and opening open such that N =

Commit(params, sk , open), and exactly one corresponding value pk = PublicKey(sk). Therefore, with the

pseudonym N , we can associate the identity pk , and (1) is satisfied. To satisfy (2), first suppose that the

90

credential system is not unforgeable. Then we set up a reduction that breaks unforgeability of the P-signature

scheme. Let F be the bijection that satisfies the unforgeability definition, and let ExtractSetup,Extract

be the corresponding extractor. The reduction will be given params as output by ExtractSetup, a public

key pk , and access to a signing oracle. The reduction will make pk the public signing key of an arbitrary

organization O under it’s control. It will generate the keys for all other entities under its control correctly.

Finally, it will make a random guess i that the adversary’s ith proof of a credential O will be a forgery.

Since the pseudonym registration protocol includes an (interactive) proof of knowledge of the opening to a

commitment, every times the adversary wishes to register a pseudonym N with O, the values (skA, open)

such that N = Commit(params, skA, open) can be extracted using the knowledge extractor. Every time the

adversary wishes to obtain a credential from an organization other than O, the reduction interacts with the

adversary using the correct protocol. When the adversary, using pseudonym N , wishes to obtain a credential

from O, the reduction already knows the values (skA, open) such that N = Commit(params, skA, open).

So it queries its signing oracle to obtain σ ← Sign(params, sk , skA), and then invokes SimIssue instead of

IssueSig. (Note that SimIssue does not take any additional values, its simulation is based on rewinding the

adversary.) The ith time the adversary produces a proof of possession of a credential from organization O

consisting of (N ′, comm, π1, π2), the reduction outputs π1.

Now we analyze the reduction’s probability of success. Note that the adversary’s view is independent of

i, O. If the reduction has guessed i, O correctly, and if the adversary’s credential forgery is successful, then the

identity defined byN ′ has not been granted a credential byO, but the credential proof will verify successfully.

This means that VerEqComm(params, comm, N ′, π2) = 1 and VerifyProof(params, pk , comm, π1) = 1.

Since (EqCommProve,VerEqComm) is perfectly sound, we know that comm, N ′ are both commitments to

the same value x. Since this is a forgery, we know O never issued a credential to the identity represented by

comm, N , which means we have never queried our signing oracle on the committed value x. This means that

when extractor extracts y, σ from π, comm , either F−1(y) 6= x, or VerifySig(params, pk , F−1(y), σ) =

reject, or VerifySig(params, pk , F−1(y), σ) = accept and F−1(y) = x and x /∈ QSign. In all cases, we

break the unforgeability property.

Note that the reduction above implies unforgeability even as the adversarially controlled users talk to

multiple organizations. However, each organization may only talk to one user at a time, because the reduction

must extract the opening of the commitment (pseudonym) of the user wishing to obtain a credential from O,

and it needs to rewind the adversary for that to happen. Similarly each organization must execute issue

protocols sequentially. This is OK only if the adversary is never rewound to a point in time that happened

before the last query to the signing oracle (because the signing oracle cannot be rewound).

6.3.2 Anonymity

Theorem 24. The credentials scheme described above is anonymous given the security of the P-signatures.

Proof. (Sketch) Recall that we must show that no adversary can distinguish a real execution from one in

which it is interfacing with users who, when obtaining and showing credentials do not use the correct proto-

cols, but instead use a simulator algorithm that does not receive any inputs whose distribution depends on the

identity of the user.

91

We now describe a series of hybrid experiments.

In hybrid experiment H0, the adversary is interfacing with users and organizations carrying out the real

protocols.

In hybrid experiment H1, the parameters params are generated using SimSetup(1k). (Recall that

SimSetup generates parameters for the commitment scheme that result in an information theoretically hiding

commitment scheme.) Other than that, the adversary is interfacing with users and organizations carrying out

the real protocols. The adversary’s view in H1 is indistinguishable from his view in H0 because otherwise

we could distinguish params generated using Setup from those generated by SimSetup.

In hybrid experiment H2, the parameters params and the value sim are generated using SimSetup. The

honest organizations with which the adversary is interfacing are carrying out the real protocols. The honest

users will always form their pseudonyms correctly, but in the zero-knowledge proof of knowledge protocol

that accompanies the registration (both the registration with the CA and the registration with other adversarial

organizations), the users use the zero-knowledge simulator for that proof and not the actual proof protocol.

HybridH2 gives the adversary an indistinguishable view as that in hybridH1 because otherwise we contradict

the zero-knowledge property of the zero-knowledge proof system.

Recall that, in addition to params, SimSetup also generates sim . The knowledge of sim is empowering

in several important ways. The knowledge of sim allows one to (1) compute simulated proofs of equality of

committed values (i.e. simulate EqCommProve), and (2) simulate a proof that the committed value has been

signed (recall the zero-knowledge part of our definition of P-signatures).

In hybrid experiment H3, the only difference from H2 is that honest users prove equality of committed

values using the SimEqComm instead of using EqCommProve. This should be indistinguishable from H2 by

the zero knowledge property of the P-signature.

In hybrid experimentH4, the only difference fromH3 is that honest users generate proofs that committed

values have been signed using SimProve instead of Prove. Note that this means they no longer have the

opening of the resulting commitment comm . However, as we are now using SimEqComm, we no longer need

this opening. If this makes any difference to the adversary’s view, then we again break the zero-knowledge

property of the P-signature.

In hybrid experiment H5, the only difference from H4 is that honest users obtain signatures from adver-

sarial organizations using SimObtain instead of ObtainSig. (Note that they do not need to obtain the real

signatures because they never use them, since their proofs that a commitment has been signed are always

simulated.) If this makes any difference to the adversary’s view, then it is easy to show that the user privacy

part of the definition of security for P-signatures is broken.

In hybrid experiment H6, the only difference from H5 is that when honest users register pseudonyms,

then commit to 1 instead of committing to their secret keys. Note that the view that the adversary gets as a

result is the same as the view he gets in H5, because the commitments are information-theoretically hiding,

and all the proofs are simulated. Also note that in this experiment, the honest users run only protocols that

never take users’ identities as input. Therefore, we have obtained the desired simulator.

Chapter 7

Application to Delegatable Anonymous
Credentials

One of the most common uses of cryptography today is access control: does the person requesting access

to a resource possess the required credentials? A credential typically consists of a certification chain rooted

at some authority responsible for managing access to the resource and ending at the public key of a user

in question, who then needs to demonstrate that he knows the corresponding secret key. The simplest case,

when the trusted authority issues certificates directly to each user (so the length of each certification chain is

1), is inconvenient, because it requires the authority to do too much work. A system in which the authority

delegates responsibility to other entities is more convenient: an entity with a certification chain of length ` can

issue certification chains of length ` + 1. A conventional signature scheme immediately allows delegatable

credentials: Alice, who has a public signing key pkA and a certification chain of length `, can sign Bob’s

public key pkB , and now Bob has a certification chain of length `+ 1.

The design of an anonymous delegatable credential scheme in which participants can obtain, delegate and

demonstrate possession of credential chains without revealing any additional information about themselves,

is a natural and desirable goal. Our main contribution is a solution to this problem which, until now, has

proved elusive: no fully delegatable anonymous credential schemes were previously known. The only known

construction of delegatable anonymous credentials, due to Chase and Lysyanskaya [31], needed kΩ(`) space

to store a certification chain of length ` (for security parameter k), and therefore could not tolerate non-

constant `. In contrast, our solution is practical: all operations on chains of length ` will need Θ(k`) time

and space.

Let us now explain why this was a challenging problem. There is no straightforward transformation of

anonymous credential schemes without delegation [35, 41, 15, 65, 23, 24, 25, 5] into delegatable schemes.

The main building block in research [64, 24, 25, 5] on anonymous credentials was signature schemes that

lend themselves to the design of efficient protocols for (1) obtaining a signature on a committed value (so a

user can obtain a credential from the authority on his committed secret key); and (2) proving that a committed

value has been signed (so a user can prove that his committed secret key has been signed by the authority).

92

93

To form a proof of possession of a credential, a user needs to know a signature on his committed secret key.

Generalizing this building block to delegation chains, a user would need to know an entire delegation chain

authorizing his committed secret key. A conventional delegation chain is just a chain of signatures, and so

knowing it means that the user also knows the identity of all the intermediate signers — the delegators cannot

be anonymous.

Thus, the old approach does not yield itself to delegation, and we must try something very different.

Our main tool will be non-interactive zero-knowledge proofs of knowledge with certain desirable properties.

Let’s say Oliver is the authority originating a particular type of credential with public key pkO and secret key

skO; let’s say Alice is a user with secret key skA, and she wants to obtain the credential directly from Oliver

(so her certification chain will be of length 1). Under the old approach, they would run a secure two-party

protocol as a result of which Alice obtains a signature σpkO
(skA) on skA, while Oliver gets no output. Under

the new approach, she does not get such a signature — rather, her output is (commA, πA) where commA is

a commitment to her secret key skA, and πA is a proof of knowledge of Oliver’s signature on the contents of

commA.

How can Alice use this credential anonymously? If the underlying proof system is malleable in just the

right way, then given (commA, πA) and the opening to commA, Alice can compute (comm ′
A, π

′
A) such that

comm ′
A is another commitment to her skA that she can successfully open, while π′A is a proof of knowledge

of Oliver’s signature on the contents of comm ′
A. Malleability is usually considered a bug rather than a feature.

But in combination with the correct extraction properties, we still manage to guarantee that these randomiz-

able proofs give us a useful building block for the construction. The bottom line is that (comm ′
A, π

′
A) should

not be linkable to (commA, πA), and also it should not be possible to obtain such a tuple without Oliver’s

assistance.

Next, how can Alice delegate her credential to Bob? First, we need the commitment comm ′
A to essentially

serve a double purpose as a signature public key. Alice and Bob can run a secure protocol as a result of which

Bob obtains (commB , πB) where commB is a commitment to Bob’s secret key skB and πB is a proof of

knowledge of a signature issued by the owner of comm ′
A on the contents of commB . Now, essentially, the

set of values (comm ′
A, commB , π

′
A, πB) together indicate that the owner of comm ′

A got a credential from

Oliver and delegated to the owner of commB , and so it constitutes a proof of possession of a certification

chain. Moreover, it hides the identity of the delegator Alice! Now Bob can, in turn, use the randomization

properties of the underlying proof system to randomize this set of values so that it becomes unlinkable to his

original pseudonym commB ; he can also, in turn, delegate to Carol.

It may be somewhat counter-intuitive that despite the fact that the proofs are malleable no adversary can

forge a proof of possession of a certification chain. The explanation here is that the proof system is perfectly

extractable, and so in fact a certification chain can be extracted from a proof of possession of a certification

chain. Therefore an adversary that succeeds in faking a proof of possession of a certification chain would in

fact yield an attack on the unforgeability properties of the underlying signature scheme.

(Note that in this informal introduction we are omitting important details that have to do with securely

realizing certification chains of this type, such as (1) how to make it impossible for adversarial users to mix

and match pieces of different certification chains to create unauthorized certification chains; (2) how to define

94

and construct a signature/authentication scheme that remains secure even when an adversary can not only

query honest users for signatures on chosen messages, but also cause honest users to query for adversary’s

signature on their secret keys.)

Our main contributions are that we (1) define and construct extractable and randomizable proofs of knowl-

edge of a witness to a certain class of relations based on the recent proof system for pairing product equations

due to Groth and Sahai [57]; and (2) define and construct a delegatable anonymous credential system based

on this and other building blocks. Our construction is efficient whenever the building blocks can be realized

efficiently. We also give efficient instantiations of the building blocks under appropriate assumptions about

bilinear groups.

7.1 Definition of Delegatable Credentials

An anonymous delegatable credential system has only one type of participant: users. An originator O of a

certain type of credential can register a pseudonym NymO as its public key to act as credential authority.

Users interact with other users, including authorities, using many different pseudonyms. Thus a user A can

be known to authority O as Nym(O)
A and to user B as Nym(B)

A . If authority O issues user A a credential

for Nym(O)
A , then user A can prove to user B that Nym(B)

A has a credential from authority O. We say that

credentials received directly from the authority are level 1 credentials or basic credentials, credentials that

have been delegated once are level 2 credentials, and so on. Thus user A can also delegate its credential to

user B, and user B can then prove that he has a level 2 credential from authority O. Thus, a delegatable

credential system consists of the following algorithms:

Setup(1k). Outputs the trusted public parameters of the system, paramsDC .

Keygen(paramsDC). Creates the secret key of a party in in the system.

Nymgen(paramsDC , sk). Outputs Nym and auxiliary info aux (Nym) for secret key sk .

VerifyAux(paramsDC ,Nym, sk , aux (Nym)). Outputs accept iff Nym is a valid pseudonym for sk ,

aux (Nym).

NymProve(paramsDC , sk ,Nym, aux (Nym))↔ NymVerify(paramsDC ,Nym). Interactive algorithms for

proof of pseudonym possession. The prover inputs (paramsDC , sk ,Nym, aux (Nym)), where Nym is

a pseudonym for sk with auxiliary info aux (Nym). The prover runs NymProve and gets no output.

The verifier inputs (paramsDC ,Nym), runs NymVerify and outputs accept or reject.

Issue(paramsDC ,NymO, sk I ,NymI , aux (NymI), cred ,NymU , L)

↔ Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymI , L). Interactive algorithms for an

issuing protocol between an issuer and a user. The issuer inputs (paramsDC ,NymO, sk I ,NymI ,

aux (NymI), cred ,NymU , L), where NymO is the authorities public key, sk I is the issuer’s secret key,

NymI is the issuer’s pseudonym with auxiliary information aux (NymI), cred is the issuer’s level L

credential rooted at NymO, and NymU is the user’s pseudonym. If NymI = NymO, then the issuer

95

is the authority responsible for this credential, so L = 0 and cred = ε. The issuer runs Issue and gets

no output. The user inputs (paramsDC ,NymO, skU ,NymU , aux (NymU),NymI , L), where NymO

identifies the authority responsible for this type of credential, skU is the user’s secret key, aux (NymU)

is the auxiliary information corresponding to the user’s pseudonym NymU , and L is the level of the

issuer’s credential. The user runs Obtain and gets a credential credU as output.

CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L). Takes as input a level L credential cred

from authority NymO, outputs a value credproof .

CredVerify(paramsDC ,NymO, credproof ,Nym, L). Outputs accept if credproof is a valid proof that the

owner of pseudonym Nym possesses a level L credential from authority NymO. Outputs reject other-

wise.

Discussion of the Anonymity Property. We require that the adversary’s interactions with the honest

parties in the real game should be indistinguishable from some ideal game in which pseudonyms, credentials

and proofs are truly anonymous. Specifically, there should be an alternative setup algorithm SimSetup which

produces parameters indistinguishable from those output by Setup, along with some simulation trapdoor

sim . Under the simulated parameters, for any secret key sk , the distributions of pseudonyms, credentials and

proofs for this secret key should be identical so the distribution output by simulators (SimIssue,SimObtain,

SimProve) that take sim as input but do not take sk as input. Our definition, somewhat in the spirit of the com-

posable zero knowledge definition given in [57], requires that each individual protocol (SimIssue,SimObtain,

SimProve), when run on a single adversarially chosen input (and not only in the oracle described above), pro-

duces output indistinguishable from the corresponding real protocol, even when the adversary is given the

simulation trapdoor. A simple hybrid argument shows that this implies the more complex but weaker defi-

nition described above. This stronger definition is much easier to work with as we need only consider one

protocol at a time, and only a single execution of each protocol, thus it is the one we will present below.

Discussion of the Unforgeability Property. On a high level, we want to define an ideal world, indistin-

guishable from the real world, in which the adversary clearly cannot generate a forgery. Here we will have all

of the honest parties controlled by a single oracle, and we will keep track of all honestly issued credentials.

Then we will require that an adversary given access to this oracle should have only negligible probability of

outputting a forged credential.

DEFINING A FORGERY. First note that, in order for unforgeability of credentials to make sense, we have

to define it in a setting where pseudonyms are completely binding, i.e. for each pseudonym there is exactly

one valid corresponding secret key. The question is, what exactly constitutes a forgery? As a first attempt,

we might say that A succeeds in forging a credential if he can prove that some NymA has been issued a

credential if such a credential was never issued for pseudonym NymA. But just because such a credential

was never issued to NymA, that does not mean that it wasn’t issued to another pseudonym for the same

user. Thus, instead, we can say that there exists some (potentially exponential) extraction which takes as

input a pseudonym and outputs the corresponding secret key. Now we can specify a forgery as an instance

where A can prove that NymA has a credential when such a credential was never issued to any pseudonym

for skA = Extract(NymA). In fact, it is sufficient for our purposes if Extract produces F (skA) for some

96

bijection F , and so we get F -extraction.

Now, how do we formalize the notion that such a credential was never issued? We say a forgery

is when the adversary produces a proof of a level L credential with authority O from which we extract

sk1, . . . , skL−1, skA such that a level L credential rooted at O was never delegated by skL−1 to skA. Thus,

we are not concerned with exactly which set sk2, . . . , skL−2 are extracted. In practical terms, this means

that once skL−1 has delegated a level L credential from authority O to skA, we don’t care if the adversary

can forge credentials with different credential chains as long as they have the same level, are from the same

authority, and are for the same skA.

Of course, this only makes sense if skL−1 belongs to an honest user; otherwise we have no way of

knowing what credentials he issued. But what if the owner of skL−1 is adversarial and the owner skL−2

is honest? Then the owner of skA should be able to prove possession of a credential if and only if skL−2

delegated a level L− 1 credential rooted at authority O to user skL−1. Generalizing this idea, our definition

says a forgery is successful if we extract sk0, . . . , skL such that there is a prefix skO, . . . , sk i such where

sk i−1 is honest, but sk i−1 never issued a level i credential from root O to sk i.

DEFINING THE GAME We need to capture unforgeability in all possible situations. The most general way to

do this is to give the adversary access to an oracle through which he can direct the rest of the system. He can

ask that new honest users and new honest pseudonyms be created, or that credentials be delegated between

honest users. Further he can ask that credentials be delegated between honest and adversarial users, in which

case he participates in the delegation protocol. The resulting oracle becomes very complex. So instead, we

put the adversary in charge of keeping track of each honest user’s credentials and pseudonyms (but, of course,

not their secret keys). For example, the adversary will give the oracle a pseudonym and a credential and ask

him to delegate to another pseudonym. If the pseudonym belongs to an honest party and the credential is

correct, the oracle will oblige and will give the resulting delegated credential to the adversary. Note that this

definition is strictly stronger than that with the more general oracle described above.

We will first present a sketch of the security definitions for delegatable anonymous credentials. Then we

will give more formal definitions in Section 7.2.

7.1.1 Definitions of Delegatable Anonymous Credentials: A Sketch

(We say that a function ν : Z → R is negligible if for all integers c there exists an integer K such that

∀k > K, |ν(k)| < 1/kc. We use the standard GMR [54] notation to describe probability spaces.) A cre-

dential system with efficient algorithms (Setup,Keygen,Nymgen,NymProve,NymVerify,VerifyAux, Issue,

Obtain,CredProve,CredVerify) constitute a secure anonymous delegatable credential scheme if the follow-

ing properties hold (For more formal definition, see Appendix 7.2):

Correctness. We say that a credential cred is a proper levelL credential from authorityO for sk with respect

to paramsDC if, for all pseudonyms Nym for sk , when CredProve uses this credential to compute a

proof for Nym , CredVerify always accepts. We require the following properties:

(a). Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymI , L) always outputs a proper level

L+ 1 credential from authority O for skU or aborts.

97

(b). Issue(paramsDC ,NymO, sk I ,NymI , aux (NymI), cred ,NymU , L) aborts without starting any

communication if cred is not a proper L credential from authority O for sk I , or if NymU is not a valid

pseudonym, or if NymI , aux (NymI) are not consistent with sk I . If all these values are correct, and if

Issue is interacting with an honest Obtain with the appropriate inputs, then Obtain will output a valid

credential.

(c). CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) aborts with no output if cred is not

a proper level L credential from O for sk , or if Nym, aux (Nym) are not consistent with sk . If all these

are correct, then CredProve interacting with CredVerify with the appropriate inputs, causes CredVerify

to accept.

(d). VerifyAux always accepts pseudonyms generated by Nymgen.

Anonymity To capture that pseudonyms and proofs reveal no information about the user’s secret keys or his

credentials, we require that there exists a simulator (SimSetup, SimProve, SimObtain, SimIssue) such

that:

(a). The public parameters generated by SimSetup are indistinguishable from those output by Setup.

(b). When generated using the parameters output by SimSetup, Nym is distributed independently of

sk .

(c). The simulator SimProve can output a fake credential proof credproof that cannot be distinguished

from a real credential proof, even when SimProve is only told the authority, length of the credential

chain, and the pseudonym of the user (it is not given the user’s secret key, or his private credentials).

(d). The adversary cannot tell if it is interacting with Obtain run by an honest party with secret sk , or

with SimObtain that is only given the authority, length of the credential chain, and the pseudonyms of

the issuer and user (but not sk).

(e). The adversary cannot tell if it is interacting with Issue run by an honest party with a valid credential,

or with SimIssue which is not given the credential and the issuer’s secret key, but only told the authority,

length of the credential chain, and the pseudonyms of the issuer and user.

Security of NymProve. The algorithm NymProve must be a zero knowledge proof of knowledge of sk ,

aux (Nym) such that VerifyAux(paramsDC ,Nym, sk , aux (Nym)) = accept.

F -Unforgeability. Let F be an efficiently computable bijection and a one-way function. There exists a PPT

ExtSetup, and a deterministic but potentially unbounded Extract with five properties:

(a). The parameters generated by ExtSetup are distributed identically to those generated by Setup.

(b). Under these parameters pseudonyms are perfectly binding, i.e. for any Nym , there exists at most

one sk for which there exists aux (Nym) such that VerifyAux(paramsDC ,Nym, sk , aux (Nym)) =

accept

(c). Given an honestly generated level L credential proof, Extract can always extract the correct chain

of L identities. I.e. if the credential is formed by using sk0 to delegate to sk1 which delegates to sk2

98

and so on until skL, Extract will produce (f0, . . . , fL) = (F (sk0), . . . , F (skL)). Note that this must

hold for level 0 as well: for any valid pseudonym NymO, Extract will produce f0 = F (skO) where

skO corresponds to NymO.

(d). Given an adversarially generated level L credential proof credproof from authority NymO for

pseudonym Nym , Extract will always produce either the special symbol ⊥ or f0, . . . fL such that

NymO is a pseudonym for F−1(f0) and Nym is a pseudonym for F−1(fL).

(e). No adversary can output a valid credential proof from which an unauthorized chain of identities is

extracted:

Pr[(paramsDC , td)← ExtSetup(1k);

(credproof ,Nym,NymO, L),← AO(paramsDC ,·,·)(paramsDC , td);

(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :

CredVerify(paramsDC ,NymO, credproof ,Nym, L) = accept ∧

(∃i such that (f0, i, fi−1, fi) 6∈ ValidCredentialChains ∧ fi−1 ∈ HonestUsers)] ≤ ν(k)

where O(paramsDC , command , input) responds to the following types of queries as follows: The

oracle simulation interaction with all honest parties. The adversary can ask to add an honest user, in

which case the oracle generates and stores a secret key sk and returns a handle F (sk) to the adversary.

The adversary can the oracle to form a new pseudonym for an honest user, in which case the oracle

stores the auxiliary information, and returns the resulting pseudonym. The adversary can ask one

honest user to issue delegate a given credential to another honest user. In this case, we use Extract

to extract the corresponding identity chain f0, . . . , fL, record that the credential has been issued, and

then return the credential. The adversary can also ask an honest user to delegate a credential to an

adversarial user. This proceeds as in the previous case, except that the adversary participates in the

delegation protocol. Similarly, the adversary can have an adversarial user delegate to an honest user.

Finally, the adversary can ask an honest user to issue a proof for a given credential.

7.2 Formal Definition of Delegatable Credentials

Correctness. We say that a credential cred is a proper levelL credential for organization NymO with respect

to (paramsDC , sk) if

Pr[Nym, aux (Nym)← Nymgen(paramsDC , sk);

credproof ← CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) :

CredVerify(paramsDC ,NymO, credproof ,Nym, L) = accept] = 1.

We require the following property: (a). Obtain always outputs a proper credential (in the sense above)

99

or aborts. More formally: For all adversaries A1,A2,

Pr[paramsDC ← Setup(1k);

(NymO, skU ,NymU , aux (NymU),NymD, L, state)← A1(paramsDC);

A2 ↔ Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymD, L))→ credU

: (proper(paramsDC , credU , skU ,NymO, L+ 1) ∨ credU = abort)] = 1

(b). Users with proper level L credentials can delegate proper level L + 1 credentials. Users with

credentials that are not proper will output ⊥.

For all paramsDC ← Setup(1k) and for all sk ,NymO,

Pr[skU ← Keygen(paramsDC), (NymD, aux (NymD))← Nymgen(paramsDC , skD),

(NymU , aux (NymU))← Nymgen(paramsDC , skU),

(Issue(paramsDC ,NymO, sk ,Nym, aux (Nym), cred ,NymU)

↔ Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymD, L))→ credU

: (proper(paramsDC , cred , sk ,NymO, L) ∧ ¬proper(paramsDC , credU , skU ,NymO, L+ 1))]

= 0

(c). Issue(paramsDC ,NymO, skD,NymD, aux (NymD), cred ,NymU , L) aborts without starting

any communication if proper(paramsDC , cred , skD,NymO, L) = 0, or if there does not exist skU ,

aux (NymU) such that VerifyAux(paramsDC ,NymU , skU , aux (NymU)) = 1, or if VerifyAux

(paramsDC ,NymD, skD, aux (NymD)) = 0.

(d).CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) aborts without producing output if

proper(paramsDC , cred , sk ,NymO, L) = 0, or if VerifyAux(paramsDC ,Nym, sk , aux (Nym)) = 0.

(e.) VerifyAux always accepts pseudonyms generated by Nymgen. More formally:

Pr[paramsDC ← Setup(1k); sk ← Keygen(paramsDC);

(Nym, aux (Nym))← Nymgen(paramsDC , sk) :

VerifyAux(paramsDC ,Nym, sk , aux (Nym)) = 1] = 1

Anonymity During any protocol when a user reveals his pseudonym Nym but does not intentionally reveal

(sk , aux (Nym)), the other user should learn no information about (sk , aux (Nym)). By no informa-

tion, we mean that the user can be replaced by a simulator that does not know (sk , aux (Nym)), but still

can execute the protocol. The simulator SimSetup, SimProve, SimObtain, SimIssue has the following

properties:

(a). The public parameters generated by SimSetup is indistinguishable from those output by Setup.

|Pr[paramsDC ← Setup(1k); b← A(paramsDC) : b = 1]

− Pr[(paramsDC , sim)← SimSetup(1k); b← A(paramsDC) : b = 1]| < ν(k)

100

(b). A pseudonym Nym reveals no information about the corresponding identity sk . Let paramsDC ,

sim ← SimSetup(1k), (sk , pk)← Keygen(paramsDC), and (Nym, aux (Nym))← Nymgen

(paramsDC , sk). Then (paramsDC , sim,Nym) is information theoretically independent of sk .

(c). The simulator can output a fake credential credproof that cannot be distinguished from a real

credential, even though the simulator does not have access to skU and cred (and skU and cred are

chosen adversarially). Formally, for all PPTM adversaries A = (A1,A2), there exists a negligible

function ν so that:

|Pr[(paramsDC , sim)← SimSetup(1k);

(NymO, cred , sk ,Nym, aux (Nym), L, state)← A1(paramsDC , sim);

π ← CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L); b← A2(state, π) : b = 1]

−Pr[(paramsDC , sim)← SimSetup(1k);

(NymO, cred , sk ,Nym, aux (Nym), L, state)← A1(paramsDC , sim);

flag← Check(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L);

SimProve(paramsDC , sim,NymO,Nym, L, flag);

b← A2(state, π) : b = 1]| < ν(k).

Check(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) outputs accept if VerifyAux(paramsDC ,

Nym, sk , aux (Nym)) = 1 and proper(paramsDC , cred , sk ,NymO, L) = 1

(d). The adversary cannot tell if it is interacting with Obtain or SimObtain. Formally, for all PPTM

adversaries A = (A1,A2), there exists a negligible function ν so that:∣∣ Pr[paramsDC ← Setup(1k); (NymO, sk ,Nym, aux (Nym), L,NymA, state)← A1(paramsDC);

b← A2(state)↔ Obtain(paramsDC ,NymO, sk ,Nym, aux (Nym),NymA, L) : b = 1]

−Pr[paramsDC ← SimSetup(1k);

(NymO, sk ,Nym, aux (Nym), L,NymA, state)← A1(paramsDC);

flag← Check(paramsDC , sk ,Nym, aux (Nym));

b← A2(state)↔ SimObtain(paramsDC ,NymO,Nym,NymA, L, flag) : b = 1]
∣∣ < ν(k).

Check(paramsDC , sk ,Nym, aux (Nym)) outputs accept if VerifyAux(paramsDC ,Nym, sk ,

aux (Nym)) = 1 and reject otherwise.

(e). The adversary cannot tell if it is interacting with Issue or SimIssue. Formally, for all PPTM

101

adversaries A = (A1,A2), there exists a negligible function ν so that:

|Pr[(paramsDC , sim)← SimSetup(1k);

(NymO, sk ,Nym, aux (Nym), cred ,NymA, L, state)← A1(paramsDC , sim);

Issue(paramsDC ,NymO, sk ,Nym, aux (Nym), cred ,NymA, L)↔ A2(state)→ b :

b = 1]

−Pr[(paramsDC , sim)← SimSetup(1k);

(NymO, sk ,Nym, aux (Nym), cred ,NymA, L, state)← A1(paramsDC , sim);

flag← Check(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L);

SimIssue(paramsDC , sim,NymO,Nym,NymA, L, flag)↔ A2(state)→ b :

b = 1]| < ν(k)

Check(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L) outputs accept iff VerifyAux(paramsDC ,

Nym, sk , aux (Nym)) = 1 and proper(paramsDC , cred , sk ,NymO, L) = 1.

Security of NymProve. NymProve must be a zero knowledge proof of knowledge of sk , aux (sk) such that

VerifyAux(paramsDC ,Nym, sk , aux (sk)) = 1. More formally, this means:

(a). Correctness

Let paramsDC ← Setup(1k), (sk , pk) ← Keygen(paramsDC), and (Nym, aux (Nym)) ← Nymgen

(paramsDC , sk). If an honest prover runs NymProve(paramsDC , sk ,Nym, aux (Nym)) and an hon-

est verifier runs NymVerify(paramsDC ,Nym), the verifier always outputs accept.

(b). Zero Knowledge.

The adversary cannot tell if it is interacting with NymProve or SimNymProve. Formally, for all PPTM

adversaries A = (A1,A2), there exists a negligible function ν so that:

|Pr[(paramsDC , sim)← SimSetup(1k);

(sk ,Nym, aux (Nym), state)← A1(paramsDC , sim);

NymProve(paramsDC , sk ,Nym, aux (Nym))↔ A2(state)→ b : b = 1]

−Pr[(paramsDC , sim)← SimSetup(1k);

(sk ,Nym, aux (Nym), state)← A1(paramsDC , sim);

flag← VerifyAux(paramsDC , sk ,Nym, aux (Nym));

SimNymProve(paramsDC , sim,Nym, flag)↔ A2(state)→ b : b = 1]| < ν(k)

Note that SimNymProve is allowed to rewind A2.

(c). Knowledge Extraction.

There exists an interactive PPTM NymExtract such that for all PPTM A1,A2 there exists a negligible

102

function ν such that:

|Pr[(paramsDC)← Setup(1k); (state,Nym)← A1;

A2(state)↔ VerifyProof(paramsDC ,Nym)→ result : result = accept]

−Pr[(paramsDC)← Setup(1k); (state,Nym)← A1;

A2(state)↔ NymExtract(paramsDC ,Nym)→ sk :

∃open such that VerifyAux(Nym, sk , open) = 1]| < ν(k)

where NymExtract is allow rewind A2.

F -Unforgeability. Let F be an efficiently computable bijection. There exists an extractor (ExtSetup,

Extract) with four properties:

(a). The parameters generated by ExtSetup are distributed identically as those generated by Setup.

(b). Under these parameters pseudonyms are perfectly binding. I.e. for all (paramsDC , td) ←
ExtSetup, for all Nym , if there exists aux (Nym), aux (Nym)′ such that VerifyAux(paramsDC ,Nym,

sk , aux (Nym)) = 1 and VerifyAux(paramsDC ,Nym, sk ′, aux (Nym)′) = 1, then sk ′ = sk

(b). Given an honestly generated levelL credential, Extract can always extract the chain ofL identities.

Pr[(paramsDC , td)← ExtSetup(1k);

(sk `, pk `)← Keygen(paramsDC) for ` = 0...L;

(Nym`, aux (Nym`))← Nymgen(paramsDC , sk `) for ` = 0...L;

privcred0 = ⊥

;Issue(paramsDC ,Nym0, sk `,Nym`, aux (Nym`), cred `,Nym`+1, `)

↔ Obtain(paramsDC ,Nym0, sk `+1,Nym`+1, aux (Nym`+1),Nym`, `)→ cred `+1

for ` = 0...L− 1;

credproof ← CredProve(paramsDC ,Nym0, credL, skL,NymL, aux (NymL), L);

(f0, f1, . . . , fL)← Extract(paramsDC , td , credproof ,NymL, L) :

∀` = 0...L : f` = F (sk `)] = 1.

Also, for any valid pseudonym, Extract will produce the appropriate f(sk): For all Nym

Pr[(paramsDC , td)← ExtSetup(1k);

f0 ← Extract(paramsDC , td ,⊥,Nym,Nym, 0) :

(∃sk , aux (Nym)such thatVerifyAux(paramsDC ,Nym, sk , aux (Nym)) = 1)

∧ f0 6= F (sk)] = 0.

(d). Given an adversarially generated credential, Extract will always produce the correct values for

103

f0, fL, or produce ⊥.

Pr[(paramsDC , td)← ExtSetup(1k);

(credproof ,Nym,NymO, L),← A(paramsDC , td);

(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :

(f0, . . . , fL) 6= ⊥∧

((∃skU ′ ∃aux (Nym)′ : VerifyAux(paramsDC ,Nym, skU ′, aux (Nym)′) ∧ F (skU ′) 6= fL)

∨ (∃sk ′O ∃aux (NymO)′ : VerifyAux(paramsDC ,NymO, sk
′
O, aux (NymO)′) ∧ F (sk ′O) 6= f0))]

≤ ν(k)

(e). No adversary can output a valid credential from which the extractor extracts an unauthorized chain

of identities.

Pr[(paramsDC , td)← ExtSetup(1k);

(credproof ,Nym,NymO, L),← AO(paramsDC ,·,·)(paramsDC , td);

(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :

CredVerify(paramsDC ,NymO, credproof ,Nym, L) = accept∧

(∃i such that (f0, i, fi−1, fi) 6∈ ValidCredentialChains ∧ fi−1 ∈ HonestUsers)] ≤ ν(k)

where O(paramsDC , command , input) behaves as follows:

AddUser. The oracle runs sk ← Keygen(paramsDC). It stores (sk , F (sk)) in the user database and

gives the adversary F (sk). Store F (sk) in the list HonestUsers.

FormNym(y). The oracle looks up (sk , y) in its user database and terminates if it does not exist. It

calls (Nym, aux (Nym))← Nymgen(paramsDC , sk). The oracle stores (sk ,Nym, aux (Nym))

in its pseudonym database and gives the adversary Nym .

Issue(NymD,NymU , credD, L,NymO). The oracle looks up (skU ,NymU , aux (NymU)) and (skD,

NymD, aux (NymD)) in its pseudonym database and outputs an error if they do not exist. The

oracle then generates a credential proof by running CredProve(paramsDC ,NymO, credD, skD,

NymD, aux (NymD), L) to obtain credproof D (for L = 0, credproof D = ⊥). It runs Extract

(paramsDC , td , credproof D,NymO,NymD, L) to obtain f0, f1, . . . fL. The oracle then runs

Issue(paramsDC ,NymO, skD,NymD, aux (NymD), credD,NymU , L)

↔ Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU),NymD, L)→ credU .

Finally, the oracle stores (f0, L+ 1, fL, F (skU)) in ValidCredentialChains and outputs credU to

the adversary.

IssueToAdv(NymD, credD,Nym, L,NymO). The oracle looks up (skD, pkD,NymD, aux (NymD))

in its pseudonym database, and outputs an error if they do not exist. The oracle generates a

104

credential proof by running CredProve(paramsDC ,NymO, cred , skD,NymD, aux (NymD), L)

to obtain credproof D. It runs Extract(paramsDC , td , credproof D,NymD,NymO, L) to obtain

f0, . . . fL. It then identifies the recipient by running Extract(paramsDC , td ,⊥,Nym,Nym, 0)

to obtain fL+1. Finally the oracle executes the algorithm Issue(paramsDC ,NymO, skD,NymD,

aux (NymD), credD,Nym, L) interacting with the adversary. If the protocol does not abort, the

oracle stores (f0, L+ 1, fL, fL+1) in ValidCredentialChains.

ObtainFromAdv(NymA,NymU ,NymO, L) The oracle looks up (skU ,NymU , aux (NymU)) in its

pseudonym database, and outputs an error if they do not exist. Then it runs Obtain(paramsDC ,

NymO, skU ,NymU , aux (NymU),NymA) with the adversary to get cred . It outputs cred .

Prove(Nym, cred ,NymO, L) The oracle looks up (sk , pk ,Nym, aux (Nym)) in its pseudonym data-

base, and outputs an error if they do not exist. The oracle then runs CredProve(paramsDC ,

NymO, cred , sk ,Nym, aux (Nym), L) to obtain credproof D, and outputs this result.

7.3 Construction of Delegatable Credentials

We now construct delegatable credentials using the tools defined in Section 4.3.1. The parameters of the

system combine the parameters paramsA needed for the authentication scheme and paramsPK needed for

a composable and randomizable NIZKPK proof system and its associated commitment scheme Commit.

It is important that the message authentication domain AuthKg(paramsA) is a subset of the domain of

inputs to the commitment scheme. Each user U has a secret key skU ← AuthKg(paramsA), and forms

his pseudonyms using Commit: NymU = Commit(skU , openU). U can create arbitrarily many different

pseudonyms by choosing new random values openU . As described in 7.2, a user can act as an authority

(originator) for some type of a credential by making his pseudonym NymO publicly available.

We denote a user’s private credential as cred . To show or delegate the credential, the user randomizes cred

to form credproof . In our construction, cred is in fact an NIZKPK of a statement about U ’s specific secret

pseudonym SU = Commit(skU , 0) (this specific pseudonym does not in fact hide skU since it is formed

as a deterministic function of skU) while credproof is a statement about a proper pseudonym, NymU =

Commit(skU , open) for a randomly chosen open . So U randomizes cred to obtain credproof using the

RandProof algorithm described in Section 4.3.1.

Suppose a user with secret key skU has a level L credential from some authorityA, and let (skO, sk1, . . . ,

skL−1, skU) be the keys such that the owner of sk i delegated the credential to sk i+1 (we let sk0 = skO and

skL = skU). A certification chain is a list of authenticators auth1, . . . , authL, such that sk i generated

authenticator authi+1 on sk i+1.

To make sure that pieces of different certification chains cannot be mixed and matched, we add labels

ri to each authenticator. The labels have to be unique for each authority and delegation level. Let H be a

collision resistant hash function with an appropriate range. For a credential chain rooted at NymO, we set

ri = H(NymO, i). Each authi is an output of Auth(paramsA, sk i−1, (sk i, ri−1, ri)). The user U ’s level L

private credential cred is, therefore a proof as follows:

105

cred ∈ NIZKPK[skO inNymO; skU inSU]{(F (skO), F (sk1), . . . , F (skL−1), F (skU), auth1, . . . ,

authL) :

VerifyAuth(params, skO, (sk1, r0, r1), auth1) ∧ VerifyAuth(params, sk1, (sk2, r1, r2), auth2)

∧ . . . ∧ VerifyAuth(params, skL−1, (skU , rL−1, rL), authL)} .

Here, F is a bijection such that the authentication scheme is F -unforgeable. As a result, if on input cred

the extractor outputs a certification chain involving honest users, this certification chain will correspond to

these users’ delegation activities, or if not, then the security of the authentication scheme does not hold. We

use concatenation, projection and randomization properties of our NIZKPK to allow a delegating issuer I

with a level L credential to delegate it to a user U . We have already explained this in Section 4.3.1.

We now give the full construction. Let PKSetup,PKProve,PKVerify be a proof system and let

AuthSetup,AuthKg,Auth,VerifyAuth be an authentication scheme, and let H : {0, 1}∗ → Zp be a hash

function.

Setup(1k). Use AuthSetup(1k) to generate paramsA and PKSetup(1k) to generate paramsPK ; choose

the hash function H (as explained above) and outputs public parameters paramsDC = (paramsA,

paramsPK ,H).

Keygen(paramsDC). Run AuthKg(paramsA) and outputs the secret key sk .

Nymgen(paramsDC , sk). Choose a random open ∈ Y (where Y is the domain of openings of the com-

mitment scheme Commit associated with paramsPK , as explained in Section 4.3.1). Compute Nym =

Commit(paramsPK , sk , open) and outputs pseudonym Nym and auxiliary information open .

NymProve(paramsDC , sk ,Nym, open)↔ NymVerify(paramsDC ,Nym). The prover and verifier carry out

an interactive zero-knowledge proof of knowledge of a witness (sk , open), such that Nym = Commit

(paramsPK , sk , open)1.

VerifyAux(paramsDC ,Nym, sk , open) accepts iff Nym = Commit(sk , open).

CredProve(paramsDC ,NymO, cred , skU ,NymU , openU , L). Recall that cred should be an NIZKPK of a

certification chain (above, we already gave the NIZKPK formula for it with the correct Condition and

extraction function f). If PKVerify(paramsPK , (NymO,Commit(skU , 0)), cred) rejects, or if NymU 6=
Commit(skU , openU), abort. Otherwise, set credproof ← RandProof((NymO,NymU), (0, openU),

cred). Note that, by the randomization properties of the proof system,

credproof ∈ NIZKPK[skO inNymO; skU inNymU]{(F (skO), F (sk1), . . . , F (skL−1), F (skU), auth1,

. . . , authL) :

VerifyAuth(params, skO, (sk1, r0, r1), auth1) ∧ VerifyAuth(params, sk1, (sk2, r1, r2), auth2)

∧ . . . ∧ VerifyAuth(params, skL−1, (skU , rL−1, rL), authL)} .

CredVerify(paramsDC ,NymO, credproof ,NymU , L) runs PKVerify to verify the above.

Issue(paramsDC ,NymO, sk I ,NymI , openI , cred ,NymU , L)

↔ Obtain(paramsDC ,NymO, skU ,NymU , openU ,NymI , L). If L = 0 and NymO 6= NymI , then this
1Such protocols exist for all NP; in our instantiation, Commit is Pedersen-like and therefore this proof can be done efficiently.

106

protocol is aborted. The issuer verifies his cred using CredVerify and if it does not verify or if NymI 6=
Commit(sk I , openI) or NymU is not a valid pseudonym, the issuer aborts.

Else, the issuer and the user both compute rL−1 = H(NymO, L− 1) and rL = H(NymO, L). The issuer

and the user run a parameterized (by paramsDC) two-party protocol with the following specifications: the

public input is (NymI ,NymU , rl−1, rL); the issuer’s private input is (sk I , openI) and the user’s private

input is (skU , openU). The output of the protocol is as follows: if the issuer did not supply (sk I , openI)

such that NymI = Commit(sk I , openI), or if the user did not supply (skU , openU) such that NymU =

Commit(skU , openU), the protocol aborts; otherwise, the issuer receives no output while the user receives

as output the value π computed as:

π ← NIZKPK[sk I inNymI ; skU inCommit(skU , 0)]{(F (sk I), F (skU), auth) :

VerifyAuth(params, sk I , (skU , rL, rL+1), auth)} .

In Section 4.3.3 we give an efficient instantiation of this 2PC protocol for the specific authentication and

NIZKPK schemes we use.

If L = 0, then NymI = NymO, and so we are done, the user outputs credU = π. If L > 0,

then the issuer is not the original authority for this credential, so he is a delegator. The issuer obtains

credproof I ← CredProve(paramsDC ,NymO, cred , sk I ,NymI , openI , L) and sends it to the user. Let

SU = Commit(skU , 0). Intuitively, credproof I is proof that the owner of NymI has a level L credential

under public key NymO, while π is proof that the owner of NymI delegated to the owner of SU . The user

concatenates credproof I and π to obtain:

credproof I◦π ∈ NIZKPK[skO inNymO; sk I inNymI ; skU inSU]{(F (skO), F (sk1), . . . , F (skL−1),

F (sk I), F (skU), auth1, . . . , authL, authL+1) : VerifyAuth(params, skO, (sk1, r0, r1), auth1)∧

VerifyAuth(params, sk1, (sk2, r1, r2), auth2) ∧ . . . ∧ VerifyAuth(params, skL−1, (sk I , rL−1, rL),

authL ∧ VerifyAuth(params, sk I , (skU , rL, rL+1), authL+1)} .

To get credU , U now needs to project credproof I ◦ π so it becomes a proof about (NymO, SU) and not

about NymI .

Theorem 25. If AuthSetup,AuthKg,Auth,VerifyAuth is an F-unforgeable certification-secure authentica-

tion scheme, and if H is a collision resistant hash function, and if PKSetup,PKProve,PKVerify is a ran-

domizable, perfectly extractable, composable zero knowledge non-interactive proof of knowledge system with

simulation setup SimSetup and extraction setup ComExtractSetup, and if the two party protocol is trapdoor

secure for the simulation trapdoors generated by SimSetup and trapdoor secure for the extraction trapdoors

generated by ComExtractSetup, then the above construction constitutes a secure anonymous delegatable

credential scheme. (See Section 7.5 for proof.)

7.3.1 Efficiency

Here we will consider the efficiency of the CredProve and CredVerify algorithms. A credential proof for

a level L credential consists of L + 1 commitments to values uski ∈ G1, L + 1 commitments to values

107

hski ∈ G2, L + 1 Groth-Sahai proofs for pairing products with Q = 2 which prove that these values are

computed correctly with respect to each other, and L zero knowledge proofs each of which proves knowledge

of an authenticator under a committed secret key on 3 committed messages, computed as described in Section

3.5. (Note that commitments to values uri , hri will use randomness 0, and can be computed by anyone, so

they do not need to be included in the proof.) Running CredProve, just involves randomizing all of these

commitments and proofs, which as was mentioned in Section 3.7.3 takes the same amount of time as forming

new commitments and new proofs for these statements. Similarly, CredVerify simply verifies all the proofs

involved. Applying the efficiency formulas given in Sections 3.4 and 4.3.3, we get the following efficiency

results:

Theorem 26. When the underlying Groth-Sahai proofs are instantiated using the SXDH instantiation given

in Section 3.3 the above credential system will have the following efficiency: Generating a proof for a level L

credential will require 404L+20 exponentiations in G1 and 360L+20 exponentiations in G2. The resulting

proof will consist of 136L+ 6 elements of G1 and 114L+ 6 elements of G2. Verifying the proof will involve

computing 516L+ 24 bilinear group pairings.

When the underlying Groth-Sahai proofs are instantiated using the symmetric setting version of the DLIN

instantiation given in Section 3.3, the above credential system will have the following efficiency: Generating

a proof for a level L credential will require 1503L+81 exponentiations inG. The resulting proof will consist

of 303L+ 15 elements in G. Verifying the proof will involve computing 945L+ 45 bilinear group pairings.

7.4 Adding Attributes

In certain contexts, we want the ability to express why a credential has been delegated. For example, a

Prof. Alice with a level 1 credential from the university can delegate a level 2 credential to Bob either because

Bob is her teaching assistant and needs access to student files or because Bob is a pizza delivery man and

needs access to the building after 5pm.

A simple solution is for the university to use multiple public keys and give Prof. Alice credentials under

each of them. The credential from pkO is for delegating to teaching assistants; the credential from pk ′O is for

delegating to pizza delivery. However, the situation is more complicated. The pizza delivery is authorized

for a particular evening. The university does not want to give each professor a new credential for every day

of the year! This become even more complicated when Alice and the university must predict how Bob will

delegate his credential.

The solution is to include an attribute at each level of the delegatable credential. Thus, we would say that

the authority delegated to the owner of comm1 with attr1, the owner of comm1 delegated to the owner of

comm2 with attr2, etc. This lets Bob present a credential that states that the university authorized the owner

of comm1 with attr1 =“professor”, the owner of comm1, in turn, authorized the owner of my pseudonym

comm2 with attr2 =“deliver a pizza on May 4th, at 5pm.”

Now we briefly explain how to extend our credential scheme to allow attributes. Our authentication

scheme in Section 4.2.4 can handle multiple messages. We use the first three messages for the delegatable

credentials as before. The rest are for attributes. Section 4.3.3 already explains how to create proofs of

108

knowledge of an authenticator for multiple messages. Delegation is straightforward because the user is

allowed to know the value of the attribute and the opening.

7.5 Security Proof for Delegatable Credential Construction

7.5.1 Correctness

Claim. The delegatable credential construction given in Section 7.3 satisfies the Correctness property

(a). Note that Obtain aborts if the credproof that it receives from the issuer does not pass CredVerify.

Then Obtain only completes without aborting if the two party computation completes successfully. In this

case, by the security of the two party computation, we are certain that πL is indistinguishable from an honestly

generated proof of knowledge of an honestly generated authenticator. Then by the correctness of the NIZKPK

system and correctness of the authentication scheme, we know that πL will pass the NIZKPK verification.

Thus, the new cred that results from combining credproof with πL will pass the NIZKPK verification.

Furthermore, by correctness of randomization, this means that any randomization of this proof will pass the

NIZKPK verification and thus the CredVerify, so cred is proper.

(b). If the cred is not a proper credential, then by the properties of the randomization, CredVerify will not

accept the resulting credproof , so Issue will abort. Issue also aborts if NymU is not valid, or if sk I , openI do

not satisfy VerifyAux. Now, if Issue is interacting with Obtain with the appropriate inputs, then it will produce

credproof that will be accepted by the honest user. Then the two party computation will be successful by

the 2PC correctness property. That means Obtain will not abort, so by property (a). it will produce a proper

credential.

(c). Note that if cred passes the CredVerify, then by correctness of randomization, it must be a proper

credential. Thus, if cred is not a proper credential, or if Nym, sk , aux (Nym) does not pass VerifyAux, then

CredProve aborts. If both of these are correct, then credproof is a randomization of a proper credential. That

means that the proof must verify, so CredVerify will accept.

(d). Follows from the definition of VerifyAux.

7.5.2 Anonymity

Claim. The delegatable credential construction given in Section 7.3 satisfies the Anonymity property under

the assumption that our building blocks are secure.

Proof. Define the simulator algorithms as follows:

SimSetup(1k) Uses AuthSetup(1k) to generate paramsA for an F -unforgeable certification secure authen-

tication scheme and then uses GSSimSetup to choose corresponding paramsP for a randomizable

commitment scheme with a partially extractable randomizable composable NIZKPK proof system,

and to choose the appropriate trapdoor simNIZK. Finally, the setup chooses a collision resistant hash

function H whose range is the message space of the authentication scheme and outputs public param-

eters paramsDC = (paramsA, paramsP ,H), sim = simNIZK.

109

SimProve(paramsDC , sim,NymO,Nym, L,flag). If flag = reject, abort and return ⊥.

Otherwise let Nym0 = NymO and NymL = Nym , generate commitments Nym1, . . .NymL−1 to

random values, and computes r0, . . . rL where ri = H(NymO, i).

Then we use the NIZKPK simulator and the simulation trapdoor sim to simulate proofs π1 . . . πL,

where πi is a simulated proof of the form

πi ← SimNIZKPK[sk i−1 inNymi−1; sk i inNymi]{

(F (sk i−1), F (sk i), auth) :

VerifyAuth(params, sk i−1, (sk i, ri−1, ri), auth) = accept}

Finally, we output Nym0, . . .NymL, and π1 ◦ · · · ◦ πL.

SimObtain(paramsDC ,NymO,NymU ,NymA, L,flag) If flag = reject, abort and return ⊥.

It then proceeds as follows:

1. Receives credproof from the adversary.

2. Runs CredVerify(paramsDC ,NymO, credproof ,NymI , L) to checks, that credproof is correct.

If the checks fail, it aborts.

Otherwise, it compute rL−1 = H(NymO, L− 1), rL = H(NymO, L)), the commitment vector

comm ~mh
= (NymU), and the vector of public inputs ~mo = (rL−1, rL).

3. Now we must simulate the two-party computation protocol. We will do this by using the 2PC

simulator which interacts with a corrupt signer. (Note that this simulator expects no input from

the trusted functionality.)

SimIssue(paramsDC , sim,NymO,NymD,NymA, L,flag) If flag = reject, abort and return ⊥.

Otherwise let Nym0 = NymO, NymL = NymD and NymL+1 = NymA, generate commitments

Nym1, . . .NymL−1 to random values, and computes r0, . . . rL+1 where ri = H(NymO, i).

Then we use the NIZKPK simulator and the simulation trapdoor sim to simulate proofs π1 . . . πL,

where πi is a simulated proof of the form

πi ← SimNIZKPK[sk i−1 inNymi−1; sk i inNymi]{

(F (sk i−1), F (sk i), auth) :

VerifyAuth(params, sk i−1, (sk i, ri−1, ri), auth) = accept}

1. Send Nym0, . . . NymL, π1, . . . πL−1 to the adversary

2. Receive comm ~m and check that the first commitment is NymA.

3. Now we must simulate the two-party computation protocol. We will do this by using the 2PC

simulator which interacts with a corrupt recipient. Note that this simulator expects to be provided

with a proof of knowledge of the appropriate authenticator. Thus, we will give it the proof πL

computed above.

110

Now we will prove that these algorithms satisfy the required properties:

(a). Holds by the composable zero knowledge properties of the underlying NIZK proof system.

(b). Holds by the strong computational hiding property of the underlying commitment scheme.

(c). Note that the difference between SimProve and CredProve is that SimProve generates Nym1, . . . ,

NymL−1 as random commitments and uses SimNIZKPK to generated simulated proofs π1, . . . , πL. These

commitments are identical to the honest commitments by the strong computational hiding property, and the

simulated proofs are indistinguishable from the honestly randomized proofs by the randomizability property

of the randomizable proof system.

(d). Note that the difference between SimObtain and Obtain is that SimObtain uses the simulator to run

the two party computation. This should be indistinguishable from the honest Obtain protocol by the security

of the 2PC.

(e). SimIssue differs in three ways from Issue. First, the initial credproof that is sent to the user is formed

using SimNIZKPK instead of by randomizing a real cred . Second, SimIssue uses the simulator to run the two

party computation. Third, the resulting πL is the output of SimNIZKPK and not the result of a valid NIZKPK

of an Auth computed by the 2PC.

We can prove that SimIssue and Issue are indistinguishable by considering several hybrid algorithms.

Hybrid 1 will be given the same input as Issue. It will verify that cred is proper, that it has been given

a correct sk ,Nym, aux (Nym) and that NymA is a valid pseudonym. It will compute credproof honestly.

Then it will use the 2PC simulator to run the two party protocol. This simulator will extract skA, aux ()A from

the user, and expect to receive a corresponding authenticator proof. We will use sk to form and authenticator

on skA, rL, rL+1, and then we will use the honest NIZKPK to generate πL from it. Finally, we will pass πL

to the 2PC simulator which will complete the protocol.

Note that Hybrid 1 is indistinguishable from the game involving the real Issue by the security of the 2PC.

Hybrid 2 will be given the same input as Issue. It will verify that cred is proper, that it has been given

a correct sk ,Nym, aux (Nym) and that NymA is a valid pseudonym. It will compute credproof honestly.

Then it will use the 2PC simulator to run the two party protocol. This simulator will extract skA, aux ()A

from the user, and expect to receive a corresponding authenticator proof. This time, we will use SimNIZKPK

to simulate the proof of knowledge of an authenticator on for NymA. We will pass πL to the 2PC simulator

which will complete the protocol.

Note that Hybrid 2 is indistinguishable from Hybrid 1 by the zero knowledge properties of SimNIZKPK.

Finally, note that the difference between Hybrid 2 and game with SimIssue is that Hybrid 2 generates

credproof by randomizing cred , while SimIssue the SimNIZKPK. This means the two games are indistin-

guishable by the randomization properties of the NIZKPK system.

7.5.3 F -Unforgeability

Claim. The delegatable credential construction given in Section 7.3 satisfies the F -Unforgeability property

under the assumption that our building blocks are secure.

111

Proof. Let ExtSetup be the same as Setup except that when generating paramsPK it uses the extraction

setup of the partially extractable randomizable composable NIZKPK proof system. (a) As these parameters

are required to be indistinguishable, so are the paramsDC . (b) The commitment schemes used with the

NIZKPK proof system is perfectly binding, so are our pseudonyms.

Let F correspond to the F of the F -unforgeable authentication scheme and let Extract be an algorithm

that verifies the credential and aborts if CredVerify aborts, otherwise it uses the extractability features of

the NIZKPK proof system to extract all F (ski) values. (c) An honestly generated level L credential is a

proof of knowledge of a certification chain from sk0 to delegate to skL. It allows to extract (f0, . . . , fL) =

(F (sk0), . . . , F (skL)). If the length of certification chain is 0 Extract extract f0 = F (skO) from any valid

commitment NymO using the extraction property of the commitment. (d) An adversarially generated level L

credential proof credproof from authority NymO for pseudonym Nym either verifies, in which case we can

extract f0, . . . fL from the proof such that NymO is a pseudonym for F−1(f0) and Nym is a pseudonym for

F−1(fL), or it doesn’t. In the latter case Extract outputs ⊥.

(e) Let Q be the maximum number of users in a credential system. We consider two games. In Game 1

the adversary plays the real unforgeability game. In Game 2 we pick a random q ∈ {1, . . . , Q}. Game 2 is

the same as Game 1, except that in the oracle queries with command IssueToAdv and ObtainFromAdv are

answered differently for the qth user.

Let sk∗ be the secret key generated for the qth AddUser query.

IssueToAdv(NymI , credI ,Nym, L,NymO). If Nym is not a valid pseudonym for sk , aux (Nym), the oracle

terminates. The oracle looks up (sk I , pk I ,NymI , aux (NymI)) in its pseudonym database, and outputs

an error if they do not exist. If sk I 6= sk∗ it proceeds as in Game 1. Otherwise the oracle follows the

Issue protocol until Step 4, but uses the simulator for the two-party protocol to simulate interaction with

the adversarial user.

ObtainFromAdv(NymA,NymU ,NymO, L) Similarly, the oracle looks up (skU ,NymU , aux (NymU)) in its

pseudonym database, and outputs an error if they do not exist. If skU 6= sk∗ the oracle runs Obtain

(paramsDC ,NymO, skU ,NymU , aux (NymU),NymA) with the adversary to get cred (the same as Game

1). Otherwise it follows the Obtain protocol until Step 5, and now uses the simulator for the two-party

protocol to simulate the interaction with the adversarial issuer. It outputs cred .

By a simple hybrid argument either Game 1 and Game 2 are computationally indistinguishable or we

break the security of the two-party computation.

Next we give a reduction to show that an adversary A that can win in Game 2 can be used to break

the security of our authentication scheme. The reduction gets paramsA, f∗ = F (sk∗) and access to

OAuth(paramsA, sk∗, .),OCertify(paramsA, ., (sk∗, ., . . .)) for a challenge secret key sk∗ from the authenti-

cation scheme’s unforgeability game. It creates matching proof system parameters paramsPK and a trapdoor

td , and combines them into paramsDC . It hands paramsDC and td to A.

The reduction answers As oracle queries as follows:

AddUser. The oracle keeps a counter indicating the number of times it was queried, otherwise it behaves as

the original oracle, except for the qth query. To answers the qth query the oracle stores (2, F (sk∗)) in

112

the user database and adds F (sk∗) in the list HonestUsers. It returns F (sk∗) to A. Note that we use the

special token ‘2’ to indicate the unknown challenge key.

FormNym(f). The oracle looks up (sk , f) in its user database and terminates if it does not exist (we explicitly

allow sk = 2). If f 6= f∗ the oracle behaves as the original oracle. Otherwise it picks a random

aux (Nym) and computes Nym = Commit′(f, aux (Nym)). The oracle stores (2,Nym, aux (Nym)) in

its pseudonym database and gives the adversary Nym .

Issue(NymI ,NymU , credI , L,NymO). The oracle looks up (skU ,NymU , aux (NymU)) and (sk I ,NymI ,

aux (NymI)) in its pseudonym database and outputs an error if they do not exist or if skU = sk I . If

skU 6= 2 and sk I 6= 2 the oracle behaves as the original oracle. Otherwise we distinguish two cases (note

that skU = 2 and sk I = 2 is not possible as honest users do not issue to themselves):

(a) skU = 2: If L > 0, it runs Extract(paramsDC , td , credproof I ,NymI) to obtain f0, f1, . . . fL. If

fL 6= F (sk I), it aborts. Otherwise the oracle computes credU in the same way as Issue ↔ Obtain

except that it uses a query to OCertify(paramsA, sk I , (sk∗,H(NymO, L − 1),H(NymO, L))) to ob-

tain the witness for proof π which it then can compute itself. The oracle stores (f0, L, f(sk I), f∗) in

ValidCredentialChains and outputs credU to the adversary.

(b) sk I = 2: If L > 0,it runs Extract(paramsDC , td , credproof I ,NymI) to obtain f0, f1, . . . fL. If

fL 6= f∗, it aborts. Otherwise the oracle computes credU in the same way as Issue ↔ Obtain except that

it uses a query toOAuth(paramsA, sk∗, (skU ,H(NymO, L−1),H(NymO, L))) to obtain the witness for

proof π which it then can compute itself. The oracle stores (f0, L, f∗, F (skU)) in ValidCredentialChains

and outputs credU to the adversary.

IssueToAdv(NymI , credI ,Nym, L,NymO). If Nym is not a valid pseudonym for sk , aux (Nym), the oracle

terminates. The oracle looks up (sk I , pk I ,NymI , aux (NymI)) in its pseudonym database, and outputs

⊥ if they do not exist. If sk I 6= 2 the oracle behaves as the original oracle. Otherwise the oracle fol-

lows the Issue protocol until Step 4, but uses the simulator for the two-party protocol to simulate inter-

action with the adversarial user. We can simulate the ideal functionality of the two-party protocol with a

OAuth(paramsA, sk∗, (skU ,H(NymO, L−1),H(NymO, L))) query. Note that the simulator of the two-

party protocol provides us with skU . If the oracle’s output is not ⊥, the oracle stores (f0, L, f∗, f(skU))

in ValidCredentialChains.

ObtainFromAdv(NymA,NymU ,NymO) Similarly, the oracle looks up (skU ,NymU , aux (NymU)) in its

pseudonym database, and outputs an error if they do not exist. If skU 6= 2 the oracle behaves normally.

Otherwise it follows the Obtain protocol until Step 4, and now uses the simulator for the two-party protocol

to simulate the interaction with the adversarial issuer. We can simulate the ideal functionality of the

two-party protocol with a OCertify(paramsA, sk I , (sk∗,H(NymO, L− 1),H(NymO, L))) query. After a

successful protocol execution the oracle outputs cred .

Prove(Nym, cred ,NymO) The prove protocol does not require a user’s secret key, and is answered as the

original oracle.

This simulation of Game 2 is perfect. We now need to show a forgery in the credential system can be

turned into a forgery for the authentication scheme.

113

A successful adversary outputs (credproof ,Nym,NymO, L) such that CredVerify(paramsDC , pkO,

credproof ,Nym, L) = accept and (f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO).

If we guessed correctly for which honest user A would create the forgery, fi−1 = f∗ and we can ex-

tract an authi such that VerifyAuth(paramsA, sk∗, (sk i,H(NymO, i − 1),H(NymO, i)), authi) = 1. As

(f0, i, fi) 6∈ ValidCredentialChains, this message was never signed before and constitutes a valid authentica-

tion forgery.

Chapter 8

Application to Efficient NIZK for Other
Languages

It has been more than twenty years since the discovery of zero-knowledge proofs. In that time, they have

attracted interest from the theoretical computer science community (leading to the study of interactive proof

systems and PCPs), theoretical cryptography community, and, more recently, cryptographic practice.

The proof protocols that have been implemented so far [15, 19, 17], even though zero-knowledge in

spirit, are not, strictly speaking, zero-knowledge proofs as we usually define them. Typically, they are honest-

verifier interactive zero-knowledge proofs (sometimes, actually, arguments of knowledge) with the interactive

step removed using the Fiat-Shamir paradigm [47, 52]. Interaction is an expensive resource, and so using a

heuristic such as the Fiat-Shamir transform in order to remove interaction is more attractive than using an

interactive proof.

SINGLE-THEOREM NIZK In contrast to the Fiat-Shamir-based protocols adopted in practice, that do not in

fact provide more than just a heuristic security guarantee [52], there are also well-known provable techniques

for achieving zero-knowledge in non-interactive proofs. Blum et al. [8, 42, 7] introduced the notion of a non-

interactive zero-knowledge (NIZK) proof system. In such a proof system, some parameters of the system are

set up securely ahead of time. Specifically, a common random string σ is available to all participants. The

prover in such a proof system is given an x ∈ L for some language L and a witness w attesting that x ∈ L.

(For example, L can be the language of all pairs (n, e) e is relatively prime to φ(n). The witness w can be the

factorization of n.) The prover computes a proof π, and the proof system is zero-knowledge in the following

sense: the simulator can pick its own σ′ for which it can find a proof π′ for the statement x ∈ L. The values

(σ′, π′) output by the simulator are indistinguishable from (σ, π) that are generated by first picking a random

σ and then having the honest prover produce π for x ∈ L using witness w. Blum et al. also gave several

languages L with reasonably efficient NIZK proof systems.

Let us explain the Blum et al. NIZK proof system for the language L in the example above: L =

{(n, e) | gcd(φ(n), e) = 1}. First, recall that if e is not relatively prime to φ(n), then the probability that for

a random x ∈ Z∗n there exists y such that ye = x mod n is upper-bounded by 1/2. On the other hand, if e is

114

115

relatively prime to φ(n), then for all x ∈ Z∗n there exists such a y. So the proof system would go as follows:

parse the common random string σ as a sequence z1, . . . , z` of elements of Z∗n, and for each zi, compute

yi such that ye
i = zi mod n. The proof π consists of the values y1, . . . , y`. The verifier simply needs to

check that each yi is the eth root of zi. For any specific instance (n, e), the probability (over the choice of

the common random string σ) that a cheating prover can come up with a proof that passes the verification is

2−`. By the union bound, letting ` = k(|n|+ |e|) guarantees that the probability, over the choice of σ, that a

cheating prover can find an instance (n, e) and a proof π passing the verification, is negligible in k.

Note that the proof system described above, although expensive, is not prohibitively so. Proof systems

of this type have been shown to yield themselves to further optimizations [70]. So why aren’t such proofs

attractive in practice?

MULTI-THEOREM NIZK The problem with NIZK as initially defined and explained above was that one

proof π completely used up the common random string σ, and so to produce more proofs, fresh common

randomness was required. Blum et al. [7] showed a single-prover multi-theorem NIZK proof system for

3SAT, and since 3SAT is NP-complete, the result followed for any language in NP, assuming quadratic resid-

uocity. Feige, Lapidot and Shamir [46] constructed a multi-prover, multi-theorem NIZK proof system for

all NP based on trapdoor permutations. Recently, Groth, Ostrovsky and Sahai [56] gave a multi-theorem

NIZK proof system for circuit satisfiability with very compact common parameters and achieving perfect

zero-knowledge (with computational soundness), based on the assumption that the Boneh, Goh, Nissim [13]

cryptosystem is secure.

In each of the multi-theorem NIZK results mentioned above, to prove that x ∈ L for a language L in

NP, the prover would proceed as follows: first, reduce x to an instance of the right NP-complete problem,

also keeping track of the witness w. Then invoke the multi-theorem NIZK proof system constructed for this

NP-complete problem. In other words, even if the language L itself had an efficient single-theorem NIZK,

existing multi-theorem NIZK constructions have no way of exploiting it. The Feige et al. result, which is the

most attractive because it is based on general assumptions, is especially bad in this regard: their construction

explicitly includes a step that transforms every instance x into a new instance x′ via a Cook-Levin reduction.

These reductions are what makes NIZK prohibitively expensive to be considered for use in practice.

In this paper, we give a construction for achieving multi-theorem NIZK for any language L based on

single-theorem NIZK for L, without having to reduce instances of L to instances of any NP-complete lan-

guages. This construction is based on a new building block: a simulatable verifiable random function (sVRF)

as described in chapter 5.

USING AN SVRF TO TRANSFORM SINGLE-THEOREM NIZK TO MULTI-THEOREM NIZK. A simulatable

VRF with domain of size `(k) and binary range allows a prover to come up with a fresh verifiably random

string R of appropriate length `(k) every time he wants to prove a new theorem. He simply comes up with

a new pk for a VRF, and evaluates Fpk on input i to obtain the ith bit of R, Ri. The VRF allows him to

prove that R was chosen correctly. He can then XOR R with a truly random public string σ1 to obtain a

string σ to be used in a single-theorem NIZK. The resulting construction is zero-knowledge because of the

simulatability properties of both the sVRF and the single-theorem NIZK. It is sound because σ1 is a truly

random string, and so it inherits the soundness from the single-theorem NIZK (note that it incurs a penalty

116

in the soundness error). Note that because our sVRF construction is in the public parameters model, the

resulting multi-theorem proof system is also in the public parameters model (rather than the common random

string model).

Since we give an efficient instantiation of sVRFs, our results essentially mean that studying efficient

single-theorem NIZK proof systems for languages of interest is a good idea, because our construction gives

an efficient transformation from such proof systems to multi-theorem ones.

USING AN SVRF INSTEAD OF THE RANDOM ORACLE. An sVRF shares some characteristics with a pro-

grammable random oracle: assuming that the parameters of the system were picked by the simulator, the

simulator can program it to take certain values on certain inputs. One cannot necessarily use it instead of the

hash function in constructions where the adversary gets the code for the hash function. But it turns out that

it can sometimes replace the random oracle in constructions where the adversary is allowed oracle access to

the hash function and requires some means to be sure that the output is correct. For example, using an sVRF

instead of H in the RSA-FDH construction [6, 37] would make the same proof of security hold without the

random oracle. Of course, it is not a useful insight: an sVRF is already a signature, so it is silly to use it as a

building block in constructing another signature. The reason we think the above observation is worth-while is

that it is an example of when using an sVRF instead of an RO gives provable instead of heuristic guarantees.

8.1 Efficient Transformation based on sVRFs

Here, we omit the definition of single-theorem and multi-theorem NIZK, but refer the reader to Blum et al. [7]

and Feige, Lapidot, Shamir [46]. Instead, we informally sketch this definition:

Algorithms NIZKProve and NIZKVerify The algorithm NIZKProve takes as input the common random

string σ of length `(k), and values (x,w), |x| ≤ q(k), such that x ∈ L, and w is a witness to this.

NIZKProve outputs a proof Π. NIZKVerify is the algorithm that takes (σ, x,Π) as input, and outputs

ACCEPT or REJECT.

Perfect completeness For all x ∈ L, for all witnesses w for x, for all values of the public random string σ,

and for all outputs π of NIZKProve(σ, x, w), NIZKVerify(σ, x, π) = ACCEPT.

Soundness s(k) For all adversarial prover algorithmsA, for a randomly chosen σ, the probability thatA can

produce (x, π) such that x /∈ L but NIZKVerify(σ, x, π) = ACCEPT, is s(k).

Single-theorem ZK There exists an algorithm SimProveOne that, on input 1k and x ∈ L, |x| ≤ q(k),

outputs simulated CRS σS together with a simulated proof ΠS , such that (σS ,ΠS) are distributed

indistinguishably from (σ,Π) produced by generating a random CRS σ, and obtaining Π by running

NIZKProve.

Multi-theorem ZK There exist algorithms SimCRS and NIZKSimProve, as follows: SimCRS(1k) outputs

(σ, s). For all x, NIZKSimProve(σ, s, x) outputs a simulated proof ΠS . Even for a sequence of ad-

versarially and adaptively picked (x1, . . . , xm) (m is polynomial in k), if for all 1 ≤ i ≤ m, xi ∈ L,

117

then the simulated proofs ΠS
1 , . . . ,Π

S
m are distributed indistinguishably from proofs Π1, . . . ,Πm that

are computed by running NIZKProve(σ, xi, wi), where wi is some witness that xi ∈ L.

Suppose that, for a language L, we are given a single-theorem NIZK proof system (ProveOne, VerOne)

in the CRS model, with perfect completeness and unconditional soundness error s(k). Let `(k) denote the

function such that an `(k)-bit random string serves as the CRS for this proof system. Let q(k) denote the

polynomial upper bound on the size of the input x. Suppose also that we are given a simulatable VRF

(G, Eval, Prove, Verify) in the parameter model params, whose domain is [1, `(k)], with range {0, 1}.
Consider the following construction for multi-theorem NIZK in the common reference string model for in-

stances of size k:

Generate common parameters The algorithm NIZKParams: Obtain σ1 ← {0, 1}`(k). Let p ← params

(1k). The values (σ1, p) are the parameters of the system.

Prove The algorithm NIZKProve: On input instance x ∈ L with witness w, and common parameters (σ1, p)

do: Obtain (pk , sk) ← G(1k, p). Let R be the `(k)-bit string computed as follows: for 1 ≤ i ≤ `(k),

Ri = Eval(p, sk , i), where Ri denotes the ith bit of R. For 1 ≤ i ≤ `(k), let πi ← Prove(p, sk , i).

Let σ = σ1 ⊕R. Obtain Π′ ← ProveOne(σ, x, w). Output the proof Π = (pk , R, π1, . . . , p`(k),Π′).

Verify The algorithm NIZKVerify: On input x and Π, and common parameters (σ1, p), do: (1) for 1 ≤
i ≤ `(i), check that Verify(p, pk , i, Ri, πi) accepts; (2) let σ = σ1 ⊕R; check that VerOne(σ, x,Π′)

accepts; if all these checks passed, accept, otherwise, reject.

8.2 Efficiency

Note that we need an sVRF whose output is a random bit-string (so that we can use it to form the CRS for

our single theorem NIZK proof system). The construction given in Section 5.2.2 has as its output range the

bilinear group G1, and the only known way to convert it to a bit string output is to apply the techniques in

Section 5.1.2. This means that there is no efficiency advantage to using this construction over the one given in

5.2.1 (where we also need to apply these techniques, but where the underlying weak sVRF is more efficient).

Thus, the theorem below presents the efficiency of the transformation using this second sVRF construction:

Theorem 27. Suppose (ProveOne, VerOne) is a single theorem proof system which requires a common

random string of length `(k) for each proof. Then the above transformation instantiated with the sVRF

construction from Sections 5.1.2 and 5.2.1 results in a many theorem proof system, where the additional

overhead for each proof is: an increase in prover computation by 4`(k) exponentiations in the composite

order bilinear group, an increase in proof length by 3`(k) elements of the composite order bilinear group,

and an increase in verification time by 5`(k) composite order bilinear pairings.

118

8.3 Proof of Security

Theorem 28. If for a languageL, (ProveOne, VerOne) is a single-theorem NIZK proof system in the `(k)-bit

CRS model for instances of length up to q(k) with perfect completeness and unconditional soundness error

s(k), and (G, Eval, Prove, Verify) in the parameter model params(1k), is a strong simulatable VRF with

domain [1, `(k)] and range {0, 1}, then the above construction is a multi-theorem NIZK proof system in the

public parameters model that comprises the `(k)-bit CRS and params(1k), with perfect completeness and

unconditional soundness error s(k)2u(k), where u denotes the bit length of a pk output by G(p) on input

p← params(1k).

Proof. (Sketch) The perfect completeness property follows from the perfect completeness property of the

single-theorem NIZK.

Let us show the multi-theorem zero-knowledge property. Recall that, by the definition of (strong) sVRF,

we have a simulator consisting of SimParams, SimG and SimProve such that, if (pk , sk) were generated by

SimG, then for a randomly sampled y from the range of the sVRF, and for any x in the domain, SimProve can

generate a fake proof that y = Eval(sk , x). (See Section 5.1.)

Also recall that by the definition of NIZK, there exists a simulator

SimProveOne such that no adversary A can distinguish between the following two distributions for any

x ∈ L and any witness w for x: (1) choose σ ← {0, 1}`(k), and let Π ← ProveOne(σ, x, w); give (σ,Π) to

A; (2) (σ,Π)← SimProveOne(1k, x); give (σ,Π) to A.

Consider the following simulator S for our multi-theorem NIZK construction. The simulator will con-

sist of SimCRS that generates the simulated parameters, and of NIZKSimProve that generates the simulated

proof. SimCRS works as follows: generate (p, t) ← SimParams, and σ1 ← {0, 1}`(k); publish (σ1, p) as the

parameters of the system. NIZKSimProve works like this: generate (σ,Π′) ← SimProveOne(1k, x). Then

let R = σ⊕σ1. Let (pk , sk)← SimG(p, t). For 1 ≤ i ≤ `(k), let πi = SimProve(p, sk , x,Ri, t). Output the

proof Π = (pk , R, π1, . . . , p`(k),Π′). In the full version, we show that the view that the adversary obtains in

the simulation is indistinguishable from the view obtained when interacting with the prover.

We now show soundness. We are given that, for σ ← {0, 1}`(k), the probability that there exists x /∈ L
and a proof Π′ such that Verify(σ, x,Π′) = 1, is s(k).

Consider p ← params, and (pk , sk) ← G(1k). Let R be as defined in NIZKProve: Ri = Eval(sk , i).

Note that by the verifiability property of the sVRF, there is a unique R for which there exists a proof of

correctness (π1, . . . , π`(k)). The probability, over the choice of σ1, that there exists x /∈ L and a proof Π′

such that Verify(R ⊕ σ1, x,Π′) = 1 (if such an x exists, we say that pk is bad for σ1), is still s(k), since

we first fixed p and pk , and then randomly chose σ1. By the union bound, since there are 2u(k) possible pk ’s,

for every p, the probability that there exists a bad pk for a particular σ1, is s(k)2u(k).

Remark. Note that if an NIZK proof system is in the hidden-random-string (HRS) model (such as those due

to Feige, Lapidot and Shamir [46] and Kilian and Petrank [63]), then we can take advantage of it as follows:

the hidden random string can be obtained the way that σ is currently obtained by the prover in the construction

above; only in the construction above, the prover reveals the entire string σ and the proof that each bit of σ is

computed correctly; while in the HRS model, the prover only reveals the subset of bits of the hidden random

119

string that he needs to reveal. This observation was inspired by Dwork and Naor’s construction of zaps from

VRFs and verifiable PRGs [44] based on NIZK using HRS model. We give more details on consequences in

the HRS model in the full version.

Chapter 9

Application to E-cash

Electronic cash (e-cash) was introduced by David Chaum [33] as an electronic analogue of physical cash.

Cash transactions have the advantage over checks or credit cards in that they are private. At the same time,

it is very difficult to counterfeit actual coins and banknotes. E-cash means to provide the same anonymity

and unforgeability guarantees. E-cash and variants are an attractive cryptographic application, because they

allow the accountability without the privacy infringement that other accountability mechanisms may provide.

Of recent interest is using e-cash in peer-to-peer systems to give peers an incentive to participate [4]. For

example, in a file sharing system, currently peers make their content available to others out of pure altruism,

with no incentive. As a result, the potential of peer-to-peer systems is underutilized, since many potential

participants are turned away because they cannot find what they are looking for or because they can download

only at a very slow rate. So an accountability mechanism that would ensure that peers upload and download

at roughly the same rate is very desirable, but not at the expense of privacy. This is where e-cash comes in.

The participants in an e-cash system are users who withdraw and spend e-cash; a bank that creates e-cash

and accepts it for deposit, and merchants who offer goods and services in exchange for e-cash, and then

deposit the e-cash to the bank. The algorithms and protocols involved are a key generation algorithm for

each participant, a withdrawal protocol that is meant to be a protocol between a user and the bank, a spend

protocol between a user and a merchant, and a deposit protocol for users and merchants to deposit their e-cash

back into their accounts (and a few additional algorithms we discuss below). The main security requirements

are (1) anonymity: even if the bank and the merchant and all the remaining users collude with each other,

they still cannot distinguish Alice’s purchases from Bob’s; (2) unforgeability: even if all the users and all the

merchants collude against the bank, they still cannot deposit more money than they withdrew. (There also

additional requirements that we will come back to later.)

Unfortunately, it is easy to see that, as described above, e-cash is useless. The problem is that here money

is represented by data, and it is possible to copy data. So nothing stops Alice from withdrawing a dollar and

spending it twice. In both transactions, the merchants will accept. Unforgeability will guarantee that the bank

will only honor at most one of them for deposit and will reject the other one. Anonymity will guarantee that

there is no recourse against Alice. So one of the merchants will be cheated.

There are two known remedies against this double-spending behavior. In both, each coin has a serial

120

121

number. The withdrawal protocol can be thought of as a “blind signature” [34] in which the user obtains the

bank’s signature on this serial number (thus certifying that this is a serial number of a valid coin) without the

bank learning anything about this serial number. The first remedy is on-line e-cash [33], where the bank is

asked to vet a serial number before the spend protocol can terminate successfully. If this is a serial number of

an already spent coin, the bank will warn the merchant that it would not accept it for deposit, and so the spend

transaction will be cancelled. If everything goes well, as a result of the spend protocol, the merchant will

obtain the serial number S and a proof π, where π is a non-interactive zero-knowledge proof of knowledge

of the bank’s signature on S. It is, of course, undesirable to involve the bank in every transaction.

The second remedy is off-line e-cash, introduced by Chaum, Fiat and Naor [36]. The idea is that, first of

all, the withdrawal protocol is not just a blind signature on the serial number S, but in fact a blind signature

on the user’s identifier x and another random value T . When spending an e-coin, the user must reveal S and

B = x+RT mod q where R is a fresh random value agreed upon between the user and the merchant, and q

is a prime greater than x, R and T . Now double-spending a coin with serial number S leads to identification

through simply solving a system of linear equations in case of double-spending. So the additional requirement

of an offline e-cash system is (informally) that no coin can be double-spent without revealing the identity of

the perpetrator.

A further development in the literature on e-cash was compact e-cash [21]. In compact e-cash, the user

withdraws N coins in a withdrawal protocol whose complexity is O(logN) rather than O(N). The main

idea is as follows: in the withdrawal protocol, a user obtains the Bank’s signature on (x, s, t), where s and

t are random seeds of a pseudorandom function F(·)(·), x is the user’s identifier. In the spend protocol, the

serial number of the ith coin was computed as S = Fs(i), and the double spending equation is computed as

T = x + RFt(i). The coin itself consists of (S, T, π), where π is a non-interactive zero-knowledge proof

of knowledge of the following values: x, s, t, i, σ where σ is the Bank’s signature on (x, s, t), 1 ≤ i ≤ N ,

S = Fs(i) and T = x + RFt(i) mod q. If g is a generator of a group G of order q, and G is the range of

the PRF F(·)(·), then the double-spending equation can instead be computed as T = gxFt(i)R. It is easy

to see that two double-spending equations for the same t, i but different R’s allow us to compute gx. It

was shown that this approach yields a compact e-cash scheme [21]. Later, this was extended to so-called

e-tokens [20] that allow up to k anonymous transactions per time period (for example, this would correspond

to subscriptions to interactive game sites or anonymous sensor reports).

Thus, we see that compact e-cash and variants such as e-tokens can be obtained from a signature scheme,

a pseudorandom function, and a non-interactive zero-knowledge proof of knowledge (ZKPOK) proof system

for the appropriate language.

Our contribution to the study of electronic cash is to give a construction of a signature scheme and a PRF

such that the non-interactive ZKPOK proof system is provably secure and can be realized efficiently enough

to be usable in practice. Our construction is in the common parameters model and relies on several number-

theoretic assumptions (discussed in Section 2.3). All prior work on e-cash [36, 15, 21] was exclusively in

the random-oracle model, with non-interactive proofs obtained from interactive proofs via the Fiat-Shamir

heuristic [47] which is known not to yield provably secure constructions [52]. The reason for this is that,

until the recent proof system of Groth and Sahai [57] there were no efficient NIZKPOK proof systems for

122

languages most heavily used in cryptographic constructions (such as languages of true statements about

discrete logarithm representations).

One of the main building blocks is a pseudorandom function and an unconditionally binding commit-

ment scheme Commit with an efficient proof of knowledge system for the following language: LF =

{S,Cy, Cs | ∃s, y, rs, ry such that S = Fs(y), Cy = Commit(y, ry), Cs = Commit(s, rs)} (the prover

will prove knowledge of the witness). Such a pseudorandom function with a proof system is a special case

of a simulatable verifiable random function (sVRF), introduced by Chase and Lysyanskaya [32]. Chase and

Lysyanskaya also gave an efficient construction of a multi-theorem non-interactive zero-knowledge proof

systems for any language L from a single-theorem one for the same language (while other single-theorem

to multi-theorem transformations required the Cook-Levin reduction to an NP-complete language first). Our

construction of an sVRF is more efficient than the one due to Chase and Lysyanskaya by a factor of the secu-

rity parameter; it is also designed in a way that is more modular and therefore easier to understand. Therefore,

this result is of independent interest.

Note, however, that although a ZKPOK for LF allows proofs that a given serial number S is computed

as a PRF (this is a step towards proving that it is a valid serial number), it does not in itself give a proof

that a double-spending equation T is correct. And so for the PRF we construct, we give a NIZKPOK for a

more general language LT = {T,Cx, Cy, Ct, R, 〈g〉 | ∃x, y, t, rx, ry, rt such that T = gxFt(y)R, Cx =

Commit(x, rx), Cy = Commit(y, ry), Ct = Commit(t, rt)}, where the group 〈g〉 is the range of the PRF.

Our other building block is a signature scheme and an unconditionally binding commitment scheme (the

same one as for the sVRF construction) that allows for an efficient NIZKPOK of a signature on a set of

committed values, as well as for an efficient protocol for getting a committed value signed. This is done via

a modification of the P-signature construction of Belenkiy et al. [5] that allowed the same for one committed

value.

Finally, we show how to obtain compact e-cash using these building blocks, and show that the resulting

construction is secure.

9.1 Definitions

Compact e-cash as defined by [21] involves a bank I as well as many users U and merchantsM. Merchants

are treated as a special type of user. The parties I, U , and M interact using the algorithms CashSetup,

BankKG, UserKG, SpendCoin, VerifyCoin, Deposit, Identify, and the interactive protocol Withdraw. We

write Protocol(A(IA), I(II)) to denote an interactive protocol Protocol betweenA and I with secret inputs

IA, II and secret outputs OA, OI respectively.

CashSetup(1k) creates the public parameters params.

BankKG(params, n) outputs the key pair (pkI , skI) that is used by the bank to issue wallets of n coins.

For simplicity, we assume that the secret key contains the corresponding public key.

UserKG(params) generates a user (or merchant) key pair (pkU , skU). The keys are used for authentication

123

and non-repudiation.1

Withdraw(U(params, pkI , skU), I(params, pkU , skI)) is an interactive protocol in which a user with-

draws a wallet W of n coins from the bank where n is specified in pkI . The wallet includes the public

key of the bank. The bank learns some trace information TW that it can later use to identify double-

spenders. We say that Withdraw succeeds if both the user and the bank output acceptat the end of

execution.

SpendCoin(params,W , pkM, info) allows a user with a non-empty wallet W and some unique transaction

information info to create a coin. The output of the algorithm is (W ′, coin), the updated wallet and an

e-coin that can be given to a merchant. The e-coin consists of a serial number S, transaction information

info, and a proof π.

VerifyCoin(params, pkM, pkI , coin) allows a merchant to verify coin = (S, info, π) received from a user.

The output of the algorithm is either accept or reject. The merchant accepts the coin on accept but

only if he has never accepted a coin with the same info before.

Deposit(params, pkI , pkM, coin, stateI) allows the bank to verify a coin received from merchant. The

bank needs to maintain a database stateI of all previously accepted coins. The output of the algorithm

is an updated database state ′I and the flag result , which can have three values:

(i) accept indicates that the coin is correct and fresh. The bank deposits the value of the e-coin into

the merchant’s account and adds (pkM, coin) to stateI .

(ii) merchant indicates that either VerifyCoin(params, skM, pkI , coin) = 0, or that stateI already

contains an entry (pkM, coin). The bank refuses to accept the e-coin because the merchant failed

to properly verify it.

(iii) user indicates that there exists a second coin with the same serial number S registered in stateI .

(Using the two coins the bank will identify the double-spending user.) The bank pays the mer-

chant (who accepted the e-coin in good faith) and punishes the double-spending user.

Identify(params, coin, coin′) allows the bank to identify a double-spender. The algorithm outputs TW ,

which the bank compares to the trace information it stores after each withdrawal transaction.

Notes. Camenisch et al. [21] only define spending as the interactive protocol Spend(U(params,W , pkM),

M(params, skM, pkI). We can derive their protocol from our non-interactive algorithms. First the mer-

chant sends the user info. Then the user runs SpendCoin(params,W , pkM, info) and sends the resulting

coin back to the merchant. The merchant accepts the e-coin only if VerifyCoin(params, pkM, pkI , coin)

outputs accept and the info used to construct the e-coin is correct. Non-interactive spend protocols are im-

portant when two-way communication is not available or impractical, e.g. when sending an e-coin by email.

1Our scheme does not involve the user’s secret in the creation of the wallet. This means that we are unable to implement the
exculpability scheme of [21]. Instead we provide a different solution.

124

Definition 34 (Secure Compact E-Cash with Non-Interactive Spend). A compact e-cash scheme consists of

the non-interactive algorithms CashSetup, BankKG, UserKG, SpendCoin, VerifyCoin, Deposit, Identify, and

the interactive protocol Withdraw. We say that such a scheme is secure if it has the Correctness, Anonymity,

Balance, and Identification properties.

Correctness. When the bank and user are honest, and the user has sufficient funds, Withdraw will always

succeed. An honest merchant will always accept an e-coin from an honest user. A honest bank will

always accept an e-coin from an honest merchant.

Anonymity. A malicious coalition of banks and merchants should not be able to distinguish if the Spend

protocol is executed by honest users or by a simulator that does not know any of the users’ secret

data. Formally, there must exist a simulator Sim = (SimCashSetup,SimSpend). such that for all

non-uniform polynomial time A there exists a negligible function ν such that:∣∣Pr[params← CashSetup(1k); (pkI , state)← A1(params) :

A
OSpend(params,pkI ,·,·)

OGetKey(params,·),OWithdraw(params,pkI ,·,·)
2 (state) = 1]

−Pr[(params, sim)← SimCashSetup(1k); (pkI , state)← A1(params) :

A
OSimSpend(params,pkI ,·,·,·)

OGetKey(params,·),OWithdraw(params,pkI ,·,·)
2 (state) = 1]

∣∣ < ν(k)

The oracles OGetKey, OWithdraw, OSpendCoin, and OSimSpend are defined as follows:

OGetKey(params, i). The oracle returns pkU i, the public-key of user Ui. If pkU i doesn’t exist, the

oracle generates (pkU i, skU i) using UserKG(params).

OWithdraw(params, pkI , i, j). The oracle runs the Withdraw protocol with the adversary:

Withdraw(U(params, pkI , skU i),A2(state)). The adversary plays the role of the bank and the

oracle takes the role of user Ui. If skU i doesn’t exist, the oracle generates it using UserKG(

params). The value j serves to identify the wallet to the oracle for later use; the adversary

must use a fresh value j each time it calls OWithdraw. The oracle will not reveal the wallet Wj it

obtained to the adversary.

OSpend(params, pkI , pkM, i, j, info). The oracle runs SpendCoin(params,Wj , pkM.info) and re-

turns the resulting coin to the adversary. The oracle outputs error if the adversary has not previ-

ously calledOWithdraw(params, pkI , i, j), or if the adversary has already calledOSpend(params,

pkI , pkM, i, j, ·) n times.

OSimSpend(params, pkI , pkM, i, j, info). The oracle runs SimSpend(params, sim, pkI , pkM, info)

and return the resulting coin . The oracle outputs error if the adversary has not previously called

OWithdraw(params, pkI , i, j), or if the adversary has already called OSpend(params, pkI , pkM,

i, j, ·) n times.

Balance. No coalition of users should be able to deposit more e-coins than they collectively withdrew. For-

mally, for all non-uniform polynomial timeA and every n < poly(k) there exists a negligible function

125

ν such that

Pr[params← CashSetup(1k); (pkI , skI)← BankKG(params, n);

(withdrawals, deposits)← AOWithdraw(params,·,skI),ODeposit(params,pkI ,·,·,stateI) :

withdrawals < deposits] < ν(k)

Where withdrawals is the total number of successful calls toOWithdraw multiplied by n (i.e. the number

of coins withdrawn) and deposits is the total number of successful calls to ODeposit. Success means

that the oracles output accept. We define the oracles as follows:

OWithdraw(params, pkU , skI). Runs the Withdraw protocol, where the oracle acts as the bank and the adver-

sary plays the role of the user: Withdraw(A(state), I(params, pkU , skI)). OWithdraw outputs accept

if the protocol outputs accept.

ODeposit(params, pkI , pkM, coin, stateI) Runs the Deposit protocol, where the oracle acts as the bank and

the adversary plays the role of a merchant. If this is the first call toODeposit, then the oracle sets stateI
to ⊥. Then the oracle updates stateI in the usual way. The oracle outputs accept only if the Deposit

protocol outputs accept.

Identification. The bank will be able to identify any user who generates to two valid e-coins (i.e. e-coins

that pass the VerifyCointest) with the same serial number. Formally, for all non-uniform polynomial

time A and every n < poly(k) there exists a negligible function ν such that

Pr[params← CashSetup(1k); (pkI , skI)← BankKG(params, n);

(coin1, coin2)← AOWithdraw(params,·,skI)(params, pkI) :

coin1 = (S, info1, pkM1) ∧ coin2 = (S, info2, pkM2)

∧ pkM1||info1 6= pkM2||info2

∧ VerifyCoin(params, pkM1, pkB , coin1) = accept

∧ VerifyCoin(params, pkM2, pkB , coin2) = accept

∧ Identify(params, coin1, coin2) 6∈ T] < ν(k)

Oracle OWithdraw(params, pkU , skI) runs protocol Withdraw, with the oracle acting as the bank and

the adversary playing the part of the user: Withdraw(A(state), I(params, pkU , skI)). The bank adds

the resulting TW to its database T .

9.2 NIZK Proofs for a More Complex Language

In our application, we use NIZKs about PRFs in two different places. The first is to prove that a given serial

number has been computed correctly as PRFs(x) according to a committed seed s and committed input x.

That can be done using the NIZK protocol described in the previous section. However, we also need to be

able to prove that the doublespending value T has been computed correctly. Given commitments to user

126

secret key skU , PRF seed t, and input x, and given some double spending challenge ch , we need to prove

that the given value T = (gskU)chPRFt(x). Thus, we need to be able to prove that a certain function of a

pseudorandom function has been computed correctly. We can generalize our above proof system to handle

this as well.

Let LT (params) be the set of tuples Cs, Cx, Csk , tag , ch such that tag is the correct output with respect

to ch and the x, s, sk contained in Cs, Cx, Csk . I.e.

LT = {Cs, Cx, Csk , tag , ch | ∃x, s, sk , aux (x), aux (s), aux (sk) such that

Cs = Commit(s, aux (s)) ∧ Cx = Commit(x, aux (x)) ∧ Csk = Commit(sk , aux (sk))

∧ tag = (gsk)chPRFs(x)}

Note that the commitments here are commitments to elements of Zp, thus, Commit(a, aux (a)) = GSCommit

(ha, aux (a)) as described in Section 4.2.3.

Again, our proof system will use the Groth-Sahai Setup and SimSetup algorithms, and will satisfy the

requirements for composable zero knowledge (see Section 2.1.3.), so that it can securely be combined with

the P-signature scheme given in Section 4.2.3.

To see how this extension will work, first consider the NIZK proof system described in Section 5.3.

Intuitively, it works by first proving that C ′y is a commitment to the correct output given Cs, Cx, and then

proving that C ′y is a commitment to y. Here instead of this second step, we will keep the commitment C ′y ,

and then commit to tag as C ′tag , and prove that tag ′ is correct with respect to C ′y , C ′sk , and ch . Finally, we

prove that C ′sk is a commitment to the same value as Csk and that C ′tag is a commitment to tag .

Here we give a proof system for the language LT presented in Section 9.2.

Prove(params,Cs, Cx, Csk , tag , ch, s, aux (s), x, aux (x), sk , aux (sk)). We first form new commitments

C ′s = GSCommit(hs, aux (s)′), C ′x = GSCommit(hx, aux (x)′), and C ′sk = GSCommit(hsk , aux (

sk)′). Then we compute zero knowledge proofs π1 for (Cs,C ′s), π2 for (Cx, C ′x), and π3 for (Csk , C
′
sk),

showing that both commitments in each pair commit to the same value using the techniques described

in Section 3.5.

Next, we compute a commitment C ′y to PRFs(x), and a commitment C ′′sk = GSCommit(gsk , aux (

sk)′′).

We then compute a GS witness indistinguishable proof π4 that the value committed to in C ′y is the

correct output given the seed in C ′s and the input in C ′x. I.e. that C ′y commits to Y , C ′s commits to S

and C ′x commits to X such that e(Y, SX) = e(g, h).

Next we compute a GS witness indistinguishable proof π5 that the value committed to in C ′′sk is correct

with respect toC ′sk , i.e thatC ′′sk commits toK ′′ andC ′sk commits toK ′ such that e(K ′′, h) = e(g,K ′).

We can also compute C ′tag = C ′′sk
ch
C ′y . Note that by the homomorphic properties of the commitment

scheme, this means C ′tag should be a commitment to (gsk)chy which is the correct value for tag .

Finally, we compute a zero knowledge proof π6 that C ′tag is a commitment to tag as in Section 3.5.

The final proof is π = (C ′s, C
′
x, C

′
sk , C

′
y, C

′′
sk , C

′
tag , π1, π2, π3, π4, π5, π6).

127

VerifyProof(params,Cs, Cx, Csk , ch, π = (C ′s, C
′
x, C

′
sk , C

′
y, C

′′
sk , C

′
tag , π1, π2, π3, π4, π5, π6)). Uses the

Groth-Sahai verification procedure to verify π1, π2, π3, π4, π5, π6 with respect to Cs, Cx, Csk , info,

C ′s, C
′
x, C

′
sk , C

′
y, C

′′
sk , C

′
z .

9.2.1 Efficiency

The proof system above generates 6 new commitments (3 in G1 and 3 in G2), Groth-Sahai proofs for 2

pairing product equations one with Q = 1 and one with Q = 2, and 4 zero-knowledge proofs of equality

of committed exponents (see Section 3.5), 1 for a pair of commitments to an element of G1, and 3 for

commitments to elements of G2. Applying the efficiency formulas given in Sections 3.4 and 3.5, we get the

following lemma:

Theorem 29. When instantiated using the SXDH instantiation given in Section 3.3 the above proof system

will have the following efficiency: Generating the proof will require 148 exponentiations in G1 and 140

exponentiations inG2. The resulting proof will consist of 52 elements ofG1 and 48 elements ofG2. Verifying

the proof will involve computing 204 bilinear group pairings.

When instantiated using the symmetric setting version of the DLIN instantiation given in Section 3.3, the

above proof system will have the following efficiency: Generating the proof will require 558 exponentiations

in G. The resulting proof will consist of 120 elements in G. Verifying the proof will involve computing 369

bilinear group pairings.

9.2.2 Security

Theorem 30. The proof system Setup,Prove,VerifyProof is a secure composable zero knowledge proof

system for the language LT (params) described above, where params is output by Setup.

Proof. Correctness and Soundness follow from the corresponding properties of the underlying proof systems.

To prove zero knowledge, consider the following simulator algorithms:

SimSetup(1k). runs the GS simulation setup to generate simulated parameters params and trapdoor sim .

SimProve(params, sim, Cx, Cs, Csk , tag , ch). We first choose random s′, x′, sk ′ ← Zp, random opening

information aux (s)′, aux (x)′, aux (sk)′ and form new commitments C ′s = GSCommit(hs′ , aux (s)′),

C ′x = GSCommit(hx′ , aux (x)′),and C ′sk = GSCommit(hsk ′ , aux (sk)′).

Then we use the GS NIZK simulator to compute simulated zero knowledge proof π1 that Cs and C ′s
are commitments to the same value and simulated proof π2 that Cx and C ′x are commitments to the

same value, and simulated proof π3 that Csk and C ′sk are commitments to the same value using the

techniques described in Section 3.5.

Next, we compute a commitment C ′y to PRFs′(x′) and C ′′sk to gsk
′
.

Then we compute a GS witness indistinguishable proof π4 that the value committed to in C ′y is the

correct output given the seed in C ′s and the input in C ′x. (Note that this statement is true given our

choice of C ′y, C
′
s, C

′
x.)

128

Similarly, we compute a GS witness indistinguishable proof π5 that the value committed to in C ′′sk is

correct with respect to the value committed to in C ′sk .

We also compute C ′tag = C ′sk (C ′y)ch .

Finally, we use the GS simulator to generate simulated proof π6 that C ′tag is a commitment to tag as in

Section 3.5.

The final proof is π = (C ′s, C
′
x, C

′
sk , C

′
y, C

′′
sk , C

′
tag , π1, π2, π3, π4, π5, π6).

Note that when parameters are generated by SimSetup, the proofs π4 and π5 and the commitments

C ′y, C
′
s, C

′
x, C

′
sk , C

′
y, C

′′
sk , C

′
tag generated by SimProve are distributed identically to those generated by

Prove. Further, by the composable zero knowledge properties of the GS NIZK for equality of committed

values, the simulated proofs π1, π2, π3, π6 will also be distributed identically to those generated by the honest

Prove algorithm. Thus, SimSetup,SimProve as described here satisfy the definition of zero knowledge for

Setup,Prove,VerifyProof.

9.3 New Compact E-Cash Scheme

In this section, we construct a compact e-cash scheme using our multi-block P-signatures and sVRF protocols.

Compact e-cash as defined by Camenisch et al. [21] lets a user withdraw multiple e-coins simultaneously.

There are three types of players: a bank I as well as many users U and merchantsM(though merchants are

treated as a special type of user). Please refer to [21] or Section 9.1 for protocol specifications and a definition

of security.2 We now show how to construct compact e-cash.

CashSetup(1k). Runs SetupSig(1k) to obtain paramsPK . Our construction is non-blackbox: we reuse

the GS NIPK proof system parameters paramsGS that is contained in paramsPK . The parameters

paramsGS in turn contain the setup for a bilinear pairing paramsBM = (p,G1, G2, GT , e, g, h) for a

paring e : G1 ×G2 → GT for groups of prime order p. The algorithm returns paramsPK .

BankKG(paramsEC , n). The bank creates two P-signature keypairs, (pkw, skw)← KeygenSig(paramsPK)

for issuing wallets and (pk c, sk c) ← KeygenSig(paramsPK) for signing coin indices. Then the bank

computes a P-signature on the n coin indices Σ1, . . . ,Σn, where Σi = Sign(sk c, i). The bank’s secret-

key is skI = (skw, sk c) and the bank’s public-key is (pkw, pk c,Σ1, . . . ,Σn).

UserKG(paramsEC). The user picks skU ← Z∗p and returns (pkU = e(g, h)skU , skU).

Merchants generate their keys in the same way but also have a publicly known identifier idM =

f(pkM) associated with their public keys (f is some publicly known mapping).

Withdraw(U(paramsEC , pkI , skU , n), I(paramsEC , pkU , skI , n)). The user obtains a wallet from the

bank.
2The original [21] definition had an interactive Spend protocol, while we break it up into two non-interactive protocols:
SpendCoin(params,W , pkM, info) and VerifyCoin(params, pkM, pkI , coin). The merchant sends the user a info, the
user runs SpendCoin and gives the resulting e-coin for the merchant to verify using VerifyCoin). We prefer to use a non-interactive
spend protocols because often two-way communication is not available or impractical, e.g. when sending an e-coin by email.

129

1. The user picks s′, t′ ← Zp computes commsk = Commit(skU , openskU), comms′ = Commit

(s′, opens′), and commt′ = Commit(t′, opent′) and sends commsk , comms′ , and commt′ to

the bank. The user proves in zero knowledge that he knows the opening to these values, and that

commsk corresponds to the secret key used for computing pkU .3

2. If the proofs verify the bank sends the user random values s′′, t′′ ∈ Zp.

3. The user picks random opens, opent, commits to comms = Commit(s′ + s′′, opens), and

commt = Commit(t′ + t′′, opent), sends comms and commt to the bank, and proves that they

are formed correctly. Let s = s′ + s′′ and t = t′ + t′′.

4. The user and bank run ObtainSig(paramsPK , pkw, (commsk , comms, commt), (skU , s, t)) ↔
IssueSig(paramsPK , skw, (commsk , comms, commt)) respectively. The user obtains a P-

signature σ on (skU , s, t). The user stores the wallet W = (s, t, pkI , σ, n), the bank stores

tracing information TW = pkU .

SpendCoin(paramsEC , (s, t, pkI , σ, J), pkM, info) The user calculates serial number S = PRFs(J). The

user needs to prove that he knows a signature σ on (skU , s, t) and a signature ΣJ on J such that

S = PRFs(J).

Next the user constructs a double-spending equation T = (gidM‖info)skUPRFt(J).4 The user proves

that T is correctly formed for the skU , t, J, signed in σ and ΣJ .

All these proofs need to be done non-interactively. We now give more details. The user runs the

P-signature ProveSig, first on σ and pkw to obtain commitments and proof ((CID, Cs, Ct), π1) ←
ProveSig(paramsPK , pkw, σ, (skU , s, t)) for skU , s, t respectively and second on ΣJ and pk c to obtain

commitment and proof (CJ , π2)← ProveSig(paramsPK , pk c,ΣJ , J) for J .

Then the user constructs non-interactive zero-knowledge proofs that indeed (S, T, CID, Cs, Ct, CJ ,

idM‖info) are well formed.

This is done by computing two proofs πS and πT . πS proves that (Cs, CJ , S) ∈ LS and is computed

as described in Section 5.3, where LS is defined as:

LS = {Cs, Cx, y | ∃x, s, aux (x), aux (s) such that

Cs = Commit(s, aux (s)) ∧ Cx = Commit(x, aux (x)) ∧ y = Fs(x)}

πT proves that (Ct, CJ , CID, T, (idM|info)) ∈ LT and is computed as described in Section 9.2, where

LT is defined as:

LT = {Cs, Cx, Csk , tag , ch | ∃x, s, sk , aux (x), aux (s), aux (sk) such that

Cs = Commit(s, aux (s)) ∧ Cx = Commit(x, aux (x)) ∧ Csk = comm(sk , aux (xsk))

∧ tag = (gsk)chFs(x)}
3These and the rest of the proofs in the issue protocol can be done using efficient sigma protocols [28, 39] and their zero-knowledge

compilers [38].
4The merchant is responsible for assuring that info is locally unique. Coins which have the same serial number and the same

idM‖info cannot be deposited and the damage lies with the merchant. The dangers that users get cheated by verifiers that do not accept
coins with correct info can be mitigated using techniques such as endorsed e-cash [26].

130

The user outputs a coin = (S, T, CID, Cs, Ct, CJ , π1, π2, πS , πT , idM‖info).

VerifyCoin(paramsEC , pkM, pkI , coin). Parses coin as (S, (T,CID, Cs, Ct, CJ , π1, π2, πS , πT), idM′‖
info) and checks that the following checks succeed: (1) Check that idM′ = f(pkM). (2) VerifySig

(paramsPK , pkw, π1, (CID, Cs, Ct)) = accept. (3) VerifySig(paramsPK , pkc , π2, CJ) = accept. (4)

VerifyProofLS
(paramsGS , (Cs, CJ , S), πS) = accept. (5) VerifyProofLT

(paramsGS , (Ct, CJ , CID,

T, (idM|info)), πT) = accept. Note that the merchant is responsible for assuring that info is unique

over all of his transactions. Otherwise his deposit might get rejected by the following algorithm.

Deposit(paramsEC , pkI , pkM, coin, stateI). T he algorithm parses the coin as coin = (S, T, CID, Cs, Ct,

CJ , π1, π2, πS , πT , idM‖info) and performs the same checks as VerifyCoin. The bank maintains a

database stateI of all previously accepted coins. The output of the algorithm is an updated database

state ′I = stateI ∪ {coin} and the flag result , that is computed as follows:

(i) If the coin verifies and if no coin with serial number S is stored in stateI , result = accept to

indicates that the coin is correct and fresh. The bank deposits the value of the e-coin into the

merchant’s account and adds coin to stateI .

(ii) If the coin doesn’t verify or if there is a coin with the same serial number and the same idM‖info

already stored in stateI , result = merchant to indicate that the merchant cheated. The bank

refuses to accept the e-coin because the merchant failed to properly verify it.

(iii) If the coin verifies but there is a coin with the same serial number S but different idM‖info in

stateI , result = user to indicate that a user doublespend. The bank pays the merchant (who

accepted the e-coin in good faith) and punishes the double-spending user.

Identify(paramsEC , pkI , coin1, coin2). The algorithm allows the bank to identify a double-spender. Parse

coin1 = (S, (T,CID, Cs, Ct, CJ , π1, π2, πS , πT), idM1‖info1) and coin2 = (S′, (T ′, C ′ID, C
′
s, C

′
t,

C ′J , π
′
1, π

′
2, π

′
S , π

′
T), idM2‖info2). The algorithm aborts if one of the coins doesn’t verify, if S 6= S′,

or if idM1‖info1 = idM2‖info2. Otherwise, the algorithm outputs TW = pkU =

e((T/T ′)1/(idM1‖info1−idM2‖info2),h) , which the bank compares to the trace information it stores after

each withdrawal transaction.

9.4 Efficiency

Here we will consider the efficiency of the SpendCoin and VerifyCoin algorithms. A coin includes values

S, T ∈ G1, a P-signature proof for a signature on 3 messages, a P-signature proof for a signature on 1-

message, a proof πS generated using the proof system described in Section 5.3, and a proof πT generated

using the proof system described in Section 9.2. The most appropriate P-signature construction is the multi-

block P-signature construction described in Section 4.2.3. The following theorem describes the efficiency of

the resulting algorithms for spending and verifying e-coins:

Theorem 31. When the underlying Groth-Sahai proofs are instantiated using the SXDH instantiation given

in Section 3.3 the above e-cash system will have the following efficiency: Generating an e-coin will require

131

463 exponentiations in G1 and 460 exponentiations in G2. The resulting coin will consist of 152 elements of

G1 and 150 elements of G2. Verifying the e-coin will involve computing 624 bilinear group pairings.

When the underlying Groth-Sahai proofs are instantiated using the symmetric setting version of the DLIN

instantiation given in Section 3.3, the above e-cash system will have the following efficiency: Generating an

e-coin will require 1812 exponentiations in G. The resulting coin will consist of 365 elements in G. Verifying

the e-coin will involve computing 1143 bilinear group pairings.

9.5 Proof of Security of Our Compact E-Cash Scheme

This proof makes use of the security definitions of P-Signatures as of [5] and the standard security notions of

pseudo-random functions and zero-knowledge proof systems. We refer the reader to [5] for a definition of the

Signer privacy, User privacy, Correctness, Unforgeability, and Zero-knowledge properties of a P-signature

scheme and the corresponding simulator protocols (SimIssueSig,

SimObtainSig,SimSetupSig,SimProveSig) and extraction algorithms (ExtractSetupSig,ExtractSig) of a P-

signature scheme.

Theorem 32. The e-cash scheme presented in Section 9.3 is a secure e-cash scheme given the security of the

P-signature scheme, the PRF, and the NIZK proof system.

Proof. We need to prove that CashSetup, BankKG, UserKG, SpendCoin, VerifyCoin, Deposit, Identify, and

the interactive protocol Withdraw fulfill the Correctness, Anonymity, Balance, and Identification properties.

Correctness. Correctness is straight forward.

Anonymity. Consider the following simulator Sim = (SimCashSetup,SimSpend):

SimCashSetup(1k). Runs SimSetupSig(1k) to obtain paramsPK , simP . Our construction is non-blackbox:

we reuse the GS-NIZK proof system parameters paramsGS that are contained in paramsPK and the

GS NIZK simulation parameters simGS contained in simP . The parameters paramsGS in turn contain

the setup for a bilinear pairing paramsBM = (p,G1, G2, GT , e, g, h) for a paring e : G1×G2 → GT

for groups of prime order p. The algorithm returns (paramsPK , simP).

SimSpend(params, sim, pkI , pkM, info).

• The simulator uses SimProveSig(paramsPK , simP , pkw, 3) to compute ((CID, Cs, Ct), π1)

• The simulator uses SimProveSig(paramsPK , simP , pkc , 1) to compute (CJ , π2).

• The simulator picks a random serial number and double spending tag S, T ← G1 and simulates

the non-interactive zero-knowledge proofs πS and πT using the zero-knowledge simulator for LS

and LT .

We consider a sequence of 5 Games:

Game 1. Corresponds to the game A plays when interacting with OSpend(params, pkI , ·, ·).

132

Game 2. As Game 1, except that CashSetup is replaced by SimCashSetup to obtain simP .

Game 3. As Game 2, except that the oracle uses simP and SimProveSig to compute ((CID, Cs, Ct), π1).

Game 4. As Game 3, except that the oracle uses simP and SimProveSig to compute (CJ , π2).

Game 5. As Game 4, except that the oracle uses simGS and the zero-knowledge simulator for languages LS

and LT .

Game 6. As Game 5, except that S and T are now chosen at random. This corresponds to the game with

OSimSpend(params, pkI , ·, ·, ·).

Games 1 and 2 are indistinguishable by the properties of the P-signature scheme.

A non-negligible probability to distinguish between Games 2 and 3 and between Games 3 and 4 allows

to break the zero-knowledge property of the P-signature scheme. A non-negligible probability to distinguish

between Games 4 and 5 breaks the zero knowledge property of the proof system.

A non-negligible probability to distinguish between Games 5 and 6 allows to break the pseudorandomness

of the PRF through the following reduction. The reduction either gets oracle access to two pseudorandom

functions PRFs(.) and PRFt(.) or to two random functions.5 It can simulate all the rest of the spend without

knowing s, t given the simulators. In one case it’s Game 5, in the other case it’s Game 6. If a distinguisher

can distinguish between the two games we can break the pseudorandomness of the PRF.

As Game 6 corresponds to the view generated by the simulator, the success probability of an adversary in

breaking the anonymity property is bounded by the sum of the distinguishing advantages in the above games.

This advantage is negligible.

Balance. A successfully deposited coin can be parsed as coin = (S, (T,CID, Cs, Ct, CJ , π1, π2, πS , πT),

idM‖info). We consider multiple games.

Game 1. The first game is the same as the balance definition with the oracles using the real protocol.

Game 2. As Game 1 except that in CashSetup algorithm SetupSig is replaced with ExtractSetupSig to

obtain td .

Game 3. As Game 2 except that in ODeposit the game checks every deposited coin and uses td and the

ExtractSig algorithm to extract ys, yt and yID from CID, Cs, Ct, π1 and yJ from CJ , π2. It aborts if

the triple (ys, yt, yJ) already appeared in a previously deposited coin.

Game 4. As Game 3 except that it also aborts if the value yJ is not in {F (1), . . . , F (n)}.

Game 5. As Game 4 except that it abort if the number of deposited coins with different (ys, yt) pairs is

bigger than withdrawals .

Games 1 and 2 are indistinguishable as SetupSig and ExtractSetupSig are indistinguishable.

Games 2 and 3 are indistinguishable because Game 3 aborts only with negligible probability. An abort

can occur only if one of the F (ys)−1, F (yt)−1, F (yJ)−1 does not correspond to the opening of Cs, Ct, CJ

5A standard hybrid argument can be used to show that S and T can be replaced one after the other.

133

in which case we found a forgery for one of the two P-signatures or if we broke the soundness of the proof

system used to prove language LS and LT . We guess which of the three options is the case to do a reduction

and break the unforgeability of the P-signature scheme or the soundness of the proof system.

A distinguisher between Game 3 and 4 allows to break the unforgeability of the P-signature scheme as

the only time Game 4 aborts is when it obtains a signature on a value F−1(yJ) > n. As such a J value was

never signed we obtain a P-signature forgery.

A distinguisher between Game 4 and 5 allows to break the unforgeability of the P-signature scheme as the

number of different (ys, yt) pairs with corresponding signatures pairs is greater than the number of correctly

generated signatures be OWithdraw. We create a reduction and guess which (ys, yt) is the forgery to break

P-signature unforgeability with probability at least 1/(withdrawals + 1).

In Game 5, we can bound the number of successful deposits to at most withdrawals · n. The success

probability of A is bounded by the sum of the distinguishing probabilities between the Games 1 to 5. This

probability is negligible.

Identification. A successful adversary A in the identification game outputs two coins (coin1, coin2) that

verify and have the same serial number S but different idM‖info. We consider multiple games.

Game 1. Is the same as the original security game.

Game 2. As Game 1 but in CashSetup algorithm SetupSig is replaced with ExtractSetupSig to obtain td .

Game 3. As Game 2 but the game parses the coins coin1 = (S, (T,CID, Cs, Ct, CJ , π1, π2, πS , πT),

pkM1, info1) and coin2 = (S, (T ′, C ′ID, C
′
s, C

′
t, C

′
J , π

′
1, π

′
2, π

′
S , π

′
T), idM2‖info2) obtained from the

adversary and uses td and the ExtractSig algorithm to extract yID, ys, yt, yJ from (CID, Cs, Ct, π1),

(CJ , π2) and y′ID, y
′
s, y′t, y

′
J from (C ′ID, C

′
s, C

′
t, π1), (CJ , π2). Game 3 aborts if the values yJ or y′J are

not in {F (1), . . . , F (n)}.

Game 4. As Game 3 but it also aborts if ys 6= y′s.

Game 5. As Game 4 but it also aborts if yJ 6= y′J .

Game 6. As Game 5 but it aborts if yt 6= yt or yID 6= y′ID.

Games 1 and 2 are indistinguishable as SetupSig and ExtractSetupSig are indistinguishable.

A distinguisher between Game 2 and 3 allows to break the unforgeability of the P-signature scheme as

the only time Game 3 aborts is when it obtains a signature on a value F−1(yJ) > n. As such a J value was

never signed we obtain a P-signature forgery.

Games 3 and 4 are indistinguishable. The abort in Game 4 can only happens with probability greater than

n2/p (∼ the probability of collision if S is computed by a random function) in one of the following 4 cases:

(i. and ii.) one of the F (ys)−1, F (y′s)
−1 does not correspond to the opening of Cs, C

′
s respectively (in this

case we can find a forgery for the P-signatures scheme), iii. we break the soundness of the proof system for

language LS , or iv. we break the pseudorandomness of PRF.

The reduction to the pseudo-randomness works as follows: We have a polynomial sized domain, so

an adversary in the pseudorandomness game can compute the output on every element in the domain. By

134

pseudorandomness, this should look like a completely random polynomially sized subset of Ga. So the

probability that two randomly chosen seeds will produce intersecting ranges should be negligible. Otherwise

we can build a reduction which breaks the pseudorandomness property without even seeing the seed: we are

given oracle access to the PRF (or a random function). We query it on all points in the domain. Then we

choose another random seed and compute that on all points in the domain. If there is an intersection with the

first set, we output “pseudo random” otherwise we output “random”.

Note that n < poly(k) and thus the Games 3 and 4 are indistinguishable, or otherwise we guess which of

the 4 cases mentioned above holds do the appropriate reduction.

Games 4 and 5 are indistinguishable for the same reason except that the probability of a collision for

perfectly random functions corresponds to the probability of distinguishing a random function from a random

permutation given only n < poly(k) queries.

Games 5 and 6 are indistinguishable as aborts in 6 occur only with negligible probability. In Game 6 we

abort if yt 6= yt or yID 6= y′ID. As the seed s is chosen at random, it is highly unlikely that two withdrawn

wallets contain the same seed. Consequently yt = yt and yID = yID or we break the unforgeability of the

P-signature scheme.

In Game 6 the probability of e((T/T ′)1/(idM1‖info1−idM2‖info2), h) /∈ DBT is bounded by the soundness

error of the proof protocol or the probability that yID was never signed by the bank or does not correspond

to the commitment CID. If the probability of the first is non-negligible we break the soundness of the proof

protocol, if the probability of the latter is non-negligible we break the unforgeability of our P-signature

scheme.

As Games 1 to 6 are computationally indistinguishable, A’s success probability in the real game is also

negligible.

Weak Exculpability. A successful adversary A in the weak exculpability game outputs two coins (coin1,

coin2) that verify and have the same serial number S but different idM‖info.

WhileA knows the users public key pkU = e(gskU , h) it is hard to compute gskU from pkU alone without

knowing skU . As no additional information about gskU is revealed until U reuses an e-token, an adversary

computing gskU can be used to asymmetric computation Diffie Hellman (asymmetric CDH) assumption:

given random ga, hb compute gab. Asymmetric CDH is implied by q-BDDH and DLIN.

More formally we define a sequence of games to eliminate all sources of information that an adversary

may potentially have about honest user’s keys besides the public key learned through a OGetKey query:

Game 1. Here the adversary plays the same game as in the weak exculpability definition.

Game 2. As Game 1, but CashSetup is replaced with SimCashSetup.

Game 3. As Game 2, but in OWithdraw algorithm ObtainSig is replaced with the P-signature simulator

SimObtainSig.

Game 4. As Game 3, but in OSpend algorithm SpendCoin is replaced with SimSpend.

Games 1 and 2 are indistinguishable by the properties of the P-signature scheme (and the anonymity of the

135

e-cash scheme itself). If Games 2 and 3 can be distinguish we break the user privacy of the P-signature

scheme. Games 3 and 4 are indistinguishable based on the anonymity of the e-cash scheme.

In order to break the asymmetric CDH assumption we do the following reduction. We answer a random

OGetKey with e(ga, hb). Then we use the simulators SimCashSetup, SimObtainSig, and SimSpend to sim-

ulate all interactions with the adversary where this user is involved. A successful adversary outputs gab as

(T/T ′)1/(idM1‖info1−idM2‖info2).

Appendix A

Generic Group Security for BB-SDH
and BB-CDH

A.0.1 BB-HSDH

We provide more confidence in the BB-HSDH assumption by proving lower bounds on the complexity of the

problem in the generic group model. Note that this also establishes hardness of the HSDH assumption for

generic groups as conjectured by [14].

Definition 35 (BB-HSDH). Let c1 . . . cq ← Zp. On input g, gx, u ∈ G1, h, hx ∈ G2 and {g1/(x+c`),

c`}`=1...q, it is computationally infeasible to output a new tuple (g1/(x+c), hc, uc).

Let e : G1 × G2 → GT be a bilinear map over groups G1, G2, GT of prime order p. In the generic

group model, we encode group elements of G1, G2, GT as unique random strings. Group operations are

performed by an oracle, that operates on these strings and keeps an internal representation of the group. We

set α : Zp → {0, 1}∗ to be the opaque encoding of elements of G1. Let g be a generator of G1; α(a) maps

a ∈ Zp to the string representation of ga ∈ G1. The function β : Zp → {0, 1}∗ maps a ∈ Zp to the string

representation of ha ∈ G2 and the function τ : Zp → {0, 1}∗ maps a ∈ Zp to e(g, h)a ∈ GT .

We can represent all operations in terms of the random maps α, β, τ . Note that the maps do not need to

be explicitly given. It is sufficient if the oracles create them using lazy evaluation. Let a, b ∈ Zp. We define

oracle queries for the following operations:

Group Operation. α(a) · α(b) = α(a+ b). This is because α(a) · α(b) = ga · gb = ga+b = α(a+ b). The

same holds for the group operation in β and τ .

Exponentiation by a Constant. α(b)a = α(ab). This is because α(b)a = (gb)a = gab = α(ab). The same

holds for multiplication by a constant in β and τ .

Pairing. e(α(a), β(b)) = τ(ab). This is because e(α(a), β(b)) = e(ga, hb) = e(g, h)ab = τ(ab).

136

137

When an adversary tries to break the BB-HSDH assumption to the generic group model, the adversary

does not get g, gx, u, h, hx and {g1/(x+c`), c`}`=1...q as input. Instead, we encode these values using the

random maps α, β, τ . The generators g, h and e(g, h) become α(1), β(1) and τ(1) respectively. We encode

gx as α(x), g1/x+c` as α(1/(x+ c`) and hx as β(x). Since g is a generator of G1, there exists a y ∈ Zp such

that gy = u. So we choose y at random and set u = α(y).

To break the BB-HSDH assumption, the adversary needs to output a triple (A,B,C) of the form (g1/x+c,

hc, uc) for some c ∈ Zp. Normally, we can test that the triple is well-formed using the bilinear map:

e(A, hxB) = e(g, h) ∧ e(C, h) = e(u,B).

In the generic group model we require that he outputs random representations (αA, βB , αC). The adver-

sary can either compute these values using the group oracles, or pick them at random, which he could also

do by doing a generic exponentiation with a random constant. Thus it is meaningful to say that the adversary

succeeds if αA = α(1/(x+ c)) ∧ βB = β(c) ∧ αC = α(yc).

Theorem 33 (BB-HSDH is Hard in Generic Group Model). Let G1, G2, GT be groups of prime order p,

(where p is a k-bit prime) with bilinear map e : G1 ×G2 → GT . We choose maps α, β, τ at random. There

exists a negligible function ν : N→ [0, 1] such that for every PPTM A:

Pr[x, y, {c`}`=1...q ← Zp; (αA, βB , αC)← A(α(1), α(x), α(y), β(1), β(x), {α(1/(x+c`)), c`}`=1...q) :

∃c : αA = α(1/x+ c) ∧ βB = β(c) ∧ αC = α(yc)] ≤ ν(k)

Proof. LetA be a PPTM that can break the BB-HSDH assumption. We create an environment E that interacts

with A as follows:

E maintains three lists: Lα = {(Fα,s, αs) : s = 0, . . . , Sα − 1}, Lβ = {(Fβ,s, βs) : s = 0, . . . , Sβ − 1},
and Lτ = {(Fτ,s, τs) : s = 0, . . . , Sτ − 1}. The Fα,s, Fβ,s, Fτ,s contain emphrational functions; their

numerators and denominators are polynomials in Zp[x, c]. E uses Fα,s, Fβ,s, Fτ,s to store the group action

queries thatAmakes and αs, βs, τs to store the results. Thus αs = α(Fα,s), βs = β(Fβ,s) and τs = τ(Fτ,s).

E chooses random strings α0, α1, α2, {α2+`}`=1...q, β0, β1, τ0 ∈ {0, 1}∗, and sets the corresponding

polynomials as:

Fα,0 = 1 Fα,1 = x Fα,2 = y Fα,2+` = 1/(x+ c`)

Fβ,0 = 1 Fβ,1 = x

Fτ,0 = 1

E sets Sα = 3 + q, Sβ = 2 and Sτ = 1. Then E sends the strings to A . Whenever A calls the group action

oracle, E updates its lists.

Multiplication. A inputs αs and αt. E checks that αs and αt are in its list Lα, and returns ⊥ if they are

not. Then E computes F = Fα,s + Fα,t. If F is already in the list Lα, then E returns the appropriate

αv . Otherwise, E adds chooses a random αSα , sets Fα,Sα = F and adds this new tuple to the list. E
increments the counter Sα by 1. E performs a similar operation if the inputs are in G2 or GT .

Division. A inputs αs and αt. E checks that αs and αt are in its list Lα, and returns⊥ if they are not. Then E
computes F = Fα,s−Fα,t. If F is already in the list Lα, then E returns the appropriate αv . Otherwise,

138

E adds chooses a random αSα , sets Fα,Sα = F and adds this new tuple to the list. E increments the

counter Sα by 1. E performs a similar operation if the inputs are in G2 or GT .

Exponentiation by a Constant A inputs αs and a constant a ∈ Zp. E checks that αs is in its list Lα, and

returns ⊥ if it is not. Then E computes F = Fα,s · a. If F is already in the list Lα, then E returns the

appropriate αv . Otherwise, E adds chooses a random αSα , sets Fα,Sα = F and adds this new tuple to

the list. E increments the counter Sα by 1. E performs a similar operation if the inputs are in G2 or

GT .

Pairing. A inputs αs and βt. E checks that αs and βt are in its lists Lα and Lβ , respectively, and returns

⊥ if they are not. Then E computes F = Fα,s · Fβ,t. If F is already in the list Lτ , then E returns the

appropriate τv . Otherwise, E adds chooses a random τSτ , sets Fτ,Sτ = F and adds this new tuple to

the list. E increments the counter Sτ by 1.

At the end of the game, A outputs (αA, βB , αC). These values must correspond to bivariate polynomials

Fα,A, Fβ,B and Fα,C in our lists. (If one of these values is not in our lists, thenAmust have guessed a random

group element; he might as well have asked the oracle to perform exponentiation on a random constant and

added a random value to the list. Thus we ignore this case.)

Since A must have computed these polynomials as a result of oracle queries, they must be of the form

a0 + a1x+ a2y +
∑q

`=1 a3/(x+ c`). If A is to be successful,

Fα,A(x+ Fβ,B) = 1 and (A.1)

Fα,C = yFβ,B . (A.2)

For Equation (2) to hold identically in Zp[x, y], Fα,C and Fβ,B either need to be 0 or Fβ,B needs to be a

constant, because the only possible term for y in the polynomials is a2y. In both cases, the term (x+ Fβ,B)

in Equation (2) has degree 1, and Equation (1) can only be satisfied identically in Zp[x, y] if Fα,A has degree

≥> p− 2. We know that the degree of Fα,A is at most q and conclude that there exists an assignment in Zp

to the variables x and y for which the Equations (1) and (2) do not hold. Since Equation (1) is a non-trivial

polynomial equation of degree ≤ 2q, it admits at most 2q roots in Zp.

Analysis of E’s Simulation. At this point E chooses a random x∗, y∗ ∈ Z∗p, and now sets x = x∗

and y = y∗. E now tests (in equations A.3, A.4, A.5, and A.6) if its simulation was perfect; that is, if the

instantiation of x by x∗ or y by y∗ does not create any equality relation among the polynomials that was not

revealed by the random strings provided to A. Thus, A’s overall success is bounded by the probability that

any of the following holds:

Fα,i(x∗, y∗)− Fα,j(x∗, y∗) =0 in Zp, for some i, j such that Fα,i 6= Fα,j , (A.3)

Fβ,i(x∗, y∗)− Fβ,j(x∗, y∗) =0 in Zp, for some i, j such that Fβ,i 6= Fβ,j , (A.4)

Fτ,i(x∗, y∗)− Fτ,j(x∗, y∗) =0 in Zp, for some i, j such that Fτ,i 6= Fτ,j , (A.5)

Fα,A(x∗, y∗)(x∗ + Fβ,B(x∗, y∗)) =1 ∧ Fα,C(x∗, y∗) = y∗Fβ,B(x∗, y∗) in Zp. (A.6)

Each polynomial Fα,i, Fβ,i and Fτ,i has degree at most q, q and 2q, respectively.

139

For fixed i and j, we satisfy equations A.3 and A.4 with probability ≤ q/(p− 1) and equations A.5 with

probability ≤ 2q/(p− 1). We can bound the probability that Equation A.6 holds by ≤ 2q/(p− 1)

Now summing over all (i, j) pairs in each case, we bound A’s overall success probability

ε ≤ 2
(
Sα

2

)
q

p− 1
+

(
Sτ

2

)
2q
p− 1

+
2q
p− 1

≤ 2q
p− 1

(
(
Sα

2

)
+

(
Sτ

2

)
+ 1).

Let qG be the total number of group oracle queries made, then we know that §α +Sβ +Sτ = qG + q+6.

We obtain that ε ≤ (qG + q + 6)2 2q
p−1 = O(q2Gq/p+ q3/p).

The following corollary restates the above result:

Corollary. Any adversary that breaks the BB-HSDH assumption with constant probability ε > 0 in generic

bilinear groups of order p such that q < O(3
√
p) requires Ω(3

√
εp/q) generic group operations.

A.0.2 BB-CDH

We provide more confidence in the BB-CDH assumption by proving that it is implied by the SDH assumption

[11]. We require either a homomorphism φ : G1 → G2 or an extended SDH challenge. As SDH is secure in

the generic group model, BB-CDH is too.

Definition 36 (BB-CDH). On input g, gx, gy ∈ G1, h, hx ∈ G2, c1, . . . , cq ← Zp and g
1

x+c1 , . . . , g
1

x+cq , it

is computationally infeasible to output a gxy .

On input a SDH challenge (g1, gz
1 , g

z2

1 , . . . , gzq+1

1 , g2, g
z
2), our reduction tries to compute g

1
z .

There is a technical subtlety. We also want to give our reduction gz2

2 , . . . , gzq+1

2 . In [11], SDH is proven

for a setting where homomorphisms between G1 and G2 exist. The generic group proof still holds for a

setting where instead the elements gz2

2 , . . . , gzq+1

2 are given as part of the challenge.

Now we pick random c1, . . . , cq ← Zp set g = g
z

Qq
i=1(1+ciz)

1 , X = gx = g1, Y = gy = gr
1 , h =

g
z

Qq
i=1(1+ciz)

2 , Z = hx = g2.

Note that implicitly x = 1/z and y = r/z. As z
∏q

i=1(1+ciz) is a polynomial of maximum degree q+1

the reduction can compute g and h.

Now we need to compute g1/(x+ci) = g1/(1
z +ci) = gz/(1+ciz). Substituting g with gz

Qq
i=1(1+ciz)

1 we get

gz/(1+ciz) = (g
z

Qq
j=1(1+cjz)

1)z/(1+ciz)

g
z2 Qq

j=1,j 6=i(1+cjz)

1

The polynomial z2
∏q

j=1,j 6=i(1 + cjz) is again of maximum degree q + 1. Thus the reduction can compute

the g1/(x+ci) values.

We are ready to query our BB-CDH adversary to obtain gxy . We know that

gxy = gr/(z2)

= (gz
Qq

i=1(1+ciz)
1)r/z2

)

= g
r(

Pq
i=1 aiz

q−i)+1/z
1

140

The value r(
∑q

i=1 aiz
q−i) is a polynomial of degree q − 1 in z. We can compute gr(

Pq
i=1 aiz

q−i)
1 and obtain

g
1/z
1 through division.

The following corollary follows from the generic group proof of the SDH assumption:

Corollary. Any adversary that breaks the BB-CDH assumption with constant probability ε > 0 in generic

bilinear groups of order p such that q < O(3
√
p) requires Ω(3

√
εp/q) generic group operations.

Bibliography

[1] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-Resistant Stor-

age. Johns Hopkins University, CS Technical Report # TR-SP-BGMM-050705. ht\tp://spar.
isi.jhu.edu/∼mgreen/correlation.pdf, 2005.

[2] Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic framework for the controlled

release of certified data. In Twelfth International Workshop on Security Protocols, Lecture Notes in

Computer Science. Springer Verlag, 2004.

[3] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav

Shacham. Delegatable anonymous credentials. (in submission).

[4] Mira Belenkiy, Melissa Chase, Chris Erway, John Jannotti, Alptekin Küpçü, Anna Lysyanskaya, and

Eric Rachlin. Making p2p accountable without losing privacy. In Proceedings of the Sixth Workshop on

Privacy in the Electronic Society (WPES). ACM Press, 2007.

[5] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and non-

interactive anonymous credentials. In TCC ’08, 2008.

[6] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient

protocols. In First ACM Conference on Computer and Communication Security, pages 62–73. Associ-

ation for Computing Machinery, 1993.

[7] Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-interactive zero-

knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.

[8] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications

(extended abstract). In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,

pages 103–112, Chicago, Illinois, 2–4 May 1988.

[9] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-random

bits. SIAM Journal on Computing, 13(4):850–863, November 1984.

[10] Dan Boneh and Xavier Boyen. Efficient selective id secure identity based encryption without random

oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology — EUROCRYPT

2004, volume 3027 of Lecture Notes in Computer Science. Springer, 2004.

141

142

[11] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan

Camenisch, editors, Advances in Cryptology — EUROCRYPT 2004, volume 3027 of Lecture Notes in

Computer Science, pages 54–73. Springer, 2004.

[12] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K. Franklin,

editor, Advances in Cryptology — CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,

pages 41–55. Springer Verlag, 2004.

[13] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC 2005,

volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer, 2005.

[14] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In

Public Key Cryptography, pages 1–15, 2007.

[15] Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building in Privacy.

PhD thesis, Eindhoven Institute of Technology, Eindhoven, The Netherlands, 1999.

[16] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. Technical Report

Research Report RZ 3450, IBM Research Division, March 2004.

[17] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In Proc. 11th ACM

Conference on Computer and Communications Security, pages 225–234. acm press, 2004.

[18] Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous cre-

dential system. In Proc. 9th ACM Conference on Computer and Communications Security. acm press,

2002.

[19] Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous cre-

dential system. Technical Report Research Report RZ 3419, IBM Research Division, May 2002.

[20] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira Meyerovich.

How to win the clonewars: efficient periodic n-times anonymous authentication. In CCS ’06: Pro-

ceedings of the 13th ACM conference on Computer and communications security, pages 201–210, New

York, NY, USA, 2006. ACM Press.

[21] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-cash. In Ronald Cramer,

editor, Advances in Cryptology — Eurocrypt 2005, volume 3494 of Lecture Notes in Computer Science,

pages 302–321. Springer, 2005.

[22] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing accountability and privacy

using e-cash. In SCN, 2006.

[23] Jan Camenisch and Anna Lysyanskaya. Efficient non-transferable anonymous multi-show credential

system with optional anonymity revocation. In Birgit Pfitzmann, editor, Advances in Cryptology — EU-

ROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 93–118. Springer Verlag,

2001.

143

[24] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio Cimato,

Clemente Galdi, and Giuseppe Persiano, editors, Security in Communication Networks, Third Interna-

tional Conference, SCN 2002, volume 2576 of Lecture Notes in Computer Science, pages 268–289.

Springer Verlag, 2003.

[25] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear

maps. In Matthew K. Franklin, editor, Advances in Cryptology — CRYPTO 2004, volume 3152 of

Lecture Notes in Computer Science, pages 56–72. Springer Verlag, 2004.

[26] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash. In IEEE Symposium on

Security and Privacy, pages 101–115, 2007.

[27] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete logarithms.

In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes in

Computer Science, pages 126–144, 2003.

[28] Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete logarithms.

Technical Report TR 260, Institute for Theoretical Computer Science, ETH Zürich, March 1997.

[29] Sébastien Canard, Aline Gouget, and Emeline Hufschmitt. A handy multi-coupon system. In ACNS,

pages 66–81, 2006.

[30] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J. ACM,

51(4):557–594, 2004.

[31] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork, editor, CRYPTO

2006, volume 4117 of Lecture Notes in Computer Science, pages 78–96, 2006.

[32] Melissa Chase and Anna Lysyanskaya. A direct construction of simulatable vrfs with applications to

multi-theorem nizk. In Advances in Cryptology — CRYPTO ’07, 2007.

[33] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and

Alan T. Sherman, editors, Advances in Cryptology — Proceedings of CRYPTO ’82, pages 199–203.

Plenum Press, 1983.

[34] David Chaum. Blind signature systems. In David Chaum, editor, Advances in Cryptology — CRYPTO

’83, page 153. Plenum Press, 1984.

[35] David Chaum. Security without identification: Transaction systems to make big brother obsolete. Com-

munications of the ACM, 28(10):1030–1044, October 1985.

[36] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser, editor,

Advances in Cryptology — CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages

319–327. Springer Verlag, 1990.

144

[37] Jean-Sibastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor, Advances

in Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 229–235.

Springer Verlag, 2000.

[38] Ivan Damgård. Efficient concurrent zero-knowledge in the auxiliary string model. In Bart Preneel,

editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer

Science, pages 431–444. Springer Verlag, 2000.

[39] Ivan Damgård. On Σ-protocols. Available at http://www.daimi.au.dk/∼ivan/Sigma.ps,

2002.

[40] Ivan Damgård, Kasper Dupont, and Michael Østergaard Pedersen. Unclonable group identification. In

EUROCRYPT, pages 555–572, 2006.

[41] Ivan Bjerre Damgård. Payment systems and credential mechanism with provable security against abuse

by individuals. In Shafi Goldwasser, editor, Advances in Cryptology — CRYPTO ’88, volume 403 of

Lecture Notes in Computer Science, pages 328–335. Springer Verlag, 1990.

[42] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge proof sys-

tems. In Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87, volume 293 of Lecture Notes

in Computer Science, pages 52–72. Springer-Verlag, 1988.

[43] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys.

In Public Key Cryptography 2005, pages 416–432, 2005.

[44] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, pages 283–293, 2000.

[45] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions. J. ACM,

50(6):852–921, 2003.

[46] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under gen-

eral assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

[47] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature

problems. In Andrew M. Odlyzko, editor, Advances in Cryptology — CRYPTO ’86, volume 263 of

Lecture Notes in Computer Science, pages 186–194. Springer Verlag, 1987.

[48] Eiichiro Fujisaki and Tatsuaki Okamoto. A practical and provably secure scheme for publicly verifiable

secret sharing and its applications. In Kaisa Nyberg, editor, Advances in Cryptology — EUROCRYPT

’98, volume 1403 of Lecture Notes in Computer Science, pages 32–46. Springer Verlag, 1998.

[49] S. Galbraith and V. Rotger. Easy decision diffie-hellman groups. Journal of Computation and Mathe-

matics, 7:201–218, 2004.

[50] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of

the ACM, 33(4):792–807, October 1986.

145

[51] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and a

method of cryptographic protocol design. In Proc. 27th IEEE Symposium on Foundations of Computer

Science (FOCS), pages 174–187. IEEE Computer Society Press, 1986.

[52] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In Proc.

44th IEEE Symposium on Foundations of Computer Science (FOCS), pages 102–115. IEEE Computer

Society Press, 2003.

[53] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof

systems. In Proc. 27th Annual Symposium on Foundations of Computer Science, pages 291–304, 1985.

[54] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure against adaptive

chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[55] Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group signatures.

In ASIACRYPT, pages 444–459, 2006.

[56] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In

Advances in Cryptology — Eurocrypt ’06, Lecture Notes in Computer Science. Springer-Verlag, 2006.

[57] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. http://

eprint.iacr.org/2007/155, 2007.

[58] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator

from any one-way function. SIAM Journal of Computing, 28(4):1364–1396, 1999.

[59] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their appli-

cations. In Ueli Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, volume 1233 of Lecture

Notes in Computer Science. Springer, 1996.

[60] Stanislaw Jarecki and Vitaly Shmatikov. Hancuffing big brother: an abuse-resilient transaction escrow

scheme. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology — EUROCRYPT

2004, volume 3027 of Lecture Notes in Computer Science, pages 590–608. Springer, 2004.

[61] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed inputs.

In EUROCRYPT, pages 97–114, 2007.

[62] Jonathan Katz. Efficient and non-malleable proofs of plaintext knowledge and applications. In EURO-

CRYPT, pages 211–228, 2003.

[63] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for np with

general assumptions. J. Cryptology, 11(1):1–27, 1998.

[64] Anna Lysyanskaya. Signature schemes and applications to cryptographic protocol design. PhD thesis,

Massachusetts Institute of Technology, Cambridge, Massachusetts, September 2002.

146

[65] Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In Howard Heys and

Carlisle Adams, editors, Selected Areas in Cryptography, volume 1758 of Lecture Notes in Computer

Science. Springer Verlag, 1999.

[66] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Proc. 40th IEEE

Symposium on Foundations of Computer Science (FOCS), pages 120–130. IEEE Computer Society

Press, 1999.

[67] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):51–158, 1991.

[68] Pascal Paillier. Public-key cryptosystems based on composite residuosity classes. In Jacques Stern, ed-

itor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,

pages 223–239. Springer Verlag, 1999.

[69] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In

Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, volume 576 of Lecture Notes in

Computer Science, pages 129–140. Springer Verlag, 1992.

[70] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-efficient non-

interactive zero-knowledge (extended abstract). In ICALP, pages 716–726, 1997.

[71] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Necessary and sufficient assump-

tions for non-interactive zero-knowledge proofs of knowledge for all NP relations. In Ugo Monta-

nari, José P. Rolim, and Emo Welzl, editors, Proc. 27th International Colloquium on Automata, Lan-

guages and Programming (ICALP), volume 1853 of Lecture Notes in Computer Science, pages 451–

462. Springer Verlag, 2000.

[72] Mike Scott. Authenticated id-based key exchange and remote log-in with insecure to ken and pin

number. http://eprint.iacr.org/2002/164, 2002.

[73] Isamu Teranishi and Kazue Sako. k-times anonymous authentication with a constant proving cost. In

Public Key Cryptography, pages 525–542, 2006.

[74] Eric R. Verheul. Evidence that xtr is more secure than supersingular elliptic curve cryptosystems. J.

Cryptology, 17(4):277–296, 2004.

[75] Victor K. Wei. More compact e-cash with efficient coin tracing. Cryptology ePrint Archive, Report

2005/411, 2005. http://eprint.iacr.org/.

[76] Andrew C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symposium on Foundations

of Computer Science (FOCS), pages 162–167, 1986.

