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Abstract of ‘Continuous-state Graphical Models for Object Localizaticn, Pose Estimation and Track-
ing” by Leonid Sigal, Ph.D., Brown University, May 2008.

Reasoning about pose and motion of objects, based on imagédeo, is an important task for many ma-
chine vision applications. Estimating the pose of artitadabjects such as people and animals is particularly
challenging due to the complexity of the possible poses gstapplications in computer vision, medicine,
biology, animation, and entertainment. Realistic natscanes, object motion, noise in the image obser-
vations, incomplete evidence that arises from occlusiand, high dimensionality of the pose itself are all
challenges that need to be addressed. In this thesis weggapdass of approaches that model objects using
continuous-state graphical models. We show that thes@apipes can be used to effectively model complex
objects by allowing tractable and robust inference alfang that are able to infer pose of these objects in the
presence of realistic appearance variations and artionkat

We use continuous-state graphical models to model botth aigdl articulated object structures; where nodes
correspond to parts of objects and edges represent the@iatstbetween parts encoded as statistical dis-
tributions. For rigid objects, these constraints can magetial and temporal relationships between parts;
for articulated objects kinematic, inter-penetration aedlusion relationships. Localization, pose estima-
tion, and tracking can then be formulated as inference isetlggaphical models. This has a number of
advantages over more traditional methods. First, theseelmatlow inference algorithms that scale linearly

with the number of body parts by breaking up the high-dimemal search for pose into a number of lower-

dimensional collaborative searches. Secondly, partielus®mns can be dealt with robustly by propagating

spatial information between parts. Thirdly, "bottom-upfarmation can be incorporated directly and effec-

tively into the inference process, helping the algorithmecover from transient tracking failures. We show

that these hierarchical continuous-state graphical nsocksh be used to solve the challenging problem of
inferring the 3D pose of the person from a single monoculagen



CHAPTER 1

Introduction

Images and video provide rich low-level cues about the scand the objects in them. The goal of machine
vision is to develop approaches for extracting meaningdoiantic knowledge from these low-level cues; for
example, in the case of robotics, allowing direct intexattf the computer with the real world. This is chal-
lenging because of the large variability that exists in imggonditions and objects themselves. Objects that
belong to same semantic classes can appear differentlgeimiéferently, and even act differently. Objects
like cars vary in size, shape and color; people in weightylsithpe and size/age. Motion of these objects
is often complex and is governed by physical interactiorth wie environmente.g. balance, gravity) and
higher order cognition tasks like intent.

All these challenges make it impossible to determine thernsgof the image that belong to a particular
object, or part of the object, directly. Computer visionalthms must propagate information both spatially
and temporally, to effectively resolve ambiguities thaseyr by inferring globally plausible and temporally
persistent interpretations. Statistical methods arenafsed for these tasks, to allow reasoning in the pres-
ence of uncertaintyGraphical modelgrovide a powerful paradigm for intuitively describing thiatistical
relationships precisely and in a modular fashion. Theseatsoeffectively represent statistical and condi-
tional independence relationships between variablesalhow tractable inference algorithms that make use
of encoded conditional independence structure. In commigen, inference algorithms for these graphical
models need to be developed to handle the high-dimensigwadlihe parameter-space, complex statistical
relationships between variables and the continuous nafuhe variables themselves.

This thesis will concentrate on localizing, estimating ffuse of and tracking rigid and articulated ob-
jects (most notably people) in images and video. Estimatiegpose of people is particularly interesting
because of a variety of applications in rehabilitation o, sports and the entertainment industry. Pose
estimation and tracking can also serve as a front end forehilglvel cognitive reasoning in surveillance or
image understanding. Localizing and tracking articulatedctures like people, however, is challenging due
to the additional degrees of freedom imposed by the articuia (compared with rigid objects). In general
the search space grows exponentially with the number o§ jgard the degrees of freedom associated with
each joint connecting these parts, making most straightefat search algorithms intractable. The recur-
ring theme of this thesis will be the merge of Monte Carlo siamgpand non-parametric inference methods
with graphical models, resulting in tractable and distrélolinference algorithms for localizing and tracking
objects in 2D and 3D. We will also advocate the use of a hiereat inference approach for mediating the



Figure 1.1:Localizing and tracking rigid objects in video. In (@) part-based representation of a vehicle
class object is shown. Object itself is shown in cyan andyid image-based parts in terms of which it is
modeled in red, yellow, green and blue. Results of localiznd subsequently tracking the object through
a short sequence are shown If).(Results on two representative frames frames apart, obtained from the
car-mounted moving camera are shown. Notice the variatidiglting in the two video frames.

complexity of harder inference problems.

We will first describe the problem of pose estimation andkireg as it applies to rigid and articulated
objects. We will then describe a kinematic model and theesponding Monte Carlo sampling methods,
which have successfully been applied to track articulatgdats given an initial pose (often supplied man-
ually at the first frame). We will then consider a more genprablem of tracking people automatically, by
first inferring the pose of the person and then incorporatgngporal consistency constraints in a collabora-
tive inference framework. We will show that we have made Gbations in all aspects of this problem by
addressing modeling choices, inference, likelihoods aiaig

1.1 Object Localization and Tracking

The most natural use of machine vision is to detect, recegfozalize and track objects in the sceDetec-
tion deals with finding if objects are presergcognitionwith finding what objects are preseidcalization
with finding where they are, artdackingwith following them as they move in the scene. In this thegswill
concentrate on localization and tracking and to some egtectiod. Recognition is an interesting problem
in its own right and we refer the reader to [57, 60, 61, 224fmme of the latest work in this research area.
In localization the goal is to find the pose of the object. For example, the pbsigid objects can often be
described in terms of 3D position and orientation of the obijje the scenei.e. a vectore R°. Depending
on the task it may also be sufficient to describe the pose dflbfect in the image plane in which case only
4 parameters are needed: 2D position, orientation, and.sddle latter representation is more suited for
presence/absence detection, where as the former is maralfatr spatial reasoning in the scene.

Tracking deals with finding the pose of an object at every frame in thagiensequence. In tracking,
models of motion/dynamics for objects are often used tostipand efficiently localize them given the short
history of estimates from previous frames. Tracking caralpe Gometimes is [173]) replaced by localization
at every frame. While this ensures that estimates are nggaub drift (accumulation of error resulting from
propagating estimates from frame to frame), it often predueery noisy results. Incorporating temporal

1since most generative approaches tend to model the loazttibie object along with appearance of the object itselfecdtin and
localization are often one and the same. Hence from now on Wdend to use these two terms interchangeably. There areso
detection algorithms that are specifically designed to Bariant to the location of the object. In such cases a sephrealization stage
is needed to pinpoint where the object is in an image onceésgnce is established.
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Figure 1.2:Articulated pose estimation.Figure @) shows the loose-limbed body model used for inference
of articulated pose and trackindy)(shows the results of applying the model &) for inference of 3D pose
from a singled-view image. The3 instances of the model being applied are shown from leftghbtiin (b),
with projections of the 3D model onto each of the@iews from top to bottom.

consistency tends to smooth and regularize the resultgiefipen the presence of inter-frame appearance
variations.

One of the biggest challenges in object detection and lzattidin is the variability in appearance, size and
shape of objects. It has been shown however [59, 62, 144 tB4Bfor some classes of objects this variation
is mostly due to the placement and not the appearance ofidudivparts. Lets take for example vehicles;
while vehicles may look different (see Figure 1aJ)( they all have similar parts like the bumper, hood, and
headlights, and differ mostly in the relative placememélagement of these parts.

Armed with this intuition we model objects using a part-lshgeaphical model representation. We use
two-layer graphical models to model two classes of objgedestrians and vehicles. In this framework we
combine object detection/localization with tracking irirgée unified framework, which allows us to achieve
more robust solutions to both problems. Tracking can makeaibject detection for initialization and
re-initialization during transient failures, while objetetection can benefit from the temporal consistency
provided by the tracking over time. Modeling objects by agament of imaged-based parts that are spatially
constrained (using learned statistical dependenciesdedcby edges in our graphical model), facilitates
detection, localization, and tracking of rigid objects antbcal deformations, partial occlusions and local
lighting variations. This results in a tractable unifiedhfiwvork that shows promise for simultaneous object
detection/localization and tracking. Examples of the its@btained using our model are shown in Figure 1.1.



1.2 Articulated Pose Estimation and Tracking

Articulated objects consist of a number of rigid parts canee by joints. Examples of such objects include
peoplé, animalé and man-made machines. In this thesis we will concentrateapity on people while
similar approaches can be applied to other articulatedctbje.g. animals [170], hands [219ktc). The
pose of the articulated object refers not only to the positind orientation of the object in the scene but
also to the configuration that it assumes. In the case of pebfd corresponds to posture, and is most often
described by a set of parameters that encode the global 3bopcand orientation of the torso in the scene,
and 3D joint angles that account for 3D rotation of each lirllative to the torso. This results in a state-
space vector representation of the pas&?, whered < {30, ..., 60} depending on granularity of the model.
A slightly more compact representation can be obtained bkifg at the pose of the body in the image
plane rather then the scene. In both cases, and even at goansgarity, this leads to very high-dimensional
continuous representation of the pose. Searching for tke pothis high-dimensional state-space using
standard methods, which often scale exponentially withedisionality, quickly becomes intractable.

One way of battling the high-dimensionality is using loazgch techniques [52] with good initialization;
this is an approach most articulated tracking algorithme haken in early years. This of course assumes that
a good initialization is available or can be obtained fromoaperating subject via a predefined procedure.
This is ineffective, however, if initialization is unavallle or the subject is unaware, which is often the case
if our goal is to build autonomous machine vision systems.e @lternative is to apply a dimensionality
reduction technique and search for the pose in lower diroaakspace. While there are clearly correlations
between body parts that allow balance and coordinationhtimean pose manifold is complex and cannot
effectively be modeled using linear low-dimensional enthiegs like Principle Components Analysis (PCA)
[228]. Even more sophisticated methods like Locally Linearbedding (LLE) [55] or Gaussian Processes
[226, 227] usually require motion to be constrained to alsingjatively simple class of actions.g.walking
[55, 227], running, golf swing [227ktc) to learn a good low-dimensional representation. Videaeages
provide additional temporal constraints that often hetjutarize single frame estimates, and can significantly
reduce the search time by ruling out large portions of theckespace.

Instead of attempting to battle the dimensionality of treesispace and complexity of motion directly,
we formulate the problem of pose estimation and trackingresadf inference in a graphical model. The
nodes in this graph correspond to parts (or limbs) of the oatlyedges to kinematic, inter-penetration and
occlusion constraints imposed by the structure of the bodlythe imaging process. This model, which we
call aloose-limbed body modedhllows us to infer the 3D pose of the body effectively andcedfitly from
multiple synchronized views; or a 2D pose of the body fromrayle& monocular image, in time linear in
the number of articulated parts. Since discretization tdtion and position in 3D space is implausibiee
work directly with continuous variables, and use variarftParticle Message PassingA®PAs) [99] for
inference.

Discretization in 2D is possible [59, 169], due to the lowlénensionality and the more natural discrete
representation of the pixel grid. However, to ensure thatriference is tractable, the structure of the discrete

2Actually people and animals have only approximately rigagtp. For the purposes of this thesis, however, we will agstgidity
and ignore non-rigid skin and muscle deformations.

3Discretizing moderatd m x 5 m x 2 mspace even coarsely at granularityléfcmand10 degreeswould require36 x 36 x 36 x
50 x 50 x 20 = 2.3 billion bins.
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Figure 1.3: Hierarchical articulate 3D pose inference from monocular mage(s). (a)monocular input
image with bottom up limb proposals overldia); (c) distribution over 2D limb poses computed using non-
parametric belief propagatiofd) sample of a 3D body pose generated from the 2D p@éliustration of
tracking.

graphical model has to be reduced to a tree, for which fasrigfgns exist [59]. These tree-structured mod-
els, however, are unable to represent important occlugiationships that require long range interactions
between left and right sides of the body. This results in neéfE which maximum a posteriori (MAP)
estimates often prefer incorrect solutions [122, 196]. ®aldvith this, we propose an extension to our
loose-limbed body model that explicitly accounts for osdtuns [196] using per-pixel binary variables. The
developed inference algorithm works over loopy graphspawets for occlusions, and can tractably infer the
pose with marginal overhead compared with continuou® $teé structured model.

Sometimes it may be useful to infer articulated 3D pose frogingle monocular image. This most
general case is challenging because of the inherent degilgaities. Even with perfect observations and
moderate assumptions on the size and shape of the body, thes&g»f individual limbs is too unconstrained
to be modeled effectively even using non-parametric methbstead, we introduce a hierarchical inference
framework, where we first infer the 2D pose of the body in thagmplane, then infer the 3D pose from the
2D body pose estimates and lastly apply the temporal caityiftuacking) at the 3D pose level. This leads
to two important benefits:1j it helps to reduce the depth and projection ambiguitiebking at a full 2D
body pose rather then the pose of individual limbs, &)dt(gives modular, tractable and fully probabilistic
solution that allows inference of 3D pose from a single matercimage in the unsupervised fashion.

The presented framework is more general than person pdssaésn or tracking. It represents an in-
stance of a more general hierarchical inference processbiect detection, where different levels of repre-
sentation cooperate in inferring the scene using a prolébiramework. In this framework complex objects
are described using a hierarchy of simpler representatfongxample, objects can be represented by col-
lections of parts, parts by collections of features, antlfes by responses of simple operators applied to the
image.

1.3 Challenges

Complex appearance and motion of objects as well as imagindjtons lead to many challenges for vision
approaches that attempt to localize, estimate the posedairack objects. Some of these challenges are in-
herent and result in ambiguities that can only be resolveld prior knowledge; others lead to computational



Figure 1.4:Challenges in localizing and tracking objects in videoTop row (@) shows the variation in the
appearance of rigid objeatars bottom row shows the shape variatidn),(self-occlusionsd), and effects of
clothing d) on the articulated objectpeople

burdens that require clever engineering solutions. Wedeiicribe some of these challenges in this section.
Differences in appearances and shapeSimilar objects can vary significantly in physical size, gha
texture and color. Figure 1.4 shows the large variation éndlass of (mostly) rigid objects such as caas (
and even more severe variation in articulated objects ssigieaple inlf). In (b) the sumo wrestler appears
at least twice the size of the children, and is likely morenthhéimes the weight. These severe variations in
size and shape will also result in the differences in motften resulting in a more agile motion for slimmer
and lighter objects. A good tracking system should then mby be robust to these variations, but rather
embrace and make use of them in the form of important dist#gg cues and prior models of motion.
World-occlusions. Object rarely appear by themselves, outside of a labor&orironment. In realistic
scenes objects often interact with their environment aherobbjects which results in occlusions. During
occlusions, the appearance of the object is only partidilseoved and important information that allows
reasoning about its state can be missing. In such casesr(iassthat they can be detected, which is in itself
a hard problem) vision approaches are forced to infer the stad appearance of the object with partially
missing data, based on the prior knowledge or by spatiakfopbral) information aggregation.
Self-occlusions Articulated objects have an additional complexity of beatde to self occlude. This is
illustrated in the Figure 1.4c), where the hands and a significant part of the arm are oaglbgéhe torso
and the head. Both world and self-occlusions can be to soteataxesolved by synchronously observing the
scene and the object from multiple viewpoints, assumingyigepoints are not degenerate. It can be shown
that as number of views grows, the visual hull, defined byiograway parts of the space that are inconsistent
with all image views, approaches the true shape of the ofié8d]. Inferring the pose of the person from
multiple views hence is inherently an easier (but often ncoraputationally intensive) problem.
Projection ambiguities. Depth information is lost when 3-dimensional objects ingbene are projected
onto the 2-dimensional image plane. This leads to a numbgegmth and projection ambiguities. As a result



Figure 1.5:Challenging human motion. This clip shows an exaggeration of the complexities thatrgpks

walking motion can exhibit when stylized by John Cleese aégpisode of the Monty Python’s Flying Circus
in 1970. Images were taken fromttp://www.univie.ac.at/cga/art/tv.html

at best only the relative size of the objects can be recoyemddss something is knowanpriori about the
absolute size of one or more objects in the scene. Out of ptaagons also become ambiguous, with both
backward and forward rotations able to account for foregimimg in projection. Lastly motions that are
along a tangent vector to the image plane may be significaatigler to observe then lateral motions in the
image plane.

Kinematic ambiguities. A less intuitive ambiguity arises in articulated objectatthave symmetric parts,
for which the axis of symmetry is also the axis (or one of thesyof rotationé.g.arms or legs of a person).
In such cases the rotations along these axes (often referi@stwist) is nearly unobservable in the image
and hence is inherently unrecoverable. Kinematic ambiggiihay or may not persist over the extent of the
motion. They may arise for some configuration of the body amidfor others. For example, consider a
straight arm; twisting an upper arm produces almost noriffee in the appearance of the body in an image.
Now think of the same experiment but with the elbow b#htlegrees, twisting an arm now would produce a
significant variation in an image and hence make the twist@fpper arm much easier to recover.

Kinematic singularities. Kinematic singularities arise due to the typical parameétion of articulated
pose in terms of 3D joint angles. Since decomposition of 3fatienal degrees of freedom is not unique,
often a single configuration of the joint can be describedviry or more different sets of parameters (joint
angles). This leads to multi-modal solutions that are diffito handle using direct optimization methods.

Clothes. Clothing can significantly influence how we perceive arttidns of the body. Tightly fitting
clothes make observations about the location of limbs gdsiese-fitting clothes on the other hand often
obstruct our view of the limbs, making accurate observatiorpossible. This is illustrated in Figure 1) (
Notice that even when clothes are not present, direct oaservof joints and bones is impossible due to
layers of body tissue and skin. Hence, vision approacheayalface the problem of inferring joint location
and orientation from indirect observation of the body.

High dimensionality. While the pose of the rigid object can perhaps be expresstsinrs of position
and orientation in space resulting in a state-space repagn < RS (for 3D pose), the pose of the articu-
lated object such as a person, that has many rigid parts ctathat joints, will have to be expressediiff or



higher depending on granularity of the model. Some modehinfan motion that try to achieve more real-
istic representatiore(g. POSER) use as many &) parameters, resulting in the state-spadg®’. Searching
for the parameters in this high-dimensional state-spatkowt a good initialization is a very challenging
problem.

Viewpoint. Viewpoint can have a dramatic effect on appearance of argcodpe to the asymmetries of
most shapes. This is true even for simple geometric objEotsexample, consider a cylinder viewed directly
from the side: it looks like a rectangle in the image planenfithe top - a circle. In these degenerate cases
image observations alone are not enough to distinguishyiiveler from other simple 3D geometric shapes,
e.g.sphere or cuboid. Observing the cylinder as it or the camengemmay help resolve this ambiguity.

Lighting. Lighting also plays a significant role in the imaging proce3$fie most intuitive artifact is
inability to observe parts of the image due to the under or-exposure that may be a result of poor lighting
conditions or reflective/specular properties of the obj&tte less intuitive artifact is shadows. Shadows are
often hard to distinguish from objects that cast them for important reasons. First, shadows are dynamic
entities that change with the objects as they move. Henaey teschniques such as background subtraction
to discount shadows is ineffective. Second, shadows oféer kiery similar shape to the objects that cast
them. Disambiguating shadows from the objects often reguitodeling of more complex object properties
like texture and/or color, and sometimes even the geométheascene.

Complexity of human motion. Human motion itself is very complex. The human body consits
many joints of various types, with different degrees of fi@® and ranges of motion. There exist complex
correlations between joints that allow dynamic and stagilamce of the body. There is also a large set of
actions that a person can perform and an even larger setle§ $825, 240] in which these actions can be
performed. Figure 1.5 shows one example of a very complexomahat results from a skillfully stylized
simple action of walking. The complexity and the varialyilif the human motion, in general, allow few
assumptions about the content and dynamics of motion prasanages or video. Strong prior models, that
make aggressive decisions about the pose or motion in absgrimage evidence, while computationally
efficient and often helpful in constraining the problem, aliso easily violated in realistic scenarios.

Addressing all these challenges is essential to buildingcanrate, robust and reliable object detection,
localization and tracking system. In this thesis we will g some of these challenges explicitly, including
high dimensionality, complexity of human motion, self-lusions, kinematic and projection ambiguities;
others such as clothing and shape variations are stilldefely unaddressed by the vision community.

1.4 Thesis Outline

Chapter 1. Introduction.The chapter introduces and motivates the thesis, outledsdy ideas and contribu-
tions. The chapter also introduces the problems of objaettlen, articulated pose estimation and tracking.
Challenges in these problems are discussed along with atiatins for solving them. The chapter also gives
an overview of the overall thesis structure.

Chapter 2. State of the Art.This chapter will cover the basics of rigid and articulatdigjest detection,
pose estimation and tracking. Kinematic tree models [188]approaches for articulated tracking using the
kinematic tree models including direct optimization mete@and Monte Carlo integration methods [54] such
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as particle filtering [52, 136] will be discussed. Commortdieaes used for both articulated and rigid object
inference will also be introduced and discussed. The chayptealso cover differences between bottom-
up and top-down approaches to pose estimation and tradkidgding regression [4], mixture of experts
[206], and nearest-neighbor methods [189]. Differencesaaivantages of discriminative versus generative
methods will also be addressed. Lastly, well establish@dagehes for object detection and categorization
including bag of features, AdaBoost [235, 236], constellamodel [61] and pictorial structures [59] will be
introduced and discussed among others.

Chapter 3. Graphical Models and Inferenc&his chapter will introduce the formalism and statisticaithz

ods that play a central role in the thesis. Graphical modd3,[108] will be discussed, including directed,
undirected and loopy graphs. Special purpose graphicakmddat are common to problems of tracking
including Hidden Markov Models (HMMs) will be covered. Saling-based inference methods in graphical
models, including Markov Chain Monte Carlo (MCMC) methodelimportance Sampling (IS), Particle
Filtering, Gibbs sampling and Kernel Density Estimatiord®) will be presented. Some theoretical results
and limitations of inference in graphical models using Iegdipproaches like Variable Elimination and Be-
lief Propagation will also be discussed. Continuous-gieaphical models will be covered in depth, along
with approximate inference algorithms of Particle MessBgasing (RMPAS) [99] and Non-parametric
Belief Propagation (NBP) [220] developed for those modeéisnumber of extensions that we developed
[196, 197, 199] to the standard formulation of Particle MeggsPassing will also be covered. Among them,
mixture models for potential functions, annealing, imparte sampling and inference in the presence of hid-
den variables by analytic marginalization. As part of thecdssion on continuous-state graphical models,
efficient methods for sampling from the products of Gausgiattures [78, 95] will be addressed.

Chapter 4. Graphical Object ModelsThis chapter will motivate the use of graphical models fodelong
rigid objects. Based on the formalism introduced in the jmes chapter, an inference algorithm for a class
of two-layered graphical models, used to model objects][i®the proposed framework, will also be intro-
duced. Chapter will include experiments on detecting aacking pedestrians and vehicles geared towards
automated vehicle navigation applications. The chapticamclude with discussion of findings and results.

Chapter 5. Loose-limbed Body Modellhis chapter will introduce the key contribution, of what wal a
loose-limbed body model [199]. It will illustrate its apgdition for 3D pose estimation and tracking from
multiple synchronized views [197]. The comparison andti@feship to other relevant methods will also be
discussed at length. In addition, we will also discuss a hdataset and methodology for quantitative evalu-
ation of performance. The chapter will conclude with distos of findings and results.

Chapter 6. Hierarchical Approach for Monocular 3D Pose-Estimationdafracking. The chapter will in-
troduce the notion of inference hierarchy to mediate theptexity of inferring a 3D articulated pose from a
single monocular image. It will introduce the formalism the mixture of experts model [195] used to infer
the 3D pose from the 2D articulated pose obtained using thantaof loose-limbed body model discussed
in the previous chapter. As part of this effort we will intraze formulation for novel occlusion-sensitive
likelihoods [196], to account for occlusions between 2Dtparhe chapter will conclude with discussion of
findings and results.
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Chapter 7. Summary and DiscussiofThis chapter will summarize the contributions of the thediscuss
open issues and possible future directions.
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CHAPTER 2

State of the Art

Object detection, localization and tracking are among tite problems in computer vision. In the past
years there has been significant progress in generic obgéetttbn and tracking; as well as dealing with
specific classes of objects.g. faces, peopleetc). However, the general case of dealing with non-rigid
objects that exhibit complex motion patterns and appeargadations is still largely unsolved.

Difficulties in reasoning about the object position and parsge due to the complexity of objects them-
selves, variations in their appearance, motion, intevastand imaging conditions. The problem is signif-
icantly simplified, for the class of rigid objects, when \aidon in appearance is only a function of camera
position and imaging conditions. Conversely, dealing witticulated objects such as people is difficult, be-
cause of their inherent non-rigid articulate structuremptexity of motions, variations in body shape, and
interactions with the environment. The problem of reasgrabout people is further complicated by the
higher-level applications in the context of which this @@sg must be done. These applications often re-
quire full high-dimensional articulated pose of the subgcevery frame, in order to draw inferences about
the motion or intent.

In this thesis the goal is to introduce a new class of modelsdan effectively deal with modeling and
drawing inferences about complex and articulated obj&ug to the vast amount of literature on the subject,
in this chapter we will concentrate on reviewing the literaton the articulated human motion and pose
estimation. However, most of the approaches and concefptglirced in the context of articulated motion
also apply in the more generic case of rigid objects. We wildreferences to generic object detection and
localization where appropriate. We will briefly review thiate of the art in generic object recognition in
Section 2.11.

2.1 Common Assumptions

Human detection, pose estimation and tracking are all diffigroblems. While there have been hundreds
of methods introduced that attempt to solve these problaras/ariety of ways and settings, none exist that
can deal with clothed people wearing unknown clothing, mg\arbitrarily in a complex environment. To
address these difficulties, many assumptions have beenimader literature to simplify the problem. The
typical assumptions can be divided into four sub-categdisee Table 2.1) that deal with tE@vironment
Camera Person andMotion.

12
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Environment Camera
No lighting variation Known camera parameters
Static known background Static camera (or motion of cansekaown)
Uncluttered background Camera view is fixed relative to trson

Only one person is present

Motion is lateral to the camera plane
Motion is frontal to the camera plane
Height of the camera is fixed

Face is always visible

Subject Motion
Known initial pose Subject remains visible at all times
Known subject Slow and continuous movement
Cooperative subject No self- or world- occlusions
Special type/texture/color clothes Simple movement (éelylimbs move at a time)
Tight-fitting clothes Known movement

Table 2.1: Common assumptions made by articulated (human) pose estirtian and tracking algo-
rithms. The assumptions are loosely listed by their frequency inlitesture with the most common as-
sumptions listed on top.

Environment assumptionsare extremely common and are made by most approaches. Thewfirs
assumptions of static lighting and static (or nearly sjab@ackground ensure that the background of the
scene can be relatively easily modeled, resulting in thétalo reliably estimate the silhouette features
obtained by the background subtraction process [1, 36, 5259, 77, 113, 122, 189, 197]. In addition,
the static lighting assumption also ensures that the dvapalearance of the body is stable over time. The
assumption of an un-cluttered background allows the uselgé deatures without being distracted by the
background clutter [52, 93, 127, 147, 148, 174]. In esseheditst three assumptions ensure that a good
set of features can be derived from the image. Assuming hieaétis only one person present in the scene
[1,36,52,55,59,77,113,122,189, 195, 196, 197] signiflgamplifies the problem of association between
image features and subjects. With few exceptions [74],@gagres that deal with multiple people often reduce
the complexity of feature association by only recovering thugh overall posee(g. position of the body in
space [18, 114], or position of blobs associated with uppdrlawer portions of the body [162, 163, 259])
rather then the full articulation of the body. In additionhen multiple subjects are present in the scene
often the scale of the subjects themselves in the image igeell leading to the lack of observations (see
discussion in Section 2.2).

Camera assumptionsare important in simplifying the models and the dynamicglusemodel people
and their motions. The first assumption of known camera petens &.k.a. calibrated cameras) is needed
in order to be able to project the 3D hypothesis of the bodydivan pose into the image. This assumption
is critical in any 3D reasoning about the subject’s pose éwtlorld. It has been shown in a few instances,
however, that the human motion itself can be used to rectvecamera parameters [27, 102, 203]. The
second assumption of the static or relatively simple camaotion relates back to the ability to estimate
silhouettes that have been shown to be robust and usefukifeatures. The various assumptions about the
relative placement of the camera with respect to the mouibgest are often made to simplify the variation in
appearance and motion. Assuming that motion is lateraldanttage plane [111, 250], for example, ensures
that there is little if any scale or foreshortening effedtattare due to depth variations and/or out-of-plane
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rotations. In such cases, often the models of dynamics canbal simplified. The frontal motion [59] while
exhibits the scale and foreshortening variation, does uff¢rsfrom the symmetry ambiguities introduced
by left/right body side similarity. The fixed camera heigbt yiew) assumption [125, 189] is often useful
for template or exemplar based approaches [189] where aerofilexemplars need to be stored explicitly
and matched against the image. In such cases fixing the cdmaigyiat significantly reduces the appearance
variations and hence reduces the number of exemplars needeering such approaches tractable. The last
assumption, that the face is visible, is one that became papelar in recent years [93, 126, 127]. The face is
by far the most salient feature of the human body, and, uoliker body parts, is often straightforward to find
reliably (robust face detectors exist [236]). The headss abtationally asymmetric; this allows approximate
inference of the body orientation [197] from head oriemtatiHence, part-based approaches that attempt to
detect the body by first detecting the salient parts and thepggating the information spatially to other parts
of the body (that may not be as discriminative), often regthie presence of the face [93, 126, 127].

Subject assumptionsare useful in reducing the number of parameters requiredtteirthe person and
the variation in their appearance. The known initial posa feequent assumption [30, 34, 52, 55, 74, 78,
90, 111, 131, 164, 165, 193, 209, 226, 228, 237, 248] thaifgigntly reduces the search space. Knowing
the initial pose also transforms the pose estimation pmbfeo one of tracking, where the pose must be
recovered incrementally from frame to frame. The known sctgssumption ensures that the shape param-
eters of the bodyd.g. height, leg lengthetc) are not searched over. This assumption is often introdfared
convenience to reduce the dimensionality of the state spiaitee model, which often times is already very
high. A cooperative subject [36, 112, 113] is a somewhatdoassumption than that of the known initial
pose or known subject. The idea is that by having a subjetbimera set of predefined motions [36] and/or
having the subject stand in the predefined pose [113] (ysirahtal to the camera with arms and legs spread
out, a.k.a."T’-pose), relative to the camera, the body shape and thelmiose can be obtained automati-
cally. The last two assumptions of special and/or tightfitttlothing greatly simplify feature matching. For
example, by wearing a tight fitting suite [74, 142, 156] thas hlifferent parts of the body colored [74] or
texture mapped with very distinct patterns [130], findingd parts of the body becomes trivial. Even in the
absence of special textures or colors, skin-tight clothesifates finding of body parts by ensuring that the
contours of the body are easily observed. In general, tlasséVo assumptions are considered too restrictive
and hence became relatively infrequent in recent years.

Motion assumptionstend to simplify the dynamics of the body which in turn affetihe complexity
of inference algorithms. The first assumption is very comrand is mostly done for convenience. If one
knows that the subject is present and visible in all framesn there is no need to waste resources detecting
whether this is in fact true. The second assumption is alspgeneral and basically assumes that in video
the frame rate is sufficiently high to ensure that large juinghe pose from frame to frame are impossible.
The third assumption is an important simplification. Modglocclusions (both self- or world-occlusions) is
generally difficult. The reason for this is that it often regs per pixel reasoning and sophisticated models
of the scene and pose. Assuming that there are no occlusieagygsimplifies the model. This assumption,
however, is rarely satisfied in practice. The last two asgionp deal with the specific models of dynamics,
that can significantly simplify the search for body pose. $imeple movement assumption ensures that while
the articulated pose of the body may be very complex and septed by a high dimensional state-space, the
incremental search for the pose in the image sequence wowdtie searching over only a small sub-set of
parameters at any given time. The assumption of the knowrement is usually useful in the context of
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coordinated or cyclic motions. For example, walking can dy@esented using two parameters that control
the speed and phase of the gait cycle. In this case knowinghitd@erson is walking, can reduce the search
from the30+ degrees of freedom to onfyabstract degrees of freedom defining the motion in the “vagfki
sub-space (often referred to as latent space).

2.2 Humans at Different Scales

It is useful to think of the articulated object inference dtedent scales. Intuitively, the scale of the object in
an image is an important clue as to how much can be inferredtabe object. For example, while it would
be great to infer the full articulated pose of a person thatpes only a fewd.g. 10) pixels in an image,

it is clearly an impossible task. In particular, we can iz the human motion domain roughly into three
scales:coarse mediumandfine

At the coarse scalgethe person occupies perhap$-50 pixels, as is often the case in the wide area
surveillance. At this resolution the person is observedraplg a blob of color or a template [161, 235, 236].
At this scale the articulations are insignificant, sincédibf individual body parts can be observed. We
can, however, reason about the presence/absence of toa jp&id/or the coarse motion of the person in the
environment.

At the medium scalethe person occupies perhap&100 pixels, the upper and lower body segments
become visible and some coarse articulations can be oluisgre@, 163, 259]. For example, in sporting
videos at this scale one can tell when the baseball playethetball, or in which phase of the run cycle the
player is in.

At thefine scalethe person occupies 100 pixels, individual body parts(g.legs, arms and feet) can be
reliably observed, and one expects to be able to infer thafiiailation of the body [1, 30, 34, 36, 52, 59, 74,
78,93,98,111,112,113,122,126,127,131, 169, 173, 189 18%, 196, 197, 205, 206, 209, 226, 228, 237].
By fine articulation here, we mean articulation of all joiim$he human body. In this thesis we mostly address
problems of this type.

2.3 Categorization of Approaches

For convenience this section presents a concise categjonizmd comparison of prior approaches to articu-
lated human motion and pose estimation, encoded in Tabl&&Day particular attention to the more recent
methods along with methods that are directly or indireatlpted to this thesis. We classify approaches ac-
cording to the three main categorieg) ¢hoice of a model,4) methods used for inference ar®) features
used for observations. In each category we introduce stdgages to further characterize approaches pro-
posed. The approaches listed are then discussed in furthel ith the context of the introduced categories
in Sections 2.4 — 2.10.



Table 2.2: Categorization and comparison of articulated human pose ath motion estimation approaches Comparison and classification of various human motionaggres from the literature. Emphasis is given to the more
recent works. A more comprehensive survey can be found ih [B@proaches presented in this thesis are listed in boldMethod”, P andT correspond to Pose Estimation and Tracking respecti2lgndG correspond to

Generative and Discriminative approach respectively.

Reference Model Method Observations
Year First Author Shape Parts Dim Optimization Use Cam Cues Motion
2007 | This work R-Elliptical cones 10/15 2D/3D Particle Message Passing (NBR) P,T 1-7 edge + silhouette N/A
2007 | Balan[13] SCAPE N/A 3D Iterated Importance Sampling | T 3-4 silhouette Gaussian
2007 | Mundermann[150] SCAPE N/A 3D Articulated ICP T 5-8 voxels smooth
2007 | Srinivasan [213] Exemplars 6 2D DP-like Parsing with Pruning P 1 shape -
2006 | Agarwal[1] Mesh / ROSER N/A 3D Relevance Vector Regression | P 1 silhouette N/A
2006 | Gall[69] Mesh N/A 3D Annealed Particle Filter T 4 contour smooth
2006 | Han[78] Polygonal patches 5/9 2D Non-parametric BP (NBP) T 1 edge +image template N/A
2006 | Lee[126] Truncated cones 6/9 3D Belief Propagation + MCMC PT 1 face + color + region + silhouette + skin
2006 | Li[131] R-Elliptical cones 10 3D MHT in Latent Space T 1 silhouette Gaussian
2006 | Rodgers[177] Mesh for each body part | 16 3D Loopy Belief Propagation+ ICP| P - range scan data features N/A
2006 | Rosenhahn[183] Free-form surface patches N/A 3D Iterative Closest Point (ICP) T 3-4 contour smooth
2006 | Sigal[195] R-Elliptical cones 10 3D PAMPAS/NBP + BME P,T 1 edge + silhouette N/A
2006 | Sigal [196] Trapezoids 10 2.5D PAMPAS/NBP P 1 color + edge + silhouette N/A
2006 | Sminchisescu [205] Mesh / ROSER N/A 3D Variational EM P 1 SIFT descriptors N/A
2006 | Wang [241] SPM + templates 10 2D Optimized Unscented PF T 1 edge + template smooth
2006 | Urtasun [226] Stick-figure 15 3D Deterministic optimization T 1 WSL image-based tracks smoothin LDLS
2006 | Zhang[257] Line segments/ contour | 12 2D Hybrid search: DP + SMC P D 1 edge + skin/hair color N/A
2005 | Felzenszwalb [59] Rectangles 10 2D Belief Propagation (BP) P G 1 silhouette N/A
2005 | Hua[93] Quadrangulars 10 2D Data-driven BP P G 1 face + lines + skin color N/A
2005 | Kehl[113] Mesh / ROSER N/A 3D Stochastic Meta Descent T G 4/11 | 3D voxel + color smooth
2005 | Lan[122] Rectangles 10 2D Belief Propagation (BP) P G 1 silhouette walk
2005 | Ramanan [169] Rectangles 10 2D Belief Propagation (BP) P G 1 color + edge N/A
2005 | Ren[174] Pair of parallel lines 9 2D Integer Quadratic Programming P D 1 edge + parallelism -
2005 | Sminchisescu [206] Mesh / ROSER N/A 3D BME using EM PT D 1 shape context smooth
2004 | Elgammal[55] 3D Joints 16 3D LLE + GRBF 1 silhouette walk
2004 | Lee[127] Truncated cones 15 3D MCMC sampling P 1 edge + face + ridge + skin color N/A
2004 | Mori[147] Patches 9 2D Normalized Cuts + Assembly D 1 color + edge + focus + shading + shapg N/A
2004 | Sigal[197] R-Elliptical cones 10 3D PAMPAs/ (NBP) PT 4 edge + silhouette Gaussian

Continued on Next Page. ..
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Table 2.2 — Continued

Reference Model Method Observations
Year First Author Shape Parts Dim Optimization Use Type Cam Cues Motion
2004 | Urtasun [228] Ellipsoids 14 3D Least-squares T G 3 stereo walk, run
2003 | Cheung[36] Voxels 9 3D Expectation Maximization PT - 8 color + silhouette smooth
2003 | Grauman[77] 3D Joints 19 3D Probabilistic PCA P - 1-4 silhouette N/A
2003 | Shakhnarovich[189]|| Mesh/ROSER N/A 3D K- Nearest Neighbors P D 1 multi-scale edge direction hist. N/A
2003 | Ramanan [173] Rectangle 9 2D Max-product BP PT - 1 color + edge N/A
2003 | Sminchisescu [209] Superquadrics 15 3D Covariance Scaled Sampling T G 1 edge + intensity + motion N/A
2003 | Wu [248] Quadrangular 2/3/6/10 | 2D Mean Field Monte Carlo T G 1 edge + intensity const. accel.
2002 | Mori[148] Exemplars N/A 3D Shape context + geometry P G 1 edge N/A
2002 | Rosales[179] Markers 20 2D SMA using EM P D 1 silhouette Hu-moments N/A
2001 | loffe [96] Rectangles 9 2D Viterbi PT G 1 image template smooth
2001 | Plankers[165] Deformable meta-balls - 3D Least-squares T G 3 silhouette + stereo -
2000 | Deutscher[52] Cones 15 3D Annealed Particle Filter T G 3 edge + silhouette Gaussian
2000 | Howe [90] Patches 14 3D Gradient descent + EM T G 1 image template N/A
2000 | Hu[91] Rectangles 10 2D Genetic algorithm P G 1 silhouette const. accel.
2000 | Rosales[181] markers/cylinders 11 3D?? Levenberg-Marquard P(T?) | D 1 silhouette Hu-moments N/A
2000 | Sidenbladh[193] Cylinders + spheres 9+3 3D Particle Filter G 1 image intensity smooth/ walk
2000 | Taylor[222] Stick-figure 9 3D Geometry P - 1 marked 2D points -
1999 | Cham [34] SPM + templates 10 2.5D MHT T G 1 image template linear
1999 | loffe[98] Rectangles 2D MAP by sampling P G 1 limb symmetry N/A
1999 | Pavolvit [164] Templates 2D Viterbi T G 1 image template switching LDS
1999 | Wachter[237] R-Elliptical Cones 15 3D Iterated extended kalman filter | T G 1 edge +image template + flow linear
1998 | Bregler[30] Ellipsoids 10 3D Least-squares T G 3 spatio-temporalimage gradient N/A
1998 | Moris[149] Patches 10 2D Gradient descent T G 1 SSD template smooth
1996 | Gavrila[74] Tapered superquadrics 12 3D Best-first search T G 4 edge linear
1996 | Ju[111] Templates 2D Gradient descent T G 1 flow linear
1996 | Kakadiaris [112] Deformable 3D model 3D Kalman Filter T G 3 edge linear

PAMPAs— Particle Message Passing (a variant of non-parametigfipebpagation)

BME — Baysian Mixture of Experts

MHT — Multiple Hypothesis Tracking

EM — Expectation Maximization

SMA - Specialized Mappings Architecture

LDS — Lower Dimensional Space

LDLS — Lower Dimensional Lat&Space

SCAPE - Shape Cetigyl and Animation of PEople

LT
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2.4 Representing the Body

In order to infer the pose of the body, one first needs to chaospresentation for the body. In order to
model the body, in general, one needs to represgrihé articulated skeletal structure ar) the shape or
“flesh” (representing the human tissue and perhaps cloyhivag is draped over the skeleton. A particular
choice of skeletal structure gives rise to, often non-uajguarameterization of articulations that one would
like to infer. Since the human body is complex, a realisticatated model can have anywhere frém-60
parameters. The choice of flesh often dictates the feathegsshould be used to match the model to the
images. In most vision approaches it is assumed that theilesgidly attached to the skeletal structure
and is independent of articulation. Recently, however,emealistic representations that explicitly model
correlations between the skeletal structure and the shepelieen introduced [6, 8]. These models are able
to model such phenomena as bulging of muscles based onithédation of the body. They also provide basis
for much richer set of realistic human shapes. These modeks driginally been developed in the graphics
community for synthesis, and are slowly making their way tse estimation and tracking applications
[13, 150].

A large variety of 2D [59, 78, 93, 98, 111, 122, 169, 173], 2[8B, 196] and 3D [1, 30, 36, 52, 74, 112,
113,126, 127, 131, 189, 193, 195, 197, 205, 206, 209, 226,228 human models have been proposed in
the literature.

For surveillance purposes, simple template based [16],&852D image blob models [114, 162, 163,
259] have proved effective. Planar articulated represiemi®[111] have also been used for articulated pose
estimation and tracking in monocular imagery. These modedseffective in recovering the pose of the
person, in the cases where the motion is either lateral ottdtdo the image plane. In such cases, the
foreshortening that is due to out-of-plane rotations isdsity insignificant. To handle foreshortening and
depth variations 2.5D models have been introduced [34]. dtiten to planar articulations these models
allow scaling that can account for the foreshortening obknin the image. However, these approaches
recover the pose and model the constraints imposed by theib@D. As a result, some constraints that are
straightforward to express in 3D are difficult to encodg(interpenetration) in 2D.

Models that are formulated directly in 3D are usually moraightforward, but often are ill-constrained,
especially in the monocular case. In such cases, multiples/[36, 52, 74, 112, 113, 193, 197], stereo [228]
or strong prior motion models [55, 125, 226] are often neddeetgularize the pose recovery. For simple
reasoning about a person’s location in space, without ragabout the pose or articulation, simple 3D
occupancy representations are sufficient [18, 100] thatsimple geometric structures like boxes [18] or
generalized cylinders [100] to model a body as a whole. Fardnicomputer interactions where one needs
to reason about the articulations in a constrained enviemisimple 3D blob models have proved effective
[247]. In applications where many cameras are availableM®@presentation has been used either directly
[36, 113] or as an intermediate representation for morenpetréc body models [215]. Most approaches,
however, model the body using a 3D kinematic skeletal atirectvith associated 3D volumetric parts [14,
52, 193, 209]. The most common models that are relevant tavtink presented here will be introduced in
the next sections.
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Figure 2.1:Representing the body Three different representations of the body are shown 3Chieinematic
tree model, shown on the left, consists of the tree-stredtakeleton (in red) that can be parameterized using
a set of joint angled);, and position and orientation for the root of the tree in glatnordinate frame,., 6,..

The skeleton is dressed by cylindrical “flesh”. In the middieScale Prismatic Model (SPM) is shown.
Red arrows in SPM designating the segments of the tree staet?2D model. SPM is parameterized in the
image plane using 1D planar joint rotatiolis, and scalings along limb axes;,. Lastly, on the right, a 3D
part-based body model is shown, consisting of a set of disetted cylindrical parts. The part-based model
is parameterized by position and orientation of individoadly parts in world coordinate space, € R3,

0; € SO(3). This redundant representation while non-intuitive, fettractable inference algorithms.

2.4.1 Kinematic Tree

Kinematic trees are by far the most predominant 3D reprasientof the human body in literature. Kinematic
tree based representation assumes skeletal tree stracinepresents the pose using a set of parameters
X =[x, 0,,01,...,0N], wherex, € R? is the position of the root of the tre@;, € SO(3) is the orientation

of the root in the world coordinate frame, afidi € [1, ..., N]is the orientation of the limbin the parent’s
coordinate frameg(.k.a.joint angles). It is worth mentioning that the dimensiotyadf thed; would generally
depend on the type of the joint. Hinge joints often assodiatéh knees are most often modeled using
9; € R, where as ball-and-socket joints that are often associaitédshoulders are more often modeled by
9; € R3. Hence the final dimensionality of the articulated p&swill depend on the number of joints being
modeled and the joint types assumed. In all cases, this weattto a high dimensional but not-redundant
representation of the pose (typicay € R39F).

The basic kinematic tree model leaves open the issue of heyoiht angles are parameterized and how
the shape of individual limbs are modeled. For the formerralmer of representations have been employed,
including Euler Angles [14], Quaternions [197, 219], ang@xential maps [30]. All of these suffer from
problems and inconveniences and the choice depends inmpénedype of optimization employed by the
approach.

Euler angelsrepresent a general 3D rotatidh, by concatenating rotations about the orthogonal coordi-
nate axes?,, R, andR.. The order in which these rotations are concatenated musgidmfied beforehand.
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While this parameterization is intuitive and is often usedbiomechanics to study the behavior of joints, it
does suffer from what is called the ‘gimbal lock’ problem. ®vhtwo out of the three rotation axes align, a
rotation is lost. As a result small changes in an angle caseckrge deviation in the orientation of the limb.
This makes this representation very unstable for the usevarse kinematics and/or direct optimization. For
similar reasons interpolation in the Euler angle space @slpalefined.

Quaternions [191] do not suffer from these problems. However, quatersiare represented as 4D
unit vectors lying on a 3D spherical shell embedded in 4D sp#tds makes modeling distributions over
quaternions challenging. Using quaternions, a generatiost of angled about axis/ € R? can be written as
q = Qs @y, @2, @) T = [0+ sin(0.50), cos(0.56)]. As mentioned, however, valid rotations must maintain that
[la]| = 1. Since there are four dimensions in which quaternion cang&dut only3 degrees of freedom,
typical optimization approaches can move away from the splitere representing valid rotations. In such
cases the solution is often to re-normalize the quatermibich works well [197, 219] so long as the distance
from the sphere is small. Quaternions are also well suitednterpolation and are often prefered for that
reason.

Exponential maps[71] is yet another way to model 3D rotations. The idea belexpbnential maps is
to try to maintain the benefits of quaternions, while getingpresentatiog R®. There are many variants
of exponential maps in the literature, however, the basia id to model an arbitrary rotation in 3D using a
vectors € R? such thati/|v] gives the axis of rotation and| the amount of rotation. A particular variant
that made this representation popular, in the context aftdated human motion, is twists and exponential
maps formulation of Bregler and Malik [30].

The shape of the person is often modeled using relativelplsiBD geometric representations including
cylinders [180, 193], tapered cones [52, 237], ellipsoBfY,[and superquadrics [74, 210, 211]. More com-
plex models such as metaballs [165], mesh-based surfacelsn@l5] or free-form surface patches [183]
are also gaining popularity.

2.4.2 Scale Prismatic Model

It is clear that 3D models such as the one described in thequ#ggection cannot be fully observed from a
single monocular image, and hence either temporal or priomkedge is often required to address ambigu-
ities that arise. In such cases it sometimes may suffice iimatst the pose of the body in the image plane
(not the world) directly. To this end Scale Prismatic Mod&P{M) is derived [149] by “projecting” the 3D
kinematic tree model into the image and parameterizing ékealting planar skeleton (stick figure) with as
few parameters as possible. Each 3D joint of kinematic tnetheé SPM is replaced by a 2D joint (planar
rotation) with a rotation axis perpendicular to the imagangl and scale that accounts for foreshortening ef-
fects due to perspective and out-of-plane rotations. Theltiag SPM model often leads to a more compact
representation of the state than a full 3D kinematic treeehd®PM is a 2.5D generalization of “cardboard”
models [111] that have been widely used for 2D articulatadking.

The planar skeletal structure of SPM also requires a 2D septation for the limbs. In the literature,
rectangles [91], rectangles with rounded corners [132]t@Dplates [149], and affine flow patches [111]
have all been used for this purpose.
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2.4.3 Part-based Representation

While it is natural to represent the body using tree-stmgttikinematic models such as kinematic trees
or scaled prismatic models, these models tend to requireyahigh dimensional parameterization where
parameters are correlated in complex ways. This leads teaaldntage that these models are often compu-
tationally expensive (and often intractable) to deal wispecially for the pose estimation task. To address
this, it has proven useful to represent the body using a sdisafygregated parts that interact via a set of
pair-wise constraints that attempt to enforce the bodyisterscy. As a result, the body is represented using
a redundant representation in a global space. This repgeggenthat leads to an even higher dimensional
parameterization of pose (due to redundancy), decoupleg ofahe parameters, making the search tractable.

The use of disaggregated models for finding or tracking @eted objects date back at least to Fischler
and Elschlager’s pictorial structures [62]. Variationstbis type of model have been more recently applied
to general object detection [33, 44, 198], and articulateskpestimation for people [59, 78, 93, 96, 97, 98,
122,169, 173, 174, 177, 196, 197, 248], animals [170, 17@Jreamds [219].

Articulated disaggregated models, model the body usingl&i2D (e.g.rectangles [59, 122, 169], trape-
zoids [195, 196], quadrangulars [93, 248], polygonal pasdli8], or templates [176]) or 3D paresg.right-
elliptical cones [197, 199], truncated quadrics [219], unface models [177]) and set of constraints between
parts that are encoded either directly in terms of comgdatiljp6, 97, 98, 172, 174] or probabilistically
[59, 78, 93, 122, 169, 196, 197, 248]. Most probabilistic eled59, 122, 169, 174] rely on the underlying
tree-structure of the model for tractable inference andc@eare only capable of modeling kinematic con-
straints. In this thesis (and in [195, 196, 197, 198]) weddtrce the means of formulating and inferring the
pose using a more diverse set of models that can model anwjsarelationships between parts statistically.
Kinematic, occlusion and inter-penetration constraiatsal be modeled. Recently, similar method has been
introduced for determining the articulated pose of peofmfrange scan data by Rodgetsl.[177].

The pictorial structures approach of Felzenszwalb andddlgther [59] is one of the more influential
2D disaggregated models introduced for articulated posmatson. The approach models the body parts
using rectangles and the kinematic and joint constraint&d®n parts using Gaussian distributions. The
model assumes that the state of each limb can be discretizktha inference proceeds to find the globally
optimal pose using dynamic programming (that can in thie daes interpreted as Belief Propagation, see
Section 3.5.2). This basic model has been successfullyj@gteby introducing richer likelihood functions
[178] or simple dynamics [122]. More recently, the pictbgguctures approach has been extended [169] to
elegantly estimate the appearance models of parts joiritihythe pose in extended image sequences.

A similar approach to ours has been adopted in [248] for trech 2D human silhouette using a dynamic
Markov network and later in [93] using data-driven Beliebpagation. A much simplified observation
model was adopted in [248] and their system does not perfaionaatic initialization. In [93] a much
richer observation model was used, but the approach idistited to 2D pose inference in roughly frontal
body orientations; the subject is assumed to be facing tsvire camera and wearing distinct clothes.
The [93, 248] and the method proposed in this thesis use sbatetifferent inference algorithms and a
comparison between these methods merits future research.
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Synthetic Image Silhouette Edges

Figure 2.2:Common features used for articulated pose and motion estintan. On the left two synthetic
images of a person in different postures are shown; correiipg silhouette features are illustrated in the
middle. Notice that silhouettes in this case are identindl@nnot distinguish between the two poses on the
left. Edge features, illustrated on the right, howeveradiecontain information required to distinguish the
two poses.

2.5 Image Features

The choice of the model for the body often gives rise to thaufes that are chosen to match the model to the
image. A typical inference approach proceeds to extraatogyujate features from the image and then either
matches these features to features hypothesized by thd,mod#ers the state of the model directly from
them. While ranking of features that are most useful for sk bf articulated pose estimation and tracking
is still debated (relative importance of some feature adfmivas tested in [14]), it is a general consensus in
the community that combining features leads to better anek mabust inference methods. We will describe
some of the more common features used in the literatureviaello

2.5.1 Silhouettes

Silhouettes are among the features most frequently uséddanain reasons 1 they can localize the search
for the body by excluding large portions of the image aPdliey provide features that are easy to compute.
Silhouettes, being region based, are also inherently nudmest to clutter then edges or contours. However,
silhouettes are also ambiguous.

Background subtractioiis the process often used to obtain the silhouettes. If teaesbackground
is specifically designed for such a task, as in Chroma-keji3§] where the background is usually blue
or green and is distinct from the clothes worn by the subjenetn simple thresholding can be used. An
alternative is to have an arbitrary background but a subjeetring a distinct colored suit [142, 156]. In
both cases very precise silhouettes can be obtained. In realistic scenarios where the background and
foreground are more general, a statistical representatiadhe background can be learned either on-line
or off-line. Often a per pixel model of the background is fest and used to classify the image pixels
into foreground and background classes. A sequence of Brzgge be used to learn a per pixel Gaussian
(mean and covariance) and Mahalanobis distance can beaiskedsify the pixels [2471sninouette (€, y) =
(e — L) S5 (Hay — Luy)” > 7], wherep, , andX, , are mean and covariance of the Gaussian
distribution for background pixglz, ) learned from training data andis the threshold. In the presence
of background motiong.g. leaves waving in the wind) this approach will lead to pooufes For such
scenarios Gaussian mixture models [216] have been proposaddel multi-modality of background pixel
observations. More sophisticated models that use eitHer ttwesholding [86] or pixel gradients [140] to
remove shadows have also been proposed.
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Since recovered silhouettes are often noisy, due to pixghtans, morphology is commonly used to
‘clean up’ the silhouette image. Alternatively approactiest embed spatial consistency directly into the
background subtraction process have also been proposedii88ases where lighting variations are common
(as in prolonged surveillance applications) backgroundetmare often updated on-line to account for global
variations in lighting.

Even with the most sophisticated background subtractiahoaks often good subtraction is hard to ob-
tain. In particular, often the background colors appeahéforeground (or vise versa), the shadows are hard
to discount completely, and motion in the background ceeeltallenges. Furthermore if multiple foreground
objects are present the assignment of foreground regitm¢d)jects must be addressed.

2.5.2 Color

Background subtraction at best is only capable of separltia foreground object (person) from the back-
ground. There is no explicit assignment of silhouette gixelmodel parts and inference methods must be
employed to simultaneously solve for feature assignmdter{aot explicitly) and the pose. If color (or tex-
ture) of body parts is known, then assignment can be fatgtitthus reducing the complexity of the overall
inference significantly. However, color information forrfsawill generally differ from person to person and
between clothing types, hence often this information isvaitable. Methods have, however, been proposed
that attempt to build the color appearance models for partsnaatically either by clustering of coherent
spatio-temporal regions [172, 173] or by roughly estinmgitime pose first using a generic model, learning the
appearance, and then re-estimating the pose based onrthed@aage and person specific model [169].

A by far more common assumption is that some parts of the boelpat covered by clothes [93, 126,
127], in which case skin color can be used as the signatutbdse parts. Skin-color detection and segmen-
tation has a long standing history in computer vision. JamesRehg [106] introduced a relatively simple
parametric probabilistic model for classifying skin pixelThe key step in proposed skin pixel classification
is the computation of(skin|I, ) for a given pixel valud, , at location(z, y) in an image, which is given

by Bayes rule:

p(Iz,y|skin)p(skin)
P(Ly,y|skin)p(skin) + p(Iy 4| ~skin)p(—skin)’

p(skin|l, ) = (2.1)

A simple threshold) < 74, < 1, p(skin|I,,) > Ts, can then be used to classify a given pixel in an
image as belonging to a skin class. The exact valyean be derived based on the risk of misclassification.
In this model bothp(I, ,|skin) and p(I, ,|—skin) are modeled using6 component Gaussian mixtures
learned from13, 640 hand labeled images; prior is also learng@kin) = 1 —p(—skin) = 0.1. The learned
values for means and covariances are listed in [106].

2.5.3 Edges

Edge features, that are based on first spatial derivativélseoimage, are often used due to their partial
invariance to viewpoint, lighting and local contrast. Esigee also capable of discriminating variations in
pose that may be ambiguous by looking at silhouettas they can account for internal structure); this is
illustrated in Figure 2.2. Edges, however, are still lirdita that they are insensitive to the rotations of the
limbs around their axis of symmetri/€. twists are unobservable).
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Edges are also very local, comparing a model edge to an ingggethat is one pixel away will lead to
nearly zero response. To remedy this edges are often smiearapoplying a Gaussian filter over the edge
image [14, 52], as a result the extent of the edge is augmei@dhermore distance transforms are often
used to define a more global feature space [11] based on edges.

2.5.4 Contours

Contours refer to the edge representation of the objedt'sifpartial outline. Contours can either be static or
dynamic, where later is often referred toaagive contour Static contours can be thought of as a more com-
pact representation of the silhouette, and inherentlyyaaormore information than silhouettes themselves.
Some invariance to geometry and appearance of the objedtecabtained by using contour (or boundary)
fragments that are geometrically constrained [88, 158].ckengeneral formulation of active contours allows
the contour of the object (either whole or partial) to def@weording to the image edges. The deformations
are often controlled by energy functions that consist of tevms: one that attempts to minimize the distance
between the contour and the edges in the image, and the btiterdntrols the overall smoothness of the
curve. The assumption being that in general we want to fitsively smooth contour to the image data. The
deformations of the contour can also embed prior knowletgeizallowed deformations for a given object
class, in such cases the model is often referred to as dditerteanplate. Deformable templates have been
successfully applied for pedestrian detection [72] andlization. In general, deformable template models
have lost popularity in recent years. This is partially dugéhte inherent ambiguities that exist in the contour
representation, and partially due to the fact that whiledstions can account to some extent for articu-
lations they are not well suited for recovering those atéittans. Contour ambiguities can be circumvented
to some extent by considering contours from multiple caliéd views. Contours from calibrated views
have been used to reliably infer the articulated motion B2[1184]. More recently, deformable templates
have been used to localize parts of the body (e.g. the headesdr outline [126, 127]) as part of a more
sophisticated hierarchical representation of the humaly.bo

2.5.5 Ridges

Ridges refer to the second spatial derivatives of the imageyaven scale. Since ridge (or second derivative)
filters account for elongated spatial structure in the imédes been shown that they are effective in mod-
eling the limbs [192] if applied at a particular scale anceotation that is a function of limb width and pose.
Intuitively ridge features encode the parallel edge stmecof limbs in the body. As with any higher deriva-
tive filters ridge filters tend to be noisier then edges aldmey are also highly dependent on the orientation,
configuration, and scale of the person in the image.

2.5.6 Image Flow

Image Flow refers to dense motion information that oftenbitamed usingptical flowalgorithms. Image
flow (or optical flow) can be thought of as a vector field in angmahat for every pixels defines where that
pixel will move to in the next frame. In general to computeicgitflow one must assume that the intensity
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of the image pixels remains constant over thtiee. no lighting variations) resulting in the following optical
flow constraint:

dl(z,y,t) _ 0l(z,y,t)dz  Ol(z,y,t)dy Ol(z,y,1)

_ ar = 2.2
dt or dt T oy a4t ot 0 (2:2)
on the spatio-temporal image signdl:, y, t). Solving the equation fov[,i—f, %], results in an optical flow

field (for details see [23]). However, assuming that the orots independent at every pixel, results in an
underconstrained set of equations. The common solutidrigag to assume that the motion is constant over
a neighborhooda k.a.spatial coherence assumption). A relatively large neighdad is needed to constrain
the solution and add some invariance to image noise. Unfatély in relatively large regions the assumption
of constant motion is likely to be violated due to the diffeces in depth, lighting and transparencies. As a
result, a size of the region that is reasonable must be pickieverage the two artefacts. Even so, it is often
observed that foreground motion ‘smears’ onto backgroondjce versa, especially in relatively constant
image regions. One alternative that has been proposecdetoad# this, is to assume that there are a known
and relatively small number of consistent motion fields€lay that make up the overall motion [120, 251]. In
general robust and accurate image flow is challenging angbetationally expensive to compute and hence
it is less frequently used for human motion and pose estimati is worth mentioning that a simple sparse
temporal motion derivatives computed using frame differeg have been shown to be useful features as well
[235] for general template based object detection.

Optical flow from multiple camera views can be combined to patascene flow232]. Just as optical
flow is the two-dimensional motion of points in an image, scéow is the three-dimensional motion of
points in the world. Scene flow has been successfully usetefoporal and view interpolation of human
motion in [231].

2.5.7 \Voxels

Just as scene flow is a three-dimensional variant of two-aém@al optical flow, voxel representation is a
three-dimensional alternative to two-dimensional siktoer Voxel data can be acquired using silhouettes
from multiple cameras [28, 36, 37, 39, 113]. Typically théwnoe of interest, corresponding to the visible
portion of the scene, is divided inf§ x N x N equal sizeélvoxels [37]. Each voxel is tested if it belongs
to foreground object or background by checking if its prafatfalls onto silhouette in each camera view.
Voxels that in all camera views project onto the silhouettelabeled as belonging to the object. Voxels
that at least in one of the camera view fall outside the siftiteuare automatically labeled as belonging to
background. More recent approaches of Voxel Coloring [B&]ddition to silhouette consistency also check
for color consistency across multiple views. Voxel feasundnile powerful, in that they directly provide 3D
information, are very sensitive to noise in silhouettes.h@adle this a probabilistic version of voxel based
representation, callegrobabilistic occupancy gridwas introduced in [65]. Instead of assigning each voxel
a binary label, in [65], each voxel is assigned a probabilftyelonging to the foreground object. For further
discussion of voxel based methods see Section 2.9.1.

1Brightness constancy has also been used to formulatehidadi functions directly [192], without explicitly compatj the optical
flow.

2Alternatively, adaptive partitioning is also possible.
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2.5.8 Image Descriptors

Image descriptors are generic features that have been midhd literature for articulated pose estimation,
image retrieval, image categorization, generic objeabgadiion, and many other applications. There are
many descriptors that exist, that exhibit variety of prajgsrand invariances to geometric transformations. In
this section we will cover the most common descriptors framrecent literature.

Haar Wavelets

A set of image based filters are constructed that correspoadented derivative filters of various sizes and
scales. The response of these filters are considered acavgilete feature representation of the image [144]
(or an image patch). In general only a subset of these fesaisitesed to represent an object or an image. For
example, AdaBoost [236], automatically constructs analigjetector by selecting a sub-set of features most
useful for classification of a given object class. Haar wetgend AdaBoost will be discussed in depth in
Chapter 4.

SIFT descriptor

Scale-invariant feature transform (SIFT) [135] represestale-normalized image region (obtained using
standard interest point operatraith the concatenation of gradient orientation histogsaetative to several
rectangular sub-regions. Image gradient direction andhihade are computed for every pixel in the region.
Histograms of gradient orientation, weighted by gradieaggmtude are then computed for a given set of
non-overlapping sub-regions. Orientations in the suleregre normalized with respect to the orientation of
the center pixel of sub-region and are histogrammedébons. The SIFT local descriptor is the concatena-
tion of these gradient orientation histograms for all segions. For convenience, often the scale-normalized
image region is broken intt6 sub-regions and orientation histogram bins for each region, resulting i th
overall descriptor of sizé28. More recently [46] it has been shown that better perforragiirc the visual
categorization task) can be achieved by histogrammingh®gtadients themselves, but the projections of
gradient images onto a set of basis functions learned fraimiirg data using PCA.

Shape Context

Shape context [17] is an alternative to the SIFT descriphat, only works with binary edges (obtained by
thresholding the magnitude of the derivatives). Also,éastof histogramming the edges into a regularly
spaced grid, a log-polar grid is used. The effect of this & Hhape context is much more sensitive to local
variations in shape than more global variations. Scale @rdt@ation can be normalized much like in the SIFT
case to achieve orientation and scale invariance. Typitladl shape context is computed for a set of points
equidistantly sampled on the contour of the desired objé&bie set of histograms corresponding to these
points are then considered as the descriptor for the objebeaegion. The typical setting is to compute the
shape context for abowd0 points on the contour and haggolar andl2 orientation bins. At this resolution
the final descriptor is &, 000 dimensional vector. Since working with a vector of this sizlard, typically

3In the original SIFT [135] formulation a difference of Gaissss (DoG) approach [135] is used for keypoint selectionchtis an
approximation for the Laplacian operator [134]. Altermaly, other approaches like determinant of the Hessian (0a&b] can be
adopted for the same task. Additional interest point opesdrequently used in the literature are Harris [79] and Bimasi [190]
corner detectors.
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Figure 2.3: Generative and discriminative pose estimation and trackig. Illustration of the generative
and discriminative pose estimation and tracking framewohk a generative framework, the model is used to
predict a set of features observed in an image. The modehedess, that typically represent articulated pose,
are then optimized such that predicted features match #terfs observed. In a discriminative framework,
observed image features are used directly to infer the nuataimeters.

the shape context space is quantized and secondary votiagdgo get a much lower dimensional histogram
representation of the object [1, 4, 166] (typicallj0D), which as a consequence looses much of the spatial
information encoded in the originél 000 dimensional vector.

2.6 Pose Estimation and Tracking

We found it useful for the purposes of taxonomy to classifyrapches to human motion into pose estimation,
tracking, or both. While these two notions are slowly cogimy, there are still useful distinctions between
the approaches that deal with each of these problems. Fputheses of this thesis we defipese estimation
as estimation of an articulated pose from single monoculandtioccular images anlackingas estimating

of the articulated pose in an image sequence, where the gsate for the first frame is known. Approaches
that automatically estimate the articulated pose in théffissne and then track it over an extended image
sequence are classified as bptse estimatioandtrackingusing the above definitions.

It is easy to see thgiose estimatiofis an inherently more general and challenging problem,esihc
assumes nothing about the placement or configuration ofddg. if we can estimate the pose of the body
from a single image robustly we can also solve tracking bypsinperforming pose estimation at every
frame. Given the state of the art in pose estimation, how#visris still impractical in general. This solution
to tracking is also extremely inefficient since it ignoregportant temporal correlations between poses. To
this end, the major contribution efackingapproaches is the use of temporal consistency and motioslsod
to efficiently search for the pose at future frames given thieant estimate for the position and configuration
of the body.

2.7 Discriminative and Generative Methods

Discriminative approacheattempt to learn a direct mapping from image features to 3§ @dmom either a
single image [1, 179, 181, 189, 206] or multiple approxiyatalibrated views [77]. These approaches tend
to use silhouettes [1, 77, 179, 181] and sometimes edges2PBbas image features and learn a probabilistic
mapping in the form of Nearest Neighbor (NN) search [18Yression [1], Baysian mixture of experts [206],
or specialized mappings [179]. These methods tend to bafasare often reliable so long as the statistics
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of features at runtime were captured well by the training $etgeneral, however, these approaches have
two drawbacks: 1) they tend provide a black-box solution that gives littlsight into the problem, and
(2) the performance tends to degrade significantly in cluttes@enes where it is difficult or impossible to
extract good features. Generative approaches tend to vettdrbn such cases, since they model the image
generation process explicitly.

Generative approachée human tracking have a long history in vision. Most of thagproaches rely on
a kinematic tree [139] representation of the body in 2D [1213D [34], or 3D [30, 52, 193, 210]. In such
approaches the pose is defined by a set of parameters reprggte global position and orientation of the
root, usually a torso, and the joint angles representingtie of each limb with respect to the neighboring
part higher up in the tree. The inference in these models atada generating a number of hypothesis for
the pose, and evaluating the likelihood that a given hymithgives rise to the image evidence. Inference
in such models, however, often requires stochastic seardhé parameters in a high dimensional, 25-50D,
state-space. The high dimensionality of the resultingestptice has motivated the development of special-
ized stochastic search algorithms [52, 136, 193] that e#&kploit the highly redundant dynamics of typical
human motions [193], or use partitioned sampling schemegptwit the tree-structured nature of the model
[136]. These schemes have been effective for tracking pespéring increasingly complex clothing in the
increasingly complex cluttered backgrounds [210]. Howeseen with efficient inference algorithm, search
in this high dimensional space without initialization tl&tlose to the solution is computationally imprac-
tical. Hence, most of these methods require manual irdtieibn and are hopelessly lost once the tracker
fails. To handle these problems disaggregated generatiels have been introduced. Further discussion
of disaggregated models was given in Section 2.4.3. Sonagglisgated models [93] (including the ones in-
troduced in this thesis [196, 197]) could be thought of a;mepay both discriminative and generative realm,
since they include a discriminative stage to bootstrap @megative inference.

The discriminative and generative methods in the contegtabhical models will further be discussed in
Section 3.2.3. Itis also worth mentioning that there aresmtrand on-going efforts to combine discriminative
and generative methods [205], that may lead to more robugi@os in the future.

2.8 Optimization Methods

Most human motion and pose estimation approaches propase sort of optimization method, direct or
probabilistic, to optimize the pose (and/or body model)scito the image features observed. This section
will give an non-exhaustive overview of the methods emptbye

Direct optimization. Direct optimization methods [212, 228] often formulate anttiouous objective
function F'(Xy, I;), whereX; is the pose of the body at timeand I, is the corresponding observed image,
and then optimize it using some standard optimization tieglen SinceF' (X, I;) is highly non-linear and
non-convex there is almost never a guarantee that a globatom can be reached. However, by iteratively
linearizing F'(X;, I;) and following the gradient with respect to the parameterscalloptimum can be
reached. If a good estimate from the previous time step itadl@, and the pose changes slowly over time,
then initializing the search with the previous pose ofteketo a reasonable solution.
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Probabilistic inference. It is often convenient and natural to formulate trackindg pose estimation as
probabilistic inference. A probabilistic framework hasotadvantages over the direct optimization meth-
ods: () it can encode the confidence of any given articulated iné¢ation of the image, an@) and more
importantly, it allows one to maintain multi-modal predécts both spatially and over time. Multi-modality
arises naturally in human motion estimation, since the bodljfferent postures can look very similar (if not
identical) in the image. The number of valid interpretasiofthe image depend significantly on the features
used, imaging conditions and the temporal history. By nadiihg a multi-modal pose hypothesis over time,
approaches can often benefit by resolving the ambiguitiesose information becomes available.

Let us assume that the pose of the by, at timet is generated by a dynamic process. In general, for ar-
ticulated motion estimation we are interested in the joastprior distributiom (X, X1, ...Xy|lo, 11, ..., I1),
wherel; is a (possibly multiocular) sequence of image observatawes timei € [0, ..., t]. Since dealing
with the joint distribution over many high-dimensional idoles is hard approximations are often made that
only infer the marginals of the joint (see further discussibthis in Section 3.5). The marginal equations are
significantly simplified my introducing Markov assumptioveo the hidden states. Thest order Markov
assumptiofi states that poséX,, at timet depends only on the posetat- 1. This model is also known as
Hidden Markov Model (HMM) and will be discussed at lengthlie thext chapter.

p(Xe|lo, In, ..., It)

// / p(Xo, X1,... Xel|lo, Iy, .., It) dXgdXy -+ dXyq =
Xo Xo Xt—1

/ p(Xt, X¢—1llo, I, ..., It) dXyi_1 (2.3)
Xt—1

Using first Bayes’ rule (Eqg. 2.4) and then assuming the indépece of observations (Eq. 2.5), in particular,
that/; is conditionallyindependent ¢fy, ..., I, _1] givenX,, we can re-write the above expression as follows,

p(Xt|IO,Il,...,It) / p(Xhthl'IOvIlv"'vIt) dXi—1
Xt—1
_ / p(To, Ity ooy 1| X, Xy 1) p(Xit, X 1)

p(lo, I1, ..., It)

dXi—1 (2.4)
Xi—1
/ (1| X, X¢—1)p(To, 11, o Te—1 X, X 1)p(Xe, Xy 1)
p(It)p(lo, 1y .oy It —1)

dX;—1 (2.5)
X¢1
Since the observation,, at timet is assumed conditionally independent of all hidden stgtest(or
future) given the stateX; at timet, we can further simplify Eq. 2.5 to Eq. 2.6. Then using coiodial
probability rules (Eq. 2.7), re-arranging terms (Eq. 21i&J applying Bayes’ rule again to the right-most term
(Eqg. 2.9) obtain the final recursive expression for Baysikerfing (Eq. 2.10),

IX7X* 1717"'717 X7X7 X,X,
p(Xello, I, oo I2) / p(Le|X¢, X¢—1)p(Lo, I t—11Xe, Xe—1)p(Xe, Xi—1) dX, .
N ~ p(Ie)p(lo, 11,y Ip—1)
Posterior at time Xi-1
I|1X To, Iy, .oy I 1| X X, Xy
_ / pULe|Xe)p(Los 11, oy Lr—1| X —1)p(X, Xe—1) dX, . 26)
p(It)p(lo, I1, .o Ip—1)

Xi—1

4Similar expressions can be derived for higher order Marlgsumptions, where an n-th order Markov assumption refetrsetéact
that the staté&X; is assumed to depend on the historyXf_,,, ..., X;_1] states.
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p(It|Xe)p(Lo, 11, ooy Te— 11X —1)p(Xe| Xg—1)p(Xi—1)

B dX;_1 2.7
p(I)p(Lo, 11, ..., It—1) ¢
X1
Ii| X To 1,y T | X1 )p(Xo
- MP(XHXFHP( 0,11, Ie—1] X —1)p(Xi—1) aX, 28)
p(f) p(Io, 11, - It—1)
X1
;| X
= / MZ)(XHXt—l)P(Xt—ﬂﬁ),11,...,It,l) dX; 1 2.9)
x P(It)
t—1

1
= / 7 p(I| X )p(Xe| X —1)p(Xe—1llo, Iy ooy T —1) dXy1
Xt—1

% p(L|X0) / p(Xe|X 1) p(Ke1Tos Tr oo Ir—1) dXpo1, (2.10)
Likelihood Xt—1 Temporal Prior  Posterior at time — 1
whereZ is a normalizing constant. The integral portion of the abegeation is referred to as tipeediction
and the term before the integral,/;|X;), as thelikelihood Furthermore, the first term in the integral, is
also known as theemporal priorthat defines the dynamics or the state evolution processwlbith noting
that the above recursion terminate9@X,|1y) = p(Xy), where it is assumed that the distribution over the
initial starting poseX is known. In the case of the pose estimatidX,|1y) # p(X,) and itself needs to be
inferred.

If the likelihood is Gaussiam(1;|X:) = N (I;; 4,X4, X,), the initial distributionp(X,), is Gaussian
and temporal prior is linear with normally distributed maig(X;|X;_1) = N (X;; AgX;_1, X4), the inte-
gral in Eqg. 2.10 can be dealt with analytically. This modeténmonly called the Kalman Filter and has
been used successfully for articulated tracking in somescHsl 2]. While the Kalman filter provides a prob-
abilistic solution to tracking, this model is only capabledealing with uni-modal Gaussian predictions of
the posterior. Hence, most state of the art probabilistithods tend to avoid Kalman Filtering in favor of
other models that make weaker assumptions on dynamics aedvaliionsé€.g.particle filtering).

Itis worth mentioning that there is significant evidencd thea posterior over pose is indeed non-Gaussian
and is hard to model using simple parametric distributiofisis arises due to non-linear dynamics of the
human body and an often non-Gaussian observation modekxaonple, when a leg hits the ground during
the walking cycle, the result is an inelastic collision beén the foot and the ground plane that is highly
non-linear. In terms of observations, based on simple gegnvee know that mapping between the 3D pose
and the 2D pose (which is the only thing that we can observidrirhage) is not one-to-one. This means
that naturally an observed image would give rise to multiipothesis for the 3D po3eLastly, since body
joints move over large ranges but have hard limits, they atevell modeled using Gaussian or other simple
distributions.

Constructing models that encode these more realistic phena, leads to the forms of the integral in
Eq. 2.10 that cannot be dealt with analytically. In such saseommon solution is to approximate the
integral using numericak(g.Monte Carlo) integration. This leads to a family of methdust tare commonly
known asParticle Filters Particle filters will be covered in more detail in Sectiof.8. Particle filters have
been extensively used for both rigid [157] and articulatejgct [52, 193] tracking. Unlike the Kalman Filter,
Particle Filters are able to deal with complex and multimgussterior distributions. Particle Filters tend
to represent the posterior at timeising a weighted set Q¥ samples (particlesﬂsgi), wgi)|i e l,...,N]},

Wheresgi) is ani-th sample anduf) is the corresponding weight, such t@ﬁil wti) = 1. The most

5This ambiguity can be significantly reduced by using muliiac observations.
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notable disadvantage of these methods is that they recanmplsg in high-dimensional spaces to represent
the posterior. Since the number of samples required gropaeatially with the dimensionalitya(k.a. curse

of dimensionality, most methods rely on some heuristic function that desegtne most plausible portion
of the space to sample. Consequently, the efficency of pafiiters is greatly effected by the choice of this
function.

Annealed Particle Filters (APF) [52]. Due to the high-dimensionality of the state spand often highly
non-convex likelihood function with narrow peaks, the nambf samples required to model the posterior in
the realistic cases is intractably high. The Annealed Elartilter tries to battle this problem using the con-
cept of simulated annealing initially introduced by Kirktpek et al.in [116]. Instead of sampling the poste-
rior p(X;|Io, I1, ..., I) directly a series of distributions with probability demsitp, (X ), p1(X¢), ..., par(Xe)
are introduced (also referred to in the context of APRag®ry, wherep,,, (X;) differs only slightly from
pm+1(Xy). These distributions are constructed such théX ;) = p(X;|lo, I1, ..., I;), and each subsequent
distributionp,,,.1 (X;) is designed such that the Markov Chain used to sample frdinwseasier movement
between regions of the state/search space. The last layesponding t@,,(X;) allows movement between
all regions of the state/search space. The usual methodivareg this is by setting,,, (X;) o po(X;)”m,
wheref,, is thetemperatureparameter such that= gy, > (51 > ... > [Gy. As a result the effect of the
peaks in the posterior is introduced gradually by adjudtiregemperature of the posterior distribution.

APF draws samples from the posterior by first simulating tlzekdv Chain corresponding to the distribu-
tion pys (X;), then using the resulting estimates of the distributiomaglization for simulating the Markov
Chain corresponding tpas—1(X;) and so on until Markov Chain corresponding to the desirettidigion
(posterior)py(X;) is simulated. The proposed method is a heuristic for avgitbnal minima and handling
narrow peaks that can be problematic when simulating thektda€Chain corresponding to the posterior
po(Xy) = p(X¢| o, 11, ..., I) directly.

Hierarchical Particle Filters [51, 136]. Hierarchical particle filtera(k.a. partitioned samplindhandle
the problem of high dimensionality of the state-space irffaidint way. They use search space decomposition
to partition the search space into a number of independanttses. If the state space can be partitioned into
parts that can be searched independently, then the cornguutiabe would be reduced significantly. Instead
of complexity exponential in the number of degrees of freedwe can have a search strategy that is linear in
the number of partitions and exponential in the number ofekgof freedom within a partition. For example,
if we partition our statéX; € R into K equal partitions (in most realistic cases the partitionisndt be
equal)X; = [x;1,X¢2,..., X k)7, wherex, ;, € R¥ X then instead of exponential search stratéy?)
we can have search strategy thaDigk ¢/ X'), wherec is a constant.

In the context of human motion and pose estimation, thetparing often takes the following form: first
find the torso, then given the torso find the head and the upgramneities, then given the upper extremities
find the lower extremities, followed by hands and feet. Whiilis strategy is very efficient it suffers from
one significant disadvantage, it assumes that the partatadtigh in the hierarchy can be localized well
(e.g.torso). Depending on the imaging conditions and the exatitiopaing strategy this assumptions may or
may not hold. In general a dynamic data-driven strategytferpartitioned sampling would be prefered. The
approach introduced in this thesis that uses graphical lnoaenodel the conditional independence between
parts of the search space (that correspond to individug} pads) and uses particle message passing to do
the search, can be viewed in this way - as dynamic iteratiemalghical search that is not committed to the
particular partition strategy. It is worth noting that ptisned sampling can also be combined with annealed
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particle filtering for further speed and robustness impnosets [51].

Rao-blackwellized Particle Filters (RBPF) [153]. Standard Particle Filters assume that thegial in
the Baysian filtering equation cannot be computed analffjéasome cases however integrating analytically
over part of the state space may be ea&sg.& subset of variables iK; may be Gaussian). Rao-blackwellized
Particle Filters make use of this fact by integrating anealty over the part of the state-space that can be
integrated, and sampling the rest. As a result it can be shioatrRao-blackwalized Particle Filters provide
a better estimate for the posterior distribution. While RBRference has been successfully used in various
applications, few approaches have thus far attempted tih fegearticulate human motion estimation [104].

Hybrid Methods often attempt to integrate particle filtering with deteristit (gradient) optimization
of the posterior [38, 241]. One such example is Hybrid Mongel&€(HMC) filter [38], that uses multiple
Markov Chains that use posterior gradients to rapidly exgplbe state space, yielding fair samples from the
posterior. The resulting approach is claimed to be sevaridand times faster then the standard particle
filter. Similarly, covariance scaled sampling [210] condsircovariance scaled ‘oversized’ sampling with
local optimization subject to joint and non-self-interté@e constraints.

In [211] MCMC sampler is modified to include a potential fuoctthat focuses samples on nearby saddle
points based on the local gradient and curvature of the idttibution. This strategy effectively finds
local optima in the high dimensional space of articulatesiggo Interpretation trees and inverse kinematic
reasoning can be used to construct sampling schemes tloat#dor long-range structural ambiguities of 3D
human motion [209] observed from a monocular camera. Tipsogeh has also been extended in [208] by
introducing variational temporal smoothing that accodatsemporal continuity in persistently multi-modal
posterior.

Multiple Hypothesis Tracking is an alternative to the Particle Filtering. Instead of esenting the
posterior distribution over the state explicitly, MHT appches [34, 131] often formulate the problem of
inference as that of explicitly maintaining a fixed numbehgpothesis that correspond to the modes of the
posterior distribution.

2.9 Number of Views

As was discussed in the Section 2.4 the human body can besegpee in either 2D or 3D. If the 2D repre-
sentation is chosen then at least conceptually one viewgioigde image) of the scene should be sufficient to
infer the pose of visible parts. In the case of the 3D modés, itnclear how well one can expect to predict
the pose from a single view, especially when motion infofarats unavailable. It is known that multiple
3D poses will result in the same 2D image projection, and &saltrmost approaches that attempt to solve
this problem from monocular imagery must either rely on pkisowledge of the motion [125] or temporal
information [193, 195, 206, 209] to resolve ambiguities.eTgroblem of 3D pose inference, however, is
significantly simplified when multiple views are availablt least conceptually with sufficient number of
non-degenerateiews, the body can be fully observed and the pose recoveitaditile or no prior assump-
tions on the motion.

6By degenerate views we mean views of the scene that give niticadd information. For example, cameras that are vergelo
together resulting in the nearly the same image, would bsidered degenerate. Degeneracy may also depend on theefeakor
example, cameras that are located opposite to each dif@dégrees apart) can produce identical silhouettes.
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2.9.1 Multiocular 3D Inference

Most approaches that deal with multiple views can be claskifito the ones that either use thisual hull
explicitly or backproject the 3D model into the image witheuplicitly reconstructing the volumetric repre-
sentation. In both cases the knowledge of the camera pagesr(@bth intrinsic and extrinsic) is essential to
draw correspondences between information in differentecam

Visual hull. Visual hull based approaches explicitly solve for the asdmmn of features from multiple
views, resulting in the approximate 3D bounding geometryhef actual object. It can be shown that as
the number of views increase the visual hull tends to apjrolae true shape of the object. Most visual
hull approaches [28, 36, 39, 113] rely on a good backgroubttaction process and silhouettes to define the
generalized silhouette cotieat originates at the focal point of the camera and runsititiéhe contour of the
silhouette. The intersection of the cones from differemegas defines the upper bound on the space occupied
by the object. More recent approaches of Voxel Coloring E6d check color consistency across multiple
views. The key problem with these approaches is their rediaon nearly perfect background separation.
Noisy silhouettes from even a single camera will result ifekan the 3D volume, significantly corrupting
the representation. To attempt to handle this, a probébitscupancy grid approach has bin introduced in
[65], where an equivalent of the visual hull can be obtaingthlzing the isosurface of the density at a given
probability. Once the volume is recovered the tracking ef3D shape can be performed either by stochastic
meta descent [113] or iterative closest point [151].

Backprojection. Alternatively, approaches [52, 74, 77, 112, 197] have usettfirojection of the model
into the image to ease the burden of the low level observatssiociation and the need for nearly perfect
silhouette data. In visual hull approaches, hard decisioasnade that may result in the loss of information
early (at the feature level). Errors in that stage propagette backprojection methods delay hard decisions
until later, when more information is available (such asftiiebody model), that may resolve ambiguities
and deal with missing data more effectively. In backpragetimethods, the multiple views are handled by
the likelihood function, where independence is often agsliatross camera views [52, 197] and the product
over individual view-based likelihoods is taken as an ovenaasure of pose match.

2.9.2 Monocular 3D Inference

The case of inferring a full 3D pose of the person from singotular image is the most general case
considered by the community. In general, there have beerc&agories of approaches for doing thig) (
discriminative methods that attempt to learn the mappinggetly from the image features to 3D pose, By (
methods that recover the 2D pose first and then attempt tacieaize the set of 3D poses that are consistent
with the 2D interpretationExemplarandprobabilistic mappingnethods discussed bellow fall into the first
categorygeometricand what we calprobabilistic 3D reconstructiomethods into the second.

Exemplar Methods

The first class of approaches, that has already been disctss®me extent in Section 2.7, attempts to
encode the appearance of the person using a set of geneuiecte@.g.shape context codebook entries [1, 4],
histograms of oriented gradients [189], boundary fragm@], Hu moments of the silhouette [179, 180])
and learn the mapping from these features to the 3D posesegistion. One popular method is to collect a
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large dataset deatureposeassociations and build a databagenearest neighbor [87, 166] or approximate
K-nearest neighbor [189] methods can then be used to quedathbase for the entry that matches closely
the features observed in the image and return the assopiased In doing this, one must typically choose the
similarity measure that is used to compare the features mrmdfigient (sub-linear) algorithm for search of
the database. In [189] the similarity measure is recoveutonaatically based on the similarity relationship
imposed on the training data. Alternatively in [11] the exhdieg that preserves the similarity is computed
and used for faster query computation. These approacheffecéve, but requires a database that spans the
set of all possible poses, people, appearances and lightomditions. This is often impractical for generic
applications where motion, subject and lighting are untaiteed. Alternatively, a coarser discretization of
this space can be used and a locally linear regression estptoyinterpolate between the poses [189] to get
a continuous estimate for 3D pose. Even so, this class obappes provides no probabilistic confidence
measure for the recovered pose, nor can it easily embed &g pver the poses without explicitly changing
the content of the database.

Probabilistic Mapping

Alternative approaches [1, 4, 179, 180, 205, 206] attemfgdm a direct continuous probabilistic mapping
between the features and the 3D pose. The siabfireposeassociations in this case are treated as training
data, based on which a much more compact representatioe wdldtionship between these is recovered. For
example, in[1, 4] a simple ridge regression and relevancmveegression (RVM) is used to characterize this
mapping. While effective in some situations, the approatiteiently assumes that the relationship between
the 2D features (silhouettes in this case) and the 3D poseeiarland one-to-one, which in general is not
true. In particular, more then one 3D pose can give rise tedhee silhouette features depending on the view
of the camera, orientation of the person and pose. To adthissghe approach of [1, 4] was extended to
include the multivalued probabilistic mapping [179, 18052206], and other features (edges and oriented
gradients) that allow observation of occluding parts oftibdy [205, 206].

Geometric Methods

One alternative to the exemplar and probabilistic methastsudsed was proposed by Tayétral. in [222],
where an approach was introduced capable of recovering #gyfafmsolutions based on pure geometry.
Given the knowledge of the set of keypoints correspondirjgitd positions in the image (obtained using a
manual labeling procedure) and the knowledge of the 3D bedsnent lengths connecting these points, the
approach was able to estimate the 3D configuration(s) ofdldg bonsistent with 2D constraints, modulo a
scaling factor. While the original proposed method reliediee manually labeled set of keypoints, it was later
extended by [148], to work from a set of automatically obégiikeypoints. These keypoints were obtained by
solving for the 2D pose of the person in an image using a Hitpanatching of shape context features [148].
This geometric approach, however, is relatively unstahte respect to small perturbations of the keypoint
locations in 2D.

Probabilistic 3D Reconstruction

Based on the intuitive notion of using 2D pose to constragnstbarch for plausible 3D poses, Hogtel. in
[90] proposed the approach that modeled the joint densith@®PD and 3D spatio-temporal poses defined
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for a fixed size {1 frame) snippet of video. This joint Gaussian Mixture modsrhed using EM was
then used to derive a conditional distribution of the 3D psis@pet conditioned on the observed 2D pose
sequence. The overlapping 3D motion snippets were thenaderging a weighted interpolation resulting in
the continuous motion. While this spatio-temporal modépée to resolve some of the instabilities due to
the jitter of joint positions in a single image, it still rell on the manual initialization at the first frame for
2D tracking, falling short of a fully automatic system. Sianiin spirit, an approach was introduced by Brand
in [29], where silhouette moments defined over a motion secpievere used to reconstruct 3D pose. More
recently, there have been attempts to reconstruct the 38 fpos a monocular image, using intermediate
2D pose estimates; an approach taken in Chapter 6 of thisthes[127] for example, MCMC sampling
was used to search for the 3D pose that is consistent with @apilistic observations derived from a single
image, based on automatic canonical detection of body.parts

2.9.3 Sub-space Methods

So far we have talked about approaches for monocular 3D xiseation that are relatively general and
assume little about the nature of the motion itself. Makisguenptions about the motion, however, signifi-
cantly simplifies the problem in many cases. In particulanyrg&imple repetitive motions can be represented
by low-dimensional manifolds in a much higher dimensiomece of all possible human motions. This is
the key assumption of the sub-space methods. For exampleyalking motion of a known subject can be
parameterized by two parameters: phase and speed [55,06l§]one additional dimension is necessary to
capture additional variations across the view of the pef$28]. Variations across multiple walking people
have been shown to be captured well in thdimensional non-linear sub-space obtained using Gaussian
Processes Latent Variable Models (GPLVM) [227]. GPLVM hasavenient probabilistic form that defines
bi-directional mapping from and to the latent space. Funtwee, the latent space can be optimized to pre-
serve dynamics [226], resulting in the model where posenesion and tracking can all be performed in the
latent space significantly reducing the computation resglirom the search iR¢ where typicallyd = 30+,

to search irR3. A similar approach that uses a Mixture of Factor analyzersibn-linear manifold learning
was introduced by Let al[131]. There is, however, an inherent limitation in thesaleis in that the motions
must be relatively simple and/or cyclic. Atthe moment itiglear how these approaches can be extended to
work in more general settings where motions are of varyingem and complexity.

2.10 Quantitative Evaluation

A variety of statistical [3, 4, 14, 52, 93, 196, 197, 206] adlws deterministic methods [147, 189, 222]
have been developed for tracking people from single [3, 4989122, 146, 147,170, 173, 174, 178, 196] as
well as multiple [14, 52, 77, 197] views. All these methodskmdifferent choices regarding the state space
representation of the human body and the image observatqonged to infer this state from the image data.
Despite clear advances in the field, evaluation of theseadstremains mostly heuristic and qualitative. As
a result, it is difficult to evaluate the current state of thtewdth any certainty or even to compare different
methods with any rigor.
Quantitative evaluation of human pose estimation and ingcls currently limited due to the lack of

common “ground truth” datasets with which to test and compdgorithms. Instead qualitative tests are
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widely used and evaluation often relies on visual inspeatioresults. This is usually achieved by projecting
the estimated 3D body pose into the image (or set of imagesyianally assessing how well the estimates
explain the image [52, 59, 174]. Another form of inspectionalves applying the estimated motion to a
virtual character to see if the movements appear naturél] [2the lack of the quantitative experimentation
at least in part can be attributed to the difficulty of obtag8D ground truth data that specifies the true pose
of the body observed in video data.

To obtain some form of ground truth, previous approaches hesorted to custom action-specific schemes
(or tricks); e.g.motion of the arm along the circular plate of known diamefelr?]. Alternatively synthetic
data has been extensively used [3, 4, 77, 189, 206] for gasiné evaluation. With packages such assBrR
(e frontier, Scotts Valley, CA), semi-realistic images of humans carebdered and used for evaluation. Such
images, however, typically lack realistic camera noiségrotontain very simple backgrounds and provide
simplified types of clothing. While synthetic data allowsagtitative evaluation (3D pose is known), current
datasets are still too simplistic to capture the complegitif natural images of people and scenes.

For 2D human pose/motion estimation, quantitative evadnas more common and typically uses hand
labeled data [93, 170, 173]. While quantitative evaluatioes occur, the datasets are typically unique to
each research group, preventing direct comparison of rdethieurthermore, for both 2D and 3D methods,
no standard error metrics exist and results are reportedaniety of ways which prevent direct comparison;
e.g.average root-mean-squared (RMS) angular error, silh@ogtrlap, joint center distancetc.

One of the contributions of this thesis is the new dataset, we call HUMAN EVA, that contains large
amount of synchronized motion capture and multi-camerao/data. A number of subjects were captured
using the specialized setup performing a set of predefingohadn regular clothing. As part of this effort, we
also outline a set of metrics for measuring error, that invéew make it easier to compare various methods
on equal footing. The details of the dataset and the metriitbevdiscussed in Section 5.7.1; the data can be
obtained fromhttp://vision.cs.brown.edu/humaneva/

2.11 Generic Object Detection, Localization and Categoration

Thus far we have concentrate on the articulated object iseation and tracking, however, the approaches
introduced can be generalized to work for generic objecditn tasks. We briefly cover the three major
classes of approaches for generic object detection, latadn and categorization bellow.

2.11.1 Sliding Window Classifiers

Sliding window classifiers refer to the class of approacimes attempt to encode the appearance of the
object as a whole and then classify the patches in the imagegteer conforming to the object model or
not. The classifier is typically learned from a fixed size segied set of image templates. To find objects at
different positions, scales and rotations in the imageclpi the image itself is transformed to a fixed set
of canonical scales and orientations and the classifierdglstnce the name) across this set of constructed
images. Typically the classifier will not respond only atragée location and scale where an object is present,
but rather will respond in the neighborhood producing a fami hypothesis. To resolve this the standard
approach is to apply non-maximal suppression, and repdyttba results that correspond to the set of local
maxima. Note that although the classifiers are learned, dhenmaximal suppression procedure is typically
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designed by hand.

One of the prime examples of the sliding window classifier @@Boost introduced by Viola and Jones
[236]. A cascade of classifiers is learned based on Haar \&favéhat were discussed in Section 2.5.8.
The cascade allows fast classification, by quickly rejectiegions that are unlike the object (regions of
constant color or texture) and spending more time resolvarger ambiguous cases. The approach can also
be amended to deal gracefully with detection of multipleescl§, by choosing features that are common
to multiple classes of objects (but still discriminativey fclassification [223]. An alternative is to use a
support vector machine (SVM) classifier based on either Maaelets [144] or PCA based features [124].
One important challenge for these methods is appearanogehahat result from both the viewpoint of the
object and the variations within an object class. Typicaflyy minor variations in both can be accounted for
by these classifiers.

2.11.2 Part-based Models

A number of authors in recent literature [59, 144, 249] ssteekthat modeling complex objects by compo-
nents explicitly and then combining [59, 144] or statidlickusing [93, 249] the information is superior to
the global appearance approaches (that model variatiqreris implicitly) in the presence of partial occlu-
sions, out-of-plane rotation and/or local lighting vaieats. Component-based detection is also capable of
handling highly articulated objects, for which a single eprance model may be hard to learn. To this end,
it is common to represent objects as collections of featwi#is distinctive appearance, spatial extent, and
position [33, 61, 144, 235, 236, 243]. There is, however,rgdaariation in how many features one must
use and how these features are detected and representee.aidealso variations in how much geometry is
encoded in the model. Typically part based approachestdetest of interest points or keywords, based on
which local (often scale and/or rotation invariant) imagsdiptors are derived. The object models are then
learned based on these descriptors in supervised [198, 238j]-supervised [61] or non-supervised [204]
fashion.

The simplest model in this category is thag of wordsmodel [45, 58, 204] that originated in the doc-
ument analysis community [84]. The key idea is that any dijao be represented using a codebook of
visual descriptors/codewords. In this model the spatiatienships between the parts are ignored and only
the presence/absence of the codewords is encoded usinggraim based representation. As a result these
approaches tend to be very useful in image categorizatiberevone only needs to reason about the object
presence. They are not able to infer the position, rotati@oofiguration of the object in the image however.

The constellation modelis a very influential model for object class detection thaswaroduced by
Weberet al.[243] and later extended by Fergesal. [61]. This is a generative model defined over interest
point locations and appearances. Unlike the “bag of wordsdeh the constellation model strongly param-
eterizes the geometric relationships of parts using a f@aissian over both centroid positions of all parts
and individual appearances of parts themselves. Assurhaigve have a set af parts in an object and the
appearance of each part is encoded usihgRadimensional SIFT [135] vector, we can express the model as
a Gaussian ifR'2%N, Since this model has a simple Gaussian form the probabilityset of N keypoints
can easily be evaluated, however, we must search over gilpp@sssignment af/ descriptors found in the
test image taV parts encoded in the model. Hence the complexity of perfiogniocalization of a single
object isO(MY), whereM is typically aroundl00 — 500. This exponential complexity in the number of
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parts ensures that this model is only tractable for objéws ¢an be encoded using small number of parts
(IV =~ 5). The model also cannot easily handle clutter or occlusidn®cent extension to this model called
acommon framenodel [145] encodes the position of parts relative to theéro@hof the object, leading to a
more efficient inference algorithm.

Thepictorial structures model [59] that was discussed in the context of disaggredgatalels for human
pose and motion in Section 2.4.3 encodes a looser pair-wis@etric relationships between parts, allowing
efficient inference of the configuration along with the piasitand orientation. Unlike the “constellation
model”, the detection and localization can be done in the fimear in the number of parts. Similar models
have also been introduced by Agarvealal. [5], Amoreset al[7] and Opeltet al[158]. These approaches
differ significantly in the features used to encode the afgyez and in the specifics of the model, however,
the common underlying premise is to model both appearargpanwise geometric constraints on the parts.

2.11.3 Hierarchical Composition Models

Part-based models deal well with deformable and articabjects, but also tend to be relatively slow (apart
from the “bag of words” model that is not able to perform lézaion). To be able to deal with deformable
structure faster, a new class of methods has recently dtartemerge. This relatively novel class of models
attempts to model compositionality of objects in terms atgarhis compositionality is most often encoded
by a hierarchical model. In this model the root of the hiengircorresponds to a full model of the object
with all it’s intricacies, and the lower-levels to simplexatures that are easier and faster to detect. This
hierarchical structure facilitates rapid object detettémd inference. In [263] a shape based hierarchy is
defined and encoded using a statistical graphical modelinfaeence in this model can be done efficiently
using Belief Propagation (BP), resulting in the reportedgrenance that i$00 times faster then competitors.

Athitsoset al[10] introduced a very flexible approach that uses gramrkarsyntax to detect and localize
deformable objects that can have variable structiugevarying number of sub-parts). One example of such
a class of objects is branches with leaves. The approacheistantion of Hidden Markov Models (HMMs),
often used for analysis of temporal data, that in this casel@pted to modeling of the variable deformable
spatial structure of an object. In a similar attempt, praligtlc grammars have also been used by Zhu
et al.[262] to model and detect objects.



CHAPTER 3

Graphical Models and Inference

Graphical modeldhave a wide applicability in statistics, machine learnisigtistical physics, and more re-
cently computer vision. Graphical models capture the wayira fistribution over all random variables can
be decomposed into a product of factors each depending gracubset of variables. This local decompo-
sition of the joint distribution often leads to tractabldéerence algorithms. Graphical models also provide
simple and intuitive way to visualize the structure of proitiatic models.

A probabilistic graphical model in general can be encodédgua graphg = {V, £} that comprises of
a set ofnodesor vertices V, and a set oédges £. Each vertex; € V, in this graph is associated with a
random variablé&X;. These variables can either be continuous or discrete depeon the problem. Each
edge(i, j) € £ can be thought of as a probabilistic relationship betweedaen variables associated with
pair of distinct nodeg € V andj € V. Itis often useful to partition vertice$), in a graphical model into
two disjoint sets)) = {Vx, Vy }, where the second s&t, corresponds to the nodes in the graph that are
associated with variable¥ = {Y;|i € [1, ..., M]} (whereM = |Vy|) that are directly observed, and the
first setVx corresponds to the nodes in the graph that correspond tablesiX = {X;|: € [1,..., N]}
(whereN = |Vx]|), that are not observed directly but the value of which isamhe interest. It is notationally
convinient to shade the nodes)y gray, to make it visually clear that they can be observed.

Graphical models in general can be categorized into thresgodes: directed, undirected, and factor
graphs. Directed models, also callBdysian NetworkéBN), are useful for expressing causal relationships.
If the graph is directed then the edges, that are often d=piasing arrows, correspond to the conditional
dependencies of the child nodes (nodes toward which thevarape pointing) on the parents (nodes from
which the arrows originate)Jndirected modelsalso known asMarkov Random FieldSMRF), are used to
encode constraints or correlations between random vasabh undirected graphical models the edges are
depicted using arrow-less lines between no#testor graphsare a relatively recent addition to the graphical
model family, that generalizes both directed and undicketedels. A factor graph is defined as an undirected
bipartite graptg = {V, F, £}, whereV and& are defined as before, atfdis the set of additional vertices
that are calledactors

Graphical models themselves only encode the structureegbtht distribution using a graph = {V, £}
(orG = {V,F, &} in the case of the factor graph), the specific forms of thetiogiahips between random
variables in the graph are not specified explicitly. Hennegddition to specifying the graphical model, one
must also specify the parameters of the graphical még&here the form of these parameters will depend
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Figure 3.1: Graphical model families. Three families of graphical models that will be discussed
in this chapter are illustrated. All three graphs can enctue same underlying joint distribution,
p(X1, Xo, X3, Xy, X5), given the proper choice of parameters. Different choidgsmoameters would lead
to different encoded joint distributions.

on the problem and the parameterization chosen for theblasi@nd their relationships.

While graphical models define a rich set of models, there algafew canonical operations that one is
often interested in performing using these models. In paldr, (1) learning of model structure?) learning
of model parameters given the structure of the model, @pishference using the model where both structure
and the parameters are known. The first task is by far most lexngmd deals with estimating the nodes,
V, in the graph and the connections between noélesprresponding to the relationship between random
variables. In general to be able to do useful structure legrane typically must assume sparseness priors
on both the edges and the nodes, attempting to recover thl grigh as few nodes and edges as possible
subject to the observed data. We will not address structaraing &.k.a. model selectignn this thesis, and
refer readers to [12, 129, 200, 201] for some recent workigdiea.Parameter learningefers to estimating
parameter® given the model structur@ = {V, £} and subject to the data observed. We will cover a few
examples of this in Section 3.4. The last taskndérencels central to this thesis and will be covered in depth
in this chapter. Inference in the graphical model, typicedfers to finding the value, or the distribution over
the values of all or some sub-set of hidden variables givebservations. Consequently parameter learning
can often be cast as an inference problem itself.

In the following sections we introduce and compare seveftdrdnt classes of graphical models, includ-
ing directed, undirected and factor graphs. We also inttediome specific instances of models within each
class that are both common and useful for the purposes ahisss. We also introduce methods for learning
parameters and doing inference in these models.

3.1 Graphical Model Building Blocks

In this section we will introduce the set of distributionsrmmonly refereed to in this thesis and their prop-
erties. These distributions will play a key role in constiig more complex models used throughout this
thesis, and in doing inference in these models.

3.1.1 Exponential Family

The exponential familyf distributions is a class of distributions that serve agding blocks in graphical
models, and give rise to rich probabilistic models useduphmut the thesis. The distributipiX|6), where
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X is a random variable an@lis a set of parameters, is said to be part ofékponentiafamily if it can be
written in the following form:

1 T
p(X10) = mh(X) exp [07¢(X)] (3.1)
where,
0 is a vector of parametersa.k.a. naturalor canonicalparameters)

t(X) isafunction referred to aufficient statistics
Z(#) isanormalizing constanfa.k.a.partition function) defined as
Z(0) = [ h(X)exp [#T#(X)] dX for continuous variabl&, and
Z(0) = > h(X) exp [67t(X)] for descrete choice &k
X

h(X) isafunction ofX.

Many distributions can be written in this form, includingr@eulli, Poisson, Gaussian, Beta and Gamma
densities. While the exponential family has many converpeoperties, one that is worth mentioning is that
the joint probability of NV i.i.d. samples from the distributio®} = {x; ~ p(X|0)|i € [1,..., N]}, can be
written in the following form,

p(D|0) = p(x1,...,zN|0) = H p(x;0)
= ﬁ ﬁh(mi) exp [07t(x;)] (3.2)

Lh(xi)] exp [(ﬂ %1 t(xi)] ,

1=

I
N
2

which suggests that the dimensionality of the sufficierttstiaremains the same with the number of samples.
This, in turn means that in order to characterize a distidlouin the exponential family, it is sufficient to
compute the sufficient statistics. Once we have sufficietissics for the distribution the samples themselves
give no additional information about the distribution tiganerated them. This gives a convienient compact
form for representing distributions in this family. For thst of other common properties of exponential
family we refer the reader to [22, 107].

3.1.2 Gaussian Distribution and Properties

In this section we will review &aussiar(or Normal) distribution, which is a prime example of the exponen-
tial family. A univariate Gaussian distribution with mearand variancer?> on random variabl&X < R can
be written as,

p(X|p, %) = (3.3)

Alternatively we can also introduce the shorthand notaN@iX |, X) or V(X i, ). Itis easy to see that a
univariate Gaussian is an exponential family distributigth the following parameterization,

9_[/%12022]’ t(X)_lXQ
—1/20 X

, Z(0) = exp (5z +logo), h(X)= 2\/1%. (3.4)
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If X is multivariate random variabl& € R?, then the distribution can be written in the more general
form,

1 1 _
p(X|p, %) = amarse P —§(X —)TET X )|, (3.5)

whereX. is now a covariance matrix anda multivariate mean. The Gaussian distribution has a nuwiber
convienient properties that make it very useful for moaejland inference tasks. The two most important
properties that relate to the product of Gaussian disibstand conditional distribution of jointly Gaussian
variables are stated bellow.

Product of Gaussian distributions

Product of two or more Gaussian distributions is also a Ganstistribution. For example, product of
Gaussian distributiong X;) = N (X;|u,, Xi), i € [1, ..., M]is

M
p(Y) = Hp(Xi) =N(Y|py, Zy), (3.6)
=1
where
M -1 M
Yy = (Z Eil) py =Xy (Z Eilﬂi) : (3.7
=1 =1

Conditional Gaussian distribution

A conditional distribution of two or more jointly Gaussiaanables is also a Gaussian [22, 217]. Consider a
case of two jointly Gaussian variabl&sandY,

(PP w)

We can write conditional distribution(X|Y) as a normal distribution with the following parameters for
mean and covariance respectively:

ix)y = Sxy Sy (Y — piy) (3.9)
x|y = Ex — ExvYy Exy. (3.10)

3.2 Bayesian Networks

Baysian Networkss a family of graphical models that characterize how thetjdistribution over a set oWV
variablesp(X1, Xo, ..., X ), factors into a set of conditional relationships imposedhs®ystructure of the
graphg = {V, £}. By the product rule, it can be shown that the joint distribatlefined by the graph can be
written as the product of conditional distributions for leamde, where the variable associated with the node
is conditioned on all the parents of that node in the graptmaedgfor a general directed graph with= |V
variables, the joint distribution can be written as:
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Conditional Independence Constraints
(imposed by the graph structure)
X—l —”— {X27 X37 X47 X5}

@ @ Xo L {X3,X4, X5}
X3 AL {XQ,X4,X5}

X, I {X1}|{X2,X },X A1 {X }

X X2 Xo L {X,}{Xo} X5 L {X0. X}

p(X) = p(Xy, X2, X3, X4, X5) = p(Xs5|X3)p(Xs| X2, X3)p(X3]X1)p(X2|X1)p(X1)

Figure 3.2:Baysian Networks Example of baysian network graphical model. The jointrdistion factors
into the product of conditional distributions as illusgdtabove. All the conditional independences imposed
by the graph itself are also listed. Notice that even thohghe seems to be a loop in the graph, there are no
directed cycles.

B~~~ )~~~

Figure 3.3: Markov Chain. Graphical model corresponding to a first-order Markov @harirst-order
Markov assumption encoded in the model presumes that ttee Xta at timet is only a function of the state
att — 1 forallt € [2,...,T], where in the example aboZé= 9.

P(X1. Xa, ., Xpy) = [ p(XiXa)), (3.11)
ieV

whereA(i) € V is defined as a function that returns all parents of the riode’ in a graph;X 4;) is then
the set of associated variabl€X |k € A(:)}. The equation above expresses the factorization propertie
of the joint distribution and holds for all joint distribatis and all definitions of variabléX;, i € V. In
order to ensure that factorization holds, an importantic&in on the graph topology must be maintained.
In particular, graplg = {V, £} cannot contain cyclesj.€. it must be adirected acyclic grapi{DAG)). In
other words, there cannot exist a path from any node in thehgadong the directed edges that leads back to
the node itself. Example of the directed graphical model thiedfactorization of the joint distribution over
all the variables is given in Figure 3.2.

3.2.1 Markov Chains

Markov Chains are among the simplest directed graphicalefsod first-order Markov Chain is defined on
a series of random variabléX,, Xo, ..., Xy} such that the following conditional independence holds for
nell,...N-1]:

P(Xng1|X1, o, X)) = p(Xg1[X). (3.12)

This conditional independence can be encoded in the gralpmicdel as is shown on Figure 3.3. The
Markov Chain can then be specified by the initial distribotX ;) and the conditional distribution for the
subsequent variablesa.k.a.transition probabilities). A Markov Chain is callbdmogenous the conditional
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Figure 3.4: Hidden Markov Models. Directed graphical model representation of the temporia- H
den Markov Model (HMM) withT = 5 observations and hidden variables are shown. Models that il
lustrate first-order and second-order Markov dynamics amve in @) and () respectively. In gen-
eral an N-th order Markov assumption in the directed model aboveest#tat the hidden variabl¥,

is conditionally independent of all observation past owfatgiven the estimates fdX;_n, ..., X;—1},
IEp(Xt|X \ Xt) = p(Xt|Xt7N, ceey thl)n whereX = {Xl, XQ, ceey XT}

distributions are the same for all variables in the modelrdifeal probability of a particular variable in the
chain can be computed recursively using the following,

P(Xpy1) = Zp( 1| Xn)p(Xn) or p(Xpy1) = f P( X1 Xn)p(Xy) dXp, (3.13)
X,
depending on whether the variables are discrete or conigwespectively. The distributigriX) is said to
be stationaryif the following condition holds,

p(X) = ;p(Xn+1|X)p(X) fp (Xn41[X)p(X) dX. (3.14)

Markov Chains are extremely useful for inference of otherenmomplex models as will be shown in
Section 3.6.3. In particular, one can design a Markov Chasuch a way as to facilitate sampling from an
arbitrary complex distribution. To this end another prapef Markov Chains must be introducestgodicity.
Ergodicity ensures that for a given choice of the stationistributionp(X), p(X,,) will converge top(X)
asn — oo irrespective of initial choice of distribution(X; ). Such a stationary distribution is also called an
equilibriumdistribution. It is worth mentioning that while a Markov Ghamay have a number of stationary
distributions, an ergodic Markov Chain will have only oneigitprium distribution.

3.2.2 Hidden Markov Models

One of the most common Baysian Networks islkthidden Markov Mode(HMM). A Hidden Markov Model

is often used to model temporal stochastic processes. Thd i¥Mvidely used in speech recognition [168],
natural language processing [35], analysis of biologieahd81], and computer vision applications. In
computer vision, HMMs are particularly useful for temponabdeling of object motion over time [14, 51,
52, 157].

In an HMM, as is suggested by the name the nodes in a g¥aph{), £} are partitioned into two sub-
setsV = {Vx, Vy }, where the first set corresponds to the hidden variakles {X;, Xs, ..., X1} that are
not directly observed and the second to the observalibns {Y1,Ys,..., Y} that are generated based
on the hidden states. Furthermore there is an evolutiorepsothat is defined on the hidden variali¥es
t €[l,...,T— 1]. For example, we can assume that the hidden states evolvelany stationary first-order
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Figure 3.5:Generative and discriminative graphical models A symbolic graphic representation of gener-
ative @) and discriminativelf) models are shown. A specific instance of the generative audimhinative
model is shown inlf) and €) respectively.

temporal Markov process as illustrated in Figure 3 The joint distribution over all variables can then be
written according to the Baysian Network rules as follows:

T
p(X,Y) = p(Y1X1)p(Xy) [ [ p(Ye [ X0)p(Xe[Xi 1) (3.15)

t=2

If we further assume that hidden variables are discrete andissumés states, then the total number of
parameters required to encode the modéjis= K + K(K — 1), where the priorp(X,), can be encoded
using K parameters and the conditional}Y|X;), using a matrix withiK( (K — 1) parameters (where each
parameter will encode the probability of transitioningfra given state at time- 1 to any other state at time
t). Since the sum of alk transition probabilities from a given state at time 1 is 1, there are actually only
K — 1 free parameters. Higher order Markov models are also peg&ly.a second-order temporal Hidden
Markov Model is illustrated in Figure 3.4)). However, the number of parameters required to encode the
model will grow exponentially with the order of the model. particular, M -th order HMMs will require
0] = K + KM(K — 1) parameters. It is worth mentioning that HMMs can be used tmée spatial as
well as temporal structure. For example, HMMs have beenesstally used for deformable shape matching
in [10]. HMMs also do not need to be stationary, in which case number of parameters will depend
on the length of the chain itself. For a sequence Witbbservations, ad/-th order HMM, will contain
0| = K + (T — 1) KM (K — 1) parameters.

The formulation above also holds if variables are contirsuoln such cases often a linear-Gaussian
dynamical model is chosen for the conditiopgX,|X;_1) = aX;_1 + b, wherea corresponds to the
deterministic component aridto the noise that is usually assumed to be zero mean naérmal\V (0, 33).
This is also known in the literature as thatoregressivd AR) dynamical model. Generic and articulated
object tracking in the computer vision literature is oftemfulated using HMMs with first- or second-order
autoregressive dynamics [24, 51].

3.2.3 Generative and Discriminative Graphical Models

The Hidden Markov Model is a prime example ofGenerative Graphical Model Generative graphical
models refer to the class of models that aim at modeling tbegss by which the data is generated. They
attempt to estimate the joint distribution over all hidded @bserved variables and then manipulate the joint
distribution to compute the desired probability densifeeg.marginals or conditionals). For example, if one
is interested in inferring the state of hidden varial¥s= {X;, Xo, ..., Xx}, as is the case for classifica-
tion, then the joint distributiop(X,Y) can be conditioned on the observatiovis= {Y1,Yo,..., Y}
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resulting in the desired conditiona(X|Y). Since the joint distribution is often complex and can conta
many variables it is often desirable to constrain the distion before attempting to estimate @onditional
independence constraingncoded in the graphical models are one way of doing thiserAditively or in
conjunction, one can impose prior distributions over theapeeters of the joint distribution or the variables
themselves, such priors are often referred tbhgserpriors Typically one can impose a hierarchy of such
priors, with the model being less sensitive to the pararseatet are higher in the hierarchy.

In general, the generative model can be drawn symboliaatlye form of the directed graph in Figure 3.5
(). The hyper-nod& in the graph corresponds to all the hidden varialles {X;, Xo, ..., X5} and node
Y = {Y1,Yo, ..., Y} to all observations. The arrow designates that all arronthérgraph are only al-
lowed to point from the hidden variables to the observatamsnot vice versa (nothing is assumed about the
relationship of hidden variables themselves). To estirtieéoint distribution, that is often written according
to directed graphical model rules a8 X, Y) = p(Y|X)p(X), one needs to estimate thgor p(X) and the
conditional(often referred to as thielihood) p(Y|X). Since generative models are flexible and can poten-
tially encode all knowledge about the variables and théatienships, they often have good generalization
propertiesice. they can deal with data that was not part of the training).thepwords, since generative ap-
proaches aim at modeling the data generation process,dhajraw inferences about all possible data values.
Unfortunately, building realistic generative models istbbard and computationally expensive, hence, most
approaches only model the most important relationshigs#salt in weak but tractable generative models.

Since in some cases we may be only interested in the prediofithe hidden variable state from the
observed data, there may be no need to estimate the full@ititbutionp(X,Y). Insteaddiscriminative
modelsattempt to estimate the conditiona|X|Y) directly. Alternatively these models can be thought
of as estimating the direct (and often probabilistic) magpirom the observations to the hidden states.
The directed graphical model depiction of discriminativedels can be seen in Figure 3dj.(The major
difference is in the direction of the arrows that now pointfrthe observations to the hidden nodes depicted
by the hyper-nodeX andY. This has significant implications, however, in that disgriative models cannot
model any prior information about the hidden variablesveosely they often encode prior relationships on
the data itself making it hard for the discriminative aptues to generalize.

3.3 Undirected Graphical Models

Undirected graphical models capture correlations or caimgs between variables instead of causal (or condi-
tional) relationships encoded by directed graphical nedéhdirected graphical models fall into the category
of generative models described in Section 3.2.3.

3.3.1 Markov Random Fields

Markov Random Field8VRFs) represent a class of graphical models that can bactesized by an undi-

rected graplg = {V, £}, where the edges;, imply conditional independence relationships between ra
dom variables associated with the nodgs,In particular, for a given nodéwith associated random vari-
ableX;, let us assume we have a functigifi) C V that returns all neighbors that are connected to
by an edge. We can then expraégdor a given choice of using three disjoint set®¥ = {i, A(i), B(4)},
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Conditional Independence Constraints
(imposed by the graph structure)

Xy 1L A{Xy, X5 H{Xe, X3}

Xo L {X5H{X 1, X3, X4}

Xy L A{X, X5 H{ X2, X3}

X5 1L X1, X, X4 H{X3}

p(X) = 2eh123(X1, Xo, X3) 234 (X2, X3, Xa)th35 (X5, X5)

Figure 3.6:Markov Random Field. Example of an MRF graphical model. The joint distributiantbrs into
the product of potentials as illustrated above. All the ¢bodal independences imposed by the graph itself
are also listed.

where B(:) = V n {i, A(i)}. The set of random variables associated wiifi) and B(i) can be writ-
ten as followsX 45y = {X;|j € A(i)} andXp;) = {X;|j € B(i)} respectively. The conditional
independence constraints encoded by the graph can thenpbessad using the following relationship,
P(Xs, Xpiy|Xaw)) = p(XilXaw))p(Xpa)|Xae)) for vi € V. In other words, we can say that any vari-
able X; is conditionally independengiven its neighbors, of all other variables in the model.n@itonal
independence is very important in design of efficient infessalgorithms for these graphical models.

For MRFs it is useful to define the notion of tbigque A clique,c, is defined as the set of fully connected
nodes in the graph. The random variables associated witlgaectan be denoted 8. = {X;|i € ¢}
According to the Hammersley and Clifford Theorem (restdterk for completeness), the joint distribution
over all variables can be parameterized by a produgbténtial functionslefined on the cliques of the graph.
In particular,

p(X) = % [T %X, (3.16)

cec
where( is the set of all cliques in a gragh= {V, £}. Itis easy to see that in general the parameterization
using the cliques is not unique. To get a unique parametarigaftenmaximal cliquesire used to represent
the graph, where maximal clique is defined as the largest $ellypconnected nodes in the graph.

For example, the joint distribution for the undirected drapFigure 3.6, can be written as follows:

p(X) = %1/)123(}(1, X, X3)1h234(X2, X3, X4)1h35(X3, Xs5). (3.17)

Theorem 3.3.1 (Hammersley-Clifford Theorent) Let G = {V, £} be an undirected graphical model,

where each vertex € V corresponds to the random variab},. LetC be a set of cliques of the graph

G. Then, a probability distribution defined as the product@fmalized positive functions (symmetric in their
arguments) defined on the cliques is always Markov with @dpethe graph,

p(X) oc [ ve(Xe)- (3.18)

ceC

Alternatively, any positive joint density function(X) > 0, VX, which is Markov with respect to the

IFormulation of Hammersley-Clifford Theorem used here igdeed to a large extent from [218].
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Figure 3.7: Pair-wise Markov Random Field. Examples of three common pair-wise Markov Random
Fields are shown. Nodes corresponding to hidden varigias..., X 5} are depicted using unfilled circles,
observation§ Y, ..., Y} using shaded nodes. la)(a grid-based graphical model is depicted, often used in
computer vision applicatiore(g.image restoration, supper-resolution, image segmentatid stereo). 1rQ)

a tree-structured graph is depicted. Inference methodeédtructured graphs, such as Belief Propagation,
are often shown to have favorable properties. Lastlycjra undirected version of the Hidden Markov
Model obtained bynoralization(see text) is illustrated.
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graph, implies that there are exist positive functians(symmetric in their arguments) such that Eq. 3.18
holds.

Proof. The proof of this theorem is somewhat involved, and we rdierreader to the original published
version of this theorem in [40].

3.3.2 Pair-wise Markov Random Fields

A special case of the more general MRF framework igghie-wiseMarkov Random Field where the cliques
are explicitly restricted to the pairs of nodes connectethieyedges in the gragh = {V, £}. Such special
case is clearly a restriction on the more general MRF fortiarigresented in the previous section, but is use-
ful for many applications. In such models, it is often comi@t to partition the nodes = {Vx, Vy }, that
correspond to observable variabfés= {Y1, Y5, ..., Y/} and hidden variableX = {X;, X, ..., Xy}
respectively. The potential functions can also be partétinto two disjoint sets, the first set corresponding
to the edges that are between the hidden variables and tleevahiens &.k.a. local likelihoody and the
second set corresponding to the edges between hidden learidlye will denote the first set of functions
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usinge; (X;,Y) = v;(X;,Y) and the second set using the old notatign(X;, X;). The reason for consid-
ering two sets of potentials separately, is motivated byirtigerical observation that the two function types
typically vary significantly in their complexity. In partidar, whiley;;(X;, X;) often have simple paramet-
ric forms, ¢;(X;,Y) are often considerably more complex. The joint distributtan be written using the
following:

11 i (Xi, X5) [T ¢:(Xs, Y). (3.19)

(4,J)€E,i€VX,jEVX i€Vx
Undirected Version of Hidden Markov Model

A Baysian Network can always be converted into MRF by a pmcatiedmoralization by marrying (con-
necting) all the parents of the common child and removingdihection of the arrows. After this transfor-
mation the resulting undirected graph will have the sama jmiobability as the Baysian network, but it may
no longer preserve all the conditional independence ptigsasf the graph. For example, if we consider an
HMM, we can get a corresponding undirected graphical moitief the moralization that looks like a model
in Figure 3.7 €). The joint distribution encoded in this undirected mo@ekording to the rules of graphical
models, can be factored in the following way:

T
p(X,Y) = p(Y1X1)p(X1) [ [ p(Ye | X0)p(Xe|Xi-1). (3.20)

t=2

If we let

Z = 1 (3.21)
P12(X2, X1) = p(X2|X1)p(X1) (3.22)
Yeap1p(Xey1, Xe) = p(Xey1|Xe) (3.23)
6e(Xe, Yi) = p(Yi]|Xy), (3.24)

then the distribution encoded by the undirected graph istBxthe same as the one depicted by the directed
model in Figure 3.44). However, the undirected model is more general and allowiifdirectional potential
functions. This is useful for batch estimation of the pdstervhere one wants to ensure that the distribution
over the state oK, is affected by the future stab€, ; as well as the pasX;_;.

3.3.3 Factor Graphs

A factor graphis an undirected graphical bipartite gra@ph= {V, F, £}, whereV is a set of nodes associated
with random variableX = {Xy, X, ..., Xy}, F is the set of function nodes, adds the set of undirected
edges(i,j) € & between factors € F and random variableg € V on which they operate. For each
node in the graphbi(i) € {V, F} is the neighborhood operator that returns all nodes that@meected to
the nodei, wherei € {V,F}. Formally,j € A(i) if and only if there exist an edgg, j) € £. Notice
that due to the bipartite nature of the graph (see FigureiB.1)e F, then A(:) C V, and vice versa.
Hence the set of random variables that are associated vethdties connected to a facipcan be denoted
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asX ) = {X,|j € A(i)} ¢ X. Each function nodé € F in the graph has an associated real-valued
compatibility functiony; (X 4(;)) that operates on all the neighbors. Similar to the othertgcapmodels we
can easily write the joint distribution over all variablEsusing the graphical model structure as follows,

p(X) = % 1T viXaw). (3.25)
icF
where 7 is the partition function or the normalizing constant. I ttases where potential functiomns
are proper probability distributions, such explicit nofization is unnecessary. In general, these potential
functions can be interpreted as local compatibility or ¢aists between random variables. It is worth
mentioning that typically they do not correspond to the rivai$; (X 4;)) # p(Xa@))-

Factor graphs are able to represent a richer set of grapiiedéls, and most directed and undirected
graphical models can be written in the factor graph form wgyithee particular choice of potential functions.
For example, Markov random fields can always be representedéctor graph with one function node per
cligue in MRF @.k.a. clique hypergraph

3.4 Parameter Estimation

Given a known graphical model structue= {)V, £} in most cases one must learn the parameters of the
model denoted bg. Bellow we discuss the two most popular algorithms for ddinig: Maximum Likelihood
Estimation (MLE) and Expectation-Maximization (EM).

3.4.1 Maximum Likelihood

Maximum likelihood estimatiofMLE) is an approach for deriving estimates for paramefershe key idea
in MLE is that the true estimate of the parametérss the one that makes the observed data under the model
most likely. In other words, assuming that we have the righdleh, we should choose the parameters in such
a way as to maximize our chance of producing the data thatmeady observed.

Assuming that we have a likelihood functi@{¢) = p(D|6), we would like maximize the probability
of the set of observatio® = {x1, xo, ..., 2} drawn fromp(X]6). Notice that unlike in inference, where
we assume that parameter vecdtas fixed andX is a variable or a set of variables, here we are assuming
the opposite. In particular, we fix our observations andcteéor parameterg that best account for these
observations. To this end, the maximum likelihood estim&ipé can be defined as follows:

Onr = argm{;&xﬁ(@) = arg mgxxp(DW) = argm;xxp(xl, Z2, ..., N|0) (3.26)

In order to solve the equation above, we need to differanttet likelihood function with respect to the
parameter vectof. Since often this likelihood function is in the exponentehily, it is useful to first take
the log of the likelihood function, resulting in the equieat but more convienient form of,

Onr = argmeaxlnﬁ(ﬁ) = argm;xxlnp(@h?) = argmgxxlnp(xl, T2, ..., TN|O). (3.27)

MLE has a number of nice asymptotic properties. For exaniplene assumes that observations are
independent and identically distributed (drawn with repltaent from the target joint distribution), then it
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can be shown that MLE estimatorasymptotically optimalln other words, as the number of observations
N — oo, the bias of MLE estimator tends €gresulting in an unbiased estimator with lowest possiblaime
squared error.

Maximum Likelihood for Multivariate Gaussian Distributio n

MLE is often useful for estimating parameters of a pararoatistribution. For example, in this section we
will use MLE to estimate parameters of the distribution dedion a random variabl¥, that is assumed to
be distributed according to the multivariatelimensional Normald.k.a. Gaussian) distributioq(X|0) =

N (X|u, X). Given the form of the normal distribution,

PXI0) = (X1, %) = G5 o (5 (X - TS X =), (3.28)

we can write the expression for the ML estimator for the mgabased oV i.i.d. observation$x1, xo, ..., x5}
(wherez; ~ p(X|0)) as follows,

bvmr = argm&xlnp(xl,x% e TN, X) = (3.29)
al 1 1
= arg mﬁxlng AR P (_5(@ —w)TS ;- M)) = (3.30)
Mo 1
= argmﬁxx; -3 In [(2m)?[5]] - 5(%‘ —w)"E (@i - p) (3.31)

now by taking the partial derivative with respecit@nd setting it equal to,

N
5 > L [En) - S-S - = 0 (3.32)
N
Y u M wi—p)= 0 (3.33)
- (3.34)
we can derive the following estimator for
1 N
fvr = 5— ; i, (3.35)
which corresponds to a sample mean. A similar exercise faaréance Y, would give us,
. 1 X
SML = N1 Z(xi — finrn) " (i — finr).- (3.36)

=1
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(@ (b)

Figure 3.8:Gaussian Mixture Model lllustration. GMM model consisting of the three weighted Gaussian
componentsd) is illustrated in b). The weight of components is associated with the line widt{a).
Both red and blue components have a weight,Qf; = .. = 0.4 and magenta component weight of
5magenta =0.2.

3.4.2 Expectation-Maximization

When some of the variables in a graph cannot be directly ubdéare hidden), doing ML estimation is often
computationally very challenging since one needs to mafigi@ over all possible values of hidden variables,

O = arg mgxxlnﬁ(ﬁ) = arg max In lz p(X, Y|9)] , (3.37)
X

denoted byX. In most cases the resulting marginal likelihood distritL (#) has a complex form leading to
complicated expressions for the ML estimation. In suchs#seexpectation-maximizatiofEM) algorithm
[48] is often used to obtain a local ML estimate [21, 48, 15B].general, EM is guaranteed to converge
to a local maximum (or saddle point) of the observed datdiliked function. EM could be thought of as
a coordinate assent on the likelihood function. Since tkelihood function is in general non-convex and
contains many local maxima, the result of the EM often depandgood starting values. In practice, EM is
often run a number of times(k.a.random restarts) with different initial conditions to agpat least in part,
convergence to local maxima.

EM is an iterative procedure that alternates between paifayan expectatiorH) step, which computes
an expectation of the likelihood by including the hiddeniahles as if they were observed, and a maximiza-
tion (M) step, which computes the ML estimate of the parameters bymizing the expected likelihood
found in the E step. In particular the general EM algorithm ba outlined as follows,

E step: Complete expected value for the latent variables usingepiostZ (X|Y, 6(%)), as-
suming that an estimate for the parametéf’s),, from the previous iteration is given.

M step: Estimate the new value for the paramet@¥s™!) using the following equation,

O+ — arg max > L(X]Y,0%)) In£(X,Y, 0%+, (3.38)

9(k+1)

To bootstrap the algorithm above, an initial value for theapzeterg9(®) must be chosen (often at random).
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Figure 3.9:Graphical Models for Gaussian and Gaussian Mixture Model. In (a) graphical models for
the Gaussian and Gaussian Mixture Model (GMM) are shown er{l#it) and (right) respectively. b}

a graphical representation of a Gaussian and GMM for a sét of.d. samplesz; is shown. In the case
of GMM (right) corresponding latent cluster labelsare also shown. Inb) we also introduce a neplate
notation [32], denoted by the box with a lab®l. Using plates,V instances of the content in the box are
represented compactly by the notation shown. Lastlg)ial{ the parameters of the two models are explicitly
shown, instead of a parameter vector Notice that models depicted im)(are useful for inference, and
models in p) and €) for parameter estimation.

The algorithm above iterates until convergeriae (¢ +1) ~ 9(%),

Expectation-Maximization for Gaussian Mixture Model

A Gaussian or other unimodal distributions in the exporadfeimily are often too restrictive to model realistic
multi-modal data; a&aussian Mixturds a convienient distribution for modeling such casesGaussian
Mixture is the model with)M/ mixture components, as is shown in Figure 3.8, each of whidhémselves
are Gaussian. It is worth noting that Gaussian Mixture ispaot of the exponential family of distributions
introduced in Section 3.1.1. Nevertheless Gaussian nextas a number of convienient propertitfsat are
inherited from the Gaussian components. The model can lieewas follows,

p(X|0) = > p(X|Z,0)p(Z), (3.39)
zZ

whereZ is a multinomial hidden indicator variable that tells whinixture component generated the observa-
tion X. For a given value of the indicatpfZ = m), the observation has a normal distributi®if,,, >.,),
m e M.

Alternatively this model can be written in the following far

M
p(X[6) = Y 5N (Xlptin: S, (3.40)
m=1
wheref = {1, %1, 01, ., far, 21, 00r } andZﬁf:l O = Zﬂ]\f:lp(z = m) = 1. Intuitively, the model
tells us that the data is generated by first sampling p(Z) and then givery; sampling from the respective
Normal mixture component. Since clearly we cannot obsepand are only able to observe the final ~

2Similar to the Gaussian, a product of Gaussian Mixtures is@if a Gaussian Mixture. Also, the conditional distribatof two or
more variables that jointly have a Gaussian Mixture fornalé® a Gaussian Mixture.
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Input: number of mixture componentd/, assumed in the model
N i.i.d. observationgz1, 22, ...x x} drawn fromp(X)
initial estimates for paramete#&) = {6\” ... 601, whereg) = {u\2), 2V 59},
me[l,.. M] (typically obtained usingdy - means)

Output:  estimates for parametefis= {01, ..., 0rr }, whereb,,, = {m, X, Om }

E step: Complete expected value for the latent variabfes, 2o, ..., zx} using posterior
p(Z|X,6)), assuming that an estimate for the paramet&fs, from the previous iteration
is given:

p(xn|zn = m, Gm)p(zn = m)

p(zn = m|Tp, 0n) = M

, (3.41)
Zi:() p(xn|zn - i, ol)p(zn - Z)

wheren € [1, ..., NJ.
M step: Estimate the new value for the paramei#fs™!) using the following equations,

6 +1) — arg max Zp (Z|X, 0% In p(X|Z, 6F+1), (3.42)

o(k+1)

which translates to the following set of equations for indial parameters:

N
1
olk+1) — N Zp(zn =m) (3.43)
n=1
N
M$7]§+1) Zn:l p(Z" — m)x" (344)

ij:l p(zn = m)
W) (@, — i tNT

N
n(k+1) _ anl plen = m)(zy — p
m - N
Zn:l p(Zn - m)

Loop: Repeat above for a fixed number of iteratiofs,or until0*+1) ~ (%) (up to some
chosen precisior), then letd = #(5+1),

(3.45)

Algorithm 1 : Expectation-Maximization for Gaussian Mixture Model. Iterative algorithm for obtaining
estimates for the parameters of the Gaussian Mixture M@alelN]).

p(X|Z = z;, 0), doing direct Maximum Likelihood estimation of the paraerstbecomes very complicated.
Using EM, however, parameters can easily be derived usmgehative approach described in Algorithm 1.

3.4.3 Parameter Estimation with Hyperpriors

So far we have made an explicit distinction between paramefehe model and the variables associated with
the model (see Figure 3.18)f. However, there is nothing special about the parametetsve can treat them
as latent random variables themselves (see Figure B)1010, 137]. In a Bayesian sense, the parameters
can be reinterpreted as variables and have priors impostttonmuch like the variables themselves do (see
Figure 3.10€)). These priors are often calléyperpriors This was already alluded to in Section 3.2.3. For
example, in the case of Gaussian Mixtures it is often corneigrio impose a symmetric Dirichlet prior with
concentration parameter/M on the mixture weights,
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(a)N @/’(b) KF\@ @/I(C) KF\@

Figure 3.10:Gaussian Mixture Model with Hyperpriors. Graphical model representation foyri.i.d. sam-
ples drawn from the Gaussian Mixture Model (GMM) is showndh (n (b) the same model is shown where
the parameters of the model are treated as variables thesaseh which &yperpriorwith hyperparameters
« is imposed in €).

. ['(a) M a/2—1
p(01, 62, ..., 0prle) ~ Dir(a/M, ...,a/M) = Fla/AN I oo/ (3.46)
m=1

By letting M — oo we get an infinite model that allows inference over the nurobarixtures in addition
to the parameters of the mixtures themselves. In fact, ilBtheesian sense the parameters are just nuisance
variables that should be integrated out. For details on #igeafi hyperpriors in graphical models we refer
reader to [107].

3.5 Inference

Given a graphical model encoded by the grgpk {V, £} and a set of known (or estimated) parameters
typically one is interested in inferring the posterior distition p(X|Y, 8) from the jointp(X, Y|0) distri-
bution encoded by the model, wheXeis the set of hidden or latent variables a¥ids the set of observed
variables. Sometimes, we are only interested in a subseartdblesX; C X, in which case only the
marginals

(X)) = / pXIY.0)dX\ Xy or  p(Xe)= 3 p(X|Y.6) (3.47)
X\X s X\Xv

(depending on whether the variables are continues or dé&aee needed.

In fact in most situations computing the full postendX|Y, 6) is prohibitively expensive, and marginals
are computed and used as a summary of the posterior instgpidally it suffices to estimate the marginals
for all or some subset of variables. For example, given & pistributionp(X) = p(X;, Xa, X3, X4, X5)
encoded in directed graphical model illustrated in Figu& 8omputep(X;). Alternatively, we may want
to compute all marginalg(X;), 7 € [1, ..., 5]. Using the marginals we can also easily compute conditional
distributions of the formy(Xy | X \ Xy, Y, 8), whereXy; is as before subset of variable that are of interest,
andX \ Xy are all hidden variables excluding thoseXp.
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In this section we will discuss some approaches for doingrerfce in various graphical models intro-
duced thus far. In particular, we will discuss the Eliminatalgorithm and the Belief Propagation (specifi-
cally the sum-product) algorithm. For additional inforimaton other popular approaches to inference that
are not covered in the thesis.§. junction-tree algorithm [26, 105, 246], mean field [68, 25riational
inference [109, 238]) we refer reader to the literature.

3.5.1 Variable Elimination

Let us consider the directed graph in Figure 3.2, that hapthedistribution

p(X) = p(Xy, X2, X3, Xy, X5) = p(Xs5|X3)p(Xa]| X2, X3)p(X3|X1)p(Xa|X1)p(X1). (3.48)

Let us further assume that all variables in the gr&phi € [1, 5] are discrete witl. possible states, and
we want to compute the marginalX;, Xo, X3, X4) = > p(Xy, Xa, X3, X4, X5). Doing this explicitly
X

will results in the computation time that has complexitysmpntial in the number of variables in the joint
distribution,O(L®). However, by taking advantage of conditional independegmogerties encoded by the
graph structure and distributing the sum by moving it allvifzsy in,

p(X1, X, X3, X4) = p(Xu|Xa, Xs)p(Xs|X1)p(X2|X1)p(X1) Y p(X5[Xs), (3.49)
X5

we get an algorithm that has complexity that is quadratibé@rtumber of discrete stat&3(L?). TheVariable
Elimination(VE) algorithm [47, 258] does precisely this by rearrangieigns of the product making up the
joint distribution and moving the summations as far as gesnward. It is also convienient to introduce
variablesn;(Xg, ), whereS; C V corresponds to variables that appear in the sum but are mgf femmed
over. These intermediate variables are caffezbsaged-or example, if we want to compute margip@X, )
for the same graph in Figure 3.2:

p(X) = D Y YD p(Xy,Xs, X5, Xy, X5)

X2 X3 X4 X5

= D) DD p(Xs[Xa)p(Xa X, Xa)p(Xs|X1)p(X2|X1)p(X1)

X2 X3 X4 X5

DD p(XalXo, Xa)p(Xs] Xa)p(Xe [ X1)p(X1) ) p(Xs[Xs)

X2 X3 X4 XS

ms (X'g)

= > D) p(XalXo, Xa)p(Xs [ X1)p(X2 [ X1)p(Xi)ms(Xs)

X2 X3 X4

= D> p(Xs|X1)p(Xa|X1)p(Xi)ms(Xs) Y p(Xa|Xa, Xs)
X2 X3 X4

my(X2,X3)

= D) p(Xs|Xa)p(Xa|X1)p(X1)ms (Xa)ma(Xz, Xs)
X2 X3
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= > p(Xs|X)p(X1)ms(Xa) Y ma(Xa, Xa)p(Xa|X1)
X3 X2

ma(X1,X3)

= Z p(Xs|X1)p(Xy1)ms (Xsz)ma(Xq, X3)
X3

= p(X1) ) ms(Xa)ma(X, Xs)p(Xs|X1)
X3

m3 (Xl)

= p(Xi)ms(X1).

Notice that the complexity of the algorithm is governed bg thaximum message size. The algorithm
described above is calldériable Eliminationin essence, because it eliminates one variable at the tone f
the graph, until the graph corresponding to the marginafts Notice that while the order of the elimination
is not uniqué there is an overall flow that can be established in that werfitsgt eliminate children nodes
(nodes that have no outgoing edges), then their parentsoaonl s

Notice that a similar elimination procedure can be donjf : € [1,...,5] are continuous and not
discrete, in which case the sums in the above formulatiorbeiteplaced by the integrals over the continuous
random variables. For example,

p(X1) = ////p<X1,X2,X3,X4,X5> dX, dXs dX, dXs
X2 X3 Xy X5

/ / / /p(X5|X3)p(X4|X2, X3)p(X3]|X1)p(Xe|X1)p(Xy) dX2 dX3 dXy dXs.
X2 X3 X4 X5

Computing marginals in the graph where variables are batrelie and continuous would involve integrating
and summing over the respective variables. So far we hawecomisidered directed graphical models, but
the Elimination algorithm works for undirected graphs adl Wea similar manner. Consider computing the
the marginap(X5) for the graph illustrated in Figure 3.6. Similar to above,

p(X2) = D Y YD p(Xy,Xs, X3, Xy, X5)

X1 X3 X4 Xj

33N %11)123(?(1, X, X3)th234(X2, X3, X4)135(X3, X5)

X1 X3 X4 Xj

= Y>3 %1/)123(}(1, X, X3)th234(Xa, X3, X4) > 035(X5, X5)
X5

X1 X3 X4

ms (X'g)

= %1/)123(}(1, X, X3)h234(Xo2, X3, X4)ms5(X3)

X1 X3 X4

3In the example discussel, can be done befor®., or the Y before’”, without effecting the complexity.
Xy X5 Xa X3
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= Z Z %7/)123(}(1, X, X3)ms(Xs3) Z Po34(Xa, X3, X4)

X, X X4
ma(X2,X3)
1
= ZZ27/’123(}(1,X2aX3)m5(X3)m4(X2’X3)
X1 X3
= Z lm5(X3)m4(X2 Xg)zwu?,(xl X2, X3)
7 5 ) )
X3 Xl
m1(X2,X3)
1
= ZEm5(X3)m4(X2,Xg)ml(X2,X3)
X3
1
— ZZm5(xg)m4(x2,Xg)ml(Xa,Xs)
X3
mg(Xg)
= L x)
= ng 2)-

The key observation with undirected variant is that the radizing constant/Z, can be factored out in all
but the last step. This significantly simplifies computatibr¥, that is typically unknown. By delaying the

computation ofZ to the very end, we can compute it by summing over a singlabe?Z = > m3(Xs);
X2
computing it beforehand would result in summation over atiables.

One shortcoming of the Elimination algorithm is that whilesiefficient for computing single marginals,
it is inefficient for computing marginals over all the vardie® The reason for this is that it requires re-
computation of the sums (or messages) for every marginalieder, it is easy to see that these messages will
always be the same (though for an individual marginal notrelssages mey be required to be computed).
Reusing these messages is essential in tractable conguutdtan arbitrary set of marginals. This is the
premise behind the Belief Propagation algorithm outlimethe next section.

3.5.2 Belief Propagation

Belief Propagation{BP) is a popular inference algorithm for computing mar{gred functions on undirected
graphical models. BP is an instance of the more general sodupt algorithm that operates on factor
graphs [119]. It can be proved that BP is guaranteed to cgavier the exact marginals on tree-structured
graphs [108]. In graphs that contain cycles BP, often in ¢taise referred to asoopy Belief Propagation
(LBP), can lead to a tractable approximation to the margirfekact inference is NP-hard [43]). LBP is
not guaranteed to converge, however, and in case of comagsill only converge to a fixed point (not
necessarily corresponding to a true marginal). It can be/stibat the fixed point of LBP is equivalent to the
stationary point of the Bethe approximation of the free gn¢255], hence LBP will always lead to a lower
energy state. In practice, LBP is widely used and has extetimpirical performance in many applications
[221]. Most BP algorithms in the literature have concemgain the models where variables corresponding
to the nodes in the graph are discrete, however recentiynpts have been made in proposing approximate
inference algorithms that can deal with continuous-steaplgs of arbitrary topology [99, 220]. Table 3.1
outlines the various flavors of Belief Propagation algarish the details of which will be discussed in the
following sections.
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Discrete-state Continues-state
Gaussian (GBP) | Non-Gaussian (NBP)
Tree [ Loopy Graph (LBP) Tree | Loopy Graph | Tree [ Coopy Graph
Joint,p(X) = 20 pneay X XoTlien, . v $:(Xe)
Messagem (X ) = ZIx, Yi (X X)) e (X) TMrea)y mhi X)) | = % Jx, Yig (Ki X0 (X0) Mre (i) ™hi (Xi) dX;
Marginal,b(X;) = LX) e an) mri(Xi)
Estimated Marginals (X ;) exact approximate exact exact approximate | approximate
Representation of: (X;) exact exact exact exact approximate| approximate
Complexity O(NL?)/O(NL) O(NLY) O(N) O(NDM?)
N —Number of nodesin a graph
L — Number of discrete states
C - Size of the largestlique, defined as the largest set of fully connected nodes, in thgrgr
D - Largesidegreedefined as the number of edges incident on the node, of thein@dgraph.
M - Number of components required to represent the message.

Table 3.1:Inference using Belief PropagationSummary of the known BP algorithm variants with complex-
ity and known theoretical limitations. We will use the contous-state Non-parametric Belief Propagation
(NBP) approach of [99] on loopy-graphs designated in botdt f&rther description, including description of
equations, please see text.

Discrete Belief Propagation

Belief propagation can, in general, be introduced in theedrof the pair-wise MRF formulation [253]

of Section 3.3.2. Consider a set of lateatkia. hidden) variable nodeX = {X;,Xa,...,Xy} and a
corresponding set of observed nods= {Y1, Yo, ..., Yn}. Please note thdtto-1 correspondence of the
latent and observation nodes is simply for notational coiarece and is not required by the framework or
inference algorithm. The conditional independence of éitenit variables is expressed by a neighborhood set
A. A pair of node indicegi, j) € A if the nodeX; is not conditionally independent &€, given all other
nodes in the graph. For notational simplicity we will definiiaction A(:) that will return all neighbors of.
More formallyj € A(i) < (i,j) € A. WhenX,; are discrete random variables, we can assume, without
loss of generality, that they can take on some valyes [1,2, ..., L]. The observation and hidden nodes
are related by the real-valued observation (or likelihofuaiction ¢;(X;,Y;) = ¢:(Y;|X:) = ¢:(X,);
connected hidden nodes by a potential (or correlation)tfanay;;(X;,X;). The joint probability over

X ={Xj, Xy, ..., X5} can then be written as:

p(X) = % I vsxx) [ @(Xo), (3.50)
(i,J)€A i€[1,...,N]
whereZ is a normalizing constant that ensures &) integrates td.

A brute force inference algorithm that simply enumeratépassible states foK and evaluatep(X),
would lead taO (L") run-time (as was already discussed in Section 3.5.1), whiictieasible even for smalll
values of L and N. BP that exploits the conditional independence structtithe graphical model would
lead to a solution, that allows computation of arbitrary-sebof marginals, irfO(N L"), whereC' < N.
The BP algorithm operates in two stage$) i introduces auxiliary random variables;;(X;) that can be
intuitively understood amessageffom hidden nodé to node;j about what state nodeshould be in, and
(2) computes the approximation to the marginal distributibXg (often refereed to as the belief). Messages
are computed iteratively using the equation below

mij(Xj)O(Zwij(xiaxj)‘bi(xi) H myi (Xi), (3.51)
X

keA(i)\J
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Message Passing Belief Estimation

O
!
O——C0O
d
O

mij (X;) o< Pox, ¥ii (Xi, X5)0i(Xa) [T aaj mei(Xi) bi(Xi) o< ¢i(Xi) [Treaciy mwi(Xe)

Figure 3.11: Belief Propagation On the left a new outgoing message, in red, is computed faal |
image evidence and incoming messages from neighboringhizdelue. On the right approximate marginal
densities are determined from the normalized product ofdb& observations with messages sent from all
neighboring nodes.

and beliefs, where required, are given by

bi(Xi) oc ¢i(Xa) [ mwi(Xi). (3.52)
kEA(:)

It should be noted that in the case of tree structured gragatisrmessage is only needs to be sent/computed
once. The algorithm will first send messages from all leafasow the vertices adjacent to the respective
leafs and then will continue sending messages up to the nabtteen back down towards the leafs until all
messages have been sent exactly once. In this case of thiéddsee-structured graphs, BP sometimes is
also refereed to as the Veterbi algorithm [234] or forwaadkward algorithm. Consequently, in the case of
the loopy graphs the algorithm needs to iterate and send pletarset of messages a number of times. In
the case of the loopy graph the order in which messages sheuddnt is not explicitly defined by the graph,
hence a schedule according to which messages should beasaiotthe defined.

The complexity of the proposed discrete BP algorithm{gv L?) for tree structured models ag{ N L)
for loopy graphs, wheré/ is the number of nodes in the grapha fixed number of discrete states e&h
can assume, and is the size of the maximal clique in the graph. Hence, it iyydrdctable with relatively
few statesL. Recently, it has been shown [59] that for tree structuredetsowith a particular restrictive
choice ofy;;(X;, X;) = N(X; — X;|uij, Xij;) the inference can be done@(NL). This allows tractable
inference in models that contain on the ordet ofillion states.

Discrete Belief Propagation for Articulated Pose Inferene

One application of discrete pair-wise MRFs and BP that isally related to this thesis, was introduced by
Felzenszwallet al.in [59] and later extended in [121, 122]. The key idea in thesghods is to model an
articulated structure (a person) in 2D using a discretetgcap model and formulate the articulated pose
estimation as inference in this graphical model, compugidgBP. In this graphical model each noden
the graph corresponds to the body part and the correspod@ogete random variabl&;, to the pose of
this body part in the image space. The edges in the graph ericedinematic and joint constraints, ensuring
that the parts are loosely connected. The pose for eachspancbded using a state vectoiR?, allowing

to account forz- andy- positions, scale, and rotation of the part in the image 58) [L22] the state of each
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variable in the grapiX,, was discretized tG0 x- andy- positions,10 scales and2 rotations, leading to

a total of 70 x 70 x 10 x 32 = 1,568,000 possible discrete states for each varialle Even with such
relatively coarse discretization, that can lead to as muschrgixel and5.6-degree quantization error for a
typical 640 x 480 image, inference using BP in a graph of general topology wittonstrained choice for the
potentials is impractical (see Table 3.1). To ensure tHatémce is computationally tractable, tree-structure
for the graphical model was assumed [59]. This leads, inrgén® quadratic inference complexity in the
number of states. However, with such a large state spacetkeigis impractical. The restrictive choice of
the potential functions [59});,(X;, X;) = NM(X; — X;; 5, X4;), however, led to tractable linear inference
inO(NL).

In this thesis we consider a more general case of this moglehdaleling the body using a richer con-
tinuous state graphical model. Notice, that in the case ®f3ih pose (being addressed in this thesis) dis-
cretization of the stat&X; € RS, similar to the one introduced in [59], would lead401.721 x 10'3 states
rendering even linear complexity discrete BP methods détatde. Furthermore, the imposed tree structure
requirement of [59, 122] does not allow models that incoapg®natural constraints such as those related to
inter-penetrations or occlusions. Incorporating suchstaimts would lead to loops in the graphical model
structure. The benefit of these richer constraints will lsea$sed in detail in Chapters 5 and 6. The required
choice ofy;;(X;, X;) is also too restrictive to model realistic statistical tielaships between variables. For
example, joint limits are hard to model using these simplagsin distributions. In this thesis we introduce
aricher class of models that are able to address these.issues

Continuous Belief Propagation

WhenX;’s are continuous random variables as is true for our casegduation for the message (Eq. 3.51)
must be rewritten as follows,

mi;(X;) o< /wij (X Xy)0:(Xa) [T mwa(Xs) dX, (3.53)
X; keA(i)\Jj
by replacing the sum with an integral ovKr,. Note that the joint distributiop(X) and beliefb(X;) in the
continuous case can be written identically to discreteiwarabove (see Eq. 3.50 and Eg. 3.52 respectively).
If ¢;;(X;,X;) and¢;(X;) are both Gaussian then the marginal distribution at eacle i®édlso Gaussian
(regardless of the graph topology) and the integration eapdformed exactly [244]. However, this case is
restrictive and uncommon. In most vision problems both itkelihoods and potentials are multi-modal and
non-Gaussian. For simplicity and without loss of geneydit us assume that we can mode}(X;, X;) and
¢:(X;) in such cases using a Gaussian mixture model. It can therolaeghat the representation required to
represent the messages and the marginals in this case gqopoveeatially (and in the case of the loopy-graphs
without bound [117]) and has to be approximated to produaadble inference algorithms. This gives rise
to what are calledNon-parametric Belief PropagatiofNBP) algorithms that tend to approximate messages
using fixed-length kernel densities and integrals by Mddéelo integration. We will describe the extention
to the variant of NBP first introduced in [99], called Paridflessage PassingANIPAS), in Section 3.7.
However, to do so, we must first introduce the class of MontdéoGaethods.
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3.6 Monte Carlo Methods

In many cases inference and learning approaches introdncetctions 3.5.1 and 3.5.2 are intractable, es-
pecially in the cases of continuous variables, and compleltismodal distributions.Monte Carlo(MC)
methods [138, 175], introduced as early as 1949 by Metrepoid Ulam [141], provide a numeric ap-
proximation to these tasks by using samples of densitigsadsof densities themselves. In principle MC
approximations can be shown to lead to exact solutions asuh@er of samplesv — oo. In practice,
computational resources often require inference usindgéivrely small number of samples, in which cases
the success of the MC method depends on the efficency of tignéelssampling scheme.

The key observation, is that many inference tasks over coatis variables can be expressed as the
expectation of some appropriately chosen funci¢K), E[f(X)], such that

= / F(X)p(X) dX (3.54)
X
wherep(X), X € R, is the target density we are trying to approximate. If weraginatep(X) using N
independent weighted samples™  w(™|n € [1, ..., N]},where they""_ w(™) = 1, then we can write
N
= / FX)p(X) dX ~ > " w™ f(s™). (3.55)
X n=1

3.6.1 Importance Sampling

The basic MC approximation assumes that we can sample frematget distributions(™) ~ p(X), in
which cases™ = 1/N. In most cases, in particular in most vision applicatiohis is typically intractable.
Importance samplin§214] can be used in such cases to facilitate the inferemcpaitticular, let us assume
we have groposaldistributiong(X) that is easy to sample. The expectation can then be re-wage

50 (5
Zw(’”f ) Z (m 1 7(2(71()) ) (3.56)

n=1

wheres(™ ~ ¢(X). The equation simplifies to

@™ f(50) (3.57)

an

if we let

B = L <n>pgsizi§, Z = Z W’(; . (3.58)

Hence, importance sampling estimates the target expectaith a collection of weighted samples from
the proposal densitys™), (™) |n € [1,..., N]}. The choice of the importance functigiX) will dictate
the effectiveness of the proposed approximation. Desgygood proposal functions is critical for tractable
inference. Building good proposal functions, however,dedth particularly in high-dimensional state spaces.
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(b)

(©) (d)

Figure 3.12:Kernel density bandwidth estimation. The effect of bandwidth in Kernel Density Estimation
(KDE) is illustrated. The target distribution and KDE apyiroation based on the sam®0 Gaussian ker-
nels are shown in (black) and (magenta) respectively. Theblandwidth &) leads to erratic peaks in the
approximated density; high bandwidtt) (leads to over-smoothing. Appropriate bandwidth leadsadodg
approximation of the density]. Therule-of-thumbbandwidth estimate is shown in)(

3.6.2 Kernel Density Estimation

Monte Carlo methods give a tractable solution to computiregeixpectations, but do not provide a sensible
way of estimating the target densjiyX). In particular in MC methods, the target density is appratied
using a weighted mixture of Dirac delta functions,

N N
p(X) =Y w60 —x) S w® =1, (3.59)
1=1 1=1

In some cases a continuous estimate of the target densitiyllweprefered. One way this can be achieved
is by fitting a parametric density function to the samplesyér, this requires knowledge of the structure of
the underlying density function. Furthermore, the numbieiamples is often too few to robustly fit complex
parametric densities. One alternative, is to use nonpdrenuensity estimation methods [94, 202], that
smooth the raw sample set withkarnelfunction of choice. This intuitively places more probatyilmass
in the regions that contain many particles with high weightfrequent choice for a kernel function is a
Gaussian. Given a Gaussian kerneKernel Density EstimatéKDE) of the target density(X) can be
written as a Gaussian Mixture,

N N
p(X) = Zw(i).j\/(xb(i)’ @) Zw(i) =1. (3.60)
i=1

=1

with bandwidth(in this case corresponding to covariance matti¥). The results of the KDE estimation can
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Kernel Function Rule-of-thumb
Bandwidth Estimator
Gaussian K(u) = \/%—ﬂexp (—1u?) A =1.060N—1/°
Uniform K(u) = 3I(ju| < 1) A =184cN"1/5
Epanechnikov | K(u) = 2(1 —u?)I(|u| < 1) A =2350N"1/°
Quartic Ku) =201 —u?)I(Ju] <1) A =278 N"1/°

Table 3.2:Kernel density estimators.Kernel function for various kernel estimators are listédng with the
correspondingule-of-thumbestimators for bandwidth. N in the above equations is the number of samples
in the kernel density estimate, ands the standard deviation of the samples (similar formuseshe derived
for multivariate kernel estimators).

be seen if Figures 3.13 and 3.14. The quality of the kernghest depends on the bandwidth parameter, that
must be estimated based on the density of samples. Infyithitee samples are dense, not much smoothing
is need to get a smooth and continuous estimate for the tdegsity. If the samples are sparse, however,
then small bandwidth would lead to erratic peaks and henamatd bandwidth is prefered. This is illustrated
in Figure 3.12. Typically a single bandwidth is selecteddhthe kernelsj.e. (V) = A, Vi € [1,..., N].
However, variable bandwidth methods exist, that estiméferdnt bandwidth for different portions of the
space based on the local (instead of global) density of sesjgl].

The extensive body of literature exists on automatic badtiwéelection [41, 94, 186, 202]. One of the
simplest methods is Silverman’s [202]le-of-thumbbandwidth estimator, that combines covariance estima-
tion with an asymptotic formula; derived assuming Gaus&am for the target density. Similar formula can
be computed for other choices of a kernel function. While+of-thumb gives a convienient simple form for
the bandwidth estimation, it often oversmoothes the tadggtibution, particularly in the cases where it is
multi-modal.

While we only introduced a Gaussian kernel thus far, othendds can be used and may be appropriate
depending on the form of target density. In particular, themulation in Eg. 3.60 can be generalized as
follows,

= g (X =
p(X) = Zw K ( 510 ) (3.61)
1=1

whereK is the kernel function anil*) is as before a bandwidth parameter. Various popular chéicele
kernel function and the rule-of-thumb estimates for the wmm bandwidth\, ©( = A, Vi € [1,..., N],are
given in Table 3.2.

3.6.3 Markov Chain Monte Carlo

When a target density(X) is complex and high-dimensional, often obtaining an imaace functiony(X)
that is both close to the target density (for efficency) aray ¢a sample from (for computational tractability)
is hard. To address thisjarkov Chain Monte CarlgMCMC) methods provide an alternative solution that
allows one to draw approximate samples from the target deegplicitly. The idea in all MCMC methods is
to construct a Markov Chain (previously discussed in Sacdi@.1) that has the same stationary distribution
as the desired densipyX). The samples can then be drawn from the density by simuléti@dviarkov
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Target Density Monte Carlo Approximation KDE Approximatio n

(@) (b) (©

Figure 3.13:Non-parametric representation of distribution (coarse). Monte Carlo approximation of the
one-dimensional target distributigiX) (a) is shown usingV = 10 weighted samples. Left column shows
the target distribution being approximated, same in alesadn @) different importance/proposal distri-
butionsq(X) (blue) and sample-based approximation of the target dehaged onl0 weighted samples
drawn from these importance distribution (red) are showhe feight of the line representing the sample
corresponds to the normalized importance weightcjrcéntinuous approximation to the target distribution
(magenta) obtained by Kernel Density Estimation (KDE) isveh. KDE places a Gaussian kernel (red) at
every sample location obtained ib)( The bandwidth for the kernels was selected usimgle-of-thumb
criterion. Rows of the figure illustrate the effects of difat importance function. Top row shows the opti-
mal importance function(X) = p(X), middle row agoodimportance functiog(X) ~ p(X), and bottom
row a poor importance function. Clearly the quality of appneation is effected by how well the impor-
tance function matches target distribution. Also notia thle-of-thumbestimate for the bandwidth tends to
oversmooth the KDE approximation.
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Figure 3.14:Non-parametric representation of distribution (fine). Monte Carlo approximation of the one-
dimensional target distribution(X) (a) is shown usingV = 100 weighted samples. Left column shows
the target distribution being approximated, same in alesadn @) different importance/proposal distri-
butionsq(X) (blue) and sample-based approximation of the target debagted onl00 weighted samples
drawn from these importance distribution (red) are showhe feight of the line representing the sample
corresponds to the normalized importance weightcjrcéntinuous approximation to the target distribution
(magenta) obtained by Kernel Density Estimation (KDE) ieveh. KDE places a Gaussian kernel (red) at
every sample location obtained in)( The bandwidth for the kernels was selected usingexof-thumlcri-
terion. Rows of the figure illustrate the effects of diffearanportance function. Top row shows the optimal
importance function(X) = p(X), middle row agoodimportance function(X) = p(X), and bottom row a
poor importance function. Notice that the quality of appneation with 100 samples is considerably better,
than with10 (see Figure 3.13), in all cases. In fact, a poor choice of itif@ortance function (bottom) to
some extent here is remedied by the relatively large numbsamples. ASN — oo, the approximation
approaches the true target distribution regardless oftibé&e of the importance function (so long as it is
defined on the same domain).
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Input: target density(X), that cannot be sampled directly
symmetric proposal distributiaf{a|b) = ¢(bla)
Output:  sampler ~ p(X).

1. Start with some initial value, such thap(xzo) > 0.
2. Foreach of =0, ..., T iterations,

(a) Sample next candidate statérom proposal distributiorr ~ ¢(-|x;) defined above.
(b) Compute acceptance probability

a = min (5((3 : 1) . (3.62)

Notice that since we are computing a ratio, the normalizmgstant” cancels, making
this convienient for cases where partition function carfoetomputed explicitly.

(c) Accept the candidate proposal with probabitityln other words draw a random samp|e
from uniform distributiony ~ 24(0, 1), and let

Topt = { rorsa (3.63)

x; otherwise

3. Letx = 7.

Algorithm 2 : Metropolis Sampler.

Chain for a number of steps. It can be shown that asymptbtittaé samples obtained in this way are

unbiased samples from the target density. While finding sudiain sounds hard, it is easy to do in practice.
Simulating the chain is also relatively simple, though ityniake a significant amount of time to converge

to the desired distribution. We will now describe a few mekhéor constructing and simulating the Markov

Chains that have these desired properties.

Metropolis-Hastings Sampler

Let us assume we want to sample from the target depKy where sampling directly from(X) is imprac-
tical (usually because partition functiosmk.a.normalizing constant? is hard to compute). Let us further
assume that we havepgoposal distributior(a.k.a.jumping distribution);(a|b) that given a current estimate
for the sampleb, defined on the domain & proposes an alternative, This can be non-informative distri-
bution .g.random walk), the only constraint is that this distributionst be symmetria,e. ¢(a|b) = ¢(b]a).
The Metropolis algorithm [141] generates a sample from aéingett distribution by running Algorithm 2.

It is easy to see that the outlined algorithm generates a da@hain with state§xg, 1, ..., 27} since
the state at time, =, only depends on the statefat- 1. After a sufficiently long generation process this
Markov Chain approaches a stationary distribution and &ssrfpom the chain are samples from the target
densityp(X).

Hastings [80] generalized the Metropolis algorithm, to kweith an arbitrary proposal function, that must
not be symmetric. In that case the acceptance probabilityst be modified to be the following:

= min M
o (p(xt)Q(ﬂxt) ’ 1) ’ (3.64)
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The resulting algorithm is commonly called Metropolis-kiag algorithm [80]. Once the samples from
the target distribution are generated in this way, we caroofse use them in the Monte Carlo framework to
approximate the desired expectation.

Gibbs Sampler

The Gibbs samplef75] is a special case of the Metropolis-Hastings samplegrevtthe proposed states are
always acceptedy = 1. Let p(X) be once again the target density we want to sample from. Latrtlser
assume that the state space can be partitioned in someXway,{X;, Xo, ..., Xx}. The Gibbs sampler
samples fronmp(X) by iteratively sampling from the univariate conditionafstioe formp(X;|X \ X;) by
keepingN — 1 variables fixed at any given time. Such conditional distiitns are often easy to simulate, as
opposed to the full joint. Thus a Gibbs sampler simul&esndom variables sequentially, rather simulating
all variables at once subject to the joint target distritti

At any given timet a particular variablé is selected for resampling, and the rest are kept fixed. In the
Metropolis-Hastings algorithm context, the Gibbs sampéer be defined by specifying a particular form for
the proposal distribution,

7~ p(X{X; =25 e [1,..., N\ i
q(i|x(t)) _ ':f p(() |{ J Ly |.7 [ ey ]\Z}) (365)
T =uw; jell,..,NJ\i
that specifies that the next proposed state fidth= {x(t) xgt), e (t)} for a current choice of the variable,
sayi = 1, willbe = {Z4, xgt), . (t)} sampled according to conditional as stated above. The &ooap
probability for this particular choice of the proposal canvritten,
«a = min (p a(@:|7) ) (3.66)
p(z1)q |It
_ <p e t)wt) ) 1) (3.67)
Py p(@rfal, )
_ <p R T ) ) 3.68)
p( xgt), 2 )) (21, xg ), ...,xg\t,))p(xg ), ...,xg\t,))
= min(1,1) = (3.69)

confirming that we should always accept the proposed sthis.ahalysis holds for any choice of variable
Hence, the Gibbs sampler can be more compactly described A&jorithm 3.

As the above equations are iterated, the samfile= {:cgt), xgt), . (t)} converges to a sample from
the target density(X). It has been shown that permuting the order in which the bletaare resampled,
sometimes improves the rate of convergence. This can blg dasie by sampling in the beginning of each
iteration from uniform discrete distribution~ 2/(1, N).

3.6.4 Sequential Importance Sampling

The Sequential Importance SamplifglS), frequently also calleBarticle Filtering (PF), is a Monte Carlo
(MC) based method that gives rise to an extensive body oétitee on sequential Baysian filtering developed
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Input: set of uni-variate conditional distributions of the follmg form:
p(X1]X2, X3, ..., XN)

p(Xi| X1, o, X1, Xig1, oo, Xvo1)
P(Xn| X1, X, .., Xy_1)

Output:  sample from the joint ~ p(X), whereX = {X;, Xy, ..., Xy}

1. Select an initial value for all variable$® = {'” 2{” . 20}

2. Foreacht € [1,...,T]iterations

(a) Foreach € [1,..., N],sample from an appropriate conditional:

xl(-k) ~ p(Xi|x§k71),...,xl(-lizl),xl(izl),...,xg\];*l))) (3.70)
M = 2D e 1, NI, (3.71)

wherek = (t — 1)N + .

3. Letz = {ngN) ngN), vy xgvTN)}.

3

Algorithm 3 : Gibbs Sampler.

over at least 0 years [9, 54].Sequential Baysian filteringfers to a class of inference methods that estimate
the values of a variable that evolves over time (often basedoone underlying stochastic dynamical sys-
tem/process). The method is commonly calféiegring when the estimates are done sequentially in time, it
is also referred to asmoothingvhen the estimate for the state involves future observaifas in undirected
graphical HMMSs), angbredictionin cases where one is faced with estimating future valuegh#evolution

of the system based only on the past observations.

Sequential Importance Sampling (SIS) gives rise to a nurabgariant methods for doing sequential
posterior estimation. In this section we will first introdute generic SIS approach and then a few variants,
including Sampling Importance Resampling (SIR)k(a. Condensation). The key idea in SIS and Particle
Filtering in general, as with any MC approach, is to appratigrthe posterior using a set of weighted samples.
Let us consider inference in the Hidden Markov Model illagtd in Figure 3.4g). Assuming that we have
a model defined fof” time instants, the joint distribution can be written as wiasassed in Section 3.2.2,

T
p(X,Y) = p(Y1]X1)p(Xy) [ [ p(Ye [ Xe)p(Xe[Xi 1) (3.72)

t=2
We can approximate the desired posterior deng{®.7|Y1.r) = p(Xy, ..., X7| Y1, ..., Y1), that of-
ten cannot be computed directly, using the importance samppproach introduced in Section 3.6.1. Thisis
done by introducing an importance density thatis easy t@gafrom,q(X.7|Y1.7) = ¢(X1, ..., X7|Y1, ..., Y7),
and approximating the desired posterior using a weighteghkaset of N samples,

N
pXor|Yir) = > wih6(Xor — s\ (3.73)
1=1
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where

s~ (X[ Yir) (3.74)

Y.
wi) o (i [Yir) (3.75)

g(s\ [ Yrr)

Unfortunately this form of inference is often both inconiert and computationally intractable for two
reasons: 1) it requires devising and sampling from a proposal functioa very high dimensional space
that grows with the number of nodes in the graph, a2)dt(requires that the entire process has been ob-
served (batch mode inference). SIS remedies both of theddegpns by estimating the posterior recursively
(a.k.a. on-lingposterior estimation).

Let us assume for the moment that we have a sample basedemgatésn of the posterior up to, but
not including, timet, {s1 1 1 t 11 € [1,..., N]}. If we want to approximate the posterior recursively or
sequentially, and choose an appropriate importance ganhsit factors,

Q(X1:t|Y1:t) = Q(Xt|X1:t715 Yl:t)Q(X1:t71|Y1:t71)a (3.76)

then samples fromli ~ q(X1.|Y1.:) can easily be constructed recursively. This is achievedaking an

already existing sample based representation for the st time¢ — 1, and augmenting each particle
sﬁ 1 with a sample based estimate of the state at ti,mg) ~ q(de&le, Y1.+). The recursive equation
for the weights can also be derived by following rules of imtpoce sampling, resulting in the following:

@ ) p(Yilsi)p(s”, st
1:t .

Wiy X Wyp g i
q(s ()|Slt 1 Yiit)

The equation further simplifies if we assume that we are omigrested in the marginal distribution

(3.77)

p(X:|Y1.) (a.k.a. filtered estimajeand not the full posterior, in which case the equation fereights is
reduced to,

() (i) p(Yols))p (Si(ﬁl)ast(fl)l)
wy X w .

t—1 i i (378)
a(si” 5121, Y1)
resulting for the sample based representation for the margosterior density,
(X[ Y1) Z w5(X, — siV). (3.79)

The outlined approach is the basis of the General Partittier FAlgorithm 4.

Degeneracy, Impoverishment and Resampling

A common problem with SIS filter is what is frequently knowndegieneracyln particular, often after a few
iterations, all but one sample will have a negligible wejgbntributing virtually nothing to the approximation
of the marginal posterior. In [118] a suitable simple measpir degeneracy was introduced, to measure
effective sample sizey. s, at any given time,
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1
SN (W)

Clearly degeneracy effects are undesirable, since thelyte@oor approximations of the posterior (at

Nesr = (3.80)

high computational co$t The two possible solutions are to either choose a goodgsalfunction, or
to resample the particle set. Even with good proposal fonstioften resampling is necessary (but not as
frequently).

The basic idea ofesamplingis, whenever significant degeneracy is observEd ¢ < N, whereNy,
is an empirically chosen threshold), to eliminate partickéth the low weight, replacing them with particles
that have a more significant support. The resampling is impiged by drawing with replacement a new
set of unweighted samples (representing the same der{ﬁﬁf\})wti)ﬁ € [1,...,N]}, wg“ = % for all
1 € [1,..., N], where the probability of drawing a sample is proportiopaite weight of the sample in the
original set{sf), wgi)|i € [1,...,N]}. In other WordSp(Egi) = sgi)) = w§i>.

While resampling helps to reduce degeneracy in particlersiltit may introduce other problems. The
most significant of such problems is what often referred teaamsple impoverishmenthich arises when one
or few particles have a high weight relative to the rest. Ichsa case the new resampled approximation will
have many repeated samples. This lack of diversity in saiplals to translate into poor approximation of
the posterior. This problem is particularly acute wheregfeeess noise is small, often leading to collapse of

all particles to a single sample point.

Sampling Importance Resampling Filter or Condensation

Thus far we have introduced a conceptual Particle Filtefiammework that is common to many recursive
Bayesian approaches. To build a realistic algorithm a ehofdmportance function must be specified. In
this section we will introduce one variant of the ParticlidicalledSampling Importance Resampli(fgIR)
[76] or in the computer vision community better known as Gamghtion introduced by Blake and Isard in
[25].

This particular Particle Filter variant is derived by makitwo assumptions:1j that we going to use the
temporal prioras a proposal function.é. ¢(X;|X:-1, Y1.t) = p(X:|X;_1)), and @) resampling is applied
at every iterationi(e. Ny, = o). Notice that this choice of importance density assumedsagively simple
temporal prior from which samples can be generated. Iniggabften linear models with Gaussian noise
are chosen fop(X;|X;_1) = N (X;|8X;_1,%). Also notice that since resampling is done at every time
step, the computation of weights reduces to a particulamypke (non-recursive) form,

wi? o p(Yy]s), (3.86)

that only depends on thikelihood This particular variant of a particle filter has been appégtensively to
object tracking in computer vision domain; for discussiod anore detailed derivation see Section 2.8.

4Samples, while contributing little to the overall qualityapproximation, still need to be updated in the filteringriework.
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Input: sample based approximation to the marginal posterior a&#tim1
P(Xi 1| Y1) & {2y, wi?fi € [1,.., N]}
Output:  sample based apprOX|mat|on to the marginal posterior a&#tim
P(Xe[ Y1) = {sf”, wi]i € [1, ..., N]}
1. For each samplec [1, ..., N]
(@) DraWstl) ~ q(Xy |st 1,Yt) from proposal functior(-).
(b) Compute the sample weight
Y (@) (@)
wg)cxw(i)lp( t|5 )) ((f)t ,Si-1) (3.81)
( |si21Y1)
2. Normalize weights for each samgple [1, ..., N]
(4)
(@) _ _ W
wy = ——y (3.82)
Zivzl w§ )
3. Calculate effective sample size
N, ! (3.83)
f = SN T 0w :
vazl(wg ))2
. If Neypp < Ny, resample the particle set by drawing with replacement fifteersample based
apprOX|mat|0n of the densipy(X;| Y1) ~ {st , Wy )|z e[l,...,N]}.
(a) For each samplee [1, ..., NJ,
58~ s wPli e [1,..., N} (3.84)
k) = L 3.85
o = < (3.85)
(b) For each sample € [1, ..., N], Iets(k) andw(k) ~§k>

Algorithm 4 : Generic Particle Filter.

Number of Particles

All particle filters, use a set oV weighted samples to represent the posterior. As the nunflteanoples

N — oo the approximation approaches the true posterior, as watidstrd importance sampling. However,

in practice, due to computational cost, inference must beedeith as few samples/particles as possible.
In general, it is hard to automatically select the numberastiples needed for good posterior approxima-
tion. The number of particles will depend on the structure simape of the posterior, proximity of proposal

distribution to the true posterior, the complexity of urglearg dynamical process, observation noise, and
dimensionality of the state-space. In [136], a lower bouordtfie number of particles needed, known as
survival rate is derived. In particular,

e
3

(3.87)

2
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whereN is the lower bound on the number of samples needed, subjdut timensionality of the state space
d, a survival ratey < 1 that is a constant related to how well the posterior is appnated by the filter (and

is a function of posterior and proposal distribution shape eomplexity);N,..., is a parameter designating
the minimum number of particles to survive the resamplinge Survival ratey will typically be lower for
noisy posterior distributions that are not modeled wetjuieng more samples to represent them adequately.
Consequently, for proposal distributions that are pooraximations to the posteriof, will be low as well,
leading to similar artifacts. Lastly, the number of samplksguired to model a high dimensional posterior,
according to this metric, will grow exponentially with thaxtensionality of the state-spade This is known

in computer vision as theurse of dimensionality

Regularized Patrticle Filter

The general Particle Filter framework as well as the paldicinstance of SIR (or Condensation) in the
previous section attempts to resolve the issue of degenevritlc resampling and/or good proposal densi-
ties. However, as mentioned before, resampling often leadample impoverishment. At least in part this
problem can be attributed to the fact that when the apprai@mé#o the density (encoded using a weighted
sample set) is resampled, we are sampling from a discretesemtation of the posterior instead of the full
continuous approximation.

A Regularized Particle Filte(RPF) [154] was introduced to remedy this phenomenon. THeiRFlenti-
cal to SIR filter introduced in the previous section, in alt bone respect. During resampling, RPF resamples
from the continuous approximation of the marginal posteobtained using Kernel-based approximation
introduced in Section 3.6.2. RPF bears striking similatityhe Particle Message Passing {PPAS) [99]
approach, that will be discussed in the next section and tisedghout this thesis. In fact, Particle Message
Passing (RMPAS) is a generalization of the RPF filter that allows inferentgiiaphs of arbitrary topology.
For topology of Hidden Markov Models (HMMs) it can be showatl®a MPAS reduces to RPF.

3.7 Particle Message Passing

Particle filters introduced in the previous section areatffe for inference in many different models and
applications, however, they are customized for tempotakiiig or estimation problems in Hidden Markov
Models. Belief Propagation introduced in Section 3.5.2vjtes the means of effective inference in graphs
of arbitrary topology, however, is typically restricted d@screte variables or continues Gaussian variables
for tractable inference. In this section we will introdRa&rticle Message PassinéAMPAS) [99], a variant

of Non-parametric Belief Propagation [220], that is able&form approximate inference in the graphs of
arbitrary topology and makes no explicit assumptions alpasametric form for the variables or potential
functions. In Particle Message Passing we generalizecRaRilters to work for graphs of arbitrary topology.
PAMPAs will underline the inference tasks in this thesis.

As in standard Belief Propagation, introduced in Secti&23 for convenience we will restrict ourselves
to inference in pair-wise MRFs. However, similar resulta ¢ derived for a general MRF and Baysian
Networks. A simple extension would lead to variant that vdowbrk for factor graphs. Given a pair-wise
Markov Random Field specified by the gra@h= {V, £}, where we have a set of hiddé#x, and observed,
Vy, nodes corresponding to variablEs= {X;, X, ..., Xy} andY = {Y1, Y5>, ..., Y} respectively, we
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can write the joint distribution as follows,

p(X) = % 11 i (X, X5) ] 04X, Y). (3.88)

(i,5)€E,i€Vx,jEVX i€V
If we assume thaX;’s are continuous random variables, we can write down thasde message passing
and belief estimation equations underlying BP (see Se&i6:2):

Continuous message passing: m;;(X /1/)1] X, X;)0:(X;,Y) H m; (X;) dX(3.89)
keA(i)\j
Belief estimation:  b;(X;) o ¢;(X;,Y) H mii(X3). (3.90)
kEA(D)

The key observation, underlying both Particle Messageifg@snd the more general NBP [220], is that
integration required to perform message passing can bespmated using Monte Carlo techniques intro-
duced in Section 3.6. For convenience, we will first formellBs MPAs for a restricted set of MRFs where
potentialsy;; (X;, X ;) can be expressed using finite Gaussian mixtures and theasadiire more general
case where some potential functions do not have this coievieform. Notice, that even this more restrictive
case, where potentials can be expressed using finite Gaussitures, produces a considerably richer class
of models then the purely Gaussian MRFs introduced in Se&i6.2. In its original form, Particle Massage
Passing was introduced by Michael Isard in [99]; here we gaize the original formulation of [99] to make
the approach appropriate for the applications addressthisithesis.

As in [99], for convenience we first introduce a probabiligndity function that we will calmessage
foundation(where convenient we will use the following shorthand niotafor the likelihoodg;(X;) =

$i(Xi,Y)),

I mw(X), (3.91)

keA()\J

whereZ;; is a normalizing constant. Intuitively, the message fotiotieapproximates the distribution over
X;, that is then used to derive compatible distributionXor encoded by the message;; (X,). We can
use Monte-Carlo integration to approximate the messagetrdwying N samples from the message foun-

(n)

dation,{s;;’ ~ mf;(X;)|n € [1,..., N]}, and then propagating these samples through a potentiztidan

1;;(X;, X;), resulting in the foIIowmg

mi; (X Z wMi (X = s, X)) (3.92)
mixture approximation to the message, Whe[fg) = 1/N is the weight associated with each sample.

Assuming that);; (X;, X;) can be modeled using a joint distribution represented byvixéure of M;;
Gaussians (MoG), the resulting mixture distribution,

mij (X Z% =57, X;) = wa (X[, = s). (3.93)
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for the message will be a Gaussian mixture as well with.N components. Notice that by assuming a MoG
form for v,;(X;, X;) we can model a large class of potential functions. For ttaetmference, however,

M;; must remain small (on the order of tens of components).
(n)
we apply importance re-weighting resulting in non-unifomgightw

In general, we can sample from amgportance function{s;;’ ~ ¢;;(X;)|n € [1,...,N]} so long as

(n)
ij
particle filtering the choice of importance function wilfedt the convergence properties of the algorithm.

x mf;(s?])/q”(sfj) As with any

Furthermore, samples can be stratified into a number of gtoup

To compute the marginal distribution ovEr;, samples can be drawn from the belief distributhg{X ;)
directly or using importance sampling. These possibly Weid samples (sum of Dirac functions) serve as
an approximate representation of the true marginal. Ifiooious representation of the marginal is required,
kernel density estimation can be used to smooth the pastétlésee Section 3.6.2).

3.7.1 Sampling from a Product of Gaussian Mixtures

The key to inference usingA®PAs is sampling from the message foundat'mﬁ- (X;). For the moment,
as in previous section, let us assume that both the liketlaen (X;, Y), and the potentialsy;; (X, X;),
can be expressed as mixtures of Gaussians. In that casersgufinpm mfj (X;) amounts to sampling from a
product of Gaussian mixtures. We will consider a more gédmaise, where only a subset of potentials have
this form in the next section.

Let us consider a case where we have a produdt ofixtures ofM,,, n € [1, ..., N], components respec-
tively, resulting in the product that can be expressed as<eunai itselfwith]‘[ﬁ[:1 M, Gaussian components.
Hence, the brute force approach to sampling would requmne txponential in the number of mixtures,
O(]_[fj:l M,,) (O(MPN) if for all mixtures M,, = M). This is only tractable for products of few mixtures
(typically N < 3) having relatively few mixture components. To make the dargpiractable, Sudderth
et al.[220] propose a Gibbs sampler (see Section 3.6.3), that ratupe the unbiased exact samples from
the product inO(K N M?), as the number of iterationls — oo. In practice with a relatively small value of
K a good sampling can be achieved (we typically ise K < 10). In cases wher&/ < 3 the brute force
sampling is tractable, and we use the exact sampler instead.

The Gibbs sampler works by iteratively sampling labBls= {l1,lo,...,In}, wherel,, € [1,..., M,)]
corresponding to the Gaussian components in mixturaitially L is initialized by randomly sampling the
labels. We found that initializing the sampler by sampling according to the probability of the mixture
components in the mixture, as in [220], led to slower convergence is some cases. Onbaweean initial set
of labelsL, we pick an integek € [1, ..., N] at random and samplg according to the marginal distribution
on the labels. The full algorithm introduced in [220] is egsd in Algorithm 5 for completeness.

Significant optimizations to the above algorithm can be nfadéhe case where all mixture components
have the same covariance. Similarly, for the specific casgixtiires that have diagonal covariance structure,
an approximate sampling scheme was introduced in [95] #rasample from the product (K M N).

3.7.2 Sampling from More General Forms of Message Foundatio

Itis impractical to assume that the likelihogd X;, Y') can be explicitly modeled using a Gaussian mixture,
in fact in most cases; (X;, Y) will be too complex to be able to sample from it directly. lalso possible that
some sub-set of potentials; (X;, X ;) will not be able to be modeled using a Gaussian mixture éfielgt



76

[72)

Input: D Gaussian mixtures, where mixtufes [1, ..., D] containsM, Gaussian component
with parameter{wgm), ugm), Agm)} respectively.
. D M, m m m
output: = ~ [T, M w(™N (™, AT,

1. For eachd € [1,..., D], choose a starting labé} < [1,..., M,] by samplingp(ls = j)
1/M,. For convenience, ldt = {l1,1ls, ..., Ip}.

2. Foreachl € [1,..., D],

(a) Calculate the covariance matrix

d—1 . D N\t
A*_< (A8 + > [ ) (3.94)

=1 1=d+1
and the mean vector
d—1 1 D —1
= A" <Z (A]ul+ ST [Al] u§-“’> (3.95)
i=1 i=d+1

of the Gaussian resulting from taking a product of Gaussisignated by the set g
fixed labelsL /1.

(b) For eachn € [1, ..., M4] calculate

_ -1 — -t I d -1 d TS F
Alm) — ([Agd)} +[AY] 1) . ™ =A,, ([Ag )] ug )+ A g )

(c) Sample a new value for labkl according to

—

., (m) p(m) Lk Ak
o (m)N('ra/Ld aAd )N(ZC,[L aA )
plla =m) o wy Nz 1™, A0m)

(3.96)

wherez is any convenient point (we use= (™).
3. Repeat step for K iterations.

4. Compute the mean and covariance for the Gaussian compoitée product designated by
L.

=1

) )

5. Draw sample: ~ N (fi, A).

Algorithm 5: Gibbs Sampler for a Product of Gaussian Mixtures. Original algorithm is introduced in
[220].

Hence, we must handle a case where only a sub-set of the tertine message foundatiom,f; (X;), will
have the convenient Gaussian mixture form; for conveniégtags call the product of those termﬁ}s (X;).
The rest of the terms that do not have the convenient form fubioh we can easily sample can be combined

intom, # (X;), such thatn/;(X;) = m[* (X;)m[? (X;). For example, if the likelihoods;(X;, Y) are not



77

Gaussian mixtures and potentialg (X;, X;) are, thermfjs (Xi) = Ilreagy; mei(Xi) andmfj’f (X;) =
0i(X;,Y).

Of particular interest is the case where some (but not aligmi@ls can be represented using mixtures
of Gaussians (MoGs). Let us consider a case where a graphiesrgotentials of two distinct types
wf;woc) (X;,X;) and wf;MOG) (X;,X;). Assuming that the messages are obtained as before by propa-

gating samples via these potentials, this will lead to twrexponding message typesg.woc) (X;) and
f;MOG) (X;). We can now collect all the terms that have a convienient flmmsampling intcmfjs (X;) =

[Tecacy, m,%’c’)(xi), and the rest of the terms inmfj’f (Xi) = 60i(Xi, Y) [Ticagy m,(;MOG) (X5).
The RMPas algorithm of Section 3.7 can then be easily modified to hatiuke case by setting the

importance functiony;;(X;) = m’*(X;). The new NBP variant will then proceed by sampl'u;fg) ~

ij
fjs (X;) from the importance function and then the importance reghtang will assign the weight of
wgl) x mfj’f (sl(-;l)) to the sample. The resulting message will then be obtaindzefse, by condition-

Ing onX;, i.e. ’l/)”(Xl = ng)’ XJ) = ’l/)”(XJ|X1 = ng))

m

3.7.3 Choice of Importance Functions

Sections 3.7.1 and 3.7.2 introduce a particular choice pbitance function for approximating messages in
BP using Monte Carlo,
qi;(Xi) = mi 2 (X;). (3.97)

However, this choice of an importance function is not alwaifective. In particular, consider inference
in an undirected chaire(g. Hidden Markov Model with3 hidden random variables {X;, X», X3}). The
limitation is that for messages2(X2) andms2(Xs) the corresponding importance functions(X;) =
ml3 (X1) = 0 andgza(X3) = mis (X3) = 0 are non-informative. While the messages will correctlyghei
the non-informative samples, in high-dimensional spagissitill lead to poor approximation to the messages
(see discussion in Section 3.6.1). One solution is to uséexelt importance function that facilitates place-
ment of samples in high probability regions. One natural@his to use belief as an importance function. In
other words, let

g1 (Xi) = mi (Xi)mys(X,). (3.98)
This choice of importance function will also in some casedlifate fastemixingbetween messages, leading
to overall faster convergence of BP [99].

In order to use either of the two importance functions, h@wemessages must betialized. In discrete
belief propagation messages are often initialized by wnifdistributions, that are then refined by Belief
Propagation message passing. In the continuous case, aedspezifically in high-dimensional continuous
case, having uniform messages will lead to non-informatiyeortance functions. This in tern will lead to
poor approximation to the true messages, and often will @ad lto convergence of NBP. Hence, for the
non-parametric BP inference to be effective, some or allsaggss must be initialized to semi-informative
distribution$. In most tracking applications [219] this is done by prowiglian initial pose, or distribution

5In both cases we assume that conditional distributionsefdhm 1;5(X; = x,X;) can be derived analytically.

8Notice that this is equivalent to having an informative impace function for some of the variables in the graph.
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over poses at the first frame. In this thesis we take a vergrdifit approach. Instead, we assume that there
exists a static discriminative proposal process that ples/reasonable starting values or distributions over
those values for some of the variables. In other words thdtave an informative proposal for some of the
messages,

i (Xi) = f(Xq). (3.99)

In computer vision applications, having a proposal functibthis type is often relatively easy. For example,
for articulated body pose estimation, where variablesespond to body parts, finding plausible positions
for some variables corresponding to the placement of ddiimbsor afaceis a well researched problem
(efficient and effective solutions to which exist).

3.7.4 Stratified Sampling

Stratified samplinga.k.a. proportionasampling), involves dividing the samples into a set of hoerapus
groups, and sampling within each group according to sometiium While stratified sampling is of signifi-
cant importance in probability and statistics by itselfiehee will consider stratified sampling in the context
of Monte Carlo methods andaR1PAs. Consider Monte Carlo importance sampling, first introdLiceSec-
tion 3.6.1. As mentioned before, the efficiency of Monte Gagproximation depends significantly on the
importance function chosen. Sometimes, however, it isaaralvhich importance function is best suited for
the inference task, and a number of alternative importameetions may be available. In particular, in Sec-
tion 3.7.3 three importance functions have been introdticadare of interest in Particle Message Passing.
The key observation is that instead of drawing all samplasifone importance function that is believed to be
most efficient, we can stratify the sampling procedure tevdsamples from multiple importance functions.
As a result, the samples will be more diverse overall, yetised within each group.

Let us assume we have a family Bfimportance functions‘qg) (X;), wherer € [1,..., R] from which
we want to drawN samples. If we also assume that each importance functioarhassociated sampling

R
fraction~,, such that)_ ~, = 1, then we can define a stratified sampler as follows:

r=1
s~ al) (X) for ke [1,..., Ny
ng) qu(?)(Xi) for k€ [Ny +1,..., Nvy; + Nvo]
r r—1 ”
k r
sy~ ay (X) for ke [NY m+1, ...,NZ%]
=1 =1
[ R-1
ng)wqff)(xl) for k € NZ’W—}-L...,N]
L =1

Since the samples{,sl(-f)m € [1, ..., N]}, will be drawn from different importance functions, impamte cor-
rection must also be done accordingly. In particulaq,gﬁ (X;), r € [1,..., R], are the importance functions
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for approximating messages;; (X, ), then the following importance correction must be applied,

mf(s;)
wgﬂ (IJ) (i) for ke [l,..., Ny
4;; (Sij )
mf(si;)
wg?) (QJ) (i) for k€ [Ny1 +1,..., Ny; + Ns]
4;; (Sij )
F (k) - r
(k) _ mij(sij )
wif) = — =L for ke [NY yi+1,... N> v
ij (Sij ) L =1 =1
mFE (s [ Rl
wgﬂz% for ke [NY w+1,...,N|.
ij (s”) L =1

In the above we assumed th¥ty; is an integer for alf, in practice this it is often a fraction and must be
rounded. For the stratified sampling to be effective, onetm@usure that the number of grougsréta), .S, is
relatively small in relationship to the total number of sd@sp/N. In addition, having widely disproportional
fractions of samples may cause sampling artifacts. We fetnadified sampling to be effective imRIPAS.
The full stratified sampling AMPASs procedure is outlined in Algorithm 6.

3.7.5 Differences betweeRPaAMPASs and NBP

While the RMPAs [99] algorithm introduced here and the Non-parametric &d¥ropagation (NBP) algo-
rithm introduced in [220] are very similar in nature, there two key differences that are worth mentioning.

First, in [220] no particular form for the potentials is assd. Hence, instead of propagating samples
from the message foundatio{“lsl(.?)m € [1,..., N1}, via a potential resulting in convenient continuous rep-
resentation for the message, in [220)](X;, X;) is sampled. This results in a particle representation for
the message and kernel bandwidth estimation is used taasgigl variance bandwidth to all the samples.
This leads to an additional approximationyf;(X;, X;), where as in our casg;; (X;, X;), modeled using
Gaussian mixturéscan be represented exactly.

Second, there is a difference in where the importance samfakes place due to the inability to represent
likelihoods, ¢;(X;,Y), using convenient Gaussian mixture form. In [220] impocesampling and re-
weighting is incorporated directly into the Gibbs sampléhis results in a generally better sampling strategy,
however, requires an underlying assumption that the kevigth is small relative to the variations in the
likelihood functiong; (X;,Y). As a result, we believe that multiple hypothesis in the mgssoundation
would tend to cause more severe problems in [220], rend#nmaglgorithm of [220] inferior in cases where
good initialization is unavailable. InAMPAS, we need not make any assumptions on the kernel width
and can represent the potential exactly, which makes it rmonvenient for the cases where only weak
initialization is available. However, one would expect approach to degrade mfj (X3) andmfjs (X4)
become more dissimilar.€. more terms in the message will not have the convenient Gaussixture form),
and in such cases NBP [220] may lead to superior performance.

“Other potential functiong;; (X;, X ;) from which conditional distributions of the form; ; (X; = x, X;) can be derived analyt-
ically, can also be represented exactly.



Input: Graphical model = {V, £} with specified robust potentigl;;(X;, X ;) (consisting
of Gaussian mixtures with/;; components and a single Gaussian outlier process)
and likelihoody;(X;,Y) functions
Set of possibly uninitialized messages; (X;)

Number of samples to use for approximating the message,

Output:  Updated message;; (X;)

1. Collect all terms in the message foundaﬁtbﬁ = Zl gbi(Xi)erA(i)\j mg;(X;), that
have convienient Gaussian mixture form mﬁ(f ) term.

2. Setimportance functions and corresponding samplirudidnas

(@ g} (X)) = mf* (X)) afy (Xs) = mf (Xiymyi(X) af) (X) = (X))
(b) For the first iteration of BP typically; = 0,7, = 0,73 = 1, for the rest typically

71 =0.5,792=0.5,73 = 0.

(1)(

wheref(X;) is the static proposal distribution.

3. For each of the importance functiohs [1, ..., 3]

(a) Compute starting sample indé¥, = Z NW
=

(b) Draw Ny, = (N — 1)y /M;; samples from the proposal function:

s g X)) n e (1, .., Ny (3.100)

1] ]

(c) Compute importance correction fore [1, ..., Ng]

Ns+n
veam _ (o) (3.101)
j (k) (Ns+n) '
Ql] ( ’L] )

4. Assuming that we have a robust potential function for Whionditional can be derived
e.g.for Gaussian mixture potential

M,

wlj(X]|Xl) :)\ON(X]'“L(LAO 1 )\0 Z 51]m~/\/ X]|F1]m( 1) G’L]m( 1)) (3 102)

m=1

store normalized weights and mixture componentsifoE [1,...,(N — 1)/M,;], m €
[1, ey ]\/[”]

@n =Mn-1)M;+m

(b) i} = Fijm(si})

(©) Afj) = Gijm(s))

w™s. .
(d) 7 = (1= Ng) el

5. Assign outlier componentsifjv) = Ao, Mgv) = [0, Al(.j.v) = Ay

- ) (n) ()
6. Letm”(Xj) = Z T N(XJ“L A )

ij
n=1

80

Algorithm 6 : PAMPAS Stratified Message Update
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3.7.6 Message Passing Scheduling

While in theory the massage passing schedule (order) in BB dot matter, in practice it has been shown
that the message passing schedule can effect the convengeaperties significantly. It is a well-known em-
pirical observation that asynchronous message passingtalgs, where messages are updated sequentially,
generally converge faster and more often than the syncheowmariant, where all messages are updated in
parallel. In practice, however, synchronous variants #enaised, perhaps due to ease of implementation.

In tree-structured graphs the order in which messages dbewdent is explicitly defined by the graph. In
this case when sequential updating is used, the standarelsediedule is one where a message is propagated
as soon as all of its inputs are available or have changed r&bults in propagation of messages from the
leaves of the tree upward toward the root and then back down.

In general loopy-graphs an explicit message passing sthedust be defined. The message passing
schedule can be either synchronous or asynchror®yschronousnessage passing amounts to simultane-
ously sending messages along all edges of the graph. It leasshewn, however, that often this results in
very slow and inefficient convergence [56]. Alternativelg,asynchronousnessage passing schedule would
lead to passing messages in a serial order defined by theideh&mhe of the standard asynchronous message
schedules can be derived by computing a minimum spanniegtrer the graph and updating messages ac-
cording to the tree-structure rules [239]. The spanning tnewever, may not be unique. In this case one must
either choose a tree and a fixed asynchronous schedule fdrebaor for every iteration of BP randomly
pick a minimum spanning tree and a corresponding schedul¢his thesis, we use a fixed asynchronous
message passing schedule with a minimum spanning treendpligty. In general, however, better conver-
gence may be achieved by randomizing the tree parameterizatd the message passing schedule. More
recently a new informative message scheduling approadthfstbeen proposed that schedules messages in
an informed way, that pushes down a bound on the distancetfrerixed point.

3.7.7 Simulated Annealing

The Markov chain based method of simulated annealing wasl@eed initially in [116] and later adopted for
articulated particle filtering in [52] and [70] as a way of kiéing multiple modes in a stochastic optimization
context. The method employs a series of distributions, pittbability densities given by, (X) to pas (X),

in which eachp,,,(X), m € [0, ..., M], differs only slightly fromp,,,11(X). In this context samples need to
be drawn fromp, (X) andp,,(X)’s are designed such that jn,;(X) the movement between all regions of
the search space are allowed. The usual method is {9,4&X) o [po(X)]?, for1 = By > By > ... > Bar.

In the case of Particle Message PassingMIPAS) one can anneal the likelihood, the potentials or both.

In our experiments, we found that annealing the likelihosédunction of BP iterations worked well. We
typically sets,, = Bm+1k, Wherem is the iteration of BP an@ < x < 1 is a constant. Simultaneous
annealing of potentials is also possible and would leadramger joint constraints.

3.7.8 Examples

In this section we illustrate how Particle Message Passamgbe used for inference in simpleD graphical
models é.g. HMMs). All examples have synthetically generated liketilddunctions and hand specified
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potentials. For experimental convenience and clarity, seesimple Gaussian likelihoods and potential func-

tions (resulting in Gaussian conditionals), though ourlengentation of Particle Message Passing does not
depend or make use of this fact for inference. We uSee- 1000 samples to approximate messages and
beliefs, in all cases. In all examples we are modeling a ®tiglly generated temporal evolution process of

X; eRYie[l,...,5].

In Figure 3.15, inference in a directed Hidden Markov Modl&lgtrated in the top-left corner of the fig-
ure) is shown. The likelihoods for variables(Y;|X;) = N (X;| = 7+ 7(i — 1), 2) + n, wherei € [1, ..., 5]
andn is a zero mean Gaussian distributed noise with small (velati the dynamics) variance. These like-
lihoods are illustrated by redbf (Y1|X1)], green p2(Y2]|X2)], blue [p3(Y35]|X3)], magenta §4(Y4]|X4)]
and black p5(Y5|X5)] accordingly. Inference in this model using PAs is equivalent to sequential pos-
terior estimation using a Particle Filter (see Section4}.6 Marginals corresponding to beliefs aft@r3
iterations of Particle Message Passing are illustrateeédncorresponding th(X; ), green -H(Xs5), blue —
b(X3), magenta -b(X,) and black toh(Xs5). Since conditional distributions encoded by the edges éeatw
hidden nodes in the graph, illustrated in top-right corrfghe figure, are very similar to the true dynamical
model expressed by the synthetic observation¥;,1|X;) = N (X;;1|X; + 7,0.5), inference performs
well.

In Figure 3.16, an undirected pair-wise MRF version of thepgrcorresponding to the same problem is
shown. Unlike in Figure 3.15, bi-directional potentialssiead of conditional distribution) define evolution
of states. In particulag)(X; = z,X;11) = N(Xip1]|z + 7,0.5) andyp(X; = 2, X; 1) = N(Xiy1 |z —
7,0.5), this is illustrated in the top-right corner of Figure 3.16imilar, to the undirected case inferred
distributions well match observations, because dynansicaadeled well. In Figure 3.17, inference with
missing observations faX; is shown. The rest of the model is the same as in Figure 3.16llussrated,
temporal (if we assume that what is illustrated is a tempm@tess) consistency allows M PAS to correctly
infer the state of all variable (includings) in the presence of missing observations.

So far, both directed HMM and similar in structure undirelghair-wise MRF were able to produce similar
inference results. To illustrate how the two models diffiex,construct an example where dynamics embedded
in the model is a very poor approximation to the true dynaroicthe observed system. In Figure 3.18,
the model is adjusted to have conditional distributions fiworly model true dynamics)(X;4+1|X;) =
N(X;1|X; + 1,0.5). In this case we can see that roughly afietime instances the algorithm looses
track and the belief§(X,) andb(X5) poorly model the data. Interestingly enough if we try to perf the
same inference task with an undirected model that has bétinal constraints, the result is quite different
(see Figure 3.16). In the undirected model, where inferémedle to incorporate information from future
observations, the distributions over all variables aresté{d to achieve best error averaged over all variables.

3.8 Discriminative Models

Lastly, we would like to introduce a few discriminative mésléhat proved to be useful for articulated pose
estimation [1, 2, 4, 206] and tracking [205, 206] (see Sec®d for further discussion). In the context of this
thesis, these discriminative models will be useful in iefeze of 3D structure from the 2D pose, within the
hierarchical framework that will be introduced in Chapter 6
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Figure 3.20:Regression modelln (a) a graphical model representation for Linear Regressishasvn. In
the regression model depicted, corresponds to the independent input variable (obsenjasiod X to the
dependent hidden output variabteis the set of parameters that are made explicibin (n (c) a graphical
model representation fa¥ i.i.d. input-output pairs of samplgs:;, y;) drawn from the model is illustrated.
In (d) a predictive regression model is shown, where gi%ii.d. observations as irt) the goal is to predict
a value for a latent variable, given a new observatiog),.

3.8.1 Linear, Ridge and Locally Weighted Regression

Linear Regressiois among the simplest discriminative models that attengatsddel the conditional(X|Y)
directly. The model assumes linear (or in caseolfiynomial regressionpolynomial) relationship between
multivariate random variableX andY, i.e. p(X[Y) = N(BY,c2I). In this modelX € R is thedx-
dimensional hidden variable arid € R% is thedv -dimensional observation. The relationship betw&en
andY can be expressed &= gY + n, wheres is andy x dx matrix of regression coefficients ands a
zero mean normal noise variable with covarianéé (please note that the basic model assumes that the noise
across all dimensions is the same). Typically, with a resioesmodel we want tol]) learn the parameters of
the modeb = {3, o} given a set of input-output paired observatidns y;), and @) given these parameters
predict the value of (or distribution oveR from new observations oY (see Figure 3.20d)).

In this chapter we take Baysian approach to regression whiglyeneralization of the more typical least
squares analysiformulation. Hence, to estimate parameters of a regressimel we first must choose
the hyper-prior over the parameters themselves. For exanfplve choose a non-informative joint prior
p(B,0) x a% the Maximum Likelihood (ML) estimates for the parameteas be obtained by maximizing
the likelihood,

N
n 1
£(0) = L(B,0) = p(D|3,0) = [[ (270 /2 exp [—ﬁm —0y) (@i —By) |, (3.203)

=1
with respect to the parametets= {3, o} and subject to the training input-output paif¥,= {(z;, y;)|i €
[1,..., N]}. The resulting estimate that can be re-written in terms dfrisnaotation (with slight abuse of
notation whereDx = {xz;|i € [1,...,N]} andDy = {y:|i € [1,..., N]}) conform to the least-squares
solution often obtained in non-Baysian setting:

8Least squares analysis is a method for linear regressionl¢termines the values of unknown quantities in a staistivodel by
minimizing the sum of the residuals (difference betweerpiteglicted and observed values) squared. This method weddssribed by
Carl Friedrich Gauss.
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N
. B A 1
Bur = (DY Dy) ' Dy Dx, G = N Z(% - Byi)*. (3.104)

Given the learned parameters, prediction of the distrilmuiverX for a new previously unobserved value
of Y = y, can trivially be computed,

p(X|Y =y,) = N(X; Byp, o?I). (3.105)

Ridge Regression

The non-informative prior fof, however, often results in the severe over-fitting and peoegalization. One
way of battling this is to have a more informative prior on ffagametersa.k.a.regularization). In particular,
if in addition to assuming that noisgis normally distributed with meaf and variance ig2I as before, we
also assume thdt has a prior distribution that is normal with meamand variance’A—QI, then the Maximum
Likelihood estimator for thes becomes,

Bt = (DY Dy + \I) DY Dx, (3.106)

which corresponds to thélge regressiorwith regularization parametex. Intuitively this can be interpreted
as adding smoothness constraints on the learned mappirge wis the damped regularization term that
penalizes large values in the coefficient maffixLarger values of will result in overdamping, where the
solution will be underestimated, small values\afill result in overfitting and possibly ill-conditioning.

Ridge regression has been successfully applied, alongantbsely relatedelevance vector regressipn
for discriminative articulated pose estimation by Agareibl.[1, 4]. The proposed approach uses simple
histogram features based on local shape context (see B&ck@) to learn a direct probabilistic mapping
from these features to a full 3D pose of a person.

Locally Weighted Regression

In both linear regression and ridge regression all traimipyit-output pairs(z;, y;), contribute equally to
the learning of parameters. Often it is useful, however, é@mWwt these contributions. The weight here can be
interpreted as the probability that a particular trainimguit-output pair came from the model (as opposed to
the noise or an outlier process). Assuming that we can agsogiweighty;, with every input-output pair,
the equations for linear and ridge regression can be tijwaaigmented to account for this.g.

Bur = ([Dy]"WDy + AI) " [Dy]"WDx, (3.107)

whereW = diag(w, ..., wy) is a diagonal matrix with corresponding weights. Notice #fficiency of the
learning is a function of the number of non-zero diagonahelets iniV.

3.8.2 Baysian Mixture of Experts

Both linear regression and ridge regression assume thamaipeing (conditional distribution) between the
inputs (observed variabl€g) and outputs (latent variablés) is linear and one-to-one. In many realistic
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Figure 3.21:Mixture of experts model. In (a) a graphical model representation for Mixture of Experts
(MoE) is shown. In the MoE model depicted, corresponds to the independent input variable (obsemnatio
andX to the dependent hidden output varialifeis the hidden variable corresponding to the activated gate,
which is of little interest by itself and often is marginai out to obtain desired conditional distribution
p(X]Y). In (b) a graphical model representation fri.i.d. input-output pairs of sampleg:;, y;) drawn
from MoE model are shown; corresponding latent gate vagghl are also illustrated. Finally incf a
predictive MoE model is shown where givéhi.i.d. observations as irbj the goal is to predict a value for a
latent variabler,, given a new observatioy),.

datasets this is not the case. For example, as was discusSsttion 2.9.2 the relationship between 2D
features and 3D pose of the person is indeed multi-modal ahdne-to-one, due to the projection ambigu-
ities. In fact in many perception problems that involve theavery of the inverse mapping, multi-modality
arises naturally. To represent conditional distributiohthis typeBaysian Mixture of ExperteBME) was
introduced by Jacobst alin [103, 110] and Waterhouse in [242]. This model has sin@nhesed in many
applications including human pose estimation [2, 195, 20@] tracking [206].

The key idea in BME is to use a Mixture Model, similar to the aescribed for Gaussian Mixture in
Section 3.4.2, to combine multiple linear (or other typegcdiminative models calledxpertsinto a single
coherent probabilistic model. The rational is that inputblve assigned to individual experts probabilistically
using agatingnetwork, where upon each selected expert would be resgeffisitprobabilistically predicting
the outputsX based on learned parameters. As a results some parts ofpihiesipace that are complex,
would activate multiple experts resulting in the multi-nabdistribution over the outputX, others that are
unambiguous may be assigned to a single expert resultirigeisimpler unimodal prediction. Formally the
model can be written as follows (caring cunning resemblan¢ke Gaussian Mixture Model):

P(X[Y) = pe(X|Y,Z,0.)py(Z|Y, 6,) (3.108)
A

or alternatively forM experts as,

M
PXIY) = pe(X|Y, 2m = 1,0c1m)pg (2 = 1Y, 0.m) (3.109)

m=1
whereZ = {z, ..., zp} is the set of hidden indicator variables that indicate whegpert was responsi-
ble for generating the data poini, (Z|Y,6,) is the probabilistic gating network with parametés =
{051, ...,00 1}, andp. (XY, Z, 6..) is the set of experts with parametéys= {0. 1, ..., 6 ar}. This model
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is illustrated in Figure 3.21. The choice of distributions §ate and experts is unconstrained by the basic
M
model; the only condition that must hold is that p,(z, = 1|Y,0,,m) = 1.

Learning of Parameters. The overall pargr#eters of the model including parameteedl @xperts and
gaits can be expressed @s= {0, ., 0c.m|m € [1,..., M]}. To learn these parameters, as before we must
maximize the likelihood of obseved dafa, Let us assume that we ha¥ei.i.d. input-output sample pairs
D = {(zn,yn)|i € [1,...,N]}) that are generated by one of thé experts, selected using a set of hidden
indicator variables{zf,?)m e€[l,...N],me[l,..., M]}, where

1 if expert enerated;,, from z,,
zf,;”_{ pertm g Y v (3.110)

0 otherwise

The likelihood that encodes the joint density for Alltraining samples can then be written as the follow-
ing,

N M
L(D|0) = H Z Pe(@n |Yn. 27(,?) =1, oe,m)pg(zf(g) = 1|yn, Og,m). (3.111)
n=1m=1

Based on the formalism introduced in Section 3.4.1, we krimat Maximum Likelihood estimation of pa-
rameters will not work in this case, and we will need to resmxpectation-Maximization (EM) in order to
deal with hidden variables."".

The EM algorithm in this case would proceed to first estimiageptosterior (in the E-step):

pe(xn|yna 27(7?) =1, oe,m)pg(zfg) = 1|yna og,m)
Zij\il Pe(Tn|Yn, Zi(n) =1, oe,i)pg(zi(n) = yn, 9971')

This gives probability that expert has generated the data pait,, v,). In the M-step one must optimize

p(z5) = 1], yn, 0) = (3.112)

both parameters of the experts and of the corresponding.gettés amounts to first learning the parameters of
the experts, that must account for the current expert meshtpnestimates,(ﬁ); and then learning parameters
of the gates. The latter learning step must account for holanggven learned expert can predict the output
for an input value.

Notice that so far we have not explored particular choicegtie gates or experts and the above EM
algorithm is very general. The particular choice of the datgctions and experts will, however, greatly
impact the efficency and overall complexity of the learniagks in the M-step.

Alternatively, for a restrictive choice of gate and experidtions the desired conditional can be computed
indirectly from the joint [2, 167, 207], via Bayes' rule. This resultsdfien simpler M-step, at the expense
of higher dimensional modeling of the joint distributiorh& benefit of the indirect methods is that, for this
restricted choice of gate and expert functions, some of dngpaitation (most notably marginalization over
the inputs) can be done analytically. Learning of paransaieing both direct EM and indirect methods can
be made more efficient by enforcing sparsity priors on thetspl79]. A more detailed discussion of these
issues can be found in [179].

In this thesis we will make use of the MoE architecture wittagtigular simplified choice of gate and ex-
pert functions. In particular, we will use Gaussian gateslarear (or ridge) with Gaussian kernel regression
expertsj.e.
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N |ty 2m)
Pg(zm = 1Y, 04,m) (3.113)
! ! SN (Y s, %)
peX[Y, 2 =1,00m) = NX|BnY,An). (3.114)

This specific form of the MoE model is often call&tixture of Regressorf2, 207]. Both direct and indirect
methods for learning parameters of Mixture of Regressoig 07]. The direct method that uses EM and
weighted regression to optimize the expert parameterkbeviliscussed in detail in Section 6.4. The indirect
method as an exercise is presented in the next section.

Prediction. Once the parameters are learned, as with regression wetaresied in predicting the output
x, for some previously unobserved input valye This can be formulated as,

p(zp|yp, 0) Z Pe(TplYp, 2m =1, 0em)Pg(2m = 1|yp, Og,m). (3.115)

A point estimator can be obtained by taking expected valubeabove,

&p = E[p(zp|yp, 0)], (3.116)

whereE is conditional expectation.

Examples. In Figures 3.22—-3.24 we illustrate the Mixture of Expertshétecture on a set of simple 1D
examples. Figure 3.22 shows how a mixture of linear kerrgglesesors can be used to learn a non-linear
probabilistic function. Figure 3.23 shows an example wisarglar architecture is used to learn multi-modal
prediction functions. In all examples direct EM-based hé#@y method was used and iterated for a fixed
number of stepsl(). To initialize the EM learning joint input-output vectors:;, y; ), were clustered using
K-means and a separate expert was assigned to each cluster.

3.8.3 Joint-based Learning for Mixture of Regressors

Let us consider the special case of the Mixture of Expertsehadlled Mixture of Regressors, where the
experts are kernel regressors of the farpiX|Y, z,, = 1,0c.m) = N(X|8,Y, Ay), where 3, is as
before (see Section 3.8.1) the matrix of regression coeffisiand\,,, is the corresponding Gaussian kernel
bandwidth (covariance matrix) for expert € [1, ..., M]. The joint distribution for this choice of the expert
can be written in the following form:

d(EID R U (M PSR Fepie

The conditional distribution can be derived analyticaligrh above using the rules of conditional Gaussian

) . (3.117)

distributions introduced in Section 3.1.2,
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mixture of linear kernel regressors, is illustrated. Tharting data, consisting of 1D input (alongaxis)

and 1D output (along-axis) paired samples, is illustrated i) ( Learned model consisting of a mixture of
M = 2 regressors is illustrated i (c, d), where D) illustrates samples drawn from the model (in magenta);

(c) and @) individual kernel regressor experts and correspondirigsgas a function of the input. Point
predictions for the range of inputs using the learned modelilustrated in €) and @). In (c) weighted

prediction corresponding to the conditional expectatimid. 3.116 is shown; color designates contribution
of individual experts towards the solution. Finally, i) (prediction based on the most probable expert are
shown for the range of inputs; color designates the exped.uNotice that mixture of linear experts in this

example are capable of modeling non-linear condition idhigtion.



94

1000

1000

Output ( X)
o
T
Output ( X)

-200

—400

~600

-800

71002 L L -1000 L

00 0 500 1000 1500 ~500 0 500 1000 1500
Input (Y) Input (Y)
1000 T 1 T T T
800 E 09F 4
600 E 0.8F 4
400 E 07k B
200 R 0.6 |
X z
I o g os
= L | L |
: :
3 I
-200 E 0.4F 4
-a00 4 03| 4
—-60011 - Training Data 7 0.2 7
Expert 1 Mean
- - 2,
_s00l] Expert 1 Variance (2 x 09) | o1l |
Expert 2 Mean Expert 1
= = = Expert 2 Variance (2 x 6%) Expert 2
-1000 T L - 0 I . .
500 0 500 1000 1500 -500 0 500 1000 1500

Input (Y) Input (Y)

(d)

1000

Output ( X)
o
T
.
Output ( X)
o
T

-200 1 -200

—400 1 —400
~600 1 ~600

-800 1 -800

1000 ' i ! 1000 ' '
2500 ) 500 1500 2500 ) 500 1000 1500
Input (Y) Input (Y)

G )

Figure 3.23Mixture of kernel regressors example.A special case of the Mixture of Experts (MoE) model,
mixture of kernel linear regressors, is illustrated. Tharting data, consisting of 1D input (alongaxis)
and 1D output (along-axis) paired samples, is illustrated i) ( Learned model consisting of a mixture of
M = 2 regressors is illustrated i (c, d), where D) illustrates samples drawn from the model (in magenta);
(c) and @) individual kernel regressor experts and correspondirigsgas a function of the input. Point
predictions for the range of inputs using the learned modelilustrated in €) and @). In (c) weighted
prediction corresponding to the conditional expectatimid. 3.116 is shown; color designates contribution
of individual experts towards the solution. Finally, i) (prediction based on the most probable expert are
shown for the range of inputs; color designates the exped.usotice that while point estimates cannot deal
well with multimodal predictions, mutlimodality is corrid encoded by the model (seb)}.
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Figure 3.24 Mixture of kernel regressors example.A special case of the Mixture of Experts (MoE) model,
mixture of kernel linear regressors, is illustrated. Tharting data, consisting of 1D input (alongaxis)
and 1D output (along-axis) paired samples, is illustrated ia)( Learned model consisting of a mixture
of M = 3 regressors is illustrated ib( c, d), where p) illustrates samples drawn from the model (in
magenta); €) and () individual kernel regressor experts and corresponditgsgas a function of the input.
Notice that different experts have different variancesestied according to the corresponding data. Point
predictions for the range of inputs using the learned modelilustrated in €) and @). In (c) weighted
prediction corresponding to the conditional expectatimid. 3.116 is shown; color designates contribution
of individual experts towards the solution. Finally, i) (prediction based on the most probable expert are
shown for the range of inputs; color designates the exped.us
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M
5mNY mazm
D S G L
Gate: py (Z[Y,0,) Expert: p (X[Y, Z,6.)

where parameters of the gatég, = {0, ftm, Zm|m € [1,..., M]}, and expertsf, = {G,, Am|m €

[1,..., M]}, are easily derived from the joint in Eq. 3.117. Full prooftbfs is given in [207]. Hence, to
learn this restricted form of the Mixture of Experts (MoE) deb it is sufficient to learn the Mixture of
Gaussians (MoG) representation of the joint with the nunolbemixture component)/, equal to the number

of experts required. The MoE model can then be obtained fleenMixture of Gaussians using simple
analytic computations.



CHAPTER 4

Graphical Object Models

The previous chapter introduced the general mathematichicamputational tools used in this thesis. In
this chapter we leverage these tools to address the prolilebjert detection and tracking. In doing so we
introduce a novel probabilistic framework for automaticnpmnent-based detection and tracking of generic
objects in images and/or video. By combining object deteatiith tracking in this unified framework we can
achieve a more robust solution for both problems. Trackargroake use of object detection for initialization
and re-initialization during transient failures or océbrss, while object detection can be made more reliable
by considering the consistency of the detection over timedéling objects by an arrangement of image-
based (possibly overlapping) components, facilitatesaliein of complex articulated objects, as well as
helps in handling partial object occlusions or local illuaiion changes. For simplicity, in this chapter we
firstintroduce the proposed framework in the context ofli@esion and tracking of simpler rigid objects; we
will then extend the proposed framework in Chapters 5 andde&d with pose of more complex articulated
objects (people).

Object detection and tracking is formulated as inferenca two-layer graphical model in which the
coarse layer node(s) represent(s) the whole object andrtbéddyer nodes represent multiple component
“parts” of the object. Undirected edges between nodes septdearned spatial and temporal probabilistic
constraints. Each node in the graphical model correspandgbsition and scale of the component or the
object as a whole in an image at a given time instant. Each alsgehas an associated AdaBoost detector
that is used to define the local image likelihood and a prdpgmsaess.

In general the likelihoods and dependencies are not GausHiere are at least two reasons that can lead
to non-Gaussianity of component dependencigkif there is indeed more than one mode for the statistical
relationship between componen® {f one wants to reuse parts for efficienay.g. for a side view of a car
we can model both tires using a single ‘tire’ component arah thave a bi-modal spatial distribution for a
car position and orientation, where bi-modality will gesobsed by other spatial constraints). To infer the 2D
position and scale at each node we exploit a form of non-peatréarbelief propagation (NBP), introduced in
Section 3.7, that uses a variation of particle filtering aaul lbe applied over a loopy graph [99, 220].

The problem of describing and recognizing categories otéabjé.g.faces, people, cars) is central to
computer vision. It is common to represent objects as didlies of features with distinctive appearance,
spatial extent, and position [33, 61, 144, 235, 236]. Theraowever, a large variation in how many features
one must use and how these features are detected and reépdeddost algorithms rely on semi-supervised
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Figure 4.1:Variation within the class of vehicles Three instances of vehicles are shown, with two different
types of vans on the left and middle and a smaller passengemcthe right. While vehicles shown here
have a drastically different appearance as a whole, dueetwatying height and type of the vehicle, their
components, illustrated by red and green rectangles, telnel very homogeneous and are easy to model. The
components, for convenience, are also illustrated seggtatthe right of each corresponding vehicle. Notice
that components corresponding to the top-left corner ofrécle all have distinctiv€0 degrees rotated ‘L
shaped open contour structure; components corresporalthg tower portion of vehicles have a distinctive
tire profile in all cases. The relative position of these congnts is, however, different in each case.

learning [144, 235, 236] schemes where examples of theadkslass of objects must be manually aligned,
and then learning algorithms are used to automaticallxs#ie features that best separate the images of the
desired class from background image patches. More recenbaghes learn the model in an unsupervised
fashion from a set of unlabeled and unsegmented images 13208l]. In particular, Fergust al. [61] de-
velop a component based object detection algorithing.constellation model) that learns an explicit spatial
relationship between parts of an object, but unlike our &nark assumes Gaussian likelihoods and spatial
relationships. In addition, in [61], as in many other apfass [33, 144, 204, 236], temporal consistency is
ignored. Also, the computational complexity of the corlate&dn model is exponential in the number of parts
encoded by the model, as opposed to the linear complexityeainibdel proposed here. For further details on
the constellation model and analysis of complexity pleaseSection 2.11.2.

In contrast to part-based representations, simple digtaiine classifiers treat an object as a single im-
age region. Boosted classifiers [236], for example, whily geiccessful tend to produce a large set of false
positives. This problem can be reduced by incorporatingtewd information [235]. Discriminative classi-
fiers based on boosting, however, do not explicitly modelspar components of objects. Such part-based
models are useful in the presence of partial occlusionspbptane rotation and/or local lighting variations
[59, 144, 249]. Part- or component-based detection is apalde of handling highly articulated objects,
for which a single appearance model classifier may be hardam! An illustration of the usefulness of
component-based detection for vehicles is shown in Figure 4

Murphyet al.[152] also use graphical models in the patch-based detestioeme. Unlike our approach
they do not incorporate temporal information or explicithason about the object as a whole. Also closely
related is the work of [157] which uses AdaBoost for multigeet tracking and detection. However, their
Boosted Particle Filter [157] does not integrate compotasied object detection and is limited to temporal
propagation in only one direction (forward in time). In cadt to these previous approaches we combine
techniques from discriminative learning, graphical madeelief propagation, and particle filtering to achieve
reliable multi-component object detection and tracking.
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4.1 AdaBoost

AdaBoos{67] is a supervised machine learning procedure, that gaveet of positive and negative example
patterns (in our case image regions [236]), learns a birlassiication function for the two classes. More
recently AdaBoost formulation has been extended to midsscclassification [223] problems. In general,
AdaBoost is an algorithm that is used boostclassification performance of a simple classifier. This is
achieved by combining a collection of weak classifiers torfar (better) strong classifier. A weak classifier
(a.k.a. weak learngris a classification function that is not expected to clgstie data well even with the
best choice of features and parameters. For boosting to,workever, the weak classifier is expected to
perform better than chance classificatioe.(classify a given image pattern correctly more th6f6 of the
time). Often weak classifiers are chosen to be simple funstiloat operate on individual features; AdaBoost
is then used to both select the features and train the ckxsdifased on these features.

The AdaBoost learning procedure works as follows. First,fdature and the weak classifier based on
this feature are selected to ensure the best possible teparatween positive and negative examples. After
this firstround of boostingthe examples are re-weighted to emphasize those that wsckassified by the
selected weak classifier. The secaodnd of boostinghen selects a weak classifier that performs better on
the examples that were misclassified. This can be repeatéd founds, producing the final strong classifier
that is the weighted sum of the responses fromAhweak classifiers selected along the way. The relative
weighting of the weak classifiers is also estimated, basdi@misclassification error.

There are relatively strong guarantees for AdaBoost lagtrit has been shown that training error of the
strong classifier approaches zero exponentially in the murabboosting rounds [188]. Theoretic bounds
on generalization can also be found in [188]. In particuchapireet al. [188] proved that AdaBoost
aggressively reduces the margin of the decision boundarggst concentrates on examples with smallest
margin). It has also been shown theoretically [66] that Aole® will overfit if run for too many boosting
rounds. It is worth mentioning that there is a strong corinadbetween the theoretic results obtained for
boosting and the support-vector machines introduced byi¥d@29, 230] and others. We refer the reader to
[188] for more details on theoretic guarantees of AdaBoost.

The conventional AdaBoost procedure can be interpretedgaealy feature selection process. In the
more generaboostingframework, the goal is to combine a large set of classificafimctions using a
weighted majority vote. The challenge is to associate thefgood classification functions with large
weights and conversely the set of poor classification fomstivith zero or negligible weights. AdaBoostis a
greedy mechanism for selecting a small set of good clagsdficunctions (or features) that in combination
can be used to classify relatively complex patterns.

AdaBoost performs well when the classification functioressample, and tends to have little or no benefit
(due to overfitting) when the classification functions armptex and can deal with classification task effec-
tively by themselves. Because of this often in AdaBoost &ngfassifiers that are functions of individual
features are used. For the purposes of this thesis we wilives& classifiers similar to the ones introduced
in [236]. We define a weak classifiér; (I) that consists of a featurg (1) computed on the sub-window of
the imagel as

hy(1) = Lifpy /15D < pity 4.1)

0 otherwise
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o ]

Figure 4.2: AdaBoost filters. AdaBoost features are obtained by convolving the image WighHaar-
wavelet-like filters, illustrated above, at a given imagealion(z, y) and scal€w, h).

wherep; is the polarity indicating the direction of inequality, apg € [1,2] is a parameter allowing for
a symmetric two sided pulse classification. The featf(d) is computed by convolving the sub-windbw
of the imagel with the delta function over the extent of a spatial templ@te over-complete set of spatial
templates are defined based on the canonical Haar-waiksdehatures shown in Figure 4.2.

Given a set of labeled patterns the AdaBoost proceduredeaweighted combination of weak classifiers
defined by Eq. (4.1),

K
h(I) =Y axhi(D), (4.2)
k=1

whereT is an image, and(I) is the weak classifier chosen for the rouh@f boosting, andyy, is the
corresponding weight. The full AdaBoost procedure is oetliin Algorithm 7. The output of the AdaBoost
classifier is a confidenck(I) that the given patterd is of the desired class. It is customary to consider
an object present ik(I) > %Zszl ag. In the context of this thesis we use AdaBoost not to classify
individual image patterns, but instead to define a rich disoative likelihood for the patterns as will be
further described in Section 4.2.3.

4.1.1 Bootstrapping

The performance of the AdaBoost procedure described inréngqus section depends on the positive and
negative sets of examples with which the classifier is tiditghile collecting good positive examples is at
least in principle simple (by supervised labeling), cdileg good negative examples is harder. Particularly
because the good negative examples we are after are thoséstraly resemble the object of interest, with
respect to the features chosen. Such negative examplesmplhasize the distinctions between the object
and non-object classes leading to better performance avel lialse positive rates (that are common with
AdaBoost). In addition, the number of negative examplestrhbascomparable to the number of positive
examples collected, to reduce classification bias.

Bootstrappingis an effective iterative two-stage procedure for collegtnegative examples. First, a
preliminary set of negative examples is collected at ranfiom a set of images that do not contain the object.
Based on this preliminary negative set and labeled possiétea classifier is learned using the AdaBoost
algorithm outlined in Section 4.1. This classifier is then over a collection of images that do not contain
the object of desired class. A fixed set of regions that gigh Ihésponse are then collected and amended to

1The notation used for featureg; (1), is somewhat of a shorthand. In practigeanges over the types of spatial templaties
[1,...,8] (see Figure 4.2), possible discrete locatidnsy), where the template can be applied within an imaged the discrete scale
of the template(w, h). Henceyj € [b,z,y, w, h]T, leading to a large collection of features (typically teniondreds of thousand).
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Input: Example greyscale images € R?- > with associated binary labelg € {0, 1}

(i.e. N labeled image pattefgx1, y1), (2, y2), ..., (x N, yn)})
Output:  Strong classifierh(x), capable of classifying a greyscale image R >dr,
whered,, is the width andi;, the height of the image in question.

1. Initialize weightsw; ; = ﬁ, % for positive and negative examples respectively, wherés

the total number of positive exampleg (= 1) and! is the total number of negative examples
(yi = 0).

2. For each round of boostirig= 1, ..., K

(a) Normalize the weights for all patterns [1, ..., N],

Wi 4

(4.3)

Wg.i =

o

Wk,j
1

J
(b) For each featurg, train a weak classifigt; (1) of the form:
hi(l)=4 L+ P ﬁ{/_[fj(f)]ﬁj < p;0; (4.4)
0 otherwise

Also, compute the error of classification with respect towlegghted set of examples,
N
€= Y wialhy(x:) = il. (4.5)
1=1

(c) Choose classifidi (z) with the lowest erroky.

(d) Update weights for all examplésc [1, ..., N] to give higher weight to misclassified exam
ples,

1—e;

€

wk+1,i = w;m- |: k ] (46)
1— €k

wheree; = 0 if the exampler; was classified correctly and = 1 otherwise.

3. The final strong classifier is defined as follows:

K K

1 if he(I) > L

h(I) = X ahi(l) 2 5 2 o 4.7)
0 otherwise

whereay, = log %

Algorithm 7 : AdaBoost Classifier Learning.

the old negative set. A new classifier can then be learnedilas¢éhe new augmented negative set and the
old positive set of examples. As this process is iterateth ewvery iteration of bootstrapping, the negative
examples become more alike the object. This is effectiveieler, if the number of bootstrapping iterations
is high, an inverse effect can be achieved. In particulathasegative examples become very similar to
the images of the object, the decision boundary betweenntbelasses becomes poorly defined. It can be
empirically shown that the classification error of weak sifisrs approaches 50% as the negative examples
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Input: Example positive greyscale image®) = {z")|i € [1,..., N,|}, 2" € Rdwxdn
Set of greyscale images that do not contain the olgjeet{¢q, &2, ...}
Output:  Strong classifierh(z), capable of classifying agreyscale image R« >,
whered,, is the width andi;, the height of the image in question.

1. Randomly select a set of, ; negative images; (™) = {x§"’1)|i €[l,..., Ny 1]}, fromé&.
2. For each bootstrap iteration= 1, ..., M

(a) Let negative set of examples b&) = {z(™9|i € [1,...,m|}, where the total number of

negative examples &, = > N, ;. For convenience, we also can refer to the individpal
=1

elements of the negative set using the following notaﬁgﬁ, wherei € [1,..., N,].
(b) Train AdaBoost strong classifiéfz) based on the following examples:

(@, 1), . (@@, 1), (2§, 0), ..., (2, 0)} (4.8)

using procedure outlined in Algorithm 7.
(c) Run classifieh(x) on images irt and obtain a set,

x(n,m+1) - {x§n7m+l)|i € [13 ceey Nn,m+l]}a (49)
of N,, .11 false positives.

3. Return the last trained ).

Algorithm 8 : Bootstrap Learning of AdaBoost Classifier.

become more like the object of interest, and therefore lrgstops being effective in practice. The full
bootstrap procedure is outlined in Algorithm 8.

4.2 Graphical Object Models

In our framework we model an object using a spatio-temparndirected graphical model. Each node in the
graph represents either the object or a component of thetohjeéimet. Nodes have an associated state
vectorX = [z,y,s]T € R? defining the component’s real-valued positi¢n, ), and scales, within an
image. The joint probability distribution for this spatiemporal graphical object model wif¥i components
and overI' frames can be written as:

p(XQ, X, X L XN XY X XS L XEN L Iy) = (4.10)
T

3 TTex?,x2 ) [Twax?, x5 [ Tws X X0 [ oX0, 1) [T (X5, 1)

t=2 ti tij t ti

Temporal Prior Spatial Prior Image Likelihood

whereX? andX %" is the state of the objeaf), and object's:-th component(;, at timet respectively {
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[1,..., N]andt € [1, ..., T]); (X9, X? ) is the temporal compatibility of object state between fratrand

t —1; 4;(X9, X) is the spatial compatibility of the object and it's compotseat framer; 1, ; (X7, Xtcj)

is the spatial compatibility between object componentsaahét; ando(X?, I,) andg; (XS, I,) denote the
local likelihoods for the object and component states retspdy, wherel, corresponds to the image at time
t. Notice that we assume stationary likelihoods and priaedjkelihood functions and priors do not change
over time.

Notice that since our component and the object image regimeot independent the above formulation
is only an approximation. However, since the overlap tendset small and the features that operate in the
different regions tend to be different (selected indepatigeising AdaBoost procedure), this approximation
works well in practice.

Our framework can be viewed as having five distinct companédita graphical modelji) an inference
algorithm that provides the ability to infer a state of eackl@in the graphiji{) a local evidence distribution
(or image likelihood), i) a proposal process for some or all nodes in a graphical madel {/) a set of
spatial and/or temporal constraints corresponding to dge®in a graph. We will now discuss each one of
these in turn.

4.2.1 Building the Graphical Model

In a single frame we represent objects using a two-layeiadgaaphical model. The fine, component, layer
contains a set of loosely connected “parts.” The coarsescbblayer corresponds to an entire appearance
model of the object and is connected to all constituent carapts. Examples of such models for pedestrian
and vehicle detection are shown in the shaded regions of&i§j3 @) and @) respectively. In both cases
objects are modeled using four overlapping image compsnéot the vehicle, the components are: top-left
(TL), top-right (TR), bottom-right (BR) and bottom-left (B corners; while for the pedestrian, they are:
head (HD), left arm (LA), right arm (RA) and legs (LG). The pesponding image regions are illustrated in
Figure 4.3 [eft) in both cases.

To integrate temporal constraints we extend the spatighiycal models over time to an arbitrary length
temporal window. The resulting spatio-temporal graphinabels are shown in Figure 4.8)(and 4.3 b).
Having a two-layer graphical model, unlike the single comgrtt layer model of [197], allows the inference
process to reason explicitly about the object as a wholegliswhelps reduce the complexity of the graphical
model, by allowing the assumption of the conditional indefence of components over time given the overall
object pose. Alternatively, one can also imagine buildisgale object layer model, which would be similar
to the Boosted Particle Filter [157] (with bi-directionahtporal constraints). Hence, the proposed model can
be interpreted as an extension of [157].

Depending on an object one may or may not have a likelihoodowoposal process for the object layer
nodes. For example, if the whole appearance is indeed toplamated to model as a whole.@. arbitrary
size vehicles) and can only be modeled in terms of componestean simply assume uniform likelihood
over the entire object state space. In such cases the saeugjedt, layer nodes simply fuse the component
information to produce estimates for the object state treatansistent over time.
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4.2.2 Learning Spatial and Temporal Constraints

Each undirected edge between componeraisd j has an associated potential functig){)(Xfi,Xth) =
wji(Xtcj , X) that encodes the compatibility between pairs of node st8&iesilar potentials are defined be-
tween the components and the objeg(X?, X), and across time) (X9, X€ ). Since in our framework
the state space for the object and components is one andnige s@ also make no distinction between the
different potential functions. In this section we form@lgtotentials for the components, but same equations
apply tog; (X, X{#) andy(X{, X{ ;).

The potentia{/)l-j(Xtci , Xtcj) is modeled using a robust mixture of;; Gaussians, which gives a convi-
nent form for the conditional distributions,

M;;
Cj i i
ww(Xf ) ) = )\ON( t aMzJaA (1- )\0 Z 51JmN X, §FijM(XtC ) GijM(Xtc )
m=1

where\’ is a fixed outlier probabilityu;; and A;; are the mean and covariance of the Gaussian outlier
process, and; ;. (-) andG; ;.. (+) are functions that return the mean and covariance matipentisely of the
m-th Gaussian mixture component;,,, is the relative weight of an individual componenta@i{i1 Oijm =

1. For experiments in this chapter we useff; = 2 mixture components.

Given a set of labeled images, where each component is atsevith a single reference point, we use
standard iterative Expectation-Maximization (EM) alglon (see details in Section 3.4.2) with K-means ini-
tializationto learn¥; ;,,,(-) andG, ;.. (-) directly (a discussion on learning conditionals directysus deriving
them analytically from joint distribution encoded by the@utial function can be found in Section 5.3.1) of
the form:

T
Fijm(Xi) = XH—[M ?m,ﬂ”m,u;m] (4.11)
gm gm
T
U?Eijm 0 0
Gijm(Xi) = 0  olym O (4.12)
0 0 Ugyijm

where s, ﬂfjm, ijm is the mean position and scale of component or objeetative toi. Gj(-) is
assumed to be diagonal matrix, representing the variancelative position and scale. Examples of the
learned conditional distributions can be seen in Figurd&.4b), and €).

4.2.3 AdaBoost Image Likelihoods

The likelihoodg; (X¢?, I,) models the probability of observing the image regipeonditioned on the state
Xtci of the componenti, and ideally should be robust to partial occlusions and #méability of image
statistics across many different inputs. To that end wedilr likelihood model using a boosted classifier.
As with potentials, we make no explicit distinction betweemponentg; (X", I,), and objectp(X?, I,),
likelihoods.
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Figure 4.3:Graphical models for the pedestrian and vehicle detectionrad tracking. Graphical models
for the vehicle and pedestrian objects are illustrated)agd @) respectively. The graphical structure for the
model is shown on the right; corresponding color coded intageponents are illustrated on the left. Entire
appearance model in both cases is in cyan, the componernits @, yellow, blue and green. The shaded
region of the model on the right corresponds to a single frarodel that can be used for object detection in
an image. Spatio-temporal models are obtained by repiigatiis spatial model along the temporal domain
to aw-length window and then connecting the object layer nodessadime. The resulting spatio-temporal
models are able to both detect and tract the correspondijegtstin video.

Following the framework described in Section 4.1 we traingted detector$,“ (1), for each component
C;,i € [1,..., N],and the corresponding overall object appearah@¢/), where appropriate. For simplicity
we use AdaBoost [236] without a cascade (training with aadsavould likely improve the computational
efficiency of the system). In order to reduce the number gEfalbositives produced by the detectors, we use a
bootstrap procedure that iteratively adds false positivasare collected by running the trained strong clas-
sifier over the set of background images (not containing #s&red object) and then re-training the detectors
using the old positive and the new extended negative setsnfbes of the positive and negative samples and
the resulting features selected by the AdaBoost learningdimponents of pedestrian graphical object model
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(b) ©

Figure 4.4:Modeling spatial constraints. lllustrated are learned conditional distributions froah Bottom-
Left (BL) to Top-Left (TL) component,kf) Bottom-Left (BL) to the whole appearance model, addwhole
appearance model to the Bottom-Left (BL) component of tiéake. In each case the conditional distribution
is visualized by conditioning on one of the parts and sangglcation and scale for the other part based on
the corresponding learned distribution.

can be seen in Figures 4.5-4.8.

The output of the AdaBoost classifier for each compor@&ris a confidencé“: (1 . xc:) that the given
image patterd, y , (obtained by selecting portion of the imageaccording to the hybotthesized stéigi)
is of the desireéi élass (see Section 4.1). We convert thifid=orce into a likelihood function by first normal-
izing theay,’s, so thath (It,XtCi) € [0, 1], and then exponentiating

C. C. hCi (It,Xci)
0 (X 1) = (L] X) o< exp % . (4.13)
Similarly, for the entire object likelihood, where apprizte,
hO(I, xo)
(X9, I,) = (1) X) x exp l%l , (4.14)

where7 is a temperature parameter that controls the smoothnes$e dikkelihood function, with smaller
values of7 leading to a more peaked distribution. Similar likelihoeds be derived for object nodes as
well where appropriate. Consequently we can also annedikiighood by deriving a schedule with which
T changes. We found an exponential annealing schefiute 750", where7j is the initial temperature,
v is a fractione (0,1), andx is the annealing iteration, to work well in practice. AdaBbolassifiers are
learned using a database of 861 vehicles and 662 pededttétis The number of negative examples after
bootstrapping tends to be on the order of 2000 to 3000.

Depending on an object one may or may not have a likelihood proposal process for the object
layer nodes. For example, if the whole appearance of an bigeécdeed too complicated to model as a
whole (e.g.arbitrary size vehicles) and can only be modeled in termswimonents, we can simply assume a
uniform likelihood over the entire state space. In suchs#se object layer nodes simply fuse the component
information to produce estimates for the object state treatansistent over time.

Note that while our state space is continuous, the AdaBdadtiood can only be evaluated at discrete
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Figure 4.5:AdaBoost detector for the head.Typical positive and negative examples are showra)ra(d

(b) respectively. All positive examples were selected in aesuiged fashion and scaled to a canonical size
of 32 x 32 pixels. Negative examples were picked at random from a s&reét images that did not contain
people. The negative set was then refined using bootstraeguoe. The features selected by AdaBoost,
overlaid on an example image of the head, are shown)inThe final strong classifier learned consisted of
50 features shown incf weighted by corresponding’s (not illustrated).
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Figure 4.6:AdaBoost detector for the left side of an upper body.Typical positive and negative examples
are shown ing) and p) respectively. All positive examples were selected in asuiged fashion and scaled
to a canonical size &f x 60 pixels. Negative examples were picked at random from a sdtedt images that
did not contain people. The negative set was then refinedyuintstrap procedure. The features selected
by AdaBoost, overlaid on an example image of the upper badysiaown in €). The final strong classifier
learned consisted 60 features shown incf weighted by corresponding.’s (not illustrated).
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Figure 4.7:AdaBoost detector for the right side of an upper body.Typical positive and negative examples
are shown ing) and p) respectively. All positive examples were selected in asuiged fashion and scaled
to a canonical size &f8 x 60 pixels. Negative examples were picked at random from a sgtedt images that
did not contain people. The negative set was then refinedy iintstrap procedure. The features selected
by AdaBoost, overlaid on an example image of the upper badyslaown in ). The final strong classifier
learned consisted 6f0 features shown incf weighted by corresponding;’s (not illustrated). Notice that
the first feature selected is symmetric to the one choseneblethside detector in Figure 4.6.
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Figure 4.8: AdaBoost detector for the lower body. Typical positive and negative examples are shown
in (a) and p) respectively. All positive examples were selected in aesviged fashion and scaled to a
canonical size 086 x 60 pixels. Negative examples were picked at random from a sstreét images that
did not contain people. The negative set was then refinedyiintstrap procedure. The features selected
by AdaBoost, overlaid on an example image of the lower bodysaown in €). The final strong classifier
learned consisted 60 features shown incf weighted by corresponding.’s (not illustrated).
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pixel positions. To enable sub-pixel accuracy one can usegdalation. In addition, it may be prohibitively
expensive to compute the likelihood due to need for scalimgpised by the continuous scale space. In prac-
tice we discretized the scale space, and use bi-cubic witgipn to approximate the continuous likelihood
function. This is done by precomputing the likelihood foclegixel at a set of scales and interpolating, using
bi-cubic interpolation, a likelihood for any continuouat&X;.

4.2.4 Inference using Belief Propagation

Inferring the state of the object and its components in oaméwork is defined as estimating belief in a
graphical model. We use Particle Message Passing desdriluklail in Section 3.7 to deal with this task.
The approach is a generalization of particle filtering [S4jet allows inference over arbitrary graphs rather
then a simple chain. In this generalization the “messagedl uis standard belief propagation is approximated
with a kernel density (formed by propagating a particle bebugh a mixture of Gaussians density), and
the conditional distribution used in standard particlefilig is replaced by product of incoming messages.
Most of the computational complexity lies in sampling frompraduct of kernel densities required for mes-
sage passing and belief estimation; we use efficient sei@lemiltiscale Gibbs sampling and epsilon-exact
sampling [95] to address this problem.

Individual messages may not constrain a node well, howdveproduct over all incoming messages into
the node tends to produce a very tight distribution in theestpace. For example, any given component of a
vehicle is incapable of estimating the height of the vehieleably, however, once we integrate information
from all components in the object layer node, we can get angdigble estimate for the overall object size.

More formally a message:;; is written as

mi;(X;) = /wij (Xi, X)¢i(Xa) [ mwa(Xa)dXs, (4.15)
kEA\j
where A; is the set of neighbors of nodeand ¢;(X;) = ¢;(X;, ;) is the local evidence (or likelihood)
associated with the nodeandy;; (X, X,) is the potential designating the compatibility betweendtates
of nodei andj. The details of how the message updates can be carried otralijied sampling from belief
and proposal function see Section 3.7.

While it is possible and perhaps beneficial to perform infeesover the spatio-temporal model defined
for the entire image sequence, there are many applicatbongfich this not an option due to the lengthy off-
line processing required. Hence, we use-fame windowed smoothing algorithm wherds an odd integer
> 1 (see Figure 4.3). There are two strategies one can employ pdréorming windowed smoothing in the
proposed framework:1§ object-detection centric strategy or 2) (racking-centric strategy. In the former
we re-initialize all nodes every time we shift a window, hertbe inference is memoryless and temporal
integration is only applied within the window of size In the latter we only initialize the nodes associated
with a new frame; this tends to enforce temporal consistémey beforet — (w — 1) /2. While the tracking-
centric strategy tends to converge faster and produce magstent results over time, it is also less sensitive
to objects entering and leaving the scene. Note that witk= 1, the algorithm resembles single frame
component-based fusion [249].

The BP message update equation can be executed either byngpalathe massages:;; in a batch
or by updating certain messages before others. The lalsercalled focused message updating [44], can
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significantly speed up BP given sora@riori knowledge of the object model. For example, if an objectiaye
node of the graph has no associated likelihood or proposakess (as is in our car model), then it would
make sense to update the incoming messages to it beforeingpttae outgoing ones. For generality and
ease, we choose not to do focused message updating here.

4.2.5 Proposal Process

To reliably detect and track the object, non-parametric BiRes use of a bottom-up proposal process, that
constantly looks for and suggests alternative hypothesihé state of the object and components. We model
the proposal distribution using a weighted particle setfofm a proposal particle set for a component, we

run the corresponding AdaBoost detector over an image atrdauof scales to produce a set of detection

results that score above t%eszzl ay, threshold. The weight for these particles is set to be propal

to the likelihood. While this set tends to be manageablefferantire appearance model, it is usually large
for non-specific component detectors (a few thousand locattan easily be found in any given image). To

reduce the dimensionality we only keep the #®gcoring detections, whete is on the order of 400 to 200.

To achieve breadth of search we importance sample partioi@sthe proposal using a uniform distribution.

4.3 Experiments

We tested the proposed approach on a set of images colledted wingle car-mounted grayscale camera.
As mentioned in Section 4.2.3 we trained the AdaBoost liladids off-line using a databases&sfl vehicles
collected by ourselves arib2 pedestrians taken from [144]. In both cases, testing images collected
using a different camera, under differentimaging condgiand in different location from those in the train-
ing set. Hence, none of the test images appeared in thertgeseit. To normalize the size and location of
components for training we manually labeled a setleb} landmark points corresponding to a target object
and components in each training image.

4.3.1 Multi-frame Single Target Detection and Tracking

The result of vehicle detection and tracking over a sequefé&& consecutive frames can be seen in Fig-
ure 4.9. A3-frame spatio-temporal object model was used and was ghiféng tracking-centric strategy,
discussed in Section 4.2.4, over time. The position ancesgfatomponents and the object as a whole are
shown in the respective colors. In Figure 429 & set of considered proposals for the components and object
as a whole are shown. Neither of these proposal processedblaréo reliably locate the object. By com-
bining the proposals from various components using oureémfee framework, we are able to reliably and
consistently detect and localize the object, and its p¥visran BP with30 particles forl0 iterations at every
frame. For comparison, we implemented a simple fusion sehtvat blindly averages the best detection
result from each of the four components (Figure 49‘Best Avg.) to produce an estimate for the vehicle
position and scale independently at every frame. The padoce of the simple fusion detection is very poor
suggesting that the noisy component detectors often doawvet the global maximum at the correct position
and scale. In contrast, the spatio-temporal object modesistently combines the evidence for accurate
estimates throughout the sequence.
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(Best Avg) (Componentg (Object)

Figure 4.9:Vehicle component-based spatio-temporal object detectioand tracking. (a) shows the ini-
tialization/proposal distribution, andb 30 samples taken from the belief for each of the four comptme
(middle) and an object (right). The detection and trackireg wonducted using a 3-frame smoothing win-
dow. Frame< through52 are shown (top to bottom respectively) at 10 frame intervats comparisonky)
(left) shows the performance of a very simple fusion aldunit that fuses the best result from each of the
components by blind averaging.
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Figure 4.10:Pedestrian component-based spatio-temporal object detigon for two subjects&) and p);
(top) shows the initialization/proposal distributiondafpottom)30 samples taken from the belief for each
of the four components and the object. The detection wasumiad using &-frame temporal smoothing
window.

The performance of the pedestrian spatio-temporal detecghown in Figure 4.10. A-frame spatio-
temporal object model is run at a single instance in timeviar pedestrians in two different scenes. Similar
to the vehicle detection we run BP wis particles forl0 iterations. For both experiments the initial tem-
perature of the likelihood was fixed & = 0.2.

4.3.2 Single Frame Multi-target Detection

While in general the algorithm presented here is capabletefating multiple targets, by converging to multi-
modal posterior distributions for components and objeatpractice this tends to be very difficult. It is well
known that particle filters have problems tracking multirakaistributions [157]. This framework that further
extends particle filtering, and requires message updataeoto take products over particle sets, makes this
problem even more apparent. We postulate that given a langéer of particles this can be done, but would
be prohibitively expensive. Instead we use a peak suppressheme, where we look for the modes of the
posterior one at a time, and suppress the response of olilntikd function in the regions where peaks have
already been found. An example of this that is produced byingwa purely spatial graphical model over the
image is shown in Figure 4.11.
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Figure 4.11:Multiple target detection. Example of detecting multiple instances of a vehicle objec¢he
same image is shown. The greedy approach employed detditliral instances of vehicle classi total)

by searching for each instance in succession. Once defé¢lotethost prominent mode of the posterior (red)
is labeled as a detection, and the associated image evidemsappressed from consideration in the future
runs. The modes that correspond to instances with highefittemce are found in early stages of this greedy
search strategy as is designated by the labels. For furibmrasion please see text.

In Figure 4.11 vehicle detection was administesddnes in succession. After each run the most promi-
nent mode, shown in red, of the resulting object posteristrithution was labeled as an instance of the vehi-
cle object and image evidence in the corresponding regioe sugppressed for subsequent detections. This
scheme tends to pull out instances of the object class thatligh confidence first, followed by instances
where confidence is lower. This can be seen from the labeigresito the object instances in Figure 4.11.
For the example shown, we manually choose the number of tstgepectedy), however, this can be done
automatically as well by looking at the overall likelihoaaf the given object instance. Notice, that we are
able to quite reliably pull out alb real instances of the object at roughly correct positionssade; we also
pull out two false positives. The false positive labelét Which corresponds to the blemish on the wind-
shield of the car recording the scene, indeed looks veryaiita the back of the car profile at a much smaller
scale. In both cases, the false positives had a much lowéideoie then real instances as is illustrated by
the labels given by our greedy search algorithm. Lastlys &lso worth noting that we observed that our
approach that explicitly encodes the spatial relatiorshgtween components is better capable of handling
variations in orientation of the object (see various ins&sof detected cars in Figure 4.11).

4.4 Conclusion and Discussion

In this chapter we show how the mathematical tools presentéuke previous chapter can be leveraged to
build a class of models for generic object detection andilzai@on. Experiments presented in this chapter are
a proof of concept that continuous-state graphical modelgige effective means of modeling and drawing
inferences about objects in a visual detection task. Predamchitecture can be interpreted as an extension of
the constellation model [61], where the spatial constsaané non-parametric rather then Gaussian. However,
we believe that the true power of the architecture presdmeslis that it can be extended to deal with complex
articulated objects as will be shown in the next chapter.
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We present a novel object detection and tracking framewgptoéing boosted classifiers and non-
parametric belief propagation (NBP). The approach pravaenponent-based detection and integrates tem-
poral information over an arbitrary size temporal windowe Wustrate the performance of the framework
with two classes of objects: vehicles and pedestrians. th @ases we can reliably infer position and scale
of the objects and their components.

While the proposed approach is effective in detecting aacking generic objects in images and video,
it has two shortcomings that need to be addressed in theefurit is fully supervised, and?) it cannot
effectively deal with multi-target detection and intefans. The fully supervised nature of the algorithm
is the Achilles’ heel of the proposed approach. Clearly meaafrautomatically learning the structure and
parameters of graphical object models from weakly labetachdabeled data is necessary to make it widely
applicable to generic object detection and localizationing this manually, as is done in this chapter, will
not scale to large sets of complex models for which experivkedge may not be available. The greedy
approach developed here for multi-target detection, wéffiective, requires multiple runs of the basic algo-
rithm, resulting in complexity that is linear in the numbérobject instances. Ideally, a better solution that
can jointly estimate all instances and is sub-linear in thelper of such instances can be developed. One
way of addressing this would be by explicitly maintainingltrmodal predictions for the posterior/beliefs
and messages in in the NBP framework, either using mixtacking [233] and/or hybrid MCMC methods.



CHAPTER 5

Loose-limbed Body Model

In this chapter we present a fully automatic method for eatiing the pose and tracking the human body in
3D. We introduce a novel representation for modeling theylibdt we callloose-limbed body modeThis
new model, in which limbs are connected via learned prolsigilconstraints, facilitates initialization and
failure recovery. The tracking and pose estimation prolikeformulated as one of inference in a graphical
model and belief propagation is used to estimate the poseedfddy at each image frame. Each node in the
graphical model represents the 3D position and orientati@limb (Figure 5.1). Undirected edges between
nodes represent statistical dependencies and theseaintsbretween limbs are used to form messages that
are sent to neighboring nodes in space and time. Additigreglth node has an associated likelihood defined
over a set of image features. The combination of highly nausSian likelihoods and a six-dimensional
continuous parameter space (3D position and orientatmmgdch limb makes standard belief propagation
algorithms infeasible. Consequently we exploit a form ofip@rametric belief propagation [99, 220] that
uses a variation of particle filtering and can be applied evieropy graph, initially described in Section 3.7
and used for generic object detection and tracking in theipue chapter.

There are a number of significant advantages to this appraadompared to traditional methods for
tracking human motion. Most current techniques model thoylas a kinematic tree in 2D [111], 2.5D [34],
or 3D [30, 52, 193, 210] leading to a high-dimensional patamspace (25-50 dimensions is not uncommon).
Searching such a high-dimensional space directly is intjpacand so current methods typically rely on
manual initialization of the body model. Additionally, theften exploit strong priors characterizing the
types of motions present. When such algorithms lose traskh@y eventually do), the dimensionality of the
state space makes it difficult to recover.

While the full body pose is hard to recover directly, the kima and pose of individual limbs is much
easer to compute. Many good face/head detectors exist [#),2B6] and limb detectors have been used
for some time €.9.[20, 147, 173, 187]). The approach we take here can use beafpoimformation from
feature detectors of any kind and consequently should géreto a rich variety of inputimages. In our im-
plementation we exploit background/foreground sepamnatial color coherency for computational simplicity
but part detectors that perform well against arbitrary lgacknds are becoming standard [173, 236].

With a kinematic tree model, exploiting this partial, “bmtt-up” information is challenging. If one could
definitively detect the body parts, then inverse kinematmsld be used [256] to solve for the body pose,
but in practice low-level part detectors are noisy and ualét. The use of a loose-limbed model and belief
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Figure 5.1:Graphical model for a person. Nodes represent limbs and arrows represent statisticaindep
dencies between limbs. Black edges correspond to the kineowmstraints, and blue to the interpenetration
constraints.

propagation provides a principled framework for incorpimginformation from part detectors. Because the
inference algorithm operates over a general graph ratleratorward chain as in traditional particle filter

trackers, it is also straightforward to perform temporalfard—backward smoothing of the limb trajectories
without modifying the basic approach.

A loose-limbed body model requires a specification of thebphilistic relationships between joints at
a given time instant and over time. We represent these narsskmn relationships using mixture models
that are learned from a database of motion capture sequetiégssvorth noting that these models encode
information about joint limits and represent a relativelgak prior over human poses, which is appropriate
for tracking varied human motions.

The model also requires an image likelihood measure for kanth We formulate our likelihood model
based on foreground silhouette and edge features. Thénlikels for different features are defined separately
and combined using independence assumptions across vieMisaiure types. It should be noted, however,
that our framework is general and can use any and all avaifebtures.

We test the method by tracking subjects viewed from a numbeéo (/) calibrated cameras in an in-
door environment with no special clothing. There is nothiesfricting this approach to multiple cameras
and Chapter 6 will explore its use for monocular pose-estonaand tracking. Quantitative evaluation is
performed using the HumanEva [194] dataset that contaimdsgnized motion capture data and multi-view
video. The motion capture data obtained using a commeraali\(Vicon Motion Systems Inc., Lake Forest,
CA) motion capture system serves as a “ground truth” in thentjtative comparison.

5.1 Previous Work

There has been significant work in recovering the full bodgepfsom images and video in the last 10-15
years. The literature on the human pose estimation anditigaitias been reviewed in detail in Chapter 2.
Here, for completeness, we will briefly review only the maéevant literature to motivate our model.

As was discussed in Section 2discriminative approacheattempt to learn direct mapping from image
features to 3D pose from either a single image [1, 179, 183, 286] or multiple approximately calibrated
views [77]. These approaches tend to use silhouettes [11.78,181] and sometimes edges [205, 206] as
image features and learn probabilistic mapping in the fofiNearest Neighbor (NN) search [189], regres-
sion [1], mixture of Baysian experts [206], or specializedppings [179]. While such approaches are fast
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Centralized Models Disaggregated Models
Kinematic-tree Pictorial Structures \ Loose-Limbed Body Model

Inference Local Stochastic Search Belief Propagation Particle Massage Passing
State-space Continuous Discrete Continuous
Constraints Kinematic (simplg Kinematic Kinematic

Penetration Penetration

Occlusion Occlusiort

Temporal Temporal
Applications Tracking Pose Estimation Pose Estimation/Tracking
Model 3D/2D 2D 3D/2D*
Complexity Exponential Linear Linear

Table 5.1:Comparison of loose-limbed body model to other generativegproaches. The approach pre-
sented in this chapter is illustrated in the grayed columtherright. The loose-limbed body model approach
advocated in this thesis allows for continuous pose esitimaind tracking with rich set of constraints, while
having a tractable inference complexity that is linear mlumber of body-parts in the model.

and have been shown to work reliably in restricted domaiustail they tend to deal poorly with missing
or corrupt image data. Consequently, due to their discathia nature, they tend to generalize poorly to
recovering poses that are uncommon or unaccounted forgltraiming. Furthermore, it is hard to embed
prior knowledge into such approaches that ensures thaegudting articulations are plausible.g. parts of
the body are not penetrating, or joint limits are preserved)

Generative approachese much better equipped to deal with these issues, singatteenpt to model the
image generation procéss-or the time being we will concentrate on relevant genegaapproaches in this
section; a broader discussion of related work can be fouthapter 2. Generative approaches typically rely
on a kinematic tree [139] representation of the body in 2[1[12.5D [34], or 3D [30, 52, 193, 210]. In such
approaches the pose is defined by a set of parameters reprgste global position and orientation of the
root, usually a torso, and the joint angles representingtie of each limb with respect to the neighboring
part higher up in the tree. Such centralized models are vepyessive and are able effectively encode
prior knowledge that can both reduce the ambiguities in tteeoved pose and ensure that recovered pose
is to some extent realistic. The inference in these modglgajly amounts to generating a number of
hypothesis for the pose, and evaluating the likelihooddlgiten hypothesis gives rise to the image evidence
observed. Inference in such models, however, often regjsteehastic search for the parameters in the high
dimensional 25-50 dimensional, state-space. Many specialized inferenceoappes have been developed
to reduce the exponential complexity of the search in thgd{dimensional space. Such inference methods
typically take into account the structure [52, 136] of thesmlels and/or dynamics [193] of human motion.
However, none, can tractably infer the articulated posbauit effective initialization that is relatively close
to the solution. For this reason, these models are partlgmauable for tracking but have little consequence
in the pose estimation task.

To address the complexity of inference in generative modeisw class of disaggregated models has
emerged. Disaggregated models for finding or trackinguletted objects date back to Fischler and Elschlager’s

1This will be addressed in Chapter 6.

2While generative models employed for human pose and mosiimation are typically very weak €.they cannot generate realistic
images of articulated human motion) they still tend to be/edfective for inference.
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pictorial structures [62]. Various variations on this tygféhe model in the context of articulated and generic
objects have been discussed in Sections 2.4.3 and 2.1p&cteely. The main idea behind this class of
models is that one can model a body as a collection of indep#rubdy parts that are constrained at the
joints (ensuring proper articulated structure of the bo@gsed on this notion loffe and Forsyth [96, 97] first
find body parts and then group them into figures in a bottomashibn. The approach exploits the fact that
they have a discrete set of poses for parts that need to belalssk but it prevents them from using rich
likelihood information to “co-operate” with the body modehen estimating the pose. Consequently this
also prevents them from effectively dealing with partiatiosions of the body.

An alternative way of formulating probabilistic disaggated models is via undirected graphical models
described in Section 3.3. Assuming existence of conditioiependencies between body pagg(pose
of right arm is conditionally independent of the left givérettorso), one can model the body using a corre-
sponding undirected graphical model and formulate tragkimd pose estimation as inference in this graph.
Felzenszwalb and Huttenlocher [59] introduced a clevararice scheme that allowed linaomplexity ex-
act inference in such graphical models using standard B&lgagation. This method was then successfully
illustrated on recovering mostly frontal 2D articulatedsps. Their inference algorithm, however, requires
a tree-structured topology for the graph, a particular fofmpotential functions (that encode connectivity
at the joints), and discretization of the state-space (sk@iscussion of this in Section 3.5.2). As a result,
efficency comes at the cost of expressiveness and resultidglsicannot account for occlusions, temporal
constraints or long-range correlations between body peattsf which will introduce loops into the graphical
structure; expressive joint constraints are also disathviFurthermore, the inference algorithm relies on the
fact that the 2D model has a relatively low-dimensionalkstgiace for each body part, making it impractical
to scale the approach to 3D inference. While later extenddeéal, to some extent, with correlations between
body parts in [122] and to jointly learn appearance in [11g] ibasic method still struggles with limitations
discussed above.

The loose-limbed body modéhtroduced in this chapter can be viewed as the “best of baiHds”,
permitting expressiveness similar to that of kinematie tr@dels and allowing linear inference complexity
similar to [59]. Our method makes no explicit assumptionsiathe topology of conditional independence
properties of the graph.€. it can deal with cyclic graphs), allows for a richer class ofgntial functions,
and can deal with continuous pose in 3D. To achieve tractafdeence, however, we resort to approximate,
instead of exact, inference using a variant of Non-pardmBlief Propagation, Particle Message Passing
(PAMPAsS). The comparison with closely related prior work discusabdve is compactly summarized in
Table 5.1.

A similar approach to ours was developed at roughly the same for articulated hand tracking by
Sudderthet al.[219]. However, in [219] authors only dealt with trackingdahnave not addressed the pose
estimation problem. Another closely related approach veagldped more recently by Rodgetsal. [177]
for estimating articulated pose of people from range scaa. dasimilar in spirit approach to ours has also
been adopted in [248] for tracking a 2D human motion usingradyic Markov network and later in [93]
using data-driven Belief Propagation. A much simplifiedeyliation model, that relied solely on silhouettes,
was adopted in [248] and their system does not deal with pstgaaion. In [93] a much richer observation
model was used, but the approach is still limited to 2D poserémce in roughly frontal body orientations;

SLinear in the number of parts and exponentialin the numbdegfees of freedom for each part.
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I 10-part model | 15-part model |

Graph
Number of nodes 10 15
Number of edges
kinematic 9 14
interpenetration 4 13
Max node degree 7 8
Avg. node degree 2.6 3.6

Figure 5.2:10-part and 15-part loose-limbed body models for a personGraphical models corresponding
to 10-part andL5-part model of a person are illustratediieff) and ¢ight) columns respectively. In both cases
nodes represent limbs and edges represent statisticaldiepaes between limbs. Black edges correspond
to the kinematic constraints, and blue to the interperietratonstraints. The degree of the node is defined
as the number of edges incident on the that node. Node deg@®eiof the measures for corresponding
graphical model complexity.

the subject is assumed to be facing towards the camera anthgééstinct clothes. All of these methods,
while closely related, use somewhat different inferengo@ihms and a more direct comparison between
them merits future research.

5.2 Loose-limbed Body Model

Following the framework that we first introduced in Chaptehd body is represented by a graphical model
in which each graph node corresponds to a body part (uppgetolesp,etc). We test our approach with two
such models consisting @f) and15 body parts (see Figure 5.2), corresponding to a “coarse™famef body
representation respectively. The latter, in addition talelimg all major limbs of the body, also models hands
and feet. Thd5-part model also contains a more realistic parameterizatidhe torso that is modeled using
2 segments (pelvis and thorax with abdomen), allowing inddpat twist of upper and lower body.

Each part has an associated configuration vector definingattis position and orientation in 3-space.
Placing each part in a global coordinate frame enables thielptectors to operate independently while the
full body is assembled by inference over the graphical moBees in the graphical model correspond to
position and angle relationships between adjacent bodg rarspace and possibly time, as illustrated in
Figure 5.2.

To describe the body by a graphical model, we assume thaibles in each node are conditionally
independent of those in non-neighboring nodes given theegabf the node’s neighbdrsEach part/limb is

4Self-occlusions of body parts in general violate this agsion. For that purpose, in the next chapter, we introduadusion-
sensitive likelihoods and edges to model occlusion ratatiips in addition to other constraints presented here. edew in the case
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Figure 5.3:Parameterization of a 3D body part.

modeled by an elliptical cross-section tapered cylindeirttgt fixed and6 estimated parameters. The fixed
parameter®, = [I;, w!, w¢, of, of, €Z] correspond respectively to the part length, width at theipnal and
distal ends, the offset of the proximal and distal jointsglthe axis of the limb, and eccentricity as shown
in Figure 5.3. The offsets)” and o, are only used to limit the extent of where the likelihooddtion is
evaluated. In vicinity of a joint, assumptions typically deaby the likelihood function are often violated
[52].

The estimated parameteXs = [x;, q;]” represent the configuration of the paih a global coordinate
frame wherex; = (x4, Xy, X2 € R3 andq; € SO(3) are the 3D position of the proximal joint and
the angular orientation of the part respectively. The iotest are represented by unit quaternieps=
[9z,is Qy.i» 4=,i> Qu,i), Such that] q; ||= 1. As aresultX,; € R7, lies on a 6D manifold. The overall
pose of the bodyX, for the model withV parts is expressed by the collection of individual part tmees
and orientationsX = {Xj, Xo, ..., Xy}. This somewhat redundant representation, facilitatesilliged
inference using Belief Propagation.

Each undirected edge between padad; has an associated potential function(X;, X ;) that encodes
the compatibility between pairs of part configurations amditively can be thought of as the probability of
configurationX; of part j conditioned on theX; of part: (and vice versa). We introduce two types of
potential functions/)g-(Xi, X;) and w{;(Xi, X;), corresponding to kinematic and penetration constraints
between parts respectively. In general, these constraiet€omplex and non-Gaussian. While we only
introduce kinematic and penetration potential functiohe framework is general and can handle a variety of
other constraintsg(g.occlusions [196] and/or motion specific kinematics).

5.3 Constraints

The key to modeling the body using@ose-limbed body modé&d the ability to formulate local spatial (and
temporal) coherence constraints for the body parts. Taetids in this section we define the local constraints
(a.k.a.potential compatibility functions) used in our model.



Vi; (Xieft calfl Xieft shin) Vi (Xieft_calfl Xieft foot)
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Figure 5.4:Learned kinematic potentials. Kinematic potentials are illustrated by sampling from eerr
sponding conditional distributions. The potentials fa tbft lower leg and subset of potentials for the torso
are shown. The figure illustrates distribution of limb pisis and orientations conditioned on the ground
truth pose for the neighboring limb shown in blue. Blue spiéndicate the proximal joint position of a limb
encoded by the sample, while the red spheres indicate tta digl of the limb for each sample. The spread
of these samples illustrates the variance of the learnedhiison. The ground truth pose for the limb is
shown in red.

5.3.1 Kinematic Constraints

The kinematic potentia@fg (X;,X;) are in general non-Gaussian and in our framework are appeigd
by a robust mixture ofi/;; Gaussian kernels. This modeling choice is motivated by émeenient form for
the resulting conditional distributiofs

Mij
B 1Xa) = AN (X g, Mig) + (1= 20) D 61y (X Fijon(Xs), Gign(X4)), (5.1)
m=1
where\’ is a fixed outlier probabilityu;; and A;; are the mean and covariance of the Gaussian outlier
process, and’;.,(-) andG,;.,(-) are functions that return the mean and covariance matrpentisely of

of multiple views we found that kinematic and penetrationsteaints are sufficient to reliably infer the pose. As thenber of views
decreases, or views become more degenerate, additiohasimetambiguities will arise and occlusion constraintsatied in Chapter 6
would have to be added.

5Notice that for inference usinga®Pas, we only need conditional distributions, not the full pdtals or joint distributions that
give rise to these conditionals.
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the m-th Gaussian mixture componen;;,,, > 0 is the relative weight of an individual component and
2y B = 1.

One of the challenges in modelinid?(Xi, X ;) is that part of the state-spadg = [x;, q:]” correspond-
ing to rotation in 3D lies on Riemannian manifold. A properdebof distribution on the S@) can be
achieved usingon Mises-Fishedistribution [15] (or mixture thereof), which is a generaliion of a Gaus-
sian to an arbitrary dimensional spherical shell. For aithistion on a3-dimensional sphere embedded into
R?,

M(qis 1, k) = ( )exp(fqui), (5.2)

K
(2m)21 (K
wherey is the mean directions > 0 is the concentration parameter (similar to variance) Andenotes
the modified Bessel function of the first kind of ordeer As with Gaussians the product of the von Mises-
Fisher distributions is in itself a von Mises-Fisher distiion. This means that NBP can easily be modified
to take into account these distributions on angles. Thigjeler, would lead to additional implementation
complexity.

Instead, following [197, 219], we use a linearized appration for densities that involvg;. Hence any
distribution over rotations is modeled as a mixture of Gausdistributions= R*. Any sampled orientations
from such a distribution may be projected back to($y normalizing the correspondingdimensional
vector. This approximation works well for points that arghtily concentrated, and tends to over-estimate
the variance as they become more spread out over the sptareeriently, since we model the distribution
over orientation using a Gaussian mixture, the distributieer the entire state is jointly a Gaussian mixture
as well andF;;,,,(X;) € R7, G;jm(X;) € R™*7. It remains to be shown how the functiofs;,,(X;) and
Gijm(X;) are modeled or learned.

Deriving Kinematic Conditionals from Joint Distributions

Given a set o5 ground truth paired state vectdbs= {(xl(-l), xgl)), (x§2), x§-2)), vy (xl(_s) (S))} for neigh-
boring nodes and; respectively, we can learn the potential compatibilitydiion between the two nodes
directly by simply learning the joint distributiapf](-(Xi, X;) = p(X;, X;). Sincewg- (X;,X;) is modeled
using a Gaussian mixture, we can derive the correspondindittonal distributions needed byaRIPAS
analytically. In particular, we can analytically deri#g; ., (X;) andG;,(X;) functions that give means and
covariances of conditional mixture components in Eq. 5.@r éxample, assuming that we learn parame-
ters of joint distribution (using for example Expectatibtaximization (EM) procedure for Gaussian Mixture
Models (GMMs) described in Algorithm 1), such that

g3 )
i) =

]mn[ um] 1(X’L_ﬁlm) andG’L]m(Xl) -

>|

we can define);; (X ;| X;) by analytically derivingF; ., (X
Ajj17n - A]lm[Aum] 11_\ijm-

This method of learning potentials, however, has two diaathges. First, learning the joint distribution,
p(X;,X;), in high dimensional€¢ R!'%) space is hard. Secondly, the joint distribution will unttedly
encode the prior information for botk; andX;. Hence, if we train on upright postures, for example, we
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would never be able to infer the pose of the person lying daver{ if we have observed the full range of
motion for all the joints). This is concerning, becauseeastof natural joint range of motion constraints that
kinematic potentials should encode, they will also enceodi@ing data specific information that will make it
hard for the algorithm to generalize. Instead, what we wdikklto do is assume a uniform prior over both
p(X;) andp(X;) and learn potentials that will only encode the kinematiafebnstraints. This amounts to
learning conditional distributiongX;|X;) andp(X;|X;) directly, which is allowed, so long as there exists
a common joint distribution that gives rise to the two coiwtfils. Ideally such learning procedure would
ensure that learned conditionals would be symmeitécp(X; |X;) o p(X;|X;).

Learning Kinematic Conditionals Directly

For convenience, let us first define re-parameterizatiohestate X;, in terms of homogenized 3D object-
to-world matrix transformation,

1-2¢2, =202,  2Qe.iQyi — 2Gw,iQzi 20zizi + 2u.iGyi X
200,iGyi + 2qw,iGz 1 =200, =247, 2GyiQzi + 2Qw,iQei Xy
202,10z, — 2Qw,ily.i  20y.iGz — 2Qw,i9e; 1 =200 — 200 Xay

0 0 0 1

The corresponding inverse transformatign* (-) that maps back from the 3D object-to-world matrix to
our state-space parameterization is somewhat more iroléhe tracetr(X;) = a1 1 + az2 +asz s + 1,
wherea; ; is thei-th row andj-th column of a4 x 4 homogenized matriX;, is > 0, then the following
simple calculation would define the inverse,

—1/yv.) — (as,2—a2;3) (a13—as;1) (azi—ai2) /tr(X)
H(X;) = [ 1,4 Q24 G34 2 /i (k) 2,/tr(X,) 2/t (%) D) }

Otherwise, iftr(X;) < 0, one must look at the major diagonal element and apply theeotise inverse
transform as followsX,; =

T
'\/t';(xi) (a3 9g—az 1) (a1 3—ag 1) (ag 3—ag 2) ] if a1 > asoandar 1 > ags

[01,4 az,4 Q3.4

2/tr(X;) 2/tr(%;) 2/tr(%;)
1 (ay,2—a2 1) tr(X;) (ag,3—agz 2) (a13-az ) |7
H (X;) = a a a - - Zi —_— —_— if a > a1 anda >a
(X3) [ 1,4 2,4 3,4 /i) 5 /i () 2/ () 2,2 2 Q1,1 2,2 2 a3,3
(a1,3—a3,1) (ag,3—ag 2) tr(X;) (a10-an 1) |7
3793, 3793, i . ! if > and >
[ a4  a24 Az 2/ (L) ENZTeR) 5 2/ () ] asz,3z > a1, asz,3 > a2,2

It can be shown that indeeXl; = H~'(H(X;)). We can further define relative stafs;, such that

X;;=H " ([H(X;)] " x H(X;)). (5.4)

Intuitively X;; is the parameterized pose of the paih part:'s coordinate frame for a particular pair of
co-occured states. The conditiong} (X;|X;) can then be expressed as a transformed distributiorXyer
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We can learn a Gaussian mixture distribution¥oy; using the Expectation-Maximization procedure. As a
result,

P(Xii) = D SijmN (Xiji trijm, Nijm) (5.5)
m=1
we learn parametekd; m., fbijm. Aijm}ﬁfgl, wherey; ., is the meanj\;;,,, a covariance, angjnj\fgl Oijm =

1 are weights for the mixture components of the transformettilution. We can then define the transforma-
tion functions explicitlyF; j,,,(X;) = R(X;) * pijm + T(X;) andGijm(X;) = (A;j}n * R(Xi))fl, where
T(X;) = [x:,0,0,0,0" and

1*2q3,i*245,i 2¢x,iqy,i — 2Quw,i9z,i  2q=,i9z,i + 2Guw,iqy,i 0 0 0 0
2Gz2,iqy,i + 2quw,iqz,i 1—2q3, — 242, 20y .iqz,i + 2Qw,iqz,i 0 0 0 0
2e,iQzi — 2Qu,iQy.i  2Qy.iG=i — 2qw.iqzi 1 —2q2; — 243, 0 0 0 0
R(X;) = 0 0 0 Qu.i  —Qwi  —Qyi  —q=i
0 0 0 —qz,i  Quw,i 4=z Qy,i
0 0 0 —qy,i  —9zi  Qu,i  —qa,i
0 0 0 —qz,i  Qy,i —qz,i  Qu,i

Intuitively, for a given value ofX; = [x;, q;]7, the top-left block will transform the translation compane
of the mean and covariance via a rotation matrix defined byttend the bottom-right block will transform
the quaternion rotation component of the mean and covaigiacthe Grassman product.

While our learning algorithm is general enough to learnribistions that have couplings between posi-
tional and rotational components of the state space, reguit full-covariance matrices, for computational
purposes we restrict ourselves to the block-diagonal cavee distributions.

Figure 5.4 shows a few of the learned conditional distriimgi Samples are shown from several limb-
to-limb conditionals. For example, the lower leg distribatis shown conditioned on the pose of the upper
leg. The proximal end of the shin (green circle) is prediatéith high confidence given the thigh location,
but there is a wide distribution over possible ankle loasi@as expected.

5.3.2 Penetration Constraints

Another important constraint that needs to be modeled &rpenhetration between limbs. Since the body
consists of convex solid parts, they cannot physically pateeach other. To model this we define a set of
pair-wise constraints between the parts that are mosyltkgbenetrate, given the kinematics of the body. In
the limit we could consider all pairs of parts, which woulduk in an inference algorithm that is quadratic
instead of linear in the number of parts. Instead, as a sficggiion, we only allow for most likely penetration
scenarios that arise in upright motions such as walkingying) dancing anetc.

Let us consider the penetration constraints we want to enc@dven a configuration of pait X;, we
want to allow potentially penetrating pgrto be anywhere so long as it does not penetrate;pait's current
configuration. This means that non-penetration conssa@re hard to model using a Mixture of Gaussians
[197], since we need to model equal probability over thererstiate space, and zero probability in some local
region around the pos¥;. Instead we model the penetration potentials using theviatlg unnormalized
distribution
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wherep(X,;, X;) is the probability that part in configurationX; penetrates partin configurationX; and

is defined to be if and only if i penetrateg in their respective configuration8 ¢therwise). Notice that we
can encode soft-penetration constraints by allowi(X;, X ;) to assume any value frofnto 1 as a function

of the overlap between parts. In our experiments, howewd penetration constraints proved to be more
effective.

There are a number of ways one can detect and measure 3Dpbetiaeen two body parts. Constructive
solid geometry (CSG) [63, 245] can use boolean operatorBeabpn a set of truncated cone primitives,
that we use for modeling body parts, to principally do thisSGmethods, however, tend to be relatively
expensive and tricky to implement. Instead, we experintemtiéh two simple approximations: spherical
and voxel. Spherical approximation, approximates triectabnes with a sparse set of sphefishlells with
corresponding non-constantradii. The set of shells apprating parti are then exhaustively intersected with
the shells modeling payt Since intersection of the two spheres can be computed assimgple euclidian
distance operator between the centroids, this process terimk very efficient. However, this approximation
is only well suited for determining the presence or abseriddeintersection between two parts, not the
amount of intersection. If one needs to compute the amouirtefsection, one alternative is to partition
the space occupied by one of the limbs into a set of 3D voxalscampute the approximate volume of
intersection by checking whether each voxel grid point \ighin potentially penetrating limb. Since we
found hard penetration constraints to be more robust, wdantbe simpler spherical approximation that
avoids additional computational complexity of the lattesthod.

5.4 Image Likelihoods

The inference algorithm, the details of which will be oudlchin the next section, combines the body model
described above with a probabilistic image likelihood motiée defineg;(X;) = ¢;(I|X;) to be the likeli-
hood of observing the image measurements conditioned opae of limbi. Ideally this model would be
robust to partial occlusions, the variability of image stiéts across different input sequences, and variability
among subjects. To that end, we combine a variety of generiectothes specific cues including silhouettes
and edges.

5.4.1 Foreground Likelihood

Most algorithms that deal with 3D human motion estimationl4, 50, 52, 59, 196, 197] rely on silhouette

information for image likelihoods. Indeed this is a veryosiy cue [14] that should be taken into account
when available. Here, as in most prior work, we assume thategfound/background separation process
exists that computes a binary maBk:.(z, y), where G .(x,y) = 1 if and only if pixel (z, y) in an image

I belongs to the foreground for a given camera view[1, ..., CJ.

63D ellipsoids can be used instead, for parts that haveieliitone cross section, with similar complexity.
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Figure 5.5:Backprojecting the 3D body model.lllustrated is the process used to project the 3D body model
(consisting of a set of connected limbs) into a number obcated image views. For clarity, onyout of a
total of 7 views are shown.

Formally, we assume that pixels in the image (and hence fouegl binary mask) can be partitioned into
three disjoint sub-sets (see Figure 5c),(2,1(X:) U Qe.2(Xi) U Qe.3(X;); whereQ, 1(X;) is the set of
pixels enclosed by the projection of the peat poseX; onto camera view; €2, »(X;) contains pixels slightly
outside part that are statistically correlated with the part; &hd;(X;) are pixels that are not correlated with
parti in any way. Assuming pixel independence and independenobssrvations across camera views we
can write the likelihood of the image given the pose of the par

dro(I1X:) o ][] I »@FG(zy)

=1 | (z,y)€Qc1(Xs)

II  p(FGuzy)

(2,9)€Qc,2(X)

p3(FGe(z,y)) | (5.7)
(2,9)€Q¢,3(X)

wherep;, i € {1, 2, 3} are the region-specific probabilities learned from the §ktteled images. In general,
p1(FGe(z,y) = 1) > 0.5, po(FGe(x,y) = 1) < 0.5 andps(FG.(z,y) = 1) = 0.5, corresponding to the
observation that pixels enclosed by projection of the fgand to be segmented as part of foreground silhouette
and pixels slightly outside typically correspond to baadkgrd. Reasoning about pixels that are outside of
the immediate vicinity of the part’s projection is often iabecause other parts or foreground objects may
be present in the scene. To deal with this we assume equallphidpfor these regions,e. ps(FG.(x,y) =

1) = 0.5. Furthermore, to simplify our likelihood model for all ouxgeriments in this chapter we used the
following learned values for all limb likelihoods (avoidjiearning separate values for each part),
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(@)

Figure 5.6:Image likelihoods. Illustrated is the original imagey and the likelihood features for computing
the left lower leg likelihood; 1) illustrates the silhouette obtained by background selitra; (c) shows the
partition of the silhouette image pixels into three disjaiunb-sets where red, blue and green pixels correspond
to Q. 1, Q2, and ). 3 regions respectively. The edge image obtained by Canny ddtgetor and the
corresponding distance transform for the edge image awrsimgc) and @) respectively. Ind) the projected
model edge pixels for which the edge likelihood is computedshown in solid red.

p1(FGe(z,y)=1) = 0.8
p2(FGe(z,y)=1) = 0.3
p3(FGe(z,y)=1) = 0.5.

Notice that sincd'G.(z, y) is binary,p; (FG.(x,y) =0) = 1 — p;(FG.(z,y) = 1) fori € {1,2,3}.

5.4.2 Edge Likelihood

Even with perfect background subtraction, the silhouedtese are ambiguous. For example, motion or
position of occluding parts may not be observed (this wasadly illustrated in Figure 2.2). This ambiguity
is reduced as the number of views increase, but with few cansuch as the case here the effects are
still significant. Hence, to reduce ambiguity and bettealze parts, we also use an edge-based likelihood
measure.

We start by computing an edge distance transf@&DGE.(x, y), by first running the Canny edge detector
on the image (obtained from camefeand then computing a distance transform based on theiregshbihary
edge image. The edge based likelihood measure is then dafrietiows, once again assuming independence
across pixels and camera views,

c
Peage(I|1X3) o ] Il e (1/EDGE(2.)%) |, (5.8)
e=1 | (z,y)ele(X:)
wherel'.(X;) is the set of pixels on the left and right edge of part’s prigetin camera vieve. Particularly,
since we model parts in 3D using tapered right ellipticalexyii .(X;) will correspond to the two opposite
edges of trapezoid obtained by 2D projection of the conesesestion onto the image plane. Thisis illustrated
in Figure 5.6 é).
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5.4.3 Combining Features

To produce the final likelihood measupg(1|X;), that takes into account both foreground and edge features,
we must fuse the two likelihood terms. However, we must atsmant for differenta priori confidence
exhibited by the two features. In particular, foregrouratdiees are in general much more reliable then edge
features [14] (assuming a reasonably reliable foregrdrawkground separation process). Taking this into
account, results in the following weighted likelihood meas

Gi(1|1X5) = [ (11X0)]" " [Peage (11 X)), (5.9)

wherew, is the relative confidence weight for the edge term. In pecactie foundw. = 0.1 worked
reasonably well.

5.5 Bottom-up Part Detectors

Occlusion of body parts, changes in illumination, and a axyof other situations may cause a person tracker
to lose track of some, or all, parts of a body. We argue thabld tracking requires bottom-up processes that
constantly searches for body parts and suggest their tocatid pose to the tracker; we call these “shoufers”
This bottom-up process is also useful in bootstrappingniferénce, by providing initial distributions over
locations of a sub-set of parts. Further discussion of thihié context of Particle Message Passing can be
found in Section 3.7.3.

One expects shouters to be noisy in that they will sometimiétofdetect parts or will find spurious parts.
Furthermore they will probably not be able to differentibtween left and right extremities of the body.
Both of these behaviors can be seen in Figure 5.8. Howeven #ese noisy “guesses” provide valuable
low-level cues, and our belief propagation framework isgiesd to incorporate this bottom-up information
in a principled way. As will be described in detail in Sectm6, we use a stratified sampler for approximating
messages originating at graph nadmnd being sent to nodgat timet. This sampler draws some fraction
of samples from a static importance functign(X;) = f(X;). This importance function is constructed by
the node’s shouter process, that we denotg (3, ), and draws samples from locations in pose space (3D
location and orientation) near the detected body parts.

5.5.1 Head Detection

We build head detector based on the Viola and Jones facetolef286]. We use two models for frontal and
profile faces, and apply them in multiple-views to produ@glble estimates for the position and orientation
of the head (see Figure 5.7).

We first detect a set of 2D face candidates in all views, by inmithe two detectors at a number of
scales (Figure 5.7 (top)). We then try to pair up candidatas fdifferent views, assuming known extrinsic
calibration estimated off-line for all cameras. The posehef head can then be estimated by intersecting
the frustums mapped by the two face candidates in the 3D spHue orientation about the head axis is
refined, to about5° precision, by considering the types of the faces found ineeviews. For example,
frontal face observed from one camera paired with profile facind in the other, will result in the overall

“The idea of "shouters” came about through discussions withepison and D. Fleet.
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head orientation pointing toward the camera that obserfvedrontal view in the first place; a frontal face
observed from two different cameras will result in a poseheftiead where face is pointing between the two
cameras considered.

Once the 3D candidates are estimated, they are pruned bkicheo ensure that the size is plau-
sible (within limits for a human head) and that candidategjgmt to (mostly) foreground regions in all
the views. As a result of this process a set of plausible citeliposes for the head are constructed,
{xﬁlle)ad,xﬁ)ad, ...,xgg;“d)}, where Nj.qq is the total number of plausible head candidates selecté. T

proposal functionf(Xycqq), for the head is constructed simply by formulating kernelgiy based on the

candidates,
Nhead
f(Xhead) = Z N(Xhead|x§;21da Ahead)a (510)
n=1

where covariancé .4 is @ function of the overall head detector’s precision. Inagal, A..q should be
estimated from training data, however, since a labeledsdataith ground truth 3D head positions is not
readily available, instead we s&},..4 by hand. We set diagonal elements\gf 4, that account for variance

in the estimated position and tilt of the head, relativelyalrand twist (rotation about the head axis) is set
to a considerably larger value to account 46f uncertainty discussed above; all off diagonal elements of
Apeaq are set ta.

5.5.2 Limb Detection

Unlike faces, limbs lack distinctive 3D shape and texturecitire that is consistent across people and cloth-
ing. We attempt to build limb proposals based on color infation [147], by assuming that limbs have
roughly uniform colo?. To this end, we first segment foreground regions of each inéwa set of coherent
color blobs using a mean-shift image segmentation proegdi®]. We then fit ellipses to these regions and
intersect frustums produced by the elliptical image region3D. The intersection gives a rough estimate
for the position and orientation of the limb (modulo the ti§the limb along its axis of symmetry, which

is typically unobservable at standard video resolutioisinilar to head detection, we use the sizes of the
estimated 3D limbs to prune the number of candidates to afg#twsible limb positions and orientations
{xl(ilglb, xl(fgib, . xl(gfbgmb)}. Also, similar to the head, we form the proposal functiontfog limbs using a
kernel density,

Niimb
F(Xiimp) = Z N(Xlimb|xl(zln)lbaAlimb)- (5.11)

n=1
As aresult all imbs have the same proposal function andlipi® the inference and spatial (and possibly
temporal) consistency constraints to interpret their fifgin the context of the human body. While the
inference algorithm proposed here can deal with this tagkfound that this often requires many samples
and results in slow convergence. Instead, since we tygieadl interested in dealing with mostly upright
poses we modify the above proposal function as follows,

8Clearly this assumption can easily be violated by the varigpes and textures of clothing, however, one would hopieittall
hold for at least some sub-set of limbs considered.
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Figure 5.7:Head detection.Top two rows show results of the Viola and Jones [236] froatal profile face
detectors respectively, run in high precision low recalbiaay. We use pre-trained detectors distributed with
Intel's OpenCV library [159]. Bottom row shows 3D head estigs obtained by combining the face detection
results from multiple views. The red bounding boxes on insdgehe top two rows illustrate detected faces.
The green bounding boxes on the bottom row are projectiotteed3D hypotheses for the head position and
orientation; in yellow are the corresponding coordinaaerfes.

Niimb

FX) = 3 N(eilze, AN (X |z, Atim), (5.12)
n=1

where N (x, |z, A;) can be interpreted as the weighting function that weighsdiieins as belonging to
one of the body parts based on the vertical distance from ¢o@flz;. Notice that the proposed weighting
is simply a bias that helps to identify which proposed padifions are likely to belong to upper an lower
extremities. These biases are the same for left and rigks sifl the body and hence result in equivalent
proposal functions for the two sides.
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Figure 5.8:Limb detection. Top row shows the original images frodnout of 7 camera views. Results of
foreground/background segmentation and mean-shiftetingt for color segmentation of foreground regions
are shown in second and third rows respectively. Colors ssegiaed to the region segments at random.
Fourth row shows an elliptical 2D limb fit to the regions dé¢el last row shows the resulting 3D limb
estimates produced by combining the 2D estimates acrdssatif views.

5.6 Inference

The joint distribution over all variables in our model, defihby the grapty = {V, £} with vertices),
|V| = N, corresponding to body parts and edgesrresponding to constraints, can be written as follows:

9This implicitly assumes the world coordinate system isagitiligned with the floor or is known. This assumption, whiteroves
the efficency and performance of our algorithm, is not dgrinecessary. One can use the more general form of the projposéion
from Eq. 5.11 that assumes no knowledge of terrain.
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Figure 5.9:Message product for the torso.In the 10-part body model, the head, upper arms, and upper
legs send messages to the torso. Samples from these measadkstrated by showing the predicted torso
location with green balls. The distribution over the oraitn of the torso is illustrated by showing a red
ball at the distal end of the torso for each sample. While amyls message represents uncertain information
about the torso pose, the product of these messages tighidyrains the torso position and orientation.

p(X1, Xo, oo, X[ = [ [ 0s(X) ] F (X X))wl(Xi, X;). (5.13)
S% (i,5)€€

Pose estimation and tracking can then be formulated asiméerin this graphical model and estimated
using Belief Propagation. To cope with the continuous patemspace of each limb, the non-Gaussian
conditionals between nodes, and the non-Gaussian likadihee use a form of non-parametric belief prop-
agation [99, 220] described in Section 3.7. The approachyesnaralization of particle filtering [54] which
allows inference over arbitrary graphs rather than a sirapén. In this generalization the “message” used
in standard belief propagation is approximated with a simeparticle set, and the conditional distribution
used in standard particle filtering is replaced by a prodfictamming message sets. The two formulations of
[99] and [220] have different strengths discussed in Se@i@.5; we adopt theAMPAS algorithm because
it maps better to our models where the potentials are smatumgs of Gaussians and the likelihoods are sim-
ple to evaluate up to an unknown normalization. NBP [220] &@ersuitable for applications with complex
potential functions.

The message passing framework is illustrated in Figure hi&&the head, upper arms and upper legs
all send messages to the torso. These messages are dististthiat are represented by a set of weighted
samples as in particle filtering (smoothed with a Gaussianéte Belief propagation requires forming the
product of these incoming messages. As Figure 5.9 showfmdhadual limbs may not constrain the torso
very precisely. The product over all the incoming messalgesever, produces a very tight distribution over
the torso pose. The challenge in Particle Message Passidga-parametric belief propagation in general)
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is to compute the product of multiple such sampled distidng efficiently. If each sample is represented by
a small Gaussian kernel, then the explicit produdbahessages each containifgkernels require® (N )
time to compute, which is impractical in most cases where- 2. Hence, forD > 2 we use the Gibbs
sampler described in Section 3.7.1 (Algorithm 5) that caamdapproximate and asymptotically unbiased
samples from the product in(DN?). For D < 2 we compute the message product explicitly.

In PAMPAS the belief propagation messages are approximated usingeMoarlo importance sampling.
This is achieved by sampling from the product of messagestlaerd propagating these samples through
an appropriate potential function. Since in ¢oose-limbed body modé&rmulation we have two types of
potential functionsy)f5 (X;, X;) and ¢/ (X;, X;) that have different representations, the messages in the
two cases will be different as well,

mk (X,) = / SR X)aiX) [[ b (Kamf, (X,)dX, (5.14)
kGA(l)\J

mb(X;) = / CEX0 X)X [ mE (XaymE(Xo)dX, (5.15)
kGA(l)\J

where A(i) is the set of neighbors of nodeand ¢;(X;) is the local likelihood associated with node
Note thatmg (X;) is represented using a mixture of Gaussian kernel dena’ntidmg (X;) by a mixture
of continuous unnormalized functions. These represamtatstem from the choice of potential functions
discussed in Sections 5.3.1 and 5.3.2 respectively. Théfid PAMPAS algorithm (see Algorithm 6) can
be modified to handle this case by choosing proper importamaions. In particular,

@’ x) = [ mEx) (5.16)
ke A(i)\j

X)) =[] mEx) (5.17)
keA(i)

o) (X)) = f(X). (5.18)

The messagesng(Xj) andmZ (X;), are hence generated by sampling from the above importamece f
tions, applying a proper re-weighting scheme, and projpag#bhese weighted samples that intuitively ac-
count for distribution oveX; through a potential functioﬂ)fj(- (X;,X;) or 1/)5 (X3, X;) respectively. For
further details see Section 3.7.

lllustration of RMPAS being utilized for pose estimation witl)-part loose-limbed body model can be
seen in Figure 5.10. In Figure 5.10 marginals are illustratéerms of the most likely sample drawn from the
marginal, on the left, and the full distribution visualizey overlapping samples on the right. In all images
the dark and light green illustrate parts belonging to tffiedled right sides of the body respectively; yellow
illustrates coordinate frames for the torso and the heaca: €@n clearly see how the marginals converge to
the desired solution within the fir§t6 iterations.

The basic algorithm outlined in Section 3.7 leaves openttresof (1) what proportions to use in the
stratified sampler,2) how many particles to use for Monte Carlo approximation adlemessage an@®)(
what order to use in updating the messages.
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Figure 5.10:lllustration of convergence of loose-limbed body model dung pose estimation.Resulting
marginals for each limb estimated by MPAs are illustrated aftet-5, 7 and9 message passing iterations.
As can be observed, marginals converge to a desired solatronghly5 iterations in this case, after which
point the marginals are refined without significantly affegthe mode of the marginal distribution. The error
curve as a function of AMPAs iterations for this frame can be found in Figure 5.13 (Fraifi@).
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Implementation Details

Sampling Proportions. The stratified sampler we use, samples all the sampleséﬁr(]xl for the first
message passing iteration and then samples half of samlphasﬁ ) ) and half fromq( )( X,) for the
remaining iterations. We found the sampling frqff\) ) sometimes Iead to faster convergence, where as
sampling from]ij (X;) often leads to better results When the solutionis closetwergence. Consequently
we have also experimented with adapting sampling propustiosing an annealing schedule based on the
number of message passing iterations. The idea being, thi im the beginning where there is a large
uncertainty about the solution, we should sample equaﬂmfj(l)( X;) andq(Q)( X,), as the solutions starts

to converge (assuming it is converging with iterations o) B should sample more froqﬁ ) . While

this proved to be useful in some instances, it also sometintesduced biases particularly When the stra-
tum corresponding to th@fg)( X,) was small. Hence, for simplicity, for all experiments here use equal
sampling fractions foqf;)( i) andq(Q)( X;).

Number of samples.The number of particles/samples used to approximate mess$es a significant effect

on the runtime of the algorithm. While the basic Particle dgge Passing algorithm assumes that all mes-
sages are approximated using the same numh&rsdmples, we found this to be sub-optimal. In particular,
we found that messages going out of the nodes that are highhected €.g.torso) are often more compact
and require fewer samples to represent adequately; dltextyamessages that correspond to outer nodes in
the graph, that have fewer connections, need more sampbesadequately represented. Hence, we derived
an ad-hoc adaptive procedure for the number of samplesreghjid represent the massage based on the de-
gree of the node sending the message. In particular, foxp#ranents we used the following number of
samples to approximate messages sent from fiode

Nodei # of samples  Mixtures in potential Message representation

torso 50 Kinematic# mg (X;) = mixture 0f201 Gaussian kernels
Penetration1 mZ(X]-) =1 - mixture of50 Gaussian kernels

head, shins, 200 Kinematid: mg (X;) = mixture of801 Gaussian kernels

upper arms Penetratiot: mZ— (X;) =1 - mixture 0f200 Gaussian kernels

calfs, 800 Kinematici mg (X;) = mixture 0f2401 Gaussian kernels

lower arms Penetration: mZ— (X;) =1 - mixture of800 Gaussian kernels
(In addition for 15-part model)

hands, feet 800 Kinematid: mg (X;) = mixture 0f2401 Gaussian kernels
Penetration1 m;(X;) = 1 - mixture of800 Gaussian kernels

Note that penetration messages due to their non-Gaussiarafe simply treated in thea®1PAs framework

as continuous functions. Deriving automatically the nundfesamples required for each message would
clearly be of benefit, however, this is hard to do in generatesthe number of samples must be a function
of the overall graph topology, importance functions empbbjor Monte Carlo integration, and distributions
of all involved variables.

Message passing schedulés mentioned in Section 3.7 in order to perform inference liocgy graphical
model, one needs to define the message update schedule. Wéxeskmessage update schedule that sends
messages from the outer extremities inward toward the tansbthen back out (from the torso to outer
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extremities). We also first propagate the kinematic messagd then the penetration messages. For pose
estimation we run PMPAS for 10 message passing iterations per frame (with convergenee atthieved

in 56 iterations), and for tracking (that will be discussed in text section) for onl\2 message passing
iterations per frame. The underlying assumption beingithtite tracking framework the pose is likely to be
relatively well constrained by the estimate from the pregitme frame, and hence RIPAS often converges
faster.

5.6.1 Tracking

Thus far we have only addressed the problem of pose estimatid have not dealt with incorporating tem-
poral consistency into our model. This is partly due to thet fiaat ability to automatically estimate the pose
is one of the key benefits of theose-limbed body moddHowever, our model can also incorporate temporal
consistency. Temporal consistency (or tracking) can bfopaed in at least two different ways within our
framework.

Tracking using a spatio-temporal model

The most direct way of extending the proposed pose estiméttonework to tracking, is by replicating
and chaining the spatial loose-limbed body model across.tifthis methodology was already introduced
in somewhat different context in Chapter 4. The new spaiogioral graphical model requires additional
temporal constraints between limbs at time 1 andt, that we denote by (X;, 1, X, ). Typically a
single Gaussian potential is sufficient to model these teatponstraints. For example,

VT (X1, Xig) = N(Xiy — Xi-1/0, A7), (5.19)

is equivalent to a zero velocity assumption. With this typeemporal constraint, inference can be performed
as before using Particle Message Passing in either batdidorgswindow fashion. We have explored this
alternative in [197]. A similar approach has also been dised in the context of generic object tracking in
Chapter 4.

The benefit of this type of spatio-temporal model is that terapconsistency is well maintained, the
disadvantage is the additional computational complexitpired by this more complex model. In addition,
if tracking fails, the spatio-temporal model is often hartere-initialize, because of the tight coupling to the
pose at the previous time instants.

Tracking using importance sampling

An alternative approach, that we take in this chapter, isropg@gate the temporal consistency via an im-
portance function. This approach does not alter the modeddy introduced, and hence does not require
additional computation. In essence, it assumes that weddwang the pose estimation problem at every
frame, and the pose from the previous time step is only used astialization (or guess) for where to start
the inference at the next frame. As such, this approach ilsswitéd for re-initialization if the pose estimate
at the previous timeframe is wrong. The disadvantage ig¢hgboral consistency is only loosely propagated,
and the results often exhibit interframe jitter.
In particular, we can define another importance function,
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ql(;l) (Xi,t) = N(Xi,t|Xi,t715 AT) (520)

Sampling from this importance function places the sampiethé vicinity of the solution obtained at the
previous time step. This is then refined using the obsemstfoom the current frame and the message
passing. Altering the fraction of samples that come fromdiffferent importance functions in the stratified
sampling will have an affect on the diversity of poses coasid at any given time instant. Ultimately the
optimal importance sampling procedure would have to relkmowledge of the scene and human postures
considered. For experiments presented in this chapter,aie nmo such assumptions and use a simple generic
importance sampling scheme discussed previously.

5.7 Experiments and Evaluation

5.7.1 HumanEva-| Dataset

To test performance of our articulated pose estimation muiting approach we collected the novel datdset
that we call HHMAN EvA-1. In HUMAN EVA -1 we simultaneously captured 3D motion and mutiocculaewid
using a calibrated marker-based motion capture systamd multiple high-speed video cameras. We col-
lected video data using color and4 greyscale cameras 60 Hz. The video and motion capture streams
were synchronized in software using a direct optimizati@thad. The HIMAN EvA -1 database consists ¢f
subjects performing a set 6fpredefined actions three times (twice with video and motaptuare, and once
with motion capture alone). The dataset is partitioned framing, validation and testing sub-sets. A more
detailed description of the dataset, data collection andgssing can be found in [194].

To simultaneously capture video and motion informatiom,subjects wore natural clothing (as opposed
to motion capture suits which are often used for pure motapture sessions) on which reflective markers
were attached using transparent adhesive tape. Our motiwahs to obtain natural looking image data that
contains all the complexity posed by moving clothing. Ongatige outcome of this is that the markers
tend to move more than they would with a tight-fitting moticapture suit. As result, our ground truth
motion capture data may not always be as accurate as thatedtay more traditional methods; we felt that
the trade-off of accuracy for realism here was acceptable.h&e applied minimal post-processing to the
motion capture data, steering away from the use of compléware packagese(g. Motion Builder) that
may introduce biases or alter the motion data in the process.

5.7.2 Evaluation Metric

Various evaluation metrics have been proposed for humaiomacking and pose estimation. For example,
a number of papers [1, 2, 3, 4, 166, 189, 206] have suggesiregljoint-angle distance as the error measure.
This measure, however, assumes a particular parametenizdthe human body and cannot be used to com-
pare methods where the body models have different degrefeseafom or have different parameterizations

10Dataset is available fromttp://vision.cs.brown.edu/humaneva/

Lwe collected motion capture data using a commercial motigniure (MoCap) system from ViconPedittp://www.vicon.
com/). The ViconPeak MoCap system is an industry standard facalpiarker-based motion capture and has been successfully
employed in a variety of entertainment applications forradM@years. The system uses reflective markers and six 1M-gzaxeeras to
recover the 3D position of the markers on the body.
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Figure 5.11Virtual marker-based evaluation metric. We define an evaluation metric based on the average
distance between a set i virtual markers corresponding to the 3D joint positions Amdb ends illustrated
in the figure above.

of the joint angles.

We propose an error measure based on a sparse set of virttk@rathat correspond to the locations of
joints*? and limb endpoints (see Figure 5.11). This metric is notitgago parameterization of the skeletal
structure of the body and can easily be derived from most lbegsesentations, allowing easy comparison
across many approaches. This error metric was first intiedifar 3D pose estimation and tracking by us in
[197] and later extended in [14]. It has since been also adbipy others for 3D tracking [131] and for 2D
pose estimation evaluation in [122, 196].

Assuming that we can represent the pose of the body usirg15 virtual markers, we can write the state
ofthe body a&X,,.,, = {p1,p2, ..., px }, Wherep;, € R? is the position of the markdrin the world3. Notice,
that converting from any standard representation of the Ipode taX,,,,- is trivial. In particular, to convert
from our redundant representation of the bddy= {X, X, ..., Xy} to X,,,,.+ allwe need to do, is for every
marker (except for the markers corresponding to the limispoaimpute an average of the proximal and distal
end$* of the two limbs connected at the corresponding joint. F@mgxe, computing the virtual marker
position corresponding to the left knee joipleft knee = || H (Xieft shin)[0, 0s left shin . — Xieft calfl|*/ 2,
where H (Xt shin) iS @s before a 3D homogeneous object-to-world transfoomatiatrix; ljef; shin iS the
length of the left shin. In other word#! (Xjeft shin) [0 0, lieft shinl~ is simply a distal endpoint of the left
shin andxjef ¢4 iS the proximal endpoint of the left calf. The error in the mleestimated pos&,,,x
to the ground truth posX,,,.., can then be expressed as the average absolute distancebeébhdidual
markers,

K R
Error(Xmrk, erk) = Z ||pkl_(7pk|| (5.21)
k=0

Since the position of virtual markers is defined in the glazairdinate frame the error will have a physical

12The ground truth location of joints was computed from the iototapture data using the Plug-in Gait software module from
ViconPeak littp://www.vicon.com/ ).

I3Notice thatp,, can also bec R? if a 2D body model is used. This is the error measure that wiltmployed in the next chapter.

14This assumes that both proximal and distal markers corrasfmthe joint center. Alternatively, if this is not the catieere will be
a constant offset between the proximal and/or distal endiseofimb and the required joint marker. This offset can taflicbe solved
for in a least-squared sense using regression.
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Figure 5.12Evaluation metricillustration. This figure visually illustrates the range of errors coroasting

to the virtual marker-based metric introduced. Typicatlyearor of< 80 (mm) corresponds to accurate pose
estimation and an error betwe&0—120 (mm) to a reasonable pose. As can be seen from the figure with an
error of 108 (mm) the body is vertically shifted down and the arms are less geafect, but the overall pose

is still reasonable. Typically erras 120 (mm) corresponds to wrong or inaccurate poses as illustrated.

meaning and is expressed mif). Lower error will correspond to poses that more closelyamahe ground
truth motion capture data. Since the proposed error fun@i@rages error over a set of limbs, the exact
meaning of the error will depend on the distribution of esracross the body parts at a given frame. The
same is true for most other metrics we have found in the titeeaIn other words, the same quantitative error
may be due to either a single joint being off by a considerabieunt, or by all the joints being off by small
amount. Our approach, due to the nature of the model anceimfer tries to distribute error across limbs. In
our experience, errors of und&d (mm) correspond to accurate posgs;-120 (mm) typically correspond to
poses of acceptable accuracy, and errors aR0 (mm) typically correspond to wrong or inaccurate poses.
By acceptable accuracy we mean that all parts are recovmuethere may be misalignments at the joints (see
Figure 5.12) or slight global vertical shift of the body. Tonepute performance over a temporal sequence
(for tracking), we average the error over all the frames msbquence and report the mean and standard
deviation.

5.7.3 Pose Estimation

Figures 5.13-5.17 show the automatic pose estimation &Dheody model using bottom-up part detectors.
The approach is tested on a totall6R frames;128 frames using a0-part model and0 frames using a5-

part loose-limbed body model. Note that we use only detedtorthe head, and outermost extremities, which
for the 10-part model means upper arms and calfs; forlthgart model hands and feet. These detectors are
very noisy and at best can only give a rough position of theipapace. They are unable to differentiate left
and right sides of the body, estimate the twist, or even @iffgate the direction in which the limb is pointing.
For body parts with no associated bottom-up detectors,riti@lidistributions are assumed to be uniform
over the entire state space. After several iterations aébetopagation, the algorithm “finds” the limbs and
has a reasonable distribution over the limbs poses. Ndtaterthile we run RMPAS for 10 message passing
iterations to ensure convergence, the solution oftenesadfter5—6 iterations.
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Subject S1 S2 S1 S2 S1
Action Walking | Walking Jog Walking Jog
Frames 57 40 31 39 31
Model 10-part | 10-part | 10-part || 15-part | 15-part
Mean Error ( mm) 89.7 161.6 83.7 158.5 130.5
Standard deviation of Error (mm) 715 103.6 51.3 132.2 87.4
% of frames with Error < 80 (mm) 70.2 27.5 61.3 46.2 45.2
% of frames with Error < 120 (mm) 82.5 50.0 87.1 61.5 61.3
% of frames with Error > 120 (mm) 17.5 50.0 12.9 38.5 38.7

Table 5.2: Summary of pose estimation performance using loose-limbedody model. More detailed
results can be found in Figures 5.13-5.17.

We have tested our approach on sequences from two subjefdapiag two different motions (walking
and jogging). In all experiments we used same values foraalrpeters in our system and same likelihoods.
In all experiments reported here, we usedamera views for inference Color and4 greyscale). We have
also experimented with pose estimation and tracking usiaigd3 views with similar results. The challenge
with the HumanEva-| dataset used here is that, due to spduglaights and poor greyscale imagery, simple
background subtraction employed by our system often prslpoor segmentation of the foreground (see the
right column corresponding to camera BW4 in Figure 5.8) tzat to be dealt with. In particular, standard
voxel-based methods that require good background sutmnaetould typically not be able to cope with such
noisy data. Our approach deals gracefully with this, pratyaccurate results automatically from the single
multiouccular image. In most cases the recovered jointtjpos are< 80 (mm) away from the true joint
positions. The summary of performance is presented in TaBle

Perhaps most revealing, regarding the accuracy of the mgihthe bar plot presented in bottom of each
of the Figures 5.13-5.17. The plot shows the histogram afreffior all tested frames (selected uniformly
and without bias for each sequence). In most frames tedieckrtor falls below thé20 (mm) level (see
Figures 5.13, 5.14, 5.15, and 5.17) that we consider to keefdaable”. The worst performance was observed
for sequence in Figure 5.16, where we are able to “correetfyimate the pose (beloi20 (mm)) in about
50% of the frames. However, even at this error rate we belieseour pose estimation approach is less
restrictive than related approaches that attempt to etitha pose either in a particular canonical pose class
(e.g.stylized 2D scissor-leg walking stance [169]) or by havirgpaperative subject [36, 112, 113].

5.7.4 Tracking

In this section we test the performance of our approach irctmext of tracking, where we assume that

a sequence of multioccular frames is available for infeeenthe loose temporal consistency is used to
propagate results from one frame to the next (see desariptiSection 5.6.1) to help focus the inference. In

this paradigm we assume that limbs at the next frame are iguifig close to the correctly estimated pose at
the previous frame. Hence, having a proposal distribukiatifocuses a fraction of samples in locations where
the limbs were previously found proves useful. Since tylpidae previous frame estimates are sufficiently

close to the solution at the current frame, we only ratViPAS for 2 message passing iterations (instead of
10) as a way of speeding up the inference. The results are shmoiigures 5.18-5.21. The approach is tested
on a total of1205 frames;400 frames using a0-part model an®05 frames usingd 5-part loose-limbed body
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Figure 5.13:Pose estimation using 10-part loose-limbed body modeResults of pose estimation from a
single multioccular frame are shown for a number of framemfHumanEva-I dataset. Top five rows show
the final result in terms of most likely sample from the maagjiior each part aftet0 iterations of RMPAS.
The results are projected in8osynchronized views for clarity7(views were used for inference). The right
column of the first five rows shows the error as a function ofsagse passing iterations for respective frames.
Notice that typically the error decreases sharply for thet 4ir5 iterations and then stays relatively low with
minor variations that are due to sampling. The last row itates performance over aBq) frames tested
for the sequence (every-th frame was selected). As can be seen from bar plot, theypasestimated in
most frames with low error. The error as a function of mesgmgsing iterations averaged over all frames is
shown in the bottom right corner of the figure.
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Figure 5.14:Pose estimation using 10-part loose-limbed body modeResults of pose estimation from a
single multioccular frame are shown for a number of framemfHumanEva-I dataset. Top five rows show
the final result in terms of most likely sample from the maagjiior each part aftet0 iterations of RMPAS.
The results are projected in8osynchronized views for clarity7(views were used for inference). The right
column of the first five rows shows the error as a function ofsagse passing iterations for respective frames.
Notice that typically the error decreases sharply for thet 4ir5 iterations and then stays relatively low with
minor variations that are due to sampling. The last row iitlates performance over allY) frames tested for
the sequence (every)-th frame was selected). As can be seen from bar plot, thewasestimated in the
pose with low error. The error as a function of message pagé&rations averaged over all frames is shown
in the bottom right corner of the figure.
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Figure 5.15:Pose estimation using 15-part loose-limbed body modeResults of pose estimation from a
single multioccular frame are shown for a number of framemfHumanEva-I dataset. Top five rows show
the final result in terms of most likely sample from the maagjiior each part aftet0 iterations of RMPAS.
The results are projected in8osynchronized views for clarity7(views were used for inference). The right
column of the first five rows shows the error as a function ofsagse passing iterations for respective frames.
Notice that typically the error decreases sharply for thet 4ir5 iterations and then stays relatively low with
minor variations that are due to sampling. The last row itates performance over al{) frames tested
for the sequence (every-th frame was selected). As can be seen from bar plot, theypasestimated in
most frames with low error. The error as a function of mesgmgsing iterations averaged over all frames is
shown in the bottom right corner of the figure.
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Figure 5.16:Pose estimation using 10-part loose-limbed body modeResults of pose estimation from a
single multioccular frame are shown for a number of framemfHumanEva-I dataset. Top five rows show
the final result in terms of most likely sample from the maagjiior each part aftet0 iterations of RMPAS.
The results are projected in8osynchronized views for clarity7(views were used for inference). The right
column of the first five rows shows the error as a function ofsagse passing iterations for respective frames.
Notice that typically the error decreases sharply for thet 4ir5 iterations and then stays relatively low with
minor variations that are due to sampling. The last row itates performance over aBlq) frames tested
for the sequence (every-th frame was selected). As can be seen from bar plot, theypasestimated in
most frames with low error. The error as a function of mesgmgsing iterations averaged over all frames is
shown in the bottom right corner of the figure.
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Figure 5.17:Pose estimation using 15-part loose-limbed body modeResults of pose estimation from a
single multioccular frame are shown for a number of framemfHumanEva-I dataset. Top five rows show
the final result in terms of most likely sample from the maagjiior each part aftet0 iterations of RMPAS.
The results are projected in8osynchronized views for clarity7(views were used for inference). The right
column of the first five rows shows the error as a function ofsagse passing iterations for respective frames.
Notice that typically the error decreases sharply for thet 4ir5 iterations and then stays relatively low with
minor variations that are due to sampling. The last row itates performance over aBlq) frames tested
for the sequence (every-th frame was selected). As can be seen from bar plot, theypasestimated in
most frames with low error. The error as a function of mesgmgsing iterations averaged over all frames is
shown in the bottom right corner of the figure.
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Subject S2 S1 S1 S2
Action Walking || Walking Jog | Walking
Frames 400 391 201 213
Model 10-part || 15-part | 15-part| 15-part
Mean Error (mm) 74 59 77 69
Standard deviation of Error (mm) 9.95 25.2 20.2 18.8
Average for the model (nm) 74 66

Standard deviation for the model (nm) 9.95 23.5

Table 5.3:Summary of tracking performance using loose-limbed body mdel. More detailed results can
be found in Figures 5.18-5.21.

model. The average performance over the sequence rangeseéb—77 (mm) in all cases (see summary
of results in Table 5.3). Also, notice that the approach kjyieecovers when infrequent miss-tracking occurs
(see Framé&8 in Figure 5.18).

5.7.5 Comparison with Annealed Particle Filter

In previous section we explored performance of the loaséddid body model in the context of tracking. In
this section, we compare the results obtained by our apprmae relatively standard tracking algorithm,
Annealed Particle Filter (APF) (see Section 2.8 for moraitid description). In particular, we make use of
the APF algorithm implementédland tested by Balaet al.in [14]. In our comparison, Annealed Particle
Filter performs inference over kinematic tree body modehwb parts, comparable to oufs-part loose-
limbed body model; the resulting state-space parametinizaf the pose i R*°, corresponding to global
position and orientation of the torso in 3D ad@ljoint angles. Consequently, the implementation of APF we
employ is also using comparable likelihood function thairporates silhouette and edge information (see
[14] for details). Unlike the original APF algorithm propesby Deutscheet al. [52], the variant of [14] is
also able to incorporate the temporal and structural pribeg ensure that parts do not penetrate each other
and that joints are within the allowable limits. In Figur@B we compare our model with three variants of
APF algorithm: generic APF with interpenetration constrsiand very generic joint limits with)(250 and

(i) 500 particles, andiii ) an APF algorithm that in addition encodes action-speadifiatjlimits and temporal
prior. In all cases Annealed Particle Filter requires atiahpose at the first frame to bootstrap the inference;
this was obtained from ground truth motion capture data.

Loose-limbed body model in both sequences outperforms émeric APF algorithms (consequently,
the number of particles seems to play little significancehim dverall performance of APF) and performs
comparably to the action-specific APF variant (see Figu22).In all cases, however, the variance for the
estimates obtained using APF are lower than those obtasiad our loose-limbed body model. This is not
surprising, considering the nature of inference employethé loose-limbed body model, where the pose
at the previous time instant is simply a proposal for infeeeat the next time frame. While this type of
inference is beneficial in that it allows easy recovery froreimittent failures, the pose estimation that is
inherently incorporated at every frame also tends to predodsier results when such failures are not present.

15|mplementation of APF is curtesy of Alexandru Balan and eefy distributed frorhttp://www.cs.brown.edu/"alb/
software.htm
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Figure 5.18: Tracking using 15-part loose-limbed body model. Results of tracking in a multioccular
sequence from the HumanEva-| dataset are shown for a numiremezes. Top three rows show the final
result in terms of most likely sample from the marginal foclegart after2 iterations of RMPAS. The
results are projected intdsynchronized views for clarity7(views were used for inference). The figure in
the second to last row shows per frame error (in blue) foB@)l frames used for testing. The mean error
computed over the entire sequence aritt: are shown in solid and dashed magenta respectively. Frames
selected automatically and temporally equidistantly wuglly illustrate performance (top three rows), are
designated by green circles on the graph. The last rowiifitest an alternative analysis of error by showing
statistics for individual virtual markers, with mean on {b& and standard deviation on the right, averaged
over the entire sequence. Notice that the approach sualigsetovers from the miss-tracking thatis starting
to present itself at frame8. We believe that the source of the tracking failure hereused by the ambiguity

in the image evidence; self-occlusions of the body undepérngcular placement of the cameras with respect
to the observed pose make it hard to disambiguate true anderer pose based on image evidence alone.
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Figure 5.19: Tracking using 15-part loose-limbed body model. Results of tracking in a multioccular
sequence from the HumanEva-| dataset are shown for a numiremees. Top three rows show the final
result in terms of most likely sample from the marginal foclegart after2 iterations of RMPAS. The
results are projected intdsynchronized views for clarity7(views were used for inference). The figure in
the second to last row shows per frame error (in blue) foR@ll frames used for testing. The mean error
computed over the entire sequence arit: are shown in solid and dashed magenta respectively. Frames
selected automatically and temporally equidistantly wually illustrate performance (top three rows), are
designated by green circles on the graph. The last rowiifitest an alternative analysis of error by showing
statistics for individual virtual markers, with mean on {b& and standard deviation on the right, averaged
over the entire sequence.
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Figure 5.20: Tracking using 10-part loose-limbed body model. Results of tracking in a multioccular
sequence from the HumanEva-| dataset are shown for a nuriirnees. Top three rows show the final
result in terms of most likely sample from the marginal foclegart after2 iterations of RMPAS. The
results are projected intdsynchronized views for clarity7(views were used for inference). The figure in
the second to last row shows per frame error (in blue) fod@)l frames used for testing. The mean error
computed over the entire sequence arit: are shown in solid and dashed magenta respectively. Frames
selected automatically and temporally equidistantly wually illustrate performance (top three rows), are
designated by green circles on the graph. The last rowiifitest an alternative analysis of error by showing
statistics for individual virtual markers, with mean on {b& and standard deviation on the right, averaged
over the entire sequence.
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Figure 5.21: Tracking using 15-part loose-limbed body model. Results of tracking in a multioccular
sequence from the HumanEva-| dataset are shown for a numiremees. Top three rows show the final
result in terms of most likely sample from the marginal foclegart after2 iterations of RMPAS. The
results are projected intdsynchronized views for clarity7(views were used for inference). The figure in
the second to last row shows per frame error (in blue) fo2 B}l frames used for testing. The mean error
computed over the entire sequence arit: are shown in solid and dashed magenta respectively. Frames
selected automatically and temporally equidistantly wually illustrate performance (top three rows), are
designated by green circles on the graph. The last rowiifitest an alternative analysis of error by showing
statistics for individual virtual markers, with mean on {b& and standard deviation on the right, averaged
over the entire sequence.
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In the APF algorithm, on the contrary, the strong dependendhe estimates from previous frame smooths
the posterior at the expense of persistent failureswhen failure occurs it usually persists for many, if not
all, frames). More importantly, our algorithm is fully amatic and is able to estimate the pose at the first
frame as well as track it over time; the APF approach was fipaity developed for tracking, consequently
it requires manual initialization.

5.7.6 Analysis of Failures

In the context of pose estimation, while our approach perforeasonably well in most frames, it does
occasionally suffer from failures. In this section we wolike# to analyze the common failure modes (see
Figure 5.23).

Intuitively, our approach iteratively estimates the plalesdomain for the position and orientation of
limbs and the distribution over that domain. Part detec#wescritical in providing the initial guess to the
plausible portion of the state space (domain) that shoulddoesidered. However, part detectors, are not
always precise and hence the algorithm can become trappeckinoptima. In particular, since the left and
right limbs are indistinguishable, the only detector thizeg clues as to overall orientation (view) of the
body is the head detector. In the absence of reliable headatsts (a common scenario in practice due to
the poor image quality and sparse placement of camerasjnaldel suffers from d80 degree ambiguity.
This ambiguity, that is illustrated in Figure 5.2®), can be resolved to some extent by the articulation
of the body itself. Joints that have asymmetric degreesesdom i e. hard stops), modeled in our case
by kinematic constraints, can help to resolve this ambjginitsome cases. In other cases, however, where
articulation is minimal, they do not provide reliable digjuishing power (see Figure 5.28\f)). Intuitively,
the 15-part body model should help in these cases, because featipidditional constraints on the overall
orientation of the body. Unfortunately, floor shadows makehellenging to find feet reliably. Hence, we
have observed limited performance benefit from this moreedfmodel.

It is also worth mentioning that since we work with loopy gnagal models, in general our method is not
guaranteed to converge and in the case of convergence igoalgnteed to converge to a local optimum. If
the model does not converge, which in our experience happgraguently, it can oscillate between solutions
as illustrated in Figure 5.2 6ttom).

5.7.7 Discussion of Quantitative Performance

It may be surprising that for the frames where our algorithodpces visually pleasing results (see experi-
ments in previous sections) the error is still in the rang80s#10 (mm). This is in part due to the stringent
error measure criterion employed in this thesis and in pasbtne error being presentin the ground truth data
itself. In general, the visualization may be a bit mislegdinless one zooms and closely looks at individual
body parts and joint locations. In particular, so long asnioglel overlaps mostly with the body, things tend
to look good (even though individual joints may be off). Cegsently, this is why we believe that a well
established quantitative metric, such as the one intratlneee, is needed to drive the future research in pose
estimation and tracking.

In many cases where the errordig (mm) or lower the pose obtained by our approach provides a very
good interpretation of the image, however, there existie lihisalignment at the joints (consequently, since
in most camera views pixel corresponds to alipiat8 mm, the joints only need to be off biyto 8 pizels to
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Figure 5.22: Comparison with annealed particle filter. Tracking results produced by our loose-limbed
body model and by Annealed Particle Filter (APF) are illattd and compared on two sequences, illustrated
in Figures 5.18 and 5.21. Three variants of APF are impleatefdr comparison (see text for details). All

100
Frame #

120 140 160 180 200

methods use comparablé-part body models and likelihood functions; for APF thisuiés in kinematic
tree model withi0 parameters. Top row, in each case, denotes the sequenc@aigeshd the statistics for

performance of various methods, averaged over the lengdtieadntire sequence, in both table (middle) and

bar plot (right) form. Bottom plot, in each case, illustsapeerformance for the entire sequence.
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Figure 5.23Failure modes.One of the most common failure modes of our approach is dueetootational
symmetry of the body. Since the only detector that is sesmstt the overall orientation of the body is the
head, in the absence of reliable head detection (a commaoarsaen practice), the overall pose of the body
can potentially be recovered pointing in the opposite dioac(top). In the figure, dark limbs correspond
to the left side of the model. This is particularly common lire tscenarios where articulations, that also
provide hints as to the overall orientation of the body, aieimal. Notice that the plot on the right, that
illustrates the error as a function of message passingiitesa clearly shows that BP has converged, but in
this case to a wrong solution (which consequently is thelloeximum of the joint probability function).
Sometimes, however, lack of correct orientation (or lack good match to the image data in general) may
lead to oscillations between solutions in the infereramtom). In particular, notice how the legs assume
similar configuration at iteratioR and 10 and a competing configuration at iteration This is a problem
known in the general loopy graphical model literature.

produce an error of this magnitude). The ground truth motepture data is also not perfect, which results
in additional error overhead. There are a number of confmgnaltifacts that may explain why the motion
capture data may not result in perfect ground truth.

First, the recovered ground truth joints are not exact byndain. There seems to be large variety of
opinions, from the biomechanisperspective, as to how accurately the Vicon system can eegoint
positions. In particular, the Vicon software that we arenggsp extract joints, is developed for Gait analysis

18] would like to thank Lars Mundermann and Stefano Corazzaf&tanford’s BioMotion Laboratory for relevant and veryigtsful
discussions.
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| | 10-partmodel | 15-part model |

Part Detectors 47 sec 45 sec
Message Passing 20 sec / iteration| 84 sec / iteration
Belief Estimation 10 sec 64 sec
Total
Pose Estimation 259 sec 948 sec
Tracking 99 sec 274 sec

Table 5.4:Runtime speed of inference All numbers are reported per frame unless otherwise stateese
results were measured on a single processor 2.0 GHz machtimé ®B of RAM.

and hence is naturally less accurate for more complex m&tiém addition, and for the same reason, the
ground truth joint positions recovered for the upper bodydté be less accurate than lower body joints.
Consequently, since we put markers on regular clothesadstf body directly (or body suites) our motion

capture data is inherently less accurate than standarcbdeetht’s hard to quantify to what extent these
artifacts affect our error computations. We would arguayder, that these artifacts are minor with respect
to the errors produced by the algorithm in most cases.

Secondly, since calibration and synchronization of vidéh wotion capture data was done in software,
there is some error present due to the calibration. We cdadux set of simple experiments, where we
manually clicked on unique fixed point in the scene in all \dereconstructed the 3D point corresponding to
the intersection of all rays, then projected it back and &mb&t the difference between the clicked points and
re-projections. The difference, when converted (under@gmate scaling) into 3D, was in the rangetef0
(mm) depending on where the point was in the scene. Of courseetiperiment is biased by the manual
clicking involved (it is hard to click on points in the sceneegisely). Furthermore, it is unclear how the
observed re-projection error relates to the joint errorsueacomputed by our approach. Nevertheless, this
suggests that there is some non zero contribution to thenasberror due to the calibration.

Even with these problems, we believe that measuring the irmeays advocated by this thesis is mean-
ingful. Particularly so, if one is interested in the relatand not absolute measure of performance. Lastly, it
is worth mentioning that independent studfesn HUMAN EVA -| dataset have all reported errsr30 (mm)
(typically in the100 (mm) range).

5.7.8 Analysis of Runtime Speed

Currently we have implementations of tlie®se-limbed body modgl both Matlab and C++. All experiments
in this chapter were done using the C++ version. While sigaifily faster, then our Matlab implementation,
the C++ version is still relatively slow and does not allow feal-time inference. The overall performance
for a typical run of each one of the two models and modes ofatjmeris illustrated in Table 5.4.

Part detectors present a fixed overhead for each frameptingiily amounts td5-50 seconds for views.
Notice that since part detectors operate on pairs of vidves; tuntime in general scales exponentially with
the number of views available. The rest of the time spentAMPAS, consists of a number of message
passing iterations and a single belief estimation stageeatitd. The majority of time in both stages is spent
drawing samples from the product of messages (represept@aussian mixtures).

17Results can be found dtttp://vision.cs.brown.edu/humaneva/publications.ht ml.
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The model presented here, however, has a great potenti@falielization. Of particular interest is the
parallel implementation on the new multicore architecturew becoming common.

5.8 Conclusion and Discussion

This chapter has presented a probabilistic method for oudtilar, fully automatic, 3D human pose estima-
tion and tracking. We show that@ose-limbed body modelith continuous-valued parameters can effectively
represent a person’s location and pose, and that inferamecesach a model can be tractably performed us-
ing non-parametric belief propagation. The belief propiagaframework allows us to avoid distinguishing
between pose estimation and tracking, but instead to ugerbatp part detectors to stabilize the motion
estimation and provide “initialization” cues at every thstep.

The main advantages of our approach are: the complexityeo$élarch task is linear rather than expo-
nential in the number of body parts; bottom-up processeséegrated at every frame allowing automatic
initialization and recovery from transient tracking fa@s; the conditional probabilities between limbs in
space and time are learned from training data. Additionale/exploit a novel data set with synchronized
3D “ground truth” and video data for quantitative evaluataf performance.



CHAPTER 6

Hierarchical Approach for Monocular
3D Pose-Estimation and Tracking

The estimation of 3D human motion (especially in the contéttacking where initial pose is known) is rel-
atively well understood in controlled laboratory settimgth multiple cameras where a number of Bayesian
inference methods can recover 3D human mot@g.(14, 49, 210]). In the previous chapter we addressed
this problem using a novébose-limbed body mod#iat facilitates automatic pose estimation in addition to
tracking. In this chapter we will address the more generabl@m of articulated 3D pose estimation and
tracking from monocular static images and video.

Most prior methods for 3D human motion estimation, rely ocusate background subtraction and edge
information; this is a strong limitation that prevents these in more realistic and complex environments.
When the background is changing or the camera is movinghielibackground subtraction is difficult to
achieve. The problems become particularly acute in theafs®nocular tracking where the mapping from
2D image features to a 3D body model is highly ambiguous. Egueantly, solutions to the monocular (static
camera) case have so far relied on strong prior models [¥8&hual initialization [209] and/or accurate
silhouettes [3, 4, 189, 209]. The fully automatic case imr@ a monocular camera is the focus of this
chapter.

Recent work on 2D body pose estimation and tracking treatbday as a “cardboard person” [111] in
which the limbs are represented by 2D planar (or affine) gatcdonnected by joints (see Section 2.4.2 and
2.4.3). Such models are lower-dimensional than the full 3i2leh and recent work has shown that they can
be estimated from monocular 2D images [59, 170, 173]. Thaltseare typically noisy and imprecise but
they provide exactly the kind of information necessary toagateproposaldor the probabilistic inference of
3D human pose. Thus we simplify the 3D inference problem bypducing an intermediate 2D estimation
stage.

While there has been recent work on directly inferring 3Dgpivem low-level 2D features, these meth-
ods typically rely on accurate background subtractionrimition [3, 4, 189] which may be difficult to obtain
outside the controlled laboratory setting. Consider, f@meple, the image in Figure 6.2)( A key obser-
vation here is that 2D body models can substitute for silttegén these 2D to 3D discriminative inference
methods (see Figure 6.1) and, moreover, provide a richeeseptation than silhouettes in that the 2D models
represent joint angles and structures internal to starglroluettes. This richer model reduces the ambiguity
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-5

Image Foreground Silhouette Sampled 3D Pose

Figure 6.1:Typical discriminative inference process.Discriminative approaches [2, 3, 4, 189, 206] attempt
to estimate the 3D pose directly from the image featured|usdriated above.

Most Likely Sample

-> ->

(a) Image/Features (b) Part Proposals (c) 2D Pose Estimation (d) Sampled 3D Pose (e) Tracking

Figure 6.2:Example of the hierarchical inference process(a) monocular inputimage with bottom up limb
proposals overlaidd); (c) distribution over 2D limb poses computed using non-pateamieelief propagation;
(d) sample of a 3D body pose generated from the 2D p&d]stration of tracking.

in the 2D to 3D mapping.

Recent approaches to 2D articulated human body detectp@se estimation exploit part-based tree-
structured models [59, 93, 122, 170, 174, 178] that captumenkatic relations between body parts. In such
models a body part is represented as a node in a graph and leelge=en nodes represent the kinematic
constraints between connected parts. These models aetiagrbecause they allow local estimates of limb
pose to be combined into globally consistent body poses. |eNhése distributed models admit efficient
inference methods, that scale in time linearly proportiomdéhe number of body parts, the local nature of
the inference itself is also the Achilles heal of these méthd he image evidence for each part is estimated
independently of the other parts and, without a global measi the image likelihood of a body pose,
multiple body parts can, and often do, explain the same irdatge

In particular, for 2D body pose estimation, the “wrong” d@uas are often more likely than the “true”
solution. Figure 6.4 illustrates the problem that resultemlocal image likelihood measures for each body
part do not take into account the poses of other parts and texpboit any knowledge of what image
evidence is left unexplained. This problem is not unique tonan pose estimation and applies to other
generic object-recognition domains.

Recent attempts to solve the problems illustrated in Figudehave focused on the use of strong prior
models of body pose that rule out unlikely poses [122]. Tlegg®oaches are not appropriate for dealing with
unexpected or unusual motions such as those in Figure 6articular, they require that we already know
the activity being observed and that the variation in theegesvithin learned limits. Other computational
strategies incrementally explore the space of body podagiwmiup the formal probabilistic interpretation of
graphical model [170]. In this chapter we argue that suchi@hes are fighting the wrong image likelihood
and that the solution lies in the proper formulation of thklihood function. A fully global likelihood is
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Figure 6.3:Silly walks. The detection of 2D body pose in real images is challengirgtduwwomplex back-
ground appearance, loose monochromatic clothing, andithetémes unexpected nature of human motion.
In this scene, strong, activity-dependent, prior modelsushan pose are too restrictive. The result here was
found by our method which makes weak assumptions about bosky put uses a new occlusion-sensitive
image likelihood.

computationally impractical and consequently we develppracipled approximation to the global likelihood
that is sensitive to local occlusion relationships betwgeis.

The resulting 2D pose estimation is an adaptation ofdbee-limbed body modgitroduced in the previ-
ous chapter for the purposes of monocular 2D pose estima®hefore, simple body part detectors provide
noisy probabilistic proposals for the location and 2D pas#etation and foreshortening) of visible limbs
(Figure 6.2 b)). The pose is estimated by inference in the view-based 2prgcal model representation of
the body. As before we also use a variant of non-parametlieflpropagation (RMPAS) [99, 220] to infer
probability distributions representing the belief in tH2 Rose of each limb (Figure 6.2)j. The inference
algorithm also introduces hidden binary occlusion vagalaind marginalizes over them to account for occlu-
sion relationships between body parts. The bi-directionabitional distributions linking 2D body parts are
learned from examples (similarly to Chapter 5).

This process of using limb proposals and non-parametrarénice in a graphical model provides reason-
able guesses for 2D body pose from which to estimate the 3B pbthe body. Sminchises@i al. [206]
and Agarwal and Triggs [2] learned a probabilistic mappimgrf 2D silhouettes to 3D pose using a Mixture
of Experts (MoE) model. We extend their approach to learn ppimay from 2D poses (including joint angles
and foreshortening information) to 3D poses. The approaels @ mixture of regularized linear regression
models that are trained from a set of 2D-3D pose pairs olddnoen motion capture data.

Sampling from this model provides predicted 3D poses (@u2 ¢)), that are appropriate as proposals
for a Bayesian temporal inference process (Figure 2 Qur multi-stage approach overcomes many of
the problems inherent in inferring 3D pose directly from gadeatures. The proposed hierarchical Bayesian
inference process copes with the complexity of the problemough the use of intermediate generative 2D
model.
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Figure 6.4:Fighting the likelihood. (a) shows the ground truth body pose whit§ énd €) show common
failure modes of pictorial structure approaches in whicthbegs explain the same image data. With local
image likelihoods, the poses ib)(and €) are often better interpretations of the scene than thepose.
This can be seen in the plot where 50 frames of a test sequemesauated. The blue curves illustrate the
local pictorial structures likelihood. The likelihood dfé ground truth is solid blue while the likelihoods for
the two alternative poses (both legs front or both legs back)shown as dashed lines. The local likelihood
marginally prefers the true pose in orilyout of 50 frames tested. With our proposed occlusion-sensitive
likelihood (shown in red) the true pose is always more likbgn the alternative poses.

We qualitatively and quantitatively evaluate our 2D poseénegtion procedure, comparing the perfor-
mance to the state-of-the-art discrete tree-structuretehaf Felzenszwalb and Huttenlocher [59] and results
published in [122]. We show that our continuous-state, wsioh-sensitive, model is better suited, in terms
of quantitative performance, for 2D pose inference. We glsantitatively evaluate the 3D proposals using
ground truth 2D poses. Finally, we test the full hierarchicBerence strategy proposed in this chapter on the
monocular sequence in Figure 6.2. We test both automated8®ipference from monocular static frames,
as well as tracking.

6.1 Previous Work

Generative, model-based, approaches for recovering 28ukatied pose can be loosely classified into two
categories. Top-to-bottom approaches treat the body aardtoard person” [111] in which the limbs are
represented by 2D patches connected by joints. These gacheonnected in a kinematic tree [30, 52, 90,
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147,173, 193, 209] and the pose of the person is represeptetigh-dimensional state vector that includes
the position and orientation of the root limb in the globahipe coordinate frame and the parameters of each
limb relative to its parent in the tree. The high-dimensiatate space makes exhaustive search for the body
pose difficult. While impractical for pose estimation frorsiagle frame, these methods have been shown to
be appropriate and effective for tracking.

In contrast, bottom-up approaches address the dimengioofthe state space by representing each part
independently in the 2D image coordinate frame. In such fscaldody part is represented as a node in
a graph and edges in the graph represent kinematic coristtstween connected parts. This formulation
allows independent search for the parts which are then amdtsubject to the kinematic constraints. The
results are typically imprecise, but enable automatid¢ahitation (pose estimation). These “Pictorial Struc-
tures” approaches assume the graph of the body is a treehwiakes inference tractable [59, 170, 178].
While efficient Belief Propagation inference methbis these graphical models exist [59], they require a
discretization of the state space of 2D limb poses and sifiopihes for the conditional distributions relating
connected limbs (see discussion in Section 3.5.2).

The pictorial structures approach also has problems asrifited in Figure 6.4 where multiple body parts
explain the same image regions. The problems arise fromsthengtion that the global image likelihood
can be expressed as a product of individual local terms (engart), without regard to occlusions. As a
result, as shown in Figure 6.4, we find that the true pose issti@ways (id8 out of 50 frames tested)
less likely than the alternative hypothesis that corredpda the local maximum. To deal with this, previous
algorithms have sampled multiple poses from the soluti@es@nd then used an external global likelihood
to choose among the sampled hypothesis [59]. This approasiever requires smoothing of likelihood
functions, to ensure that the true pose is sampled. Thetditagimum a posterioti(MAP) estimate of
the posterior almost always results in the undesired siutlternatively, Ramanan and Forsyth [170] first
find a solution for one side of the body and then remove the émegions explained by that solution from
future consideration. They then solve for the other sidénefldiody independently. While this sidesteps the
problem it does not explicitly model the possible occlugielationships and the algorithmic solution looses
the probabilistic elegance present in the graphical moalehdilation. A more recent approach of Kumar
et al. [121] acknowledges that occlusions of parts must be aceduinr and proposes a layered pictorial
structure model that exhaustively searches over the degutbe layering of parts. The resulting approach is
more robust, but requires video for on-line learning of #geking model.

Alternatively one can impose strong global constraintshenallowed poses that prohibit solutions like
those in Figure 6.4K) and €) [122]. In [122] a single latent variable that accounts foe tunmodeled
correlation between parts of the body is added. This may peoapiate when the activity is known and the
range of poses is highly constrained; for example, walkiogeg can be represented using a small number
of hidden variables [160]. We argue that these strong praoesinvoked to deal with inadequate image
likelihoods. In Figure 6.4 the local likelihoods prefer thengsolutions and hence the priorfightingwith
the likelihood to undo its mistakes. Furthermore strongnsrare unable to cope with unusual activities such

1Belief Propagation inference in these graphical modelsearecast and solved using dynamic programming.

2Maximum a posteriori (MAP)d.k.a.posterior mode) estimation is often used to obtain a poiithese of the posterior distribution.
Itis closely related to maximum likelihood (ML) estimatidsut can incorporate a prior distribution over the variabnd hence can be
seen as a regularization of ML estimation. Often the MAPneste is computed in the cases where the expected value obsterjpr
density cannot be computed explicitly.
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as the one in Figure 6.3.

The closest work to ours, addresses the problem with thedrilegjihoods in these decentralized models
in the context of 3D articulated hand pose estimation [2I8jey explicitly model occlusions in 3D and
deal with distributed reasoning in graphical models usimmn{gdarametric Belief Propagation [220]. The
approach deals with the issue of overcounting image evelbatdoes not address the problem of having the
model explain as much of the image evidence as possibldyoéa a result the particular message passing
order must be imposed to account for the layering of partgyTiso only deal with tracking from a hand
initialized pose; here we go further to deal with automatisg estimation (initialization). Consequently,
our formulation allows for more general likelihoods. Ouarfrework also uses a slightly different inference
approach, from the one introduced in [220], that extendsbédmgc Particle Message Passing\KHPAS)
algorithm introduced in previous chapters.

In summary, to address articulated 2D pose estimation franatular static imagery, we propose a
method for approximating the global likelihood using cateint local likelihoods. This allows us to use a
part-based graphical model of the body and perform inferemith a generic approximate BP algorithm,
PAMPAS. Unlike [59] we deal with the continuous estimation of paxtdtions, orientation, foreshortening
and scale. Like previous approaches, for now we assume arkview but multiple views can be searched
simultaneously and it is relatively straightforward to quare the results to select the best view. Without
strong priors, the method finds solutions that better erlaé image evidence, and results in more accurate
pose estimation. Also, unlike previous methods [59, 196infex 2D pose as an intermediate step to inferring
the full 3D articulated body pose.

Lee and Cohen [127] also use a bottom-up proposal processfn@D pose parameters using a data-
driven MCMC procedure. Our approach differs in that we bréekproblem into simpler pieces: generate
2D proposals, inference of 2D pose, and prediction from 2B0oWe are also able to incorporate temporal
coherence (tracking) where appropriate.

The 2D to 3D inference stage has received a good deal of iattenith a variety of geometric [147,
222] and machine learning methods [2, 3, 4, 181, 189, 206jgoemployed. Most previous approaches
have focused on directly inferring 3D pose from 2D silhoegtvhich may be difficult to obtain in general.
Additionally silhouettes contain less information tham @D models which represent all the limbs, the joint
angles, and foreshortening. This helps reduce the amb@gddund in matching silhouettes to 3D models
[209] but does not remove ambiguities altogether. Congatyue/e learn a conditional distribution using
a Mixture of Experts (MoE) model similar to that of Sminctgese [206] and Agarwal and Triggs [2]. Our
work is similar in spirit to [90] in which 3D poses are infedrirom 2D tracking results, but our approach can
infer 3D pose from a single monocular image and does not requanual initialization.

6.2 Modeling a Person

We model a 3D human body using a setfofhere P = 10) tapered cylinders corresponding to body parts
and connected by revolute joints. Each part has an assodet®f fixed parameters that are assumed to be
known (.g.length and cross-sectional radius at the two joints). Weessgmt the overall pose of the body
Y, = [Z, 4,07 at timet using a set of joint angled;, a global positiorE,, and global orientatioi;

in 3D. Joint angles are represented with respect to the kitierohain along which they are defined using
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unit quaternions (see Kinematic Tree model discussed itidde2.4.1). For our body model, this results
inY; € R, or Y, € R* depending on whether one chooses to model the claviclesjoie tested our
approach with both parameterizations. For simpler mot{oraking) we revert to the lower-dimensional
state space which proved to be adequate, for more compldemsqtancing/ballet) that allow for a higher
degree of flexibility in the body pose we resort to the more jglem higher-dimensional parameterization.

In 2D the limbs in the image plane are modeled by trapezoidsied by projecting tapered cylinders
from above into image plane. The overall body pose is defis@tha redundant representation (introduced
in previous chapterX; = {X; 4, X2, ..., Xp.} in terms of 2D position, rotation, scale and foreshortening
of parts,X; ; € R°. This redundant representation (see Figure 6.5) stemstfierinference algorithm that
we will employ to infer the pose of the body in 2D. To simplifgtation we will drop the temporal sub-script
t where not necessarg.g.letting X = {X;, Xs, ..., Xp} instead ofX; = {X; 4, X5, ..., Xp4}, Since 2D
inference is done independently at every frame).

Notice that the decentralized, redundant, representatidhe pose introduced in the previous section
is only being employed for the 2D body pose, not for the 3D poBke reason for this stems from the
architecture we choose for our hierarchical frameworkc&ijinference from 2D pose to 3D pose takes form
of the Mixture of Experts, or put simply multivalued regriess there is little benefit in using decentralized
loose-limbed body model representation for the 3D poselgled would increase overall dimensionality of
the 3D pose, without any computational benefit.

6.3 Finding an Articulated Pose of a Personin 2D

In 2D, the body is represented as a graphical model (Figieis which nodes in the graph correspond to
the rigid body parts and undirected edges to the probabilienstraints between parts encoded using pairs
of consistent conditional distributions. This redundaut decentralized representation allows for tractable
inference, by partitioning the search for the pose in a highedsional space into a number of lower di-
mensional distributed searches that collaborate to ifhfeioierall state of the body, subject to the imposed
constraints.

6.3.1 Likelihood

To estimate the pose of an object we must be able to evaluatevbt) different body configurations explain
observed image data. We formalize this using a probalili&glihood function that takes a body pose and
the image evidence and returns the likelihood of the pose.d&sired properties of a good likelihood function
lie in its robustness to partial occlusions, camera noisanging lighting and the variability of appearance
of the body. We will build on the likelihood formulation imtduced in Section 5.4, extending it to account
for self-occlusions of the body that may result from artétidn of the body itself under particular viewing
direction. While self-occlusions can also present themesein multi-camera scenarios, in practice they are
much more problematic in monocular imagery. In multi-caanebservations occlusions typically occur in
only one of the many views of the object, and hence can oftegrimed (as we have done in Chapter 5).
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Figure 6.5:Representing 2D body as a graph Figure @) shows the representation of the 2D body as a
graph with body parts labeled using the corresponding nadeers; b) shows the corresponding tree-based
representation of the body, and) pur extended body model that contains additional occlusmnstraints
designated by edges in blué) (shows actual directed graphical model interactions eeddy a single blue
edge in €) betweenX, andXy; I is the image evidence.

Global vs. Local Image Likelihoods

Given the state of the bod¥, we define a global likelihood(7|X) in terms of some features(with slight
abuse of notation) observed in an image. For continence,ssenge that these features are defined per-
pixel and on a pixel grid. To support distributed modelingte body we write this global likelihood as the
product of local likelihood termg(7|X) o Hie[l Pl ¢:(I|X;). Drawing inspiration from [59] and [260],
we define local likelihoods, as in previous chapter, in teohthe product of individual pixel likelihoods

.....

in sub-regions of the image that are defined by the local Xate For clarity we re-state the likelihood
formulation introduced in Section 5.4, in a slightly morengeal form, here.

Formally, we assume that pixels in an feature imalgecan be partitioned into three disjoint sub-sets
21(X;) U Qa(X;) UQ3(X;) = T, whereY is the set of all pixel grid positions = (x,y) in an image;
21(X;) is the set of pixels enclosed by paras define by the sta¥;; Q,(X;) contains the pixels outside
parti that are statistically correlated with the partfor example pixels in the border slightly outside the
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limb); andQ3(X;) = T — (21(X;) U Q2(X;)) which corresponds to the set of pixels where we assume no
correlation of the image statistics based on the pose ofipassuming pixel independence in the feature
image, we write the local likelihood(7]X;) for the parti as a product of individual pixel probabilities as

oi(I1X)= [ ») [I p) ] »s(@) (6.1)

ueﬂl(xi) SEQQ(X.L) Teﬂg(xi)

for featuresl,,, v = (z,y) € T.
The standard pictorial structures silhouette likelihq@enoted byF'G in Chapter 5) [59] can easily be
written in this form,

dirg(I1X) = [ pre) [[ peres) [[ pare), (6.2)
ueﬂl(xi) Seglg(xi) Teﬂg(xi)
by letting I, be a silhouette image obtained by background subtradten( = F'G.(x,y) using notation
of Chapter 5) and by setting

I,) =
p1rG(1u) { 1—gq; otherwise

I,) =
p2.rG(1u) { 1 — g2 otherwise
pa3rc(lu) = 05 o9

for some constants < ¢; < 1. For other non binary features such as limb/skin color (tishbere byC') we
can expresg «(I,,) andps «(I,,) as a per pixel ratio of learned foreground and backgrountiloligions;
for example

skin Iu
pl,C(Iu) _ Psk ( )
pskin(Iu) +pbkgd(ju)
Pokgd(Lu)
I,) =
p27C( ) pskin(Iu) +pbkgd(ju)
ps.c(lu) = 0.5 (6.4)

wherel,, in this case, is simply a pixel value of the original image.

Occlusion-sensitive Local Likelihoods

The above formulation is only valid if the local termig( 1| X ;) for i € [1, ..., P] are independent. In absence
of occlusions, this assumption holds and likelihoods facthen limbs occlude each other, however, the
assumption does not hold and the product of local likelitsogides a poor approximation to the global
likelihood (see Figure 6.4).

To allow a similar decomposition (and hence distribute@iiefce) when occlusions exist, we augment
the state X;, of limb ¢ with two sets of binary hidden variablé$ = {v; .} andV; = {0iv}, whereu is
a pixelu € Y. Letw;, = 0 if pixel u for the parti is occluded by any other body part, ahatherwise.
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Intuitively this corresponds to the “visibility” of the par at a given pixek:.. Notice that ifv; , = 1 for some
pixel u € Q4(X;), then we know that paitat a given pos&; generated pixel in the image. Similarly we
letv; , = 0 if at pixel « for parti at X, is occluding any other part, aridotherwise. IntuitivelyV; encodes
which pixels in the image could possibly be explained by otiey parts that are further away from the
camera. In particular, if; ; = 1 and®; s = 1 for a pixel slightly outside part s € Q2(X;), then that pixel,
s, must have been generated by a background model (since Injtidefthere cannot be any other part in
front or behindi at s). Intuitively V; andV; in conjunction allow the likelihood to not only be sensitice
occlusions [219] but also to reason locally about globalypible explanations of the image. In other words,
each limb maintains a summary of what is in front and behinéibinary maskd/; andf/i.

An illustration of these visibility variables is shown indtire 6.6. For example, Figure 6.6 {ndicates
that the torso is occluded by the lower arm { = 0) and Figure 6.6d) indicates that the arm is occluding
part of the torsog; ,, = 0).

Modifying our likelihood, to take into account the hiddempéxel binary occlusion variables we have

¢1(I|X“V1"A/l) = H [pl(Iu)]viyu H [pQ(Is)]viysmys H [pB(Ir)]viyrmyr . (65)

ueﬂl(xi) Seglg(xi) Teﬂg(xi)

Notice thatv; ., andd; ,, are simply used as selectors. If pixek ©,(X;) is unoccluded then contribution of
pixel u, p1(I,,), to the likelihood will be considered. Similarly, if pixele Q5(X;) is both unoccluded and
unexplained then its contribution will be considered as wrixels for whichv; ,, = 0 and/orv; ,, = 0 will
have constant likelihootl

The per-pixel occlusion-sensitive likelihoods are showrfigure 6.6 for the torsoe] and lower arm
(h). The local estimate of the global likelihood is simply threguct of the pixel likelihoods, where brighter
indicates more likely.

It is important to note that conditioned on the sets of hiddarablesV; andf/l- the local likelihoods
o (11X, Vi, Vi) are truly independent i¥; andV; are consistent across allc [1,..., P]. By consistency
here we mean that parts do not assume mutually occludirgsdi@mt example (meaning that there may exist
only one part; for which v; , = 1, for all othersv;, = 0, wherej € [1,..., P|/i). This ensures that

.....

6.3.2 Modeling Constraints

The 2D body in our decentralized model is represented byt@insgs between the parts that express tradi-
tional kinematic relationships (similar to those desdiilie Section 5.3.1 but in 2D) as well as occlusion
relationships between possibly occluding parts.

Occlusion Constraints

Enforcing the consistency of the hidden occlusion varigbieand V; requires reasoning that involves all
potentially occluding and occluded parts for any given nadé/e can express these occlusion constraints
using pairwise potential functio ?j(Xj, Vi, IA/j,Xl-, Vi, Vi) between every pair of potentially occluding
partsi andj. We formally encode the consistency of all occlusion relahips between paitandj using

the unnormalized distribution:
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(© (d)

(b) ® ©) (h)

Figure 6.6:0cclusion-sensitive likelihood Two overlapping parts (torso and lower arm) are showrajn (
The solid regions correspond £ while the regions outside but enclosed by the line corregpof,. (b)
shows the observed silhouette) @nd ) show the state of the hidden variablEgsfor the torso and left
lower arm respectivelyd) and @) show the corresponding states of thes; (e) and ) shows the per pixel
local occlusion-sensitive likelihoods with pixel brigless corresponding to high probability. Notice that in
the cases where a part is both occluded and occluding othis; pathV; and V; will contain non-uniform
structure.

0 if X; occludesX;, u € Q1(X;), v =1
0 if X; occludesX;, u € 21(X;), vju =1
0%,V V5 X, Vi, Vi) o [T 0 if X occludesX, u € 94(X5), 6,0 = 1 (6.6)
uweT | if X; occludesX;, u € Q4(X;), 0y =1
1 otherwise

Intuitively this simply enumerates all inconsistent caaed assigns thefprobability. The first case for
example can be interpreted as the followingXif occludesX; and any pixek is inside the image region of
occluding partj, thenv, ,, corresponding to the visibility of the occluded pagt the pixelw must be set to
0.

Kinematic Constraints

Every pair of connected parig, j) in the body also has an associated kinematic potential ifam¢hat
enforces kinematic constraints and positions of joints.bAfore, see Section 5.3.1, potentials are modeled
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using convienient robust Gaussian mixture representatibim 2D. Also, as before, we learn the conditional
distributions, corresponding to these potential functjatirectly instead of indirectly deriving them from the
jointdistributions (see discussion in Section 5.3.1). @tweditional distributionswere learned separatelysfor
view-based models using 3D motion capture data. The trgmiotion capture data was partitioned according
to the relative heading of the body with respect to the camienaing direction atl5 degree increments. The
3D body pose was projected into a desired camera view anda@itonals were learned from the 2D
projections of individual limbs. As before, we used a staddgerative Expectation-Maximization (EM)
algorithm with K-means initialization for learning the Gasian mixture model (GMM) (see Algorithm 1 in
Section 3.4.2 for details). For all experiments in this ¢eage usedV/;; = 8 mixture components.

6.3.3 Inference

Inference in the standard pictorial structures model weslestimating the location and pose of every body
part. With our occlusion-sensitive model we have the addél problem of dealing with the hidden occlusion
variables. Given the formulation above, the joint probigpfbr the graphical model witl® body parts, can
be written as

p(X1,Xa, ..., Xp|I) ZZHMX X;) (6.7)

Hwo (X5, V5, V5, X, Vi, Vi) T 06 (11X, Vi, Vi)
J

whereX; represents the state of the limiby[§ (X, X;) is the kinematic compatibility term between the
connected nodesand j; wO(X Vi, V , X, Vi V) is the occlusion compatibility between potentially oc-
cluding nodes andj and¢;(I|X;, V;, 14-) is the local image likelihood. The two summations margireli
over the hidden occlusion variableslinandV;. Notice, unlike other graphical models introduced in this-t

sis where the states are either continuous or discrete,ddelimtroduced here has both continuous variables
(corresponding to the 2D location of parts) and discreteabées (corresponding to per-pixel occlusions).

We solve for the part poses using belief propagation wherenssage update equations are:

- [t x)
X, Vi Vi
keA/j

Z > WG (X, V5, V5, X, Vi, Vi)
Vi

i

my; X]a‘/JaV :/
X

i Vi

Gi(I1X3, Vi, Vi) [ s (Xa)ymis (X, Vi, Vi) (6.9)
keA/j

Inferring the state of the 2D body in our graphical model espntation corresponds to estimating the
belief (marginal) at each node in a graph,
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Figure 6.7:0Occlusion-sensitive inferenceFigure @) shows the proposal distributions for the six body parts
drawn from the ground truth pose and corrupted by Gaussiee nBoth left and right calves are initialized
intentionally incorrectly on the left calf in the imagés)(shows the mean of the marginal distribution for each
part after 3 iterations of belief propagation (BP). Figumeshowsl00 samples from the marginal distributions
after one, two and three iterations of BP. Notice that waahie from a local maximum of the traditional
likelihood function, precisely the place where most altjoris get “stuck”, yet our algorithm is still able to
recover the correct pose.

bi(Xi) =D > ¢i(1|Xy, Vi, Vi) [ s (Xi)miy (X, Vi, Vi), (6.10)
Vi v, keA

We use RMPAS [99], as in previous chapters, to deal with this task. Thesagss are approximated
using a kernel density formed by propagating particlesughoa conditional density (see Section 3.7 for
details). In all the experiments we uséd0 particles which, when propagated through the conditionals
represented by mixtures 8fGaussians, resulted in density representation for theagesswithN = 800
Gaussian kernels. We modify the method to include an amgeatep [52] with each iteration ofaARMPAS,
as discussed in Section 3.7.7, that gradually introduceefflects of peaks in our local likelihoods. For the
details on how the message updates are carried out usitifieiraampling from the products of messages
and a static proposal distribution see Algorithm 6 in Sec®o7. The illustration of the inference using
PAMPAs with occlusion-sensitive likelihoods can be seen in Figiig Consequently, in Figure 6.7 we
start intentionally from undesired initial conditions, &rle both legs are found in the same location; yet our
occlusion-sensitive model is able to successfully recéneen this local maximum.
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Message Updating for Occlusion Messages

It is intractable to sample occlusion variablésand V; due to the exponentially large number of possible
occlusion mask configurations. Consequently we approxrtiee computation of the marginals using an
analytic procedure introduced in [219]. Assuming we knowtteordering for the parts in a given view we
compute the approximate messaggj (X;,V5, Vj) for V; ande explicitly. To do so, we must consider
two cases: 1) whereX; is occluded byX; and @) whereX; is occludingX;. We assume that potentially
occluding parts have a known and unchanging depth ordemipli$y the formulation. In general, we could
introduce an additional discrete hidden variable desiggdhe depth order between parts and marginalize
over it as well, which would lead to a more complex inferercieesne.

If X; is occluded byX; the message frorX; to X; about the state of; is uninformative and can be
written in terms of individual per-pixel hidden binary valbies aSnin({;jyu =1)=1,foralu e Y. The
message foV’; is informative, however, and can be approximately compated?j (Vju=1)x1—pue
01(X;)), wherep(u € Q4(X;)) is simply the probability of pixel: € Y being inside the projection &;.
Similar expressions can be derived for the case wigres occludingX;.

We can now approximate the marginal probability of a pixéleing “visible” for partj, p(v; . = 1), by
taking a product over all potential occluders,

p(vju = 1) x Hm?j(vj,u =1). (6.11)

Sincev; ,, is binary, the occlusion probability is simptyv; ., = 0) = 1 —p(v; ., = 1). Similarly forp(v; ,, =
1) < I, ml-oj({;j,u = 1), wherep(?;,,, = 1) is the marginal probability of the pixel not being explained by
any other pari that is behind parf (further away from the camera). Computation of these mafgiamount
to “projecting” the distribution (represented in terms adighted particles) for every possible occluder
into the image and summing over the resulting weighted inaasks (with normalization).

We can now re-write the likelihood functions in terms of tharginal probabilities; , = p(v; ., = 1)
andz; , = p(0;., = 1),

Oi(11X,., V3, ;) = (612)
H (1= zju) + 2jup1(Lu)]
ueQ (X;)
I = zs20) + 2.s2.5p2(L)]
s€Q2(X;)
H [(1 — Zj,réj,r) + Zj,réj,rpiﬁ‘(]r)] :
reQs(X;)

This equation downweights the image evidence for the pat a pixelu € Q,(X;) as the proba-
bility of that pixel’s visibility decreases (occlusion frability increases). Similarly, it also downweights
the image evidence at the pixele Q2(X;) as the probability of that pixel being explained by another
body part further away from the camera increases. Noticetthis likelihood can be implemented effi-
ciently by only considering regions of the imafe (X,) and,(X;) for a givenX;, and precomputing

HT (1 = 2j,r2r) + 25,0 25,r03 (1))
re
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Limb Proposals

Plausible poses/states for some or all the body parts atedess proposals to initiate inference (see Sec-
tion 3.7.3). There exist a number of efficient methods foedtng 2D body partsin an image [127, 147, 176].
Among them approaches for face detection [236], skin cbimed limb segmentation [127, 128], and color-
based segmentation exploiting the homogeneity and thivwekepatial extent of body parts [127, 128, 147,
176]. Here we took a simple approach and constructed a sebpbpals by coarsely discretizing the state
space and evaluating local part-based likelihood funstiminthese discrete locations. For all of the exper-
iments here we discretized the state space Inszales,5 foreshortenings20 vertical and20 horizontal
positions, and rotations. Out ofy x 5 x 20 x 20 x 8 = 80, 000 evaluated discrete states, we choseltle
most likely states for each part and used these as a paréistgliproposal distribution for belief propagation.
It is important to note that not all parts need to be detectet] & fact, detecting all the parts is largely
impossible due to the self occlusions. To initialize thecleave used, as in Chapter 5, proposals for 6 parts:
torso, head and four outermost extremities. All other paree initialized with a uniform distribution over
the entire state space.

6.4 Proposing 3D Body Model from 2D

In order to produce estimates for the body in 3D from the 2Dyhjpases, we need to model the conditional
distributionp(Y|X) of the 3D body stat& given 2D body stat&X. Intuitively this conditional mapping
should be related to the inverse of the camera projectiorixraid, as with many inverse problems, is highly
ambiguous.

To model this non-linear relationship we use a Mixtures opé&xs (MoE) model to represent the con-
ditionals [3, 4, 206]. The more complete definition of MoE rabdnd the learning procedure can be found
in Section 3.8.2, here we briefly restithe process for convenience. The parameters of the MoE raoelel
learned by maximizing the log-likelihood of the trainingadaetD = {(x1,v1), ..., (zn, yn)} consisting of
N input-output pairgz;, y;). We use an iterative Bayesian EM algorithm, based on maxilfiketihood, to
learn parameters of the MoE. Our model for the conditionallmawritten as:

S

PYIX) =" pe(YIX, 2 = 1, 0e.m)pg (2 = 11X, 0g.1m) (6.13)

m=1

wherep. (Y |X, z,, = 1, 0..,) is the probability of choosing poSg given the inpuiX according to then-th
expert, antp, (2, = 1|X, 0,,,,) is the probability of that input being assigned to theth expert using an
input sensitive gating network; in both cagagpresents the parameters of the mixture and gate distnisut

For simplicity and to reduce complexity of the experts wead®linear regression with constant offset
Y = X + « as our expert model (this is a simple generalization of thedr regression model described
in Section 3.8.1), which allows us to solve for the paransafigr, = {5, am, X} analytically using the
weighted linear regression. The expert model can be wrésdiollows:

3Notice that heréX is the variable we are conditioning on alftiis the variable we are trying to infer; opposite is true far totation
in Section 3.8.2.
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Figure 6.8:Hierarchical inference. Graphical model representation of the hierarchical infeeeprocess;
(a) illustrates the 2D body model used for inference of the 2Bepat every frame, with kinematic constraints
marked in black, and occlusion constraints in blue, afjdti{e Hidden Markov Model (HMM) used for
inferring and tracking the state of the 3D bod;, over timet € [1, ..., T, using the hierarchical inference
proposed, in which proposals for each no¥g,are constructed from 2D body poXeusing the model in

(b).

_ _ 1 —LIAT SN,
Pe(YIX, 2 = 1,00m) = m exp 2 ; (6.14)

wheredy is the dimensionality of the 3D po&¢, 53, anda,,, regression parameters,,, is the covariance
of the kernel regressor, and

Apm=Y — BnX — am. (6.15)

Pose estimation is a high dimensional and ill-conditionezbfem, so simple least squares estimation
of the linear regression matrix parameters typically posdusevere over-fitting and poor generalization.
To reduce this, we add smoothness constraints on the leanapgding. We use a damped regularization
term R(3) = \||3||? that penalizes large values in the coefficient mattjxwhere \ is a regularization
parameterd.k.a.ridge regression). Larger valuesoivill result in overdamping, where the solution will be
underestimated, small valuesoivill result in overfitting and possibly ill-conditioning.igce the solution of
the ridge regressors is not symmetric under the scalingeahtbuts, we normalize the inpufs, zo, ..., t N }
by the standard deviation in each dimension respectivdlyrésolving®.

The weighted ridge regression solution for the parameigind ;. can be written in matrix notation as
follows,

T —1
- DL diag Z,,) Dx + diag\) Z,, DL | .
Bm | _ | Px diadZm) Dx + diag ) X | diag(Z,n) Dy, (6.16)
U zr ZL Z, zr
where Z,, = [zf,%), zf,f), - zan)]T is the vector of ownership weights described later in thei@eand

diag Z,,,) is diagonal matrix withZz,,, on the diagonalDx = [z1, x2, ..., xy] andDy = [y1,¥y2, ..., yn] are

4To avoid problems with 2D and 3D angles that wrap arourziatve actually regress theos(6), sin(#)) representation for 2D
angles and unit quaterniap = [gz, gy, =, qw]T representation for 3D angles. After the 3D pose is recoatidwe normalize the
not-necessarily normalized quaternions to valid 3D roteti Since quaternions also suffer from tiaible coveproblem, where two
unit quaternions correspond to every rotation, care musihken to ensure that consistent parameterization is used.
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vectors of inputs and outputs formed from the training data
Maximization for the gate parameters can be done analiytiaalwell. Given the gate model,

1 1 T A —1
Zm = 11X, 0, ) = —— exp~ 2 X#m) At (X—pim) 6.17
Polem = 1K 0y0) = e exp (6.17)
maximization of the gate parametéts,, = (A, 1) becomes similar to the mixture of Gaussians estima-
tion, where
N N
e = Z M,/ Z PA (6.18)
n=1 n=1
1 N
A = ———5 > 2500 — pn] [0 — ] " (6.19)

Zn:l Z7(7711) n=1

andz"" is the estimated ownership weight of the examplay the expertn estimated by expectation

(n)

L) Pe(nlTn, 2 = 1 Oem)pg (1) = Vn, Ogm)
" peynlen 5 = 1,60 )py (2" = 1, b.)
The above outlines the full EM procedure for the MoE model. I#ggn MoE models for two classes of
actions: walking and dancing. Examples of the ground triitlg@ery poses with corresponding expected 3D

(6.20)

body poses can be seen in Figure &pand p) respectively. Similar to [3, 4] we initialize the EM leang
by clustering the output 3D poses using the K-means proeedle learn a single conditional MOE model
that we use for all view-based 2D pose estimates. We expetadeavith learning of view-based conditional
MoE models, but they tended to have artifacts at view bouasand suffered from overfitting.

Implementation Details

Instead of learning the full conditional mod€lY | X), we learn two independent modeld"| X) andp(©|X)
one for the pose of the 3D bogly©|X) given the 2D body posX, and one for the global orientation of the
bodyp(T'|X). The reasoning for this is twofold. First, this partitioheiearned mapping into a fully camera-
independent model for the pogf|X), and the more specific camera-dependent model for the atienof
the body in the worlgh(T'|X). Second, we found that the optimal damping coefficient isificantly different
for the two models, therefore imposing a single joint coiodial model (and hence a single coefficient) would
result in somewhat larger reconstruction error. Estinmatibthe depthp(=|X) is done analytically (using
simple regression) by considering the estimated positioioerall scale of the 2D body.

6.5 Trackingin 3D

Once the distribution for the 3D body pose at every frame fsried using the conditional MoE model
described, we can incorporate temporal constraints tdagge the individual 3D pose estimates by track-
ing. We exploit the relatively standard undirected variaihthe Hidden Markov Model (HMM) shown in
Figure 6.8 €). To infer the state oY, at every framet given the temporal potentiat” (Y;, Y1) =
N(Y; — Y 41;0,37), with learned covariance matriX,, we use the same inference framework afR
Pas. Unlike many competing approaches, we allow the model torope the pose estimates not only forward
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Figure 6.9:Proposed 3D pose(a) Synthetic query 2D body pose, obtained from projected omotapture
data; p) expected 3D pose produced by the learned action-specifituldi of Experts (MoE) model. cf

Ground-truth 3D body posed) and ) illustrate the projection of the expected 3D pose showrb)ro(ito

the original and one alternative image view.

but also backward in time in a batch (this amounts to tempraothing).

The likelihood,#(I;|Y,), of observing the 3D pos¥, at time¢ given image evidencé; is defined
in terms of Chamfer distance of the projected pd5eto the silhouettes and edges obtained frhmising
standard techniques.

6.6 Experiments

In this section we present a set of quantitative and quiaita&xperimental results for testing various stages
of our hierarchical inference framework, as well as the gratork as a whole. We first test how well we can
recover the 2D pose independently in each frame usingotlusion-sensitive loose-limbed body maodel
Section 6.6.1; we then analyze how well our discriminativeEMnodel can predict the 3D pose from the 2D
poses recovered at every frame, in Section 6.6.2; finallybrefly explore the benefits of adding temporal
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Figure 6.10Quantitative performance evaluation of 2D pose estimationMean error of the joint locations
for each frame of 50 frame image sequence with ground tri8f][1For the description of the metric see
text.

consistency (tracking) into our hierarchical frameworlSection 6.6.3.

6.6.1 Monocular 2D Pose Estimation

We learned occlusion-sensitive models §atiscrete views of a person including frontal, side and 3é#vgi.
For each view we assume the depth ordering of the body patt®isn. The kinematic constraints between
parts were learned from projected motion capture data.l kxperiments the likelihood uses a combination
of silhouette and color/intensity information (assumindependence). Color was primarily used to achieve
robustness in the cases where silhouettes were ambiguauseaiable in localizing a given part. For the
silhouette likelihood we used the pictorial structuresetypodel and learnegh r¢(l, = 1) = ¢1 and
p2.ra(Is = 1) = g2 using the procedure described in [59]. Similar to [59] weuassd thaps pe (I, = 1) =
0.5. For the color/intensity likelihood we learned a kernel slghmodel for each part and the background.

For frontal views, the lack of self occlusion means that trased approaches will usually perform well.
Consequently we focus on the more challenging side-viewsaauing occlusion. We quantitatively compare
our approach (PMPAs-OS) to leading tree-based methods usifgrames from the Brown ground truth
sequence, obtained similarly to theJMAN EVA-I dataset described in Section 5.7.1. UnlikenNtAN EVA -
I, the dataset used in this chapter contains images ftaynchronized greyscale cameras (instead of
in HUMAN EVA-1); however, we only employ images from one camera (BW1)ifderence. Additional
description of the data used in this chapter will be giverhimtext section. To evaluate performance of our
2D method, we extend the error metric presented in Chaptésbbefore, the proposed metric computes
the average distance error between a sébofirtual marker locations corresponding to the joints. Heere
since our pose in this case is in 2D, the distance is comput#teiimage plane, instead of the world; the
resulting error is ingizels).

For comparison we implemented two tree-based methodsirjaitstructures (PS-Tree) [59] and a variant
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Strong | Discrete| Mean Error| Std. of Error
Prior State (pixels) (pixels)
PAMPAS-OS No No 10.33 2.25
PAMPAS-Tree | No No 16.40 3.67
PS-Tree No Yes 20.84 6.64
PS-Tree [122]| No Yes 13.79 3.99
LBP [122] Yes Yes 12.00 3.99
Factor [122] Yes Yes 6.42 1.55

Figure 6.11: Overall performance comparison of 2D pose estimation.Performance of the occlusion-
sensitive inference compared with two tree-based algostimplemented by us. We also compare to the
results reported by [122] on the same image sequence.

of our approach that does not model occlusiond\iPAs-Tree) by simply removing the occlusion constraints
from our model. Figure 6.10 shows the mean errorlfomarkers at every frame for the three methods; the
statistics, for comparison, are shown in Figure 6.11. kalig [122] we deal with the left/right ambiguity by
switching the left/right limbs and reporting the inter@gbn with a smallest error. Notice, that for the results
reported in Figures 6.10 and 6.11 we are estimating the paspéendently at every framed only doing
pose estimation, not tracking).

Our occlusion-sensitive inference approach outperforic®ipal structures by 50% (25% for the im-
plementation in [122). We found that occlusion-reasoning accounts for a 37%opexince gain over the
simple RMPAs-Tree method. According to the published literature [12@} approach also outperforms
max-product loopy-BP, but does not do as well as the comraotof model (Factor) presented in [122]. This
is not surprising, since the common-factor model uses ainglgrior learned for this data. Our approach
does not assume a strong prior on the motion or style, insteady encodes weak priéron the relative
position of neighboring limbs.

Figure 6.12 illustrates the behavior of PS-TreeMPAS-Tree and RMPAS-OS on a few frames of the
sequence. As expected we observed many failures in theriplcstructures model due to the overlapping
parts €.g. see Figure 6.12d)). PAMPAs-Tree, not surprisingly had similar modes of failure whiket
occlusion-sensitive AMPAsS-OS does a better job of explaining the image evidence (adeaseen from
the results in Figure 6.11 and quantitative comparison gufe 6.10).

In addition to the quantitative experiments we also ran oadehon less structured scenarios from TV
and movies for which strong prior models will typically nobvk. Figure 6.13 illustrates two representative
results. In both cases, camera motion makes backgroundhstibn difficult. Crude background subtraction
was obtained using homographies estimated betwdemmes sufficiently far apart in time (using the code
from http://www.robots.ox.ac.uk/ ~vgg/ ). Estimated homographies allow us to compensate for the
camera motion and use frame differencing to obtain very hasiimates for the foreground silhouette (see
Figure 6.13 €)). Color likelihoods were defined as in [170].

Our current un-optimized implementation cAMPAS-OS in Matlab takes roughly 5 minutes for mes-
sage passing, and 1.5 minutes for belief estimation perdrarhe occlusion constraints account for a 43%

10our independentimplementation of PS-Tree [59] resultesbimewhat larger error than reported in [122].

5Consequently, while in this thesis we advocate the use okywear models due to their generality, the models introdiicere do
not prevent the use of strong priors. To the contrary, theddambed models we introduced can easily be extended kodagriors of
the form explored in [122] to boost performance in specifimdms.
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Frame 2 Frame 24 Frame 49

Figure 6.12:Visual performance evaluation of 2D pose estimation(a) MAP estimates for the tree-based
implementation of pictorial structures on three framesfrour test sequence. Performance of occlusion-
insensitive and occlusion-sensitiva MPAS is shown in b) and €) respectively. The top rows shoi¥0
samples from the marginal distribution at every node (fetifter 5 iterations of BP, and bottom rows the
weighted mean computed over those samples. BP was run Li¥inmarticles which resulted in th&¥ = 800
Gaussian kernel mixtures for the messages.

overhead over PMPAS-Tree.

6.6.2 Monocular 3D Pose Estimation

In previous section we tested the performance of one of the@&mponents of our hierarchical framework,
that allows us to reliably recover the 2D pose of the persomfmonocular images (independently at every
frame). We showed that our occlusion-sensitive model perdoetter then other methods tested. In this
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(b)

Figure 6.13:Occlusion-sensitive reasoning in movieRResults on frames from TV/films. Left column ia)(
and p) shows100 samples from the marginal distribution (belief) afseiterations of BP, and right column
shows the weighed mean pose. In both cases very rough andbaaikground subtraction was obtained by
estimating homographies betwe2frames from the sequence sufficiently far apart in time. Exarof the
rough background subtraction obtained in this way for thagenin ) is illustrated in the last row.

section, we investigate the second major component of aordwork, that allows us to infer the 3D pose of
the person from 2D pose estimates; for now, still from simgocular images. We first conduct a set of
synthetic experiments that allows us to quantitative test tvell our Mixture of Experts (MoE) model can
recover 3D pose in general, assuming the 2D pose is khoWle than show how this learned MoE model
can be used to recover the 3D pose from the real 2D poses etaithe previous section.

Datasets. For all experiments presented in this section we used twasdét that exhibit two different
types of actionswalking anddancing. Both datasets contain a number of motion capture examgled u
for training, and a single synchronized motion capture gdarwith multi-view video used for testing (the
same as in previous section). Video was captured using ibrséay grayscale cameras at 60 Hz, and 3D
pose was captured using a Vicon system at 120 Hz. The motjsturea(mocap) was aligned to video
and sub-sampled to 60 Hz, to produce synchronous videofirstczams. All cameras were calibrated using
standard calibration procedur&¥alking dataset [197] containg87 training andl 398 testing poses/frames;
dancing: 4151 training and2074 testing poses/frames.

6We use projected motion capture data in lieu of known 2D poses
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Figure 6.14:Learning parameters for conditional MOE models. Quantitative evaluation of various pa-
rameter choices for action-specifi@ncing (a),(b) and walking (c),(d) conditional MoE models, where
p(Y|X) = p(E|X)p(T|X)p(6©|X). Plots separately illustrate the error computed by compatie ex-
pected 3D pose ina) and €), E[p(©|X)], and global orientation (view) irb) and @), E[p(T'|X)], to the
ground truth 3D poses. Average error acro383 frames forwalking and2074 frames fordancing is com-
puted and illustrated as a function of parameters exploBage to stochastic nature of MoE learning, the
error is also averaged overtrained instances of the MoE model learned with the spec#fadf parame-
ters. Different number of mixture componemt € [1, ..., 10] are tested, and range of damping coefficients
A € {0,0.1,1,10,100} is explored. In bottwalking anddancing, it is clear that there is benefit in using
large number of mixture components 6), and a moderate value foc

Synthetic Experiments. We learn two action-specific Mixture of Expert (MoE) conditel models
p(Y|X). For each of the action types we first look at how sensitivd@anmed mapping is to the parameters
of the model {.e. the number of mixture components, and the regularization 2§. The results can be seen
in Figure 6.14. To quantitatively evaluate the performameaise the error measure introduced in Chapter 5.
To reiterate, the error is computed by choosifigirtual markers corresponding to joints and “ends” of limbs
and computing an expected absolute distance:m) over all these virtual markers. Once the optimal set of
parameters was chosen, the resulting MoE models were rameasyhthetic test data (see sample results in



181

Figure 6.9) and the error for the reconstructed 3D poses analyzed (see Figure 6.15).

We consides variants of the base error metri®>qsg 3D body pose error computed by first aligning the
global coordinate frames of the reconstructed and grourttl trody, {/iew) global body orientation error
computed by first aligning the reconstructed pose/artimnawith the ground truth pose/articulation, and
(View+Posg an overall error for the reconstructed state The alignment forYiew) and Posg is done by
simply using the ground truth portion of the 3D pose for theregponding components of the state vector.
The key observation is thatalking, being considerably simpler of the two action types, candoevered
significantly better (wittb0% less error), than the more compldancing. The peaks in the error in both
cases often correspond to singular or close to singulariess where foreshortening in the pose of 2D limbs
for example is severe; similar singularities arise wheegbse of the entire body is close to lateral or frontal
(with unbent arms and legs), where the view itself is sing(ile. the model can’t easily distinguish between
left and right, or front and back, orientation of the body wistngularities occur).

Real Experiments. We can also apply the learnedalking Mixture of Experts (MoE) model to the
real 2D poses obtained in Section 6.6.1. This allows us tovexcthe full 3D pose automatically, using
the proposed hierarchical method, from single monoculagie results are illustrated in Figure 6.16. The
3D poses look very reasonable, however, the right arm thatdkided in 2D in most frames is often miss
estimated. Notice, that the prior over walking posturegliaitly embedded into the action-specifialking
MoE model, allows the conditional model to correct some @f érors made by the 2D pose estimation
component.

6.6.3 Monocular 3D Tracking

In Sections 6.6.1 and 6.6.2 we experimented with two majorgmaments of our hierarchical inference method
that, in conjunction, allow the inference of 3D pose from maular single images. In this section, we briefly
illustrate how these individual 3D pose estimation restdis be regularized by Bayesian temporal inference
(Figure 6.17).

Our experiments with hierarchical single-frame methddstlated in Section 6.6.2, show that while the
method can reasonably recover the 3D pose, it cannot rgliabblve the left/right ambiguity of the body.
In other words, the inference method often switches thetityeof the two legs from frame to frame (see
frames 17-19 in Figure 6.18); in general, it is ambiguousettson about left/right leg identity from the
lateral view images illustrated in Figure 6.16. In addititre recovered poses are also often noisy (jittery).
We found temporal smoothing, results of which are illugtddah Figure 6.17, to be useful in regularizing this
intra-frame variability in pose. Consequently, temporabsthing produces more coherent tracks over time
as illustrated in Figure 6.18.

6.7 Conclusion and Discussion

The automatic estimation of human pose and motion from madaoémage data remains a challenging
problem. Here we have proposed a framework to address thtigun that uses hierarchal Bayesian inference
to go from crude body part detections to a distribution overb®dy pose. We make modest assumptions
about the availability of noisy body part detectors and aoeable image likelihood model.

“Supplementary videos are available fréitp://www.cs.brown.edu/people/ls/
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Figure 6.15: Quantitative evaluation of action-specific conditional mael. The model,p(Y|X) =
p(EIX)p((T'|X)p(0]X), is tested by comparing the expectation to ground truthfdatavo classes of motion.
Per-frame error for the reconstructed 3D p6s@lobal orientatioi’, and the full 3D state of the body are

shown fordancing in (a) andwalking in (c); the average per-joint error as compared to the grount tsut
shown in p) and () respectively.

We use belief propagation to infer 2D limb poses that are isters with the human body model. Note
that we make no strong assumptions about the prior pose®dfatly. Our approach extends recent work
on inferring 3D body models from 2D silhouettes by using thfelired 2D articulated model instead. This
provides a richer representation which reduces ambiguiti¢he 2D to 3D mapping. We also show that the
3D pose proposals can be used in a tracking framework, thefucener regularize the 3D pose estimates.

As part of this hierarchical inference strategy, we alsooidtice a novel approach for articulated 2D body
pose estimation that uses occlusion-sensitive local inikgkhoods that approximate the global likelihood
by accounting for occlusions and competing explanationsnafje evidence by multiple parts. We model
occlusion relationships between parts explicitly by idtroing two sets of per-pixel hidden binary variables
for each part. Intuitively these variables model which fExa&e explained by which parts when multiple
parts project to the same image regions. The resulting sicecireasoning involves interactions between
non-adjacent parts which introduces loops in the graphieadel representation of the body. To achieve
tractable real-valued inference in such a graph, we alsodoted an extension to the approximate belief
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Part Detectors 2D Pose 3D Pose
Camera: BW1 Camera: BW3

Frame 40 Frame 30 Frame 20 Frame 10 Frame 1

Frame 50

(d)

Figure 6.16: Hierarchical 3D pose estimation (a) bottom-up proposals for the limbsh)(most likely
sample from the marginals for each limb after 2D pose is eggthby RMPAS-OS (see Section 6.6.1 for
more details), andcf most likely 3D pose obtained by propagating 2D poses tti@ugonditionap(Y|X)
model (also rendered as a synthetic 3D characted)n [h (c) the recovered 3D model is projected in to the
same view as ink) as well as an additional view (not used in the inferencellustrate the errors in 3D pose
estimation (that may not be observed otherwise).
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Frame 1 Frame 10 Frame 20 Frame 30

Camera: BW1

Camera: BW3

Figure 6.17:Monocular tracking in 3D . Tracking based on the 3D proposals (Fig. 6.16) illustraiteid)
frame increments. The 3D poses are projected into imagedddty; top row shows the projections into
the view used for inference, the bottom row projections mfttiffernt view not available to the heirarchical
inference framework.

propagation inference algorithmARIPAS) that takes into account, and analytically marginalizesrothe
hidden occlusion variables of our model.

We quantitatively compare our 2D pose estimation approabhd state-of-the-art algorithms using tree-
structured kinematic models, as well as to published resuthe literature. The proposed approach performs
favorably and solves the problem of competing models thad te match multiple body parts to the same
image evidence without the addition of strong priors. Eoiplieasoning about occlusions helps prevent
this from happening in our case. Experimental resultstiliie that our model has pose error at least 25%

TS
USRS SURA

Figure 6.18:Comparison of monocular 3D pose estimation with tracking Illustrated is the comparison
between 3D pose estimatiotop), obtained independently at every frame using the propbgsarchical
framework, and temporal trackinggttom), obtained by smoothing the distribution over the 3D posesf
(top). The results shown correspond to results illustratedratise in Figures 6.16 and 6.17 respectively. The
3D model in the inferred most likely pose is shown, for corigah) in a canonical view not corresponding to
any of the real cameras. Notice, that while pose estimasioalatively reliable, it exhibits two unfavorable
behaviors: i) jitter from frame to frame andi() inconsistencies in identity of left and right leg (see femm
17-19); tracking smooths out these artifacts by incorpaganformation over time, resulting in smoother
motion overall.
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lower than tree-structured models. We also show that outoagh performs favorably in complex scenarios,
where strong assumptions about the kinematic motion of ¢l Bre not appropriate. We also quantitatively
compare the overall performance of our hierarchical fraorkwused to infer the 3D pose and track human
motion from monocular imagery.



CHAPTER 7

Summary and Discussion

In this thesis we introduced a novel class of models and sporeding inference algorithms that are able to
address a variety of common problems in object localizatpmse estimation and tracking. For the large
portion of this thesis we concentrated on the challengiagscbf articulated objects€. people). Dealing
with people is challenging, particularly because of vésiatn appearance and articulations; furthermore, the
pose of the person often requires representations thatgirealimensional and that must deal with ambiguous
image observations. Reasoning about people and their pdegges, is popular however, due to the vast
number applications in animation, surveillance, biomeatsgand human computer interaction.

Instead of attempting to battle the dimensionality of tle¢esspace and complexity of motion directly, we
formulate the problem of pose estimation and tracking aobirderence in a graphical model. The nodes in
this graph correspond to parts of the body and edges to kiingrnmer-penetration and occlusion constraints
imposed by the structure of the body and the imaging procékis model, which we call ¢éoose-limbed
body modelallows us to infer the 3D pose of the body effectively andtably from multiple synchronized
views; or a 2D pose of the body from a single monocular imagénie linear in the number of articulated
parts. Unlike previous decentralized models, we work diiyegith continuous variables, and use variants of
Particle Message Passinga(lRPAS) for inference.

In addition, we also introduced hierarchical models fotbartticulated and generic object reasoning. In
the case of generic objects, hierarchy facilitates trdetmference by ensuring that the temporal constraints
are only propagated on the object level and not at the leveidifidual parts. In the case of articulated
objects, hierarchy also mediates the complexity of theigpaference, by allowing the model to first infer
the 2D pose of the body in the image plane, then infer the 32 fimsn the 2D body pose estimates and
lastly apply the temporal continuity (tracking) at the 3Dspdevel. This leads to two important benefitky (
the hierarchical model helps to reduce the depth and projeambiguities by looking at a full 2D body pose
rather then the pose of individual limbs, ar®) it gives a modular, tractable, and fully probabilisticigodn
that allows inference of 3D pose from a single monocular ienagan unsupervised fashion.

In all cases we have shown both qualitatively and qualiégdtithat the models introduced perform as
well, or better, then other state-of-the-art methods.

186
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7.1 Future Work

While the models we introduced are effective and addressrdoauof common problems in both articulated
and rigid object motion estimation, there still a numberssties that must be addressed in the future to make
these models widely applicable for large categories ofcibje

7.1.1 Faster Inference Algorithms

Particle Message PassingA(RPAS) and various extensions thereof, that have been introdadéds thesis,
while tractable and have linear complexity, still are tomsko allow real-time §0 frames per second) pro-
cessing on current hardware. The main computational hettle is that sampling from products of messages,
represented by kernel densities with many mixture compisnencomputationally expensive. Reducing the
number of mixture components in the representation of ngessaould lead to significant computational
speedup of RMPAsS. On an intuitive level, while the kernel densities that we asing to approximate
messages are complex, the underlying distributions thegt #ne approximating are often, in comparison,
relatively simple (particularly after BP has convergedsoclbse to convergence).

To speed up inference there have been recent attempts tlpléaster Non-parametric Belief Propa-
gation (NBP) inference algorithms by automatically redgciepresentation of the message to a number of
prominent modes estimated by Mean-shift [78]. The resualtetbeen shown to be orders of magnitude faster
then simple NBP or RMPAs, for tracking. Our preliminary experiments (not descriliethis thesis), have
shown that this approach indeed achieves significant spsddusimple examples where messages are close
to convergencei.g. have few modes). For pose estimation, where the messagefiarénitialized relatively
far from the true solution, the process of reducing the nurbenixture components in the representation,
takes longer then the inference itself. A simple explametaw this is that the number of modes in a message
in this case is typically significantly larger (tens insteddne or two that are often observed in tracking).
We believe that hybrid algorithms that reduce message septation complexity only when possible, is the
next logical step in producing tractable inference aldponi$ for this class of models.

Other approaches that we believe may be useful in reducieagadimplexity of inference are hybrid
Markov Chain Monte Carlo methods, that can be used to reflae@ure Monte Carlo sampling engine
of PAMPAS. Hybrid methods have been shown to achieve faster (ordemsaghitude faster) inference in
other domains [38], and we believe can be relatively easibpéed for the use in thea®MPAS framework.

7.1.2 Deeper Hierarchical Models

We found hierarchical models to be very effective in mangdiath computational and modeling complexity
of problems addressed by this thesis. Currently, howevenestricted ourselves to models with relatively
few (2 to 3) levels. In such models each level in the hierarchy has alpfided semantic structure. Deep
hierarchical networksa(k.a.deep belief networks) [82, 83] have been successfully deeel and applied
in other applications. In these deep networks, howeveertagypically lack semantic interpretation as the
number of layers grows and the layers themselves are leautethatically using unsupervised methods. We
believe that, in the context of object modeling, particiylaf articulated object modeling, slightly deeper
hierarchies (than the ones presented in this thesis) caavsboghed that can both be useful and still maintain
the semantic interpretation. For example, currently theractions of different views and features are all
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rolled into the likelihood function in our framework. Usilaglditional layers in the hierarchical model, these
interactions can be made explicit and perhaps better mdd@&er current likelihood model, for example,
assumes independence across features and across viewse/&xpticit model can potentially model cor-
relations between these variables. In particular, as tinebeu of views increase, the observations become
less and less independent. This is not currently handledéoynbdels introduced in this thesis (nor much of
related literature).

7.1.3 Learning of Model Structure

In this thesis we showed that continuous-state graphicdetsare effective means of modeling objects and
drawing inferences about these objects, particularlyaprtg to position and configuration of these objects
in space. The models that we presented were built using thertedomain knowledge of the object class,
that involved knowing and leveraging kinematic structuféhe object with complexity of inference. The
parameters of those models were learned in semi-supeff@skibn, from motion capture data in the case of
humans or hand annotated images in the case of vehiclese Tadels provide a very productive paradigm
for object reasoning, due to the linear complexity that sténmm their decentralized nature.

The problem of building these models automatically fromaibeled (or weakly labeled) data, however,
is still largely unaddressed. In the context of Machine héeag, this problem is often referred to as graphical
modelstructure learning While it has been addressed in the context of some spedciféses of graphical
models, for example, in parametric Bayesian networks thae mo interactions between hidden variables
[200, 201], the case of general undirected graphical madghsnon-parametric continuous random variables
is still largely unexplored. Continuous non-parametriciels are considerably more expressive which makes
model structure learning hard. To our knowledge, the onlyragch that addresses structure learning in
general graphs that have both continuous and discretélesievas introduced by Bach and Jordan [12]. The
ability to build these rich models automatically, howevgethe key to making them widely applicable in the
domain of generic object recognition.

In the context of articulated human motion, the ability tddmodels automatically would allow building
of action-specific models that could potentially model leigbrder action-specific correlations between limbs.
For example, in walking, there are well known correlatioasAeen upper and lower extremities and left and
right sides of the body. Other motions may exhibit similarretation patterns, induced by subtle hidden
causes like gravity, balance, and/or intent. Building mietleat can automatically find, and account for, such
correlations would undoubtedly lead to better models amtbpmance.

7.1.4 Scene Parsing

One of the key advantages of using graphical models for niruglebjects, beyond tractable inference, is
the ability to combine different models in the context of lpawilistic inference. We believe that one of the
prominent directions of future research is to combine m®délarious objects (or multiple instances of the
same model) for scene parsing and interpretation. Muchititke speech recognition community, context
provided by other objects can be useful in constraining tijeai(s) of interestd.g.[85]).
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7.2 Conclusions

In this thesis we presented a novel class of methods thatlmpedple using rich decentralized probabilistic
models. These models have a number of appealing advantageshe centralized models typically em-
ployed. The inference methods, that make use of the detieattanodel structure for tractable inference,
have also been introduced. In addition, we introduced a rumbextensions to our badi@ose-limbed body
model, that allowed monocular inference and illustratéerence over simple generic objeotsq.vehicles).
The next challenge is take the methods introduced in thisigtend extend them for use with generic and
possibly interacting objects. Among the challenges oneldvbave to address, the most predominant are
the unsupervised or semi-supervised learning of the madaitare and faster (close to real-time) inference
methods.
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