
Privacy-Aware Authentication and Authorization in Trust Management

by

Danfeng Yao

B. S., Peking University, 1998

M. A., Princeton University, 2001

M. Sc., Indiana University, Bloomington, 2002

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2008



c© Copyright 2008 by Danfeng Yao



This dissertation by Danfeng Yao is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Roberto Tamassia, Director

Recommended to the Graduate Council

Date
Anna Lysyanskaya, Reader

Date
Claire Mathieu, Reader

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii



Abstract of “Privacy-Aware Authentication and Authorization in Trust Management”

by Danfeng Yao, Ph.D., Brown University, May 2008.

Conventional access decisions in stand-alone systems are usually made based on the

identity of the entity requesting a resource. By comparison, in open systems such

as the Internet, computing grids, and mobile and ad hoc networks, this approach

becomes less effective. The main reason is that there is no central authority that

has global knowledge of all users and makes access decisions. Instead, the resource

owner and the requester typically belong to different security domains administrated

by different authorities and are unknown to each other. Trust management refers to

access control frameworks that facilitate assured information sharing in open systems.

In this thesis, we study authentication and authorization problems in various trust

management scenarios, focusing on the requirements of security, efficiency, scalabil-

ity, and privacy protection. We develop trust management models and cryptographic

protocols that satisfy the above requirements without the need of a central authority.

Specifically, we present solutions for administrator-free role-based dynamic collabora-

tions, compact and anonymous authorization chains, on-line identity protection, and

privacy-preserving recommendation system.



Vita

DANFENG (DAPHNE) YAO

Curriculum Vitae

Division of Computer and Information Sciences (401)222-9165 (Mobile)

Rutgers, the State University of New Jersey danfeng@cs.rutgers.edu

Piscataway, NJ 08854-8019 Homepage: http://www.cs.rutgers.edu/∼danfeng/

RESEARCH INTERESTS

Computer and information security, applied cryptography, security middleware

EDUCATION

Ph.D., Computer Science, Brown University, Providence, RI Nov. 2007 (Expected)

M.S., Computer Science, Indiana University, Bloomington, IN May 2002

M.A., Chemistry, Princeton University, Princeton, NJ Nov. 2000

B.S., Chemistry, Peking University, Beijing, China Jul. 1998

EMPLOYMENT

Department of Computer Science, Rutgers University, New Brunswick, NJ Jan. 2008 –

Assistant Professor

HP Trust Systems Labs, Princeton, NJ May 2006 – Sep. 2006

Research intern (With Dr. Stuart Haber)

Department of Computer Science, Brown University Aug. 2002 – Present

Research assistant (With Professor Roberto Tamassia)

IAM Technology Inc., Providence, RI Apr. 2005 – Present

Researcher (With David Croston, CEO)

v



CERIAS, Purdue University, West Lafayette IN Summer 2005

Visiting research assistant (With Professor Elisa Bertino and Mikhail J. Atallah)

Center of Genomics and Bioinformatics, Indiana University, Bloomington May 2001 -

Aug. 2002

Research assistant (With Dr. Donald Gilbert)

Department of Chemistry, Princeton University May 1999 - Dec. 2000

Research assistant (With Professor Daniel Kahne)

TEACHING EXPERIENCE

Computer Science Department, Brown University Spring 2004, 2006

Graduate teaching assistant for CS166 (Introduction to Computer Security)

Graduate teaching assistant for CS016 (Algorithms and Data Structures)

Computer Science Department, Indiana University, Bloomington Spring 2001

Graduate teaching assistant for A111 (Survey of Computers & Computing)

Princeton University, Chemistry Department Fall 1998, Spring 1999

Graduate teaching assistant for CHEM 371 and 372 (Experimental Chemistry I, II)

HONORS

Best Student Paper Award, ICICS 2006 Dec. 2006

Award for Technological Innovation from Brown University Apr. 2006

University Fellowship, Brown University Sep. 2002

Graduate with the Highest Honors, Peking University Jul. 1998 IEC

Fellowship, Peking University Sep. 1996

Outstanding Student Fellowship, Peking University Sep. 1995

SONY Fellowship, Peking University Sep. 1995 Student Travel Grants from

SIGAPP, ICICS, VizSEC, CCS, Brown University

JOURNALS

1. Yunhua Koglin, Danfeng Yao, and Elisa Bertino. Secure Content Distribution by Par-

allel Processing from Cooperative Intermediaries. To appear in IEEE Transactions

on Parallel and Distributed Systems. July. 2007.

2. Danfeng Yao and Roberto Tamassia. Compact and Anonymous Role-Based Autho-

rization Chain. ACM Transactions on Information and System Security (TISSEC).

Under revision. Jun. 2007.

vi



PEER-REVIEWED CONFERENCES/WORKSHOPS

1. Danfeng Yao, Roberto Tamassia, and Seth Proctor. Private Distributed Scalar Prod-

uct Protocol With Application To Privacy-Preserving Computation of Trust. In Pro-

ceedings of IFIPTM 2007 – Joint iTrust and PST Conferences on Privacy, Trust

Management and Security. Moncton, New Brunswick, Canada. Jul. 2007.

2. Isabel F. Cruz, Roberto Tamassia, and Danfeng Yao. Privacy-Preserving Schema

Matching Using Mutual Information. Extended Abstract. In Proceedings of the 21th

Annual IFIP WG 11.3 Working Conference on Data and Applications Security (DB-

Sec ’07). Redondo Beach, CA. Jul. 2007.

3. Danfeng Yao, Yunhua Koglin, Elisa Bertino, and Roberto Tamassia. Decentralized

Authorization and Data Security in Web Content Delivery. In Proceedings of the

22nd ACM Symposium on Applied Computing (SAC ’07), Special Track on Web

Technologies. ACM Press. Seoul, Korea. Mar. 2007.

4. Danfeng Yao, Keith B. Frikken, Mikhail J. Atallah, and Roberto Tamassia. Point-

Based Trust: Define How Much Privacy Is Worth. In Proceedings of the Eighth

International Conference on Information and Communications Security (ICICS ’06).

LNCS 4307, pages 190-209. Springer. Raleigh, NC. Dec. 2006. Best Student

Paper Award.

5. Danfeng Yao and Roberto Tamassia. Cascaded Authorization with Anonymous-

Signer Aggregate Signatures. In Proceedings of the Seventh Annual IEEE Systems,

Man and Cybernetics Information Assurance Workshop (IAW ’06). West Point, NY.

Jun. 2006.

6. Michael T. Goodrich, Roberto Tamassia, and Danfeng Yao. Notarized Federated

Identity Management for Increased Trust in Web Services. In Proceedings of the

20th Annual IFIP WG 11.3 Working Conference on Data and Applications Security

(DBSec ’06). LNCS 4127, pages 133-147. Springer. Sophia Antipolis, France. Jul.

2006.

7. Danfeng Yao, Michael Shin, Roberto Tamassia, and William H. Winsborough. Vi-

sualization of Automated Trust Negotiation. In Proceedings of the Workshop on

Visualization for Computer Security (VizSEC ’05) in Conjunction with Vis 2005 and

InfoVis 2005. Pages 65-74. IEEE Press. Minneapolis, MN. Oct. 2005.

vii



8. Danfeng Yao, Roberto Tamassia, and Seth Proctor. On Improving the Performance

of Role-Based Cascaded Delegation in Ubiquitous Computing. In Proceedings of the

IEEE/CreateNet Conference on Security and Privacy for Emerging Areas in Commu-

nication Networks (SecureComm ’05). Pages 157-168. IEEE Press. Athens, Greece.

Sep. 2005.

9. Michael T. Goodrich, Roberto Tamassia, and Danfeng Yao. Accredited DomainKeys:

A Service Architecture for Improved Email Validation. In Proceedings of the Second

Conference on Email and Anti-Spam (CEAS ’05). Stanford University, CA. Jul.

2005.

10. Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. ID-Based Encryp-

tion for Complex Hierarchies with Applications to Forward Security and Broadcast

Encryption. In Proceedings of the 11th ACM Conference on Computer and Commu-

nications Security (CCS ’04). Pages 354-363. ACM Press. Washington, DC, Oct.

2004.

11. Roberto Tamassia, Danfeng Yao, and William H. Winsborough. Role-Based Cascaded

Delegation. In Proceedings of the ACM Symposium on Access Control Models and

Technologies (SACMAT ’04). Pages 146-155. ACM Press. Yorktown Heights, NY,

Jun. 2004.

PAPERS IN SUBMISSION

1. Michael T. Goodrich, Roberto Tamassia, and Danfeng Yao. Notarized Federated

Identity Management for Increased Trust in Web Services. Journal of Computer

Security, special issue of selected papers of DBSec 2006. Submitted. Apr. 2007.

2. Stuart Haber, William G. Horne, Tomas Sander, and Danfeng Yao. Audit-Log In-

tegrity Using Redactable Signatures With Pseudonyms. Submitted. Oct. 2007.

3. Roberto Tamassia, Danfeng Yao, and William H. Winsborough. Independently Verifi-

able Administrator-Free Delegation. Journal of Computer Security (JCS). Submitted.

Jun. 2006.

4. Danfeng Yao, Keith B. Frikken, Mikhail J. Atallah, and Roberto Tamassia. Private

Information: To Reveal Or Not To Reveal. ACM Transactions on Information and

System Security (TISSEC). Submitted. Sep. 2007.

viii



5. Distributed Scalar Product Protocol With Application To Privacy-Preserving Com-

putation of Trust. IEEE Transactions on Dependable and Secure Computing (TDSC).

Submitted. Sep. 2007.

INVITED TALKS

1. Verification of Integrity for Outsourced Content Publishing and Database Queries.

Purdue University CERIAS Seminar, West Lafayette, IN. Oct. 2006.

2. Trust Management and Private Communication in Role-Based Systems. Purdue Uni-

versity Computer Science Departmental Seminar, West Lafayette, IN. Nov. 2005.

3. Trust and Service Negotiations Using WSPL. Sun Microsystems Lab, Burlington MA.

Nov. 2003.

PROFESSIONAL ACTIVITIES

Program Committee member for 23rd ACM Symposium on Applied Computing, IEEE

Information Assurance Workshop ’07, 6th International Workshop on Privacy Aspects

of Data Mining

.

Reviewer for IEEE Symposium on Security and Privacy ’07, ICDE ’07, Journal of

Computer Security, International Workshop on Practice and Theory in Public Key

Cryptography (PKC ’05), IEEE Journal on Selected Areas in Communications, IEEE

Transactions on Vehicular Technology.

IEEE member, ACM member.

PATENT

1. Integrity Verification of Pseudonymized Documents. Stuart Haber, William G. Horne,

Tomas Sander, and Danfeng Yao. U.S. Patent pending. Sep. 2007.

2. Notarized Federated Identity Management for Web Services. Michael T. Goodrich,

Roberto Tamassia, and Danfeng Yao. U.S. patent pending 60/833,983. Jul. 28, 2006.

3. Domain and Link Authentication with iDomainGuard. Michael T. Goodrich, Roberto

Tamassia, and Danfeng Yao. U.S. patent pending 60/854,589. Oct. 26, 2006.

ix



Acknowledgements

I would like to thank my Ph.D. advisor Professor Roberto Tamassia for his patient

guidance and training. He taught me how to be a computer scientist, inspired me

to tackle complex problems, and showed me how to work with different people. He

has also given me much valuable advice and considerate support for my personal

life and my future career, helping me have a balanced work and family life. Most

importantly, Roberto taught me to keep an open mind to be willing to tackle a broad

spectrum of research problems. Another person who influenced me most during my

Ph.D. is Professor Anna Lysyanskaya. She taught me the fundamentals of modern

cryptography, which is the foundation of my thesis work. Anna also showed me how

to write an interesting research paper and give a memorable presentation. I also want

to thank Professor Claire Mathieu for her great advice on my thesis work. I enjoyed

every lecture of her Approximate Algorithms class. Claire taught me how to give a

clear talk about complex theoretical concepts. Anna and Claire have been important

female role models for me during my study at Brown.

I would also like to thank Professors Michael T. Goodrich, Elisa Bertino, Mikhail

J. Atallah, Keith B. Frikken, William H. Winsborough, Dr. Yunhua Koglin, and

Mr. Seth Proctor for working with me on some security problems. I learned tremen-

dously from our collaboration. I would like to thank Professors Tom Doeppner, Ugur

Cetintemel, Stan Zdonik, Shriram Krishnamurthi, Meinolf Sellmann, Eli Upfal, John

Jannotti, Philip Klein, Andy van Dam, Franco P. Preparata, Mr. David Croston, Dr.

John Nuber, and Mr. Steven T. Carmody for their inspiring discussions and valu-

able comments on my thesis work. I also want to thank my fellow graduate students

Aris Anagnostopoulos, Nikos Triandopoulos, Charalampos (Babis) Papamanthou, Li-

juan Cai, Ye Sun, Ying Xing, Song Zhang, Glencora L. Borradaile, Tijian Ge, Wenjin

Zhou, Olga A. Karpenko, Yanif Ahmad, Olga Papaemmanouil, Mira Belenkiy, Melissa

x



Chase, and Matt Lease for making my graduate school life enjoyable and memorable.

I would like to give special thanks to my husband, Chang Lu, for his warm support

for my relentless pursuit of a research career. Last but not least, I want to thank

my parents, Guosheng Yao and Yuzhu Sun, for their patience with me during my

graduate studies.

xi



Contents

List of Tables xvi

List of Figures xvii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Independently-Verifiable Decentralized Role-Based Delegation 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Roles and their scopes . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 HCBE Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Overview of Role-Based Cascaded Delegation . . . . . . . . . . . . . 14

2.4 RBCD Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Role-based Cascaded Delegation Protocol . . . . . . . . . . . . . . . . 18

2.6 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xii



2.7.4 Delegation renewal and revocation . . . . . . . . . . . . . . . 29

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Anonymous Cascaded Authorization: Model and Protocol 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Credential size and aggregate signatures . . . . . . . . . . . . 37

3.1.2 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 An Example of Cross-Domain Role-based Delegation . . . . . . . . . 41

3.4 Anonymous-signer aggregate signature scheme . . . . . . . . . . . . . 42

3.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Formal Definitions of Security Properties . . . . . . . . . . . . 45

3.4.4 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Anonymous role-based cascaded delegation protocol . . . . . . . . . . 57

3.6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.2 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Point-Based Trust 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Overview of Point-Based Trust Management . . . . . . . . . . 67

4.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 An Analysis on Trust Negotiation . . . . . . . . . . . . . . . . . . . . 70

4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Point-Based Trust Management . . . . . . . . . . . . . . . . . 72

4.3.2 Credential Selection Problem . . . . . . . . . . . . . . . . . . 74

4.3.3 Applications of Quantitative Authorization Policies . . . . . . 77

xiii



4.4 Basic Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Overview of Basic Protocol . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Basic Recursion Sub-Protocol . . . . . . . . . . . . . . . . . . 81

4.4.4 Basic Traceback Sub-Protocol . . . . . . . . . . . . . . . . . . 83

4.5 Fingerprint Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Fingerprint Protocol Description . . . . . . . . . . . . . . . . 85

4.5.2 Detection of Value Substitution by the Server . . . . . . . . . 89

4.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Technique for Cheating Detection . . . . . . . . . . . . . . . . . . . . 92

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 97

5 Privacy-Preserving Computation of Trust 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Private Distributed Scalar Product Protocol . . . . . . . . . . . . . . 104

5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.4 Analysis of the Protocol . . . . . . . . . . . . . . . . . . . . . 107

5.3 Credential-Based Trust Model . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Definitions in Credential-Based Trust Model . . . . . . . . . . 112

5.3.2 Derive Trust Value From Recommendations . . . . . . . . . . 113

5.3.3 Generalization of our computational model . . . . . . . . . . 115

5.3.4 Delegation Chain and Trust Computation . . . . . . . . . . . 116

5.4 Integration With Point-Based Trust Management . . . . . . . . . . . 119

5.4.1 Point-Based Trust Management . . . . . . . . . . . . . . . . . 119

5.4.2 Derivation of Point Values . . . . . . . . . . . . . . . . . . . . 120

5.5 Applications to Location Query Systems . . . . . . . . . . . . . . . . 121

5.5.1 A Location-Query Service . . . . . . . . . . . . . . . . . . . . 122

5.5.2 Advisors and Point-Based Decisions . . . . . . . . . . . . . . . 123

xiv



5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 125

6 Conclusions and Open Problems 127

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Open Problem: Authentication and Privacy of Identities . . . . . . . 129

6.3 Open Problem: Authentication Services and Middleware . . . . . . . 130

Bibliography 131

xv



List of Tables

2.1 Efficiency comparisons between RBCD realizations using RSA signa-

tures and bilinear-map based aggregate signatures . . . . . . . . . . 29

3.1 Notation for anonymous-signer aggregate signature scheme. . . . . . 49

5.1 Computation (Comp.) and communication (comm.) complexities of

the private distributed scalar product protocol. We denote by n the

length of Alice’s vector X. The logarithmic factor is due to using

multiplications to compute exponentiation in step 3. . . . . . . . . . . 109

xvi



List of Figures

4.1 Basic recursion sub-protocol. . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Basic traceback sub-protocol . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Fingerprint protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 An example of trust relationships and trust values. . . . . . . . . . . 102

5.2 Privacy-preserving summation protocol by Atallah et al [4]. Note that

lying during the exchange in Step 4 cannot be prevented, yet a player

can achieve the same effect by lying about his input. In addition, lying

does not let the player learn anything about the sum V . . . . . . . . 106

5.3 Private Distributed Scalar Product Protocol. m is a public parameter

of the homomorphic encryption scheme. . . . . . . . . . . . . . . . . 108

5.4 The schematic drawing of a role-based delegation chain. It shows that

a member of a university delegates permissions to a member of a com-

pany, who then delegates the permission to a member of a lab. The

horizontal arrows indicate delegation of permissions. The vertical ar-

rows indicate membership relationship. . . . . . . . . . . . . . . . . 117

xvii



Chapter 1

Introduction

1.1 Overview

In many applications, sharing of local resources and information across different do-

mains greatly benefits participating parties. The resource owner needs to be assured

that unauthorized users cannot access the shared information. However, traditional

access control models require a central party that knows every user and their privi-

leges, which is not feasible in open systems such as Internet and Grid computing. This

thesis studies decentralized access control frameworks that facilitate assured informa-

tion sharing in open systems. We develop models and protocols for the authentication

and authorization in various trust management scenarios, focusing on security, effi-

ciency, scalability, and privacy protection. The application domains studied include

resource sharing, e-commerce, recommendation systems, and identity management.

In these domains, we demonstrate simple and secure trust management models and

protocols without the need of a central authority. Our authorization models allow

secure and efficient sharing of information by parties across different administrative

domains. Compared to existing trust management frameworks, our models support

more flexible and scalable trust establishment mechanism between entities that are

unknown to each other. Our authentication protocols that prevent unauthorized en-

tities from accessing the shared information are shown to have provable security and

privacy properties. These features facilitate dynamic and assured resource sharing in

open systems.

1



2

Next, we summarize the trust management problems studied in this thesis and

briefly describe our contributions. Details of the work are presented in later chapters.

In Chapter 2, we study the verification problem of role-based delegation. In

decentralized trust management, a delegation chain connects trusted entities by the

resource owner with unknown users. We give the first role-based trust management

model that supports independently-verifiable delegation, where a role member is able

to delegate on behalf of a role and the delegation credential can be independently

verified by any third-party without the participation of the administrator [114]. Our

model, called role-based cascaded delegation, supports the delegation of authority

in role-based trust management systems. We also describe an efficient realization of

role-based cascaded delegation using aggregate signatures, where the authentication

information for an arbitrarily long role-based delegation chain is captured by one

short signature of constant size.

In ubiquitous computing environments, computing devices may have small storage

units and limited bandwidths. A trust management system needs to be efficient in

order to keep communication and computation costs low. The trust establishment

mechanism needs to be flexible, because credentials are usually scattered at distributed

locations. Also, the authorization process needs to be decentralized and support

dynamic resource-sharing in order to handle emergency situations. We discuss how

to improve the efficiency, flexibility, and privacy of role-based cascaded delegations

in a ubiquitous computing environment [129]. Operations for managing delegation

chains in the role-based cascaded delegation (RBCD) model are presented. These

operations can significantly improve the performance of the decentralized delegation

in the RBCD model, without increasing the management overhead.

In Chapter 3, we study how to support efficient and anonymous role-based del-

egation. We introduce a decentralized trust management model called anonymous

role-based cascaded delegation [128]. In this model, a delegator can issue authoriza-

tions on behalf of her role without revealing her identity. This type of delegation

protects the sensitive membership information of a delegator and hides the internal

structure of an organization. To provide an efficient storage and transmission mech-

anism for credentials used in anonymous role-based cascaded delegation, we present

a new digital signature scheme that supports both signer anonymity and signature



3

aggregation. Our scheme has compact role signatures that make it especially suit-

able for ubiquitous computing environments, where users may have mobile computing

devices with narrow communication bandwidth and small storage units.

In Chapter 4, we study how to protect private information in trust management.

We have studied the notion of point-based policies for trust management, and gives

protocols for realizing them in a disclosure-minimizing fashion [127]. Specifically, Bob

values each credential with a certain number of points, and requires a minimum total

threshold of points before granting Alice access to a resource. In turn, Alice values

each of her credentials with a privacy score that indicates her reluctance to reveal

that credential. Bob’s valuation of credentials and his threshold are private. Alice’s

privacy-valuation of her credentials is also private. Alice wants to find a subset of her

credentials that achieves Bob’s required threshold for access, yet is of as small a value

to her as possible. We give protocols for computing such a subset of Alice’s credentials

without revealing any of the two parties’ above-mentioned private information.

In Chapter 5, we study how to protect sensitive trustworthiness data in a rec-

ommendation system. We first present a private distributed scalar product protocol

that can be used for obtaining trust values from private recommendations [130]. Our

protocol allows Alice to infer the trustworthiness of Bob based on what Alice’s friends

think about Bob and Alice’s confidence in her friends. In addition, the private in-

formation of Alice and her friends are not revealed during the computation. We also

propose a credential-based trust model where the trustworthiness of a user is com-

puted based on his or her affiliations and role assignments. The trust model is simple

to compute, yet it is scalable as it classifies large groups of users.

1.2 Summary of Contributions

The contributions of this thesis include

• Models and protocols for decentralized delegation for transferring privileges

without a central administrator.

• Anonymity role-based delegation protocol and an anonymous-signer aggregate

signature scheme.



4

• Privacy-preserving authorization model that supports personalized access poli-

cies for users.

• Role-based computational trust model and a privacy-preserving distributed

scalar product protocol.



Chapter 2

Independently-Verifiable

Decentralized Role-Based

Delegation

A preliminary version of the paper was presented at the 2004 ACM Symposium on

Access Control Models and Technologies [114].

2.1 Introduction

Trust management is an approach to access control in environments where entities

that are not in the same security domain need to share resources. Several trust man-

agement systems have been proposed in recent years, e.g., PolicyMaker [18], KeyNote

[17], SPKI/SDSI [43], and the RT framework [89]. The notion of delegation is essential

in transferring trust and authorization in trust management systems. It facilitates

information and resource sharing in distributed collaborative environment such as

Grid computing and peer-to-peer networks. Delegation chains trace sequences of en-

tities, starting from the resource owner and including entities authorized by (though

possibly unknown to) the owner. These entities play a central part in authorization

by providing the credentials that represent their own delegation acts, which enable

the delegation chain to be verified.

In role-based delegation, delegated privileges are issued to a role rather than to

5



6

an individual. The abstraction of roles makes delegation scalable as one delegation

benefits all members. Although the concept of role-based delegation is not new in ac-

cess control and trust management literature, multi-step role-based delegation chain

and its verification have not been much studied. Most prior work that addresses the

problem of determining whether credentials prove an entity’s resource request is au-

thorized [17, 18, 43] assumes that all potentially relevant credentials are available in

one central storage. However, this assumption is not valid in decentralized environ-

ment where there is no central authority. In fact, the verification cost may be quite

expensive in a typical trust management system implementation. Collecting and veri-

fying delegation credentials incurs communicational and computational costs, as does

checking that together the credentials provide proof that a given user is authorized.

We present techniques that can be used to significantly reduce these costs. Next,

we illustrate in Example 2.1.1 a simple multi-step delegation scenario that transfers

rights among roles within one administrative domain.

Example 2.1.1 A hospital has roles Doctor, Nurse, and Intern. The hospital permits

all doctors to access a medical storage room. Bob is a doctor and has a doctor role

credential issued by the hospital. When Bob is out of town, he authorizes his nurses

to access the storage room by issuing the nurses a delegation credential. Alice is

Bob’s nurse and has a nurse role credential. She has short-term interns who also

need to access the storage room. Then Alice passes the access privilege onto her

interns by creating another delegation credential. The two-step delegation chain gives

the authorization to interns to access the storage room, which consists of the two

delegation credentials and Bob and Alice’s role credentials. The role credentials show

the delegators have the proper roles to issue the delegation. When an intern, say

Carl, requests for access, the delegation credentials and role credentials are verified.

In addition, Carl’s Intern role credential is also verified to ensure he is indeed an

intern.

Example 2.1.1 only involves one administrative domain, namely the hospital.

Therefore, the credentials and the public keys of delegators (Bob and Alice) can be

reasonably assumed to be available to the verifier that is the hospital server. However,

trust management is to facilitate information sharing across different administrative

domains. Delegation is usually decentralized and typically involves users and roles



7

from multiple organizations. The verification process is much more complex, because

there is no single trusted authority and public keys for credentials may not be known

or trusted. We show in Section 2.4 a more complex cross-domain role-based dele-

gation. In this work, we study the role-based delegation in the general setting. We

propose a role-based cascaded delegation protocol that supports assured information

sharing in a decentralized fashion.

For efficient transmission and storage, compact digital credentials are desirable.

Multi-step delegation credentials may be lengthy because the verification of a delega-

tion chain requires checking a number of signatures linear in the length of the chain,

where the length is defined as the number of delegations on the chain. Conventional

signature schemes, such as RSA [100] and DSA [51], produce relatively long signa-

tures compared to the security they provide. For a 1024-bit modulus (security level),

RSA signatures are 1024 bits long and standard DSA signatures are 320 bits long.

The number of signatures required to authenticate a role-based delegation chain of

length n is about 2n, because in addition to verifying each of the delegation transac-

tions, one must verify that the intermediate delegators are members of the required

roles. Among the signatures associated with a delegation chain, the signature on a

role credential is generated by the administrator of that role independently from the

rest of the signatures.

Unfortunately, it is not known how to aggregate individually generated signatures

from different signers on different messages in conventional cryptosystems, such as

RSA [24, 92]. This means that the entire set of signatures has to be stored by delegated

entities, and transmitted across networks at each delegation and verification. Because

intermediate delegators in our model may be entities who have limited computational

power and communicational bandwidth, the implementation of role-based cascaded

delegation using conventional credentials is inefficient. We overcome these problems

by realizing the role-based cascaded delegation with short aggregate signatures [23,

26].

2.1.1 Our Contributions

Existing delegation models assume the delegation is issued by administrators. How-

ever, to enable flexible resource sharing, the decision of introducing new role members



8

into a collaboration needs to be dynamically made by members of existing roles, with-

out the involvement of administrators. In the meantime, the shared information needs

to be adequately protected against unauthorized or unqualified users. These goals

drives us to reexamine conventional assumptions in role-based delegation, and define

our model from a different perspective. We summarize our contributions next.

• We present a role-based delegation mechanism that supports the efficient veri-

fication of multi-step delegation chains. It has two main features: (1) flexible

delegation where a delegation can be issued by a valid member of a role, not just

by the administrator; and (2) simple verification where a delegation credential

is self-contained and the verification does not require the participation of any

role administrators. Our delegation mechanism takes a simple accumulation

approach, where each intermediate delegator passes down the relevant digital

credential to the delegated entity for later verification.

• We give a detailed protocol specification for public key signing and management

that ensures the integrity of shared resources. The significance of our RBCD

protocol is that we do not assume the existence of a public key infrastructure

(PKI), which may be expensive to adopt widely. This feature makes our protocol

general enough for many decentralized and open system environments such as

peer-to-peer networks, where there are no central authorities and PKI is usually

not available. Another important feature of our delegation protocol is that a

delegation is issued to a role, yet we are able to support access accountability.

That is, in case of misbehaving individuals, the resource owner can identify

their identities, who are authorized through our role-based delegation.

• We also present a concrete realization of RBCD that gives compact delegation

credentials. Traditionally, the number of signatures required for the verifica-

tion of a delegation chain is linear in the number of entities of the chain. Our

implementation needs only one aggregate signature, which is a significant im-

provement in efficiency over the existing delegation chain protocols.

Although our delegation model is role-based, it can be simplified to support indi-

vidual delegation, i.e., a role member further extends his or her delegated privileges



9

to another individual. Because role-based delegation is more general and scalable, it

is the focus of our presentation in this work.

2.1.2 Organization

We define the terminology and notations used in our role-based cascaded delegation in

Section 2.2. The necessary cryptographic knowledge is also described. The overview of

our role-based cascaded delegation mechanism is given in Section 2.3. In Section 2.4,

an example of role-based cascaded delegation is presented. Our delegation protocol

is described in Section 2.5. A realization of RBCD with aggregate signatures is

presented in Section 2.6. In Section 2.7, we address the issues of revocation, security,

scalability, and efficiency for our model and implementation. A comparison of role-

based cascaded delegation with existing trust management approaches is given in

Section 2.8. Section 2.9 is the conclusion.

2.2 Definitions and Preliminaries

In this section, we give our definitions for affiliated and delegated roles, and define our

terminology and notations. We also give our definition for independently-verifiable

decentralized role-based delegation. Finally we describe the necessary cryptographic

knowledge.

2.2.1 Roles and their scopes

In our model, we define the administrator of a role as the organization that creates

and manages the role. If a role credential of an entity D is signed and issued by the

administrator of the role, that role is said to be an affiliated role of D. (This type

of role is usually obtained through the affiliation with an organization, and thus the

name.) If a role credential of D is instead issued through delegation and signed by

entities other than the administrator of the role, that role is called a delegated role

of D.

The following example illustrates the difference between affiliated and delegated

roles. Bob is a full-time professor at University U . He has a credential signed by



10

university U for the role professor at U , denoted U.professor . Thus, role U.professor

is an affiliated role of Bob. Alice is not the university’s employee, but she is Bob’s col-

laborator. Bob delegates Alice the role U.professor to allow her to access university’s

resources. However, Alice does not have a credential signed by U for U.professor .

Thus, U.professor is a delegated role of Alice.

The reason of making this distinction is to protect sensitive resources and to

provide easy management for resource owners. An affiliated role and a delegated role

have different access scopes. Delegations to a role r of an organization only apply to

those entities who have r as an affiliated role. In the above example, if a privilege is

delegated by a third-party to role U.professor , then Bob is entitled to this privilege,

whereas Alice is not. This is because U.professor is Alice’s delegated role. The new

privileges delegated to role U.professor do not automatically propagate to her. A real-

life analogy to this distinction is professor vs. visiting professor. In a university, a

full-time professor is appointed by the university, whereas a visiting professor position

is temporary and typically approved by a full-time professor. A visiting professor has

fewer privileges than a full-time professor in terms of access rights.

Our delegation model for roles is different from conventional delegation models,

where delegations to a role automatically propagate to all the entities that are dele-

gated the role. However, it is important to make this distinction and our definitions

provide higher assurance to the security of shared resources. For example, if hospital

H delegates the right of reading a patient’s medical record to the role U.professor ,

Alice would be entitled to this privilege in conventional delegation models, but not

in our model. For sensitive data such as medical records, the automatic propagation

of delegations to unknown roles may not always be desired by the resource owner. In

comparison, our delegation model allows easy management of delegations for resource

owners.

To support flexible decentralized delegation, we give to both role types (affiliated

and delegated) the capability of delegating the role to other roles. Thus, in the above

example, both Bob and Alice are able to delegate role U.professor to other roles.

Even though our delegation mechanism is privilege-oriented, it is more efficient

than the capability-list style delegations [17] because of the role abstraction. Delega-

tions in our model may be issued to roles, as well as to individuals, which benefit from



11

the efficiency, scalability, and simplicity brought by the role-based delegation. The

delegated privileges are role assignments, therefore, role-based cascaded delegation

approach is more efficient than the capability-lists.

2.2.2 Terminology

As in the RT framework [90], we define an entity to be either an organization or

an individual. An entity may issue credentials and make requests. Also, an entity

may have one or more affiliated roles or delegated roles, which are authenticated by

role credentials. An affiliated role credential is the credential for an affiliated role,

and is signed by the administrator of the role. Similarly, a delegated role credential

is the credential for proving a delegated role. Both credentials are issued using our

delegation protocol. An affiliated role can be viewed as delegated directly by the

administrator of the role. A privilege can be a role assignment or an action on a

resource. The original issuer or original delegator of privilege P is the first entity

on a delegation chain, and is the owner of the resources associated with privilege P .

A delegation chain of privilege P is the path that shows the delegation sequence of

P between entities. The chain connects a delegated entity to the original issuer of

P . Given an entity on a delegation chain, the preceding entities on the chain are the

ancestor entities.

An extension credential is generated and signed by a delegator on delegation trans-

action information, such as identities of the delegator and delegatee, and the delegated

privilege. An extension signature is the signature on an extension credential. A role

signature of an entity is the signature on an affiliated role credential of the entity.

The identity signature of an entity is a signature computed by the entity using her

private key. A complete delegation credential includes the identity signature of the

requester, extension signatures, and role signatures. A partial delegation credential is

a delegation credential issued to a role. It cannot be used by an individual for proving

authorization, as it lacks the identity and role signatures of the requester.

We give the definition for independently-verifiable decentralized role-based dele-

gation as follows.

Definition 2.2.1 A delegation is an independently-verifiable decentralized role-based

delegation if and only if the following requirements are satisfied:



12

1. [Decentralized] Domain1 and Domain2 are two independent administrative

domains. Let Domain1.r be a role administrated by Domain1.

2. [Role-Based] The delegation is issued by a member of role Domain1.r to del-

egate privileges associated with r to members of Domain2.

3. [Independently-verifiable] Given the public key associated with Domain1, the

delegation credential can be verified by any third-party without the participation

of the administrator of Domain1.

We will illustrate further this above definition in later sections.

2.2.3 Notations

We use a simple notation to express delegation credential. We allow the delegation

of role memberships, and delegation to roles. A role r administered by entity A is

denoted as A.r. Entity A is the administrator of role A.r. A role defines a group

of entities who are members of this role. An affiliated role A.ra defines a subset

of a role A.r that contains a group of entities whose role credentials are directly

issued by A. Similarly, a delegated role A.rd defines a subset of the role A.r that

contains entities whose role credentials are not directly issued by A. Role A.ra and

A.rd define A.r, i.e. A.r = A.ra ∪ A.rd. If an entity D has an affiliated role A.r,

his role credential is denoted by A
A.r
−−→ D, which indicates that D is assigned role

A.r by the role administrator A. Entity D can further delegate role A.r to a role

B.s (administered by B) by issuing an extension credential, which is denoted by

D
A.r
−−→ B.s. Similarly, any member entity E of role B.s can further delegate role A.r

to a role C.t (administered by C). The corresponding extension credential is denoted

by E
A.r
−−→ C.t.

2.2.4 HCBE Preliminaries

Here, we give a brief overview of the necessary cryptographic knowledge.

The Hierarchical Certificate-based Encryption (HCBE) scheme [61] is a public key

cryptosystem, where messages are encrypted with public keys and decrypted with cor-

responding private keys. What is unique about HCBE is that it makes the decryption



13

ability of a keyholder contingent on that keyholder’s acquisition of a hierarchy of sig-

natures from certificate authorities. To decrypt a message, a keyholder needs both his

private key and the public key certificates (signatures) that are respectively signed

by a chain of CAs. The CA hierarchy consists of a root CA and lower-level CAs.

Higher-level CA certifies the public key of the next-level CAs, and the CAs at the

bottom (leaf positions) of the hierarchy certify the public keys of individual users.

HCBE is based on the aggregate signature scheme [23, 26], which supports ag-

gregation of multiple signatures on distinct messages from distinct users into one short

signature. The HCBE scheme [61] has six algorithms, HCBE Setup, HCBE Cert of CA,

HCBE Cert of Bob, HCBE Aggregate, HCBE Encryption, and HCBE Decryption.

The second and the third algorithms are essentially the same; HCBE Cert of CA

is for certifying the public keys of CAs, and HCBE Cert of Bob is for certifying

the public key of an individual. The API of the algorithms are given below.

HCBE Setup: A set of system parameters params is generated. Among other pa-

rameters, params contain two cryptographic hash functions H and H ′, a bilinear map

ê, and a constant π with certain properties. A bilinear map [22] is a mapping function

ê(x, y) that takes two inputs x and y, and outputs a value. Each entity D chooses

his private key sD, computes and publishes his public key sDπ.

HCBE Cert of CA(si, infoi+1): CA at i-th level runs this algorithm to certify the

public key of the CA at level i + 1 by computing a signature. The first input is the

private key of CAi, and the second input is a string infoi+1 that contains the public

key siπ of the signer and the public key si+1π of CAi+1. The string infoi+1 may also

include information such as the expiration date, etc.

HCBE Cert of Bob(sn−1, infon): CAn−1 runs this algorithm to certify the public

key of Bob. The first input is the private key of CAn−1, and the second input is a

string infon that contains the public key sn−1π of the signer and the public key snπ

of Bob.

HCBE Aggregate(sn, info′, sig2, . . . , sign): This algorithm is run by Bob, who uses

his private key sn and the public key certificates on his chain to compute an aggregate

signature, which will be used as his decryption key. The inputs to this algorithm are

Bob’s private key sn, the string info′ that contains the information of Bob, and a



14

number of signatures 1 that contains the public key certificate signatures associated

with his certification chain.

HCBE Encryption(M, info1, . . . , infon, info′): Alice computes the ciphertext to

send to Bob. The inputs are a message M , string infoi of the certification at level i

on Bob’s chain for 1 ≤ i ≤ n, and string info′ that Bob signs in HCBE Aggregate.

HCBE Decryption(C, SAgg): Bob decrypts the ciphertext C to retrieve the mes-

sage using his aggregate signature SAgg.

The security of HCBE assures that a ciphertext for an individual can only be

correctly decrypted using both the receiver’s private key and his public key certificate

obtained from the hierarchy of CAs. We slightly modify the encryption and decryption

schemes in HCBE scheme for our verification of delegation chain. In our protocol in

Section 2.6, the requester computes an aggregate signature, and gives it to the verifier.

The verifier encrypts a message with the delegation chain information, and attempts

to decrypt the ciphertext with the aggregate signature. Successful decryption verifies

the delegation chain.

2.3 Overview of Role-Based Cascaded Delegation

We propose a model for the delegation of authority in role-based trust management

systems, called role-based cascaded delegation. The main goal of this model is to allow

flexible transfer of privileges and sharing of resources in decentralized environments.

Our model allows a role member to delegate his or her privileges to users who may be-

long to different organizations, as opposed to restricting this delegation ability to role

administrators in traditional access control models. In addition, our role-based cas-

caded delegation model allows a delegatee to further extend the delegated privileges

to other collaborators. The challenge arise in realizing this goal in a decentralized

environment is that the public key of an intermediate delegator may not be known by

a verifier or the resource owner. Therefore, the delegation credential signed by that

delegator may not be trusted by the verifier.

To solve this problem, we borrow the concept of cascaded delegation from dis-

tributed systems literature [93, 112]. The distributed cascaded delegation problem

1HCBE Aggregate can take any number of signatures.



15

is essentially to design a delegation mechanism that efficiently verifies a hierarchical

delegation chain. In the cascaded delegation model, a delegation recipient E may

further extend the delegated privilege to another entity E ′, and the delegation cre-

dentials of E are passed to entity E ′ along with the delegation certificate signed by

E as the issuer. The public key of the next delegatee is encoded in the delegation

credential, which naturally forms a chain of trust. Therefore, trusting the original

delegator means that the delegatees’ public keys are authorized by the delegation.

In addition, the authorization chain is stored in delegation credentials and does not

have to be dynamically discovered. However, previous cascaded delegation protocols

support neither multiple administrative domains nor the use of roles in the delegation.

We give support to both in our role-based cascaded delegation model.

In our role-based cascaded delegation, given a privilege, two types of entities can

delegate the privilege to others. One is the resource owner of the privilege. The

other is a member of a role who is delegated the privilege. A role r is delegated a

privilege by receiving a delegation credential C that explicitly assigns the privilege to

role r. Members of the role r are allowed to further delegate the privilege to another

role r′ as follows. A member D of the role r uses the delegation credential C to

generate a delegation credential C ′. C ′ comprises multiple component credentials,

which include the credential of the current delegation authorization, the credential C

from the preceding delegation, and the role membership credential of the delegator D.

The verifier can make the authorization decision based on delegation credential C ′

and the role membership credential of the requester. The verification can be done by

any party without the participation of any role administrators, which is called by us

as independent verifiability (See also Section 2.2).

The length of a delegation chain in role-based cascaded delegation refers to the

number of delegators involved. A privilege P is delegated by an entity E to a role r1. A

member D of role r1 further delegates the same privilege P to role r2. The delegation

chain of privilege P involves entity E, role r1, entity D, and role r2. Role r2 receives

the privilege P as the result of the delegation chain. The length of the chain is two.

Decentralized role-based delegation allows users from administratively indepen-

dent domains to be dynamically joined according to the needs of the tasks. We have

also explored the applications of RBCD for efficient and flexible trust establishment



16

in decentralized and pervasive environments in [129].

2.4 RBCD Example

In this section, we describe a delegation example for the role-based cascaded dele-

gation model. Suppose a collaboration project is established between a hospital H

and a medical school M . To facilitate the collaboration, the hospital initiates a del-

egation chain and delegates its role H.guest to the affiliated role M.professor at the

medical school. Hospital H is the administrator of the role H.guest . The delegation

is expressed in the partial delegation credential (2.1), using the notation described in

Section 2.2.

H
H.guest
−−−−−→ M.professor (2.1)

In credential (2.1), hospital H is the original issuer, H.guest is the delegated

privilege, and M.professor is the role that receives the delegation.

The hospital H allows members of the role M.professor to further delegate H.guest

role to whomever they deem necessary to accomplish the project. Bob is a professor

at M and has an affiliated role credential (2.2).

M
M.professor
−−−−−−−−→ Bob (2.2)

For a task in the collaboration project, Bob subcontracts to a lab L. Lab L

is independent from school M and is unknown to the hospital H . Lab L defines

a research assistant role L.assistant . In order for members of the role L.assistant

to work on the task and utilize the resources of the hospital H , Bob delegates the

role H.guest to the affiliated role L.assistant . In our role-based cascaded delegation

model, Bob issues a partial delegation credential (2.3) by extending the delegation

credential (2.1) to role L.assistant .

(H
H.guest
−−−−−→ M.professor), (M

M.professor
−−−−−−−−→ Bob),

(Bob
H.guest
−−−−−→ L.assistant) (2.3)

Credential (2.3) also includes Bob’s role credential (2.2) for proving that he is al-

lowed to delegate H.guest . (2.3) is a partial delegation credential for role L.assistant .



17

Recall that (2.3) is different from the linked role in RT framework [89], as the role

H.guest is delegated, not M.professor . Alice is a research assistant in lab L, and has

an affiliated role credential (2.4) issued by lab L to prove this role membership.

L
L.assistant
−−−−−−−−→ Alice (2.4)

(2.4) is equivalent to the role membership representation below, as in RT frame-

work. (2.5) is read as Alice has a role of L.assistant .

L.assistant ← Alice (2.5)

Because (2.4) is issued by the lab L, the role L.assistant is Alice’s affiliated role.

To prove that she has the hospital’s delegated guest role, Alice obtains the delegation

credential (2.3) for role L.assistant from a credential server, and aggregates it with

her affiliated role credential (2.4). This delegation generates credential (2.6).

(H
H.guest
−−−−−→ M.professor), (M

M.professor
−−−−−−−−→ Bob),

(Bob
H.guest
−−−−−→ L.assistant), (L

L.assistant
−−−−−−−−→ Alice) (2.6)

Credential (2.6) and the identity signature of Alice yield a complete delegation

credential for Alice. For verification, the hospital H does not need to discover the

delegation chain that connects Alice with role H.guest , because this information is

contained in credential (2.6). Furthermore, the lab administrator does not have to

participate in the verification of Alice’s role membership as this information is also

in (2.6). The hospital makes the authorization decision by verifying each component

of credential (2.6) and Alice’s identity signature. Note that the hospital does not

need to have prior knowledge of or trust relationship with lab L. This independent

verifiability enables a cross-domain authorization chain to be easily verified.

We allow actions to be delegated, as well as roles. For example, the hospital may

delegate the read access of a database db (Read db) to role M.professor , which is

expressed in (2.7).

H
(Read db)
−−−−−−→M.professor (2.7)



18

2.5 Role-based Cascaded Delegation Protocol

In this section, we first describe the role-based cascaded delegation protocol and then

show an efficient realization of this protocol using the HCBE scheme [61]. In what

follows, a role r represents an affiliated role.

The role-based cascaded delegation protocol defines four operations: RBCD Initiate,

RBCD Extend, RBCD Prove, and RBCD Verify. In our protocol description,

delegation credentials once issued are stored in public credential servers that can be

queried by anyone. The credential servers (See also Section 2.7.2) may be simple

LDAP servers. Because of our security guarantees (See Section 2.7.1, adversaries

cannot use the credentials on the servers to forge authorization.

• RBCD Initiate(PD0
, sD0

, D0.priv, A1.r1, PA1
): This operation is run by the

administrator D0 of a privilege D0.priv to delegate D0.priv to an affiliated role

A1.r1. This operation initiates a delegation chain for privilege D0.priv. Inputs

are the public key PD0
of entity D0, the corresponding private key sD0

, the

delegated privilege D0.priv, the role name A1.r1, and the public key PA1
of role

administrator A1. Recall that only affiliated roles can receive delegations, as

discussed in Section 2.2.1. The output is a partial delegation credential C1 for

the role A1.r1, represented as

D0
D0.priv
−−−−→ A1.r1.

The statement of C1 includes the public key PD0
, the privilege D0.priv, and

information about the role A1.r1 such as the role name and the public key of

the administrator A1. The delegation certificate is signed using the private key

sD0
. D0 stores C1 on a credential server.

Note that if the last argument is the public key of an individual, this operation

can also be used for generating role certificates. Role certificate is given to the

corresponding role member.

• RBCD Extend (sDn
, D0.priv, Cn, RDn

, An+1.rn+1, PAn+1
):

This operation is run by an intermediate delegator Dn, who is a member of

an affiliated role An.rn, to extend the delegation of privilege D0.priv to the

role An+1.rn+1. The inputs are the private key sDn
of the delegator Dn, the



19

delegated privilege D0.priv, the partial delegation credential Cn that delegates

the privilege D0.priv to the role An.rn, the role credential RDn
of the delegator

Dn, the role name An+1.rn+1, and the public key PAn+1
of role administrator

An+1. Credential Cn is retrieved from a credential server. The partial delegation

credential Cn is a function of the preceding extension and role credentials, which

are denoted as:

(D0
D0.priv
−−−−→ A1.r1),

(A1
A1.r1−−−→ D1), (D1

D0.priv
−−−−→ A2.r2),

. . .

(An−1
An−1.rn−1

−−−−−−→ Dn−1), (Dn−1
D0.priv
−−−−→ An.rn)

where D0 represents the resource owner, and Ai.ri is the role that is delegated

the privilege D0.priv by an entity Di−1 who has the affiliated role Ai−1.ri−1, for

i ∈ [1, n].

An extension credential denoted by Dn
D0.priv
−−−−→ An+1.rn+1 is generated as an

intermediate product of the operation RBCD Extend. Its statement contains

information about the delegated privilege D0.priv and the role An+1.rn+1. It

is signed with the private key sDn
. The final output of this operation is a

partial delegation credential Cn+1, which is a function of the credential Cn,

the role credential RDn
denoted by An

An.rn−−−→ Dn, and the extension credential

described above.

Credential Cn+1 may simply be delegation credential Cn together with two in-

dividual credentials. Alternatively, Dn can compute a delegation credential for

the role An+1.rn+1 as in existing cascaded delegation protocols [50, 95], and also

passes down his role credential to members of the role An+1.rn+1. In comparison,

our realization using HCBE [61] scheme provides a more efficient approach.

• RBCD Prove(sDn
, D0.priv, RDn

, Cn):

This operation is performed by the requester Dn who wants to exercise priv-

ilege D0.priv. Dn is a member of the affiliated role An.rn. The requester Dn

uses the partial delegation credential Cn and Dn’s affiliated role credential RDn
,

denoted by An
An.rn−−−→ Dn, to prove that he is authorized the privilege D0.priv.



20

The inputs are the private key sDn
of the requester Dn, the privilege D0.priv,

the affiliated role credential RDn
of the requester, and the delegation credential

Cn. Credential Cn is retrieved by the requester from a credential server. The

operation produces a proof F , which contains delegation statements and cor-

responding signatures for verification. The private key sDn
is for proving the

authenticity of the public key PDn
that appears on the role credential RDn

of

the requester.

• RBCD Verify(F ):

This operation is performed by the resource owner D0 to verify that the proof

F produced by the requester Dn correctly authenticates the delegation chain

of privilege D0.priv. Dn is a member of the role An.rn. The input is a proof

F that is computed by the requester Dn. F contains signatures and a string

tuple [D0.priv, PD0
, A1.r1, PA1

, PD1
, . . . , PDn−1

, An.rn, PAn
, PDn

] that consists of

the components of a delegation chain for requester Dn. In the string tuple,

D0.priv is the delegated privilege, for i ∈ [1, n] PDi−1
is the public key for the

delegator Di−1 whose affiliated role is Ai−1.ri−1, Ai.ri is the role that receives

the delegation from Di−1, PAi
is the public key of role administrator Ai, and PDn

is the public key of the requester. The verifier checks whether the signatures

in F correctly authenticates the delegation chain. This process includes the

authentication of each delegation extension Di−1
D0.priv
−−−−→ Ai.ri, and entity Di’s

affiliated role membership Ai
Ai.ri−−−→ Di, for all i ∈ [1, n]. F also contains the

proof of possession of private key sDn
that corresponds to public key PDn

. Dn

is granted D0.priv if the verification is successful, and denied if otherwise.

Our role-based cascaded delegation model supports independently-verifiable de-

centralized role-based delegation. Recall that independently-verifiable decentralized

role-based delegation is defined in Section 2.2 as the ability for a member of role r to

delegate r to other roles or entities, and in addition the delegation credential can be

independently verified by any third-party without the participation of the adminis-

trator of role r. In RBCD, RBCD Extend is performed by a valid member of role r

to delegate r to others. The partial delegation credential generated contains the role

credentials of all delegators on the delegation chain. Therefore, the verification of the



21

delegation credentials does not require any role administrators, and can be performed

by anyone.

Affiliated role credentials can be issued using RBCD Initiate operation by the

administrator of a role. RBCD Extend operation is used to issue delegated role

credentials. The delegation chain of a privilege grows at each delegation extension.

The verifier may perform revocation checking at the RBCD Verify operation. Del-

egation revocation is discussed in Section 2.7. In the next section, we describe a

realization of cascaded delegation using the Hierarchical Certificate-based Encryp-

tion [61], which allows aggregation of multiple credentials into one credential.

2.6 Realization

Role-based cascaded delegation can be implemented in a straightforward manner

using the RSA signature scheme [100]. At each delegation, the delegator D computes

an RSA signature on the delegation statement, and issues it to delegatees along with

D’s role signature (also an RSA signature). The delegation chain verification consists

of verifying each of the above signatures.

We present a more efficient realization of role-based cascaded delegation using the

Hierarchical Certificate-based Encryption (HCBE) [61] scheme. In HCBE, each entity

has a public/private key pair generated on his own. A member of an affiliated role has

an affiliated role credential, which contains a signature signed by the administrator of

the role. The delegation credential in this protocol consists of an aggregate signature

and a string tuple.

In RBCD, a delegator issues a partial delegation credential to a role, which is

not valid until a member of the affiliated role adds in his role credential and identity

information. The complete delegation credential of an entity is computed by the

entity, using the partial delegation credential obtained through credential servers, his

role credential, and his secret personal information. Each member of an affiliated

role has a unique complete delegation credential, however, the delegator only needs

to generate one partial delegation credential, which does not require the knowledge

of the members of that affiliated role. This feature makes our protocol scalable. Any

member of that affiliated role can further delegate the privilege to other affiliated roles,



22

without any assistance from administrators. The public information of intermediate

delegators is traceable. The affiliated role membership of all the delegators on a

delegation chain can be proved, however, the signatures on their role credentials are

not revealed to anyone.

A delegation credential of an entity corresponds to a delegation chain, and has two

components: one aggregate signature of constant size and a string tuple. The string

tuple defines the delegation chain, and its size is linear in the length of the chain.

The signature is used for authentication of the chain. The aggregate signature [23] in

the HCBE scheme is an ordinary sized signature that is the aggregation of multiple

signatures, which may include signatures from delegators, role administrators, and the

requester. To request a service, the requester uses his private key to sign a statement

which is chosen by the verifier, and aggregates this signature with signatures from his

role credential and the partial delegation credential obtained from a credential server.

To verify the delegation chain, one simply verifies that aggregate signature submitted

by the requester.

Our role-based cascaded delegation protocol has five operations, which make use of

the algorithms in the HCBE scheme [61]. Alternatively, one can use operations in the

aggregate signature scheme [23] for generating and verifying delegation credentials.

We choose to use HCBE for the presentation, because its operations have intuitive

meanings that are similar to our needs.

RBCD Setup: This operation outputs the system parameters, public/private keys,

and role credentials that will be used in the system.

• The root of the system calls HCBE Setup and obtains a set of public pa-

rameters denoted as params. Among other parameters in params, including

collision-resistant hash functions H and H ′, a special constant π, and a bilinear

map ê [22].

• Each entity (organization or individual) D chooses a secret sD as his private

key, and computes the product sDπ as its public key PD.

• An organization A with the private key sA certifies entities who have A.r

as an affiliated role. For each entity D who has the affiliated role A.r and

the public key PD, organization A computes a role signature RD by running



23

HCBE Cert of CA( sA, PD‖A.r), where ‖ denotes string concatenation. The

output signature, representing the role assignment A
A.r
−−→ D, is given to entity

D for proving the affiliated role membership.

RBCD Initiate: Resource owner D0 delegates the privilege D0.priv to members of

an affiliated role A1.r1. The private key sD0
corresponds to the public key PD0

of

entity D0. Entity D0 does the following.

• Set the string info1 = PD0
‖D0.priv‖A1.r1‖PA1

. String info1 contains the public

key PD0
of the owner of the delegated privilege, the delegated privilege D0.priv,

the role A1.r1 that receives the privilege, and the public key PA1
of the adminis-

trator of the role A1.r1. Run HCBE Cert of CA(sD0
, info1), which outputs

an extension signature X1. Define a string tuple chain1 as [D0.priv, PD0
, A1.r1,

PA1
]. Set the partial delegation credential C1 for the role A1.r1 as (X1, chain1).

Credential C1 is put on a credential server.

RBCD Extend: An entity Di, whose role is Ai.ri, further delegates D0.priv to role

Ai+1.ri+1. Di uses his private key sDi
, his role signature RDi

, and the delegation

credential Ci of the role Ai.ri to compute a partial delegation credential Ci+1. Entity

Di does the following.

• Parse the credential Ci as (SAgg, chaini), where SAgg is the aggregate signature

of credential Ci and chaini is the corresponding string tuple. Signature SAgg is

a function of preceding extension and role signatures on the delegation chain.

String tuple chaini contains the components of the delegation chain. Set the

string infoi+1 = PD0
‖D0.priv‖Ai+1.ri+1‖PAi+1

, where PD0
is the public key of

the resource owner of the delegated privilege, D0.priv is the delegated privilege,

Ai+1.ri+1 is the role that receives the privilege, and the public key PAi+1
of

the role administrator Ai+1. Run HCBE Aggregate(sDi
, infoi+1, RDi

, SAgg),

which outputs an aggregate signature S ′
Agg.

• Define the string tuple chaini+1 of credential Ci+1 as the string tuple chaini

appended with public key PDi
, the role name Ai+1.ri+1, and the public key

PAi+1
. Set credential Ci+1 as (S ′

Agg, chaini+1). The partial delegation credential

Ci+1 for the role Ai+1.ri+1 is put on a credential server.



24

RBCD Prove: The requester Dn with the role signature RDn
and delegation cre-

dential Cn wants to use the delegated privilege D0.priv. Dn is given a random message

T by the verifier D0. The message T contains some random information to prevent a

replay attack. Dn does the following.

• Parse the credential Cn as (SAgg, chainn), where SAgg is the aggregate signature

of Cn and chainn is the string tuple. Run HCBE Aggregate(sDn
, T, RDn

, SAgg),

where sDn
is the private key of Dn. HCBE Aggregate outputs an aggregate

signature S ′
Agg. Set the string tuple chain ′

n to be chainn appended with the

public key PDn
of Dn. Set the proof F to be (S ′

Agg, chain
′
n, T ), which is sent to

the verifier D0.

RBCD Verify: The verifier D0 verifies the proof F submitted by the requester Dn

as follows.

• Parse F as (S ′
Agg, chain

′
n, T ), where S ′

Agg is an aggregate signature, chain ′
n is

a string tuple, and T is a message. Parse the string tuple chain ′
n as [D0.priv,

PD0
, A1.r1, PA1

, . . ., An.rn, PAn
, PDn

], where for i ∈ [0, n− 1] PDi
is the public

key of delegator Di whose affiliated role is Ai.ri, Ai+1.ri+1 is the role receiving

the delegation from Di, PAi+1
is the public key of role administrator Ai+1, and

PDn
is the public key of the requester.

• Encrypt a message M in HCBE as follows. Choose a random number r. Set the

ciphertext Ciphertext = [rπ, V ], where π is one of the public parameters, V =

M ⊕H ′(gr), where g = g1g2g3 is a product of the following: g1 = ê(PDn
, H(T )),

g2 = Πn
i=1ê(PAi

, H(PDi
‖Ai.ri)), g3 = Πn−1

i=0 ê(PDi
, H(PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
)).

The value g is the product of multiple bilinear map functions [22] whose inputs

are the public key of a signer and the hash digest of the signed message. H and

H ′ are the two hash functions in the system parameters params. ⊕ denotes

bit-wise XOR operation. T is the message that Dn signs in RBCD Prove.

• Run HCBE Decryption(Ciphertext, S ′
Agg) to decrypt ciphertext Ciphertext

using S ′
Agg. Compare the output M ′ of the decryption with the original message

M . The request is granted if M = M ′, denied if otherwise.



25

The correctness of the protocol can be directly deduced from the correctness of

HCBE and is not shown here.

A delegation to the intersection of roles [89], for example A1.r1 ∩ A2.r2, may be

realized by extending one delegation to a string that represents an intersection of

roles, rather than one role. To extend or prove such a delegation, an entity needs

to aggregate two, rather than one, role signatures into a delegation credential. Ad-

ditional fields can be added by the delegator to a delegation credential to increase

the expressiveness, one of them being the expiration date of a delegation. Given a

delegation chain defined by the credential, the expiration date of a delegation should

be no later than any of the expiration dates of preceding delegations. The delegator

may also set restrictions on the level of a delegation, which specifies whether or not

the privilege can be further delegated and for how many times, i. e., the length of

a delegation chain. This constraint helps improve the accountability, and gives the

delegator a tight control over the delegated privileges. The verifier or the delegation

receiver should check if all the constraints are satisfied before accepting a credential.

Supporting the RBCD model with predicates and constraints was recently presented

in [129].

We discuss the security, efficiency, and scalability of role-based cascaded delegation

protocol in the next section.

2.7 Analysis

We now analyze the security, efficiency, scalability, and revocation of role-based cas-

caded delegation.

2.7.1 Security

In this section, we first analyze the security of our role-based cascaded delegation

model, and then describe the security of the RBCD realization with aggregate signa-

tures.

The security property of the RBCD model is defined as follows: unauthorized

entities cannot access protected resources, and unauthorized entities cannot issue valid

delegations. We allow adversaries to do the following: (1) adversaries can observe



26

communications between delegation participants and between resource owners and

requester; (2) adversaries can forge delegation credentials or role credentials; and (3)

adversaries can submit access requests. We assume the existence of a signature scheme

that is secure against forgery attacks by (probabilistic) polynomial-time adversaries.

Theorem 2.7.1 states the security of the RBCD model.

Theorem 2.7.1 In role-based cascaded delegation model, given a partial delegation

credential for a role r, a polynomial-time adversary cannot forge a valid delegation

chain that authorizes the role r to any role or individual.

The analysis of the theorem is straightfoward as follows. The partial delegation

credential is generated by Initiate or Extend operations. A partial delegation

credential is issued to roles, rather than to individuals. To use the partial delegation

credential for role r to request for access, one needs to have a valid role credential

Rr of role r and the private-key corresponding to the public-key stated in Rr. The

latter is for signing the challenge nonce from the resource owner. Given any secure

signature scheme against polynomial-time adversaries, an adversary cannot forge role

credential and the signature on the nonce. Therefore, she cannot use the partial

delegation credential to authorize the role r to herself. In addition, an adversary

cannot forge valid extension credentials to extend role r, because she is unable to

forge a valid role credential of role r that is required in Extend operation.

The RBCD realization with aggregate signatures provides strong protection of

sensitive signatures because individual signatures can be verified without being dis-

closed. To extend a delegation, an intermediate delegator aggregates two signatures.

One is his role signature signed by a role administrator, and the other is the extension

signature signed by the delegator himself. Once the role signature and the extension

signature are aggregated with the signature from the previous delegation (the order

does not matter), it is impossible for others to find out what the role signature or the

extension signature is. Similarly, for a requester, the role signature and the signature

on a challenge statement are also protected. This is not achievable in conventional

signature schemes, such as RSA [24].

Furthermore, the security of the aggregate signature and HCBE schemes guaran-

tees that an attacker cannot forge a valid aggregate signature consisting of n individual



27

signatures, even if he possesses n − 1 of the required private keys [23]. In our dele-

gation model, this implies that one cannot forge any valid delegation credential from

existing credentials. Although signature verification can be performed by anyone, an

adversary cannot derive any signature nor secret key of the preceding delegators from

the aggregate signature that is issued to him. HCBE also guarantees that collusions

between users do not give them any information more than what they have already

known.

2.7.2 Scalability

The abstraction of roles in role-based cascaded delegation greatly reduces the po-

tential for a large number of delegation credentials, and makes the model scalable.

Because the partial delegation credentials issued by the delegators cannot be directly

used for accessing resources, they may be stored at credential servers so that members

of a role can query the server to retrieve the partial credential. Thus, our implemen-

tation scales up to a large number of credential receivers. Also, the delegation is

decentralized. Individuals, who have qualified roles, can make delegations of the roles

without the assistance of administrators. In collaboration environments where coali-

tions are formed dynamically, this feature greatly facilitates resource sharing. Note

that our model does not require the existence of public-key infrastructure.

2.7.3 Efficiency

We analyze the efficiency of RBCD model, and compare its realizations with RSA and

aggregate signatures. The size of delegation credentials in our model is formalized

below.

Theorem 2.7.2 In role-based cascaded delegation, the size of a partial or complete

delegation credential is linear in the length of a delegation chain, which is the number

of delegation transactions associated with the delegation credential.

This complexity is because at each delegation transaction, one extension credential

and one role credential are accumulated to existing delegation credentials.

Although the asymptotic sizes of delegation credentials in different RBCD real-

izations are the same, the implementation using HCBE and aggregate signatures can



28

have significant advantages in delegation efficiency, compared to an implementation

using conventional credentials. We compare our HCBE-based realization with the

realization using the RSA signature scheme [100] described at the beginning of Sec-

tion 2.6. We consider a 1024-bit modulus RSA scheme, in which the size of the public

key is slightly larger than 1024 bits and the size of a signature is 1024 bits long.

For the same level of security as 1024-bit modulus RSA, the signatures and public

keys in the aggregate signature scheme can be as short as 170-bit long [26]. Observe

that at each delegation extension of RBCD, the following information needs to be

added to the delegation credential: the public key of the delegator, the role name of

recipients, the public key of the role administrator, the signature on the role credential

of the delegator, and the extension signature generated by the issuer. The analysis

also applies to the aggregate operation performed by the requester. Therefore, to

authenticate a delegation chain of length n (i.e. having n delegations), the information

required by the verifier includes the delegated privilege, the public keys of n delegators

and n role administrators, n role names, the public key of the requester, along with

2n + 1 digital signatures.

Suppose the length of a role name is 100 bits and the delegated privilege has the

same size as a role name. The total size of the credential in our HCBE realization is

170 + 170(2n + 1) + 100(n + 1) = 440n + 440 bits. For the RSA signature scheme,

such a delegation credential contains 2n additional signatures, and the total size is at

least 1024(2n + 1) + 1024(2n + 1) + 100(n + 1) = 4196n + 2148 bits.

For example, consider a delegation chain of length 20. The size of the delegation

credential in RSA is more than 86 Kbits, while in the HCBE realization it is about

9.2 Kbits. Smart cards with a microprocessor typically have 32 KBytes (256 Kbits)

EEPROM storage. Thus, our approach has a clear advantage in terms of the number

of credentials that can be stored by smart cards and similar devices. For small

mobile devices with limited communication bandwidth, this saving in the credential

size allows the information to be transmitted faster. The above analysis also applies

to the extend operation.

For a 20 Kbits per second connection and a delegation chain of length 20, the time

for transmitting the entire RSA credentials to the verifier in the prove operation

takes (4196 × 20 + 2148)/20000 = 4.30 seconds. The time in our HCBE realization



29

takes (440 × 20 + 440)/20000 = 0.46 seconds. In addition, generating a signature

in HCBE scheme requires only 3.57 ms on a 1 GHz Pentium III, and is faster than

generating a signature in the RSA scheme, which requires 7.90 ms for a 1007-bit

private key on the same machine [11].

The running time for verifying an aggregate signature associated with a delegation

chain is linear in the number of single signatures aggregated, i.e., the length of the

chain. The verification of a signature in the HCBE scheme is slow (about 50 ms

on a 1 GHz Pentium III) compared to RSA signature verification (0.40 ms on the

same machine for a 1007 bits private key) [11]. Nevertheless, in our protocol only the

servers of resource owners, which are typically powerful, have to performs delegation

chain verifications.

Table 2.1 summarizes the analysis above.

Chain length n = 20 Credential sizeTransmission (20 Kbit/s)Signing [11]Verifying [11]
RBCD using RSA 86 Kbits 4.3s 7.9ms 0.4ms

RBCD using Agg. Sig. 9.2 Kbits 0.46s 3.57ms 50ms

Table 2.1: Efficiency comparisons between RBCD realizations using RSA signatures
and bilinear-map based aggregate signatures

2.7.4 Delegation renewal and revocation

At each delegation extension, the issuer can set an expiration date for the delegation,

which may be earlier than the expiration dates of preceding delegations on the chain.

For a delegation credential to be considered valid, none of the expiration dates has

passed. Intermediate delegators may issue delegations with a short validity period,

and then periodically renew them. Delegation renewal can be done in a hierarchical

fashion as follows. To renew a delegation, a delegator E puts the renewed partial

delegation credential on credential servers. Intermediate delegators that succeed to

E may retrieve the renewed credential and update the corresponding delegations that

are issued by them.

Delegation revocation before expiration can be handled by maintaining a revo-

cation service, which can be efficiently achieved using the authenticated dictionary

technique (see, e.g., [49, 69, 70, 94]). An authenticated dictionary is a system for



30

distributing data and supporting authenticated responses to queries about the data.

The data originates at a secure central site (the repository) and is distributed to

servers scattered around the network (responders). The responders answer queries

about the data made by clients on behalf of the repository and provide a proof of the

answer.

The roles or public keys whose delegated privileges are revoked are put on the

repository of the revocation service by the resource owner. Before verifying the cre-

dential signatures in the verify operation, the resource owner queries the revocation

service to ensure that no public key whose delegated privileges are revoked appears on

the delegation credential. Similarly, the revocation of affiliated role memberships can

also be supported using a revocation service, which the verifier queries in the verify

operation to ensure the validity of the affiliated role memberships of intermediate

delegators.

2.8 Related Work

The PolicyMaker [18] and KeyNote [17] are the first trust management systems

that authorize decentralized access by checking a proof of compliance. The system

puts all the policy and credential information into signed certificates that are pro-

grammable. Certificates in PolicyMaker are generalized as they consist of programs

written in a general programming language. SPKI/SDSI (Simple Public Key Infras-

tructure/Simple Distributed Security Infrastructure) is a public-key infrastructure

emphasizing decentralized name space and flexible authorization [43, 53]. The owner

of each public key can create a local name space relative to that key. These name

spaces can be linked together to enable chains of authorization and define groups of

authorized principals. To access a protected resource, a client must show a proof

that takes the form of a certificate chain proving that the client’s public key is one of

the groups on the resource’s ACL, or that the client’s public key has been delegated

authority from a key in one of the groups on the resource’s ACL. Due to the flexible

naming and delegation capabilities of SPKI/SDSI certificates, finding such a chain

can be nontrivial.

Compared to RBCD, PolicyMaker, KeyNote, and SPKI/SDSI do not define role



31

abstractions, and thus delegations can only be issued to individuals. The use of roles

makes authorization scalable, and in the meantime, the role-based delegation mecha-

nism is more complex as demonstrated in our work. In addition, these systems assume

that all certificates are centrally stored, which may not be realistic in decentralized

environments. In comparison, we address this issue with a simple accumulation ap-

proach by having delegators to pass down relevant credentials.

The RT framework is a family of Role-based Trust management languages for

representing policies and credentials in decentralized authorization [89]. Compared

to our work, the work of RT focuses on the high-level expressiveness aspect of trust

management, and does not address the cryptographic verification problem of autho-

rization chains as studied in our work. Our delegation mechanism is general and can

be incorporated into existing role-based trust management systems such as RT to

instantiate a concrete delegate mechanism. Details of how this incorporation is done

is out of the scope of this work.

As we said earlier in the introduction, our role-based delegation can be simpli-

fied to support individual delegation, i.e., a role member further extends his or her

delegated privileges to another individual. Therefore, TM systems such KeyNote,

PolicyMaker, and SPKI/SDSI can also utilize our protocol to instantiate their dele-

gation mechanisms.

QCM [75] and SD3 [79] are two trust-management systems that consider dis-

tributed storage of credentials. A limitation of the approach in QCM and SD3 is

assuming that issuers initially store all the credentials, which may be impractical for

some applications. This limitation was addressed by Li et al. [90], who presented

goal-directed credential chain discovery algorithms that support a more flexible dis-

tributed storage scheme in which credentials may be stored by their issuer, their

recipient (also called their “subject”), or both. The algorithms dynamically search

for relevant credentials from remote servers to build a proof of authorization. While

storing credentials with their issuers or recipients supports flexible delegation models,

in many cases such flexibility is unnecessarily costly. The discovery algorithms require

delegation issuers or their responders (credential servers) to participate in the com-

putation. Role-based cascaded delegation can be integrated with the credential chain

discovery algorithms to reduce the communicational and computational costs to a



32

certain degree [129]. This is because part of the target authorization chain is already

captured in RBCD’s delegation credentials and does not need to be discovered.

There are several cryptographic cascaded delegation [112] schemes for the proxy

authentication and authorization, including nested signature schemes [118], delegation

keys [95], and a combined approach [50]. These schemes do not provide the support

for delegations to roles, and the delegation credentials are not as compact as ours,

as is explained in the following. Nested signatures define the order of delegations

on a delegation path. They are used to prevent the attacker to construct another

delegation path using one of the delegation credential [118]. The size of delegation

credential is linear to the number of entities on a delegation chain, and verification of

signatures is done sequentially. Cascaded delegation is also implemented by binding

two delegation credentials using delegation keys [95]. Applying this scheme to role-

based delegation means sharing secret group key among members of a role, which may

cause accountability problem. The hierarchical delegation protocol by Ding et al. [50]

combines the nested signature scheme and delegation public/private key approach.

It is based on Schnorr signature scheme [106], self-certified public keys [62], and

the concept of hierarchical key generation [60]. Compared to our realization using

HCBE, their delegation and verification algorithms require more computations. In

their scheme, to verify one hierarchical delegation credential of length l, a verifier

has to compute and verify l public delegation keys (different from public keys in

conventional PKI). In addition, at each delegation the delegation receiver is required

to perform a number of computations. In our scheme, a delegated entity is not

required to perform any computation.

The security framework for Java-based computing environment in [112] uses roles

in chained delegations to simplify the management of privileges. However, their

delegations are made to individuals rather than to roles. The framework does not

support tracing the delegation credentials of intermediate entities on the delegation

chain, therefore does not support the verification of delegation chains. Their term

cascaded delegation has different meanings from ours, and refers to delegations where

all the privileges of preceding entities on the chain are inherited by the delegatee. In

our model, only the specified privilege is delegated throughout a delegation chain.

Permission-based delegation model (PBDM) built on RBAC supports user-to-user,



33

role-to-role delegations [135]. A delegator creates one or more temporary delegation

roles and assigns delegatees to particular roles. Delegations in PBDM requires changes

of role hierarchies by the proper authority, for example, a project leader who has

write access to the role assignment and access policies. PBDM does not address

decentralized delegation, which is our main focus.

X-GTRBAC Admin [16] is an administration model for policy administration

within a large enterprise. It specifies the user-to-role and permission-to-role as-

signments in the XML-based Generalized Temporal Role Based Access Control (X-

GTRBAC) framework [80]. X-GTRBAC Admin supports decentralized administra-

tion by distributing assignment tasks to multiple domains within the enterprise while

enforcing temporal constraints. In comparison, our RBCD models aim at the decen-

tralized trust management among members of independent organizations. Therefore,

X-GTRBAC Admin is complementary to RBCD models.

Shehab, Bertino, and Ghafoor recently propose a distributed secure interoperabil-

ity framework for mediator-free collaboration environments [109]. They define secure

access paths for dynamic collaboration environment, and also give a path authenti-

cation technique for proving path authenticity. Their idea of exploring trust paths

in multi-domain environment is similar to the authentication of delegation chains in

RBCD. The main difference of their work from ours is that they focus on the domain-

level authentication, as opposed to authentication of individual role members.

2.9 Conclusions

We have studied cross-domain role-based delegation problem for information shar-

ing where there is no central administrator. The main challenge addressed in this

work is the verification of role-based authorization chains in decentralized environ-

ments, which has not been much studied in existing literatures. We have presented

a role-based cascaded delegation model and its associated cryptographic operations

for the purpose of convenient verification of delegation chains. RBCD enables a role

member to create delegations based on the need of collaboration, yet in the mean-

time a delegation chain can be verified by anyone without the participation of role

administrators. Our protocol is general and can be realized by any signature scheme.



34

We have described a specific realization with hierarchical certificate-based encryption

scheme that gives delegation compact credentials.



Chapter 3

Anonymous Cascaded

Authorization: Model and Protocol

A preliminary version of this paper was published in the Proceedings of the Seventh

Annual IEEE Systems, Man and Cybernetics Information Assurance Workshop (IAW

’06) [128].

3.1 Introduction

Authorization is an important concept of the resource sharing in open and collabo-

rative environments such as Grid computing [98] or the Internet. In role-based trust

management [89, 114], privileges are associated with roles and each user is assigned

one or more roles. Role members prove their memberships with digital credentials

and public-key signatures. Role-based delegation is important in decentralized role-

based trust management for transferring privileges and sharing resources among role

members that are initially unknown to each other. A delegation credential is a digital

certificate signed by a delegator on a statement that gives authorizations to delega-

tees. In role-based delegation models [90, 114], a privilege can be delegated to another

role, and then any member of the role can pass that privilege onto other roles. Be-

sides privileges, a role, which represents a collection of privileges, can be delegated

as well. We first illustrate in Example 3.1.1 a simple multi-step delegation scenario

that transfers rights among roles within one administrative domain. Then we show

35



36

in Example 3.3.1 a more complex cross-domain role-based delegation.

Example 3.1.1 A hospital has roles Doctor, Nurse, and Intern. The hospital permits

all doctors to access a medical storage room. Bob is a doctor and has a doctor role

credential issued by the hospital. When Bob is out of town, he authorizes his nurses

to access the storage room by issuing the nurses a delegation credential. Alice is

Bob’s nurse and has a nurse role credential. She has short-term interns who also

need to access the storage room. Then Alice passes the access privilege onto her

interns by creating another delegation credential. The two-step delegation chain gives

the authorization to interns to access the storage room, which consists of the two

delegation credentials and Bob and Alice’s role credentials. The role credentials show

the delegators have the proper roles to issue the delegation.

Decentralized delegation is to transfer privileges across different administrative

domains, which is important to facilitate information and resource sharing in a col-

laboration. We give a more complex cross-domain role-based delegation in Section 3.3.

For privacy concerns, the identity of a user or an authorizer may be sensitive infor-

mation in e-commerce, e-medicine, or peer-to-peer file-sharing (e.g., Kazaa) applica-

tions. An authorizer may not want to reveal his or her identity and role membership

at each authorization or authentication. There has been a significant amount of work

on trust negotiation frameworks [119, 132], whose aim is to strategically control the

release of sensitive credentials to unknown parties. In addition, organizations may

want to hide their internal structures from the outside world.

To address these privacy concerns, an anonymous role-based delegation protocol

can be implemented with group signatures, in which a signature proves the mem-

bership of a signer without revealing the identity [40, 12]. The anonymous signing

feature of group signatures is particularly suitable for role-based delegation, because

what is essential for verifying a delegation credential is the proof of the delegator’s

role membership, rather than his or her identity. A role-based delegation protocol im-

plemented using group signature schemes is not only scalable due to the use of roles,

but also has strong privacy protection provided by the group signature schemes.

A practical concern about group signatures is their efficiency in a distributed

environment. Next, we introduce the technique of aggregate signatures and explain



37

the need for a signature scheme that supports both anonymous signing and signature

aggregation.

3.1.1 Credential size and aggregate signatures

Lengthy digital credentials are inefficient to transmit and store. In decentralized trust

management systems [90, 114], a delegation chain represents how trust or a delegated

privilege is transferred from one user to another. The chain contains a sequence

of delegation credentials that connects unknown entities and resource owners. The

number of credentials required to authenticate a delegation chain is linear in the length

of the chain. Credentials associated with a delegation chain need to be compact,

because mobile devices may have limited storage units and bandwidth.

Aggregate signatures [23, 92] are an effective solution for shortening credential

size. Namely, multiple signatures on different messages can be aggregated into one

signature of constant size. An interesting question is how to obtain an aggregate

signature scheme that supports anonymous signing in role-based authorization. In

on-line banking applications for example, certain transaction can be approved only

if it is signed sequentially by a member of the role cashier, a member of the role

accountant, and a member of the role manager. Each signature can be generated

without disclosing the signer’s identity for privacy protection, and then be aggregated

to existing ones.

Existing group signatures do not support signature aggregation. In this work,

we present an anonymous-signer aggregate signature scheme. that satisfies proper-

ties of unforgeability, anonymity, traceability, exculpability, unlinkability, collusion-

resistance, correctness, and aggregation (See Section 3.4.3 for definitions). We achieve

these properties by designing the signing key such that it is random, yet contains the

long-term private key of a role member. Even a role manager cannot sign on behalf of

a role member because the manager does not know the long-term private key of that

user. We are able to achieve this by leveraging properties of a bilinear map, which

was first used in the identity-based encryption scheme of Boneh and Franklin [22].



38

3.1.2 Our contributions

We present an anonymous-signer aggregate signature scheme. In our scheme, a role

member u has a long-term public and private key pair. In addition, u computes a

set of one-time secret signing keys from his private key. Then, the public informa-

tion associated with these one-time signing keys are certified by the role manager.

A role manager maintains the role by processing newly joined members and opening

signatures (revoking the anonymity of signers) as necessary. The resulting certificates

are (one-time) signing permits. To sign on behalf of a role, a member u first signs

with one of the secret signing keys, then that signature is aggregated with the corre-

sponding signing permit. This operation creates a role signature in which the signer

is anonymous but can be proven to be a member of a role. We introduce a simple

yet effective key blinding mechanism that integrates the long-term private key of a

signer with a random blinding factor. Using this special signing key, a role member

cannot deny a signature when revoked anonymity; yet, the role manager cannot mis-

attribute a signature to any role member. By leveraging signature aggregation [23],

the length of a role signature can be as short as 170 bits with security equivalent to

a 1024-bit RSA signature. A role signature along with the public information needed

for verification is only 510 bits or 64 bytes long. Role members can join and leave at

any time, without requiring existing members to perform any update.

In an anonymous-signer aggregate signature scheme, individual role signatures

that may be generated by members of different roles can be aggregated into one

signature of constant length. Even if a signature is aggregated with other signatures,

a role manager can trace the signer and show the proof. The security is based on

the security of the aggregate signature scheme [23]. Because of one-time public keys,

the asymptotic growth of our signatures is still linear in the number of individual

signatures. Nevertheless, signature aggregation can significantly reduce the length of

multiple signatures. A discussion on the efficiency of the scheme is given in Section

3.7.

We describe how anonymous-signer aggregate signatures can be used to realize an

anonymous and efficient role-based authorization protocol, where a delegator issues

delegation credentials and proves role membership without disclosing the identity. Al-

though anonymous RBCD can be realized with any group signature scheme, using our



39

anonymous-signer aggregate signature scheme allows the compression of delegation

credentials and significantly improves the efficiency. Delegation certificates in RBCD

are issued to roles, rather than individual role members. For example, a privilege is

delegated to the role doctor at a hospital.

Note that the RBCD protocol does not require a hierarchical generalization of our

signature scheme, and does not require the (expensive) hierarchical certification of

one-time signing keys.

Finally, we point out that anonymous role-based delegation implemented with

anonymous-signer aggregate signatures gives rise to a proxy signature scheme for

groups, which may be of separate interest. In this scheme, u delegates his signing

power to a certain group G of proxy signers by issuing a delegation certificate. Each

of the proxy signers can sign anonymously on behalf of u, provided that the proxy is

a valid group member. The anonymity can be revoked by the manager of group G.

The signature from a proxy signer needs to demonstrate the group membership of

the proxy, and that group G is authorized by u. Note that u is not the manager of

group G. Indeed, u can be anyone outside group G. Our proxy signature scheme

for groups is scalable, and is particularly suitable for role-based systems [103]. For

example, Central Bank needs to delegate the signing power to all members of role

clerk at a local bank. To do this, Central Bank just needs to generate one proxy

signature for the role clerk, instead of issuing one for each role member. The ability

to aggregate multiple such proxy signatures into one make this scheme efficient in

pervasive computing environment. We omit the details of our proxy signature scheme

for groups here, as it can be easily derived from our anonymous RBCD protocol.

3.1.3 Organization

In Section 3.2, we give an overview of the aggregate signature by Boneh et al [23].

A cross-domain role-based delegation example is given in Section 3.3. The definition

and construction of our anonymous-signer aggregate signature scheme are given in

Section 3.4. We prove the security properties in Section 3.5. In Section 3.6, we

introduce the anonymous role-based cascaded delegation protocol. The analysis of the

anonymous role-based cascaded delegation protocol is given in Section 3.7. Related

work is described in Section 3.8. Conclusions are given in Section 3.9.



40

3.2 Preliminaries

Here, we describe the aggregate signature scheme [23] that is used to construct our

signature schemes. The aggregate signature scheme by Boneh, Gentry, Lynn, and

Shacham (BGLS scheme for short) supports aggregation of multiple signatures on

distinct messages from distinct users into one signature [23]. It uses bilinear maps [22]

and works in any group where the decision Diffie-Hellman problem (DDH) is easy, but

the computational Diffie-Hellman problem (CDH) is hard. Such groups are referred

as gap groups [96] and are explained further in Section 3.4.1. The BGLS scheme

comprises five algorithms: BGLS KeyGen, BGLS Sign, BGLS Aggregate, BGLS Verify,

and BGLS Agg-Verify. The first three algorithms are defined the same as in ordinary

signature schemes; BGLS Aggregate merges multiple signatures into one signature of

constant length; BGLS Agg-Verify verifies aggregate signatures.

Informally, the security of aggregate signature schemes is equivalent to the nonex-

istence of an adversary capable of existentially forging an aggregate signature [23].

Here, existential forgery means that the adversary attempts to forge an aggregate

signature by some set of users, on messages of her choice. The formal proof of se-

curity defines an aggregate chosen-key security model, where the adversary is given

a single public key, and her goal is the existential forgery of an aggregate signature.

The adversary is given the power to choose all public keys except the challenge public

key, and she is also given access to a signing oracle on the challenge key [23]. We

refer readers to the paper of BGLS scheme [23] for further details.

Our anonymous-signer aggregate signature scheme is constructed based on the

aggregate signature scheme [23]. We do not claim our scheme as a general group

signature scheme, although it has the key properties of a group signature scheme. To

distinguish from the naming conventions of group signatures, we use role, role mem-

ber, role manager, and role signature in our scheme, which are equivalent to group,

group member, group manager, and group signature in a group signature scheme, re-

spectively. A role represents a number of individuals having certain attributes, each

of them being a role member. The role is administrated by the role manager. A role

signature is a signature signed by a role member on behalf of a role.



41

3.3 An Example of Cross-Domain Role-based Del-

egation

Example 3.3.1 is a multi-step role-based delegation that transfers rights among roles

across different administrative domains in a collaboration. Example 3.3.1 is concep-

tually more complex than Example 3.1.1 in the introduction.

Example 3.3.1 [Scenario] Suppose that a hospital has a collaborative project with

members of the role Staff in a lab. The collaboration requires Staff to access certain

resources (e.g., medical databases) at the hospital. Also suppose that the lab further

subcontracts a part of the project to a company. This subcontract requires a role

Contractor at the company to also access the resources at the hospital. Therefore, in

this example, a two-step delegation is needed to transfer privileges first to the role Staff

and then to the role Contractor. Note that there is no single administrative authority

and the three organizations are autonomous.

Suppose the priviledges (e.g., accessing medical databases) required in the project

are all associated with the role guest at the hospital. Therefore, when the role guest

is delegated to the role Staff, all members of the role Staff at the lab are authorized

the privileges associated with role guest and thus can access the required data. Fur-

thermore, a member of role Staff needs to extend the role guest to members of role

Contractor, so that the collaborators at the company can share the resources as well.

The rights are transferred by delegation as follows.

[Delegation step 1] An administrator at the hospital delegates the role guest

to the lab’s role Staff in a credential C. This delegation means that a member of

Staff at the lab is also a member of guest at hospital, and can access resources that

are associated with the role guest. John is a member of the role Staff and has the

corresponding role credential R. Therefore, John now is delegated the hospital’s role

guest.

[Delegation step 2] To transfer the access privileges associated with role guest to

Contractor at the company, John (or any authorized Staff member) further delegates

the role guest to the role Contractor in a credential C ′. This delegation means that a

member of role Contractor at the company is also a member of guest at the hospital.



42

[Delegation chain for Contractor] Credentials C, R, and C ′ constitute the del-

egation credential that authorizes the role Contractor. Note that the role credential R

proves that John is indeed a member of Staff and thus is entitled to issue delegations.

[Accessing resource] When a member of Contractor at the company requests to

access the shared resources at the hospital, he or she presents the delegation chain

shown above along with the proof of Contractor membership.

3.4 Anonymous-signer aggregate signature scheme

We present our anonymous-signer aggregate signature scheme. First, we list the num-

ber theoretic assumptions needed in our scheme, and then describe the algorithms.

3.4.1 Assumptions

Similar to the aggregate signature scheme [23], our anonymous-signer aggregate sig-

nature scheme uses bilinear maps and works in gap groups [26, 96], which is explained

next. Let G1 and G2 be two cyclic groups of some large prime order q. We write G1

additively and G2 multiplicatively.

Computation Diffie-Hellman (CDH) Problem: Given a randomly chosen P ∈ G1, aP ,

and bP (for unknown randomly chosen a, b ∈ Zq), compute abP .

Decision Diffie-Hellman (DDH) Problem: Given a randomly chosen P ∈ G1, aP, bP ,

and cP (for unknown randomly chosen a, b, c ∈ Zq), decide whether c = ab. (If so,

(P, aP, bP, cP ) is called a valid Diffie-Hellman tuple.)

We call G1 a gap group, if the DDH problem can be solved in polynomial time but

no probabilistic algorithm can solve the CDH problem with non-negligible advantage

within polynomial time. As observed in the aggregate signature scheme [23], general

gap groups are insufficient for constructing efficient aggregate signatures, therefore

our scheme also makes use of bilinear maps. We refer the readers to papers by Boneh

and Franklin [22] for examples and discussions of groups that admit such pairings.

Reverse Computation Diffie-Hellman (RCDH) Problem: Given a randomly chosen

P ∈ G1, aP , and bP (for unknown randomly chosen a, b ∈ Zq), compute cP such that

aP = bcP .



43

RCDH problem has been shown to be equivalent to CDH problem by Chen, Zhang,

and Kim [42], which is shown briefly as follows for completeness. Suppose one can

solve CDH problem in G1 on (P, aP, bP ), then one can obtain abP . Let Q = bP .

Then P = b−1Q, aP = ab−1Q, and abP = aQ. This means that we can obtain aQ

from (Q, b−1Q, ab−1Q). Thus solves RCDH problem. Given (P, aP, bP ), suppose one

can solve RCDH problem in G1. Then one can first obtain b−1P from (P, bP ) because

P = bb−1P . Then we can solve RCDH problem on (P, aP, b−1P ) to obtain abP , as

aP = (ab)b−1P . This means that we obtain abP and thus solve CDH problem.

Admissible pairings: Following Boneh and Franklin [22], we call ê an admissible pair-

ing if ê : G1 ×G1 → G2 is a map with the following properties:

1. Bilinear: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1 and all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in G1 ×G1 to the identity in

G2.

3. Computable: There is an efficient algorithm to compute ê(P, Q) for any P, Q ∈

G1.

Admissible pairing has been used to construct a number of encryption and signature

schemes [22, 126], and most recently in a broadcast encryption scheme with short

ciphertexts and private keys [25].

3.4.2 Operations

An anonymous-signer aggregate signature scheme consists of AA Setup, AA Join,

AA Sign, AA Aggregate, AA Verify, and AA Open algorithms.

AA Setup: On input a security parameter k, a probabilistic algorithm outputs a role

public key PA1
. Each entity (role manager and role member) also chooses his or her

public/private keys.

AA Join: A protocol is run between the role manager A1 and a user that results in

the user becoming a new role member. The outputs of the user are membership

certificates and membership secrets.

AA Sign: An algorithm takes as inputs a role public key, a membership secret, a

membership certificate, and a message M1, and outputs a role signature on M1.



44

AA Aggregate: This deterministic algorithm takes as inputs a number of role signa-

tures and returns one aggregate signature SAgg.

AA Verify: An algorithm takes as inputs the role public keys PA1
, . . . , PAn

, the aggre-

gate signature SAgg, and the messages M1, . . . , Mn. n is the number of signatures in

the aggregation. PAi
is the role public key of role manager Ai whose member signs

message Mi in SAgg, for i ∈ [1, n]. The output is 1 or 0.

AA Open: The deterministic algorithm takes as inputs the message M1, . . . , Mn, the

signature SAgg, and role manager A1’s secret information to return the identity of the

signer on message M1.

A secure anonymous-signer aggregate signature scheme must satisfy the following

properties. We give formal definitions for these security properties in the next section.

Correctness: Signatures produced by a role member using AA Sign must be accepted

by AA Verify, and the AA Open recovers the identity of the signer.

Unforgeability: Only valid role members can sign messages on behalf of the role. In

particular, for an anonymous-signer aggregate signature S that is aggregated from

n individual role signatures, even if an adversary knows n − 1 of them, she cannot

successfully forge S.

Anonymity: Given a valid signature, it is computationally hard to identify the signer

for anyone except the role manager.

Unlinkability: Deciding whether two different valid signatures were computed by the

same role member is computationally hard for anyone except the role manager.

Traceability: The role manager is always able to open a valid signature and identify

the signer.

Exculpability: Even if the role manager and members collude, they cannot sign on

behalf of a non-involved member.

Coalition-resistance: A colluding subset of role members cannot produce a valid sig-

nature that the role manager cannot open.

Aggregation: Multiple signatures signed on different messages by different signers

can be aggregated into one signature of constant length, and the aggregation can be

performed by anyone.

We achieve the exculpability property because the manager cannot frame the

member. A role member cannot deny his signature to the role manager because the



45

manager possesses a proof that binds the signature to the role member’s long-term

public key. The signature itself only serves as a partial proof. Only the role manager

can revoke the anonymity and this can be done any time without any restriction.

3.4.3 Formal Definitions of Security Properties

Here, we give formal definitions in game models for properties of unforgeability,

anonymity, traceability, and exculpability for an anonymous-signer aggregate sig-

nature scheme. We will show later in Section 3.5 that unlinkability and collusion-

resistance are implied by our definitions. Our anonymity and traceability definitions

follow the definitions by Bellare, Micciancio, and Warinschi who gave the first formal

treatment of group signatures [12]. We do not give game-based security definitions

for properties of correctness and aggregation as the definitions in the above section

are sufficiently clear.

For unforgeability definition, the challenge key corresponds to the role public key.

For anonymity definition, there are two challenge keys that correspond to two users’

public keys, and we allow the adversary to adaptively choose both targets. We allow

adversary to choose messages and query for opening signatures on the challenge public

key(s). Similar to aggregate signature security [23], for a signature aggregated from

n role signatures, the adversary is free to choose n − 1 of the signing keys in all our

definitions.

Unforgeability Setup: The challenger chooses a role manager’s public key

PA1
by random and gives the adversary PA1

. The challenger keeps the corresponding

secret key. The challenger also gives the adversary public/private key pairs of all role

members.

Join query: The adversary adaptively requests to join the role by asking for

membership certificates of users of her choice. The challenger uses role manager’s

secret key to generate role certificates.

Hash query: The adversary requests the hash of a message of her choice.

Open query: The adversary requests to open anonymous-signer aggregate sig-

natures of her choice.

Unforgeability response: The adversary outputs an anonymous-signer ag-

gregate signature σ along with verification keys PA1
, PA2

, . . . , PAn
, and messages



46

M1, . . . , Mn. The restrictions are that (1) message M1 has not been queried and

(2) all messages are distinct 1. PA1
, . . . , PAn

correspond to the role public keys that

are needed to verify the n signatures in the aggregation. The adversary breaks the

unforgeability if σ can be verified.

Anonymity Setup: Same as in the unforgeability definition. In addition, the

adversary chooses a message M at this phase.

Join, Hash, Open queries: Same as in the unforgeability definition.

Anonymity challenge: Once the adversary decides the query phase is over, she

outputs two users’ public keys P 0
u , P 1

u . The challenger picks a random bit b ∈ {0, 1}

and computes a challenge role signature ρ on M with the secret key corresponding

to P b
u. The adversary’s task is to guess which user generates ρ.

The adversary can continue to submit more open queries on signatures other than

ρ.

Anonymity response: The adversary outputs a guess b′ and wins if b′ = b.

Traceability Setup: The challenger gives the role manager’s public key PA1

to the adversary as in unforgeability definition. The challenger gives the public keys

of all role members to the adversary.

Key extract query: The adversary obtains private keys of users in a set C of

her choice.

Join, Hash, Open queries: Same as in the unforgeability definition.

The order of the above queries is up to the adversary.

Traceability response: The adversary outputs an anonymous-signer aggregate

signature τ along with PA1
, . . . , PAn

, and messages M1, . . . , Mn. The restrictions are

that (1) message M1 has not been queried and (2) all messages are distinct. The

adversary wins if τ can be verified and the signer associated with role manager PA1

is opened to ⊥ or to a user not in set C.

Compared to the “full-traceability” definition by Bellare, et al [12], our definition

for traceability is weaker as we do not give the adversary the private key of the

group manager. In our exculpability definition, an adversary is allowed to have the

role manager’s secret key, which means that we consider the case of a malicious role

1This restriction is inherited from the aggregate signature scheme (See explanation on page 6 of
BGLS paper [23])



47

manager. The exculpability adversary is given the challenge that is the public key of

a target role member.

Exculpability Setup: The challenger chooses a role manager’s public key PA1

and a challenge public key Pu by random. Pu is the public key of the target role

member that the adversary needs to attack. Let sA1
be the private key corresponding

to PA1
. PA1

, sA1
, and Pu are given to the adversary. The challenger keeps the private

key of the target user. The challenger also gives the adversary the public/private keys

of all the other role members.

Exculpability response: The adversary outputs an anonymous-signer aggregate

signature φ along with PA1
, . . . , PAn

, and messages M1, . . . , Mn. The restrictions are

that (1) message M1 has not been queried in the Sign queries and (2) all messages

are distinct. The adversary wins if φ can be verified and the signer associated with

role manager PA1
is opened to the target role member with public key Pu.

Our exculpability definition is restrictive in that it does not allow an adversary

to issue queries on the target. Ideally, an adversary may obtain from the challenger

signatures of the target on messages of the adversary’s choice. Note that the adversary

can generate and open signatures of other role members on her own as she is given

the private keys of the rest of group.

3.4.4 Construction

One can construct a naive aggregate group signature scheme from BGLS scheme [23]

and one-time signing keys as follows. In a naive scheme, a group member generates a

public/private key pair (PK, SK), by running the key generation algorithm of BGLS

aggregate signature scheme. The group manager signs (with the group master secret)

the public key, and sends the certificate 2 Certback to the group member. To produce

a signature on message M , the group member signs M with the private key SK to cre-

ate signature Sig as in the aggregate signature scheme, and sends (M, Sig, PK, Cert)

to the verifier. Signature Sig can be aggregated with other signatures of this scheme

as in BGLS aggregate signature scheme. However, the above scheme cannot prevent

the group manager from misattributing signatures. The group manager first runs the

2This certificate is issued by a group manager for proving group membership of a member. It is
different from a CA certificate, which certifies the validity of a public key.



48

key generation algorithm of BGLS aggregate signature scheme to obtain a key pairs

(PK∗, SK∗). He signs public key PK∗ using the group master secret and generates a

certificate Cert∗ for PK∗. The group manager can then sign a message with private

key SK∗, and misattribute the signature to any group member. The innocent group

member does not have any proof that can be used to deny the signature.

We overcome the above problem by designing signing keys that are both unlinkable

and tied to the long-term private key of a signer. In our protocol, a role member

generates a one-time signing key based on both a long-term private key of and a

short-term secret. The signing keys are then certified by the role manager. The

long-term public key of the role member is certified by a Certificate Authority (CA),

which serves as a trusted entity. Misattributing a signature to others is impossible,

even for the manager, because a role member can prove that the signature does not

correspond to his CA-certified public key. The underlying bilinear pairing allows us

to achieve this property.

The notation of our anonymous-signer aggregate signature scheme is shown in Ta-

ble 3.1. The last three items in Table 3.1 refer to the k-th signature in an (aggregate)

signature aggregated from n (k ≤ n) individual signatures.

Notation: For a role member u, su represents his private key, Pu represents his

long-term public key, Ku,i represents his i-th signing public key, and Xu,i represents

the corresponding i-th secret signing factor. For a role manager A, sA represents his

private key, PA represents his long-term public key. Su,i is the i-th signing permit

generated by the role manager for member u. When referring to an aggregate sig-

nature, Kuk,ik represents the signing public key associated with the k-th signature in

the aggregate signature. Similarly, Puk
and Xuk,ik represent the long-term public key

and the secret signing factor of the k-signer in an aggregate signature, respectively.

See also Table 3.1.

AA Setup: This operation outputs the system parameters and public/private keys of

users that will be used in the system.

• A trusted third party chooses a set of public parameters params = (G1, G2, ê, π, H),

where G1, G2 are groups of a large prime order q, G1 is a gap group, ê :

G1 ×G1 → G2 is a bilinear map, π is a generator of G1, and H : {0, 1}∗ → G1

is a collision-resistant hash function, viewed as a random oracle [13].



49

u A role member
su Private key of u
Pu Long-term public key of u
Ku,i i-th signing key
Xu,i i-th secret signing factor
Su,i i-th signing permit of u
A A role manager
sA Private key of A
PA Long-term public key of A
Kuk,ikThe signing public key for the k-th signature
Puk

Long-term public key of k-th signer
Xuk,ikSecret signing factor of k-th signer

Table 3.1: Notation for anonymous-signer aggregate signature scheme.

• Each role member chooses a secret su as his private key, and computes the

product suπ as its public key Pu. Similarly, the role manager chooses his secret

key sA, and computes the public key PA = sAπ. These are the long-term

public keys, and are certified by a Certificate Authority (CA) using any secure

signature scheme. The certification binds a long-term public key with its owner.

The public key certificate of a member is used for repudiating misattributed

signatures, and is different from the one-time signing permits below. The CA

can be any trusted third party, but cannot be the same as the role manager. 3

AA Join: A role member u obtains one or more one-time signing permits from the role

manager. Each permit certifies u’s one-time signing key information, and is used for

issuing role signatures. The following shows how the signing permits are generated.

• u randomly chooses l number of secrets x1, . . . , xl. u computes one-time signing

factors Xu,1 = x1π, . . . , Xu,l = xlπ and one-time signing public keys Ku,1 =

sux1π, . . . , Ku,l = suxlπ. Keys Pu, Xu,i, and Ku,i are sent to the role manager

in a secure channel 4, for all i ∈ [1, l].

• The role manager tests if e(Ku,i, π) = e(Pu, Xu,i) for all i ∈ [1, l]. Recall Ku,i =

suxiπ, Pu = suπ, and Xu,i = xiπ. If the test fails, the protocol terminates.

3For simplicity, we assume that at a given time each user has only one long-term public key.
4Xu,i needs to be kept secret because it can be used to identify the signer along with public

information Pu and Ku,i.



50

The role manager makes sure that the one-time signing public keys submitted

by u and on the manager’s record are all unique. This check is necessary for

the traceability requirement, otherwise colluding members can submit identical

signing keys by manipulating their private keys and signing factors. Finally, the

role manager runs BGLS Sign on inputs sA and strings roleinfo ‖ Ku,i to obtain

Su,i = sAH(roleinfo ‖ Ku,i) for all i ∈ [1, l]. Su,i is the i-th one-time signing

permit for u, and is given to u. The role manager adds tuples (Pu, Xu,i, Ku,i) to

its record for all i ∈ [1, l].

AA Sign : A role member u first computes a signature Su on a message M on behalf

of the role, by running BGLS Sign on inputs suxi and M , where suxi is one of his

one-time signing secrets. Then, u calls algorithm BGLS Aggregate to merge signature

Su with his one-time signing permit Su,i corresponding to the secret suxi. This gives

the role signature, which is returned with the public key PA of the role manager and

the key Ku,i. The details are as follows.

• u runs BGLS Sign with secret key suxi and message M , and obtains a signature

Su = suxiH(M).

• u aggregates the signature Su with one-time signing permit Su,i associated with

secret suxi. This is done by running BGLS Aggregate, which returns a signature

Sg = Su +Su,i. Recall that Su,i = sAH(roleinfo ‖ Ku,i). Sg is output as the role

signature. u also outputs public key PA and one-time signing public key Ku,i.

AA Aggregate: Same as in algorithm BGLS Aggregate. It takes as inputs n number

of role signatures Sgk
and corresponding values PAk

and Kuk,ik for all k ∈ [1, n]. Set

SAgg =
∑n

k=1 Sgk
. SAgg is output as the anonymous-signer aggregate signature. The

associated keys PAk
and Kuk,ik = suk

xikπ for all k ∈ [1, n] are also returned.

Note that k-th role manager’s public key PAk
for k ∈ [1, n] does not need to be

the same. In other words, signatures from roles of different organizations can be

aggregated.

AA Verify: This algorithm calls algorithm BGLS Agg-Verify with the following inputs:

an anonymous-signer aggregate signature SAgg, public key PAk
, and one-time signing

public key Kuk,ik for all k ∈ [1, n]. n is the number of signers on the authorization

chain.



51

• For 1 ≤ k ≤ n, compute the hash digest H(Mk) of message Mk and hk =

H(roleinfok ‖ Kuk,ik) of the statement on one-time signing permit.

• SAgg is accepted, if ê(SAgg, π) = Πn
k=1ê(PAk

, hk)ê(Kuk,ik , H(Mk)); rejected if oth-

erwise.

The correctness of the verification algorithm in our anonymous-signer aggregate

signature scheme is shown as follows.

ê(SAgg, π) = ê(
n∑

k=1

Sgk
, π)

= Πn
k=1ê(Sgk

, π)

= Πn
k=1ê(Suk

+ Suk,ik , π)

= Πn
k=1ê(Suk

, π)ê(Suk,ik , π)

= Πn
k=1ê(suk

xikH(Mk), π)ê(sAk
H(roleinfok ‖ Kuk,ik), π)

= Πn
k=1ê(H(Mk), suk

xikπ)ê(hk, sAk
π)

= Πn
k=1ê(H(Mk), Kuk,ik)ê(hk, PAk

)

Opening of the signature by the role manager correctly identifies the signer, which

is shown next.

AA Open: Given an anonymous-signer aggregate signature SAgg and its associated

public information including PAk
and Kuk,ik for k ∈ [1, n], a role manager first verifies

signature SAgg. If it is valid, a role manager can easily identify a role member’s

public key Puk
from Kuk,ik , by consulting the role record. The role member cannot

deny his signature because the role manager can provide a proof, i.e. by showing

ê(Kuk,ik , π) = ê(Puk
, Xuk,ik), that the signature is associated with the member’s public

key.

Theorem 3.4.1 The communication complexity of AA Join algorithm is O(l), where

l is the number of one-time signing keys certified. The computational complexity of

the AA Verify algorithm is O(n), where n is the number of signatures aggregated.



52

3.5 Security

We have shown that our anonymous-signer aggregate signature scheme satisfies the

correctness requirement. It also clearly satisfies the aggregation property. In this

section, we prove the security properties for our anonymous-signer aggregate signature

scheme.

Theorem 3.5.1 Our anonymous-signer aggregate signature scheme is as secure as

the BGLS aggregate signature scheme against existential forgery attacks.

Proof: There are three parties involved in this proof: a challenger, adversary A, and

adversary B. If adversary B has a non-negligible advantage over the unforgeability of

our anonymous-signer aggregate signature scheme, then A uses B to break the BGLS

aggregate signature scheme by answering the challenge posed by the challenger. The

challenger chooses a public key PA1
by random and gives PA1

to A as the BGLS

challenge. The challenger keeps the corresponding secret key sA1
. A then interacts

with B as follows.

Setup: A gives B the challenge key PA1
. A generates a set of public/private key

pairs and gives them to B as the keys of all role members.

Join query: A answers B’s join query by submitting it to the challenger as

follows. Suppose B’s query is to join a user with public key Pu, one-time signing

factors Xu, and signing key Ku. A tests whether e(Pu, Xu) = e(Ku, π) holds. If yes,

then A asks the challenger to sign (roleinfo ‖ Ku) with secret sA1
. A passes the

signature to B as the signing permit. A also keeps the tuple (Pu, Ku, Xu) for the

record.

Hash query: A simply uses a collision-resistant hash function to compute the

hash of messages of B’s choice.

Open query: B requests to open an anonymous-signer aggregate signature of

her choice. A can easily identify the signer’s Pu by looking up the signing key Ku in

A’s record.

Unforgeability response: B outputs an anonymous-signer aggregate signature

σ along with verification keys PA1
, PA2

, . . . , PAn
, K1, . . . , Kn, strings roleinfo1, . . .,

roleinfon, and messages M1, . . . , Mn. PA1
, . . . , PAn

correspond to role public keys

that are needed to verify the n signatures in the aggregation. A makes sure that



53

(1) signing key K1 has not been queried, (2) roleinfo1 ‖ K1, . . ., roleinfon ‖ Kn are

distinct, and (3) messages M1, . . . , Mn are distinct. PA1
, . . . , PAn

correspond to the

role public keys that are needed to verify the n signatures in the aggregation.

A passes σ to the challenger, along with keys PA1
, PA2

, . . . , PAn
, K1, . . . , Kn, and

messages roleinfo1 ‖ K1, . . ., roleinfon ‖ Kn, M1, . . . , Mn.

If B breaks the unforgeability, i.e., σ can be verified correctly, with advantage ǫ,

then A breaks BGLS with advantage ǫ. �

Next we show that our signature scheme satisfies the anonymity property.

Theorem 3.5.2 Our anonymous-signer aggregate signature scheme from bilinear pair-

ings in gap groups preserves anonymity in the random oracle model.

Proof: We first design a new game, called random-x game, that is secure based

on randomness, i.e., the adversary’s advantage over random guessing is negligible.

Then we reduce the anonymity game to the random-x game, i.e., breaking anonymity

means that breaking the random-x game. Random-x game is as follows.

Random-x game

The challenger chooses public parameters: a gap group G1 of prime order q, a

generator π of G1. The challenger also generates a set of public/private key pairs

in the form of Pu = suπ and su. These public/private key pairs are given to the

adversary.

Query phase: The adversary chooses two public keys P 0
u and P 1

u , and gives

them to the challenger. The challenger picks a random secret x, a random bit b, and

computes Kb
u = sb

uxπ. The adversary is given Kb
u, xπ, and b, so that she learns Kb

u is

computed from sb
u.

When the adversary decides the query phase is over, she outputs two public keys

P ∗0
u and P ∗1

u to be challenged on.

Challenge phase: The challenger picks a random secret x, a random bit b,

and computes K∗b
u = s∗bu xπ, where P ∗b

u = s∗bu π. The adversary is given K∗b
u . The

adversary’s task is to guess whether b is 0 or 1.

The adversary submits more queries. Finally, the adversary outputs her guess

b′, and wins if b′ = b. Because x is randomly chosen, the adversary does not have

the advantage over random guessing, thus has negligible advantage in the random-x

game. Note that the adversary does not know xπ of her challenge.



54

Assume that an adversary A can break the anonymity of our anonymous-signer

aggregate signature scheme. Then an adversary B can use A to gain non-negligible

advantage in the random-x game as follows. We model hash function H as a random

oracle.

Setup: B first obtains the public parameters from her challenger in the random-x

game. B then chooses a role manager’s secret key sA by random and computes the

public key PA1
= sAπ. B gives A PA1

, and keeps sA. B also gives A the public/private

key pairs of all role members that B obtains from her challenger. A outputs a message

M that A wishes to be challenged on.

Join query: A adaptively requests to join the role by asking for membership

certificates of users of her choice. B uses sA to generate role certificates. B makes

sure that one-time signing public keys on her record are all unique.

Hash query: For messages other than M , B picks a random value in Zq and

returns it as the hash value. For message M , B picks a random r and returns rπ as

its hash.

Open query: B also answers A’s requests of opening anonymous-signer aggregate

signatures. B can do this because the signing keys and the associated (long-term)

public keys are recorded during the join query phase.

Anonymity challenge: Once A decides the query phase is over, A outputs two

targets’ public keys P ∗0
u , P ∗1

u in the random-x game. Then B outputs these two keys

to her challenger as her targets. B’s challenger picks a random bit b ∈ {0, 1} and a

random x, and computes K∗b
u = xP ∗b

u = s∗bu xπ. K∗b
u is given to B as the challenge

(in the random-x game). Next, B needs to generate a challenge role signature ρ on

M for A using K∗b
u as the signing key even though B does not know s∗bu x. (The

trick is in the hash of message M .) B computes signature ρ = sAH(roleinfo ‖ K∗b
u )

+rK∗b
u . ρ can be correctly verified: e(ρ, π) = e(H(roleinfo ‖ K∗b

u ), PA)e(rπ, K∗b
u ) =

e(H(roleinfo ‖ K∗b
u ), PA)e(H(M), K∗b

u ).

B answers more open queries from A on signatures other than ρ as before.

Anonymity response: A outputs a guess b′. B outputs b′ as her guess in the

random-x game. If A has non-negligible advantage ǫ in breaking the anonymity of our

anonymous-signer aggregate signature scheme, then B has advantage ǫ in breaking

the random-x game. �



55

Anonymity as defined in Section 3.4.3 naturally implies unlinkability. In fact, they

are technically the same property as observed in [12]. We summarize the unlinkability

property in the following corollary.

Corollary 1 Our anonymous-signer aggregate signature scheme from bilinear pair-

ings in gap groups satisfies the unlinkability requirement in the random oracle model.

Next we show the traceability of our signature scheme. Intuitively, traceability

means that the role manager is always able to open a valid signature and identify the

signer.

Theorem 3.5.3 Our anonymous-signer aggregate signature scheme from bilinear pair-

ings in gap groups satisfies the traceability requirement in the random oracle model

under the CDH assumption.

Proof: We prove traceability by contradiction. We show that if an adversary has

non-negligible advantage in the traceability game, then there is a contradiction.

Setup, Join query, Hash query, and Open query: The challenger performs

as in the unforgeability proof for Theorem 3.5.1. In addition, in Join query, the

challenger makes sure that the one-time signing public keys are all distinct. At the

end of join queries, the challenger has recorded a list of tuples (Pu, Ku, Xu) for the

users that have been queried.

Traceability response: The adversary outputs a signature τ along with keys

PA1
, . . . , PAn

, K1, . . . , Kn, strings roleinfo1, . . ., roleinfon, and messages M1, . . . , Mn.

As defined, τ should satisfy the following restriction: (1) signing key K1 has not

been queried, (2) roleinfo1 ‖ K1, . . ., roleinfon ‖ Kn are distinct, and (3) messages

M1, . . . , Mn are distinct.

Suppose the adversary wins. This means that (i) τ can be verified and (ii) the

signer associated with role manager PA1
is identified to ⊥ after opening τ . In our

signature scheme, (ii) means that e(K1, π) 6= e(Pu, Xu) for all users on the challenger’s

record. However, (i) means that τ is correctly formed, in particular, (i) means that

τ contains a valid signing permit (in the form of sA1
H(roleinfo1 ‖ K1)) for signing

public key K1. We have shown in Theorem 3.5.1 that the signing permit cannot be

forged, which implies that the adversary obtains it from the challenger. Thus the



56

challenger must have a unique tuple corresponding to K1 on the record. We reach a

contradiction. �

Next, we prove the exculpability of our signature scheme 5.

Theorem 3.5.4 Our anonymous-signer aggregate signature scheme from bilinear pair-

ings in gap groups satisfies the exculpability requirement in the random oracle model

under the CDH assumption.

Proof: There are three parties involved in this proof: a challenger, adversary A,

and adversary B. If adversary B has a non-negligible advantage over our anonymous-

signer aggregate signature scheme, thenA uses B to solve the RCDH problem (defined

Section 3.4.1).

Setup: A’s challenger chooses s and x by random and gives A (π, sπ, sxπ)

as the challenge. Denote sπ by Pu and sxπ by K1. They correspond to the long-

term public key and one-time signing public key of a role member u, respectively.

Adversary A also chooses a role manager’s private key sA1
by random and computes

the corresponding public key PA1
= sA1

π.

A gives B keys PA1
, sA1

, Pu, and K1. A also gives B the public/private keys of all

the other role members that A generates on her own. Adversary B’s task is to use K1

as one of the signing public keys to create an anonymous-signer aggregate signature

misattributing role member u.

Exculpability response: Adversary B outputs an anonymous-signer aggregate

signature φ along with PA1
, . . . , PAn

, K1, . . . , Kn, and messages M1, . . . , Mn. The

restriction is that all messages are distinct. If adversary B wins then φ can be verified

and the signer associated with role manager PA1
is opened to the target role member

with public key Pu. The latter means that B can provide the proof X that satisfies

e(sπ, X) = e(K1, π). Because of the bilinearity of e, X must be xπ. Therefore, A

outputs X as her answer and solves the RCDH problem on sxπ and xπ. �

Our definitions of unforgeability, anonymity, traceability, and exculpability allow

the adversary to have the private keys of any number of users except the target(s),

therefore our signature scheme is naturally collusion-resistant.

5Our traceability does not directly imply exculpability as in [12] because the traceability definition
does not give the adversary the private key of the role manager.



57

Corollary 2 Our anonymous-signer aggregate signature scheme from bilinear pair-

ings in gap groups is collusion-resistant in the random oracle model under the CDH

assumption.

3.6 Anonymous role-based cascaded delegation pro-

tocol

In this section we first briefly introduce the role-based cascaded delegation (RBCD)

protocol [114, 129]. A large amount of work has been done on trust management

and distributed authorization systems [2, 8, 17, 43, 89]. Among them, role-based cas-

caded delegation [114] is an efficient role-based trust management model that supports

administrator-free delegation. Administrator-free delegation allows an individual role

member to issue delegations without the participation of a role manager. It enables

flexible and dynamic authorization in a decentralized environment. Using predicates

and constraints, it is also possible to restrict the scope of the delegation, e.g., pre-

vent further delegation [129]. RBCD comprises four operations: Initiate, Extend,

Prove, and verify. Initiate and Extend are used by a resource owner and an

intermediate delegator, respectively, to delegate a privilege to a role. Prove is used

by a requester to produce a proof of a delegation chain that connects the resource

owner with the requester. Verify decides whether the requester is granted the access

based on the proof.

In RBCD [114], a delegation credential includes role membership certificates of

each intermediate delegator, and delegation extension credentials that are proofs of

delegation transactions signed by delegators. Credentials associated with a delega-

tion chain are transmitted to delegated role members at each delegation transaction.

Therefore, for a delegation chain of length n, the number of certificates required to

verify the delegation path is 2n. Here, we use our signature scheme to extend the

original RBCD protocol to support the anonymity of delegators.

Next we define anonymous role-based cascaded delegation and then describe how

it is realized using anonymous-signer aggregate signatures. Delegation credentials

generated in our signature scheme are efficient to store and transmit, which is impor-

tant in ubiquitous computing. Similar to definitions in the original RBCD protocol



58

[114], a privilege represents a role membership or a permission for an action such

as accessing a database. Anonymous role-based cascaded delegation allows any role

member to authorize on behalf of the role without disclosing the individual identity.

Recall that a role defines a group of entities having certain qualifications. Role mem-

bers are managed by a role manager, which is equivalent to a role manager in the

anonymous-signer aggregate signature scheme.

3.6.1 Definitions

An anonymous role-based cascaded delegation protocol defines five operations: ARBCD Initiate,

ARBCD Extend, ARBCD Prove, ARBCD Verify, and ARBCD Open.

ARBCD Initiate: Same as in RBCD protocol [114], this operation is run by a resource

owner to delegate a privilege to a role. It initiates a delegation chain for the privilege.

The delegation certificate is signed using the private key of the resource owner on

a statement, which includes the delegated privilege, the name of the role, and the

public key of the role manager.

ARBCD Extend: This operation is similar to ARBCD Initiate, but is run by an in-

termediate delegator u, who is a member of a role that is delegated a privilege by

credential C. The goal is for u to generate a credential C ′ that extends the privilege

to members of another role r. Delegation credential C ′ includes information of the

delegated privilege, the name of role r, and the public key of role r’s administrator.

In addition, credential C ′ also contains the delegation credential C that u received,

and the proof of u’s role membership. C ′ does not disclose the identity of u.

Credential C ′ may simply be an accumulation of individual certificates. In com-

parison, our realization using anonymous-signer aggregate signatures is more efficient.

ARBCD Prove: A requester u with role r produces a proof, which authenticates the

delegation chain connecting the resource owner with u. This includes a proof of u’s

role membership without disclosing the identity, and the delegation credential that

delegates the requested privilege to r.

ARBCD Verify: This is performed by the resource owner to verify that a proof pro-

duced by a requester correctly authenticates the delegation chain of a privilege.

ARBCD Open: Role manager revokes the anonymity of a delegator by examining

signatures on a delegation credential. The identity of the delegator is returned.



59

3.6.2 Realization

We give an anonymous RBCD protocol using anonymous-signer aggregate signatures.

Compared to the original RBCD protocol [114], a one-time signing secret key instead

of the delegator’s private key is used to sign a credential, and a one-time signing

permit instead of a role credential is used to prove role membership.

ARBCD Setup: A trusted third party runs AA Setup to set up public parameters

params, and individuals to choose and certify long-term keys. Then, AA Join protocol

is run between role members and the role manager to set up one-time signing permits.

The role manager also keeps a record of signing key information.

ARBCD Initiate: A resource owner runs the BGLS Sign to sign a delegation statement

that authorizes a certain privilege to a role r. The inputs to BGLS Sign are the

resource owner’s private key and the delegation statement that includes the delegated

privilege, the role name r, and the role manager’s long-term public key. The output

is a delegation credential for r.

ARBCD Extend: Role r is delegated a privilege, and a member u of r wants to further

delegate the privilege to a role r′. u first runs algorithm AA Sign to generate a role

signature for r′. The inputs to AA Sign are u’s one-time signing secret key suxi, a

delegation statement, and u’s one-time signing permit Si corresponding to suxi. The

delegation statement includes the following information: role name r′, the long-term

public key of r′’s manager, delegated privilege, AA Sign returns a role signature Sig.

Then the public signing key suxiπ is appended to the delegation statement. Finally,

delegator u calls AA Aggregate to aggregate Sig with the signature on the delegation

credential issued to role r. The resulting aggregate signature SAgg and delegation

statements are given to members of role r′ as the delegation credential.

ARBCD Prove: A requester u of role r first runs AA Sign that uses a one-time signing

key to sign a random challenge message T chosen by verifier. The random challenge is

to prevent replay attacks and ensure that u possesses the secret signing key. Then, u

calls AA Aggregate to merge the output signature with the signature on the delegation

credential issued to role r. The outputs are returned.

ARBCD Verify: AA Verify is run to verify the aggregate signatures submitted by the

requester against the delegation statements. The request is granted if the signature is

accepted, and rejected if otherwise. Note that the delegation statements include the



60

following public keys required to verify the aggregate signature: (1) public signing

keys of intermediate delegators, and (2) long-term public keys of role managers. (1)

are for verifying the signatures created in ARBCD Extend operations; and (2) are for

verifying one-time signing permits of intermediate delegators. We assume that the

verifier knows the public key of the resource owner, which is needed to verify the

signature generated in ARBCD Initiate.

ARBCD Open: A role manager runs algorithm AA Open with a delegation credential,

a target signing key suxiπ, and the signing keys record. This returns the public key

suπ, which identifies the signer.

The security of the above protocol is directly based on the security of the anonymous-

signer aggregate signature scheme. This implies that it is infeasible to forge any valid

delegation credential even under collusion. The anonymous RBCD protocol satis-

fies traceability and exculpability requirements, i.e., a role manager can revoke the

anonymity of a role member as an intermediate delegator, but cannot frame a role

member. Our realization of anonymous RBCD supports delegator anonymity without

affecting the performance. It has similar efficiency as in the original RBCD proto-

col [114]. The time required for signing and verification is the same as in the original

RBCD protocol [114]. In anonymous RBCD, role managers need to sign multiple

one-time signing permits for role members, which is not required in RBCD. Never-

theless, a single signature is quite fast (3.57 ms on a 1 GHz Pentium III, compared to

7.90 ms for a RSA signature with 1007-bit private key on the same machine [11]). As

described in Section 3.1.2, the above protocol gives rise to a proxy signature scheme

for groups. Details (definitions, construction, and proof of security) of the proxy

signature scheme are omitted here.

3.7 Analysis

For a delegation chain of length n, a delegation credential using our anonymous-signer

aggregate signatures can be twenty times shorter than the one using ACJT scheme [6],

and five times shorter than the one generated in BBS scheme [20]. For a delegation

chain of length twenty, the size of our credential is 1.4 KB, and the one in BBS scheme

is 5.2 KB; for a 20 Kbits per second connection, our credential can be transmitted



61

within 0.5 seconds, and the one using BBS takes 2.1 seconds.

In the anonymous RBCD protocol, a delegation credential generated by Initiate

operation contains a signature, delegator’s public key, delegatee’s role, the public key

of delegatee’s role manager, and the delegated privilege. Similarly, we can derive the

contents of a delegation credential after n− 1 extensions. Assume a role or privilege

name is expressed in 100 bits and let security requirement equivalent to 1024-bit RSA

signature. Using ACJT group signatures, the size of a credential of length n is at

least 10944n bits. Using BBS group signatures, the size is 2073n bits. Using our

signature scheme, the size is 540n + 170. The improvement in credential size is more

significant as the length of delegation chain increases.

One-time keys. A major drawback of our anonymous-signer aggregate signature

scheme is that signing keys and signing permits are not reusable. To reduce commu-

nications between the role manager and members, role members can obtain multiple

signing permits S1, . . . , Sn at a time, by asking the role manager to certify multi-

ple signing keys Ku,1, . . . , Ku,n. Similar concepts can be found in the trustee tokens

scheme [81] and the secret handshakes protocol [9]. A role manager needs to keep a

file for storing one-time signing public keys. However, this does not significantly af-

fect his performance, even though the number of role members is large. For example,

for a role that has 100,000 members who obtain 100 one-time signing keys each year

for ten years, the total storage space for all the one-time signing keys takes about

6.4 GB and can be easily stored on hard disks. Although file I/O in general can be

relatively slow, appending new keys to the file is done off-line and does not affect the

performance of users. If a database is used to maintain the keys, operations such as

searching a signing key can be very fast as the keys can be indexed.

Remark: Our anonymous RBCD protocol does not use the anonymous-signer aggre-

gate signatures in a hierarchical fashion, where a role member in one organization

is the role manager of another organization and so on. Instead, signatures to be

aggregated are generated by role members belonging to independent roles (or orga-

nizations), and role members have their signing keys certified independently by their

role managers.

Therefore, the anonymous RBCD model using our signature scheme supports



62

anonymity, exculpability (non-framing), and aggregation, without incurring signifi-

cant overhead from the use of one-time signing keys. Note that there is a conceptual

difference between the BGLS signature scheme and our signature scheme. In their

aggregate signature scheme, a verifier is given a signature along with the identities

of the parties involved and their respective messages. The verifier can obtain the

public keys from CA, and thus in aggregate signatures, the size of public information

is reduced. Instead, in our proposed scheme, the verifier can not obtain the one-time

signing public keys from a certified directory.

Revocation Role membership revocation before the expiration can be handled by

maintaining a revocation service, which can be efficiently achieved using authenticated

dictionaries (e.g. [69, 94]). Authenticated dictionary is a system for distributing data

and supporting authenticated responses to queries. One-time signing public keys of

revoked members are put on the repository of revocation service by a role manager.

Before verifying a role signature, the revocation service is queried to ensure that the

signature is not generated by a revoked signing key.

Anonymity of Role Manager In our schemes, the public key of the role manager is

required to verify role signatures, and therefore known to the public. Nevertheless,

it does not mean that the role manager cannot sign messages anonymously. On the

contrary, a role manager can run the protocols to certify a set of secret signing keys

of his choice and use them as signing keys without disclosing the identity. Therefore,

our schemes provide the same signing ability to every role member including the role

manager.

3.8 Related Work

Our signature scheme has properties that are related to group signature schemes.

Group signatures, introduced by Chaum and van Heijst [40], allow members of a

group to sign messages anonymously on behalf of the group. Only a designated

group manager is able to identify the group member who issued a given signature.

Furthermore, it is computational hard to decide whether two different signatures are

issued by the same member. In early group signature schemes [40], group public keys

grew with the size of the group and were inefficient.



63

A group signature scheme with constant-sized public keys was first given in [31],

and followed by a number of improvements [6, 20]. Until recently, group signature

constructions (e.g., [6, 29]) were mostly based on the strong-RSA assumption, and

a group signature typically comprised of multiple elements of RSA-signature length.

Recently, bilinear pairing [22] has been used to construct group signature schemes

[20, 30, 42], whose security is based on variants of Diffie-Hellman assumptions. The

group signature scheme by Boneh, Boyen, and Shacham [20] significantly shortens the

signature length, compared to the RSA-based state-of-the-art group signature scheme

by Ateniese et al. [6]. An identity-based group signature scheme was proposed by

Chen, Zhang, and Kim [42], where a group signature cannot be forged even if the

private key of a user is known by a third party (i.e., the Private Key Generator in

the ID-based systems [22]). Bellare, Micciancio, and Warinschi gave the first formal

treatment of group signatures by introducing strong, formal definitions for the core

requirements of anonymity and traceability [12]. They also developed a construction

of a group signature scheme achieving the requirements based only on the existence

of trapdoor permutations.

Most recently, Chase and Lysyanskaya gave an abstract construction of anony-

mous delegatable credentials based on their construction of signatures of knowl-

edge [36]. Our anonymous role-based cascaded delegation can be implemented using

their anonymous delegatable credential system, which allows one to issue delegation

credential without revealing his or her identity and the delegation can be further

extended to others anonymously. In comparison, we focus on the functionality of

signature aggregation in addition to anonymous delegation in our construction.

There has been extensive research on access control models in the past decade

[55, 102, 103]. The concept of role-based access control [55, 103] is widely deployed to

improve the scalability and efficiency of management. Trust management models are

developed for the authorization in distributed systems. A number of such systems

have been proposed, for example KeyNote [17], delegation certificates [8], SPKI [43],

Delegation Logic (DL) [88], proof-carrying authorization (PCA) [1], RT framework

[89], and role-based cascaded delegation [114]. Our anonymous role-based delegation

protocol and implementation are privacy-enhancing techniques general for any role-

based trust management systems.



64

Hidden credentials system [76] has been proposed to protect sensitive credentials

and policies. The main idea of that paper is that when a signature derived from an

identity based encryption scheme (IBE) [21, 44, 107] is used to sign a credential, the

credential content can be used as a public encryption key such that the signature is the

corresponding decryption key. Hidden credentials can be used in such a way that they

are never shown to anyone, thus the sensitive credentials are protected. The Hidden

Credentials system also protects sensitive policies by not specifying which credentials

can be used to decrypt the encrypted resource. Bradshaw et al. [27] extended the

hidden credentials system to support complex access policies expressed as monotonic

Boolean functions. They applied a secret splitting system to conceal the structure of

such policies. The extended hidden credentials system protects the structure of Bob’s

polices. Frikken et al. [58] give a scheme that hides both credentials and policies.

Most recently, Frikken et al. [59] proposed a protocol that allows the client and the

servers to have policies for their credentials (to mitigate probing attacks) and hide

these policies and the credentials. The above-mentioned work is in the conventional

access control settings, where the server and authorized clients have established trust

when hidden credentials are issued.

Anonymous credential systems have been developed [28, 32, 37, 39] to allow anony-

mous, yet authenticated and accountable, transactions between users and service

providers. These systems give a technique for protecting the users’ privacy when con-

ducting Internet transactions. Our work is for anonymous role-based authorization,

and can potentially be used as an anonymous credential system, where a user authen-

ticates herself to be a valid member of a role. This can be achieved by generating

a role signature, which is verified by a resource owner (verifier). The disadvantage

of such an anonymous credential system compared to the state-of-the-art is that the

credential is only one-time use instead of multi-use.

3.9 Conclusion

We have proposed an anonymous role-based cascaded delegation (RBCD) protocol

that protects sensitive role-membership information of delegators. Although the

anonymous RBCD model can use any group signature scheme to realize, we have



65

shown that there is a performance advantage using our anonymous-signer aggregate

signature scheme. Anonymous-signer aggregate signature scheme is suitable for sen-

sitive applications where a large number of signatures are produced and the role or

group membership of a signer (instead of the identity of the signer) is needed for

verification.



Chapter 4

Point-Based Trust

A partial and preliminary version of this paper won the Best Student Paper Award

in the Eighth International Conference on Information and Communications Security

(ICICS) 2006 [127].

4.1 Introduction

Access decisions in stand-alone systems are usually based on the identity of the entity

requesting a resource, whereas in open systems such as grid computing and Internet,

this approach becomes ineffective. This is because the resource owner and the client

(or requester) typically belong to different security domains controlled by different

authorities and are unknown to each other. The modern alternative is to use dig-

ital credentials for satisfying access policies. Digital credentials are digitally signed

assertions about the credential owner by a credential issuer. Each digital credential

contains a set of attributes about the owner. The decision to access a resource is

based on the attributes in the client’s credentials, such as age, citizenship, employ-

ment, group membership, or credit status.

A typical scenario for accessing a resource using digital credentials is for the client,

Alice, to send her request to Bob, who responds with the policy that governs access

to that resource. If Alice’s credentials satisfy Bob’s policy, she sends the appropriate

credentials to Bob. After Bob receives the credentials and verifies them, he grants

Alice access to the resource. Observe that, in this scenario, Alice learns Bob’s policy

66



67

and Bob learns Alice’s credentials. However, this mechanism is unacceptable if the

credentials or the access control policies are considered to be sensitive information.

The motivation for hiding credentials is individual privacy, e.g., if the credentials

are about one’s physical impairment or disability, financial distress, political or reli-

gious affiliation, etc. The motivation for hiding the policy is not only security from

an evil adversary, but simply the desire to prevent legitimate users from gaming the

system — e.g., changing their behavior based on their knowledge of the policy (which

usually renders an economically-motivated policy less effective). This is particularly

important for policies that are not incentive-compatible in economic terms (they suf-

fer from perverse incentives in that they reward the wrong kinds of behavior, such as

free-loading). In yet other examples, the policy is simply a commercial secret — e.g.,

Bob has pioneered a novel way of doing business, and knowledge of the policy would

compromise Bob’s strategy and invite unwelcome imitators.

It is also important to point out that a process that treats Alice’s credentials as

confidential is ultimately not only to Alice’s advantage but also to Bob’s: Bob can

worry less about rogue insiders in his organization illicitly leaking (or selling) Alice’s

private information, and may even lower his liability insurance rates as a result of this.

Privacy-preservation is a win-win proposition, one that is appealing even if Alice and

Bob are honest and trustworthy entities. We give a trust management model that

quantitatively addresses degrees of sensitivity. Moreover, the degree of sensitivity of

a given credential is private to each user, and can vary from one user to another.

4.1.1 Overview of Point-Based Trust Management

Quantitatively addressing trust establishment problem has existed in several papers

on trust and reputation models [15, 47, 130, 136]. These models have applications in

open systems such as mobile ad hoc networks, Peer-to-Peer networks [47], and e-trade

systems.

We consider a new quantitative trust management policy that is private and should

therefore not be revealed to Alice: Bob associates a number of points with every

possible credential. Intuitively, the point value of a credential represents the trust-

worthiness of its holder. Bob also requires the sum of the points of those credentials

that Alice uses to reach a minimum threshold before he grants her access to the



68

resource. The resource owner, Bob, defines an admissible threshold, and that thresh-

old is itself private and should not be revealed to Alice. Alice needs to satisfy the

threshold requirement to gain access by using a subset of her credentials that gives

her the required number of points, but there can be many such subsets: Alice is in-

terested in using the subset that has minimum privacy-value to her, according to her

privacy-valuation function; that valuation function is itself private and should not be

revealed to Bob. We give a protocol which determines which subset of Alice’s creden-

tials optimally satisfies Bob’s threshold, i.e., it has minimum privacy value to Alice

among all subsets that satisfy Bob’s threshold. Bob’s point-valuation of credentials,

his thresholds, and Alice’s privacy-valuation of her credentials are private and not

revealed.

One of our main contributions is the formulation of the point-based trust manage-

ment model. This model prevents premature information leakage (See more discussion

in Section 4.2) during trust establishment, and gives the privacy protection to the

client even when the trust establishment is unsuccessful, which may happen if the

client thinks the total privacy scores of to-be disclosed credentials is too high.

4.1.2 Our Contributions

1. We propose a point-based trust management model and we formalize the creden-

tial selection problem of the model into a knapsack problem. Our point-based

trust management model enables users to quantitatively distinguish the sensi-

tivities of different credentials. It also allows a provider to quantitatively assign

values to credentials held by clients. The point-based model has several fea-

tures: (i) Policy specification is simple and easily allows dynamic adjustment

of services provided based on released credentials; (ii) A user can proactively

decide whether the potential privacy loss is worth the service without disclosing

any sensitive information; (iii) To satisfy a policy, a user can select to disclose

the optimal credential set that minimizes the privacy loss, based on his or her

personal measure.

2. We give secure and private dynamic programming protocols for solving the

knapsack problem. Our solution, consisting of a basic protocol and an im-

proved protocol, allows the server and user to jointly compute the optimal sum



69

of privacy scores for the released credentials, without revealing their private

parameters. The complexity of our basic protocol is O(nT ′), where n is the

total number of credentials and T ′ is the (private) marginal threshold, which

corresponds to the sum of the points of the credentials that are not disclosed.

The protocol uses homomorphic encryptions, and is semantically secure against

semi-honest adversaries.

Our improved protocol, the fingerprint protocol, is secure in an adversarial model

that is stronger than a semi-honest one (a.k.a honest-but-curious). The im-

proved protocol prevents a participant from tampering with the values used

in the dynamic programming computation. That is, while we cannot prevent a

participant from lying about her input, we can force consistency in lying by pre-

venting capricious use of different inputs during the crucial solution-traceback

phase. The complexity of our fingerprint protocol is O(n2T ′).

3. One of our contributions that goes beyond the specific problem considered is a

general indexing expansion method for recovering an optimal solution from any

value-computing dynamic programming computation, while detecting cheating

by the participants. Using this method, a participant is not required to trust

the other party during the back-tracing phase. This is possible because the par-

ticipant is able to efficiently identify whether the other party has tampered with

the computation. For traceback in general dynamic programming problems, our

algorithm not only allows a participant to independently and easily recover the

optimal traceback solution, once the computed optimal value is given, but also

enables the participants to verify the integrity of the optimal value.

Organization. In Section 4.2, we give an analysis on the properties of trust

negotiation protocol that is the state-of-the-art solution for privacy-preserving au-

thorization. Our point-based trust management model is presented in Section 4.3.

Applications of our quantitative authorization model are described in Section 4.3.3.

The basic protocol for privacy-preserving credential selection is given in Section 4.4.

Fingerprint protocol is given in Section 4.5. We analyze the security in Section 4.6.

We present an extension to the fingerprint protocol in Section 4.7. Related work is

given in Section 4.8. Conclusions are given in Section 4.9.



70

4.2 An Analysis on Trust Negotiation

In a probing attack, Alice can engage in a protocol with Bob multiple times using

different credential sets each time (all of which are subsets of her credentials) to

gain information about Bob’s policy. In the case where Alice is requesting access to

a service, Bob will know whether she got access and can therefore also probe (by

using different policies and observing their effect) to gain information about Alice’s

credentials.

One way of mitigating probing attacks is the one followed in the trust negotiation

literature [19, 120, 121, 133, 134], in which the disclosure of a credential is governed by

an access control policy that specifies the prerequisite conditions that must be satisfied

in order for that credential to be disclosed. Typically, the prerequisite conditions are

a subset of the set of all credentials, and the policies are modeled using propositional

formulas. A trust negotiation protocol is normally initiated by a client requesting

a service or a resource from a server, and the negotiation consists of a sequence of

credential exchanges: Trust is established if the initially requested service or resource

is granted and all policies for disclosed credentials are satisfied [121, 132].

The sequence of credentials disclosed during this negotiation depends on which

strategy each negotiator uses for controlling which credentials are disclosed and when

to disclose them, and when to terminate a negotiation [134]. Several negotiation

strategies are proposed in [121, 132, 134]. For example, in the eager strategy [121],

two negotiators take turns disclosing a credential to the other side as soon as the

access control policy for that credential is satisfied.

Although mitigating probing attacks, the requirements of the trust negotiation

literature have some practical limitations. (1) Probing is still possible when poli-

cies are not treated as sensitive resources, and the client (or server) can game the

system in many ways. For example, if the client knows the access control policies

for the server’s credentials then she will know the path of least resistance to unlock

certain credentials. (2) Premature information leaking is difficult to prevent in ex-

isting trust negotiation protocols including the recent framework using cryptographic

credentials [87]. The premature information leaking refers to the situation when a

negotiation is not successful, however sensitive credentials are already disclosed. (3)



71

The service model in trust negotiation is usually limited, that is, the requested ser-

vice is fixed and independent of the amount of information released by the client at

the end of the negotiation session. However, a client may end up disclosing more

information than what is required for the initially requested service. The reward or

service provided by the server should be dynamically adjustable with the amount of

information released from the client.

In addition, an important notion of cumulative privacy cannot be efficiently sup-

ported by trust negotiation protocols. In existing solutions, revealing a credential has

little to do with the credentials that have already been revealed. For example, Alice

may consider her birthday or her birth-town to be insensitive, but consider the com-

bination of them to be sensitive, as it would isolate her into a small group of people.

Cumulative privacy is a desirable notion of privacy. It represents the cumulative sen-

sitivity of a combination of credentials, which may or may not be sensitive themselves.

Supporting cumulative privacy in trust negotiation is not efficient, as it requires the

specifications of an exponential number of policies. As will become clear soon, our

model and protocols presented in this work provide an alternative solution for trust

establishment that improves on the security and flexibility of existing approaches.

The approach in [59] builds on this work, in that none of the credentials or policies

is disclosed: A credential that became “disclosable” during the negotiation, becomes

merely usable in [59] (not disclosable – although the very fact of using it also exposes it

to possible probing, this is minimized as in the previous trust negotiation literature).

As before, in [59] the client and server will each input a set of credentials along with

an access control policy for each of their respective credentials. Protocols are given

in [59] for determining the set of usable credentials (i.e., the credentials whose access

control policies are satisfied by the other party) between the client and the server,

and then for processing the resource (or service) request based on the client’s usable

credentials. This is done while satisfying the requirements that: (1) the policies for

sensitive credentials may themselves be sensitive and therefore cannot be revealed, (2)

the client should not learn information about which of her credentials or the server’s

credentials are usable, and (3) the server should not learn information about which

of his credentials or the client’s credentials are usable (if the client or server were

to learn which of its credentials are usable, then this would reveal more information



72

about the other party’s credential set and thus facilitate probing attacks). Note that,

although mitigated, probing is still possible, e.g., by activating some of the server’s

credentials and not others.

As will become clear soon, our approach presented in this work mitigates the

above-mentioned problems. The computation for determining whether a user sat-

isfies a policy is privacy-preserving, where neither party needs to disclose sensitive

information. Of the multiple ways of satisfying the policy, Alice will tend to use the

one that utilizes the credentials whose privacy she values least.

4.3 Model

In this section, we describe a point-based trust management model, and define the

credential selection problem in this model.

4.3.1 Point-Based Trust Management

In the point-based trust management model, the authorization policies of a resource

owner defines an access threshold for each of its resources. The threshold is the

minimum amount of points required for a requester to access that resource. For

example, accessing a medical database requires fifty points. The resource owner also

defines a point value for each type of credentials, which denotes the number of points

or credits a requester obtains if a type of credential is disclosed. For example, a

valid ACM membership is worth ten points. This means that a client can disclose

his or her ACM membership credential in exchange for ten points. We call this a

trust management model as opposed to an access control model, because the resource

owner does not know the identities or role assignments of requesters a priori.

A requester has a set of credentials, and some of which may be considered sensitive

and cannot be disclosed to everyone. However, in order to access a certain resource,

the requester has to disclose a number of credentials such that the access threshold

is met by the disclosed credentials. Different clients have different perspective on the

sensitivity of their credentials, even though the credentials are of the same type. For

example, a teenager may consider age information insensitive, whereas a middle-aged

person may not be very willing to tell his or her age.



73

Therefore, in point-based trust management model, each client defines a privacy

score for each of their credentials. The privacy score represents the inverse of the

willingness to disclose a credential. For example, Alice may give privacy score 10 to

her college ID, and 50 to her credit card. The client is granted access to a certain

resource if the access threshold is met and all of the disclosed credentials are valid.

Otherwise, the access is denied. From the requester’s point of view, the central ques-

tion is how to fulfill the access threshold while disclosing the least amount of sensitive

information. In the next section, we define this as a credential selection problem.

The credential selection problem is challenging, because the requester considers his

or her privacy scores sensitive, and the server considers its point values and access

threshold sensitive.

Typing of Points. One way to improve the expressiveness of point-based trust

management is to support the typing of points. For example, financial point-type

represents credit card and bank account, and demographic point-type represents birth

date, address, and affiliation. In the on-line shopping scenario, a conventional policy

defined by the server requires the client to disclose valid demographic information

that is either an email address or a home address, and valid financial information

that is either a credit card number or a bank checking account number, i.e., (email

address ∨ home address ) ∧ (credit card ∨ bank account).

One way to translate this policy to points and thresholds in point-based trust

management is as follows. The server specifies equal point values (e.g., 20) for the

email address and the home address, and equal point values (e.g., 40) for the credit

card number and the bank account. The threshold for demographic point-type is 20

and for the financial point-type is 40. In general, the number of options for the client

to disclose private information may be large. For example, the client can disclose a

certain combination of home phone/address, work phone/address, email address, fax

number, etc. With this typing mechanism, the server can improve the expressiveness

of point values, and the client can choose the optimal subset of information to release

for each point-type. To support typing, the credential selection protocol (presented

later) needs to be run multiple times, twice in this example. The translation be-

tween point-based policies and Boolean policies is an interesting research topic, and

is subject to our future study.



74

Where do point values come from? One approach to obtain point values is

from reputation systems [15, 116, 136]. Essentially the point value of a credential

represents the trustworthiness of the organization that issues the credential. If a

resource owner thinks organization A is more reputable than organization B, the

resource owner specifies a higher point value for a credential issued by A than the

one issued by B. This idea has been explored in a recent paper that quantitatively

studies the connections between computational trust/reputation models with point

values in point-based trust management. The paper also discusses the application

of such models in privacy-preserving location systems. The work in trust models

and reputation systems [15, 116, 136] serve as a starting point for demonstrating the

applicability of point-based trust management.

4.3.2 Credential Selection Problem

Definition 4.3.1 The credential selection problem is to determine an optimal com-

bination of requester’s credentials to disclose to the resource owner, such that the

minimal amount of sensitive information is disclosed and the access threshold of the

requested resource is satisfied by the disclosed credentials.

We formalize the credential selection problem as an optimization problem. A cre-

dential selection algorithm answers the question what combination of credentials are

to be released given the access control policies and privacy scores to each credentials.

Our model assumes that the resource owner (or server) and the requester (or client)

agree on a set of credential types as the universe of credentials (C1, . . . , Cn). We

define a binary vector (x1, . . . , xn) as the unknown variable to be computed, where

xi is 1 if credential Ci is selected, and 0 if otherwise. Integer ai ≥ 0 is the privacy

score of credential Ci. It is assigned by the requester a priori. If the requester does

not have a certain credential Ci, the privacy score ai for that credential can be set

to a large integer. Thus, the (knapsack) algorithm avoids choosing that credential

type, as the cost is high. The server defines T that is the access threshold of the

requested resource. Integer pi ≥ 0 is the point value for releasing credential type Ci.

The requester considers all of ai values sensitive, and the server considers the access

threshold T and all of pi values sensitive.



75

The credential selection problem is for the requester to compute a binary vector

(x1, . . . , xn) such that the sum of points
∑n

i=1 xipi satisfies T , and the sum of privacy

scores
∑n

i=1 xiai is minimized. This is captured in the following minimization problem.

Compute a binary vector (x1, . . . , xn) such that the following holds:

min

n∑

i=1

xiai

subject to

n∑

i=1

xipi ≥ T

The above minimization problem can be rewritten into a knapsack problem with a

new variable yi = 1− xi ∈ {0, 1}. For i-th credential, yi = 1 represents not disclosing

the credential, and yi = 0 represents disclosing the credential.

max

n∑

i=1

yiai

subject to
n∑

i=1

yipi <
n∑

i=1

pi − T

We define the marginal threshold T ′, which coarsely correlates to the sum of the

points of the credentials that are not disclosed.

Definition 4.3.2 The marginal threshold T ′ of the credential selection problem is

defined as
∑n

i=1 pi − T , where pi is the point value for credential type Ci, T is the

access threshold for a requested resource, and n is the total number of credential types.

Let us first review the dynamic programming solution for the 0/1 knapsack prob-

lem [45]. Then, we describe our protocol for carrying out private dynamic program-

ming computation of the knapsack problem. The 0/1 knapsack problem is defined as

follows. Given items of different integer values and weights, find the most valuable set

of items that fit in a knapsack of fixed integer capacity. The dynamic programming

solution is pseudo-polynomial: the running time is in O(nT ′).

In the dynamic programming of knapsack problem, a table is made to track the

optimal selection of items so far. A column indicates the range of values, which

corresponds to the target weight of the knapsack. A row corresponds to each item.



76

The last table entry has the maximum capacity of the knapsack. The first column

and the first row are initialized to zeros, i.e. M0,j and Mi,0 are zeros, for all i ∈ [1, n]

and j ∈ [0, T ′]. The table is filled from top to bottom and from left to right. Using

the notations defined earlier, the recurrence relation is formally defined as follows.

Denote Mi,j as the value at i-th row and j-th column, and i ∈ [0, n], j ∈ [0, T ′].

Mi,j = Mi−1,j if j < pi

max{Mi−1,j, Mi−1,j−pi
+ ai} if j ≥ pi

Each entry of the table stores the total value of a knapsack, which is determined

as either the value of a knapsack without the current item (expressed as the value

directly to the top of the current entry), or the value of the knapsack with the current

item added into it. At the end of the computation, the entry at the lower right corner

of the table contains the optimal value of the knapsack. The selections of items can

be obtained by bookkeeping the information of where the value of an entry comes

from.

For our credential selection problem, the above recurrence relation can be inter-

preted as follows. If the point value of credential type Ci exceeds j, which is a value

in the range of [0, T ′], then the i-th credential is not selected and the privacy score

Mi,j is kept the same as Mi−1,j. Otherwise, the algorithm compares the score Mi−1,j

for not selecting the i-th credential with the score Mi−1,j−pi
+ ai for selecting the i-th

credential. The larger value is chosen to be the privacy score Mi,j .

The standard dynamic programming computation requires values ai and pi for

all i ∈ [1, n]. However, in our model, the requester considers ai sensitive, and the

server considers pi sensitive. We present a protocol that allows the completion of the

dynamic programming computation without revealing any sensitive information. In

addition to protecting sensitive ai and pi values, the entries in the dynamic program-

ming table are also protected from both parties. From this perspective, our protocol

provides better privacy protection than the secure multi-agent dynamic programming

work by Yokoo and Suzuki [131], as their approach cannot prevent the disclosure of

table entries.

What happens after the optimal subset is computed is flexible: If the privacy

score of that subset is low enough then the client may choose to simply reveal those

credentials to the server. The server verifies the validity of the credentials by checking



77

the credential issuers’ signatures. However, if the score is high then the client may

decide to abort the session with this server. Alternatively, the client may choose to

then engage in an existing protocol (such as [76, 27, 58, 59]) in which she proves to the

server that she has such a subset that satisfies the points-threshold requirement but

without revealing the elements of that subset. Note that existing privacy-preserving

protocols [76, 27, 58, 59] do not allow the finding of the optimal disclosure credential

set.

Privacy score of a credential set. In the current model, the privacy score of mul-

tiple credentials is the sum of each individual privacy score. The summation is simple

to model, and represents the additive characteristic of privacy, i.e., the more personal

information revealed, the more privacy lost. Another advantage of the summation

of privacy scores is the efficiency; the specification of privacy scores has a size linear

in the number of credentials. However, the client may want to explicitly specify an

arbitrary privacy score of a certain group of sensitive credentials. The group privacy

score may be higher or lower than the sum of individual privacy scores. The latter

case can happen when one credential might subsume or include some information

that is included in the other credential(s). However, the dynamic programming so-

lution is not clear for the dynamic programming problem with arbitrary constraints.

It remains an interesting open question how to formulate the dynamic programming

to support arbitrary privacy score specifications.

Our system is not a mere fine-grain privacy-preserving generalization of Multi-

Level Security (MLS)[104] because of its additive nature, e.g., in an MLS-like scheme

it is not possible to aggregate a number of lower-level clearances to access higher-

clearance documents. However, our system subsumes MLS in that it can simulate it

through a judicious assignment of quantitative values (e.g., by assigning large enough

values to higher levels that they are unreachable through any additive aggregation of

lower credentials).

4.3.3 Applications of Quantitative Authorization Policies

Using our point-based authorization policies, a resource owner or service provider

can quantitatively adjust service quality or quantity based on the client’s qualifica-

tion. In our model, credentials are mapped with point values defined by the resource



78

owner, therefore the client’s reward or service can be dynamically adjusted according

to the amount of private information revealed. The flexibility makes the point-based

model attractive to the trust management in web-services and e-commerce applica-

tions in general, as users have the incentives to carry on the computation for trust

establishment, which facilitates business transactions. The more private information

revealed, the better is the service provided to the client. Because the client is prop-

erly compensated for the sensitive information revealed (e.g., membership, affiliation,

demographic data)

A concrete application for point-based model is privacy-aware presence systems

[73, 124, 130], where presence data such as the location of a user is collected through

devices such as GPS on a cellphone. The management of presence data is crucial,

because it concerns not only user privacy, but also safety: presence data can be used

to track and profile individuals. In the meantime, there may be emergency situations

or extenuating circumstances when certain parties (like emergency workers) should

have access to this kind of information, and friends and relatives of a user might be

allowed to query his or her location information at any time. Therefore, a desirable

feature of a location query system is that it provides different levels of precision based

on the requester’s trustworthiness or the context of the query. This requires a flexible

authorization model for accessing the private location data, which can be offered by

the point-based authorization model.

For example, Bob can use point-based authorization model to share and control

his presence information, even with strangers who are unknown to Bob. Bob defines

his own point-based policies that include the point values of credentials that are

acceptable for authentication by him. Bob also defines the precision of his location

associated with certain point values. For example, if the point value of the query

issuer is twenty, then Bob might release his location information exactly. If the point

value is five, then he might release a fuzzy interpretation of his location, e.g., just the

building or street name of where he currently is. Phrased more concretely, suppose

Alice who is unknown to Bob wants to know Bob’s location; if she reveals her valid

driver’s licence to Bob, a precise answer can be returned as the driver’s licence is

highly trustworthy credential. However, if Alice reveals only a Yahoo! email account,

then nothing about Bob’s whereabout may be disclosed because Yahoo! email account



79

does not prove Alice’s trustworthiness to Bob. Suppose Alice reveals her university

ID, then Bob may reveal his location depending on how reputable or trustworthy the

university is.

4.4 Basic Protocol

We present the basic protocol that is a secure two-party dynamic-programming pro-

tocol for computing the optimal solution of the credential selection problem. The

basic protocol has two sub-protocols: recursion and traceback, which represent the

two phases of dynamic programming. The protocol maintains the secrecy of sensitive

parameters of both parties. Furthermore, neither the server nor the client learns any

intermediate result. The main technical challenge is that the server does not want to

reveal point values {pi} and the client does not want to reveal privacy scores {ai}. As

shown by the recurrence relation in Section 4.3, it seems difficult to compute entry

Mi,j without knowing pi and ai. We overcome the challenge by designing a protocol

that hides the conditional testing from the client. The basic protocol is efficient and

is secure in the semi-honest adversarial model.

4.4.1 Building Blocks

In our protocol, we store values in a modularly additively split manner with a large

base L. The additively split manner means that the server and the client each has

a share of a value, and the value equals to the sum of their shares modular L. If

xS and xC represent the share of the server and the client, respectively, then the

value equals to xS + xC mod L. We use L− i to represent −i (and use i to represent

i). This notation implies that the range of the values is between −L
2

and L
2
, and

L must be chosen so that it is large enough to prevent accidental wrap-around. A

secure two-party comparison protocol was given in [57] that allows the comparison

of above-described split values, where two inputs to be compared are additively split

between the client and the server. Their protocol outputs the comparison result in

a XOR-split format, i.e., the comparison result is split between the two parties, and

equals to the XOR of two shares. Therefore, neither party learns the comparison

result. It is easy to modify a secure two-party comparison protocol to compute the



80

maximum of the values in an additively split format, which we refer to as a private

two-party maximization protocol 1. The maximization result can be additively split

between the two parties so that neither party learns the value. We omit the details of

private two-party comparison and maximization protocols, as we use them as a black

box in this work.

Our protocols use homomorphic encryption extensively. Recall that a crypto-

graphic scheme with encryption function E is said to be homomorphic, if the fol-

lowing holds: E(x) ∗ E(y) = E(x + y). Another property of such a scheme is

that E(x)y = E(xy). The arithmetic performed under the encryption is modular,

and the modulus is part of the public parameters for this system. Homomorphic

schemes are described in [46, 97]. We utilize homomorphic encryption schemes that

are semantically secure. Informally, a homomorphic scheme is semantically secure

if the following condition holds. Given the public parameters of a homomorphic

scheme E, and the encryption of one of the two messages m, m′ where m is from a

specific message and m′ is chosen uniformly random from the message space, then

|(Pr(P (E(m))) = 1)− Pr(P (E(m′)) = 1)| is negligible for any probabilistic polyno-

mial time algorithm P .

4.4.2 Overview of Basic Protocol

The basic protocol consists of two sub-protocols: the basic recursion sub-protocol and

the basic traceback sub-protocol.

• Basic recursion sub-protocol: the client and server compute a (n+1)× (T ′ +1)

matrix M in an additive split form. Let Mi,j denote the value stored at the

i-th row and j-th column. Let EC be the public encryption function of the

client’s semantically-secure homomorphic encryption scheme. The server learns

EC(Mi,j) values for all i ∈ [1, n] and j ∈ [1, T ′]. From the security of EC , a

computationally-bounded server gains no information from the EC(Mi,j) values.

The server computes (with the client’s help) the value EC(Mi,j), when given

1Private two-party maximization protocol can be realized by expanding the scrambled circuit
that is used for the comparison test. If the comparison result of two values is known, then the
maximum can be computed. E.g., let c ∈ {0, 1} be the result of a greater-than comparison
between x and y, then max(x, y) = c ∗ x + (1− c) ∗ y.



81

EC(Mi′,j′) for all values (i′, j′) that are dominated by (i, j), for all i ∈ [1, n] and

j ∈ [1, T ′]. M0,j and Mi,0 are zeros, for all i ∈ [0, n] and j ∈ [0, T ′].

• Basic traceback sub-protocol: once the dynamic programming table has been

filled out, the client discovers (with the server’s help) the set of credentials that

have been selected to disclose. The optimal selection is revealed to both parties.

Note that the basic recursion sub-protocol should unify the operations in the two

cases (j < pi and j ≥ pi) of the recurrence relation. Otherwise, the client can learn

pi from the computation. We solve this by designing a generic and private maximum

function and by additively splitting intermediate results between the two parties.

4.4.3 Basic Recursion Sub-Protocol

The basic recursion sub-protocol is described in Figure 4.1. When j > T ′ (recall that

T ′ =
∑n

i=1 pi − T ), the server terminates the protocol. The last entry Mn,T ′ of the

dynamic programming matrix has been computed. The client knows the marginal

threshold T ′, as she keeps her share of the matrix. Yet, the client does not learn the

individual point value pi and access threshold T from the computation so far.

Lemma 1 The complexity of the basic recursion sub-protocol is O(nT ′), with O(1)

homomorphic encryptions or decryptions at each round, where n is the total number

of credentials and T ′ is the marginal threshold.

Proof: n corresponds to the row of the dynamic programming table, and T ′ corre-

sponds to the column of the table. Filling up the entire dynamic programming table

takes nT ′ rounds of computation. For each round of the basic recursion sub-protocol,

there are constant number of homomorphic operations. Therefore, the lemma holds.

�

The basic recursion sub-protocol runs in O(nT ′), where marginal threshold T ′ or

the number of credentials n can potentially be large. We point out that an important

advantage of our protocol compared to conventional boolean-based policies lies in the

privacy-preserving functionality offered. Our protocol not only computes the optimal

selection of credentials, but also does it in a privacy-preserving fashion for both the



82

Setup: The client has published the public parameters of a
semantically secure homomorphic scheme EC . We will use the
base of this scheme as the modulus for the additively split values.
Input: The server has EC(Mi′,j′) for all values (i′, j′) that are
dominated by (i, j), where i ∈ [1, n] and j ∈ [0, T ′]. The sever
also has point values p1, . . . , pn and the client has privacy scores
a1, . . . , an.
Output: The server learns EC(Mi,j).
Steps:

1. The server creates a pair of values α0 and α1, where
α0 = EC(Mi−1,j), and α1 = EC(−∞) if pi > j, and
α1 = EC(Mi−1,j−pi

) otherwise. Without loss of generality,
we assume that ai values defined by the client are always
bounded by an integer B that is known to the server, i.e.
ai ≤ B for all i ∈ [1, n]. The server then uses −B − 1
as −∞. The server also chooses random values r0 and r1,
and sends to the client α0EC(r0) and α1EC(r1).

2. The client decrypts the values to obtain β0 and β1. The
server sets its shares to −r0 and −r1 and the client sets
its shares to β0 and β1 + ai. Note that the two candidate
values for Mi,j are additively split between the client and
the server.

3. The client and the server engage in a private maximiza-
tion protocol to compute the maximum of these two val-
ues in an additively split format. Denote the shares by xS

and xC .

4. The client sends EC(xC) to the server, and the server com-
putes EC(xC + xS) and sets this value as his output.

Figure 4.1: Basic recursion sub-protocol.

server and client. For conventional policies, the latter aspect cannot be easily achieved

without having the server to publish or disclose unfairly its policies.

The protocol presented here is secure in the semi-honest adversary model, which

is improved later by our indexing expansion method in Section 4.5. The detailed

security analysis is given in Section 4.6.



83

4.4.4 Basic Traceback Sub-Protocol

To support the back-tracking of the optimal solution (i.e., the optimal credential set

to be disclosed), the basic recursion sub-protocol needs to be modified accordingly.

At step 3 in the basic recursion sub-protocol, not only the maximum but also the

comparison result of the two candidate values for Mi,j are computed for all i ∈ [1, n]

and j ∈ [1, T ′]. During the computation, neither the server nor the client knows

the result of the comparison tests, as the result is split between them. From the

recurrence relation in Section 4.3, it is easy to see that the comparison result directly

indicates whether ai is contained in Mi,j and thus whether credential Ci is selected.

Denote F as a matrix that contains the result of the comparisons, we modify the

previous basic recursion sub-protocol so that the server learns EC(Fi,j) for the entire

matrix. In the basic traceback sub-protocol, the server and the client work together

to retrieve the plaintext comparison results starting from the last entry of the table,

following the computation path of the optimal dynamic programming solution.

In this sub-protocol, the server sends its share EC(Fn,T ′) of the last entry of the

table to the client, who decrypts it and obtains Fn,T ′. Fn,T ′ is either 0 or 1, and

indicates whether the last credential Cn is selected or not. Then the client informs

the server the plaintext value Fn,T ′, which is used by the server to locate the value

where Mn,T ′ is computed from. If Fn,T ′ is zero, then Cn is not selected and Mn,T ′ is

computed from Mn−1,T ′. In this case, the next value to be revealed to the client is

EC(Fn−1,T ′). Otherwise, credential Cn is selected to be disclosed. Mn,T ′ is computed

from Mn−1,T ′−pn
. The value to be revealed to the client is EC(Fn−1,T ′−pn

). The

is determined from the recurrence relation definition. Both parties repeat the sub-

protocol until the upper left corner of the table F is reached. Figure 4.2 describes

the basic traceback sub-protocol.

Lemma 2 The complexity of the basic traceback sub-protocol is O(n), with O(1) ho-

momorphic decryptions at each round, where n is the total number of credentials.

The following theorem states the overall complexity of the basic protocol.

Theorem 4.4.1 The complexity of the basic protocol is O(nT ′), where n is the total

number of credentials and T ′ is the marginal threshold.



84

Input: The server has matrix entries {EC(Mi,j)} and
{EC(Fi,j)} encrypted with the client’s public key, for all i ∈ [1, n]
and j ∈ [1, T ′]. The client has her private key.
Output: The client learns the optimal value of the dynamic pro-
gramming computation of knapsack. The server and the client
learn the optimal selection of credentials, or nothing.
Steps:

1. The server sends the client EC(Mn,T ′). The client decrypts
the ciphertext to obtain the result Mn,T ′. Mn,T ′ represents
the privacy score associated with the unselected creden-
tials. If this value is acceptable to the client according to
some pre-defined privacy standard set by the client, then
this sub-protocol continues. Otherwise, this sub-protocol
terminates.

2. The server reveals the entry EC(Fn,T ′) to the client.

3. The client decrypts EC(Fn,T ′) to obtain Fn,T ′ ∈ {0, 1}.
The client sends the plaintext value Fn,T ′ to the server
(The server then knows whether Cn is selected or not.)

If Fn,T ′ = 1, then credential Cn will not be disclosed.
Fn,T ′ = 1 also means that entry Mn,T ′ is computed from en-
try Mn−1,T ′. Therefore, the server next reveals EC(Fn−1,T ′)
to the client. If Fn,T ′ = 0, then the server next reveals
EC(Fn−1,T ′−pn

), as the entry Mn,T ′ is computed from en-
try Mn−1,T ′−pn

.

4. The revealed entries represent the computation path of the
optimal knapsack dynamic programming solution. The
above process is repeated until n reaches zero.

Figure 4.2: Basic traceback sub-protocol

Proof: n is the row of the dynamic programming table, and T ′ is the column of the

table. Each invocation of the basic recursion sub-protocol fills up one entry of the

table. Therefore, filling up the entire table takes nT ′ rounds. In the basic traceback

sub-protocol, each round of the communication between the server and the client

discovers whether a credential Ci is selected. Therefore, O(n) number of rounds



85

are required for all the credentials. Hence, the basic protocol has the complexity of

O(nT ′). �

The basic traceback sub-protocol assumes that the server does not maliciously

alter the computation results. In the case of a malicious server, the server may

send EC(0) instead of the real values to mislead the client to disclose all credentials.

Although the attack might be caught by the client (as the client may find a subset of

credentials that still satisfies the threshold constraint), we give a stronger traceback

algorithm that proactively prevents this type of attacks in the next section.

4.5 Fingerprint Protocol

In this section, we give an improved protocol for privacy-preserving knapsack compu-

tation. The new approach is inspired by the subset sum problem, yet we stress that

this solution does not require the client to solve the general subset sum problem. The

main idea is to allow the client (not the server) to efficiently identify the selected cre-

dentials from the optimal privacy score. The new protocol, which we refer to as the

fingerprint protocol,2 is an important step towards a protocol that is secure against

malicious servers, because it can be extended to prevent the server from tampering

the computation during traceback.

In addition to solving our credential selection problem (and thus the knapsack

problem), the fingerprint protocol can be generalized to solve the traceback problem

in a large variety of integer linear programming problems. It can be used for one party

to securely and privately trace the optimal solution from the final computed value,

with very little or no participation from the other party. The technique guarantees the

correctness of the traceback results, even though the other party cannot be trusted

during traceback.

4.5.1 Fingerprint Protocol Description

The key idea of the fingerprint protocol is to convert the client’s privacy scores {ai}

into another set of scores {Ai}, such that the following two conditions hold. (1) The

2The name is because of the similarities between fingerprinting in forensics and the indexing
technique that we use to uniquely identify a subset.



86

optimal credential selection computed with {Ai} should be the same as the optimal

credential selection computed with {ai}. (2) The privacy score computed with {Ai}

should reveal which set of credentials are used to obtain that score. Thus, this

transformation process requires the following two properties:

Property 1 Ordering consistency: For two sets S and R in 2{1,...,n}, if
∑

i∈S Ai <
∑

i∈R Ai, then
∑

i∈S ai ≤
∑

i∈R ai.

Property 2 Uniqueness: For any two distinct sets S and R in 2{1,...,n},
∑

i∈S Ai 6=∑
i∈R Ai.

The ordering consistency property ensures that the set of revealed credentials

computed with the transformed scores is optimal even when the original scores are

used. The uniqueness property guarantees that traceback is possible, as only one set

of credentials can generate a specific score. Although the above properties do not

imply that an efficient traceback is possible, our transformation leads to an efficient

traceback method. Our indexing expansion method transforms a privacy score ai to

Ai as follows.

Ai = ai ∗ 2n + 2i−1.

In binary representation, the indexing expansion shifts the binary form of ai to

the left by n positions, and gives zeros to n least significant bits except the i-th least

significant bit, which is given a one. For example, suppose there are four privacy scores

2, 3, 5, 8 or in binary form 010, 011, 101, 1000. Here n = 4. After the transformations,

the expanded scores have the binary form 010 0001, 011 0010, 101 0100, 1000 1000,

respectively. Readers can verify that the example satisfy the two required properties.

We now prove that the indexing expansion has the desired properties.

Lemma 3 The indexing expansion achieves the ordering consistency property.

Proof: For ease of notation, we use A[S] to denote
∑

i∈S Ai, and a[s] to denote
∑

i∈S ai. Note that A[S] = 2n+1a[S] +
∑

i∈S 2i. Now suppose we have two sets S and

R where A[S] < A[R]. Thus, 2n+1a[S] +
∑

i∈S 2i < 2n+1a[R] +
∑

i∈R 2i. Now, it is

easy to show that
∑

i∈S 2i < 2n+1 and
∑

i∈R 2i < 2n+1. Thus a[S] ≤ a[R]. �



87

Lemma 4 The indexing expansion achieves the uniqueness property.

Proof: To show that the sums are unique, suppose we are given two sets S and R,

where S 6= R. There must be some element j that is in one set but not the other,

without loss of generality suppose j ∈ S. Now the jth bit of A[S] will be 1, but it

will be 0 for A[R], and thus these two values are distinct. �

Hence, the indexing expansion method allows the client to compute the credentials

that are used to achieve a specific privacy score. Although the optimal value obtained

from the secure dynamic programming with the Ai scores is different from the one

with the original ai scores, the set of credentials corresponding to the optimal privacy

values are the same. We now describe the fingerprint protocol, which makes use of

the indexing expansion.

The indexing expansion of privacy scores requires n additional bits for each cre-

dential, where n is the total number of credentials. In Lemma 5 below, we prove

that in order to satisfy the uniqueness property, the number of bits required for the

transformed privacy scores is bounded by Ω(n).

Lemma 5 For any transformation of index to satisfy the uniqueness property, the

number of additional bits introduced for a privacy score is lower-bounded by Ω(n),

where n is the number of credentials.

Proof: Equation 4.1 holds because of the uniqueness property:

n∑

i=1

Ai ≥ 2n − 1 (4.1)

To be more precise, Equation 4.1 is because: i) each subset of credentials S must

have a unique privacy score, ii) there are 2n subsets, and iii) all Ai values must

be positive. This implies that the maximum Ai is at least 2n−log n − 1
n
, because

n(2n−log n − 1
n
) = 2n − 1. Because the length of the maximum value is at least

n − log n − 1, there must exist one Ai whose length is n − log n − 1. Therefore, the

number of bits introduced by the transformation is lower bounded by n− log n− 1,

and thus is Ω(n). �

Lemma 6 The communication complexity of the traceback phase in the fingerprint

protocol is O(n), where n is the total number of credentials; the computation cost is

O(1) for the server, and is O(n) for the client.



88

Input: The server has the marginal threshold T ′ and point
values p1, . . . , pn. The client has privacy scores a1, . . . , an.
Output: The client (not the server) learns the optimal selection
of credentials.
Steps:

1. The client applies the indexing expansion to each of her
privacy scores {ai} and obtains the transformed scores
{Ai}.

2. The server and the client carry out the basic recursion
sub-protocol (in Figure 4.1) with the transformed privacy
scores {Ai}. Recall that at the end of the basic recursion
sub-protocol, the server has computed EC(Mn,T ′) in entry
(n, T ′) of the dynamic programming matrix.

3. The server sends the ciphertext EC(Mn,T ′) to the client.

4. The client decrypts EC(Mn,T ′) to obtain Mn,T ′.

5. The client expresses the optimal value Mn,T ′ in binary form
and identifies the non-zero bits in the last n bits. The po-
sitions of such bits give the indices of credentials that give
the optimal solution3. Note that the i-th least significant
bit of Mn,T ′ is true if and only if credential i was used to
obtain the optimal value.

Figure 4.3: Fingerprint protocol

Proof: Once the dynamic programming table is computed, the server only needs to

send value EC(MS
n,T ′) to the client. Hence, the number of communication rounds is

constant. Because each privacy score ai is expanded with n additional binary bits,

the size of information transmitted is in the order of n – assuming that the privacy

scores {ai} before the indexing expansion are bounded by a constant. Therefore, the

communication cost of the algorithm is O(n). It is trivial to show that the server’s

computation cost is constant. For the client, because she needs to identify O(n)

indexing bits, her computation cost is O(n). �

Theorem 4.5.1 The complexity of the fingerprint protocol is O(n2T ′), where n is



89

the total number of credentials and T ′ is the marginal threshold.

Proof: The proof is similar to Theorem 4.4.1. For each round, both the server

and the client perform constant number of homomorphic operations on transformed

privacy scores {Ai}. Because Ai is O(n) bits long – assuming that untransformed

privacy scores {ai} are bounded by constant, the cost at each round is O(n) for both

parties. Hence, the overall complexity is O(n2T ′). �

4.5.2 Detection of Value Substitution by the Server

In the method described above, although difficult, it is not impossible for a malicious

server to forge its share of the optimal value and thus mislead a client to disclose

more credentials. The probability of the server correctly guessing a credential’s pri-

vacy score and its bit position in the indexing expansion may not be negligible. For

example, the server may have 1/n probability of correctly guessing the bit position of

a credential, where n is the total number of credentials. Also, it may have 1/ max {ai}

probability of correctly guessing the privacy score, where {ai} represents the set of

untransformed privacy scores. In Section 4.7, we describe a simple checksum tech-

nique for preventing the server from tampering with the traceback computation. This

is done by appending randomized information to privacy scores.

4.6 Security

We define our security model as a semi-honest (a.k.a. honest-but-curious) model.

Intuitively, semi-honest model means that adversaries follow the protocol but try to

compute additional information other than what can be deduced from their input

and output alone. A protocol is defined as secure if it implements a function f ,

such that the information learned by engaging in the protocol can be learned in an

ideal implementation where the functionality is provided by a trusted oracle. This

definition follows the standard definitions given by Goldreich [65] for private multi-

party computation.

Let A be any one of the two parties in our protocol, we use viewA to represent

all of the information that A sees during the protocol. A protocol is secure against a



90

semi-honest A, if and only if there exists an algorithm that can simulate viewA when

given A’s inputs and A’s output. To be more precise, two probability ensembles

X
def
= {Xn}n∈N and Y

def
= {Yn}n∈N are computationally indistinguishable (i.e., a

polynomial bounded algorithm cannot distinguish the two distributions) if for any

PPT algorithm D, any positive polynomial p, and sufficiently large n it holds that:

|(Pr(D(Xn, 1
n) = 1)) − (Pr(D(Yn, 1

n) = 1))| < 1
p(n)

. Let A’s input and output

be represented by AI and AO respectively. A protocol is secure in the semi-honest

model against adversary A, if there is an algorithm SIMA such that viewA and

SIMA(AI , AO) are computationally indistinguishable (i.e., SIMA simulates A’s view

of the protocol).

To prove the security of the basic protocol (in Figure 1), we state a lemma about

the security of the private two-party maximization protocol used in step 3 of the basic

protocol.

Lemma 7 The private two-party maximization protocol is secure in the semi-honest

model.

The above lemma states that there exists a private two-party maximization pro-

tocol such that when given the client’s inputs aC and bC , there is an algorithm that

simulates the client’s view of the maximization protocol. Denote this algorithm by

SIMMAXC (SIMMAXS) for the client (server). More specifically, if the client has

input aC and bC , then SIMMAXC(aC , bC) is computationally indistinguishable from

the client’s view of interaction between the client and the server and the output of the

protocol (i.e., the client’s share of the maximum value). It is worth noting that the

client’s (server’s) view of the max protocol is simulateable from that client’s (server’s)

input alone, because the client’s (server’s) output from the maximization protocol is

computationally indistinguishable from a random value.

Given such a private two-party maximization protocol, we show that the basic

recursion sub-protocol in Section 4.4 is secure.

Theorem 4.6.1 The basic recursion sub-protocol is secure in the semi-honest adver-

sarial model.

Proof: We must show that the server’s and the client’s view is simulateable from

their input and output alone. The server’s view consists of three things: i) the



91

interaction from the secure two-party maximization protocol, ii) the value xS (i.e.,

the server’s output) from the secure max protocol, and iii) EC(xC). The simulator

for the server outputs (SIMMAXS(−r0,−r1), EC(r2)) for randomly chosen values r0,

r1 and r2. This simulation is computationally indistinguishable from the real view

because of Lemma 7 and by the semantic security properties of EC .

The client’s view consists of four things: i) Mi−1,j + r0, ii) Mi−1,j−pi
+ r1 or

−∞ + r1, iii) the interaction from the secure two-party maximization protocol, and

iv) xC . Since r0 and r1 are uniformly chosen values from the server, parts i) and

ii) are computationally indistinguishable from a random value. Thus the simulator

outputs (r2, r3, SIMMAXC(r2, r3)) for random value r2 and r3. �

Theorem 4.6.1 shows that each individual round is secure in the basic recursion

sub-protocol. The multi-round protocol is also secure, as the composition follows

from the composition theorem [34]. Next, we show the basic traceback sub-protocol

(in Figure 4.2) is secure. Note that the basic traceback sub-protocol makes uses of a

matrix F that is computed in the recurrence phase. Each entry of matrix F contains

the selection decision of a credential. The computation of F is secure, which can be

easily deduced from Theorem 4.6.1. Theorem 4.6.2 summarizes the security of the

traceback sub-protocol.

Theorem 4.6.2 The basic traceback sub-protocol is secure in the semi-honest adver-

sarial model.

Proof: The output given to the server from the basic traceback sub-protocol is either

a set of credentials that the client has disclosed or is an abort command from the

client (when the client decides not to proceed with the transaction because the private

information required by the server exceeds the client’s tolerance). The server’s view

is simply the abort command or whether or not each credential is revealed by the

client. This view is clearly simulateable from the server’s output.

The output for the client is the privacy requirement for gaining access and the set

of credentials that are to be revealed to the server (if the client chooses not to abort).

The client’s view of the protocol is EC(MS
n,T ′) and EC(Fi,j) (for row i and column

j). They are intermediate results of knapsack computation encrypted with the public

key of the client. The client’s view consists of ciphertexts that are indistinguishable

from random, and thus is simulateable. �



92

Given Theorem 4.6.1, the fingerprint protocol (in Figure 4.3) is secure, because

once the server gives EC(Mn,T ′) to the client, the client carries out the traceback

computation without any communication from the server.

Corollary 3 The fingerprint protocol is secure in the semi-honest adversarial model.

4.7 Technique for Cheating Detection

Our checksum technique has applications beyond the specific problem considered,

and is a general method for recovering an optimal solution from any value-computing

dynamic programming computation, while detecting cheating by the participants.

We elaborate on this feature in this section. Let us consider an adversarial model

described as follows. An adversary may tamper with intermediate results during the

protocol, which is not allowed in a semi-honest model. An adversary is curious as

in a semi-honest model, in that she may store all exchanged data and try to deduce

information from it.

While we cannot prevent a participant from lying about her inputs, our check-

sum method described in this section enforces the consistency in lying by preventing

capricious use of different inputs during the crucial solution-traceback phase. For

complex functions such as the one being studied, lying about one’s input wrecks the

worthiness of the answer for both participants, and the participant who does so would

have been better off not engaging in the protocol in the first place (this is not true

for simple functions where the lier can still get the answer by correcting for her lie).

Our goal is to thwart the tampering attack by the server. In our protocols de-

scribed so far, the server stores ciphertexts EC(Mi,j) for all matrix values, therefore,

the server can replace any value of the matrix with another value EC(v) for any arbi-

trary value v. In the fingerprint protocol, the server has to guess the weights used for

each credential. The client can easily check if the proposed sum is created by a certain

set of credentials. However, as described earlier, the server may have a non-negligible

probability of successfully replacing these values. Next, we describe a technique that

reduces the probability of a successful replacement by the server to a negligible value

in terms of a security parameter.

The idea is that the client performs transformations on each of her privacy scores



93

by appending a random tag. The client creates a new set of value Â1, . . . , Ân that

satisfy the traceback properties outlined in Section 4.5. For each value, Ai, the client

randomly chooses a ρ-bit value (where ρ is the security parameter), which we call

ri. The client sets Âi = Ai2
lg n+ρ + ri (where Ai is the already transformed value for

traceback). This operation simply means shifting the binary representation of Ai lg n

positions to the left and then appending ri. It is straightforward to show that these

values satisfy the properties outlined in Section 4.5. Furthermore, for the server to

tamper with an intermediate result, it needs to guess a ρ bit random value. The server

can guess successfully with only negligible probability in the security parameter ρ.

An attack that the server can launch on the above method is that it can send any

intermediate value of the matrix to the client, and claim that the value is the final

result. Because an intermediate value is well-formed, it cannot be detected by our

above technique. However, we argue that the server does not gain from this type of

attacks. If the server chooses a value from a higher row (with a smaller row index),

then this attack can be achieved by setting the point values of some credentials to

zero (i.e., they are useless to the client and are never used). If a different column is

chosen, then this attack can be achieved by increasing the access threshold T . If the

intermediate value is from a different row and a different column, then the effect of

this attack can be achieved by increasing the threshold and setting the point values

of some credentials to zero at the same time. The server may attempt to form linear

combinations of row entries, but there is a non-negligible chance of being caught by

the client because a repeated entry may be found.

4.8 Related Work

In the access control area, the closest work to ours is the framework for regulating ser-

vice access and release of private information in web-services by Bonatti and Samarati

[19]. They study the information disclosure in open systems such as Internet using a

language and policy approach. In comparison, we design cryptographic solutions to

control and manage information exchange. In addition, we focus on solving the opti-

mality in selecting the set of credentials to disclose. Bonatti and Samarati considered

two data types in the portfolio of a user: data declaration (e.g., identity, address,



94

credit card number) and credential. Although we only consider credentials in the de-

scription of our model, the protocols can be generalized to include data declarations

as long as the server and the client agree on their specifications. In general, credentials

(e.g., driver’s license and credit card) contain a set of data declaration information,

which is usually requested as a group. For example, the credit card number and the

expiration date are usually asked for at the same time. Using credentials to represent

private information may be sufficient in some cases.

Our point-based trust management model quantitatively treats memberships or

credentials, which is conceptually different from most existing access control models.

Our approach aims to address the fact that different individuals or groups of people

have different privacy concerns in terms of protecting sensitive information. This

goal differs from conventional access control models. The flexibility provided by

the point-based model enables users to proactively protect their private information.

Furthermore, thresholds specified by resource owners prevent unqualified users from

accessing the resource.

Anonymous credential and idemix systems have been developed [28, 32] to allow

anonymous yet authenticated and accountable transactions between users and service

providers. Together with zero-knowledge proof protocols, they can be used to prove

that an attribute satisfies a policy without disclosing any other information about the

attribute. Our work focuses on finding the optimal credentials to disclose, and can

be integrated with anonymous credential systems. A zero-knowledge proof protocol

can be used when the necessary information to satisfy a policy is discovered. We can

apply anonymous credential techniques to implement membership credentials in the

point-based trust management model. These credentials are then used to prove user’s

memberships without revealing individual identity.

In hidden credentials system [27, 76], when a signature derived from an identity

based encryption scheme [21, 44, 107] is used to sign a credential, the credential

content can be used as a public encryption key such that the signature is the cor-

responding decryption key. Hidden credentials can be used in such a way that they

are never shown to anyone, thus the sensitive credentials are protected. Bradshaw

et al. [27] extended the hidden credentials system to support complex access policies

expressed as monotonic Boolean functions. They applied a secret splitting system



95

to conceal the structure of such policies. The extended hidden credentials system

protects the structure of Bob’s polices. Frikken et al. [58] give a scheme that hides

both credentials and policies. Most recently, a protocol [59] was proposed that allows

both the client and the server to define private access policies of their credentials.

The setup of hidden credential protocols does not allow the computation of the

optimal selection of credentials. In addition, as explained in the recent work by

Frikken, Li, and Atallah [59], the server learns whether the client obtained access or

not in some environments even when hidden credential schemes are used. In this case,

the server can make inferences about the client’s sensitive credentials. For example,

if the server’s policy is one must have top secret clearance and be a FBI agent, then

the server can deduce a significant amount of information about the client when the

access control decision is made. Our proposed solution allows the client to estimate

potential privacy loss without leaking any sensitive information.

We have compared the trust negotiation protocols [120, 121, 133, 134] with our

point-based trust management model in the introduction. Li, Li, and Winsborough

introduce a framework for trust negotiation, in which the diverse credential schemes

and protocols including anonymous credential systems can be combined, integrated,

and used as needed [87]. The paper presents a policy language that enables negotiators

to specify authorization requirements. The research on trust negotiation that is closest

to ours is by Chen, Clarke, Kurose, and Towsley [41]. They developed heuristics

to find an approximation of the optimal strategy that minimizes the disclosure of

sensitive credentials and policies [41]. Using their methods, when negotiation fails,

premature information disclosure is still a problem. Our protocols prevent premature

information leakage, because the computation does not disclose sensitive parameters.

Because the selection computation is private, the minimization problem is simpler to

define in our point-based model than in trust negotiation frameworks. In addition,

the solution computed by our basic and fingerprint protocols, if exists, is the exact

optimal solution, not an approximation.

Secure Multi-party Computation (SMC) was introduced in a seminal paper by Yao

[125], which contained a scheme for secure comparison. Suppose Alice (with input a)

and Bob (with input b) desire to determine whether or not a < b without revealing

any information other than this result (this is known as Yao’s Millionaire Problem).



96

More generally, SMC allows Alice and Bob with respective private inputs a and b

to compute a function f(a, b) by engaging in a secure protocol for public function f .

Furthermore, the protocol is private in that it reveals no additional information. This

means that Alice (or Bob) learns nothing other than what can be deduced from a (or

b) and f(a, b). Elegant general schemes are given in [14, 38, 64, 66] for computing

any function f privately. However, these general solutions are considered impractical

for many problems, and it was suggested in [67] that more efficient domain-specific

solutions can be developed.

An efficient private computing protocol needs to have an advantage over the pro-

tocols based on the general results. General results in SMC simulate a circuit and

require either (depending on the implementation): i) a 1-out-of-2 oblivious transfer

(OT) per input wire, constant number of rounds, O(1) invocations of a pseudorandom

function per gate, and communication proportional to the number of gates, or ii) an

OT per gate and rounds equal to the depth of the circuit.

Our protocols are more efficient than general circuit-based solutions. Circuits

require multiplication operations, and the easiest circuits for k-bit multiplication re-

quire O(k2) gates. There are asymptotic improvements to these circuits, but they

come at the cost of large constant factors; the asymptotically best of them (and

the worst in terms of having impractically large constant factors) is a circuit of size

O(k log k log log k) derived from the textbook Schoenhage-Strassen integer multiplica-

tion algorithm (which is itself of mainly theoretical interest, and not used in practice).

Our protocols use homomorphic encryption multiplication, which requires O(k) com-

munication.

Besides the generic work in the area of SMC, there has been extensive work on

the privacy-preserving computation of various functions. For example, computational

geometry [3, 52], privacy-preserving computational biology [5]. The private dynamic

programming protocol given by Atallah and Li [5] is the most relevant work to ours.

Their protocol compares biological sequences in an additively split format. Each

party maintains a matrix, and the summation of two matrices is the real matrix

implicitly used to compute the edit distance. Our protocols also carry out compu-

tation in an additively split form. What distinguishes us from existing solutions is

that we are able to achieve efficiently a stronger security guarantee without using



97

Zero-Knowledge Proofs [68]. Recently, there are also solutions for privacy-preserving

automated trouble-shooting [77], privacy-preserving distributed data mining [78], pri-

vate set operations [56, 83], and equality tests [91]. We do not enumerate other private

multi-party computation work as their approaches significantly different from ours.

A novel category of interdisciplinary work on the economics of information security

and privacy has recently been proposed [33, 48, 85]. Economics and psychology

knowledge is applied to the problem of pricing the worth of security externalities

and privacy information. In a recent study, Danezis, Lewis, and Anderson obtain an

estimate of the value that users attach to their location data [48]. These important

studies and analysis lay the foundation for applications that deploy our point-based

model.

4.9 Conclusions and future work

This work is the first to formalize and solve the privacy-preserving credential selec-

tion problem. We gave a semantic-secure private two-party computation protocol

for finding the optimal selection in an adversarial model that can handle cheating.

The indexing expansion method that we described for the fingerprint protocol goes

beyond the specific problem considered. It yields a general method for recovering

an optimal solution from any value-computing dynamic programming computation,

while detecting cheating by the participants.

The point-based trust management is an interesting framework that hosts much

promising future research opportunities. One direction is to consider the constraint

knapsack problem where a client specifies an arbitrary privacy score for a credential

combination. This problem in general may be hard, but it would be interesting to

see whether heuristics can be developed and private computation can be achieved.

In addition, the expressiveness of the model can also be improved by solving multi-

knapsack problem.

A related important topic is to study whether a satisfactory point scheme exists

and how to systematically find one. The concept of quantitatively addressing the

trust establishment problem has existed in several papers on trust and reputation

models [15, 47, 130, 136]. These models have applications in open systems such as



98

presence systems [10] and peer-to-peer networks [47]. Sometimes, a suitable point

scheme may not exist. For example, suppose Bob requires from Alice either (C1 and

C2) or (C3 and C4) before he discloses some credential to Alice. Suppose Bob requires

a threshold of 4 points. Then, whatever points we give to the four credentials, Alice

can use one of the four invalid combinations (C1 and C3), (C1 and C4), (C2 and C3)

and (C2 and C4) to get access, as one of them is guaranteed to be no less than 4

because their sum is at least 16. One solution to this problem is for the server to

specify a point for the set (C1 and C3) higher than the sum of individual points. More

efficient solutions are to be studied.

It would also be interesting to study how a service provider determines the point

associated with each credential. Existing reputation systems [15] can be applied to

this topic, and trust management mechanisms such as delegation-based access control

model [7, 8] and role-based cascaded delegation [114] can be utilized to extend the

scope of trust establishment.



Chapter 5

Privacy-Preserving Computation

of Trust

A partial and preliminary version of this work was published in IFIPTM 2007 – Joint

iTrust and PST Conferences on Privacy, Trust Management and Security 2007 [130].

5.1 Introduction

Conventional access decisions in stand-alone systems are usually made based on the

identity of the entity requesting a resource. By comparison, in open systems such as

the Internet, this approach becomes less effective. The main reason is that there is no

central authority that can make access decisions. Thus, the resource owner and the

requester typically belong to security domains administrated by different authorities

that are unknown to each other. For example, Alice is holding a student credential

from an organization A, but Bob, the resource owner, may know nothing about A

in terms of its trustworthiness, etc. Therefore, there is a strong need for designing a

flexible trust establishment model.

Another motivation for flexible authorization comes from financial applications

such as e-commerce. An issue that may dissuade consumers from fully utilizing e-

commerce applications is the potential misuse of their disclosed private information

by vendors. In most situations, consumers do not have a quantitative measure of

how much their sensitive credentials are worth, and may be under-compensated when

99



100

disclosing private information in exchange for rewards. Without a quantitative model,

it is hard for consumers to make intelligent decisions on whether or not to disclose a

credential in exchange for rewards.

Privacy-aware presence systems are another important area that needs a flexible

trust and authorization model. Location information obtained via GPS devices em-

bedded in cellphones or cars represents private user data that should not be queried

freely by the public. Similarly, in a workplace such as an office building or hospi-

tal, the privacy of presence information should be protected. The management of

presence data is crucial, because it concerns not only user privacy, but also safety:

presence data can be used to track and profile individuals. In the meantime, there

may be emergency situations or extenuating circumstances when certain parties (like

emergency workers) should have access to this kind of information, and friends and

relatives of a user might be allowed to query his or her location information at any

time. Therefore, a desirable feature of a location query system is that it provides

different levels of precision based on the requester’s trustworthiness or the context

of the query. This requires a flexible authorization model for accessing the private

location data.

To meet the requirements of trust establishment in open systems, we develop a

trust model for access control based on the credentials provided by a requester. The

model computes a trust value on the requester, which is used to make access control

decisions by a provider.

Reputation or trust models [35, 84, 136] provide an open, flexible, and dynamic

mechanism for trust establishment, where the requester does not belong to the re-

source owner. Trust models have applications in distributed systems such as peer-to-

peer networks, e-commerce applications such as online auctions, or in resource-sharing

systems such as Grid computing. Trust models are typically built on information such

as recommendations and previous experiences of individuals. Various algorithms have

been proposed to evaluate trust values [15, 116], in particular how transferred trust

are computed.

We address two aspects of computational trust models: (1) how to protect the

privacy of personal opinions during computation, and (2) how to design a scalable

computational trust model.



101

In computational trust models, the recommendations on the trustworthiness of

users are usually assumed to be public. However, recommendations represent one’s

personal opinions of other entities, and are usually considered sensitive. For example,

Bob has bad experiences doing business with Paul on an auction site, but, he does not

want to publish his negative recommendation on Paul for fearing of Paul’s revenge.

Alice, who has not dealt with Paul previously, would like to use Bob and others’

recommendations to evaluate Paul’s trustworthiness. In the meantime, Alice has

her own private evaluations on Bob and others, which give weights to individual

recommendation (e.g., Alice knows and trusts Bob, so Bob’s recommendation has

a higher weight.) The problem is how to enable Alice to compute the weighted

recommendation on Paul without disclosing everyone’s sensitive parameters. We

formalize this problem as a secure multi-party computation of scalar product, and

present an efficient protocol for solving it.

Figure 5.1 gives a simple example of trust relationships and values. Suppose Alice

wants to buy somethings from Bob but does not know anything about Bob. However,

Alice’s peers Carl, Doug, and Ed have had previous interactions with Bob. Each of

them gives a trust score on Bob’s trustworthiness that is 0.8, 0.6, 1.0, respectively.

Suppose 1 is complete trustworthy and 0 is not trustworthy at all. In the meantime,

Alice may not completely trust her peers opinions and she has her own judgement

on the trustworthiness of her peers. For example, she thinks that Carl’s opinions are

more reliable than Ed’s. Thus, Ed’s opinion on Bob is discounted by Alice. Alice and

her peers uses our private scalar product protocol to compute a value of trust score

on Bob based on all these known factors. A more complex scenario is shown at the

bottom of Figure 5.1 where Alice’s peer has indirect knowledge about Bob rather than

direct previous interactions. Frank, an Alice’s peer, knows Greg who knows Helen

who knows Bob. Here, the chained trust relationship reflects how trust is transferred

and the computation should incorporate all these factors. We formalize this problem

in our trust model.

We also describe an approach to improve the scalability of trust and reputation

models. Ideally, a trust model should be able to accurately and efficiently classify a

group of users. In trust management applications with a large number of users, such

as Shibboleth [110], the trustworthiness of individual users becomes less important if



102

Figure 5.1: An example of trust relationships and trust values.

the resource owner knows the home organization of the individual. For example, if

the user is a professor from a reputable college, then he or she is likely to be trustwor-

thy. We aim to improve the scalability of the typical grass-root approach of building

trust. Our approach takes advantage of the pre-existing organizational infrastruc-

ture, in particular the credential-based administration model. The trustworthiness

of an individual is deduced from her digital credentials and the credential issuers’

trustworthiness.

5.1.1 Our Contributions

Our contributions are summarized as follows.

1. We present a private multi-party computation protocol for computing weighted

trust values. The problem is for A to infer the trust value of an unknown entity

X based on what other entities think about X together with A’s confidence in

these entities. In a world where there is no privacy concern or there is a trusted

third-party, the problem can be solved by computing the scalar product of two

vectors – one vector representing A’s confidence values for a set of entities,

and the other vector representing recommendations of these entities on X. In

real life, this information is usually considered sensitive, e.g., B may not want

to disclose that he does not trust X at all, and A hopes to conceal the fact

that her confidence in B is low. Private two-party scalar product protocols are



103

available [3, 63, 117]. However, they are not suitable for our problem, where one

of the vectors in the computation is distributed among multiple entities. We

design an efficient private multi-party computation protocol for scalar products

where individual values of a vector can have different owners. The sensitive

information of all parties is not revealed (except the final scalar product).

2. We propose a credential-based trust model for inferring trustworthiness in de-

centralized environments. Our credential-based trust model not only simplifies

and scales the decision-making process, but also improves the reliability of com-

puted trust scores by using role certificates. We describe how to compute trust

values from multiple credentials, delegation credentials, and from peers’ recom-

mendations. Our model can also be used for computing point values in the

existing point-based authorization model.

3. We also describe a location-query system for giving approximate location infor-

mation based on the trustworthiness of the query issuer. This system is a prac-

tical application of the point-based authorization model, and demonstrates the

ability to give flexible yet confident trust verdicts in open systems. Location-

aware applications are made popular by the increasing deployment of sensor

networks, RFID, and GPS-enabled cellphone networks.

5.1.2 Outline

A private multi-party computation protocol for distributed scalar products is pre-

sented in Section 5.2. This protocol supports efficient and privacy-preserving compu-

tation of trust values. Our credential-based trust model is introduced in Section 5.3.

In Section 5.4, we describe how our trust model can be integrated with the existing

point-based trust management model. In Section 5.5, we present an application of

point-based trust management to the location query problem for sensor networks.

Related work is described in Section 5.6. Finally, future work is given in Section 5.7.



104

5.2 Private Distributed Scalar Product Protocol

In this section, we define, construct, and analyze the private distributed scalar product

protocol. The private distributed scalar product protocol has applications in privacy-

preserving data mining problems. In Section 5.3.2, we show how it is used to privately

compute trust values from peers’ recommendations.

5.2.1 Definitions

In what follows, we define that all arithmetic is done in Zm for some m. A private

distributed scalar product protocol is to compute X ·Y , where X = (x1, x2, . . . , xn) ∈

Z
n
m and Y = (y1, y2, . . . , yn) ∈ Z

n
m are vectors of length n.

The protocol is run by l numbers of players where 1 ≤ l ≤ 2n, and xi and yi

are disjointly partitioned among the players. That is, each player knows one or more

of the elements in the vectors, and a vector is known by one and only one player.

In a centralized case where l = 1, the problem is reduced to trivial scalar product

computation. If l = 2, i.e. a two-party private computation problem, one can use

existing private scalar product protocols [3, 63, 117]. If there are 2n players, each

party knows only one element in X or Y . The goal of the protocol is for the players

to jointly compute X · Y without disclosing each own’s private information, i.e., xi

or yi values. The security of the protocol can be intuitively thought of as players

do not gain non-negligible knowledge of others’ private information (besides the final

scalar product). In particular, the property should hold even if players collude. The

security of the protocol is further analyzed in Section 5.2.4.

For our trust model in Section 4.3, we are interested in a specific scenario with n+1

players: Alice wants to compute the point value for an unknown entity E. She knows

n entities B1, B2, . . . , Bn, and Alice’s point value for entity Bi is xi. Each entity Bi

knows entity E, and has assigned point yi to E, respectively. Alice and B1, B2, . . . , Bn

jointly compute X · Y , which is given to Alice at the end of the protocol, but not to

any of the Bis. We present our private distributed scalar product protocol for this

special case. The protocol can be easily generalized to cases where l is anywhere

between 3 and 2n, where n is the length of the vector.



105

5.2.2 Building Blocks

Our private distributed scalar product protocol uses the homomorphic encryption

scheme and a private multi-party summation protocol.

Homomorphic Encryption

A homomorphic encryption scheme has three functions (Gen, Enc, Dec), where Gen

generates a private key sk and a public key pk, Enc and Dec are encryption and

decryption functions, respectively. The encryption function Enc is said to be homo-

morphic, if the following holds: Encpk(x; r) · Encpk(y; r′) = Encpk(x + y; r · r′), where

x and y denote plaintext messages and r and r′ denote random strings. Another

property of such a scheme is that Encpk(x; r)y = Encpk(x · y; ry). This means that a

party can add encrypted plaintexts by doing simple computations with ciphertexts,

without having the private key. The arithmetic performed under the encryption is

modular, and the modulus is part of the public parameters for this system. Homomor-

phic schemes are described in [46, 97]. We utilize homomorphic encryption schemes

that are semantically secure. A homomorphic scheme is called semantically secure

when a probabilistic polynomial-time adversary cannot distinguish between random

encryptions of two elements chosen by herself.

Private Multi-Party Summation Protocol

Our protocol also uses an efficient private multi-party summation protocol, which

was presented by Atallah et al. [4]. Their protocol is to make n parties, each with

a number Vi, cooperate to simultaneously find out
∑n

i=1 Vi without revealing to each

other anything other than the answer. To achieve this, each party chooses a random

value, which is used to hide the input. The intermediate sum is additively split among

the participants.

The summation protocol by Atallah et al. [4] is described in Figure 5.2. Note

that to compute the sum, the protocol should not let each party send his share in

the clear to all other parties, which is obviously insecure. The protocol in [4] gives

a non-trivial way to do this by requiring the participants to compute a randomized

private sum. We use the summation protocol as a black box, and refer readers to the

literature for more details [4].



106

Private inputs: Every party i has a private value Vi.
Private output: Every party learns V =

∑n
i=1 Vi.

1. Party i chooses a random number Ri.

2. Every party 2i gives to 2i + 1 his V2i + R2i, then every
2i + 1 gives to 2i his R2i+1 in a secure channel.

3. The odd-numbered parties together compute the sum V +
R, where V =

∑n

i=1 Vi and R =
∑n

i=1 Ri. The even-
numbered parties together compute the sum R.

The summation of V +R and R can be done in a tree-based
approach where the parties are organized at leaf nodes of
a tree and the summation is computed in a bottom-up
fashion. The root of the tree gives the final sum.

4. An odd party with V + R and an even party with R si-
multaneously exchange their quantities to obtain V .

The simultaneous exchange of secrets can be realized using
methods (see e.g., [105]). However, as pointed out in [4], a
simpler and more efficient bit-exchange approach is suit-
able for the summation protocol and does not compromise
the security. An odd party sends one bit of his value to
the even party, and the even party sends one bit to the
odd party. Then they alternate until done.

Figure 5.2: Privacy-preserving summation protocol by Atallah et al [4]. Note that
lying during the exchange in Step 4 cannot be prevented, yet a player can achieve the
same effect by lying about his input. In addition, lying does not let the player learn
anything about the sum V .



107

5.2.3 Protocol Description

Our private distributed scalar product protocol is shown in Figure 5.3. Alice’s input

of the protocol is a private vector X. Each party Bi (for 1 ≤ i ≤ n) has a private

value yi. At the end of the protocol, the scalar product X · Y is learned by Alice or

by every participant, where Y = (y1, . . . , yn).

Alice encrypts each element xi of her vector X with her public key in homomorphic

encryption. The ciphertext ci is sent to Bi, respectively. Because Bi does not know

Alice’s private key, Alice’s value is safe. Because of the properties of homomorphic

encryption, entity Bi is able to compute the ciphertext corresponding to xiyi, even

though he does not know xi. The resulting ciphertext is wi in Figure 5.3. To hide

yi, Bi computes the ciphertext w′
i corresponding to xiyi − si, where si is a random

number. Alice receives ciphertext w′
i from each Bi, and computes the product of

all w′
is, which is decrypted to X · Y −

∑n

i=1 si. Next, all of Bis carry out a private

multi-party summation protocol that computes
∑n

i=1 si. At the end of the summation

protocol, every Bi learns the sum. Alice obtains the sum from Bis, and computes

X · Y without learning the individual yi values.

Our private distributed scalar product protocol is based on the private two-party

scalar product protocol by Goethalsh et al. [63], where each party has a vector and

the protocol outputs the scalar product result of the two vectors in a split form. That

is, the scalar product result is split between the two parties, and equals to the sum of

two shares. The concept of shared private computation can also be found in [3, 57].

A variant of our protocol allows all participating parties to learn the scalar product

result X · Y . Alice with SA and all Bis, each with si, carry out a private multi-

party summation protocol with their inputs. Our analysis is based on the protocol in

Figure 5.3.

5.2.4 Analysis of the Protocol

The correctness of the protocol is obvious. Alice obtains from Bi (for all i ∈ [1, n])

an encryption of xiyi − si. Alice multiplies the n ciphertexts, and decrypts to obtain

the sum
∑n

i=1 xiyi− si. Once Alice obtains
∑n

i=1 si, she computes X ·Y =
∑n

i=1 xiyi.

The security and efficiency of our private multi-party protocol for distributed scalar

product are analyzed.



108

Private inputs: Private vector X = (x1, . . . , xn) ∈ Z
n
m by

Alice; private values y1 by entity B1, . . ., yn by entity Bn, where
yi ∈ Zm for all i ∈ [1, n].
Private outputs: Alice learns X · Y mod m, where m is a
public parameter.

1. Setup phase. Alice does: Generate a private and public
key pair (sk, pk). Send pk to all Bi.

2. Alice does for i ∈ {1, . . . , n}: Generate a random new
string ri. Send ci = Encpk(xi; ri) to Bi.

3. Bi does: Set wi = cyi

i mod m. Generate a random plain-
text si and a random nonce r′i. Send to Alice w′

i =
wi · Encpk(−si; r

′
i).

4. Alice does: Compute the product of ciphertext w′
is as

Πn
i=1w

′
i mod m. Use her private key sk to decrypt the

product, and obtain the partial result SA = X ·Y −
∑n

i=1 si.

5. All Bis, each with si, carry out a private multi-party
summation protocol with their inputs (described in Sec-
tion 5.2.2 and Figure 5.2). At the end of that protocol,
each Bi obtains SB =

∑n

i=1 si.

6. Alice does: Obtain SB from (any of the) Bis. Compute
X · Y = SA + SB.

Figure 5.3: Private Distributed Scalar Product Protocol. m is a public parameter of
the homomorphic encryption scheme.

The security of our private multi-party scalar product protocol is based on the

security of the private two-party scalar product protocol [63] and the private multi-

party summation protocol [4]. In general, the multi-party protocol among players is

secure when the privacy and correctness are guaranteed for all players. It is said that

a protocol protects privacy when the information that is leaked by the distributed

computation is limited to the information that can be learned from the designated

output of the computation [99]. In our problem, Alice’s private vector X and each

entity Bi’s private value yi are not leaked to each other, besides the scalar product.



109

Operation Scalar Product Phase Summation Phase Total
Comp. (Alice) O(n) homomorphic op. O(1) O(n) homomorphic op.
Comm. (Alice) O(n) O(1) O(n)

Comp. (Bi) O(log yi) homomorphic op. O(1) O(log yi) homomorphic op.
Comm. (Bi) O(1) O(1) O(1)

Table 5.1: Computation (Comp.) and communication (comm.) complexities of the
private distributed scalar product protocol. We denote by n the length of Alice’s
vector X. The logarithmic factor is due to using multiplications to compute expo-
nentiation in step 3.

Note that in almost all existing private scalar product solutions, one player can con-

struct a system of linear equations based on the specification of the protocol, and

solve it for the secret values.

Our security is in the semi-honest model, where it is assumed that all players

follow the protocol, but they are also curious: that is, they may store all exchanged

data and try to deduce information from it. One challenge in designing the multi-

party scalar product protocol is to prevent collusions among players. In particular,

during the step of summation, Alice may attempt to collude with a subset of players

Bis to discover the private values of other players.

As in almost all private multi-party protocols, we assume that each party inputs

his or her true private values. Providing skewed values during computation can

result in inaccurate results, and wasting the computation power and bandwidth of

all participants including the dishonest party. In addition, the effect of providing

skewed intermediate value by a participant can be achieved by raising or lowering his

or her own input. This issue is standard in multi-party protocols (both semi-honest

and malicious models). Suppose A wants to compute the trustworthiness of C with

help of B1, . . . , Bn, and suppose Bi is a friend of C, Bi may modify the output of the

protocol by raising si in Figure 5.3. As a result, A gets a higher value for C. However,

Bi can achieve the same effect by choosing a different input to begin with. Therefore,

this type of attacks is not considered in multi-party protocols including ours. It is

worth mentioning that once detected, this type of behaviors could be folded back into

the reputation of participants, which can provide incentives for being honest during

the computation.

Because of the intrinsic nature of the problems considered, even if the protocol is



110

secure in the malicious model (discussed later), multi-party computation such as ours

is still vulnerable to probing attacks. For example, if A wants to learn Bi’s private

value yi, A can engage the protocol with input X = (0, . . . , 0, 1, 0, . . . , 0) by setting

only the i-th entry to be one. After the protocol A learns X ∗ Y = yi, which is the

private value of Bi.

The security of our protocol is summarized in the following theorem.

Theorem 5.2.1 Assume that (Gen, Enc, Dec) is a semantically secure homomorphic

public-key cryptosystem. The private distributed scalar product protocol presented in

this section is secure in the semi-honest model. Alice’s privacy is guaranteed when

for all i ∈ [1, n], entity Bi is a probabilistic polynomial-time machine. Also, for all

i ∈ [1, n], Bi’s privacy is information-theoretical.

Proof: Each entity Bi only sees a random ciphertext from Alice, for which Bi cannot

guess the ciphertext. This is because of the semantic security of the homomorphic

encryption scheme. Hence, Bi cannot guess Alice’s value xi.

During the summation protocol, each Bi only sees random values exchanged.

Hence, Bi cannot guess the random secret sj of Bj for all j 6= i.

On the other hand, Alice only sees (1) random value xiyi − si, (2) the sum of all

si, and (3) the final computation scalar product X · Y . She does not gain additional

information about Y besides the final scalar product. In addition, the protocol pre-

vents collusions among Alice and a subset D of Bis to discover private yj value of Bj

for Bj /∈ D, because the summation protocol guarantees that all Bis learn the sum

simultaneously. Thus, Alice obtains no information about any Bi except the scalar

product X · Y , and each Bi obtains no information about Alice and entity Bj for all

j 6= i. �

The overall computation and communication complexities of our protocol are the

same as the private two-party scalar product protocol by Goethals et al. [63]. The

private multi-party summation protocol is efficient, as it does not require any type

of encryption schemes. The summation step does not introduce significant overhead.

Details of complexities are summarized in Table 5.1.

Security in a malicious model Malicious adversaries, unlike semi-honest ones,

can behave arbitrarily without following the protocol. They may refuse to participate

the protocol, abort the protocol without finishing it, and tamper with intermediate



111

values. Any protocol secure against honest-but-curious adversaries can be modified to

a protocol that is secure against malicious adversaries using standard zero-knowledge

proofs showing that all parties follow the protocol. At each step of the protocol, each

party uses their transcripts and zero-knowledge proofs to convince the other parties

that they have followed the protocol without cheating. We do not describe the details

of how this transformation is done here.

5.3 Credential-Based Trust Model

In this section, we present a simple credential-based trust model that is useful for

the trust management in distributed environments. The main idea is to convert role-

based credentials and related information into quantitative trustworthiness values of

a requester, which is used for making authorization decisions. Quantitative autho-

rization policies can allow fine-tuned access decisions instead of binary (allow or deny)

verdicts, and provide more diversified access options for requesters. In addition, quan-

titative authorization enables providers to correlate the quality of service with the

qualifications of requests (e.g., more rewards or higher resolution with higher trust-

worthiness). This approach utilizes and leverages existing credential and role-based

management infrastructure for autonomous domains (e.g., [114, 129]) and improves

the accuracy of trustworthiness prediction.

Our private multi-party scalar product protocol in the previous section can be

used to compute trust values from recommendations in Section 5.3.2.

We divide our description of the credential-based trust model into the following

topics.

1. Derive the trust value of an affiliated role credential, which is defined next.

2. Compute the trust value of a delegation role credential, which is defined next.

3. Integration with point-based trust management system, which is described in

Section 5.4.

Terminology: In our model, we define the administrator of a role as the organi-

zation that creates and manages the role. If a role credential of an entity D is signed

and issued by the administrator of the role, that role is said to be an affiliated role



112

of D (this type of role is usually obtained through the affiliation with an organization,

and thus the name). If a role credential of D is instead issued through delegation and

signed by entities other than the administrator of the role, that role is called a dele-

gated role of D. We define an entity to be an organization or an individual. An entity

may issue credentials. Also, an entity may have one or more affiliated roles or dele-

gated roles, which are authenticated by role credentials. An affiliated role credential

is the credential for an affiliated role, and is signed by the administrator of the role.

Similarly, a delegated role credential is the credential for proving a delegated role. A

privilege can be a role assignment or an action on a resource. A role r administered

by entity A is denoted as A.r. A role defines a group of entities who are members of

this role.

5.3.1 Definitions in Credential-Based Trust Model

A trust value in the credential-based trust model represents what an entity thinks

about the trustworthiness of another entity or a role in another entity. More specifi-

cally, trust value t(A, B) in the credential-based trust model represents what entity A

thinks about the trustworthiness of entity B; trust value t(A, B.r) in the credential-

based trust model represents what entity A thinks about the trustworthiness of role

B.r administered by entity B. For example, a Grid Computing facility GCLab assigns

trust values to types of users, such as role professor and role student in a university

U , and role researcher from a research center C. When a user holding a certain role

credential requests for access to the grid computing facility, his or her privileges are

specified based on the trust value of that role. Note that the credential-based trust

model is different from existing trust models that generate rating certificates, which

are signed certificates of one’s trustworthiness generated by one’s peers [101].

Ideally, an entity A maintains a trust value for each role in organization B. For

example, GCLab gives different trust value to role student and role professor in a

university. Hence, a requester with a professor role credential may be granted a

different level of access privileges from a requester with a student role credential.

Definition 5.3.1 If an entity A gives a role B.r in B a trust value t(A, B.r), then

any individual who has a valid affiliatedrole credential of role B.r issued by B has the

trust value t(A, B.r).



113

In case a resource owner does not know the trust value of a role in an organization,

the trust value of that organization is used as a guideline for the trustworthiness of

the role. In general, we define that any requester who has a valid role credential

issued by organization B has the same trust value as B.

There are two main approaches for an entity A to obtain the trust value of B. One

is based on A’s previous direct interactions with B. The other approach is to derive

from other entities’s trust values on B, which can be thought of as recommendations.

The two approaches can be combined to bring a more precise judgement. In this work,

we do not address the first approach, namely, how to directly derive trust values from

previous transactions with an entity or its roles, because the specific methods to be

used depend highly on the applications. For example, Tran et al. proposed how to

derive trust scores in a P2P file-sharing systems [122]. We focus on techniques for

computing trust values from other entities’ recommendations and on how to carry

out the computation in a privacy-preserving fashion. In what follows, we use trust

value of a credential to mean the trust value of the credential issuer.

5.3.2 Derive Trust Value From Recommendations

We describe a weighted average method for an entity A to compute a trust value on

entity B or role B.r. This computation is useful when A does not have any previous

interaction experience with B or B.r, and A wants to combine others’ opinions of B

or B.r in forming her trust value.

In the credential-based trust model, the recommendation by an entity E on B is

the trust value t(E, B) that E gives to B. A confidence value represents how much

A trusts the judgement of a recommender, and is defined as the trust value of A on

the recommender.

Above definitions mean that recommendations are weighted by A’s confidence on

the recommenders. Formally, we define the weighted average computation of trust

value as follows. We denote n as the number of recommenders, and Ei represents

the i-th recommender. Let MAX TRUST be the public upper bound of all trust

values. Without loss of generality, we assume a trust value is non-negative. We

assume that A has already obtained her trust values t(A, E1), t(A, E2), . . ., t(A, En)

on the recommenders. We also assume that each of the recommenders Ei has formed



114

her trust value t(Ei, B) on the target entity B. (In case no one in the system knows

about entity B, a default trust value can be assigned to B to indicate this situation.)

The formula for computing t(A, B) is shown as follows, where weight w(A, Ei) =

t(A, Ei)/MAX TRUST.

t(A, B) =
1

n

n∑

i=1

w(A, Ei)t(Ei, B) (5.1)

Value w(A, Ei) represents the weight of Ei’s recommendation (trust value) on B

for A. Variants of weighted average computation have been used in other reputation

systems, such as ordered weighted average [123]. The above description also applies

when the target to be evaluated is a role, for example B.r, instead of an entity.

Application of private distributed scalar product protocol. Equation (5.1) is

useful for A only when all the trust values t(Ei, B) are available. However, trust value

t(Ei, B) is private information of Ei, who has the incentive to hide it, especially when

Ei thinks negatively about B. Similarly, A may consider her trust values t(A, Ei)

sensitive too. The problem is how to compute the weighted average in (5.1) without

leaking the private information of each entity. Our protocol for private multi-party

scalar product in Section 5.2 solves this problem and satisfies the privacy requirement.

Note that our model is not based on the assumption of two degrees of separation

between any two entities, that is, we do not need to assume that a new entity is known

by an existing peer. If an entity is not known to the community, it is initialized with

trust value zero, which may increase provided that the entity behaves well with other

peers. Recall that a trust value can be based on previous experience of interactions

with an entity.

Combining trust values for access. If a requester presents multiple role creden-

tials, then the trust values of the credentials are to be combined. For example, one

simple method is to sum the trust values. This means that the requester with multiple

credentials of low trust values can gain the same access privileges as a requester with

one credential of a high trust value. This combination method is intuitive and is used

in point-based trust management model [127], which will be discussed in Section 5.4.



115

5.3.3 Generalization of our computational model

The trust relationships of our trust model described so far assumes that A’s peers

directly know B. However, a more general scenario is where A indirectly knows B

through multiple peers, e.g., the scenario depicted at the bottom of Figure 5.1. We

generalize our trust model to incorporate this aspect as follows. We model the trust

relationships of entities in the system as a directed graph G, where there is a weighted

directed edge between entity X and Y , if X knows Y and the weight of the edge is

the trust value t(X, Y ). The distance between X and Y depends on the directed path

chosen, e.g., in Figure 5.1, the distance between Alice and Bob is four if the bottom

path is chosen. We refer the directed path connecting two entities A and B as a trust

path.

Our model for computing trust values can be generalized to include long trust

paths by multiplying weighted trust values corresponding to a trust path. To compute

A’s trust value on B, A first needs to choose the trust paths connecting to B. We

assume that A has already known n non-overlapping directed paths from A to B.

Note that A’s paths do not have to be the complete set of such paths in G. However,

incorporating more paths into the computation generates a more accurate estimation

on B’s trustworthiness. For the i-th path (i ∈ [1, n]) between A and B, let mi be the

number of entities on the path besides A and B. Denote such a node as Ei,j where

j ∈ [1, mi]. Trust value t(A, B) is computed as Equation 5.2.

t(A, B) =
1

n

n∑

i=1

w(A, Ei,1)w(Ei,1, Ei,2) . . . t(Ei,mi
, B) (5.2)

In Equation 5.2, t(A, B) is computed by incorporating the n weighted paths be-

tween A and B. The computation does not favor longer paths in that the longer

the path, the more weights (≤ 1) are multiplied that may lower the resulting trust

value. This trend is consistent with the intuition that direct recommendation is more

trustworthy than indirect one. Because the weights are normalized by MAX TRUST,

more paths (i.e., higher n) do not necessarily give a higher trust value. However, con-

sidering more paths in the computation does produce a more accurate reflection on

B’s trustworthiness by the community. How to choose the non-overlapping paths

may depend on A’s preferences. This topic is out of the scope of this work and is not



116

discussed here.

5.3.4 Delegation Chain and Trust Computation

In this section, we describe how our trust model is further generalized to support

delegation credentials. Delegation [8, 114, 129] is important for transferring trust

in decentralized environments. Associating trust values with delegation credentials

is different from role credentials because the values should not only depend on the

initial credential issuer, but also the intermediate delegators’s trustworthiness.

A delegation credential represents how a certain prvilege is transferred among

multiple delegators. Intuitively, if a delegator on a delegation chain has low trust-

worthiness, then the trust value of the delegation credential should be affected. If all

the delegators are highly trustworthy, the delegation credential should earn its holder

a trust value similar to a directly-issued role credential. We capture these intuitions

in computing the trust value of a delegation credential into a term discount factor,

which represents how much the trust value of a delegated privilege is decreased due

to intermediate delegators. Before we give details of the definition, we first introduce

several important concepts of delegation.

The original issuer or original delegator of privilege P is the first entity on a

delegation chain, and is the owner of the resources associated with privilege P . A

delegation chain of privilege P is the path that shows the delegation sequence of P

between entities. The chain connects a delegated entity to the original issuer of P .

In general, there are two types of role-based delegations, based on who is allowed

to issue delegation credentials. One type is that an organization delegates its permis-

sions to roles in other organizations [89]. The delegation is issued by the administrator

of an organization. The other type is administrator-free delegation, where an indi-

vidual role member of an organization issues the delegation to other roles without

the participation of administrators during delegation. The latter is designed for de-

centralized transfer of trust, and is embodied in a model called role-based cascaded

delegation [114, 129] as shown in Figure 5.4. We give a general method for computing

discounted trust value of a delegation credential for both delegations with or without

administrators.

Next, we briefly introduce role-based cascaded delegation model.



117

UniversityUniversityUniversityUniversity CompanyCompany LabLab

Member_OfMember_OfMember_OfMember_Of Member_OfMember_Of

Figure 5.4: The schematic drawing of a role-based delegation chain. It shows that
a member of a university delegates permissions to a member of a company, who
then delegates the permission to a member of a lab. The horizontal arrows indicate
delegation of permissions. The vertical arrows indicate membership relationship.

Role-Based Cascaded Delegation

Role-based Cascaded Delegation [114] model supports administrator-free delegation.

It enables flexible and dynamic authorization in a decentralized environment. It

comprises four operations: Initiate, Extend, Prove, and Verify. Initiate and

Extend are used by a resource owner and an intermediate delegator, respectively, to

delegate a privilege to a role. Prove is used by a requester to produce a proof of a

delegation chain that connects the resource owner with the requester. Verify decides

whether the requester is granted the access based on the proof.

In the RBCD protocol [114], a delegation credential includes role membership

certificates of each intermediate delegator, and delegation extension credentials that

are proofs of delegation transactions signed by delegators. Credentials associated

with a delegation chain are transmitted to delegated role members at each delegation

transaction. Therefore, for a delegation chain of length n, the number of certificates

required to verify the delegation path is 2n.

Discounted Trust Value for Delegation Credential

Suppose that an individual B has a delegation credential. We denote D0 as the orig-

inal delegator or the resource owner. We denote D0.r as the role being delegated in

the delegation credential, which is a role administrated by D0. We denote D1, . . . , Dn

as the intermediate delegators on the delegation credential. We denote D1.r, . . . , Dn.r

as roles of intermediate delegators. Note that in our credential-based trust model, the



118

specific role member who issues the delegation is not needed to participate in com-

puting discounted trust value. The trust value that an entity A gives to the credential

holder B is computed as follows, where weight w(A, Di) = t(A, Di)/MAX TRUST.

t′(A, B) = Πn
i=1w(A, Di.r)t(A, D0.r) (5.3)

In Equation 5.3, the trust value of a delegated credential is based on the length

of the delegation chain, the trust value t(A, D0.r) of the delegated role, and the trust

values t(A, Di.r) of intermediate delegator Di for all i ∈ [1, n]. The weight w(A, Di.r)

represents the discount factor on the trust value t(A, D0.r). Intuitively speaking, if

entity A thinks that intermediate delegators are highly trustworthy, the final result

t(A, B) is close to value t(A, D0.r).

Finally, to make the role-based delegation valid, the credential holder B needs

to not only possess the delegation credential, but also have a valid affiliated role

credential of the last authorized role of the chain. We denote Dn+1.r as the last role

that the delegation credential is issued to. For example, in Figure 5.4, this corresponds

to a lab member. B should be an affiliated role member of Dn+1.r. Therefore, the

complete trust value of credential holder B with role Dn+1.r should combine the trust

value of the delegation credential with the trust value t(A, Dn+1.r) of his or her role,

as shown in Equation 5.4. As mentioned in Section 5.3.2, we use the summation to

combine trust values from multiple credentials.

t(A, B) = t′(A, B) + t(A, Dn+1.r) (5.4)

= Πn
i=1w(A, Di.r)t(A, D0.r) + t(A, Dn+1.r) (5.5)

The above description of computing discounted trust values of a delegation cre-

dential applies to both types of role-based delegations: delegation with or without

administrators.



119

5.4 Integration With Point-Based Trust Manage-

ment

Our proposed private multi-party protocol and trust model are useful for general

access control in a decentralized environment. We describe how it can be used for

deriving point values in the existing point-based trust management model [127], which

was proposed for the privacy protection of sensitive information in open environments.

We briefly introduce the point-based model next.

5.4.1 Point-Based Trust Management

In the point-based trust management model [127], the authorization policies of a

resource owner define an access threshold for each of its resources. The threshold is

the minimum number of points required for a requester to access that resource. For

example, accessing a medical database might require fifty points. The resource owner

also defines a point value for each type of credential, which denotes the number of

points or credits a requester obtains if a type of credential is disclosed. For example,

a valid ACM membership might have ten points. This means that a user can disclose

his or her ACM membership credential in exchange for ten points. (This is called a

trust management model as opposed to an access control model, because the resource

owner does not know the identities or role assignments of requesters a priori as in

conventional access control settings.)

Each user defines a sensitivity score for each of their credentials. The sensitivity

score represents the unwillingness to disclose a credential. For example, Alice may

give a sensitivity score of ten to her college ID, and give fifty to her credit card.

The user is granted access to a certain resource if the access threshold is met and

all of the disclosed credentials are valid. Otherwise, the access is denied. From the

requester’s point of view, one central question is how to fulfill the access threshold

while disclosing the least amount of sensitive information.

The credential selection problem in the point-based trust management model is to

determine an optimal combination of requester’s credentials to disclose to the resource

owner, such that the minimal amount of sensitive information is disclosed and the

access threshold of the requested resource is satisfied by the disclosed credentials.



120

A private two-party dynamic programming protocol has been proposed to solve the

credential selection problem [127].

The point-based authorization model assumes that the resource owner (or server)

and the requester (or user) agree on a set of credential types as the universe of creden-

tials (C1, . . . , Cn). A binary vector (x1, . . . , xn) is defined as the unknown variable to

be computed, where xi is one if credential Ci is selected and zero if otherwise. Integer

variable ai ≥ 0 is the sensitivity score of credential Ci. It is assigned by the requester

a priori. If the requester does not have a certain credential Ci, the sensitivity score

ai for that credential can be set to any integer larger than T , where T is the trust

threshold for the requested resource. Integer variable pi ≥ 0 is the point value for

releasing credential type Ci. The requester considers all ai values sensitive, and the

server considers all pi values sensitive.

The credential selection problem is for the requester to compute a binary vector

(x1, . . . , xn) such that the sum of points
∑n

i=1 xipi satisfies T , and the sum of sensi-

tivity scores
∑n

i=1 xiai is minimized. This is captured in the following minimization

problem. Compute a binary vector (x1, . . . , xn) such that the following holds:

min

n∑

i=1

xiai (5.6)

subject to
n∑

i=1

xipi ≥ T (5.7)

The above minimization problem can be rewritten into a knapsack problem, which

can be solved by dynamic programming. A private two-party computation protocol

was given in [127] for the dynamic programming problem with sensitive pi and ai

values. The protocol in [127] is different from our private distributed scalar prod-

uct protocol, as we aim to solve how point values can be privately computed in a

reputation model.

5.4.2 Derivation of Point Values

Previous work on the point-based trust management model [127] focused on the pri-

vacy protection of sensitive information and assumes that the point value associ-

ated with each credential type of the requester has already been determined by the



121

server [127]. It does not describe how point values are obtained or how to system-

atically derive points corresponding to credentials. The mechanism for determining

the point value of a credential is crucial to the applicability of the trust management

model, and needs to be formalized. In cases where the credential issuer of a requester

is not previously recognized by the resource owner, we need a protocol to compute

an appropriate point value for the credential held by the requester. The credential-

based trust model presented in Section 4.3 answers this question. Using the described

methods, a resource owner computes the trust values of credential issuers and their

roles. The resulting trust values are to be used as point values of a resource owner in

point-based trust management.

For delegation credentials presented by a requester, a resource owner can use the

trust model to compute the discounted trust value of the credential. The trust value

can only be computed exactly when the delegation credential is revealed. However,

this information is private to the requester in the credential selection computation

in point-based trust management. To mitigate this problem, a resource owner can

use an approximate trust value during the credential selection computation, and then

make adjustments when credentials are exchanged later.

The credential-based trust model completes the description of an important aspect

in point-based authorization. Next, we give a concrete application for point-based

authorization in location-query systems.

5.5 Applications to Location Query Systems

Privacy is an important concern in systems that use presence and other real-time user

data. Presence provides great utility, but also has the potential for abuse. Managing

security and privacy preferences in these systems can be complex. One approach

to protect the privacy is to apply distributed anonymity algorithms to sensor net-

works [73, 74]. Another type of solutions is to augment existing routing protocols to

enhance source-location privacy in sensor and conventional networks [82, 113].

However, these existing solutions are not suitable for several types of applications.

In many scenarios such as 911 or medical emergency, road-side emergency of a GPS-

enabled vehicle, and police enforcement agents, the location information of a subject



122

is critical, and should not be hidden or anonymous. Also for example, in distributed

collaboration applications such as Meeting Central [124], being able to share presence

information to trusted collaborators is desirable.

Generally, sharing presence information implies sharing sensitive personal data

such as computer activity, physical location, IM status, phone use, and other real-

time attributes associated with a given user. Managing the privacy of this data

requires capturing the user’s preferences and concerns, which are typically quite indi-

vidualistic. Some users feel comfortable sharing any personal details, but most want

at least some control over what is shared and with whom.

We are interested in how to manage access to private presence information in a

way that makes users feel that their preferences are met. In this section, we describe

how point-based authorization can be used as a key component for flexible privacy

management in presence systems. The point-based trust management is intuitive

enough to let the user understand the implications of their sharing decisions.

5.5.1 A Location-Query Service

As an application of point-based trust management, we have started to prototype a

presence system that applies points to access control. A presence system can provide

a service that runs on behalf of each user, acting as that user’s always-online proxy.

Through this proxy, the user has ultimate control over all their associated data. The

proxy is resolvable based on the user’s identity, and can expose services that can be

queried by other entities in the system. One such service provides presence querying.

Entities in the system can pose questions to Alice’s proxy like where is Alice now?

This is handled by Alice’s presence service, which must first find valid answers to

the question, and then determine which answers, and to what degree of specificity,

will be returned. The answers are generated by interpreting real-time presence data

(GPS coordinates, keyboard and mouse activity, current calendar appointments, etc.)

associated with Alice, which may be captured from arbitrary locations but which

flows exclusively into her proxy, thereby giving Alice ultimate authority over her own

personal presence data. The allowable answers are determined by querying Alice’s

access system, which uses points in several ways.



123

5.5.2 Advisors and Point-Based Decisions

Alice’s proxy chooses access decisions through a set of domain-specific entities called

advisors. Each advisor provides input on possible decision responses based on its

domain of expertise (e.g., reputation, purpose of the query, context of the exchange,

value of the requested data). These inputs are then aggregated to determine the

overall advice about a possible response. The idea is to provide a flexible mechanism

that more accurately represents a user’s decision process. Our credential-based trust

model and point-based authorization can be used to implement a flexible advisor

system. For this example, we focus just on reputation, but the point-based model

can generally be applied to a number of these domain-specific problems.

Alice’s proxy contains her policies and preferences, including the trust values of

credentials that may be used for authentication. Alice also defines the precision

associated with certain trust values. For example, if the trust value of the query

issuer is twenty, then she might release her location information exactly. If the trust

value is five, then she might release a approximate interpretation of her location, for

example, the building or city where she is currently. Phrased more concretely, if

Alice’s closest friend, Bob, queries about her location, a precise answer is returned.

If a stranger queries her location, nothing about Alice should be disclosed.

The reputation advisor computes the trust value of each query issuer, based on

their credential information. The trust value is then compared to Alice’s policies, and

the corresponding location result is returned. The advisors reside in Alice’s proxy that

is a tamper-resistant system in order to prevent the leaking of private trust values.

Note that this model makes it easy to use the trust value not just in deciding what

to share, but in determining the system’s confidence that the right decision is made.

A high trust value represents high confidence and can be executed without bothering

Alice. A low trust value represents low confidence in a decision, and if low enough,

may warrant interrupting Alice to check that the right decision is being made for her.

This confidence metric is then fed back into the system for use the next time a similar

query from the same entity arrives, and used to provide an aggregate sense of past

confidence.

For location-query systems, the main advantages of using point-based trust man-

agement as opposed to conventional access control mechanisms are the flexibility of



124

making access control decisions with an arbitrary degree of precision and the ability

to derive some simple notion of confidence. In order to achieve the same expressive-

ness, a boolean-based access control policy would be very inefficient, as one needs to

enumerate all of the possible combinations of authorizations.

5.6 Related Work

Secure Multi-party Computation (SMC) was introduced in a seminal paper by Yao [125],

which contained a scheme for secure comparison. Suppose Alice (with input a) and

Bob (with input b) desire to determine whether or not a < b without revealing any

information other than this result (this is known as Yao’s Millionaire Problem). More

generally, SMC allows Alice and Bob with respective private inputs a and b to compute

a function f(a, b) by engaging in a secure protocol for public function f . Furthermore,

the protocol is private in that it reveals no additional information. This means that

Alice (resp. Bob) learns nothing other than what can be deduced from a (resp. b)

and f(a, b). Elegant general schemes are given in [14, 38, 64, 66] for computing any

function f privately.

Besides the generic work in the area of SMC, there has been extensive work on

the privacy-preserving computation of various functions. For example, computa-

tional geometry [3, 52], privacy-preserving computational biology [5], and private

two-party dynamic programming for the knapsack problem [127]. Compared to exist-

ing private scalar product protocols [3, 63, 117], our protocol is designed for general

privacy-preserving distributed scalar product computation, where vector values are

distributed among multiple players. The protocol has promising applications in the

information discovery of reputation systems. Our security is efficient, and is compa-

rable to the private two-party scalar product of Goethalsh et al. [63].

Recently, there are also solutions for privacy-preserving automated trouble-shooting

[77], privacy-preserving distributed data mining [78], private set operations [56, 83],

and equality tests [91]. We do not enumerate other private multi-party computation

work as their approaches are significantly different from ours.

There has been much work on the privacy-awareness for ubiquitous computing

environments [73, 82, 86, 111]. An existing approach to protect the location-privacy



125

in sensor networks is through distributed anonymity algorithms that are applied in

a sensor network, before service providers gain access to the data [73]. Another

category of solutions is to augment existing routing protocols to enhance source-

location privacy in sensor and conventional networks [82, 113]. A more fine-grained

approach for managing the access to location data is based on privacy-policies [86,

111], which is closer to our solution. Using point-based authorization, we are able

to support more flexible trust establishment mechanism without rigid boolean-based

policy specifications.

Our trust model work is related to the existing work on recommendation or repu-

tation systems in decentralized models. [15]. [84]. Trust evidences that are generated

by recommendations and past experiences have been used for trust establishment in

both ad-hoc and ubiquitous computing environments [54, 108, 115]. This type of

trust evidence is flexible and straightforward to collect. The notion of uncheatable

reputation was proposed in recent work by Carbunar and Sion [35], who developed

a reputation mechanism that prevents untruthful reputation information using wit-

nesses. In comparison, the main property of our trust model is the use of role-based

organizational infrastructure to derive trust values, which aims to improve the scala-

bility of trust computation.

5.7 Conclusions and Future Work

We have developed a general protocol for privacy-preserving multi-party scalar prod-

uct computation. This protocol can be used for peers to jointly compute a weighted

trust score from private recommendations and private weights. We have also pre-

sented a simple credential-based trust model for evaluating trustworthiness based on

role and delegation credentials, and recommendations. Finally, we have described the

architecture of a location-query system for giving approximate location information

based on the trust score of a requester.

There are several interesting areas to explore for future work. One is to eval-

uate other types of trust computation besides weighted average. For example, the

ordered-weighted-average operator allows the user to weight the input values in rela-

tion to their relative ordering [123]. Another promising direction is to design private



126

multi-party protocols for other desirable functionalities in a trust model. For exam-

ple, an entity wants to find out who else in the system has a similar profile of trust

values as his or her own — other entities who have similar likes and dislikes. The

problem becomes how to privately compute the distance between two set of trust

values according to certain metrics. As part of future works, we also plan to evaluate

the effectiveness of credential-based trust model in answering approximate location

queries. This experimentation involves an implementation of the point-based autho-

rization model, the weighted scalar protocol computation, and the comparison tests

with conventional trust models.



Chapter 6

Conclusions and Open Problems

6.1 Conclusions

This dissertation studies privacy-aware authentication and authorization problems in

trust management systems and presents solutions for flexible, efficient, and secure

trust establishment for parties who are from different administrative domains and

initially unknown. In particular, we have been focusing on the authentication and

authorization in distributed environments, the security of shared resources, and the

privacy of participants. Many of our protocols involve multiple autonomous and

self-interested participants interacting with each other to establish trust and service

transactions. Much of our effort has been directed toward the design of provable-

secure cryptographic protocols that are resilient to adversarial attacks, while enabling

privacy protections and accountability for access, and supporting efficient and scalable

wide-area deployment.

In this thesis, we give an administrator-free role-based delegation protocol that

facilitates dynamic cross-domain collaborations. The main feature of the protocol is

that any role member can issue delegation certificates to transfer access privileges that

can be verified without the participation of role administrators. We also point out

that our delegation protocol can be efficiently realized by aggregate signature scheme

so that the delegation chains bear compact and short signatures. We give a simple

cryptographic signature scheme for hiding the identity of delegators in a role-based

delegation chain. Our signature scheme preserves the anonymity of delegator as a

127



128

verifier can only infer that a signature is signed by a valid role member, but does not

learn the exact identity. In addition, the multiple signatures can be aggregated that

give compact and efficient presentation.

To minimize the disclosure of the sensitive credentials and policies in trust man-

agement, we develop a privacy-preserving quantitative authorization protocols. Our

solution allows the client to compute the optimal set of credentials to disclose before

actually revealing them. The client has the power of selecting what private informa-

tion to reveal to the resource owner. Therefore, our authorization model gives incen-

tives to clients to participate in the transactions which is important for the advance

of e-commerce in general. We study the integration of our quantitative authoriza-

tion model with recommendation systems that are used to derive trust parameters in

our authorization model. We develop an efficient secure multi-party scalar product

protocol for protecting sensitive recommendations where a recommender does not

need to publish his or her recommendations and thus avoid possible revenges from

peers. Our quantitative authorization model can be used to fine-tune services based

on qualifications of a client. We describe how this application is realized in a presence

system.

Authentication and authorization are important components of computer systems.

The outcome of the relevant research efforts can potentially have wide real-world

applications in a number of fields including web-services and e-commerce in general,

digital identity management, Email and anti-spam, and auditing services. The aim of

protocols developed in this area is to have broad and far-reaching impacts on people’s

perspectives on the trust and privacy of today’s digital world. The desirable impacts

include drastically improved consumers’ confidence in the security and privacy of on-

line shopping and banking, significantly savings for financial institutions and ISPs due

to reduced ID thefts and more robust message delivery, and the increased participation

of the society in web-services and e-commerce in general. Next, we list a few specific

open problems to be solved in the near future.



129

6.2 Open Problem: Authentication and Privacy of

Identities

Dumpster diving, shoulder surfing, phishing, key logging are common causes of cur-

rent identity theft problem. However, most identity management protocols, both

physical and digital ones, are fundamentally susceptible to identity theft, because

key pieces of personal information are usually entered in clear on paper or on com-

puter (e.g., one needs to type in her credit card number during an on-line purchase).

Recently, a few counter-measurements against identity theft have been proposed, but

they either involve a centralized system or require significant changes to existing

financial and administrative infrastructures.

A challenging problem is to design an usable identity management system that

not only is robust against identity theft, but also requires minimal changes to current

infrastructures. One approach is to systematically investigate the tradeoffs between

usability and security of an identity management system, and the tradeoffs between

a centralized management model and a fully decentralized one. These studies will

provide insights for designers to better understand important factors in designing a

successful identity management system. Beside protocol design and implementation,

we also need a formal security treatment to the identity theft problem, which includes

a formal definition of identity theft, security, and adversarial models. Our previous

work on this topic demonstrated the feasibility of a notary middleware for web-services

and federated identity management [72].

Protecting user privacy is an important aspect of digital identity management.

Cryptographic protocols need to be carefully designed such that users enjoy web-

services to a maximum degree without concerning about losing privacy. For example,

service providers and identity providers should be unable to collude to gather an

user’s transaction history. A challenging aspect is to protect user privacy under a

broader definition of digital identity. The IP address is one (usually fixed) identity

of an user. Conventional routing protocols allow ISP and search engines to deduce

shocking details of people’s private lives based on search queries and websites visited.

Anonymous techniques such as anonymous routing and anonymous credentials are

one promising approach to address these problems, although much work remains to



130

be done to improve the efficiency. Our work on compact anonymous-signer signa-

ture [128] is a good first-step toward this goal.

6.3 Open Problem: Authentication Services and

Middleware

In domain spoofing attacks, such as DNS cache poisoning, adversaries exploit security

vulnerabilities in name servers and launch attacks by impersonating financial services.

SSL certificates make domain spoofing harder for attackers, however, they are costly

to purchase, and time-consuming to update. Furthermore, the society still needs to

strengthen the effort of educating average consumers in order to take full advantage

of the power of SSL certificates. DNSSEC is a cryptographic extension for DNS

proposed in 1999, which aims to use cryptographic protocols to secure the communi-

cations between name servers. However, the scalability of DNSSEC seriously limits

the adoption of the protocol for today’s Internet. Improving the security protection

of ISP’s name servers (by patching) can certainly improve the overall reliability of

the naming systems. However, end users will need to passively rely on ISP’s system

administrators being wisely maintaining their name servers.

A proactive approach is to deploy a middleware architecture to allow end users’

computers to authenticate the IP/name mappings of visited web servers (e.g., verify-

ing that 192.193.226.190 is the correct IP of citicard.com’s web server). The IP/name

information is publicly available and can be easily crawled. The challenging aspect

of the approach will be to dynamically, efficiently, and securely disseminate the au-

thentication information to end users. For example, many financial institutions out-

source their customer services to third-party providers, which result in cross-domain

redirects. Cryptographic protocols will need to be carefully designed to take into

consideration the dynamic nature of addresses. This work will not only offer a more

general system for domain authentication compared to my previous solution in ac-

credited mails [71], but also provides insights to the design of scalable authentication

middleware for many other important security problems.



Bibliography

[1] A. W. Appel and E. W. Felten. Proof-carrying authentication. In ACM Con-

ference on Computer and Communications Security, pages 52–62, 1999.

[2] R. Aringhieri, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. As-

sessing efficiency of trust management in peer-to-peer systems. In 1st Inter-

national Workshop on Collaborative Peer-to-Peer Information Systems (COPS

’05), 2005.

[3] M. J. Atallah and W. Du. Secure multi-party computational geometry. In

Proceedings of 7th International Workshop on Algorithms and Data Structures

(WADS 2001), volume 2125 of Lecture Notes in Computer Science, pages 165–

179. Springer Verlag, August 2001.

[4] M. J. Atallah, H. G. Elmongui, V. Deshpande, and L. B. Schwarz. Secure

supply-chain protocols. In 2003 IEEE International Conference on Electronic

Commerce (CEC 2003), pages 293–302. IEEE Computer Society, 2003.

[5] M. J. Atallah and J. Li. Secure outsourcing of sequence comparisons. In 4th

Workshop on Privacy Enhancing Technologies (PET), volume 3424 of Lecture

Notes in Computer Science, pages 63–78, 2004.

[6] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably

secure coalition-resistant group signature scheme. In Advances in Cryptology

— CRYPTO ’00, volume 1880 of LNCS, pages 255–270. Springer Verlag, 2000.

[7] T. Aura. On the structure of delegation networks. In Proceedings of 11th

IEEE Computer Security Foundations Workshop, pages 14–26. IEEE Computer

Society Press, 1998.

131



132

[8] T. Aura. Distributed access-rights management with delegation certificates.

In Secure Internet Programming – Security Issues for Distributed and Mobile

Objects, volume 1603 of LNCS, pages 211–235. Springer, 1999.

[9] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong. Se-

cret handshakes from pairing-based key agreements. In 2003 IEEE Symposium

on Security and Privacy, pages 180–196. IEEE Press, 2003.

[10] N. Banerjee, A. Acharya, and S. Das. Enabling SIP-based applications in Ad

Hoc networks. Journal of Wireless Networks. Invited submission under review.

[11] P. S. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for

pairing-based cryptosystems. In Advances in Cryptology — Crypto ’02, volume

2442 of LNCS, pages 354–368. Springer-Verlag, 2002.

[12] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:

Formal definitions, simplified requirements, and a construction based on gen-

eral assumptions. In Advances in Cryptology - EUROCRYPT, volume 2656 of

Lecture Notes in Computer Science, pages 614–629, 2003.

[13] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for

designing efficient protocols. In Proceedings of the 1st ACM Conference on

Computer and Communications Security, pages 62–73. ACM, 1993.

[14] M. Ben-Or and A. Wigderson. Completeness theorems for non-cryptographic

fault-tolerant distributed computation. In The Twentieth Annual ACM Sym-

posium on Theory of Computing (STOC), pages 1–10. ACM Press, 1988.

[15] T. Beth, M. Borcherding, and B. Klein. Valuation of trust in open networks.

In Proceedings of the Third European Symposium on Research in Computer

Security (ESORICS ’94), pages 3–18, November 1994.

[16] R. Bhatti, J. Joshi, E. Bertino, and A. Ghafoor. X-GTRBAC admin: a decen-

tralized administration model for enterprise wide access control. In Proceedings

of the ACM Symposium on Access Control Models and Technologies (SACMAT

’04), pages 78–86, 2004.



133

[17] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote: Trust management

for public-key infrastructures. In Proceedings of Security Protocols International

Workshop, 1998.

[18] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–

173. IEEE Computer Society Press, May 1996.

[19] P. A. Bonatti and P. Samarati. A uniform framework for regulating service

access and information release on the web. Journal of Computer Security,

10(3):241–272, 2002.

[20] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in

Cryptology — Crypto ’04, LNCS, 2004.

[21] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In

Proceedings of Crypto 2001, volume 2139 of Lecture Notes in Computer Science,

pages 213–229. Springer, 2001.

[22] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.

In Advances in Cryptology — Crypto ’01, volume 2139 of LNCS, pages 213–229.

Springer-Verlag, 2001.

[23] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-

crypted signatures from bilinear maps. In Advances in Cryptology — Eurocrypt

’03, pages 416–432, 2003.

[24] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey of two signature

aggregation techniques. CryptoBytes, 6(2), 2003.

[25] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption

with short ciphertexts and private keys. In Advances in Cryptology – Crypto

’05, 2005.

[26] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In

Advances in Cryptology — Asiacrypt ’01, volume 2248 of LNCS, pages 514–532.

Springer-Verlag, 2001.



134

[27] R. Bradshaw, J. Holt, and K. Seamons. Concealing complex policies with hid-

den credentials. In Proceedings of 11th ACM Conference on Computer and

Communications Security (CCS), Oct. 2004.

[28] J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-

show credential system with optional anonymity revocation. In B. Pfitzmann,

editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of Lecture

Notes in Computer Science, pages 93–118. Springer Verlag, 2001.

[29] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to

efficient revocation of anonymous credentials. In Advances in Cryptology —

Crypto ’02, volume 2442 of LNCS, pages 61–76, 2002.

[30] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous creden-

tials from bilinear maps. In Advances in Cryptology — CRYPTO ’04, 2004.

[31] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.

In Advances in Cryptology – CRYPTO ’97, volume 1296 of LNCS, pages 410–

424. Springer-Verlag, 1997.

[32] J. Camenisch and E. Van Herreweghen. Design and implementation of the

idemix anonymous credential system. In Proceedings of the 9th ACM Conference

on Computer and Communications Security (CCS), pages 21–30, 2002.

[33] L. J. Camp and C. Wolfram. Pricing security. In Advances in Information

Security – Economics of Information Security, volume 12, pages 17–34. Kluwer

Academic Publishers, 2004.

[34] R. Canetti. Security and composition of multiparty cryptographic protocols.

Journal of Cryptology, 13(1):143–202, 2000.

[35] B. Carbunar and R. Sion. Uncheatable reputation for distributed computation

markets. In Financial Cryptography and Data Security Conference (FC ’06),

2006.

[36] M. Chase and A. Lysyanskaya. On signatures of knowledge. In Advances in

Cryptology - CRYPTO, volume 4117 of Lecture Notes in Computer Science,

pages 78–96. Springer, 2006.



135

[37] D. Chaum. Security without identification: transaction systems to make big

brother obsolete. Communications of the ACM, 28(10):1030–1044, October

1985.

[38] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure

protocols. In The twentieth annual ACM Symposium on Theory of Computing

(STOC), pages 11–19. ACM Press, 1988.

[39] D. Chaum and J.-H. Evertse. A secure and privacy-protecting protocol for

transmitting personal information between organizations. In Proceedings of

Advances in cryptology—CRYPTO ’86, pages 118–167, January 1987.

[40] D. Chaum and E. van Heijst. Group signatures. In Advances in Cryptology —

Eurocrypt ’91, pages 257–265. Springer-Verlag, 1991.

[41] W. Chen, L. Clarke, J. Kurose, and D. Towsley. Optimizing cost-sensitive trust-

negotiation protocols. In Proceedings of the 24th Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM), volume 2, pages

1431–1442, 2005.

[42] X. Chen, F. Zhang, and K. Kim. A new ID-based group signature scheme from

bilinear pairings. In K. Chae and M. Yung, editors, Proceedings of International

Workshop on Information Security Applications (WISA) 2003, volume 2908 of

LNCS, pages 585–592. Springer, August 2003.

[43] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Cer-

tificate chain discovery in SPKI/SDSI. Journal of Computer Security, 9(4):285–

322, 2001.

[44] C. Cocks. An identity based encryption scheme based on quadratic residues. In

8th IMA International Conference on Cryptography and Coding, volume 2260,

pages 360–363. Springer, Dec. 2001.

[45] T. H. Cormen, C. E. Leiserson, R. L.Rivest, and C. Stein. Introduction to

algorithms. MIT Press, 2001.



136

[46] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applica-

tions of Paillier’s probabilistic public-key system. In 4th International Workshop

on Practice and Theory in Public Key Cryptosystems (PKC ’01), LNCS 1992,

pages 119–136, 2001.

[47] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, and

F. Violante. A reputation-based approach for choosing reliable resources in

peer-to-peer networks. In ACM Conference on Computer and Communications

Security (CCS ’02), pages 207–216, 2002.

[48] G. Danezis, S. Lewis, and R. Anderson. How much is location privacy worth?

In Fourth Workshop on the Economics of Information Security (WEIS 2005),

2005.

[49] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-party

data publication. Journal of Computer Security, 11(3), 2003.

[50] Y. Ding, P. Horster, and H. Petersen. A new approach for delegation using

hierarchical delegation tokens. In 2nd Int. Conference on Computer and Com-

munications Security, pages 128 – 143. Chapman and Hall, 1996.

[51] FIPS 186-2 Digital signature standard, 2000.

[52] W. Du. A study of several specific secure two-party computation problems,

2001. PhD thesis, Purdue University, West Lafayette, Indiana.

[53] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Yloenen.

Simple public key certificate. http://www.ietf.org/rfc/rfc2693.txt.

[54] L. Eschenauer, V. D. Gligor, and J. Baras. On trust establishment in mobile

ad-hoc networks. In Proceedings of the Security Protocols Workshop, April 2002.

[55] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings of the 15th

National Computer Security Conference, 1992.

[56] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set

intersection. In Advances in Cryptology – Eurocrypt ’04, volume 3027 of LNCS,

pages 1–19. Springer-Verlag, May 2004.



137

[57] K. B. Frikken and M. J. Atallah. Privacy preserving route planning. In Proceed-

ings of the 2004 ACM workshop on Privacy in the Electronic Society (WPES),

pages 8–15. ACM Press, 2004.

[58] K. B. Frikken, M. J. Atallah, and J. Li. Hidden access control policies with

hidden credentials. In Proceedings of the 3nd ACM Workshop on Privacy in

the Electronic Society (WPES), Oct. 2004.

[59] K. B. Frikken, J. Li, and M. J. Atallah. Trust negotiation with hidden cre-

dentials, hidden policies, and policy cycles. In Proceedings of the 13th Annual

Network and Distributed System Security Symposium (NDSS), 2006.

[60] C. Günther. An identity-based key exchange protocol. In Advances in Cryp-

tology — Eurocrypt ’89, volume 434 of LNCS, pages 29–37. Springer-Verlag,

1989.

[61] C. Gentry. Certificate-based encryption and the certificate revocation problem.

In Advances in Cryptology — Eurocrypt ’03, volume 2656 of LNCS, pages 272–

293, 2003.

[62] M. Girault. Self-certified public keys. In Advances in Cryptology — Eurocrypt

’91, volume 547 of LNCS, pages 490–497. Springer, 1991.

[63] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar product

computation for privacy-preserving data mining. In C. Park and S. Chee, edi-

tors, ICISC, volume 3506 of Lecture Notes in Computer Science, pages 104–120.

Springer, 2004.

[64] O. Goldreich. Secure multi-party computation, Oct. 2002. Unpublished

Manuscript.

[65] O. Goldreich. The Foundations of Cryptography, volume 2. Cambridge Univer-

sity Press, 2004.

[66] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

The nineteenth annual ACM conference on theory of computing, pages 218–229.

ACM Press, 1987.



138

[67] S. Goldwasser. Multi-party computations: past and present. In The six-

teenth annual ACM symposium on principles of distributed computing, pages

1–6. ACM Press, 1997.

[68] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-

tive proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium

on Theory of Computing (STOC), pages 291–304, 1985.

[69] M. T. Goodrich, M. Shin, R. Tamassia, and W. H. Winsborough. Authenti-

cated dictionaries for fresh attribute credentials. In Proc. Trust Management

Conference, volume 2692 of LNCS, pages 332–347. Springer, 2003.

[70] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated

data structures for graph and geometric searching. In Proc. RSA Conference—

Cryptographers’ Track, volume 2612 of LNCS, pages 295–313. Springer, 2003.

[71] M. T. Goodrich, R. Tamassia, and D. Yao. Accredited DomainKeys: a service

architecture for improved email validation. In Proceedings of the Conference on

Email and Anti-Spam (CEAS ’05), July 2005.

[72] M. T. Goodrich, R. Tamassia, and D. Yao. Notarized federated identity man-

agement for increased trust in Web services. In Proc Conf. on Data and Appli-

cations Security (DBSec), LNCS, pages 133–147. Springer, 2006.

[73] M. Gruteser and D. Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In ACM/USENIX International Con-

ference on Mobile Systems, Applications, and Services (MobiSys), 2003.

[74] M. Gruteser, G. Schelle, A. Jain, R. Han, and D. Grunwald. Privacy-aware

location sensor networks. In 9th USENIX Workshop on Hot Topics in Operating

Systems (HotOS IX), 2003.

[75] C. A. Gunter and T. Jim. Policy-directed certificate retrieval. Software: Practice

and Experience, 30:1609–1640, September 2000.

[76] J. E. Holt, R. W. Bradshaw, K. E. Seamons, and H. Orman. Hidden credentials.

In Proceedings of the 2nd ACM Workshop on Privacy in the Electronic Society

(WPES), Oct. 2003.



139

[77] Q. Huang, D. Jao, and H. J. Wang. Applications of secure electronic voting to

automated privacy-preserving troubleshooting. In Proceedings of the 12th ACM

Conference on Computer and Communications Security (CCS), November 2005.

[78] G. Jagannathan and R. N. Wright. Privacy-preserving distributed k-means

clustering over arbitrarily partitioned data. In Proceedings of the Eleventh ACM

SIGKDD International Conference on Knowledge Discovery in Data Mining,

pages 593–599, 2005.

[79] T. Jim. SD3: A trust management system with certified evaluation. In Pro-

ceedings of the 2001 IEEE Symposium on Security and Privacy, pages 106–115.

IEEE Computer Society Press, May 2001.

[80] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-

based access control model. IEEE Trans. Knowl. Data Eng., 17(1):4–23, 2005.

[81] A. Juels. Trustee tokens: Simple and practical tracing of anonymous digi-

tal cash. In Financial Cryptography ’99, volume 1648 of LNCS, pages 33–43.

Springer-Verlag, 1999.

[82] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk. Enhancing source-location pri-

vacy in sensor network routing. In Proceedings of 25th International Conference

on Distributed Computing Systems (ICDCS), 2005.

[83] L. Kissner and D. Song. Private and threshold set-intersection. In Advances in

Cryptology – CRYPTO ’05, August 2005.

[84] R. Kohlas and U. M. Maurer. Confidence valuation in a public-key infrastruc-

ture based on uncertain evidence. In Proceedings of the Third International

Workshop on Practice and Theory in Public Key Cryptography (PKC ’00), vol-

ume 1751 of Lecture Notes in Computer Science, pages 93–112. Springer, 2000.

[85] C. E. Landwehr. Improving information flow in the information security mar-

ket. In Advances in Information Security – Economics of Information Security,

volume 12, pages 155–163. Kluwer Academic Publishers, 2004.



140

[86] M. Langheinrich. A privacy awareness system for ubiquitous computing envi-

ronments. In In 4th International Conference on Ubiquitous Computing, 2002.

[87] J. Li, N. Li, and W. H. Winsborough. Automated trust negotiation using

cryptographic credentials. In Proceedings of 12th ACM Conference on Computer

and Communications Security (CCS), pages 46–57, 2005.

[88] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A logic-based

approach to distributed authorization. ACM Transaction on Information and

System Security (TISSEC), Feb. 2003. To appear.

[89] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-

management framework. In Proceedings of IEEE Symposium on Security and

Privacy, pages 114–130, 2002.

[90] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain

discovery in trust management. Journal of Computer Security, 11(1):35–86,

February 2003.

[91] H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test.

In Advances in Cryptology — Asiacrypt ’03, LNCS, pages 416–433, 2003.

[92] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate

signatures from trapdoor permutations. In Advances in Cryptology — Eurocrypt

’04, volume 3027 of LNCS, pages 74–90. Springer-Verlag, 2004.

[93] N. Nagaratnam and D. Lea. Secure delegation for distributed object envi-

ronments. In Proceedings of the 4th USENIX Conference on Object-Oriented

Technologies and Systems (COOTS), April 1998.

[94] M. Naor and K. Nissim. Certificate revocation and certificate update. In Pro-

ceedings of the 7th USENIX Security Symposium, pages 217–228, 1998.

[95] B. C. Neuman. Proxy-based authentication and accounting for distributed sys-

tems. In International Conference on Distributed Computing Systems, pages

283–291, 1993.



141

[96] T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems

for the security of cryptographic schemes. In PKC ’01, volume 1992 of LNCS,

pages 104–118. Springer-Verlag, 2001.

[97] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. Advances in Cryptology – EUROCRYPT 1999, LNCS 1592:223–238,

1999.

[98] S. L. Pallickara, B. Plale, L. Fang, and D. Gannon. End-to-end trustworthy

data access in data-oriented scientific computing. In Sixth IEEE International

Symposium on Cluster Computing and the Grid (CCGrid 2006), pages 395–400,

2006.

[99] B. Pinkas. Cryptographic techniques for privacy-preserving data mining. KDD

Explorations, 4(2):12–19, 2002.

[100] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public key cryptosystems. Commun. ACM, 21:120–126, 1978.

[101] P. Ruth, D. Xu, B. K. Bhargava, and F. Regnier. E-notebook middleware for

accountability and reputation based trust in distributed data sharing commu-

nities. In C. D. Jensen, S. Poslad, and T. Dimitrakos, editors, iTrust, volume

2995 of Lecture Notes in Computer Science, pages 161–175. Springer, 2004.

[102] R. S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–

19, November 1993.

[103] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based

access control models. IEEE Computer, 29, Number 2:38–47, 1996.

[104] O. S. Saydjari. Multilevel security: Reprise. IEEE Security and Privacy,

02(5):64–67, 2004.

[105] B. Schneier. Applied Cryptography: protocols, algorithms, and source code in

C. John Wiley and Sons, Inc., New York, 1994.

[106] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryp-

tology, 4:161–174, 1991.



142

[107] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances

in Cryptology – Crypto’84, volume 196 of Lecture Notes in Computer Science,

pages 47–53. Springer, 1984.

[108] B. Shand, N. Dimmock, and J. Bacon. Trust for ubiquitous, transparent col-

laboration. Wirel. Netw., 10(6):711–721, 2004.

[109] M. Shehab, E. Bertino, and A. Ghafoor. Secure collaboration in mediator-

free environments. In Proceedings of the ACM Conference on Computer and

Communications Security (CCS ’05), November 2005.

[110] Shibboleth. http://middleware.internet2.edu/shibboleth/.

[111] E. Snekkenes. Concepts for personal location privacy policies. In In Proceedings

of the 3rd ACM Conference on Electronic Commerce (CEC), pages 48–57. ACM

Press, 2001.

[112] K. R. Sollins. Cascaded authentication. In Proceedings of 1988 IEEE Sympo-

sium on Security and Privacy, pages 156–163, April 1988.

[113] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections

and onion routing. In Proceedings of the IEEE Symposium on Security and

Privacy, pages 44–54, May 1997.

[114] R. Tamassia, D. Yao, and W. H. Winsborough. Role-based cascaded delega-

tion. In Proceedings of the ACM Symposium on Access Control Models and

Technologies (SACMAT ’04), pages 146 – 155. ACM Press, June 2004.

[115] G. Theodorakopoulos and J. S. Baras. Trust evaluation in ad-hoc networks. In

WiSe ’04: Proceedings of the 2004 ACM workshop on Wireless security, pages

1–10. ACM Press, 2004.

[116] H. Tran, M. Hitchens, V. Varadharajan, and P. Watters. A trust based access

control framework for P2P file-sharing systems. In Proceedings of the Proceed-

ings of the 38th Annual Hawaii International Conference on System Sciences

(HICSS’05) - Track 9, page 302c. IEEE Computer Society, 2005.



143

[117] J. Vaidya and C. Clifton. Privacy preserving association rule mining in verti-

cally partitioned data. In Proceedings of The 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 639–644. ACM

Press, July 2002.

[118] V. Varadharajan, P. Allen, and S. Black. An analysis of the proxy problem in

distributed systems. In Proceedings of 1991 IEEE Symposium on Security and

Privacy, pages 255–275, 1991.

[119] W. Winsborough and N. Li. Safety in automated trust negotiation. In Pro-

ceedings of the 2004 IEEE Symposium on Security and Privacy, pages 147–160.

IEEE Press, May 2004.

[120] W. H. Winsborough and N. Li. Safety in automated trust negotiation. In Pro-

ceedings of IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, May 2004.

[121] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated trust ne-

gotiation. In DARPA Information Survivability Conference and Exposition,

volume I, pages 88–102. IEEE Press, Jan. 2000.

[122] L. Xiong and L. Liu. A reputation-based trust model for Peer-to-Peer ecom-

merce communities. In 2003 IEEE International Conference on Electronic Com-

merce (CEC 2003), pages 275–284. IEEE Computer Society, 2003.

[123] R. Yager. On ordered weighted averaging aggregation operators in multi-

criteria decision making. IEEE Transactions on Systems, Man and Cybernetics,

18(1):183–190, 1988.

[124] N. Yankelovich, W. Walker, P. Roberts, M. Wessler, J. Kaplan, and J. Provino.

Meeting central: making distributed meetings more effective. In Proceedings of

the 2004 ACM Conference on Computer Supported Cooperative Work (CSCW

’04), pages 419–428, New York, NY, USA, 2004. ACM Press.

[125] A. C. Yao. How to generate and exchange secrets. In Proceedings of the 27th

IEEE Symposium on Foundations of Computer Science, pages 162–167. IEEE

Computer Society Press, 1986.



144

[126] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-based encryption for com-

plex hierarchies with applications to forward security and broadcast encryption.

In Proceedings of the ACM Conference on Computer and Communications Se-

curity (CCS), pages 354 – 363. ACM Press, 2004.

[127] D. Yao, K. B. Frikken, M. J. Atallah, and R. Tamassia. Point-based trust: De-

fine how much privacy is worth. In Proc. Int. Conf. on Information and Com-

munications Security (ICICS), volume 4307 of LNCS, pages 190–209. Springer,

2006. Best Student Paper Award.

[128] D. Yao and R. Tamassia. Cascaded authorization with anonymous-signer ag-

gregate signatures. In Proc. IEEE Systems, Man and Cybernetics Information

Assurance Workshop (IAW), pages 84–91, June 2006.

[129] D. Yao, R. Tamassia, and S. Proctor. On improving the performance of

role-based cascaded delegation in ubiquitous computing. In Proceedings of

IEEE/CreateNet Conference on Security and Privacy for Emerging Areas in

Communication Networks (SecureComm ’05), pages 157–168. IEEE Press,

September 2005.

[130] D. Yao, R. Tamassia, and S. Proctor. Private distributed scalar product protocol

with application to privacy-preserving computation of trust. In Proc. IFIPTM

Joint iTrust and PST Conferences on Privacy, Trust Management and Security,

July 2007.

[131] M. Yokoo and K. Suzuki. Secure multi-agent dynamic programming based on

homomorphic encryption and its application to combinatorial auction. In First

joint International Conference on Autonomous Agents and Multiagent Systems

(AAMAS-2002), pages 112–119. ACM Press, 2002.

[132] T. Yu, X. Ma, and M. Winslett. PRUNES: An efficient and complete strategy

for automated trust negotiation over the internet. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS), pages 210–219,

November 2000.



145

[133] T. Yu and M. Winslett. A unified scheme for resource protection in automated

trust negotiation. In Proceedings of IEEE Symposium on Security and Privacy,

pages 110–122. IEEE Computer Society Press, May 2003.

[134] T. Yu, M. Winslett, and K. E. Seamons. Interoperable strategies in automated

trust negotiation. In Proceedings of the 8th ACM Conference on Computer and

Communications Security (CCS ’01), pages 146–155. ACM Press, Nov. 2001.

[135] X. Zhang, S. Oh, and R. Sandhu. PBDM: A flexible delegation model in RBAC.

In Proceedings of the ACM Symposium on Access Control Models and Technolo-

gies, pages 149 – 157. ACM Press, 2003.

[136] C. Zouridaki, B. L. Mark, M. Hejmo, and R. K. Thomas. A quantitative

trust establishment framework for reliable data packet delivery in MANETs. In

V. Atluri, P. Ning, and W. Du, editors, Proceedings of the Third ACM Work-

shop on Security of Ad Hoc and Sensor Networks (SASN), pages 1–10. ACM,

2005.


