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Chapter 1

Introduction: the Case for Online

Stochastic Combinatorial

Optimization

Throughout this dissertation, we will be concerned with a class of decision-making problems called

online stochastic combinatorial optimization (OSCO) problems. Optimization problems are prob-

lems consisting of finding the decision that optimize an objective: typically, maximizing revenues,

minimizing costs, or maximizing some service quality metric. Such problems are online when the

decision-maker has to make a sequence of decisions, while receiving more and more information

about her environment, like the weather, stock prices, or inventory levels. An online optimization

problem is stochastic when, in addition, the decision-maker has some probabilistic knowledge of the

future, and combinatorial if decisions are discrete (i.e., do this or do that) rather than continuous

(like turning a knob).

Examples of such problems abound. In inventory management for example, a continuous flow

of information about sales and supply is available to the decision-maker, stochastic models of the

demands are available, and placing an order is a discrete decision. In chemical engineering, starting

a chemical reaction is a discrete decision, and there are uncertainties about the demand and the

outcomes of chemical reactions. In revenue management, requests for a good or a service arrive,

and the decision-maker has to decide whether to accept or reject the request at a given price, with

uncertainty about future requests.

A very thorough reference on OSCO is [50], in which the term online stochastic combinatorial op-

timization was introduced, and in which a class of algorithms for decision-making called anticipatory

algorithms was studied. This thesis will be in the direct continuation of that line of work.

Yet, today most such problems are treated in ways that ignore some aspects of the problem. In

inventory management, it is still common to use simple rules such as “order when the inventory hits a

threshold”. In manufacturing, the scheduling process is getting more and more complicated by to the
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“mass-customization” model. Scheduling decisions in such factories are often made ignoring future

demands, so only the combinatorics is taken into account. This is the case for example at Dell’s

Morton L. Topfer Manufacturing Center in Texas [33]: to accommodate Dell’s build-to-order model,

assembly lines can produced many different computers, but there are set up cost when switching

from one model to another. Yet, switching decisions are based with respect to existing orders only,

without forecasting. In revenue management, it is traditionally the opposite: uncertainty is at the

heart of models used by airlines, but the discrete nature of seats is not considered.

There are two premises to this doctoral work:

1. The Information Technology (IT) infrastructure in medium-sized and large companies provide

all what is needed to implement OSCO algorithms;

2. Making decisions using sophisticated algorithms that consider the three aspects (online,

stochastic, and combinatorial) alltogether can yield productivity gains.

In the rest of this chapter, I will back the these two claims, arguing that the time is right to do

research on OSCO algorithms, and that the market for such solutions will be large.

1.1 The IT Infrastructure Is Here

Developed in the late 80s, Enterprise Resource Planning (ERP) softwares have become ubiquitous.

These software provide an integrated IT platform for monitoring and controlling all the resources

in a company. Since the mid-90s at Colgate-Palmolive, an early adopter of SAP R/3, the leading

ERP software, low inventory level in warehouses automatically triggers production orders, and if

necessary orders of raw materials to achieve this production.

What was revolutionnary at that time is today incredibly common: in 2005, the ERP world

market was worth $16B (source: ARC Advisory Group, Inc). Virtually all large companies have

implemented an ERP, and thanks to the software-as-a-service model, which drastically reduces fixed

costs, ERP vendors are now putting much effort into converting midsized and small companies as

well.

While ERPs gained penetration, sensors technology also improved. It has come a long way, from

printed numbers on items that operators had to type, to bar codes and now to these so fashionable

RFID tags. An excellent example of the progresses made in system monitoring are the package

tracking tools provided on the Web by all major carriers such as the United States Postal Services

and FedEx, which provides updates every few hours or so about the location of a package.

While RFID enabled monitoring items in factories and warehouses, GPSs and wireless data

transmission enabled monitoring the location of vehicles. Today, both sensor technology and ERPs

are mature, so that softwares have real-time access to a very accurate description of the state of the

system being controlled and of its environment.

The high penetration of ERPs and advances in sensors technology provide a fantastic opportunity

for Operations Research (OR) practitioners. OR, the science of using resource in the most efficient

2



way, was traditionally used for strategic planning (i.e., long term and often capital-intensive decision

such as “should I build a new warehouse?”). Such questions were studied by OR analysts, which

spent most of their time using spreadsheet and statistics software, and whose end product was a

recommendation. This has been very successful in some cases, but as of 2007, there were only 60,000

OR anylists working in the US, according to the Bureau of Labor Statistics of the US Department

of Labor. That’s a tiny number given that in 2002 there were 6.9m companies registered in the US

that have at least one employee (http://www.census.gov/econ/census02/data/us/US000.HTM).

Such a small number of OR analysts reflect that for many decisions to be made, asking an analyst

is not practical:

• it can be that the response time needed is too short for an analyst;

• or it can be that the monetary returns of a decision made scientifically would be exceeded by

the cost of the analysis.

Therefore, there is a clear need for automated decision-making tools, with a short response time,

and an operating cost (per decision made) that is much smaller than the one of an OR analyst.

Yet, this is exactly what ERPs and sensor technology permits to do. There is therefore a shift from

OR analysts to OR software engineers whose end products are not recommendations, but decision

support tools (that produce recommendations, validated by a human operator) or decision making

tools that directly control some actuators, without human intervention. Which one is best depend

on the required response time. Example of decision-making tools in which no human intervention

is possible is sheet routing in modular printers currently developed by Xerox [23](in which there

are exponentially many ways to route the paper from the supply bin to the output bin, so that the

system is resilient to paper jams), or embedded radar control systems under development by Thales

[54], a French defense company, in which local search and linear programming are used to schedule

several hundreds tasks per seconds.

So far, we have provided arguments that the IT infrastructure enables the use of online decision

making software. But we are concerned with, more specifically, online stochastic combinatorial

optimization (OSCO) software. To implement such software, being able to monitor the state of the

system and to commit decisions or recommendations is not enough: you also need to have access to a

stochastic model of the future, and to compute good decisions. Yet, again thanks to ERPs, massive

amount of historical data are available, which can be used in various way to provide stochastic

information about the future: this data can be used to provide non-parametric models, or to fit a

parametric model, or to validate a stochastic model. The maturity of statistics and data-mining,

and the abundance of data, provides accurate stochastic models of the future.

The last ingredient needed is the ability to compute a good decision, given the state of the system

and a stochastic model of the future. That questions was studied for the first time by Bellman in

the 1950s, but, despite fifty years of continuous effort, many problems remain computationally hard.

The main purpose of this thesis is to advance the state of the art in that respect.

3



1.2 Talking Into Account All Aspects of OSCO Problems

Can Yield Productivity Gains

The previous section argued that the IT infrastructure in modern companies make it possible to

implement OSCO software, but does not answer the question: is it worth the effort? I believe the

answer is yes.

Indeed, faced by a OSCO problem, it is usually possible to write software that ignores one or

several aspect of the problem, either its online aspect, its stochastic aspect, or its combinatorial

aspect. Certainly, there are problems in which one aspect is less important than the others. A

premise of this dissertation is that there are problems in which none of the aspects can be ignored

without suffering from a substantial decrease in decision quality.

The two main problems we will focus on in this work fall in that category. The first one is a

stochastic project scheduling in the pharmaceutical industry. A company has a number of drugs

that are potential cures for different diseases. Releasing such a drug on the market requires to pass

a series of tests. The problem is online, because there is a continuous flow of information about

that status of the ongoing tests; it is stochastic because tests can fail, preventing the drug from

being released; and it is combinatorial, because limited resources (labs and workforce) are available

to conduct the tests. On such a problem, the goal is to maximize the expected profit, which is the

difference between the expected revenues, that depend of the release date of drugs, and expected

costs, that depend of the tests that have been conducted.

On this problem, the three aspects need to be considered together to produce high quality

decisions:

• Ignoring uncertainty is a very common simplification that can takes several forms. One of

them is to make decision assuming the most likely future is the one that will happen. In

other words, a point-forecast is used for the future instead of a probability distribution. Such

a strategy is a bad idea on this project scheduling problem, as projects with less than 50%

chances of success will never be tried, even if they have huge potential returns. Such a strategy

obtains expected profit that is 13 % below the one achieved by our best OSCO algorithm in

the median case, and up to 39% below on some instance.

• Ignoring the online aspect consists of ignoring that there is an alternation between receiving

information about the tests and making scheduling decisions. This has proved to be a very

successful on many problems, such as online reservations systems to assign spots to commercial

breaks on TV [3, 26]. However, here such a simplification yields an expected profit that is 9%

below the one achieved by our best OSCO algorithm in the median case, and up to 26% below

on some instance.

• Ignoring the combinatorial aspect of the problems would be ignoring how the availability of

the resources creates interactions between the decisions for all the potential drugs to tests.

One way of doing that is to compute the expected profit achieved by testing and releasing each
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possible each drug independently, so that the resource constraint is irrelevant; then ranking

drugs by independent expected profit and testing the ones that are on top of the list. That

approach provides an expected profit that is 5.5% below the one achieved by our best OSCO

algorithm in the median case, and up to 16% below on some instance.

Much of the art of operations research consists of knowing what aspects of a problem can be

ignored. This example shows that there are OSCO problems on which high-quality decisions can

only be achieved be considering the three aspects altogether.

1.3 The Goal of this Dissertation

We have identified that the infrastructure is in place to plug in OSCO software, and that doing so

can provide productivity gains, which are the two premises of this work. Yet, to that date very few

companies use OSCO softwares. This is because of two reasons:

• There are still computational barriers: OSCO problems are hard to solve;

• and there are psychological barriers: OSCO is perceived as too complicated, or not worth it.

My goal, in writing this thesis, is to make progress on these two issues. For the computational

aspect, I will present a new and efficient algorithm that produce substantial increase in decision

qualities over the previous state-of-the-art. This algorithm has theoretical guarantees, such as the

convergence of the decision to the optimal one when the available runtime increases, but is also very

good at making decisions within a given runtime.

For the psychological aspect, which is probably the most important barrier today to the adoption

of OSCO softwares, we will show examples on applications that are as close as possible to the real

world problem. The first one comes from the pharmaceutical industry, and features uncertainty

about revenues, task durations, tasks outcomes, and costs. The second one is a fairly accurate

model of a polystyrene production factory run by ABB, a Swiss engineering conglomerate. These

examples should convey the idea that this work is not a mere academic exercise, and that OSCO

algorithms can be applied in real-world situations.

1.4 Plan

This thesis is organized as follows. Chapter 2 will describe the few OSCO problems that we will

consider in this dissertation. These are the three above-mentioned problems (TV commercial breaks

packing, pharmaceutical project scheduling, polystyrene production scheduling), as well as a missile

interception problem. Chapter 3 will then review the state of the art of optimization under uncer-

tainty, focusing on the applicability of the described methods to the considered OSCO problems.

Chapter 4 will describe a new model, exogenous Markov decision processes, to model the type

of problems we consider. This model will provide the framework for the two next chapters.
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Chapter 5 will study widely used algorithms called one-step anticipatory algorithms that ignores

the alternation of decisions and observations. We investigate why this suboptimal algorithm performs

sometimes surprisingly well. However, as mentioned earlier, there are other problems on which

this approach is not satisfying, and this will lead us to introduce Amsaa, the Anytime Multistep

Anticipatory Algorithm, in chapter 6.

Empirical results on Amsaa will be presented in chapter 7. Chapter 8 will investigate the design

choices of a subroutine used in Amsaa for which many variants are possible. Finally, chapter 9 will

give some concluding remarks.
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Chapter 2

Motivation: Several Problems and

their Shared Charateristics

To start with some concrete material, here are three examples of online stochastic optimization

problem: the Stochastic Multiknapsack problem (SMK), originating from TV commercial break

allocation; the stochastic resource constraint project scheuling problem (S-RCPSP), originating from

the pharmaceutical industry; the weapon resource management (WRM) problem, a very prospective

problem in the field of missile interception; and the batch scheduling (BS) problem, a production

problem in the chemical industry.

These problems are all Online Stochastic Combinatorial Optimization (OSCO) problems, and

they will serve as motivation for this work, as well as benchmarks.

2.1 The Stochastic Multiknapsack Problem

2.1.1 Description

The Stochastic Multiknapsack Problem (SMK) is an abstraction of an online reservation systems for

TV commercial breaks that was introduced in [3]. Customers place requests in real time for some

service at a fixed date (e.g., having a given commercial spot broadcasted during a commercial break).

The resources are modeled by a multiknapsack constraint: there are several breaks, equivalent from

the advertiser point of view, each with a given capacity (its duration). The decision-maker must

choose whether to accept or deny the requested service. Customers must be immediately notified

of this decision, and all accepted requests must be satisfied. Moreover, accepted requests must be

assigned to a specific resource at reservation time and this choice cannot be reconsidered. The goal is

to maximize the expected profit of the served requests which come from different types with different

characteristics and arrival frequencies.

The input is specified as follow. The number of bins and their respective capacities are given. A
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collection of item types is given. Each item belongs to a given type, which specifies its value (the

price the advertiser will have to pay) and its weight (the duration of the ad). For each type, the

sequence of arrival of items of this type is modelled as a Poisson process of given parameter.

2.1.2 Scenario and Offline Problem

On the SMK problem, one can define a concept of scenario. A scenario is one possible realization

of each of the Poisson processes associated with the item types. The offline problem is the problem

of making decisions given a scenario. This is the problem faced by a decision maker that could

perfectly foresee the future. Here, this problem is a multiknapsack problem. Indeed, if a decision

maker knows the set of items that will arrive from the current time to the date of the service, their

respective arrival date are irrelevant: all that makers if to choose how to allocate these items to the

resources — and that’s a multiknapsack problem.

2.2 The Stochastic Resource-Constained Project Scheduling

Problem

2.2.1 Description

Another problem is the stochastic resource-constrained project scheduling problem (S-RCPSP), origi-

nating from the pharmaceutical industry [17]. A pharmaceutical company has a number of candidate

molecules that can be commercialized if shown successful, and a number of laboratories to test them.

Each molecule is associated with a project consisting of a sequence of tasks. Each task has a dura-

tion, a cost, and a result (i.e., a failure, which ends the project, or different degrees of success, which

allow the project to continue). Tasks are not preemptive, and cannot be aborted once started. A

project is successful if all its tasks are successful. A successful project generates a revenue which

is a known non-increasing function of the completion date of the project. The goal is to schedule

the tasks in the laboratories subject to the precedence and resource constraints to maximize the

expected profit, the profit being the difference between the project revenues and their costs. The

resource constraints impose that the number of tasks executing at any time t does not exceed the

number of labs.

Each molecule’s project has its own stochastic model. The realizations of a task are triplets of the

form (duration, cost, result) and the durations, costs, and outcomes of the tasks in a given project

are not independent. The more successful a task is, the higher the probability that the next task in

the project will be successful too. Formally, the stochastic model for a project is a heterogeneous

first-order Markov chain: For each task i, a transition matrix gives the probability of the realization

of task i + 1 given the realizations of task i. The task realizations, transition probabilities, and

revenue functions are all given. Observe that it may be optimal to stop a project even if it has not

failed so far. It is also possible that, at a given time, not scheduling any task in an available lab is
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p = 0.5

p = 0.5

cost: 5

cost: 5

Project B

Project C

cost: 5

Project A

- All tasks have duration 2
- All costs are zero, except task A1, cost 5
- There are 2 labs, one available at time 0, one available at 
time 1.
- The revenues, as function of completion time, are:

Compl <= 2 3 4 5 >=6
rev. A 45 45 45 22 0

rev. B 18 9 0 0 0

rev. C 15 8 1 0 0

Figure 2.1: An Instance of the Stochastic Project Scheduling Problem.

optimal. Indeed, waiting may reveal uncertain information and allow for more informed decisions,

as already demonstrated in dynamic fleet management [8].

2.2.2 Example

Figure 2.1 depicts a small instance which we will use to illustrate soem algorithms. In the instance,

there are 3 projects and 4 tasks. There are two laboratories, one immediately available, the other

that will become available at time 1.

We will benchmark algorithms on a collection of instances introduced in [21], and itself based

on the instance studied in [17]. Figure 2.2 depicts the stochastic models of the regular instance,

that we will denote Reg. In this instance, two labs are available. The figure shows the five projects.

Tickness of arrows represent transition probability: the thicker, the more likely. Boxes represents

tasks, with their length represented by their length (the scales show the time units), and their costs

written inside the boxes. The color depicts whether the test succeeds. Revenue functions are not

represented here.

2.2.3 Scenario and Offline Problem

Like for SMK, it is possible to define scenarios on this problem. Here, a scenario specifies, for each

molecule, a path in the Markov model associated with the project for that molecule. On the depicted

instance, there are only two different scenarios, corresponding to the duration of task A.2.

Given a scenario, the offline problem is the problem faced by a decision maker who can foresee

that this scenario is the actual one. For the depicted instance, the offline optimal schedules for the

two possible scenarios are shown in Figure 2.3. Note that they differ at the first decision when the

uncertainty is not yet resolved. Hence the optimal online policy necessarily acheives an expected

profit inferior to those of a perfect clairvoyant decision maker.
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Figure 2.2: Stochastic model for instance Reg of the S-RCPSP.
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(a) When A succeds (b) When A fails

0 2 4

A1 A2A2

BB C

BB

0 2 4

Value = 45 - 5 + 9 = 49 Value = 18 + 8 = 26

Figure 2.3: The Offline Optimal Schedules for the Stochastic Project Scheduling Instance.

2.3 The Weapon Resource Management Problem

2.3.1 Description

There are many variants of the Weapon Resource Management Problem (WRM), all concerned with

the optimal utilization of a limited resources (ammunitions, missiles...) against a set of strategic

targets (mobile or not). The variant we present here was introduced by David Grabiner from the

MIT Lincoln Laboratory, and is inspired by [28].

In this problem, the decision maker is facing a salve of missiles coming toward his country. If the

targeted country is the United States, it is a reasonable assumption that all the enemy missiles will

be launched at once, because such a strike will undoubtedly result in a reaction of total elimination

of the attacker — and so lauching all the missiles at once is optimal.

Radars can already detect and track incoming missiles; in the near future, the current research

will also provide software tools to predict their target with great accuracy. Hence, we assume that the

decision maker can fully observe the whole set of incoming missiles, e1, . . . , eE , and their respective

target trg(e1), . . . , trg(eE). We also assume knowledge of the probability p(ei) that the missile ei
will successfully reach and destroy its target.

These targets belong to a set of assets: {trg(e1), . . . , trg(eE)} ⊆ {a1, . . . , aA}. Asset ai is given

the value v(ai). The goal is to protects the assets with a limited sets of missile interceptors (or

resources) r1, . . . , rR. Each such interceptor ri can intercept any target, and is succesful with a

known probability p(ri) that depends only on the resource, not on the missile being intercepted.

Interceptors fly faster than missiles, so there are several opportunities to send interceptors at a

given missile. In this simple model, there are a few discrete time steps 0, . . . , T , each lasting for a

few tens of seconds. The travel times of the incoming missiles is of one to three minutes, so the

number of time steps T is likely to be between 5 and 10. At time 0, no incoming missiles has been

intercepted. In each time period 0 ≤ t < T , the decision maker send a number of interceptors

to some missiles, and oberve whether these interceptors were succesful. We denote live(ei, t) the

boolean variable that is true if missible ei has not been succesfully intercepted at the beginning of

time period 0 ≤ t ≤ T .

The goal is to maximize the expected expected (repetition intended) value of the assets that

are not destroyed by the incoming missiles, plus a value for each unused resource. Indeed, at
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time T , the expected value of the non-destroyed assets is the following function of the vector

live(e1, T ), . . . , live(eE , T ):

f (live(e1, T ), . . . , live(eE , T )) =
∑

i=1...A

v(ai) ·
∏

j=1..E
trg(ej)=ai
live(ej ,T )

(1− p(ej)) .

The problem consist of finding the way of sending the interceptors that maximizes

E [f (live(e1, T ), . . . , live(eE , T )) + c(nbr unused resource)]. Note that the fact that f is the expected

value of the remaining assets has nothing to do with stochastic optimization, and f can be simply

considered as any other utility function.

If there are fewer remaining resources than time periods, then the problem is relatively easy,

because exactly one interceptor should be send per time period. Indeed, it would not make sense to

send several ones at once, since there is time to wait for the observation of whether each interceptor

is succesful, enabling more informed decisions.

Alas, due to the short time horizon it is likely that there will be more resources than time periods.

In that case, deciding the number of interceptors to send is in itself difficult.

2.3.2 Scenarios and Offline Problems

A scenario can be naturally defined for this problem, ans is simply the subset S ⊆ {r1, . . . , rR}
of successful resource will be succesful at making an interception. The scenarios do not contain

information about whether missiles are sucessful, because as explained above this is irrelevant from

a stochastic optimization perspective: it is already taken into account in the objective function.

The offline problem consist of, knowing the set of succesful interceptors, determining the optimal

allocations of these interceptors to the missiles. If there are at least as many successful resources

than missiles, then the solution is trivially to intercept them all. In general, the offline problem is

not as simple, but we will see that it is solvable in polynomial time.

2.4 The Batch Scheduling Problem

2.4.1 General Description

In production, companies have switched from single-product factories to factories that produce a

large number of different items. This is especially true is the automotive industry, where the number

of vehicle configurations may well exceed the total number of cars that will ever be produced — this

is called the mass-customization paradigm. To a lesser extent, this has also affected the chemical

industry. Our next motivating problem is an accurate model of the problem of scheduling the

production of polystyrene in a factory operated by ABB, a Swiss conglomerate. This problem has

been studied in a few papers, for instance [44], in which a stochastic programming approach is

proposed, and [49], which proposes to solve a two-stage stochastic program using an evolutionary

algorithm for the first stage decisions and integer programming for the second stage ones.
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Figure 2.4: The three stages of the polystyrene production process

This plants produces 10 different varieties of polystyrene: it produces polystyrene of two types, A

and B, and for each type there are 5 grain sizes. The ten varieties are denoted A1, . . . , A5, B1, . . . ,

B5. Figure 2.4 shows the three stages of the polystyrene production. Raw materials, entering on

the left, need to be prepared for the polymerizations. Then four identical reactors are available to

polymerize the materials. Each polymerization takes 17h, but different recipes produces polystyrene

of either A or B type. In addition, each such reaction produces grains of all sizes, but some recipes

favor the production of large grains, while others favors the production of small grains. In total,

there are 10 possible recipes, each of them producing mostly one of the ten polystyrene varieties.

For instance, the recipe that favors A2 produces 65% of A2, but also 8% of A1, 24% of A3, 2% of

A4 and 1% of A5.

The polystyrene produced by one polymerization is referred to as a batch. Reactors must be used

at their nominal capacity, so all polymerizations produces the same total quantity of polystyrene,

and one batch will be our unit of quantity.

When a polymerization ends in a reactor, the whole content of the reactor is transferred at once

into the mixer of the finishing line corresponding to the type of polystyrene produced. This mixer

has a capacity of three batches, but, if at any time it contains less than 0.1 batch, then it must be

shut off and some set up has to be done before it can be restarted. This is costly: a start up and shut

down cycle has an estimated cost of 6k$, that is, as much as the cost of doing the polymerization of

6 batches.

The mixer slowly feeds the separators, that dispatches grains according to their sizes. This feed

rate must be between 0.10 and 0.25 batches/h. The lag time of the separation stage is 24h, regardless

of the feed rate.

The decisions maker has to choose what recipes to use, when to perform the polymerizations,

and at what rate to feed the separators, subject to constraints about the capacities of the reactors

(a cumulative resource constraint of capacity 4), capacities of the mixers, and capacities of the

separators. There are no constraints for the preparation stage: the reactors are the bottleneck of
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the process, so for any batch production schedule it is possible to accommodate the preparation

resources.

Customers place orders online for a given quantity of a given variety of polystyrene to be delivered

at a given due date. While questions of revenues management would certainly be interresting, here

we assume that the unit price for each variety of polystyrene is public, and that orders cannot be

denied. In our regular instance, the price is $2k per batch. This is a just-in-time (JIT) scheduling

problem: if the polystyrene is produced before the due date, it must be hold until then, implying

an inventory cost of $50/(batch· day). On the other end, if the order is fulfilled after the due date,

then late fees of $50/(batch· day) are paid to the customer.

In real life, there are several sources of uncertainty in that problem. The most important is

demand. The proportion of each grain size produced by a polymerization reaction is also slightly

uncertain. In addition, it happens (rarely) that a polymerization reaction fails, in that case its

product has to be discarded. Finally, reactors might breakdown. For the sake of simplicity, we will

consider only demand uncertainty in our study.

2.4.2 Details of the Model Used

Time Discretization The model of the problem we use will follow closely the model presented

in [44]. This is a simplification of the problem that recognizes that, because the inventory and late

fees cost for a day or two are small compared to the other costs and revenues involved, the precise

hour-by-the-hour scheduling of the polymerization is not of critical importance. Therefore, a time

discretization, with periods of 48 hours, is used.

Because the duration of all polymerizations are identical, and because it takes a fixed duration

of 24 hours for polystyrene to go from the mixer to the inventory, three time scales will be used

depending on the context. A first one, used for polymerization decisions, will have its period 0 for

time t = 0 to t = 48h, period 1 from t = 48h to t = 96h, etc. A second time scale, used when dealing

with mixers decisions, will have its period 0 from t = 17h to t = 65h, its period 1 from t = 65h to

t = 113h, etc. Finally, the last one, used for inventory, due dates, and sales, will have its period 0

from t = 41h to t = 89h, period 1 from t = 89h to t = 137h, etc. Thanks to the fixed duration of

the polymerization and finishing process, a polymerization done in period i for the first time scale

will be in the finishing line in period i of the second time scale and arrive in the inventory in period

i of the third time scale. Because of this fact we will never need to make what time scale we are

using explicit.

Stochastic Demand Model The demand model found in [44] and in subsequent papers is not

sufficient for online simulations, because it does not have a concept for when orders are placed, and

so we had to refine it. For each polystyrene type, we model the arrival of orders by a Poisson process.

As time is discrete, there is some probability that one order will come in each period. This order

has then the following characteristics. It is for a quantity that is generated uniformly at random

between 0 and a maximal size for orders. In all studied instances this maximal size was 4.0 batches.
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The due date of this order follows a geometric distribution with parameter 1/2, with an offset of the

order placement period plus two. Orders are placed at the beginning of a period, but due dates are

with respect to the end of a period. That is, and order arriving at the beginning of period 3 will be

due at the end of period 5 with probability 1/2, at the end of period 6 with probability 1/4, and so

on.

Reactor Capacity Constraints The capacity constraints due to reactors is simply that the

number of polymerizations to be scheduled in each period cannot exceed 12. Indeed, there are 48

hours per period, and polymerizations takes 17 hours, so on one reactor d 48
17e = 3 reactions can be

started, and so 3×4 = 12 reactions can be started on all the reactors. In the previous computations,

rounding was to the next integer rather than the previous one, because thanks to the shifted time

scales, what matter is only the start of a polymerizations: that a reaction ends after the end of the

period is irrelevant.

Note that while 12 polymerizations can start in a period, only 23 can start in two consecutive

periods, because security constraints do not allow to start two polymerizations on two different

reactions less than 4 hours apart. This constraints can be enforced by having reactor capacity

constraints for all time windows, instead of period-by-period. For a first study, we chose to use the

simpler period-by-period constraint, which is slightly too relaxed.

Mixers and Finishing Lines Constraints The cost of starting and shuting down finishing

lines, together with the obligation not to run the mixers empty, is what makes this problem difficult.

Recall that there is one mixer and one finishing line dedicated to each type. A natural idea is to

introduce variables storing the mass of each product in each mixer at a given time. Then, when mass

is transfered from the mixer to the finishing line, because all the products are blended together, the

ratios of product feed rates equal the ratios of their mass in the mixer. In other words, if there is

a mass m1(t), . . . ,m5(t) of product A1,. . . ,A5 in mixer A at time t, then the physics of the feeding

process respects:
dm1

dt
=

dm2

dt
= · · · = dm1

dt
=

d(m1 + · · ·+m5)
dt

This is a non-linear constraints which is difficult to incorporate into an offline problem. To avoid

dealing with it, [44] suggested not to use variables representing the mass of products in the mixers.

The idea is to model the implications of the mass constraints in the mixers without explicitly

introducing mass-in-mixer variables.

We derive an online model by adapting the ideas proposed in the cited article for the offline

model as follows. At the beginning of each period, each mixer will be either ON or OFF. For each

period, a decision has to be made for each finishing line. If a line is ON at the beginning of the

period, feasible decisions are ON and ON OFF. If it is OFF, feasible decisions are OFF, OFF ON,

and OFF ON OFF. Decisions ON and OFF incur no cost, decision ON OFF incurs the cost of

a shutdown, decision OFF ON the cost of a startup, and decision OFF ON OFF the cost of the

startup and a shutdown.
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There are lower and upper capacity constraints related to the finishing lines. First, upper capacity

constraints simply state that no production can be done when the line is off. Lower constraints state

that, for any time window (i.e., any range of consecutive time periods), the production for the

considered polystyrene type must be at least 4.8 batches times the number of time period the line

is ON, and minus the maximal decrease of the mass stored in the mixer during that time window.

For example, if at the beginning of the time window the line is on, there can be up to 3 batches in

the mixer. If at the end, it is still on, there must be at least 0.1 batches in the mixer, so there is a

maximal decrease of 2.9 batches.

2.4.3 Scenarios and Offline Problem

Scenarios are very easy to define in this model, since the only uncertainty comes from demands. A

scenario is thus a collection of orders. Recall that an orders is defined by:

• a placement time;

• a product;

• a quantity;

• a due date.

The offline problem consist of computing, for all future periods:

• the number of polymerizations to start for each recipe;

• the status decisions for each finishing lines;

• the amount of each product to take away from inventory as to fulfill each order;

• the inventory level of each product.

This offline problem can be modelled as an integer program. The number of polymerizations

per recipe and per period is integral, as are indicator variables of the finishing line status decisions.

Other variables (inventory levels, sales, shortage, and cost) and continuous.

2.5 Differences, Common Characteristics, Classification

The four problems presented above differ widely in their field of application; yet from the point of

view of an operations researcher, they present many similarities. To delineate precisely the scope

of this doctoral work, we will now compare these problems, and specify which of there common

characteristics condition the applicability of the methods discussed in the next chapters.

First of all, each of these four problems is an Online Stochastic Combinatorial Optimization

(OSCO) problem. For each of them, there is an alternation of observations of some uncertainty

(request arrival, yield of a polymerization...) and decision-making. Also, all these problems are
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combinatorial, because decisions are discrete (accept or deny a request; schedule one test or an-

other...), and because of the presence of resource constraints (labs, interceptors, reactors...). The

case of continuous decision space will only be briefly discussed at the end of this thesis: for now, we

restrict our attention to purely discrete action spaces.

Finally, for each of these problems, we we able to define a concept of scenario, and of offline prob-

lem. This is an important characteristic, that not all stochastic optimization problems share: these

problems have exogenous uncertainty. To explain this in greater detail, here follows a classification

of stochastic optimization problems.

Traditionally, these problems were separated into two classes according to the exogenous or

endogenous nature of their uncertainty. We refine this classification, using three categories instead

of two.

Purely Exogenous Problems. These are problems in which the uncertainty, and the way it is

observed, is independent of the decisions. Online stochastic combinatorial optimization problems

in which the uncertainty comes from the behavior of customers or suppliers are purely exogenous.

In this class, there is a natural concept of scenario (e.g., the sequence of customer requests) and,

given two scenarios, it is possible to compute when they become distinguishable. Nature is typically

considered exogenous (e.g., water inflow in hydroelectric power scheduling), as well as prices in

perfect markets, since an atomic agent cannot influence prices. The SMK belongs to that class.

Purely Endogenous Problems. These are problems for which there is no natural concept of

scenarios. Most benchmark problems for Markov Decision Processes are of this nature. For instance,

problems of controlling robots typically have uncertainty derived from the imperfection of the ac-

tuators, and depends strongly on the signals they receive. It is not completely impossible to define

scenarios on these problems, in the form of a collection of statements such as “if at time t signal x

is sent to actuator a, the response will be r”, but such scenarios have no clear meaning or value.

Stoxuno Problems (STochastic Optimization problems with eXogenous Uncertainty and

eNdogenous Observations). These are problems like the S-RCPSP, for which the underlying

uncertainty is exogenous, but observations depend on the decisions. In these problems, the concept

of scenario is well-defined and meaningful. However, given two scenarios, it is not possible to decide

when a decision maker will be able to distinguish them. Many scheduling problems with uncertainty

on tasks belong to this category, as does the lot sizing problem in [24]. The BS and WRM problems

also elong to that class.

A discussion is needed here, because the boundary between Stoxuno and purely endogenous

problem is somewhat fuzzy. Indeed, it is always possible to ignore the presence of scenarios, and to

model a stoxuno problem in a purely endogenous fashion. Reciprocaly, one can always introduce a

concept of scenario in an endogenous problem: simply introduce a random variable rich enough to

provide the source of all future uncertainty. Despite this apparent equivalence, I claim that it makes

sense to separate endogenous and stoxuno problems, because some problems will fit more naturally
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in models with or without scenarios. For example, when introducing an artificial random variable

to represent all the uncertainty in an endogenous problem, it is likely that the associated offline

problem will have no usable special structure, and thus be very hard.

Amsaa, the algorithm that constitute the heart of this thesis, applies to both purely exogenous

and stoxuno problems.
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Chapter 3

A Review of the State of the Art

A lot of work has already been achieved on optimization under uncertainty. We will now review

some techniques that have been proposed for decision making under uncertainty in general, and

discuss their applicability to the problems we have described.

3.1 Control Theory

Maybe the most well-established part of decision making under uncertainty is control theory. The

problem here is to control an attribute of a physical system (the position or the speed of an object,

the temperature of an oven or a room,. . . ) by the mean of actuators (e.g., motors, heaters, air

conditioners, etc). Because physical systems cannot be modelled perfectly, there is uncertainty

about the effect of using the actuators. Therefore, the ensure the desired effect is achieved, the

actuators are controlled by a controller which monitors the state of the physical system thanks to

sensors (e.g., optical wheels to measure angles, accelerometers, compasses, temperature sensor,. . . ).

Control theory is very well understood, and used in many every day objects. An oven thermostat

is the most simple example. A more complex control system is the power steering system of a car

controls a motor turning the stirring wheel, and measures the torque that the drivers hands apply

to the wheel. Also in cars, the cruise control system is a controller that controls the throttle (and

on some cars the gears) so that the car goes at a target speed. It is easy on this example to see why

control problems belong to optimization under uncertainty: for a cruise control system, the natural

objective function to minimize is the mean square of the difference between the actual speed and

the target speed.

Alas, control theory is not applicable to the OSCO problems we consider. First, in control

theory, time is continuous: the input of the actuators exists a any point in time, and so this input

is continuously being adjusted. Also, while there is uncertainty, no stochastic distribution of the

output for a given input is taken into account. Finally, control systems needs a simple model of the

physical system being controlled, and constraints such as precedence and resource constraints in our

problems make the systems we consider too complex to model for control theory.
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3.2 Robust Optimization

While control theory consider systems in which the decision (the input) can be adjusted at all time,

robust optimization consider problems in which the decision maker has to make some commitment

about decisions that cannot be revised. Typically, it is problems in which, when the uncertainty

is observed, the decision maker has little or no mean to react, and thus must have made robust

decisions, i.e., decisions that we ensure some goal to be reached regardless of the uncertainty.

Every one of us does robust optimization in our lives. For example, when scheduling a taxi ride

to catch a flight, we add slack time to take into account the uncertainty about whether the taxi will

be on time and about the duration of the ride.

In production systems, many parameters might be uncertain. Robust optimization consist of

optimizing an objective function for a worst case, given that a number of parameters are only know

to belong to some interval.

Robust optimization is not what we want to use on the OSCO problems previously described,

because in these problems the decision maker has opportunities for new decisions after observing

some uncertainty, and because probabilistic knowledge is available, rather than merely being given

intervals for parameters.

3.3 Online Algorithms

A branch of algorithmic theory is devoted to online problems, in which there is an infinite alternation

of observations and decisions, and the objective is defined asymptotically.

3.3.1 Adversarial Setting

The majority of the work of online algorithms is concerned by worst case performance analysis, where

the performance metric considers the worst possible sequence of observations for a given algorithm.

Consider for instance the the online bin packing problem [45], defined as follow. A decision maker

has an infinite number of identical bins to its disposal. An infinite sequence of items of weight in the

interval [0, 1) arrives, one by one. A bin can contain any number of items, provided that the sum

of their weights does not exceeds one. At each time step, the decision maker observes an incoming

item, and must either assign it to a previously used bin, or put it in a new bin. The number of

used bin will of course goes to infinity, but the goal of the decision maker is to minimize the rate of

the number of bin used. More accurately, denote A is a decision-making algorithm, and σ a finite

sequence of incoming items. Let cA(σ) be the number of bins used by A faced by the sequence σ,

and let c(σ) be the minimal number of bins in which the items in σ can fit. The objective is to find

an algorithm that has a minimal asymptotic performance ratio RA, defined as

RA = lim sup
k→∞

sup
σ,c(σ)=k

cA(σ)
k

.
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Considerable effort have been made studying this problem and other similar ones. To date, it

is known that the optimal asymptotic performance ratio for online bin-packing is in the interval

[1.540, 1.589] [45].

It is important to note that this objective function is based on a worst-case: the sup operator is

based on all possible finite sequence of a given cost. This is an example of adversarial uncertainty :

here, the reason there is no probability distribution of the uncertainty is not motivated by the idea

that this distribution is not known to the decision maker, but rather that the sequence of item is

not random: it is generated by an adversary that can observe how the decision-maker behaves, and

can act accordingly.

Therefore, these ideas are not directly useful for the problems we consider. Indeed, uncertainty

such as whether a drug is effective, or about future demand, are not governed by an adversary.

While you might not know the goals of your customers, it is certainty not to place the sequence of

orders that will make scheduling your production the hardest. Therefore, it is much more reasonable

to model customer behavior as stochastic rather than as adversarial.

3.3.2 Stochastic Setting

Algorithmic theorists have also studied, perhaps to a lesser extent, the stochastic setting, in which it

is assumed that there exists a probability distribution (known or not) of the uncertainty, effectively

turning the problem into a purely exogenous OSCO problem. In that case, the used metric in an

expectation. For example, in the stochastic variant of the online bin packing, the natural performance

metric is

ERA = lim sup
n→∞

E
[
cA (σ1..n)
c (σ1..n)

]
,

where σ1..n is the random sequence of the first n items. [19] introduced a remarkable algorithm,

SS?, which achieves ERSS? = 1 whenever items weights are independent and identically distributed

fractions of bounded denominator.

This algorithm learns the distribution of item, and this idea can and has been used outside of

the algorithmic theory field. However, besides that learning component, ideas from this branch of

research seems limited in applicability to real-world problems, because the ideas and analysis for

online algorithm is very problem-dependant.

3.4 Markov Decision Model-Based Methods

A very broad class of techniques aim at solving stochastic optimization problems modeled as Markov

Decision Processes (MDPs). Many terms refers to some subset of techniques for solving MDPs, such

as reinforcement learning [47], stochastic dynamic programming [11], and heuristic search algorithms

[13]. Because there does not seem to be a consensual term to describe the whole field of MDP solving,

we will simply use the phrase MDP-based techniques.
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These techniques are applicable to the kind of problems we consider, therefore we will give a

more thorough review than for control theory, robust optimizations, and online algorithms.

MDPs are the model of choice for purely endogenous problems, but they can be and have been

used also on Stoxuno and purely exogenous problems. There are several variants of MDPs. They

are several variants of MDPs. Here follows the definition of MDPs with rewards on final states only

(no transition cost), with no discounting, and with finite state spaces. This is the definition we will

use is this dissertation. The other variants will be discussed later.

3.4.1 Markov Decision Processes

A finite undiscounted Markov Decision Process (S, s0, F,X,⊥,X , f,P) consists of:

• a finite state space S, an initial state s0 ∈ S, and a set of final states F ⊆ S.

• a decision space X containing a decision ⊥ (denoting no action) and a function X : S → X

returning the set of feasible decisions in a given state such that ∀s ∈ S, 0 < #X (s) < ∞ and

that ∀s ∈ F,X (s) = {⊥}.

• a bounded reward function f : F → R.

• a transition function P : S×X → prob(S), where prob(S) is the set of probability distributions

over S, satisfying ∀s ∈ F,P(s,⊥)({s}) = 1.

For convenience, we write P(·|s, x) instead of P(s, x)(·). A run of an MDP (S, s0, F,X,⊥,X , f,P)

starts in initial state s0. At a given state s, the decision maker selects a decision x ∈ X (s) which

initiates a transition to state s′ with probability P(s′|s, x) (in case of finite state space. More

generally, the transition goes to a state s′ ∈ A ⊆ S with probability P(A|s, x)) for any measurable

set A. The resulting sequence of states and decisions, i.e.

s0
x0−→ s1

x1−→ . . .
xt−1−−−→ st

xt+1−−−→ . . . ,

is called a trajectory. This random process is said to be Markovian because, conditionally on si and

xi, the probability distribution of si+1 is independent of the past trajectory.

We also assume that the horizon is finite. That is, there exists an integer T such that all

trajectories starting in s0 are such that sT is final. A corollary of that assumption is that the state

space graph has to be acyclic. (Most of this work would still be valid with the weaker assumption

that a final state is reached almost surely in finite time regardless of the decisions made). Under

these assumptions, the objective of the decision maker is to maximize E [f(sT )].

3.4.2 Policies, Value functions, and Optimality

A (deterministic) Markovian policy π : S → X is a mapping from states to feasible decisions (i.e.,

∀s ∈ S, π(s) ∈ X (s)). The value vπ(s) of policy π in state s is the expected value obtained by

running policy π from state s. A policy π is optimal if vπ(s0) is maximal among all policies.
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A value function v is a map S → R. The Q-value function canonically associated with v is the

mapping S × X → R defined by Q(s, x) =
∑
s′∈S P(s′|s, x)v(s′). Given a value function v and a

state s, a decision x ∈ X (s) is greedy if Q(s, x) = maxx′∈X (s)Q(s, x). We assume that there is a rule

to break ties, so we can talk about “the” greedy decision even though it is not unique. The greedy

policy πv associated with a value function v is the policy defined by taking the greedy decision in

every state. A value function is optimal if the associated greedy policy is optimal. A necessary and

sufficient condition for v to be optimal is that, for all state s reachable under πv, we have v(s) = f(s)

if s is final, and Resv(s) = 0 otherwise, where Resv(s) = v(s) −maxQ(s, x) is called the Bellman

residual of v at s. Under our assumptions, there is always an optimal value function v?.

3.4.3 Variants

The above definition of MDPs is the one will we use later in this document, but is actually not the

most common variant. Often, rewards are associated to transitions rather than to final states: a

reward function R : S × X × S → R specifies the reward R(s, x) obtained if decision x in made

in state s. In that case, for the finite horizon case the objective function is to maximize the total

reward among all the transitions in the process. An alternative objective function is the expected

total discounted reward: a factor 0 < γ < 1 is given, and the trajectory

s0
x0−→ s1

x1−→ . . .
xT−1−−−→ sT

is associated with the reward
T−1∑
t=0

γtR(st, xt, xt+1).

This discount factor accounts for the preference for the present. In case of monetary rewards, it

accounts for the existence of loan markets, that makes it equivalent to get a certain amount of money

now, or to be certain to get a 1/γ-times greater amount of money in one time period.

The discounted case also allows to consider infinite horizon, in which the decision process never

ends. Indeed, as long as the reward at each step is bounded, then the discounted total reward as a

finite limit. When the horizon is infinite, is it possible to have cycles in the state-space.

In presence of immediate rewards and discounting, the Q-value associated with value function v is

defined as Q(s, x) = R(s, x) +γ
∑
s′∈S P(s′|s, x)v(s′), and again a necessary and sufficient condition

for v to be optimal is that for all states s, Resv(s) = 0.

3.4.4 Decision Making for MDPs

To make decision in an OSCO problems, one needs to compute a policy, and then makes the decision

prescribed by that policy. Many techniques here exists, but all of them manipulates a value function

v and aim at computing or approximating the optimal value function v? by solving the Bellman’s

equation Resv?(s) = 0 for all non-final states. All algorithms belong to one of the two following

categories:
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1. those in which the value function (or the Q-value function) is stored explicitly by a map from

states to reals;

2. those in which there is an an implicit representation of the value function (or of the Q-value

function), using a parametrized family of functions (linear functions, polynomials, splines...)

of some attributes of states.

The simplest algorithm for solving Bellman’s equation when S is finite is value iteration: starting

from any value function v, loop endlessly over all states s, performing for each of them a Bellman

update, that is, the operation v(s)← maxx∈X (s)Q(s, x) (there are several variants of value iteration.

The one we described here is more precisely called the Gauss-Seidel Dynamic Programming algorithm

[10]). Under relatively mild conditions, the value function v converges to the optimal one v?.

Value iteration is very simple, but requires to store explicitly a value function for the whole state-

space, which is usually prohibitive. For example, modelling the regular instance of the S-RCPSP as

an MDP, which has only 5 projects, 17 tasks, and 2 labs, requires about 2 ·1011 states, which cannot

feat in the RAM of today’s computers.

Heuristic search algorithms[13] try to mitigate this problem by storing only a small fraction

of the value function, and using an upper bound to prove that the rest of the state-space is not

worth considering. This can be efficient if each transition can lead to only a small number of

successor states, and if very tight upper bounds are available to prune to search space. Alas,

this last requirement is hard to meet. We will provide a more comprehensive treatment of search

algorithms in chapters 6 and 8, because a search algorithm will be used as a subroutine of Amsaa,

the algorithm at the heart of this work.

While heuristic search algorithms mitigate the memory problem, many others get rid of it by

a more radical approach: they manipulates implicit representations of the value function, which

requires constant memory. In this approach, each state is is described as a vector of attributes. For

example, such an approach was used for the stochastic multiknapsack problem in [35]. A state for

this problem consist of the remaining time and the current assignment of items to bins. The chosen

attributes where:

1. for each item type, the number of items of that type currently assigned in the bins;

2. for a number of different capacities interval, the number of bins for which the remaining

capacity belong to that interval.

And value functions were restricted to be linear functions. Of course, it is unlikely that the optimal

value function is actually a linear function of these attributes, so such methods are approximate.

Algorithms that use an implicit representation fall into two categories. On the one hand, in

approximate dynamic programming [41], a model (e.g., a linear program) is established to compute

the parameters that minimize a measure of violation of the Bellman equation. On the other hand, in

reinforcement learning, an iterative method is chosen: states are visited in turns, and when visiting

a state, parameters are updated so as to decrease the Bellman residual in that state. Of course,
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because parameters are manipulated, decreasing this residual might increase others, so special care

as to be taken to ensure convergence.

To use either approximate dynamic programming and reinforcement learning, the major difficulty

using these techniques is to choose the attributes to consider and the family of functions to use.

3.4.5 Use of MDP-based techniques

The MDP model, or some variants such as Partially Observable MDPs, is general enough to model

all the kinds of OSCO problems we consider in this dissertation. However, the MDP literature

contains few very convincing results on large and complex OSCO problems.

This may be because much of the work has the overly ambitious goal of computing a priori the

whole optimal policy, rather than benefiting of the available time in between decisions to run further

computations. There are however several research trends that claim to focus on anytime decision

making, such as the Real Time Dynamic Programing literature, initiated by [2]. Yet I am not aware

of any paper that actually evaluates a proposed algorithm by running simulations of the process and

making anytime decisions, so it is difficult to judge how good the proposed algorithms really are.

3.5 Stochastic Programming

Similarly to MDP-based methods, Stochastic Programming (SP) is a set of techniques that aim at

providing a general framework for solving stochastic optimization problem. The major difference

is that the model used, Stochastic Programs (also abbreviated SPs), represents the uncertainty

exogenously, while MDPs represent it endogenously. A recent book on SP is [43].

3.5.1 Models and Examples

The simplest stochastic programs are single-stage and 2-stage SPs defined as follows.

Definition 1 A single-stage stochastic program (1-SP) is a tuple (X ,Ξ, ξ, F ), where X is a set called

the decision space, ξ is a random variable with values in Ξ (the scenario space), and F : X ×Ξ→ R
is a measurable function1. Solving a 1-SP consist of finding the decision x? ∈ X that maximizes

E [F (x, ξ)].

A Two-stage stochastic program (2-SP) is a tuple (X ,Ξ, ξ, Y,Y, F ) where X Ξ and ξ are as

before, Y maps pairs (x, ξ) ∈ X ×Ξ to non-empty subsets of the set Y (called the 2nd stage decision

space) and F : X × Ξ × Y → R is a measurable function. Solving a 2-SP consist of finding the

decision x? ∈ X that maximizes E
[
maxy∈Y(x,ξ) F (x, ξ, y)

]
.

Note that two-stage SPs can be reduced to single-stage SPs by defining F ′(x, ξ) =

maxy∈Y(x,ξ) F (x, ξ, y). Single-stage stochastic programs are well adapted to long-term decisions

1we assume that X and Ξ are equipped with a σ-field. In this dissertation, σ-fields will never be made explicit,
and measurability will be assumed whenever necessary
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with heavy consequences and little possibility for reactions. For example, consider a mid-sized com-

pany that is trying to choose the location for a new warehouse. This is a significant investment, and

it is likely that the possibility of opening other facilities in the future will not be considered, because

this possibility is too far ahead. If the demand is stochastic, which is usually the case, then the

problem of choosing the location of the warehouse can be modelled as a 1-SP. A two-stage version

of the problem could be that after buying a warehouse, it is possible to rent one more somewhere

else. Single-stage stochastic programs are also used for some simple portfolio management problems,

in which once the portfolio is set up no trading is done anymore (this is called a “buy-and-hold”

strategy).

None of the problems presented in the previous chapter can be modelled as a 2-SP, given their

online nature: information comes little by little, and decisions are made at many points in time.

Multistage stochastic programs are a generalization of the model for online problems.

Definition 2 A multistage stochastic program (MSP) is defined by

max
x1∈X1

E
[

max
x2∈X2(x1,ξ1)

E
[
. . .E

[
max

xT∈XT (x1,...,xT−1,ξ1,...,ξT−1)
F (x1,x2, . . . ,xT , ξ1, . . . , ξT−1)

]
. . .

]]
,

where ξ = ξ1, . . . , ξT is a stochastic process, the functions X1, . . . ,XT maps their respective argu-

ments to non-empty sets, and F is a real-valued measurable function, and xt is a random variable

that has to be independent of ξt, . . . , ξT−1.

There is a striking resemblance between a T -stage SP and a T -horizon MDP. The biggest differ-

ence is that in an SP, ξ is a stochastic process that is exogenous: it does not depend on the decisions

x’s. There are many applications of MSPs, mostly in finance (see [52] for a general survey, and [27]

for pension fund applications), energy [40], and transportation [53].

3.5.2 Solving Stochastic Programs

We have described the models used in stochastic programming, but not the methods used for de-

cision making. Almost all the literature in focused on linear, integer, and mixed-integer stochastic

programs. Let X be a vector space, which is a minor requirement. Then a multistage SP is linear

if (1) the function F is linear, and (2) the function Xt is of the form:

Xt(x1, . . . , xt−1, ξ1, . . . , ξt−1) =
{
x ∈ R+d

∣∣At,1(ξ1)x1 + · · ·+At,t(ξ1, . . . , ξt−1)xt = bt(ξ1, . . . , ξt−1)
}

where the A’s are matrix-valued functions and the b’s are vector valued functions. The SP is integer

if in addition, x has to belong to Zd, and mixed-integer if some but not all components are restricted

to be integers.

When ξ has finite support, one can enumerate all possible scenarios ξ1, . . . , ξn with their probabil-

ities p1, . . . , pn. Then, a linear (resp. integer, mixed-integer) MSP can be reduced to a standard (i.e.,

non-stochastic) linear program (LP) (resp. integer program (IP), mixed-integer program (MIP)) by

the following technique. First, consider a given scenario ξ. Then the offline problem consisting of
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computing the optimal sequence of decision for scenario ξ is naturally expressed as the following LP

(resp. IP, MIP, by adding the necessary integrality constraints), where the ξ arguments have been

omitted:
max F (x, ξ)

s.t. A1,1x1 = b1

A2,1x1 +A2,2x2 = b2

. . .

AT,1x1 +AT,2x2 + . . . +AT,TxT = bT

x ≥ 0

To solve the stochastic problem, introduce decision variables xst to be the decision variable made at

stage t in scenario s. The LP then consist of a replication of the above constraints for each scenario,

in addition to the following constraints: if ξ1 and ξ2 and t are such that

ξ1
1 = ξ2

2 , . . . , ξ1
t = ξ2

t ,

then x1
t+1 = x2

t+1. This reflects the fact that the random variable xt+1 has to be independent

of ξt+1, . . . , ξT−1, and is called a non-anticipativity constraint. Most algorithms in stochastic pro-

gramming aim at solving this large LP (resp. IP, MIP), called the deterministic equivalent of the

stochastic program.

When ξ does not have a finite support, there is a diversity of methods for two-stage SPs (e.g.,

a gradient-ascent-like algorithm where at each iteration a direction with a high probability of being

an ascending direction is computed). For multistage SPs however, work is almost exclusively based

on approximating the distribution by a finite-support one. When this approximation is done by

sampling, this is called the Sampling Average Approximation (SAA) method [42, ch. 6].

3.5.3 Extension to Stoxuno Problems

In the MSP model, the decision xt made at stage t can depend of ξ1, . . . , ξt−1. Therefore, the

MSP model represent the observations of the uncertainty has an exogenous stochastic process, and,

as such, cannot be used for stoxuno problems or problems with purely endogenous uncertainty.

However, a few papers have presented stochastic programming inspired techniques for Stoxuno

problems. In particular, Goel and Grossman have applied a general technique the used on offshore

gas field developments [51]. Later, they provided a general model in [24] and applied it to a capacity

expansion problem and to a multiproduct lot sizing problem with substitutions.

It is to be noted that this general model is presented in [24] as a general model for multistage

optimization problem with endogenous uncertainty. However, a concept of scenario appear in the

model, and the model introduces binary variables that are one when a specific random variable has

been observed. Therefore, it really is a model for stoxuno problems.

Unfortunately, these models uses a number of disjunctions that is quadratic in the number of

scenarios, making the search space huge and the linear relaxation poor, and therefore this technique

is not very scalable. The before-mentioned capacity expansion problem had only four scenarios. The
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lot sizing problems was solved (not to proved optimality) with up to 64 scenarios and 7 stages, and

the model required for that problem already had more than 3,000 binary variables, and only three

nodes of the search tree was explored in more than 3 hours.

3.6 Anticipatory Algorithms for Online Stochastic Combina-

torial Optimization

While MDP algorithms and SPs can be used in an OSCO setting, they tend to be studied and used

mostly in an a priori setting, were computations are done only prior to the first decision. In contrast,

a line of research was devoted to the study of algorithms for OSCO problems designed to use the

computation time available at each decisions. This line of research has focused on the development

of Anticipatory Algorithms (AAs).

The class of Anticipatory Algorithms is a broad class of decision-making algorithms for stoxuno

online stochastic combinatorial optimization problems that share two characteristics: first, they

sample scenarios, and second, they make some use of the anticipative relaxation of the problem,

which is the relaxation consisting of ignoring the order in which observations and decisions are

interleaved.

The most natural of these algorithms consist of evaluating each scenario of a sample on each

decision, in an offline fashion. That is, for each pair scenario-decision, one computes the best

achievable score reachable by starting with the given decision and making all the remaining ones

with knowledge of the scenario. The chosen decision is then the one with the highest average offline

score. This algorithm has been presented under various names, such as Expectation in [7], Forward

Sampling in [3], and Hindsight Optimization in [18]. It belongs to the class of one-step anticipatory

algorithms (1s-AA), that ignores the alternation of decisions and observations immediately after the

current decision. We will refer to it as 1s-AA-E . Other one-step anticipatory algorithms include

1s-AA-C , or Consensus, in which the chosen decision is the one that is the most frequently offline-

optimal for the scenarios in the sample, and 1s-AA-R, or Regret, that uses an approximation of the

offline scores.

These are efficient because offline scores can be computed with ad hoc solvers, leveraging the large

body of deterministic combinatorial optimization, and scale well because no computation requires

to deal with several scenarios at the same time. Although they are heuristic algorithms, the quality

of the decisions they make has proved to be surprisingly good on a number of applications.

For example, it works extremely well in the stochastic multiknapsack problem presented in section

??, as shown initially by [3], and later refined in [26]. 1s-AA algorithms were also used with success

on a packet scheduling application [7], in dynamic vehicle routing [6], in online mechanism design

[39], and job-shop scheduling [48]. Many of these results are summarized in the book [50].

The idea of using the computation time in between decisions, rather than only at the beginning,

partly explain the success of these algorithms. Indeed, not only it enables the use of more computing

power, but it is also much more tolerant to inaccuracies in the model. For example, search algorithms
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for MDPs compute partial policies, i.e., policies that prescribe an action only for some of the states.

Even if the algorithm guarantees that the returned policy is defined by all states reachable by

following it, inaccuracies in the model can lead the system to arrive in a state for which no action is

prescribed. To get rid of this problem, 1s-AA are memoryless: each time a new decision is needed,

the algorithm is called from scratch.

Unfortunately, one-step anticipatory algorithms produce sub-optimal decisions, and provide little

means to bound the optimality gap. One possible way to address the first problem is to use one of the

very recent gap reduction technique [21] which are based on learning how the anticipative relaxation

compares the optimum, so as to be able to correct the inaccuracies introduced by the relaxation.

Very good results were obtained on the S-RCPSP. Still, these techniques remaining suboptimal.

This thesis is in the direct continuation of the former work on AAs for OSCO problems. The

novelty will be the introduction of a convergent algorithm, that is, that make the optimal decision if

enough computation time is permitted. On the S-RCPSP for example, we obtained higher quality

decisions than by using gap reduction techniques, at the price of a higher computational cost.

3.7 Summary and Comparison

We have presented six techniques that aim at solving optimization problems under uncertainty:

1. Control theory

2. Robust optimization

3. Online algorithms

4. MDP-based methods

5. Stochastic programming

6. Anticipatory algorithms for OSCO

With respect to the goals of this thesis, I dismissed the first three techniques. Control theory

is not applicable to our problems because of the discrete nature of time in OSCO problems and

because the complexity to model the controlled system. Robust optimization focuses on a different

objective function than the one we want to use in this work, which is the maximal expected utility.

Online algorithms (in the algorithmic theory sense) are very problem-dependent and do not seem

applicable to weakly structured real-world problems.

The three last ones gets much closer to what we want. MDP-based techniques are interesting, but

there are only scalable when they use well-chosen parametrized family of functions of vector of well-

chosen state attributes, making them very hard to use for highly combinatorial problems. Stochastic

programming techniques are effective in the pure exogenous and linear case, but the literature contain

little very convincing results on large integer multistage problems, and the Stoxuno variants of SPs

scale very badly with the number of scenarios. Finally, anticipatory algorithms are effective, simple
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and scalable. Unfortunately the ones that existed so far made suboptimal decisions, and did not

provide a good measure of the optimality gap.

The work that I will present in the subsequent chapters is based on the recognition that stochastic

programming, MDP-based techniques, and anticipatory algorithms have complementary strengths

and limitations. Amsaa is an algorithm that exploit the synergies between the ideas from this three

fields.
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Chapter 4

A Model for Exogenous Online

Stochastic Optimization Problems

The previous chapter presented two existing models for stochastic optimization problems: Markov

Decision Processes (MDP) and Stochastic Programs (SPs). MDPs are expressive enough to model

OSCO problems regardless of the endogeneity or exogeneity of their uncertainty. Stochastic Pro-

grams (SPs), on the other hand, are designed exclusively for purely exogenous problems. We now

introduce a new model, called Exogeneous Markov Decision Process (X-MDP), that is well suited for

problems with exogenous uncertainty, regardless of the exogeneity or endogeneity of the observations.

This will be the model used for the rest of this dissertation.

Although X-MDPs have the same expressing power than MDPs, they are worth introducing,

because they enable the design of algorithms take make use of the exogeneity. We will at the end

of this chapter provide arguments about why there are computational advantages to using X-MDPs

model instead of MDPs.

4.0.1 Exogenous Markov Decision Processes

An X-MDP (S, s0, F,X,⊥,X , f, ξ, µξ, τ) consists of:

• a state space S, an initial state s0 ∈ S, and a set of final states F ⊆ S.

• a decision space X containing a decision ⊥ (denoting no action) and a function X : S → X

returning the set of feasible decisions in a given state such that ∀s ∈ S, 0 < #X (s) < ∞ and

that ∀s ∈ F,X (s) = {⊥}.

• a bounded reward function f : F → R.

• a random variable ξ taking values from a scenario space Ξ whose distribution is µξ.

• a (deterministic) transition function τ : S×X×Ξ→ S satisfying ∀s ∈ S, ∀ξ ∈ Ξ, τ(s,⊥, ξ) =

s.
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Running an X-MDP consists of first sampling a realization ξ of the random variable ξ: The realization

ξ is not known to the decision maker and is only revealed progressively through observed outcomes

of the transitions. Starting in state s0, the decision maker takes a decision, observes the outcome

of the transition, and repeats the process. For a state s and a decision x, the next state becomes

τ(s, x, ξ). The alternation of decisions and state updates defines a trajectory

s0
x0−→
ξ
s1

x1−→
ξ
. . .

xt−1−−−→
ξ

st

satisfying (1) xi ∈ X (si) and (2) si+1 = τ(si, xi, ξ) for all i. A trajectory corresponding to an

unspecified scenario is denoted by

s0
x0−→ s1

x1−→ . . .
xt−1−−−→ st.

A scenario ξ is compatible with a trajectory s0
x0−→ s1

x1−→ . . .
xt−1−−−→ st if τ(si, xi, ξ) = si+1 for

all i < t. The set of scenarios compatible with the trajectory s0
x0−→ . . .

xt−1−−−→ st is denoted by

C
(
s0

x0−→ . . .
xt−1−−−→ st

)
. A scenario is compatible with a state s if it is compatible with a trajectory

from s0 to s. C(s) denotes the set of scenarios compatible with state s.

We make similar assumptions for X-MDPs than for MDPs. In particular, we also assume a finite

horizon, that is the existence of a stage T such that sT is final regardless of the decisions and the

scenario realization. The objective also consists of maximizing E [f(sT )], which is always defined

if f is bounded. Finally, we also impose a Markovian property for X-MDPs, which ensures the

dominance of Markovian policies. In the context of X-MDPs, this property becomes:

for all trajectory s0
x0−→ . . .

xt−1−−−→ st, C
(
s0

x0−→ . . .
xt−1−−−→ st

)
= C (st) . (4.1)

It is easy to enforce this property in practice: simply include all past observations into the current

state. An elementary but important corollary of this assumption is that conditional probabilities on

the past trajectory are identical to conditional probabilities on the current state, i.e.,

∀A ⊆ Ξ, P
(
ξ ∈ A

∣∣∣ ξ ∈ C (s0
x0−→ . . .

xt−1−−−→ st

))
= P (ξ ∈ A | ξ ∈ C (st)) ,

Hence, sampling scenarios conditionally on the current state is equivalent to sampling scenarios

conditionally on the past trajectory.

4.0.2 Offline Deterministic Problems Associated with X-MDPs

X-MDPs enjoy a fundamental property: they naturally exhibit an underlying deterministic and

offline problem that has no counterpart in MDPs.

Definition 3 The offline value of state s under scenario ξ, denoted by O(s, ξ), is the largest reward

of a final state reachable from state s when ξ = ξ. It is defined recursively by:

O(s, ξ) =

f(s) if s is final,

maxx∈X (s)O(τ(s, x, ξ), ξ) otherwise.

Consider the instance presented in Section ??. If ξs and ξl denote the scenarios in which A.2 is short

and long respectively, then O(s0, ξs) = 17 and O(s0, ξl) = 15, as shown on Figure 2.3.
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4.0.3 Value Functions and Optimality for X-MDPs

Like for MDPs, it is possible to define the value of a policy for an X-MDP. Let A be an X-MDP

and π : S → X be a policy for A. Consider a past trajectory s0
x0−→ . . .

xt−1−−−→ st, not necessarily

generated by π. Recall that for any trajectory sT is final. Therefore the expected value obtained by

following π after this past trajectory is well defined and is denoted by

vπ

(
s0

x0−→ . . .
xt−1−−−→ st

)
.

Now remember that

∀A ⊆ Ξ, P
(
ξ ∈ A

∣∣∣ ξ ∈ C (s0
x0−→ . . .

xt−1−−−→ st

))
= P (ξ ∈ A | ξ ∈ C (st)) .

Therefore the (random) future trajectory following π only depends on st and not on earlier states

and decisions. As a consequence, we can define

vπ(st) = vπ

(
s0

x0−→ . . .
xt−1−−−→ st

)
.

A policy π? is optimal if vπ?(s0) maximizes vπ(s0) over all policies π. For simplicity, in various

sections of this paper, vπ?(s) is denoted by v(s).

4.0.4 Benefits of X-MDPs over MDPs

Although X-MDPs can be turned into equivalent MDPs, they have two computational advantages:

the existence of offline, deterministic problems and the ability to use exterior sampling.

Offline Problems. The existence of offline problems is one of the reasons for the success of

anticipatory algorithms for online stochastic combinatorial optimization [37, 50]. Contrary to MDPs,

X-MDPs naturally reveal underlying offline problems, which can then be exploited by algorithms such

as Amsaa. Indeed, computing O(s, ξ) is a deterministic combinatorial problem for which a variety

of advanced optimization techniques may be applicable. Section 6.4.3 shows how these offline values

guide the search in finding optimal policies and the experimental results will demonstrate their

fundamental role in achieving good performance. In this paper, as was already the case for [50], we

assume that we have at our disposal a black-box to solve these offline problems or to compute good

upper bounds of O(s, ξ) quickly.

Exterior Sampling. In MDPs, one can only sample outcomes of state-decision pairs. In contrast,

in X-MDPs, a set of scenarios can be sampled a priori and independently of the decisions. Section

6.2.2 will explain why this ability makes it possible to reduce the number of scenarios needed to find

high-quality policies.
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4.0.5 Modeling the Stochastic RCPSP as an X-MDP

We now sketch the modeling of the S-RCPSP as an X-MDP. Because tasks cannot be preempted

or aborted, the X-MDP states correspond to times when at least one laboratory is available. More

precisely, a state contains:

• the current time;

• the set of currently running tasks with their start times (but without lab assignment);

• the set of all past observed task realizations.

The Markov property for X-MDPs is satisfied, since all past observations are stored. There are two

types of decisions: (1) scheduling a given task on one of the available laboratories or (2) waiting. In

both cases, the successor τ(s, x, ξ) corresponds to the next time a decision must be taken. This can

be the current time when several laboratories are available for schedule, since tasks are scheduled

one at a time in our model. In all other cases, the next state corresponds to a later time. The model

contains a symmetry-breaking constraint, using an ordering on the projects. If a task of project k is

scheduled at time t in state s, none of the tasks in projects 1..k−1 can be scheduled in a descendent

s′ of s if state s′ is associated with time t too.
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Chapter 5

One-Step Anticipatory Algorithms

Among the many existing algorithms for OSCO problems, one-step anticipatory algorithms are

some of the simplest; and yet have proved to be very efficient in a number of cases. These algorithm

work by ignoring the non-anticipativity constraints that arise from the alternation of decisions and

observations — except for the decision to be made immediately. In this chapter, we will first decribe

the simplest of these algorithms and quicly describes a few variants. We then review some results on

a variety of applications obtained by diverse research groups. To understand why such good results

can be obtained based on such a crude approximation, we then present a sufficient condition for this

algorithm to perform well, and discuss this condition.

5.1 Algorithms

Consider an X-MDP A = (S, s0, F,X,⊥,X , f, ξ, µξ, τ) with a time horizon T . Remember that

O(s, ξ) is the offline value of state s in scenario ξ, that is, the maximal value that can be obtained

by a clairvoyant decision maker in state s when the scenario is ξ = ξ. For compactness, we denote

by O(s, x, ξ) = O(τ(s, x, ξ), ξ) for x ∈ X (s).

We call One-Step Anticipatory Algorithms any algorithms that ignores all non-anticipativity

constraints but the ones that apply to the current decision. A few different algorithms can be

derived from that simplification, and the most natural is MakeDecisionOneStepExpectation whose

pseudo-code follows.

Function MakeDecisionOneStepExpectation(X-MDP A, State st)
Sample scenarios ξ1 . . . ξm, iid from the distribution of ξ conditionnaly on st.
foreach x ∈ X (st) do

g(x)← 1
m

∑m
i=1O(st, x, ξi)

xt ← argmaxx∈X (st) g(x)

In this code, m is a parameter. A few variants exists. For example, if X (st) is large, the above

algorithm is unpractical. Instead, one can use the consensus variant, defined as follow:
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Function MakeDecisionOneStepConsensus(X-MDP A, State st)

Sample scenarios ξ1 . . . ξm, iid from the distribution of ξ conditionnaly on st.
foreach x ∈ X (st) do

g(x) ← 1
m

m
i=1 1argmaxO(st,•,ξi)(x)

xt ← argmaxx∈X (st) g(x)

There are two labs, one immediately avail-
able, one available from time 1 All tasks has
a duration of 2. All costs are zero, expect for
task A1 that costs 5 The revenues as a func-
tion of the completion time of projects are:

Project ≤ 2 3 4 5 ≥ 6
A 45 45 45 22 0
B 18 9 0 0 0
C 15 8 1 0 0

Figure 5.1: An instance of the S-RCPSP on which 1s-AA is sub-optimal

where 1argmaxO(st,•,ξi)(x) is the function that has value one if x = argmaxy∈X (st) O(st, y, ξi).

While MakeDecisionOneStepExpectation needs m#X (st) calls to the function O, counting the

number of scenarios for which a decision is offline-optimal, like in MakeDecisionOneStepConsensus,

requires to solve only m offline problems. Note that this assumes that the offline solver actually

computes the optimal solution, not merely its value, and that ties are not considered.

Function MakeDecisionOneStepExpectation being so natural, it has been introduced several

times by different research groups. For example, it is called expectation in [50], forward sampling in

[3], and hindsight optimization in [18].

In the rest of this chapter, we focus denote by 1s-AA-E the algorithm

MakeDecisionOneStepExpectation, and this will be the major focus.

5.2 Suboptimality Example

In general, 1s-AA-E makes sub-optimal decisions. Figure 5.1 depicts an instance of the stochastic

scheduling problem that will illustrate why. Consider the initial decision to be made at time 0. The

feasible decisions are to start the first task of project A, B, or C. Because there are only two possible

scenarios(project A fails or project A succeeds), the sample distribution will quickly converge to the

true distribution, with probability 1/2 for each scenarios. Let’s compute what 1s-AA-E will do if

the sample distribution equals the true distribution. Figure 5.2 depicts the offline schedules for the

two scenarios and the three feasible initial decisions. The highest average offline score is obtained by

scheduling project B at time 0, and therefore this is the decision made by 1s-AA-E . Unfortunately,

this is suboptimal. Indeed, the two offline optimal schedules that correspond to the decisions of

scheduling B first differ at time 1: if A succeeds, it should be scheduled, and if not, C should be
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Figure 5.2: Offline optimal scedules and their values

scheduled. Unfortunately, at time 1 the decision maker will not have made any observation that

spcifies which scenario is happening. Therefore, it is not possible for a non-clairvoyant decision

maker to achieve this average score of 31. We say that these two offline schedules violates a non-

anticipativity constraint.

Let’s assume 1s-AA-E was used at time 0, and task B was started. What decision will be made

at time 1? At that time A and C can be scheduled. The reader can compute that the average

offline score of scheduling A is (1/2(36 + 14) = 25, and those of scheduling C is 1/2(26 + 26) = 26.

Therefore, 1s-AA-E will schedule C at time 1, and then never schedules A: on this instance, 1s-

AA-E always gets a score of 26 if the sample size if large enough. This is suboptimal: condider the

following online policy. Start A1 at time 0 and B at time 1. Then at time 2, if A1 failed, shedule C,

otherwise schedule A2. This policy, that does not violate any non-anticipativity constraints, achieves

an expected value of 1/2(49 + 5) = 27, which is higher than 26.

5.3 Review of Earlier Empirical Results

One-step anticipatory algorithms have been used on many applications, and often with very satisfying

results. The book [50] is a comprehensive source of such results, and here we want to quote some of

them.

[16] consider the following packet scheduling problem. A router receives a set of packets at each

time step and must choose which packet to serve. Packets can be served only for a limited time and

they are characterized by a value. The goal is to maximize the values of the served packets. The

packet distributions are specified by Markov models whose states specify arrival frequencies for the

packet type.

Online reservation systems [3] are another application. Customers place requests in real time for

some service at a fixed date. The resources are modeled by a multiknapsack constraint. (Think of

tour operators requesting rooms in hotels for a group: the choice of a specific hotel is not pertinent

for the group but all group members must be allocated to the same hotel). Customers must be

immediately notified of acceptance or rejection of their requests, and accepted requests must be

satisfied. Accepted requests must also be assigned to a specific resource at reservation time and this
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choice cannot be reconsidered. The goal is to maximize the profit of the served requests which come

from different types with different characteristics and arrival frequencies.

Online multiple vehicle routing with time windows [4] captures an important class of applications

arising in transportation and distribution systems. In these problems, a fleet of vehicles serve clients

which are located in many different locations and place request for service in real-time in specific

time windows. Clients must be immediately notified of acceptance or rejection of their requests, and

all accepted requests must be satisfied. Routing decisions however can be delayed if necessary. The

goal is to maximize the number of satisfied requests.

5.4 Analysis of the Anticipatory Algorithm

It is clear that 1s-AA-E is necessarily suboptimal, even with infinitely many scenarios. However,

experimental results have been surprisingly good, especially with the Regret algorithm [5, 26] which

is an efficient way of implementing step 2. Our goal in this chapter is to demystify these results

by providing a theoretical analysis of these algorithms. Section ?? describes the model and the

algorithm. Section 5.4 analyses the performance of the online anticipatory algorithm and isolates

two fundamental sources of error: a sampling error and a quantity called the global anticipatory gap

which is inherent to the problem. Section ?? shows how to bound the anticipatory gap theoretically

and experimentally. Section 5.7 analyzes the effect of approximating the optimization problem.

Section 5.8 compares the anticipatory gap to the expected value of perfect information. Section 5.9

presents directions for future research.

The Expected Value of the Clairvoyant (EVC) of the problem is the expected value that a decision-

maker knowing the future before hand can achieve. That is, EVC = E [O(s0, ξ)], where s0 is the

initial state. For a given decision-making algorithm, we call Expected Value, EV = E [f(sT )], the

expected value achieved by making each decision with the considered algorithm.

The goal of this analysis is to bound EVC − EV, which we call the expected global loss (EGL),

when decisions are made using 1s-AA-E . Note that EVC is a constant, so maximizing EV is the

same thing as minimizing EGL. When the considered algorithm is 1s-AA-E with m scenarios per

decision, we denote the expected value EV(1s-AA-E(m)). Relations involving EV without further

precisions are valid for any decision-making algorithm.

5.4.1 Local and Global Losses

We first show that the EGL is the sum of the expected losses of the stages.

Definition 4 Let st be a state. The expected local loss of decision x ∈ X (st) is defined as

∆(st, x) = E [O(st, ξ)−O(st, x, ξ)|st] .

In the expected sense, the global loss is the sum of local losses.
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Lemma 1 (Global Loss = Sum of Local Losses) For any decision process x,

EGL =
T−1∑
t=0

E [∆(st,xt)]

Proof. We first modify the X-MDP into an equivalent one that has initial state s−1 in which there

is only one possible decision x−1, and such that for any scenario ξ, τ(s−1, x−1, ξ) = s0. Therefore

both s−1 and s0 are deterministic.

Let Ct be the random variable O(st,xt, ξ) and At = E [Ct − f(sT )]. Then AT = 0 (remember

that sT is final, so xT is necessarily ⊥, the null decision). Now, for −1 ≤ t < T :

At = E [Ct −Ct+1 +Ct+1 − f(sT )]

= E [Ct −Ct+1] +At+1

= E [O(st,xt, ξ)−O(st+1,xt+1, ξ)] +At+1

= E [O(τ(st,xt, ξ), ξ)−O(st+1,xt+1, ξ)] +At+1 by definition of O(s, x, ξ))

= E [O(st+1, ξ)−O(st+1,xt+1, ξ)] +At+1 because st+1 = τ(st,xt, ξ)

= E [∆(st+1,xt+1)] +At+1 by definition of ∆(s, x)).

Finally EGL = EVC − EV = E [O(s0, ξ)] − E [f(sT )] = E [O(s−1, x−1, ξ)] − E [f(sT )] = A−1. It

follows that EGL =
∑T−1
t=−1 E [∆(st,xt)], and the lemma holds because ∆(s−1, x−1) = 0. �

5.4.2 Decomposition of the Local Loss

We now show that the local loss at a state st consists of a sampling error and the anticipatory gap.

Definition 5 The anticipatory gap of a state st is defined as

∆g(st) = min
x∈X (st)

∆(st, x).

The choice error of x wrt st is defined as

∆c(st, x) = ∆(st, x)−∆g(st).

Note that the local anticipatory gap depends only on s, and not on the decision process x. An

equivalent definition is

E
[

max
x∈X (st)

O(st, x, ξ)
]
− max
x∈X (st)

E [O(st, x, ξ)] .

This expression shows that this gap can be interpreted as the cost of commuting of E and max. We

now bound ∆c(st, x).

Lemma 2 (Sampling Error) Let st be a state, and xt be the random decision computed by 1s-AA-

E using m samples per decision in that state. Let x? be argmax E [O(st, x, ξ)] (break ties arbitrarily).

Then

E [∆c(st,xt)] ≤
∑

x∈X (st)

∆c(st, x) exp
(
−m∆c(st, x)2

2σ(st, x)2

)
,

where σ(st, x) is the standard deviation of O(st, x, ξ)−O(st, x?, ξ) conditionnaly on ξ ∈ C(st).
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Proof. Here all probabilities and expectations are implicitly conditional on ξ ∈ C(st) when neces-

sary. The left-hand side can be decomposed as

E [∆c(st, xt)] =
∑

x∈X (st)

∆c(st, x)P(xt = x).

Due to the argmax in MakeDecision, the event xt = x implies ∀x′ ∈ X (st), g(x′) ≤ g(x). Therefore

P (xt = x) ≤ P (g(x) ≥ g(x?)). Since f is bounded, O(st, x, ξ)−O(st, x?, ξ) has a finite expectation

and variance. Now,

g(x)− g(x?) =
1
m

m∑
i=1

(
O(st, x, ξi)−O(st, x?, ξi)

)
and, by the central limit theorem, this difference is normally distributed for m large enough, with

mean −∆c(st, x) and variance 1
mσ(st, x)2. Finally, if X ∼ N (µ, σ2) with µ < 0, then P (X ≥ 0) ≤

exp
(
− µ2

2σ2

)
(Chernoff bound). �

5.4.3 Performance of the Algorithm

We now assemble the previous results.

Definition 6 Let A be a decision making algorithm. We define the Global Anticipatory Gap of A

to be

GAG(A) = E

[
T∑
t=1

∆g(st)

]
,

and we define the sup-GAG and the inf-GAG to be respectively the supremum and the infemum of

GAG(A) over all decision-making algorithms A.

Theorem 1 For any X-MDP there is a constant K such that

EGL(1s-AA-E(m)) ≤ GAG(osaaE(m)) +O(e−Km).

Proof. We have

EGL=
T∑
t=1

E [∆(st, xt)] ≤
T∑
t=1

(
E [∆g(st)] + E [∆c(st, xt)]

)
= GAG(1s-AA-E(m)) +

T∑
t=1

E [∆c(st, xt)] ,

and the global sampling error satisfies

T∑
t=1

E [∆c(st, xt)] ≤ T#XFmaxe−Km.
�

Corollary 1 We have the two following inequalities to bound the performance of the anticipatory

algorithm.

EGL(1s-AA-E(m)) ≤ s-GAG +O(e−Km)

OPT− E [f(sT )] ≤ s-GAG− i-GAG +O(e−Km)

40



Proof. Because 1s-AA-E(m) is a non-anticipative process, we have GAG(1s-AA-E(m)) ≤ s-GAG.

This proves the first inequality. The second one comes from the fact that for any non-anticipative

decision process, we have EGL(x) ≥ GAG(x). Indeed, by definition of the local anticipatory gap,

for any state st and decision xt we have ∆(st, xt) ≥ ∆g(st). Summing on the trajectories, we get

E

[
T∑
t=1

∆(st, xt)

]
≥ E

[
T∑
t=1

∆g(st)

]
,

and we know by lemma ?? that the left-hand side is EGL(x). As this inequality holds for an optimal

decision process, we get that i-GAG ≤ EVC−OPT. Therefore, we get

i-GAG ≤ EVC−OPT ≤ s-GAG,

and inequality follows. �

An important consequence of this theorem is that the sampling error can be made smaller than

some constant a by choosing m ≥ 1/K log (1/aT#XFmax). [46] argues that the SAA method does

not scale to multistage problems, because the number of samples to achieve a given accuracy grows

exponentially with T . The anticipatory algorithm only requires m to grow logarithmically with T |X|,
which makes them highly scalable. Of course, they only produce high-quality decisions when the

anticipatory gap is small, an issue discussed later in the chapter.

5.5 Bounding the Global Anticipatory Gap

To illustrate the concept of sup-GAG, and hint why this sup-GAG may be low on some applications,

we show how to bound s-GAG for a simplified version of the packet scheduling problem. Suppose

that there are k types of packets whose values are v1 < . . . < vk respectively. At each step from 1

to T − 1, a packet of type i arrives with probability pi. All these random variables are independent.

Each packet has a lifetime of 2, meaning a packet received at time t can be scheduled either at

time t or at time t + 1. The utility is the sum of scheduled packets over the T stages. All packets

take a single time step to serve. For convenience, we introduce a packet type 0 with value v0 = 0

and probability p0 = 1. It should be clear that this problem satisfies all assumptions above. In

particular, the utility is bounded (0 ≤ f ≤ Tvk).

Why is the GAG small on this problem? We show that ∆g is rarely high, inducing a small GAG.

For st a state and x, y ∈ X (st), we say that x dominates y if O(st, x, ξ) ≥ O(st, y, ξ) almost surely

given st. Studying ∆g(st) only requires to focus on non-dominated decisions: there are at most two

non-dominated decisions for a given state, which consists of scheduling

• the most valuable packet, of type i, received at time t− 1 and not already scheduled; or

• the most valuable packet, of type j, received at time t.

Moreover, if i ≥ j, then choosing j is dominated, since i is more valuable and will be lost if not

chosen now. Also, if i < j but the second most valuable packet received at t is of type k ≥ i, then
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choosing i is dominated. If one of these two conditions holds, a decision dominates all the other

ones, and thus ∆g(st) = 0.

Suppose now that st does not satisfy any of them. By the dominance property, scenarios can be

partitioned into those where scheduling i (resp. j) is the unique offline, optimal decision and those

on which there is a tie. Introduce the random variable yt, taking values i, j or ⊥ in these three

respective cases. We then have

∆(st, i) = E [O(st, ξ)−O(st, i, ξ)|st]

= E [O(st, ξ)−O(st, i, ξ)|st, yt = j] P (yt = j)

and symmetrically

∆(st, j) = E [O(st, ξ)−O(st, j, ξ)|st]

= E [O(st, ξ)−O(st, j, ξ)|st, yt = i] P (yt = i) .

Now, if i is scheduled and the optimal offline solution was to schedule j, then the loss can-

not exceed vj − vi, since the rest of the optimal offline schedule is still feasible. Hence

E [O(st, ξ)−O(st, i, ξ)|st, yt = j] ≤ vj − vi. Moreover, for the optimal offline schedule to choose

j at time t, it is necessary to have a packet of value greater than vi arriving at t + 1 and thus

P (yt = j) ≤ 1−
∏
k>i qk where qk = 1− pk. Finally, we find

∆(st, i) ≤ (vj − vi)

(
1−

∏
k>i

qk

)
.

The other case is harder to study, but a trivial upper bound is ∆(st, j) ≤ vi. Now it remains to

bound the expectation of ∆g(st) = min(∆(st, i),∆(st, j)) by enumerating the possible values of i

and j and weighting each case with its probability of occurrence. This weight is, in fact, bounded

by the product of the probabilities of the 3 following events:

• a packet of type i arrived at time t− 1;

• the most valuable packet arrived at t is of type j;

• no packet of type i ≤ k < j arrived at time t.

Here is a numerical example. Suppose there are 4 types of packets, with the following values and

emission probabilities:

type 0 1 2 3 4

value 0 1 2 4 8

prob 1. .60 .30 .20 .10

The upper bound on ∆g depending on i and j, is

(j)

1

2 .496

3 1.00 .560

4 1.00 1.68 .400

1 2 3 4 (i)
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We find that E [∆g(st)] ≤ .125. On the other hand, a simple lower bound on the EVC is the

expectation of the value of the most valuable packet arriving at each stage multiplied by the number

of stages. In this case, that leads to EVC ≥ 2.25T . As a result, the ratio of GAG over EVC on this

problem is less than 5.55%. Because this analysis is not tight – especially the lower bound of the

EVC–, the anticipatory algorithm is likely to have an even better expected global loss. This analysis

also hints at why online anticipatory algorithms are so effective on packet scheduling and why they

outperform competitive algorithms on these instances.

5.6 Empirical Validation of the Theorem

We will now proceed to an empirical validation of theorem 1. In order to do so, we need to estimate

the Expected Global Loss and the Global Anticipatory Gap of 1s-AA-E with varying number of

scenarios. The theorem then states that the GAG should be lower, and that the EGL and the GAG

should converge toward the same value.

5.6.1 Theory of Local Anticipatory Gap Estimation

An estimator of the GAG for a given decision-making algorithm can be derived from an estimator

of the local anticipatory gap: from a sample of runs on different realizations of the uncertainty,

an estimation of the GAG is the average, over these realizations, of the sum of estimation of the

LAG for all decisions made in the corrsponding run. Therefore, we first study how to design a good

estimator of ∆g.

In all this section, it is assumed that there is a fied given state st, and all the expectations are

conditionned on being in this state, i.e., ξ ∈ C(st). X will be used instead of X (st) and O(x, ξ)

instead of O(st, x, ξ).

In section 5.4.2, we gave the following alternative definition for the LAG:

∆g = E
[
max
x∈X
O(x, ξ)

]
−max

x∈X
E [O(x, ξ)] .

This definition suggests the following estimator of the LAG, that we denote ∆̂1,1
g : observing the

sampled scenarios ξ1, . . . ξm, we define:

∆̂1,1
g =

1
m

(
m∑
i=1

max
x∈X
O(x, ξi)− max

x∈X )

m∑
i=1

O(x, ξi)

)
.

The strong law of large number , in conjonction with X ’s finiteness, implies that, when m converges

to +∞, ∆̂1,1
g this converges almost surely to ∆g(st). Moreover, it can be computed while running

the 1step-AA with no additional computational cost, since all that is needed is the offline values for

the samples scenarios. However, this estimator has the following drawback.

Lemma 3 ∆̂1,1
g has a nonpositive bias.
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Proof. We have that for all i, E
[
maxx∈X O(x, ξi)

]
= E [maxx∈X O(x, ξ)]. Therefore, the bias is

E
[
∆̂g

]
−∆g = max

x∈X
E [O(x, ξ)]− E

[
max
x∈X

1
m

m∑
i=1

O(x, ξi)

]
.

Let x? be one argmax of E [O(x, ξ)]. Then maxx∈X
∑m
i=1O(x, ξi) ≥

∑m
i=1O(x?, ξi), and it follows

that the bias is non-negative. �

This bias comes from the fact that the decision argmaxx∈X
∑m
i=1O(x, ξi) is evaluated on the

same set of scenarios that is used to select it. Therefore one could think of correcting it by first

selecting a decisions with some set of scenarios, and then evaluating it on another set, which can or

not intersect the first one. This leads to a whole family of estimators described below.

Definition 7 Let 0 < α ≤ 1 and 0 < β ≤ 1. The estimator ∆̂α,β
g is defined as:

∆̂α,β
g =

1
dβme

m∑
i=m−dβme+1

max
x∈X
O(x, ξi)− 1

dβme#Mα
m

m∑
i=m−dβme+1

∑
x∈Mα

m

O(x, ξi)

with
Mα
m = argmax

x∈X

bαmc∑
i=1

O(x, ξi)

The estimator ∆̂α,β
g uses the first bαmc scenarios of the sample to select a decision, and evaluates

the exected local loss of that decision on the last dβme scenarios of the sample. Note that when

α = β = 1, this definition is consistent with the one stated earlier.

Theorem 2 For all 0 < α, β ≤ 1, ∆̂α,β
g is a strongly consistent estimator, that is,

P
(

lim
m→+∞

∆̂α,β
g = ∆g(st)

)
= 1.

Proof. First, it is convenient to name the two terms that appear in ∆̂α,β
g . We call Lm =

1
dβme

∑m
i=m−dβme+1 maxx∈X O(x, ξi) and Rm = 1

dβme#Mα
m

∑m
i=m−dβme+1

∑
x∈Mα

m
O(x, ξi). That

is, ∆̂α,β
g can be written as Lm −Rm.

The term Lm is handled using the Strong Law of Large Numbers (SLLN). Indeed, it can be

decomposed as Lm = 1
dβme (mAm − (m− dβme)Bm) , where

Am =
1
m

m∑
i=1

max
x∈X
O(x, ξi) and Bm =

1
m− dβme

m−dβme∑
i=1

max
x∈X
O(x, ξi).

Now, both Am and Bm converge almost surely to E [maxx∈X O(x, ξ)], and thus so does Lm.

The second term Rm is harder to handle. We prove that it converges a.s. to maxx∈X E [O(x, ξ)].

Let M∞ be argmaxx∈X E [O(x, ξ)], and x? be an element of M∞.

We proceed in two steps. First we prove that almost surely Mα
m ⊆ M∞ for M large enough.

Indeed, let x? ∈M∞, and x /∈M∞. There exits ε > 0 such that E [O(x, ξ)] < E [O(x?, ξ)]− ε. Now,
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again by the SLLN, there is almost surely a N ∈ N such that for all m ≥ N ,

bαmc∑
i=1

O(x?, ξi) > E [O(x?, ξ)]− ε,

bαmc∑
i=1

O(x, ξi) < E [O(x?, ξ)]− ε.

Therefore for m ≥ N , x /∈Mα
m.

The second step is to show that in that case, the evaluation of the decisions in Mα
m on

the dβme scenarios almost surely converges with maxx∈X E [O(x, ξ)]. Let M ⊆ M∞. Then
1

dβme#M
∑m
i=m−dβme+1

∑
x∈M O(x, ξi) = 1

#M

∑
x∈M

(
1
dβme

∑m
i=m−dβme+1O(x, ξi)

)
. Each term of

the outer sum converges a.s. to E [O(x?, ξ)], so by finiteness of M , the whole quantity converges a.s.

to the same limit. For any ε > 0, there is therefore an integer Nε,M such that for all m > Nε,M ,∣∣∣ 1
dβme#M

∑m
i=m−dβme+1

∑
x∈M O(x, ξi)− E [O(x?, ξ)]

∣∣∣ < ε. Now, because M∞ is finite, its power

set is also finite, and so we can define Nε as maxM⊆M∞ Nε,M . It follows that for any m > Nε,

|Rm − E [O(x?, ξ)]| < ε, which ends the handling of Rm.

Finally, we have proved that Lm
a.s.−−−−→

m→∞
E [maxx∈X O(x, ξ)], and that Rm

a.s.−−−−→
m→∞

maxx∈X E [O(x, ξ)]. Hence the ∆̂α,β
g = Lm −Rm converges a.s. to ∆g. �

There are interesting limit cases concerning the values of α and β. We discussed above the case

α = β = 1, for which we proved by the estimator was nonpositively bias. The second one follows.

Lemma 4 If α+ β ≤ 1, then ∆̂α,β
g has a nonnegative bias.

Proof. The idea here is that with α + β ≤ 1, then the intervals [1..bαmc] and [m −
dβme + 1..m] do not overlap. As a consequence, the decisions Mα

m are evaluated on sce-

narios independent from those which has been use to define Mα
m. Indeed, E

[
∆̂α,β
g

]
−

∆g = (Lm −Rm) − (E [maxx∈X O(x, ξ)]−maxx∈X E [O(x, ξ)]). Now, we have E [Lm] =

E
[

1
dβme

∑m
i=m−dβme+1 maxx∈X O(x, ξi)

]
= E [maxx∈X O(x, ξ)]: this is by linearity of expectation,

and because the ξi have the same distribution than ξ.

Now we look at E [Rm].

E [Rm] = E

 1
dβme#Mα

m

m∑
i=m−dβme+1

∑
x∈Mα

m

O(x, ξi)


=
∑
M⊆X

E

 1
dβme#M

m∑
i=m−dβme+1

∑
x∈M
O(x, ξi)

∣∣∣∣∣∣M = Mα
m

P (M = Mα
m)
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Because the sets of scenarios do not overlap, for i ≥ m− dβme+ 1, ξ is independent of Mα
m. So we

can remove the conditionning:

=
∑
M⊆X

E

 1
dβme#M

m∑
i=m−dβme+1

∑
x∈M
O(x, ξi)

P (M = Mα
m)

=
∑
M⊆X

E

[
1

#M

∑
x∈M
O(x, ξ)

]
P (M = Mα

m) .

≤ max
M⊆X

E

[
1

#M

∑
x∈M
O(x, ξ)

]
≤ max

x∈X
E [O(x, ξ)]

Hence E
[
∆̂α,β
g

]
−∆g = maxx∈X E [O(x, ξ)]− E [Rm] ≥ 0. �

Since one limit case give a nonnegative bias, and the other a nonpositive one, it is possible that

there exists a pair (α, β) which provides almost-unbiased estimation. However, it is not clear how

to find such a couple. We will experiment different pair (α, β).

5.6.2 Empirical Performance of the Estimators

We report some experimental data obtained thanks to the estimators designed above. All the

following results are based on the runs on different realizations of one instance of the multiknapsack

problem. This instance is called bbcr5nc, and is defined by:

• The deadline is 1000;

• There are 5 bins, all of capacity 100;

• There are 5 items types. For each type, the arrival of items is a Poisson process, independent

of those of the other types, of inter-arrival mean time 173. The values and weights of the items

are:

type 1 2 3 4 5

weight 17 20 25 30 33

value 13 26 21 26 39

• Finally, there is no cancellation (more accurately, to be compatible with the file format used

in previous work, cancellations are set to be extremely unlikely, with a probablity less than

1e− 6 for each item).

This is a rather easy instance, on which Regret performs very well, and the offline problems are

easy to solve. This is intentionnal: here the goal is not to compare the performance of different

algorithms. By choosing an easy instance, we avoid polluting the results by effects like having Cplex
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stopping because of a time-out, in which case we have no garantee on the quality of the offline

solution.

The experimental setting is the following: 400 realizations of this instances were generated. Each

realization was solved once using each of the four following policies:

1. BEST FIT is the greedy algorithm that always accept an item that fits somewhere, and in

that case put it into the bin with smallest residual capacity in which it fits;

2. 1s-AA-E with 100 scenarios per decisions;

3. DO NOTHING is the policy that reject all items;

4. RANDOM is the policy that choose where to assign items uniformly at random among the

bins in which there is enough room, including a dummy bin corresponding to the rejection.

That is, if the incoming item fits in 3 out of the 5 bins, it will be rejected with probability 1/4,

and accepted in one of these 3 bins with equal probability.

For all these runs, at each decision to be made, 100 scenarios were generated and the score

matrices, compted with 1s-AA-E , were outputed. When running 1s-AA, the same score matrix

used to make the decision was outputed.

First, let’s study the quality of the estimators. Because all the estimators ∆̂α,β
g are strongly

consistent, theire bias converges to zero as the number of scenario increases. As a consequence, it is

possible to study their bias by observing the convergence of the estimated values as m increases.

Each estimator of the local AG induces an estimator of the global AG, obtained by computing

the mean, over many runs, of the sums of the empirical local AG at each decisions of these runs. We

computed these estimations, based on the score matrices that we output, restricting our estimators

to use only the first 10, 20,. . . 90, or all the 100 lines of each score matrix. For each estimator and

number of scenarios per decisions, we get one estimation of the GAG of the four policies. This is

was is depicted on figure 5.3. The theory tells us that for each policy, all these estimations should

converge with the same values, and the experimental results confirm this observation. Our lemmas

3 and 4 are also confirmed, since we oberve that all points on the graphs corresponding to ∆̂1,1
g are

below the point of convergence, whereas for ∆̂
1
2 ,

1
2

g they are above.

Now, the flatness of the graphs indiquate that the bias is small. Note that not because there

are extreme values of α and β for which the bias has a proven opposite sign means there is a pair

for which it is zero: it could be that some estimators are positively biased for some policies but

negatively for others, so we cannot apply some kind of intermediate value theorem.

However, on the four policies, the graph of ∆̂
1
2 ,1
g and of ∆̂.7,.7

g are quite flat. So on these 4

policies, these two estimator have the smallest bias of the 7 we tried, and we can hope this result

can generalize.
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Figure 5.3: Comparaison of 7 different estimators on to measure the GAG of 4 different policies.
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Figure 5.4: Estimations of the EGL and of the GAG on instance bbcr5nc, with 68% confidence
intervals

5.6.3 Validating the Theorem using ∆̂
1/2,1
g

The previous section concluded that ∆̂
1/2,1
g is a good estimator for the local AG. Now we will use

the associated estimator of the GAG to empirically verify theorem 1. The experimental protocol is

as follow. We have 400 realizations of bbcr5nc. For each of them, we run 1s-AA-E six times: once

with 5 scenarios per decision, one with 10, 25, 50, 75 and 100 scenarios per decisions. In addition,

we run a clairvoyant solver to compute the offline score of these 400 realizations. This allows us to

estimate, for each number of scenarios per decision, the EGL: the estimation is simply the empirical

mean of the global loss.

Concerning the GAG, we derive estimations of the GAG by adding the estimations of the local

anticipatory gap, measure thanks to ∆̂
1/2,1
g , over the runs. Figure 5.4 show 68% confidence intervals

for the EGL and the GAG. You can see of this figure that with enough scenarios, from 50 scenarios

per decision, the two confidence intervals intersects (the one for the GAG is even included in the

other with 50 and 100 scenarios). This is in accordance with theorem 1. This experiments show that

a very reasonable number of scenarios, here 50, is enough to observe the convergence promised by

the theory. On the practical side, this also indicate that if 1s-AA-E is good on this problem because

s-GAG is small, then there is no need to sample further: the quality of decisions will not increase.

5.7 Approximating the Offline Problem

Theorem 1 explains why the anticipatory algorithm provides good results when the GAG is small.

However, practical implementations use a variant of Algorithm 1 in which O is replaced by a fast

approximation Õ. This is the case for the three applications mentioned earlier which use an ap-

proximating technique called Regret [5, 26]. The Regret algorithm can be seen as a discrete version

of sensitivity analysis: instead of computing O(st, x, ξi) for each for each x ∈ X (st), the idea
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is to compute x∗ = argmaxx(O(st, x, ξi)) first and then to compute a vector of approximations(
Õ(st, x, ξi)

)
x∈X (st)

using x∗. Each entry in this vector is derived by approximating the loss of

selecting a specific x in X (st) instead of the optimal decision x∗. As a result, the Regret algorithm

ensures (i) Õ ≤ O and (ii) maxx(Õ(st, x, ξi)) = maxx(O(st, x, ξi)). See [9] for a discussion on the

complexity of computing this approximated vector.

It is not easy to provide tight theoretical bounds on the expected global loss for the Regret

approximation. We thus measured the empirical distribution ofO−Õ on online stochastic reservation

systems from [26]. The difference O−Õ is zero in 80% of the cases and its mean is very small (around

.2 while the typical values of O are in the range [400,500]), although it can occasionally be large. This

intuitively justifies the quality of Regret , whose expected global loss is not significatively different

from the anticipatory algorithm for the same sample size.

Finally, recall that, on online reservation systems, the consensus rate is very high on average.

Let x? = argmaxx
∑m
i=1O(st, x, ξi) and let the consensus rate be α. By properties (i) and (ii)

of Regret , the approximated “score”
∑m
i=1 Õ(st, x?, ξi) of decision x? may only exhibit errors in

(1 − α)m scenarios and hence will be very close to
∑αm
i=1O(st, x?, ξi). Moreover, other decisions

have an approximated score where (almost all) the terms of the sum has a negative error. Therefore

the approximated decision is biased toward consensual decisions and a high consensus rate tends to

hide the approximation errors O − Õ of Regret .

In summary, a high consensus rate not only makes the AG small but also allows Regret to

produce decisions close in quality to the exact anticipatory algorithm. This does not mean that a

brutal Regret approximation, e.g., assigning zero to each non-optimal decision, would be as effective

[5].

5.8 GAG Versus EVPI

This section studies the relationships between the anticipatory gap and the expected value of perfect

information (EVPI). Since these concepts are seemingly close, it is useful to explain how they differ

and why we chose to introduce the notion of anticipatory gap.

Consider the following two maps assigning values to states: the offline value and the online value

of state st, respectively denoted by φ(st) and π(st) and defined by

φ(st) = max {E [f(x, ξ)|st] | x dec. proc.}

π(st) = max {E [f(x, ξ)|st] | x non-anticip. dec. proc.} .

Note that φ(st) ≥ π(st) for all state st. The difference

η(st) = φ(st)− π(st).

is the (local) expected value of perfect information (EVPI). The expected value of perfect information

of the problem is η(s1), that is, the advantage, in the expected sense, of a clairvoyant over a non-

clairvoyant (both with infinite computational resources). The next lemma relates the offline problem

and φ and shows that the operators max and E commute for clairvoyant decision processes.

50



Figure 5.5: low EVPI but high Global Anticipatory Gap

Lemma 5 For any state st, φ(st) = E [O(st, ξ)|st] .

Proof. Let x? be a decision process maximizing E [f(x, ξ)|st]. Then for all ξ, O(st, ξ) ≥ f(x?, ξ),

and, as E is non-decreasing, E [O(st, ξ)|st] ≥ E [f(x?, ξ)|st)] = φ(st). Inversely, let xξ be a decision

process maximizing f(x, ξ) with xξ1..t−1 = x1..t−1. Define x? by aggregation: x? does the same thing

as xξ on the scenario ξ. Then φ(st) ≥ E [f(x?, ξ)|st] = E [O(st, ξ)|st]. �

In two-stage stochastic programming, a low EVPI makes the problem much easier because an

optimal decision is also a good one for each specific scenario [12, ch. 4]. However, this is no longer

true in the multistage case. Consider the three-stage problem depicted in Figure 5.5. Black dots

represent decisions variables x1 and x2. Stochastic variables ξ1 and ξ2 have no influence and are

not represented. The white dot represents ξ3 which take values 0 and 1 with equal probability.

Leaves are tagged with their utilities and a is large positive number. The value of the EVPI and the

anticipatory gap ∆g for each state are the following:

state root state x1 = 0

∆g 0 1/2(ε+ a)

η ε 1/2(ε+ a)

On this problem, the EVPI is ε: an optimal solution has a score of ε, whatever the scenario. The

expected value of the optimal policy is zero. However, the online anticipatory algorithm always

chooses x1 = 0 and thus has an expected utility of 1/2(ε−a). Therefore anticipatory algorithms may

behave poorly even with a low EVPI. Moreover, in this case, the inequality of Theorem ?? is tight

when m converges to +∞, since the GAG equals 1/2(ε+ a).

The phenomenon comes from the fact that the EVPI of the problem is low although the EVPI

of the node (x1 = 0) is ε − 1/2(ε − a) = 1/2(ε + a) and thus much larger. This does not contradict

the super-martingale property of [20] because Dempster considers optimal decision processes, which

is not the case of anticipatory algorithms. As a result, the expected global loss of the anticipatory

algorithm cannot be bounded by the root EVPI. The example may suggest that the maximum of

the EVPIs at each node of the tree gives an upper bound of the EGL, but this is not true either.

Figure 5.6 presents a stochastic program, where ‘Sub’ are clones of the problem in Figure 5.5, with

variables indices shifted. On this problem, the optimal solutions to the scenarios have an expected

expected utility of ε, and those of the anticipatory algorithm (with m = ∞) have expected utility
1/4(−3a + ε); the EGL thus equals 3/4(a + ε). By Theorem ??, the GAG is not smaller than the

EGL (m =∞: no sampling error). As a result, the GAG is greater than the maximum of the EVPI
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Figure 5.6: GAG higher than max of the EVPIs

over all nodes, which is equal to 1/2(ε+ a).

Finally, the following theorem gives one more reason why the concept of anticipatory gap is of

interest.

Theorem 3 For any state st, we have η(st) ≥ ∆g(st) and there exist cases in which the inequality

is strict.

Proof. η(st) = φ(st)− π(st). Recall that π(st) is the optimal expected utility of a non-anticipative

decision process given st. Because of non-anticipativity and because X (st) is finite, there exists an

optimal decision x? ∈ X (st) such that π(st) = E [π(st+1)|st, xt = x?]. Now

max
x∈X (st)

E [O(st, x, ξ)|st] ≥ E [O(st, x?, ξ)|st]

≥ E [π(st+1)|st, xt = x?] .

and thus, using lemma 5,

η(st) ≥ E [O(st, ξ)|st]− max
x∈X (st)

E [O(st, x, ξ)|st]

≥ ∆g(st).

This proves the inequality. The second part of the theorem is proven by the example of Figure 5.5,

on which the root node s1 satisfies η(s1) = ε > 0 = ∆g(s1). �

5.9 Conclusion and Research Perspectives

One-Step Anticipatory algorithms have been shown experimentally to be successful in tackling a

variety of large multistage stochastic integer programs which were outside the scope of a priori

methods such as (PO)MDPs and multistage stochastic programming. This chapter studied the

performance of anticipatory algorithms in terms of their sampling error and the anticipatory gap of

the problems. It showed that, whenever the s-GAG is small, 1s-AA-E is scalable and provide high-

quality solutions in the expected sense with a logarithmic number of samples in the problem size.

The chapter also studied how to bound the anticipatory gap both theoretically and experimentally,

showing that a simple packet scheduling problem admits a small anticipatory gap and providing

experimental evidence on several large multistage stochastic programs. Finally, the chapter indicated
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that the anticipatory gap is an important concept and studied its relationships with the expected

value of perfect information.

The understanding how what makes the GAG small or large is, however, still very primitive,

and more work would be needed, for example to improve the techniques used in section 5.5. On the

other hand, for many other problems 1s-AA-E does not produce as high-quality decisions. The rest

of this disseration is concerned with adressing that case.
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Chapter 6

Amsaa: the Anytime Mulstistep

Anticipatory Algorithm

This chapter presents the main contribution of the paper: Amsaa, the Anytime Multi-Step Antic-

ipatory Algorithm for combinatorial optimization problems with exogenous uncertainty. We start

with a high-level overview of Amsaa before presenting each step in detail.

6.1 Overview of Amsaa

The core of Amsaa is the Multi-Step Anticipatory Algorithm (Msaa) whose pseudo code follows.

Function Msaa(X-MDP A)

Approximate the X-MDP A by exterior sampling : replace the1

distribution of ξ by the empirical distribution on a sample of ξ
Convert the resulting X-MDP to a standard MDP;2

Solves the resulting MDP with a search algorithm for MDPs, using the3

offline upper bound hE,max(s) = E [O(s, ξ′) | ξ′ ∈ C(s)];
return the greedy decision at the root node of the MDP.4

The first step of Msaa approximates the X-MDP by exterior sampling to make it more tractable.

It then converts the resulting X-MDP into an MDP, making it possible to apply standard search

algorithms for MDPs. The third step applies such an algorithm using an upper bound that exploits

the value of the offline problems associated with the approximated X-MDPs. Finally, the fourth step

returns the decision selected by the optimal policy at the root node of the MDP. Note that Msaa

exploits the exogenous nature of the uncertainty in steps 1 and 3, i.e., to approximate the problem

and to guide the search towards the optimal policy.

Amsaa is an anytime algorithm based on Msaa. It iteratively applies algorithm Msaa on in-

creasingly finer approximations of the original X-MDP until some termination condition is met.
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Operationally, such a condition is likely to be a time constraint (e.g., “make a decision within one

minute”) but it could also be a stopping criterion based on some accuracy measure such as the

contamination method [22]. This iterative refinement is made efficient by the incremental nature of

Amsaa: Calls to Msaa reuse earlier computations, so that resolving the MDP is fast after a small

change in the approximation. We now study each component of Amsaa.

6.2 Approximating the X-MDP

The first step of Amsaa is to approximate the original X-MDP by replacing the distribution of the

scenarios by one with a finite and reasonably small support.

6.2.1 The Sample Average Approximation Method

A simple way of approximating a distribution is by sampling. For stochastic programs, this idea

is called the Sample Average Approximation (SAA) method [43] and it extends naturally to X-

MDPs. Suppose we want a distribution whose support has cardinality at most n: Sample ξ n times,

independently or not, to obtain ξ1, . . . , ξn and define µ̂n as the empirical distribution of ξ induced

by this sample, i.e., the distribution assigning probability 1/n to each of the sampled scenarios. In

the following, we use A and Ân to denote the X-MDPs Aµ and Aµ̂n .

6.2.2 The Benefits of Exterior Sampling for X-MDPs

Sampling can be used either to approximate a problem that is then solved exactly (The SAA method)

or to compute an approximate solution of the original problem. Amsaa approximates the original

problem and solves the resulting X-MDP exactly (exterior sampling). In [30], Kearns, Mansour

and Ng (KMN) took the other road: they proposed an algorithm to solve approximately an MDP

by sampling a number of outcomes at each visited state (interior sampling). Their algorithm was

presented for discounted rewards but generalizes to the objective and assumptions of this paper.

However, interior sampling does not exploit a fundamental advantage of problems with exogenous

uncertainty: positive correlations.

Indeed, in a state s, the optimal decision maximizes Q?(s, x), where Q? is the Q-value function

associated to the optimal value function v?. However, estimating this value precisely is not impor-

tant. What really matters is to estimate the sign of the difference Q?(s, x1)−Q?(s, x2) for each pair

of decisions x1, x2 ∈ X (s). Now, consider two functions g and h mapping scenarios to reals. Two

examples of such functions are

1. the offline values for two decisions: g(ξ) = O(τ(s, x1, ξ), ξ) and h(ξ) = O(τ(s, x2, ξ), ξ);

2. the optimal policy value obtained from a state s after making a first decision. That is, g(ξ) =

v(τ(s0, x1, ξ)) and h(ξ) = v(τ(s0, x2, ξ)) for two decisions x1, x2 ∈ X (s0).
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If ξ1 and ξ2 are iid scenarios, then

var
(
g(ξ1)− h(ξ2)

)
= var

(
g(ξ1)

)
+ var

(
h(ξ2)

)
,

var
(
g(ξ1)− h(ξ1)

)
= var

(
g(ξ1)

)
+ var

(
h(ξ1)

)
− 2 cov

(
g(ξ1), h(ξ1)

)
,

and therefore

var
(
g(ξ1)− h(ξ1)

)
=
(
1− acorr

(
g(ξ1), h(ξ1)

))
· var

(
g(ξ1)− h(ξ1)

)
,

where acorr(X,Y ) = cov(X) cov(Y )
1/2(var(X)+var(Y )) is a quantity we call arithmetic correlation. Note that

acorr(X,Y ) is close to corr(X,Y ) when var(X) and var(Y ) are close. Now consider an infinite

iid sample ξ1, ξ1′, ξ2, ξ2′, . . . , and a large integer n. By the central limit theorem, the distributions

of
1
n

n∑
i=1

g(ξi)− h(ξi) and of
1
nγ

nγ∑
i=1

g(ξi)− h(ξi
′
)

are almost the same when 1/γ = 1− acorr
(
g(ξ1), h(ξ1)

)
. Therefore, for some specified accuracy, the

number of required scenarios to estimate the expected difference between g(ξ) and h(ξ) is reduced by

this factor γ when the same scenarios (exterior sampling) are used instead of independent scenarios

(interior sampling). This argument is not new and can be found in, say, [43, Ch. 6]. However, no

empirical evidence of high correlations were given, which we now report. Consider an SAA problem

approximating the standard instance of the S-RCPSP application with 200 scenarios generated by

iid sampling, and consider the offline and optimal policy values in the initial state for the 6 possible

initial decisions. Associating a column with each decision, the values for the first 8 scenarios are:

OfflineV alue = 1e4×0BBBBBBBBBBBBBBBBBBBBB@

0 2.170 2.170 2.125 2.130 2.170

0 −0.050 −0.030 −0.065 −0.060 −0.060

0 −0.030 −0.025 −0.060 −0.055 −0.060

0 1.440 1.470 1.405 1.470 1.410

0 1.160 1.160 1.135 1.130 1.185

0 −0.025 −0.050 −0.065 −0.055 −0.060

0 0.829 0.804 0.829 0.789 0.769

0 2.015 2.015 2.005 2.065 2.065

1CCCCCCCCCCCCCCCCCCCCCA

OptPolicyV alue = 1e4×0BBBBBBBBBBBBBBBBBBBBB@

0 2.110 2.038 1.910 1.893 2.170

0 −0.265 −0.275 −0.275 −0.275 −0.225

0 −0.205 −0.230 −0.230 −0.170 −0.170

0 1.375 1.405 1.279 1.345 1.365

0 1.045 1.070 1.015 1.105 1.160

0 −0.140 −0.195 −0.255 −0.275 −0.180

0 0.829 0.804 0.789 0.230 0.255

0 1.811 1.955 1.955 2.015 2.015

1CCCCCCCCCCCCCCCCCCCCCA
The first columns correspond to the decision of not scheduling anything, which is why it is always

zero. Other columns correspond to scheduling the first task of each project respectively. The

correlation is evident. The arithmetic correlation matrices, computed over the 200 scenarios, are:
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OfflineArithCorr =0BBBBBBBBBBBBBB@

NaN 0 0 0 0 0

0 1 .9977 .9958 .9975 .9966

0 .9977 1 .9963 .9968 .9973

0 .9958 .9963 1 .9968 .9974

0 .9975 .9968 .9968 1 .9972

0 .9966 .9973 .9974 .9972 1

1CCCCCCCCCCCCCCA

OptPolicyArithCorr =0BBBBBBBBBBBBBB@

NaN 0 0 0 0 0

0 1 .9874 .9886 .9583 .9404

0 .9874 1 .9934 .9662 .9486

0 .9886 .9934 1 .9645 .9429

0 .9583 .9662 .9645 1 .9886

0 .9404 .9486 .9429 .9886 1

1CCCCCCCCCCCCCCA
These correlations are very high, the smallest being 99% for the offline values and 94% for the

optimal policy values. Moreover, the minimal correlation for the optimal policy values becomes

98.7% when only decisions 2–4, which have the highest Q-value, are considered.

It remains to see whether these correlations are a characteristic of the problem or even of the

instance. We conjecture that, instead, this will be the case in the overwhelming majority of X-

MDPs originating from OSCO applications. Indeed, in most problems, some scenarios are more

favorable than others regardless of the decisions. For example, in the S-RCPSP, scenarios with

many successful projects bring more money than scenarios with many failures, exhibiting a positive

correlation between the values of the actions. Finding realistic OSCO problems in which decisions

are not positively correlated is hard. For example, in a portfolio management problem, one might

expect the decision of selling some stock to be negatively correlated to the decision of buying more

of the same stock. But this is not true: if trading fees are small and if the optimal policy is to buy

more, then the optimal policy following the decision to sell the stock will be to rebuy them. They

will be a loss due to fees and to the price difference between to sell and the rebuy, but there will

be a positive correlation of values for the two decisions. As a result, we conjecture that, for most

OSCO problems, exterior sampling will converge with far fewer scenarios than interior sampling.

6.3 Converting the X-MDP to an MDP

The second step of Amsaa consists of converting the approximated X-MDP into an MDP. It proceeds

in two stages: First trimming the X-MDP to remove unreachable states, before performing the actual

conversion.

6.3.1 Trimming X-MDPs

Trimming consists in eliminating unreachable states and in marking as final those state in which all

the uncertainty has been revealed.

Definition 8 Given an X-MDP A with state-space S and final states set F , the trimmed X-MDP

B induced by A is the X-MDP that is in all equal to A, except:
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1. its state space is S′ = {s ∈ S|C(s) 6= ∅};

2. its set of final states set is F ′ = F ∪ {s ∈ S′|#C(s) = 1};

3. its feasible decision function X ′(s) which is X (s) if s /∈ F ′ \ F and {⊥} otherwise;

4. its reward function f ′ is defined over the states in F ′ \ F and has value f(s) = O(s, ξ) where

ξ is the unique scenario compatible with s.

Lemma 6 Let A be an X-MDP and B be its trimmed version. Then:

1. For any policy π in A optimal for states in F ′ \ F , we have for all s ∈ S′, vAπ (s) = vBπ (s);

2. For any policy π in B, the policy π̃ in A defined by π̃(s) = π(s) for s ∈ S′ \ (F ′ \ F ) and by

π̃(s) = argmaxx∈X (s)O(τ(s, x, ξ), ξ) for states in F ′ \F , with ξ the unique scenario compatible

with s, satisfies ∀s ∈ S′, vAπ̃ (s) = vBπ (s).

6.3.2 Converting Trimmed X-MDPs

It remains to show how to transform a trimmed X-MDP into an MDP.

Definition 9 Let B = (S′, s0, F
′, X,⊥,X ′, f, ξ, µξ, τ) be the trimmed version of X-MDP A. Define

P from S ×X to the set of probability distributions on X by:

∀s, s′ ∈ S′, x ∈ X P(s′|s, x) = P (τ(s, x, ξ) = s′ | ξ ∈ C(s)) .

Then C = (S′, s0, F
′, X,⊥,X ′, f,P) is the MDP induced by X-MDP A.

Lemma 7 For any policy π, we have ∀s ∈ S, vB(s) = vC(s).

This lemma is a consequence of the Markov property for X-MDPs, which implies that, following π

in B or C, for all t the distribution of st is the same in B and in C.

Proof. (We assume S′ finite here, which is the only case in which we use this theorem) Consider

the random trajectory defined by running π in B starting in s, on the random scenario ξ, denoted

s = sB1
π(sB1 )−−−−→
ξ

sB2
π(sB2 )−−−−→
ξ

. . .

and the one defined by running π in C starting in s, denoted

s = sC1
π(sC1 )−−−−→ sC2

π(sC2 )−−−−→ . . . .

By induction, we prove that the distributions of sBt and sCt are the same. This is true for t = 1.

Now, suppose it is true at t. Consider s and s′ in S′. We have

P
(
sBt+1 = s′

∣∣ sBt = s
)

= P (τ(s, π(s), ξ) = s′ | ξ ∈ C(s))

= P(s′|s, π(s)),
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with this last equality following the definition of P. Now,

P
(
sBt+1 = s′

)
= E

[
P
(
sBt+1 = s′

∣∣ sBt )]
= E

[
P(s′|sBt , π(sBt ))

]
=
∑
s∈S
P(s′|s, π(s))P

(
sBt = s

)
and by induction hypothesis

=
∑
s∈S
P(s′|s, π(s))P

(
sCt = s

)
= E

[
P(s′|sCt , π(sCt ))

]
which, by definition of an MDP, is

= P
(
sCt+1 = s′

)
.

Hence sBt+1 and sCt+1 are equally distributed. By recursion, for t = T we have E
[
f(sBT )

]
= E

[
f(sCT )

]
.

Now, these two quantities are precisely vBπ (s) and vBπ (s), so they are equal. �

Theorem 4 Let A be an X-MDP, B its trimmed version, and C the MDP induced by B.

1. For any policy π in A optimal for states in F ′ \ F , we have for all s ∈ S′, vAπ (s) = vCπ (s);

2. For any policy π in C, the policy π̃ in A defined by π̃(s) = π(s) for s ∈ S′ \ (F ′ \ F ) and by

π̃(s) = argmaxx∈X (s)O(τ(s, x), ξ) for states in F ′ \ F , with ξ the unique scenario compatible

with s, we have that ∀s ∈ S′, vAπ̃ (s) = vCπ (s).

Proof. Direct consequence of lemmas 6 and 7. �

6.4 Solving MDPs

Once the X-MDP is converted into an MDP, it is possible to apply existing algorithms for solving

the MDP optimally. In this section, we describe such an algorithm from a class called heuristic

search algorithms, which, despite their names, are exact algorithms. The presentation here follows

[14] which contains an excellent synthesis of these algorithms.

6.4.1 Heuristic Search Algorithms for MDPs

Heuristic search algorithms for MDPs perform a partial exploration of the state space, using a —

possibly monotone — upper bound to guide the search. A value function h : S → R is an upper

bound if ∀s ∈ S, h(s) ≥ v?(s). A value function is a monotone upper bound if it is an upper bound

and if Resh(s) ≥ 0 for all state s. Intuitively, a monotone upper bound is an optimistic evaluation

of a state that cannot become more optimistic if a Bellman update is performed.

Function findAndRevise, introduced by [13], captures the general schema of heuristic search

algorithm for MDPs and returns an optimal value function upon termination. At each step, the
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Function findRevise(MDP A)

precondition: h is a upper bound for A, h(s) = f(s) if s is final
foreach s ∈ S do1

v(s)← h(s)2

repeat3

Pick a state s reachable from s0 and πv with |Resv(s)| > 04

v(s)← maxx∈X (s)Q(s, x)5

until no such state is found6

return argmaxx∈X (s)Q(s, x)7

algorithm selects a state reachable with the current policy πv whose Bellman residual is non-zero

and performs a Bellman update. When h is monotone, only strictly positive (instead of non-zero)

Bellman residuals must be considered, and the value function v remains a monotone upper bound

during the entire execution of the algorithm. Different instantiations of this generic schema differ in

the choice of the state to reconsider. They include, among others, HDP [13], Learning Depth-First

Search (LDFS) [14], Real-Time Dynamic Programming (RTDP) [2], Bounded RTDP [36], and LAO*

[25]. Of course, since the state space may be extremely large, these instantiations only manipulate

partial value functions defined on the states visited so far. It is only when a new state s is visited

that the initialization v(s)← h(s) is performed. The rest of this section describes the acyclic LDFS

algorithm and the upper bound used by Amsaa.

6.4.2 Learning Depth-First Search

Functions LDFS, LDFSAux, and evalQ describe the LDFS algorithm for acyclic MDPs. LDFS requires

the upper bound to be monotone, so no Bellman residual is ever negative. The algorithm applies

LDFSAux on state s0 until the value v(s0) has converged. Function LDFSAux is recursive. When

LDFSAux (s) is called, there are two possibilities:

• either Resv(s) = 0, which means that there exists at least one decision x ∈ X (s) satisfying

v(s) = Q(s, x). In that case, LDFS performs a recursive call for each such decision and each

of its possible transitions (lines 6–7). If these recursive calls all return true, the values of

these successor states have converged and the value v(s) has converged as well (lines 8–9).

Otherwise, LDFSAux performs a Bellman update (line 10) and returns false (line 11).

• or Resv(s) > 0. This means s is a candidate for an update (line 5 in findAndRevise). In that

case, all the tests in line 4 fail and a Bellman update is performed in line 10.

LDFS explores the state-space in an iterative deepening fashion that comes from the behavior

of LDFSAux on a state s explored for the first time. Indeed, when LDFSAux(s) is called for the first

time for a given state s, its value has never been updated and thus v(s) = h(s). But the Q-values

computed by evalQ (line 4) are based on values v(s′) of each successor s′ of s. As a result, it is

likely that Resv(s) will be positive, and the path exploration will not go any deeper (because of the
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Function LDFS(MDP A)

while not LDFSAux(s0) do { }1

return argmaxx∈X (s0) evalQ(s0, x)2

Function LDFSAux(State s)

if solved[s] then1

return True2

foreach x ∈ X (s) do3

if evalQ(s, x) = v(x) then4

solved[s]← True5

foreach t ∈ {s′ ∈ S|P(s′|s, x) > 0} do6

solved[s]← solved[s] ∧ LDFSAux(t)7

if solved[s] then8

// x is the optimal decision, and v(x) = v?(x)
return True9

// Not solved yet
v(s)← maxx∈X (s) evalQ(s, x)10

return False11

Function evalQ(State s,Decision x)
Succ← {s′ ∈ S|P(s′|s, x) > 0};1

foreach s′ ∈ Succ do2

if ¬visited[s′] then3

visited[s′]← True;4

solved[s′]← (s′ is final);5

v(s′)← h(s′);6

return
∑

s′∈Succ v(s′)P(s′|s, x)7

test in line 4). This contrasts with RTDP-like algorithms, which always explore paths deeply in the

state space. LDFS is an attractive algorithm for use in Amsaa for several reasons:

1. it is applicable since our problems are acyclic and a good monotone upper bound is available;

2. Amsaa’s upper bound is reasonably strong but expensive to compute, justifying why the

iterative deepening feature is interesting. Once the successors of a state are evaluated, the state

may no longer be reachable under πv and there is no immediate benefit in further exploration.

3. the solved flags allow the algorithm to test for convergence, as opposed to RTDP;

4. its code is simpler than those of HDP and of LAO*, since it exploits acyclicity.

6.4.3 The Upper Bound hE,max

The performance of heuristic search algorithms strongly depends on the quality of the heuristic

function h. A standard upper bound, that is defined for any MDP, is called hmax,max. For a state s,
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hmax,max(s) is the highest reward of a final state reachable from s. In other words, it correspond to

a relaxation of the problem in which the decision maker can choose not only its decisions, but also

random outcomes.

For very stochastic problems, this is often a poor bound. On the standard instance of the

S-RCPSP, hmax,max(s0) is about 4 times the value of the optimal policy v?(s0). Fortunately, for

MDPs induced by X-MDPs, a much better heuristic function can be derived from the deterministic

offline problems (see Definition 3). More precisely, for a state s, the heuristic consists of solving the

deterministic offline problems for the scenarios compatible with s in the original X-MDP and taking

the resulting expected offline value , i.e.,

hE,max(s) = Eµ [O(s, ξ) | ξ ∈ C(s)] ,

where µ is ξ’s distribution. Function hE,max is a good heuristic because it leverages both the

combinatorial and stochastic structures of the application. Moreover, on the approximated problem,

the sets C(s) are small and the expectation can be computed exactly as a sum, which is why the

approximation was introduced in the first place. It remains to show that hE,max(s) is an upper

bound for state s in the induced MDP.

Theorem 5 Let A = (S, s0, F,X,⊥,X , f, ξ, µ, τ) be an X-MDP and B be the induced MDP with

transition probability function P(·|s, x). Then hE,max is a monotone upper bound for B.

Proof. (for simplicity we assume S and Ξ finite. The theorem holds without these assumption, but

we only use it in that case). Let s be a state, and x ∈ X (s). Then

QhE,max(s, x) =
∑
s′∈S

hE,max(s′)P(s′|s, x) by definition of a Q-value

=
∑
s′∈S

Eµ [O(s′, ξ)|ξ ∈ C(s′)]P(s′|s, x) by definition of hE,max

=
∑
s′∈S

Eµ [O(s′, ξ)|ξ ∈ C(s′)] P (τ(s, x, ξ) = s′|ξ ∈ C(s)) by definition of P

=
∑
s′∈S |

µ(C(s′))>0

 ∑
ξ∈C(s′)

µ(ξ)
µ(C(s′))

O(s′, ξ)

 µ(C(s′))
µ(C(s))

=
∑
s′∈S |

µ(C(s′))>0

∑
ξ∈C(s′)

µ(ξ)
µ(C(s))

O(τ(s, x, ξ), ξ)

=
∑
ξ∈C(s)

µ(ξ)
µ(C(s))

O(τ(s, x, ξ), ξ)
since {C(τ(s, x, ξ)), ξ ∈ C(s)}
partitions C(s)

= Eµ [O(τ(s, x, ξ), ξ) | ξ ∈ C(s)]

Now, by definition of the offline problem, we have ∀ξ ∈ C(s), O(s, ξ) = maxx∈X (s)O(τ(s, x, ξ), ξ),

and thus ∀x ∈ X (s), O(τ(s, x, ξ), ξ) ≤ O(s, ξ). Therefore,

QhE,max(s, x) ≤ Eµ [O(s, ξ) | ξ ∈ C(s)] = hE,max(s).
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This proves that ReshE,max(s) ≥ 0 for all states. Moreover, if s is final, we have for all scenario ξ,

O(s, ξ) = f(s) = v?(s). The result follows since a value function v satisfying Resv ≥ 0 for all states

are upper bounds [36]. �

6.5 Example of a Run

To clarify the previous description of the Msaa algorithm, we will now go through a run step by step.

The instance considered in the previously presented small instance of the S-RCPSP on which 1s-AA

is suboptimal depicted in figure 5.2. Msaa (with Learning DFS) needs four iterations to terminates.

Like when we studied the behavior of 1s-AA on the same instance, we assume that the considered

sample has one of each scenario: one where A succeeds (denoted S), and one where it fails (denoted

F). The explored state space, with current values of decisions and Q-values are depicted in figure

6.1.

6.6 Incrementality and Anytime Decision Making

Amsaa is an incremental algorithm: It reuses earlier computations when computing the optimal

policy of a finer approximation to the original X-MDP. Its incremental nature stems from two

essential components: (1) a good incremental upper bound, that is, an upper bound for the new

approximation that derives from the optimal policy values of the earlier approximation; and (2)

the reuse of the internal data structures. Note also that incrementality is not only beneficial for

runtime performances; It is also opens the door to sequential importance sampling [20] and to the

contamination method [22].

6.6.1 Incremental Upper Bound

To convey the intuition behind the incremental upper bound, consider the following example under

iid sampling. We have solved the approximated problem with distribution µ that gives weights 1/3 to

scenarios a, b and c and we are interested in adding two scenarios d and e to obtain a solution to the

finer approximation with distribution ρ in which each of these 5 scenarios has weight 1/5. Consider

a state s which is compatible with a, b, and d. Assume that LDFS has shown that v?µ(s) ≤ 3, and

assume O(s, d) = 6. How can we compute an upper bound of v?ρ(s)? If a scenario generated by ρ

is in C(s), then it is in {a, b} with probability p = ρ({a,b})/ρ({a,b,d}) and is d with probability 1 − p.
Let ν be the probability distribution that gives probability 1/2 to each of the two new scenarios d

and e. For the problem with distribution ρ, consider a decision maker that can query whether the

actual scenario is in {a, b, c}. Depending on the answer, she will follow the policy defined by v?µ or

by v?ν . Therefore, its expected value if s is pv?µ(s) + (1 − p)v?ν(s). Of course, the decision maker

has no access to this information: this assumption relaxes of the problem, and so the expected

value of this “partially clairvoyant” decision maker is an upper bound of v?ρ(s). It follows that
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Node 7 (t=2)

S
F

32
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Node 8 (t=2)

S
F

24
24
24

Node 3 ...
v = 26

(d) After iteration 4

Node 1 (time 0)
v = 27

Schd A.1 @ 0 Schd B @ 0 Schd C @ 0

Node 2 (t=1)
v = 27 Node 3 ...

v = 26
Node 4 ...
v = 24

Schd B @ 1 Schd C @ 1

Node 9
(t=2)

S 49
49

Node 10
(t=2)

F 5
5

Node 11
(t=2)

S 48
48

Node 12
(t=2)

F 3
3

(a) First iteration

At the first iteration, the offline upper 
bound is computed for the immediate 
successors of the root node: nodes 2, 3, and 
4. For each of these nodes, the two scenarios 
S and F are compatible.

(b) Second iteration

The most promising branch, scheduling B at 
0, is explored. The transitions after node 3 
are deterministic because they go to nodes 5 
and 6, in which only B has comleted, and 
A.1 or C is running.
The value of node 3 goes down from 31 to 26 
and scheduling C at 0 becomes the most 
promising decision, with an upper bound of 
28.

(c) Third iteration

Like at iteration 2, the exploration decreases 
the upper bound. Here the value of node 4 
goes down to 24, and now scheduling A.1 at 
zero appears the most promising.

(d) Fourth iteration

The exploration of this branch is different, 
because after scheduling A.1 at zero and B 
or C at 1, task A.1 completes and is thus 
observed. Therefore, nodes 9 to 12 only have 
one compatible scenarios, instead of two for 
all the previous ones. Hence their respective 
upper bound can be labeled as tight, and by 
dynamic programming this labeled is carried 
upward to the root node.

Q = 27

Q = 27 Q = 31 Q = 27

Q = 27

Q = 27

Q = 28Q = 26

Q = 26 Q = 24

Q = 26 Q = 24

Q = 25.5

Q = 28

B

A1

A1

B

A1

B

Decision node

Chance node

State:

Decision node
labelled as solved

Q = 24Q = 21

Q = 25 Q = 26

Updated
value

Figure 6.1: A run of Msaa
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v?ρ(s) ≤ p · 3 + (1− p) · 6 = 2 + 2 = 4. The incremental upper bound theorem below formalizes this

idea. To connect it with this example, note that ρ = 3
5µ+ 2

5ν and p = 3/5 · µ(C(s))/ρ(C(s).

Given two distributions µ and ρ, we say that µ is absolutely continuous with respect to ρ if, for

any set A such that ρ(A) = 0, µ(A) = 0. In that case, we define the function µ
ρ by

µ

ρ
(A) =


µ(A)
ρ(A) if ρ(A) > 0

0 otherwise.

This function ensures that µ(A) = µ
ρ (A)ρ(A) for all A.

Theorem 6 Let A, B and C be three X-MDPs that differ only by their respective distributions µ,

ν, and ρ and let ρ = λµ+ (1− λ)ν for some 0 < λ < 1. Let hµ and hν be monotone upper bounds

for A and B respectively. Define h : S → R by:

h(s) = λ
µ

ρ
(C(s)) hµ(s) + (1− λ)

ν

ρ
(C(s))hν(s).

Then h is well-defined and is a monotone upper bound for the induced MDP of C.

Proof. First, h is well-defined because µ and ν are absolutely continuous wrt ρ. Let x ∈ X (s) and

define s′ as the random variable τ(s, x, ξ). Consider Qh(s, x), the Q-value in C for the value function

h. We have:

Qh(s, x) = Eρ [h(s′)|ξ ∈ C(s)]

= Eρ
[
λ
µ

ρ
(C(s′))hµ(s′) + (1− λ)

ν

ρ
(C(s′))hρ(s′)

∣∣∣∣ξ ∈ C(s)]
= λEρ

[
µ

ρ
(C(s′))hµ(s′)

∣∣∣∣ξ ∈ C(s)]+ (1− λ)Eρ
[
ν

ρ
(C(s′))hρ(s′)

∣∣∣∣ξ ∈ C(s)]
= λ

µ

ρ
(C(s))Eµ [hµ(s′)|ξ ∈ C(s)] + (1− λ)

ν

ρ
(C(s))Eν [hρ(s′)|ξ ∈ C(s)] .

Consider now the difference between h(s) and Qh(s, x):

h(s)−Qh(s, x) = λ
µ

ρ
(C(s))

(
hµ(s)− Eµ [hµ(s′)|ξ ∈ C(s)]

)
+ (1− λ)

ν

ρ
(C(s))

(
hν(s)− Eν [hρ(s′)|ξ ∈ C(s)]

)
≥ λµ

ρ
(C(s))ResAhµ(s) + (1− λ)

ν

ρ
(C(s))ResBhν (s) ≥ 0,

where ResAhµ(s) (resp. ResBhν (s)) is the residual in A (resp. A) of value function hµ (resp. hν).

These residuals are non-negative because hµ and hν are monotone, Since this inequality holds for all

x, it follows that Resh(s) ≥ 0. This proves the monotonicity of h, that h is also an upper bound. �

Amsaa applies this theorem as follows. The empirical distribution of the X-MDP used in the

previous iteration is µ and the empirical distribution of the new scenarios is ν. An optimal policy

for A has been computed with the upper bound hµE,max (the bound hE,max for the problem with

distribution µ) and the returned value function vA is a monotone upper bound for A which is optimal

for all states reachable under policy πvA . The function vA corresponds to hµ in the theorem. The
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function hν is hνE,max and is computed by solving the offline problem on each new scenario. When

the number of new scenarios is small compared to the previous sample size, the incremental upper

bound h is:

• optimal for any state s reachable under πvA satisfying ν(C(s)) = 0;

• tight for most states s reachable under πvA , because the term (1 − λ)νρ (C(s))hνE,max will be

usually small compared to λµρ (C(s)) vA(s);

• at least as good as hρE,max everywhere because vA(s) ≤ hµE,max(s) for all states s.

Computing λµρ (C(s)) or (1−λ)νρ (C(s)) for a state s is easy. In the case of iid sampling, it suffices

to count how many scenarios in C(s) are present in the earlier iteration and how many are being

added. For example, if µ is based on 90 scenarios and ν on 10, then λµρ (C(s0)) = 90
90+10 ·

1.0
1.0 = 0.9

at the root node. Obviously, this theorem is most useful for states s where λµρ (C(s)) is close to one.

6.6.2 Objects reuse

To make efficient use of this incremental upper bound, Amsaa must reuse data structures created

when solving A. Indeed, when adding a small number of new scenarios, only a small number of

states will be affected and it would be inefficient to compute the incremental upper bound of all

explored states. Instead Amsaa updates states lazily. The iterative refinement define a sequence of

X-MDPs A1, . . . , An, . . .. Each state stores a time stamp, that is, an integer i stating that the stored

information is valid wrt to Ai. When a out-of-date state is encountered (its time stamp is smaller

than the index of the current X-MDP), it is updated.

6.7 Theoretical Results on the Sampling Average Approxi-

mation for X-MDPs

The SAA method was developed for stochastic programs. Fortunately, several results for multistage

programs can be adapted to X-MDPs. We present two such results.

The first result is important to evaluate the solution quality of Amsaa. Indeed, The SAA method

provides a positively biased estimator for the objective value of stochastic programs. This stems from

the fact that the same sample is used to find a policy and to evaluate it, which [34] calls appropriately

“inside information”, producing decisions optimized for the sample, not for the whole scenario space.

The following theorem extends this result to X-MDPs. Some technicalities, in particular the fact

that the number of scenarios compatible with a given state is random, pollute this otherwise simple

proof.

Theorem 7 (Positive bias) Let A be a finite-horizon X-MDP and denote by Ân the random X-

MDP obtained by sampling n replications ξ1, . . . , ξn of ξ (independence is not required). For a state
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s ∈ S, denote by v̂n(s) the value of s in Ân when it exists. Then, for any n ∈ N, we have:

E [v̂n(s0)] ≥ v(s0).

Proof. First, define the stage of a state s as T , the horizon, minus the highest number of transitions

from s to a final state in A. The proof establishes the following property by induction on the stage t:

“ Let s ∈ S be a state at stage t such that C(s) 6= ∅. For all 0 < k ≤ n, E [v̂n(s)|#Cn(s) = k] ≥ v(s).

”

All final states satisfying v̂(s) = f(s) = v(s), the property holds at the last stage T . Consider now

a stage t < T and suppose the property holds at t+ 1. Consider a random sample problem Ân and

a state s in stage t that is non-final in A and such that #Cn(s) = k. Denote the scenarios in Cn(s)

by ξs,1, . . . , ξs,k. and define for x ∈ X (s)

ĝ(x) =
1
k

k∑
i=1

v̂(sx,i),

where sx,i = τ(s, x, ξi). By definition of max, we have ĝ(x′) ≤ maxx∈X (s) ĝ(x) for all x′ ∈ X (s). By

taking a conditional expectation on both sides, we obtain

E [ĝ(x′) | #Cn(s) = k] ≤ E
[

max
x∈X (s)

ĝ(x)
∣∣∣∣ #Cn(s) = k

]
, (6.1)

and by taking the max over x′,

max
x∈X (s)

E [ĝ(x) | #Cn(s) = k] ≤ E
[

max
x∈X (s)

ĝ(x)
∣∣∣∣ #Cn(s) = k

]
. (6.2)

Now, we have

E [v̂n(s) | #Cn(s) = k] = E
[

max
x∈X (s)

ĝ(x)
∣∣∣∣ #Cn(s) = k

]
(6.3)

≥ max
x∈X (s)

E [ĝ(x) | #Cn(s) = k] (6.4)

= max
x∈X (s)

E

[
1
k

k∑
i=1

v̂(sx,i)

∣∣∣∣∣ #Cn(s) = k

]
(6.5)

and, by linearity,

= max
x∈X (s)

1
k

k∑
i=1

E
[
v̂(sx,i)

∣∣ #Cn(s) = k
]
. (6.6)

Decompose this last conditional expectation as follows:

E
[
v̂(sx,i)

∣∣ #Cn(s) = k
]

= E
[
E
[
v̂(sx,i)

∣∣ #Cn(sx,i)
] ∣∣∣∣ #Cn(s) = k

]
(6.7)

Now, thanks to the Markov property for X-MDPs, v̂(sx,i) is independent of Cn(s) \ Cn(sx,i), so we

can apply the induction hypothesis to the inner expectation for each possible value of #Cn(sx,i):

E
[
v̂(sx,i)

∣∣ #Cn(s) = k
]
≥ E

[
v(sx,i)

∣∣ #Cn(s) = k
]

(6.8)
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and, because the scenarios are replications of ξ,

= E [v(τ(s, x, ξ)) | ξ ∈ C(s)] (6.9)

Combining equations 6.6 and 6.9 leads to

E [v̂n(s) | #Cn(s) = k] ≥ max
x∈X (s)

1
k

k∑
i=1

E [v(τ(s, x, ξ)) | ξ ∈ C(s)] (6.10)

= max
x∈X (s)

E [v(τ(s, x, ξ)) | ξ ∈ C(s)] (6.11)

= v(x). (6.12)

This shows that the induction property holds for state s in stage t. The theorem follows from the

property at state s0 and because #Cn(s0) = n. �

The second result is mostly of theoretical interest. Let A be an X-MDP, v be its optimal value,

and X ⊆ X (s0) be the set of optimal initial decisions. Define equally v̂n and X̂n as the optimal

value and set of optimal initial decisions of the random X-MDP Aµ̂n . The SAA theory is concerned

with the convergence of v̂n to v and of X̂n to X in appropriate senses. The following theorem proves

this convergence when Ξ is finite, generalizing a well-known results from stochastic programs to X-

MDPs. Unfortunately, the proof requires more scenarios that there are in Ξ, defeating the purpose

of sampling. For this reason, we only sketch the proof.

Theorem 8 (Estimator Consistency) Let A be an X-MDP such that Ξ is finite, and Ân the

random X-MDP obtained by iid sampling of n scenarios. Then, almost surely:

v̂n → v(s0) (6.13)

#
(
X̂n \ X

)
→ 0 (6.14)

Proof.(Sketch) This theorem relies on the strong law of large numbers. Consider, for x ∈ X (s0),

the value Q(s0, x) of x in A, and similarly the value Q̂n(s0, x) of x in Ân. Recall that v =

maxx∈X (s0)Q(s0, x) and v̂n = maxx∈X (s0) Q̂n(s0, x). We will prove that for all x ∈ X (s0), Q̂n(s0, x)

converges almost surely to Q(s0, x). By finiteness of X (s0), this implies eq.6.13.

Moreover, let ε > 0 be such that, for all x ∈ X (s0), either Q(s0, x) = v, or Q(s0, x) < v−3ε. If all

the Q̂n(s0, x) converge almost surely, then there is a random variable N such that ∀x ∈ X (s0), ∀n ≥
N ,

∣∣∣Q̂n(s0, x)−Q(s0, x)
∣∣∣ < ε, and N is almost surely finite. Let n > N . For any x /∈ X we have

Q̂n(s0, x) < Q(s0, x) + ε < v − 2ε and, for any y ∈ X and n ≥N , Q̂n(s0, y) > Q(s0, y)− ε > v − ε.
It follows that Q̂n(s0, x) < Q̂n(s0, y), and so x /∈ Xn. Hence, proving that the Q̂n(s0, x) converge

almost surely also implies eq.6.14.

It remains to prove that the Q̂n(s0, x) converge almost surely. Thanks to the strong law of large

numbers, we have for all s ∈ S, and Z ∈ Ξ:

P (ξµ̂n ∈ Z | ξµ̂n ∈ C(s))→ P (ξ ∈ Z | ξ ∈ C(s)) ,

and the proof is a backward induction on the property that v̂n(s)→ v(s) using this fact. �
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Chapter 7

Empirical Results

Having described in details how Amsaa produces decision in limited time for MDPs, we are now in

position to report experimental results on the diverse problems we considered.

7.1 Stochastic Multiknapsack

As mentioned previously, on the Stochastic Multiknapsack problem (SMK), the one-step algorithm

performs very well, even compared to the expected value of the clairvoyant. As a result, there is very

little room for improvement. We compare 1s-AA-E and Amsaa on an instance called bbcr5 T30 nc,

which is very close to the one mentioned in chapter 5, bbcr5nc, but in which time is discretized:

there is 30 time periods. On this instance, there are 5 bins to accomodate the items. At each time

period, exactly one item arrives, with uniform probability among 5 item types.

We compare 1s-AA-E and Amsaa in an anytime fashion, using respectively 4s and 16s per

decisions, and a 2s time limit for offline problems. In the vast majority of cases, this time limit

is not reached: CPLEX solves most (offline) multiknapsack problems to optimality in about 0.1 to

0.2s.

The reason a discrete time instance was used is that this way, independent and identically

distributed (iid) sampling can be used. Indeed, if items arrive in continuous time, and iid sampling

is used, than Amsaa reduces to 1s-AA-E , because the probability that non-anticipativity constraints

will have to be enforced in null. In case of promising results, more study on continuous time, using

non-iid sampling, would be done.

On this instance, the expected value of the clairvoyant lies in [540.2, 543.7] with 95% confidence.

The following table reports the empirical expected value using the two compared algorithms:

time per decision 4 (s) 16 s

1s-AA-E 526.2 526.6

Amsaa 525.8 526.8

p-value Amsaa better than 1s-AA-E 19% 84%
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For both decision time, the expected value of the two algorithms are extremely close, and, despite

using 1,000 runs runs, the difference is not statically significant. One might wonder whether Amsaa

does not get better scores because the stochastic model makes that there are few non-anticipativity

to enforce with iid sampling. But this is not the case. Indeed, with 16s per decision, Amsaa uses

on average 15 scenarios to make its first decision, and this causes the average depth of the leaves of

the solution state space to be about 2.5 (the root being at depth zero). That 1.5 units more than if

all scenarios causes transitions to different states at the first transition.

Moreover, for later decisions, offline problems get easier because the remaining capacities de-

creases. For instance, at the 15th period, that is, at the middle of the runs, Amsaa uses on average

82 scenarios, and the average depth of the leaves of the optimal policy for the sample problem goes

up to 3.6.

7.2 Stochastic Resource Constraint Project Scheduling

Problem

This section describes the experimental results on Amsaa is organized in four main parts. We first

report experimental results about the quality of the decisions produced by Amsaa and several other

algorithms under various time constraints. We then study Amsaa’s behavior in more details and

discusses its computational complexity and its convergence in practice. A comparison of Amsaa and

a mathematical programming approach to solve the SAA problem is then given for completeness.

Finally, we compare Amsaa to gap-reduction techniques for one-step anticipatory algorithms.

7.2.1 Quality of Anytime Decisions

Experimental Setting

The benchmarks are based on the collection of 12 instances for the S-RCPSP from [17] described

below. For each instance, 1,000 realizations of the uncertainty were generated. A run of an algorithm

on a realization consists of simulating one trajectory in the X-MDP. At each encountered state, the

online algorithm takes a decision with hard time constraints. If the online algorithm has not enough

time to decide, a default decision, closing the labs, is applied. The algorithms were tested on all the

realizations and various time limits. With 4 tested algorithms and time limits of 31 ms, 125 ms, 500

ms, 2s, 8s, and 32s, this gives a total of 288,000 runs. With more than 10 decisions on average per

run, this represents more than 4× 12× 1000× (31ms+ 125ms+ .5s+ 8s+ 32s)× 10 = 2, 000 hours

of cpu time.

The 12 Instances The benchmarks are based on the the collection of instances for the S-RCPSP

[17] defined in [21]. The reference instance has two laboratories and 5 projects, each of which having

3 or 4 tasks, giving a total of 17 tasks. The number of realizations for each task range from 3 to 7,

giving a total of 1.2·109 possible scenarios. The different variants are the following:
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1. Reg: the reference instance;

2. Agr: the various realizations of a given task corresponding to a failure (resp. success) are

merged into a single realization, whose cost and duration are the averages of the original

realizations. In other word, each task has a most two realizations, one for success and one for

failure.

3. Cost2 and Cost5: the costs of the tasks are scaled by a factor 2 and 5 respectively.

4. D.6 and D1.5: the revenue for completing a project at time t in D.6 (resp. D1.5) is the one

for completing the same project at time t/0.66 (resp. t/1.5) in instance Reg.

5. PX (P1, P2, P3 and P4): The last X tasks of each project do not fail. For instance, in P3,

3-task projects never fail and 4-task projects can only fail at the first task.

6. R.6 and R1.5: the revenues are scaled by a factor 0.66 and 1.5 respectively (equivalent to

choiCost1.5 and choiCost0.66).

These instances explore various tradeoffs between the combinatorial and stochastic aspects and

specific algorithms may exhibit radically different behaviors on some of them. Note that Cost5 is a

pathological instance for which we can prove that the optimal policy is to schedule no project.

The Compared Algorithms. We report experimental results for four algorithms implemented

in Java and sharing significant code.

• Amsaa is used with iid sampling and sample sizes growing by increments of 10%. It uses the

branch and bound algorithm from [21] which we describe below.

• 1s-AA is the one-step anticipatory algorithm with iid sampling. It uses the same offline solver

as Amsaa.

• B-RTDP is a variant of the Bounded Real-Time Dynamic Programming algorithm [36], in

which the decision is taken greedily with respect to upper bounds, instead of lower bounds

as in the original algorithm. The lower bound h−(s) correspond to scheduling no project

after state s. The upper bound is h+(s) is a very slight relaxation of hmax,max: It uses the

offline solver on an hypothetical best scenario in which tasks realizations have the smallest

cost and the smallest duration of all realizations with non-zero probability. We also tried

using hmax,max, but could not find a better algorithm than enumerating the Pareto frontier

of scenarios with non-zero probability, which is very slow. As a result, for anytime decision

making, our relaxation of hmax,max produces much better decisions. We tried the original

B-RTDP algorithm, taking decisions with respect to lower bounds. We do not report these

results here because, on most instances, the algorithm does not schedule any project within the

time constraints. Taking decisions with respect to upper bounds, as in (not bounded) RTDP

algorithms, is much better on this problem.
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• HC-DP is the Heuristically-Confined Dynamic-Programming algorithm from [17] enhanced

into an anytime algorithm. The original algorithm uses an offline learning phase, common

to all the runs, to obtain a policy used during execution. The policy, computed by dynamic

programming, is the solution of a restricted MDP whose state space consists of those states

reached by running 3 heuristics on 50,000 scenarios each. During execution, the algorithm

follows this learned policy, with some basic recourse heuristic when reaching a state outside

the confined space. We use the anytime version of this algorithm proposed in [21]. When given

32 seconds per decision, this new version significantly outperforms the original algorithm on

all instances but Cost5 on which both versions produce the same result.

The Offline Optimization Algorithm. Amsaa, 1s-AA, and B-RTDP all use offline solver based

on branch and bound algorithm for the S-RCPSP [21]. The upper bound in the algorithm relaxes the

resource constraints. Its branching procedure is chronological and always schedules a task as soon

as a laboratory is available. A preprocessing step removes jobs not worth scheduling and factors out

costs into the rewards. This offline solver, implemented in C, solves offline problems sampled at the

root node of instance Reg in less than 1 ms on average.

A Note on Modeling. The MDP used by B-RTDP and by HC-DP is not the MDP induced by

the X-MDP used by Amsaa. Section 4.0.5 explained why. Indeed, when modeling the S-RCPSP as

an X-MDP, it is necessary to store all the past task realizations to satisfy the Markovian property.

This is not the case when modeling the problem as an MDP. As a result, the MDP used by B-RTDP

and HC-DP has a smaller state space than the X-MDP used by Amsaa.

Comparison of the Decisions Quality

Figures 7.1 and 7.2 summarize the results for anytime decision making. It contains a table for

each of the 12 instances. The first line of this table contains the empirical mean value obtained by

running Amsaa. The three lines below report the relative gap between the expected value of the

considered algorithm and Amsaa with the same time constraint (except for Cost5, for which the

expected value is reported for all algorithms). In addition, the background color carries information

about the statistical significance of the results, at the 5% level. It indicates whether the considered

algorithm is better than Amsaa-32s (no occurrence here); not worse than Amsaa-32s (dark gray,

e.g., Amsaa-500ms on Cost2); significantly worse than Amsaa-32s, but better than Amsaa-31ms

(gray, e.g., 1s-AA-31 ms on P3); worse than Amsaa-32s, but not than Amsaa-31ms (light gray, e.g.,

B-RTDP-2s on Agr); or worse than Amsaa-31ms (white, e.g., HC-DP-32s on Reg).

Overall Amsaa exhibits excellent performance. The solution quality of Amsaa-32s is often higher

by at least 10% than 1s-AA-32s, HC-DP-32s, and B-RTDP-32s, and is robust across all instances.

With 32s, Amsaa is significantly better than all other algorithms on 11 instances and as good as

any other algorithm on Cost5. Moreover, the remaining three algorithms lacks robustness with

respect to the instances: They all rank last at least once. Note that, on Cost5, the optimal policy
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Page 11

31 ms 125 ms 500 ms 2 s 8 s 32 s
Instance Reg (regular)

7.86E+3 8.11E+3 8.31E+3 8.41E+3 8.42E+3 8.45E+3 
1aa -5.52% -5.15% -7.12% -8.07% -7.86% -8.28%
HC-DP -5.09% -8.59% -10.26% -11.04% -10.97% -11.35%
B-RTDP -100.00% -100.00% -37.54% -33.23% -25.15% -22.99%

1.22E+4 1.24E+4 1.26E+4 1.27E+4 1.27E+4 1.28E+4 
1aa 1.14% -0.60% -1.45% -2.17% -2.49% -2.49%
HC-DP -4.12% -6.29% -7.54% -8.23% -8.51% -8.56%
B-RTDP -100.00% -100.00% -4.28% -4.47% -2.44% -1.74%

Instance Cost2 (costs x 2)
4.34E+3 4.50E+3 4.82E+3 4.90E+3 4.85E+3 4.89E+3 

1aa -17.66% -20.13% -24.74% -26.26% -25.27% -26.05%
HC-DP 0.41% -1.71% -10.02% -9.80% -9.20% -10.06%
B-RTDP -100.00% -100.00% -66.81% -54.79% -45.34% -43.05%

Instance Cost5 (costs x 5)
-3.23E+3 -2.64E+3 -1.71E+3 -3.38E+2 6.50E+0 0.00E+0 

1aa -3.15E+3 -3.14E+3 -3.16E+3 -3.13E+3 -3.14E+3 -3.15E+3 
HC-DP -2.55E+1 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 
B-RTDP 0.00E+0 -9.42E+3 -9.10E+3 -8.49E+3 -7.86E+3 -6.94E+3 

6.14E+3 6.71E+3 6.89E+3 6.89E+3 6.89E+3 6.89E+3 
1aa -11.53% -19.62% -22.71% -22.34% -22.31% -21.43%
HC-DP 6.79% -2.21% -4.87% -5.41% -5.07% -5.08%
B-RTDP -77.04% -86.00% -78.56% -72.46% -62.12% -52.53%

Instance D1.5 (1.5 more time before revenues start decreasing)
1.04E+4 1.06E+4 1.07E+4 1.07E+4 1.07E+4 1.08E+4 

1aa -12.31% -14.29% -14.61% -15.11% -15.16% -14.87%
HC-DP -2.54% -3.94% -4.22% -4.87% -4.89% -4.93%
B-RTDP -24.29% -20.94% -17.05% -13.17% -11.04% -8.98%

Instance P1 (no failure at the last task of each project)
1.42E+4 1.46E+4 1.45E+4 1.46E+4 1.47E+4 1.47E+4 

1aa -3.61% -5.96% -6.26% -6.83% -7.27% -7.72%
HC-DP -11.84% -13.93% -13.72% -13.99% -14.41% -14.80%
B-RTDP -100.00% -100.00% -25.41% -20.46% -15.97% -13.57%

Amsaa

Intance Agr (agregated outcomes)
Amsaa

Amsaa

Amsaa

Instance D.6 (.66 less time before revenues start decreasing)
Amsaa

Amsaa

Amsaa

Figure 7.1: Experimental Results for Anytime Decision Making on the S-RCPSP (1/2).

is to schedule no project. HC-DP is able to realize that quickly because it uses very fast heuristics.

Amsaa-32s and HC-DP with at least 125 ms are also optimal on this problem.

Amsaa is also robust with respect to the available computation time. On most instances, the

rankings of the four algorithms do not vary much with respect to the computation times. One

might think that with very strong time constraints, 1s-AA is preferable to Amsaa, because 1s-AA

can use more scenarios in the same amount of time. Yet, there are only two instances on which

1s-AA-31ms beats Amsaa-31ms (Agr and P3) and 3 on which they exhibit similar results. Note

that B-RTDP-31ms has a zero score on many instances due to the fact that even a single B-RTDP

trial has to go deep in the state space and compute the bounds h+ and h− for many states. Under

such strict time constraints, B-RTDP cannot even perform one trial before the deadline.
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31 ms 125 ms 500 ms 2 s 8 s 32 s
Instance P2 (no failure at the 2 last tasks of each project)

1.79E+4 1.85E+4 1.87E+4 1.88E+4 1.90E+4 1.90E+4 
1aa 0.54% -1.01% -0.49% -0.70% -1.64% -1.65%
HC-DP -9.87% -13.07% -13.79% -14.43% -15.26% -15.22%
B-RTDP -100.00% -100.00% -19.68% -13.87% -12.83% -10.60%

Instance P3 (no failure at the 3 last tasks of each project)
2.31E+4 2.60E+4 2.69E+4 2.69E+4 2.69E+4 2.70E+4 

1aa 4.47% 1.10% -0.28% -0.44% -0.49% -0.50%
HC-DP -0.55% -11.63% -14.11% -14.22% -14.18% -14.29%
B-RTDP -100.00% -100.00% -13.39% -8.64% -12.22% -9.42%

Instance P4 (no failures)
1.91E+4 2.71E+4 2.89E+4 2.90E+4 2.91E+4 2.91E+4 

1aa 2.33% 1.57% 0.06% -0.27% -0.48% -0.46%
HC-DP 11.35% -21.75% -26.64% -26.97% -27.24% -27.08%
B-RTDP -100.00% -100.00% -13.87% -15.14% -11.84% -10.12%

Instance R.66 (revenues x0.66)
3.67E+3 3.88E+3 4.03E+3 3.97E+3 4.12E+3 4.13E+3 

1aa -3.55% -9.89% -13.44% -11.91% -15.63% -15.58%
HC-DP -0.62% -4.29% -7.82% -6.20% -9.24% -9.72%
B-RTDP -100.00% -100.00% -50.17% -40.49% -38.22% -30.97%

Instance R1.5 (revenues x1.5)
1.45E+4 1.52E+4 1.54E+4 1.53E+4 1.56E+4 1.55E+4 

1aa -5.98% -11.81% -12.93% -12.87% -13.94% -14.01%
HC-DP -6.20% -9.99% -10.89% -10.15% -11.85% -11.71%
B-RTDP -100.00% -100.00% -31.16% -24.84% -22.42% -18.75%

Instance L4-10J (twice more labs and projects than in Reg)
1.41E+004 1.50E+004 1.56E+004 1.63E+004 1.65E+004 1.70E+004

1aa 2.97% -2.33% -7.81% -7.55% -7.02% -9.16%
HC-DP -1.01% -4.81% -6.05% -10.73% -10.66% -13.41%
B-RTDP -100.04% -100.02% -99.91% -46.33% -43.91% -41.66%

Instance L3-8J (1.5x more labs and 1.6x more projects than in Reg)
1.00E+4 1.04E+4 1.05E+4 1.08E+4 1.08E+4 1.08E+4

1aa -3.85% -5.99% -6.01% -8.25% -8.83% -9.44%
HC-DP -11.78% -14.21% -14.06% -17.32% -16.80% -16.52%
B-RTDP -83.76% -64.65% -62.01% -60.16% -53.89% -47.19%

Amsaa

Amsaa

Amsaa

Amsaa

Amsaa

Amsaa

Amsaa

Figure 7.2: Experimental Results for Anytime Decision Making on the S-RCPSP (2/2).

7.2.2 Complexity and Convergence of Amsaa

We now study the behavior of Amsaa experimentally.

Empirical Complexity of Amsaa

We first study the empirical complexity of Amsaa. Figure 7.3 depicts various experimental results

obtained from 20 runs of Amsaa on instance Reg for different numbers of scenarios per decision

(from 100 to 1800 by steps of 100). We focus on initial decision which is by far the most difficult and

takes almost half of the time of a run. On each subfigure, the line with intervals for each data point

depicts the empirical mean of the measured data, as well as a 95% confidence interval. The smooth

lines depict the values predicted by fitted models. The models used have at most 2 parameters to

learn so that the fit can be considered excellent when the prediction lies in the confidence interval

for the 18 empirical measures.
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Figure 7.3: Runtime Behavior of Amsaa for the Initial Decisions on Reg.

Figure 7.3(a) reports the mean execution time to solve the initial SAA problem. Because Amsaa

is exponential in the worst case, it is tempting to fit an exponential model y = a · bn. The best

fit for such a model is shown by the light green line, which lies outside the confidence intervals of

many data points: This model can be ruled out. The orange line depicts a power model of the form

y = a ·nb which is an excellent fit and has small exponent (1.68). Therefore, on this problem, Amsaa

is largely subquadratic in the number of scenarios.

However, one may argue that this behavior may be a consequence of iid sampling and is not

a convincing evidence that Amsaa exhibits good performance. Indeed, in the case of a continuous

distribution of the uncertainty, all the scenarios would almost surely be dispatched to different

states after the first observation and Amsaa with iid sampling would have a linear complexity.

The stochastic RCPSP has finite distributions but a similar behavior, i.e., a fast divergence of the

scenarios, may explain its good performance. Obviously, Amsaa produces better decisions than

other approaches but it is still interesting to address this issue convincingly.

On stochastic programming problems, thanks to pure exogeneity, this concern could be addressed

by looking at the topology of the scenario tree (e.g., its depth and the number of nodes). There is no

scenario tree for X-MDPs, but a natural generalization of this metric to X-MDPs is the number of

nodes in the solution state-space. More precisely, the idea is to count, upon termination on Amsaa,

the number of the states reachable in Ân by following the optimal policy. This is the metric depicted

in Figure 7.3(b). With a continuous distribution, the number of nodes in the solution state space
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Figure 7.4: Distribution of the Depth of Explored Nodes by Amsaa for the Initial Decision.

would almost surely be n + 1 for n scenarios: the root node and n leaves. In the case of Bernoulli

random variable with parameter one half, the solution state space would be a roughly balanced

binary tree with 2m − 1 nodes. These two extreme cases suggest to fit a linear model of the form

y = a + bn. Such a model fits perfectly the experimental results with a slope of 1.93, making it

much closer to a Bernoulli case than to a continuous distribution. This is an evidence that, because

of the finite distributions, scenarios do not diverge too quickly with iid sampling and that the SAA

problem become significantly harder with the number of scenarios.

Consider now the following decomposition of the runtime:

runtime =
runtime

nbr. explored nodes
× nbr. explored nodes

nbr. nodes in solution
× nbr. nodes in solution.

Figure 7.3(c) shows how the runtime per explored node evolves. The runtime per explored nodes

decreases slowly when the number of scenarios increases. This can be explained by the fact that,

with more scenarios, a greater proportion of nodes are deep, making offline problems easier. This

hypothesis is confirmed in Figure 7.4. It should be noted that the power model does not fit well

the runtime per explored nodes. Finally, the over-exploration, that is, the ratio of the number of

nodes explored by Amsaa over the number of nodes in the solution state space, is depicted in Figure

7.3(d). The over-exploration does grow, but quite slowly and with an exponent of 0.56.

In summary, Amsaa is very scalable with iid sampling, although the difficulty of the SAA prob-

lems does grow significantly.

The Importance of the Upper Bound

We now study the benefits of the upper bound hE,max over the simpler bound h∞ defined by

h∞(s) = f(s) is f is final, +∞ otherwise. Remember that, for the induced MDP, a state s if final

if #C(s) = 1, so h∞ still calls the offline solver at the leaves. Heuristics h∞ can only be used

in Amsaa with few scenarios: the size of the state space quickly exceeds the size of the available

memory. The following table report results using 10 to 50 scenarios based on 10 SAA problems.
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nbr. scenarios 10 20 30 40 50

mean size with h∞ 22·103 89·103 17·103 26·103 37·103

mean size with hE,max 64 2.4·102 3.9·102 5.2·102 6.7·102

geometric mean of ratio 3.6·102 4.2·102 4.7·102 5.2·102 5.9·102

The results show that hE,max is effective in limiting the size of the explored state space and that

the benefits increase with the number of scenarios. In particular, Amsaa with hE,max explores 360

(resp. 590) times fewer nodes than Amsaa with h∞ for 10 (resp. 50) scenarios. This clearly justifies

the use of the offline problems.

Other heuristics with great potential for Amsaa could be built from upper bounds to the offline

problem. More precisely, if a function g satisfies g(s, ξ) ≥ O(s, ξ), then the heuristic for non-final

states could be E [g(s, ξ)|ξ ∈ C(s)]. Such heuristics might be cheaper to compute, while retaining

much of the accuracy of hE,max. Moreover, such an approach recognizes that it is easier to design

good upper bounds for deterministic problems than for their stochastic versions.

Convergence of the Sampling Average Approximation

Section 6.2 described theoretical results on the SAA method for X-MDPs. It did not discuss the

rate of convergence of the estimators such as v̂n(s0), which is not surprising since few results are

known even for multi-stage stochastic programs [46]. Instead we report empirical results about the

convergence of the SAA estimators based on 1000 realizations of instance Reg and a number of

scenarios per decision ranging from 1 to 12, 000. Amsaa was executed once for each pair (number

of scenarios, realization). The experimental results study the convergence of the expected value,

the SAA upper bound, and the selected decisions. This section is thus purely concerned with the

sampling average approximation, not the way sample problems are solved.

Convergence of EV and of E [v̂n(s0)]. Figure 7.5 reports the expected objective value (EV )

of these runs and an estimation of the expected SAA value E [v̂n(s0)] which is an upper bound

on the optimal expected value v(s0) (see Theorem 7). Measuring the expected objective values

accurately is difficult because of the high variance. The figure depicts a 95% confidence interval on

the EV of Amsaa with 12,000 scenarios per decision; the interval size is about 1, 000, more than

10% of the empirical EV . This variance is inherent to the problem, not a defect of Amsaa. Any

other reasonable policy will exhibit a high variance. The confidence intervals are so wide that no

conclusion can be drawn about the convergence of the expected objective values by comparing them.

Instead, we plotted the confidence intervals of the differences between the expected values of Amsaa

for n scenarios and Amsaa with 12,000 scenarios. Because the set of 1,000 realizations was the same

for the different number of scenarios considered, the variances of these differences are much lower

than the variances of the objective values themselves. The green area in the figure is the set of

values that differ for the empirical EV of Amsaa-12k by a quantity within a 95% confidence interval
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Figure 7.5: Convergence of the SAA expected value and upper bound

of the expected difference. In other terms, although one cannot claim that the expected objective

value of Amsaa for a varying number of scenarios lie in the green area, each point will have at least

95% chance of being in the region obtained by shifting the green area vertically so that it ends at

the expected value of SAA 12,000.

The optimality gap measures how close these values are from the limits. The optimality gap is

not greater than the difference between the SAA upper bound (that is, E [v̂n(s0)]) and the EV s. The

orange area on Figure 7.5 represents 95% confidence intervals on E [v̂n(s0)]. First observe that the

E [v̂(s0)] can be measured very accurately: for Amsaa-12k, the confidence interval is [9885..9897],

less than 0.13% wide. The quantity E [v̂(s0)] varies much less than the EV s because it concerns

an agglomeration of many scenarios, while the value of a run is strongly dependent of the actual

realization. Because this upper bound is obtained from the first SAA problem and because fewer

runs are necessary due to the low variance, it is possible to obtain a confidence interval for this

upper bound given by Amsaa-32,000 in reasonable time using only 50 runs: E [v̂32,000(s0)] lies in

[9, 618..9, 647] with probability at least 95%. In contrast, it is not computationally reasonable to

execute full runs of Amsaa-32,000 for all the 1000 realizations. For Amsaa-12k, the EV is within
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nbr. scenarios 50 100 200 500 1,000 2,000 4,000 8,000
first decision

project B 861 975 999 1000 1000 1000 1000 1000
other 139 25 1 0 0 0 0 0

second decision
project C 855 965 995 1000 1000 999 918 91
project D 64 21 2 0 0 0 69 856

other 81 14 3 0 0 1 13 53

Table 7.1: The Convergence of Decisions in Amsaa on Instance Reg.

2% to 14% of E [v̂32,000(s0)] and hence within 14% of the optimal value EV ?. This means that

more scenarios are needed for the convergence of either EV , the SAA upper bound, or both. Figure

7.5 unfortunately does not rule out any of these possibilities. Yet the regularity of the graph for

E [v̂n(s0)] tends to suggest that its value will continue to decrease beyond 32,000 scenarios, so the

14% optimality gap is probably pessimistic.

The EV s show a curious behavior investigated below: they grow only slowly from 500 to 4000

scenarios. Amsaa-4000 is even not better than Amsaa-2000 at the 5% significance level. Yet Amsaa-

8000 is much better than Amsaa-4000 at the 10−5 significance level! This empirical study confirms

that the convergence of SAA estimators for X-MDPs is much more complex than for two-stage

problems. Keep in mind however that in an operational setting, what matters is anytime performance

rather than the convergence.

Convergence of the Selected Decisions. We now study the convergence and stability of Amsaa

decisions on instance Reg. We focus on the first and second decisions, which correspond to the two

projects scheduled at time 0, one for each laboratory. Table 7.1 reports the number of times (out of

1,000 runs) a given project was selected in the first and second times as a function of the number

of scenarios. The first decision seems to converge quickly: The same project is always selected from

500 scenarios. The second decision is more interesting: Project C is almost always chosen from 200

to 2000 scenarios. However, the decision switches to project D for 8000 scenarios, explaining why

the expected value, which seemed to have converged at 4,000 scenarios, rises significantly from 4,000

to 8,000 scenarios. This odd behavior is due to the multistage nature of the problem: on two-stage

problems, the estimation of each decision quickly becomes normally distributed and the convergence

to the right decision is exponentially fast. On a multi-stage problem, additional sampling triggers

new non-anticipativity constraints, possibly creating more complex behaviors.

Can we confirm that non-anticipatory constraints are indeed responsible for this phenomenon?

Maybe so. Consider this project C, which seems attractive at first but becomes less attractive with

more samples. Its structure is depicted on Fig. 7.6(a). Observe that, when task 3 succeeds with cost

450 or 700, there is a high uncertainty about the success/failure of task 4: Two arrows exiting the

realization of task 3 of cost 400 have similar thickness. Project D did not show that structure, as

depicted in Fig.7.7 This switch in the second decision may be explained by the non-anticipativity

constraints from the realization of task 3 in this project, which might be missing with fewer scenarios.
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The thickness of the arrows is 
proportional to the transition 
probability. Failed tasks have 
a shaded backgroung. The 
numbers inside the rectangles 
indicate their costs, and the 
lengths of the rectangles 
indicate durations.

In ProjCSimpl, the project C 
never fails at task 4. New 
realizations are added for task 
3 which, in cost and duration, 
are equivalent to one realiza-
tion of task 3 in choiNormal 
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tion of task 4.

Transition probabilities to 
these new realizations are the 
product of the corresponding 
transition probabilities in 
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and 3 and between task 3 and 
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(a) project C on Reg

(b) project C on ProjCSimpl

Figure 7.6: The project C in Reg and in a simplified instance

Figure 7.7: The project D in Reg

First, observe that the average depth of the leaves of the solution subtree moves from 7.2 to 8.1

when the number of scenarios increases from 4,000 to 8,000 on this instance. This depth increase

can cause the SAA sample to contains scenarios indistinguishable until the observation of task 3 of

project C. Second, the hypothesis was tested on a new instance ProjCSimpl, which is identical to

Reg, except that project C is replaced by the one depicted in Figure 7.6(b). In this instance, task 4

of project C never fails and new realizations are added for task 3. The transition probability were

corrected to make the new instance as close as possible as Reg, while allowing the failure at task 4

to be recognized one step earlier. In particular, the expected offline values are exactly the same for

Reg and ProjCSimpl, as are the expected value of the optimal policy for the problems consisting of

only the project C, simplified or not. If the hypothesis is correct, the second decision should also

switch from project C to project D, but with fewer scenarios than on Reg. The following table show
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nbr. scenarios 200 500 1,000 2,000 4,000 8,000
first decision

project B 1000 1000 1000 1000 1000 1000
other 0 0 0 0 0 0

second decision
project C 999 1000 1000 991 644 2
project D 0 0 0 6 258 943

other 1 0 0 3 98 55

Table 7.2: The Convergence of Decisions in Amsaa on ProjCSimpl.

the first and second decisions on 1000 runs on ProjCSimpl. The table does show a faster switch

to project D. Although this experiment does not prove that the non-anticipativity constraints after

observing task 3 of project C is the only reason for the switch, it does show that it plays a role in

the phenomenon.

7.2.3 A Mathematical Programming Approach

Stochastic programming traditionally focuses on purely exogenous problems. However, [24] recently

proposed an integer programming (IP) formulation of a Stoxuno problem (which they presented

as an endogenous problem). This section evaluates a similar approach for the stochastic RCPSP

using their model (P2). We start by describing the model in some detail and then compare the

approach to Amsaa. The presentation of the IP is not self-contained: we will refer to notations and

constraints from [24]. It can be skipped in a first reading: the comparison does not require a deep

understanding of the model.

An Integer Program for the SAA problem

We directly adapted model (P2) from [24] and use the same notations. The decision variables in

the model correspond to scheduling decisions for a task in a scenario:

• xs,j,i,t: binary. xs,j,i,t = 1 iff the task i of job j starts at time t in scenario s.

The model also uses some auxiliary variables to state the constraints:

• bs,j,i,r,t: binary. bs,j,i,r,t = 1 iff, at time t in scenario s, whether or not the realization of task i

of job j is of index r is revealed. That is, until time t− 1, both possibilities were possible and,

at time t, either the task (j, i) terminates and the realization is revealed, or the task does not

terminate but the time for which it has been running excludes realization r.

• Zs,s
′

t for s < s′: binary. Zs,s
′

t = 1 iff scenarios s and s′ are indistinguishable at time t.
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The objective function is

∑
s




∑
j|

j is successful
in scen s

∑
t

rwd(j, t+ lastTaskDur(s, j)) xs,nbTsk(j),i,t

−
∑
j,i,t

cost(s, j, i) xs,j,i,t


 ,

where rwd(j, t) is the revenue obtained by successfully completing job j at time t, nbTsk(j) is the

number of tasks in job j, lastTaskDur(s, j) is the duration of the last task of job j in scenario s,

and cost(s, j, i) the cost of task (j, i) is scenario s. The problems-specific constraints (equivalent of

constraints 3,4,5 in (P2)) are:

Start-time uniqueness constraints: Tasks can be scheduled zero or one time (it is allowed to

drop a project), that is, ∀s, j, i,
∑
t xs,j,i,t ≤ 1;

Cumulative resource constraints: ∀t,
∑

(s,j,i,t′)∈running(t) xs,j,i,t′ ≤ (nbr. of labs), where

running(t) is the set of quadruplets (s, j, i, t′) such that if, in scenario s, task (j, i) starts

at t′, it runs at time t;

Precedence constraints: ∀s, t, j, i, xs,j,i+1,t ≤
∑
t′∈early(s,j,i,t) xs,j,i,t′ , where early(s, j, i, t) is the

set of t′ for which task (j, i) is completed by t if it starts at t′ in scenario s;

Information acquisition constraints: These are the constraints linking the b’s and the x’s. Let

∆s,j,i,r be the time gap between the start time of task (j, i) in scenario s and the observation

of whether or not this task has realization r. ∆s,j,i,r is the minimum of the duration of actual

realization if task (j, i) in scenario s and of the duration of realization r of task (j, i), so it can

be computed a priori. The constraints then read: ∀s, j, i, r, t, bs,j,i,r,t = xs,j,i,(t−∆s,j,i,r).

The rest of the constraints are exactly the same as in (P2), that is:

Non-anticipativity constraints: ((17) in (P2)). ∀s, s′, t, j, i, (Zs,s
′

t = 0) ⇔ (xs,j,i,t = xs′,j,i,t).

This is easily linearized since all variables are binary. Following (P2) precisely would also

require adding the constraints ∀s, s′, t, j, i, (Zs,s
′

t = 0) ⇔ (bs,j,i,r,t = bs′,j,i,r,t). These are

implied by earlier constraints in our case.

Indistinguishability constraints: ((18) in (P2)). ∀s, s,′ , t, (Zs,s
′

t = 1)⇔
∧
t′≤t,j,i(bs,j,i,r,t′ = 0).

Performance and Comparison with Amsaa

The number of binary variables in the proposed IP grows quadratically in the number of scenarios,

since there is a Z-variable for each time t and each pair of scenarios. For instance, the model

sizes, before (and after) the CPLEX presolve, for three iid samples with respectively 5, 10, and 20

scenarios are:
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nbr. scenarios 5 10 20

nbr. binary variables 37·103 (7·103) 86·103 (18·103) 179·103 (47·103)

nbr. constraints 69·103 (31·103) 253·103 (153·103) 861·103 (619·103)

nbr. matrix nonzeros 2·106 (1·106) 9·106 (5·106) 36·106 (20·106)

The numbers do not show quadratic growth because, for small number of scenarios, there are roughly

the same number of x- and b-variables than Z-variables. Still the resulting models are of considerable

size. CPLEX 10.1 did not find the optimal integer solution within 10,000 seconds, whereas Amsaa

solves this problem in 0.1 second. On the problem with 20 scenarios, with all parameters at their

default value, the presolve takes one hour, and CPLEX runs out of memory before the first integer

solution is found. In contrast, Amsaa handles 1,000 scenarios easily. With 1,000 scenarios, the IP

would have about 108 binary variables (since the number of time steps is about 100 and thus (103)2×
100 = 108). Such a problem is completely unreasonable for today’s IP solvers. [24] acknowledge that

the IP cannot directly be solved by an IP solver and suggest a branch and bound algorithm based

on a Lagrangian relaxations of the non-anticipativity constraints. Yet, with 1,000 scenarios, such

a branch and bound algorithm relaxes about 109 constraints (there are about 10 non-anticipatory

constraints for each Z) and the subgradient algorithm must optimize over a billion multipliers to

solve the master problem of the Lagrangian dual, which is not reasonable.

Why is Amsaa much more scalable on this problem? The main difference is the way non-

anticipativity constraints are handled. In Grossman’s approach, these are relaxed by Lagrangian

duality whereas, in Amsaa, they are enforced lazily. The lazy approach has two major advantages.

First, the presence of Lagrangian multipliers alters the structure of the problem, precluding the use

of a highly optimized ad-hoc solver as in Amsaa. Second, Amsaa exploits the discrete nature of the

decisions, using states and transitions instead of discretizing time.

7.2.4 Comparison with Gap Reduction Techniques

In a very recent work, [21] proposed a variety of gap-reduction techniques to reduce the anticipa-

tory gap of one-step anticipatory algorithms. The following table reports the relative gap (in %)

between their best algorithm ATEPR and Amsaa-32s. The background color provides significance

information: on Cost2 and R.6, ATEPR beats Amsaa-32s at the 5% significance level. On instances

Reg, Cost5, and R1.5, the performance of the algorithms are not significantly different. On D.6,

ATEPR is worse than Amsaa-31ms. On the remaining instances, ATEPR is worse than Amsaa-32s

but better than Amsaa-31ms.

Reg Agr Cost2 Cost5 D.6 D1.5 P1 P2 P3 P4 R.6 R1.5

-0.24 -1.11 +9.96 0.00 -16.8 -0.43 -1.98 -2.80 -0.57 -0.62 +5.40 +0.39

Gap-reduction techniques are an attractive alternative to Amsaa under severe time constraints.

Nevertheless, Amsaa outperforms them on most instances here, sometimes with a large gap (17%

on D.6), and is theoretically more appealing since it converges to the optimal decisions. Amsaa also
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provides the SAA upper bound, allowing to quantify the optimality gap. On the other hand, gap

reduction algorithms do not provide any better bound than the expected value of the clairvoyant

(hE,max(s0)), just like 1s-AA.

7.3 Weapon Resource Management

After this extensive study of the S-RCPSP, we here give the results of succinct experiments obtained

on the Weapon Resource Management (WRM) problem. This study is purposely short, because the

WRM problem is very prospective. Hence our goal here was a quick confirmation than Amsaa can

be useful, rather than an extensive comparison with many other techniques.

We will denote a state (t, L, U), where 0 ≤ t ≤ T is the time (the state is final if t = T , and in that

case no interceptor can be sent), L ⊆ {e1, . . . , eE} is the set of live missiles, and U ⊆ {r1, . . . , rR}
is the set of unused interceptors. A decision is a map x from U to L ∪ {⊥}: if x(rj) = ⊥, then the

interceptor rj is not launched in the current period, and otherwise it is launched toward x(rj).

7.3.1 Decisions

One difficulty of the WRM is the number of possible decision at each step: each remaining interceptor

can be send to any live missile, so there are a priori (#L + 1)#U possible decisions. To tackle this

difficulty, we used dominance properties, symmetry breaking, and decomposition of decisions.

Dominance properties. Some decisions can easily be ruled out as suboptimal, and thus need

not be considered. Consider a given asset ai. Wlog, we assume that the set of missiles targeted to it

is e1, . . . , ek, and that there are sorted by non-increasing probability of success: p(e1) ≥ · · · ≥ p(ek).

Suppose that in a given time step, the decision maker decides to send exactly one interceptor to one

of the missiles threatening ai. Then it is optimal to send it to e1. Indeed, if the interceptor fails,

then it did not matter where it was send. If it succeeds, we will reach a state that dominates the

one reached by successfully intercepting a missile in e2, . . . , ek.

This reasoning can be generalized as follow:

Lemma 8 Let x be a decision to be made in state (t, L, U). Let a ∈ {a1, . . . , aA} be an asset

threatened by two live missiles e, e′ ∈ L such that p(e) > p(e′). If there exists an interceptor r′ such

that x(r′) = e′, but no interceptor r such that x(r) = e, then the decision x is strictly dominated.

For example, if three missiles of respective success probability p(e1) = .6, p(e2) = .4, p(e3) = .3 are

all targeted to the same asset, and that three identical interceptors are available, this lemma rules

out the following decisions, to name a few:

1. send one interceptor to e2;

2. send one interceptor to e3;

3. send one interceptor to e1 and one to e3.
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The following decisions are NOT ruled out:

1. send one interceptor to e1;

2. send two interceptors to e1;

3. send one interceptor to e1 and one to e2.

Symmetry breaking. It seems plausible that many interceptors will be identical; but there might

be a few different types of interceptors. For example, a more recent, more effective design might be

available, but some older interceptors have not been taken out of service. This introduces symmetries

between the assignment decisions. They can be broken by giving an arbitrary order of use to the

interceptors of each type. In our experiments, there were 1 to 3 types of interceptors.

Decomposition. Despite the dominance properties and the symmetry breaking, there are still

an exponential number of decisions in the number of resources. We therefore change the model to

introduce the concept of partial decisions. Instead or representing a state by a tuple (t, L, U), we

use a tuple (t, L, U, P,m). Like previously, t is the time, L the set of live missiles, and U the set of

unused interceptors. Additionally, P ∩ U = ∅ is the set of pending resources, that is, resources for

which an assignment has been decided in the current time period, but whose success or failure have

not yet been observed. m is the assignment map from P to L. With this modelling, a decision is

simply the assignment of one interceptor to one missile, or the decision that we have assigned enough

resources for the current period and that we want to observe their outcome and move on to the next

period. Note that this decomposition of actions adds a new symmetry due to the commutativity of

partial decisions; new symmetry breaking rules are thus added.

7.3.2 The offline problem

The specificity of this problem is that the offline problem is polynomial: it can be solved by dynamic

programming.

Consider a state (t, L, U, P,m) and a compatible scenario. Such a scenario can be represented by

the set Y ⊆ U ∪P of unused and pending resources that successfully destroy their target. Note that

such a representation is possible because the interception probability depends only on the resource,

not on the missile that it is targeted to.

The problem can be preprocessed thanks to the following observations. First, because intercep-

tors in P have already been assigned, the set of live enemies after they have been launched can be

computed: it is L′ = L \ {m(r), r ∈ Y ∩ P}, and these resources don’t have to be considered. So

the problem is equivalent to the one in state (t, L′, U). Second, note that for the offline point of

view, time doesn’t matter, as no observation is necessary. Therefore offline solutions are dominated

by solutions in which all launched resources are launched during the current time period. Finally,

from the offline point of view, success probabilities of interceptors are irrelevant, so all that matters

is how many of them are successful.
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Hence the preprocessed offline problem takes the following simple form. The input is:

• a set of asset a1, . . . , aA of respective value v(a1), . . . , v(aA);

• a set of missiles e1, . . . , eE with respective targets trg(e1), . . . , trg(eE) and respective success

probabilities p(e1), . . . , p(eE);

• a number R of available successful resources and a value c for each unused interceptor.

The objective is to find the subset I ⊆ {e1, . . . , eE} of missiles to intercept. This set should be of

cardinality #I ≤ R and should maximize

g(I) = −c#I +
∑

i=1...A

v(ai) ·
∏

j=1..E
trg(ej)=ai
ej /∈I

(1− p(ej)) .

It is actually possible to preprocess the problem further. Indeed, suppose that the optimal set I of

missiles to intercept has k missiles threatening a given asset a. Then these k missiles are necessarily

the k of greatest success probability among the ones targeted to a. Denote ea1 , . . . , e
a
E(a) the missiles

targeted to a, ordered by non-increasing success probability. Then the expected value of asset a if

the k most efficient of them are intercepted is:

Va,k = v(a) ·
∏

k<j≤E(a)

(
1− p(eaj )

)
.

Note that for k ≥ E(a), the product is over an empty set, and thus Va,k = v(a) in that case. These

values Va,k for all assets a and all possible k can be computed in O(AR). After this second stage of

preprocessing, a dynamic program can computes how best to assign the R resources. Denotes Mi,k

the maximal expected value of assets a1, . . . , ai protected with up to k successful interceptors. In

other words,

Mi,k = max
I⊆{e1,...,eE}

#I≤k

∑
j=1...i

v(aj) ·
∏

l=1..E
trg(el)=aj

el /∈I

(1− p(el)) .

All the M ’s can be computed thanks to the following limit conditions and recursion formulae. First,

if k = 0, then there are no resources, so no possible choices: Mi,0 =
∑
j=1...i Vai,0. Equally, with

only one asset, all resources should be used to protect it: M1,k = Va1,k. Finally, when adding one

more asset a to protect, the number of resources that should be used to protect it is between 0 and

min(E(a), k):

Mi+1,k = max
x=0..min(E(a),k)

(
Vai+1,x +Mi,k−x

)
.

Thanks to this formula, the vector MA,0, . . . ,MA,R can be computed in O(AR2)-time and O(R)-

space. It remains to choose the optimal number of resources to use globally, taking into account the

value for unused interceptors:

max
I⊆{e1,...,eE}

#I≤R

g(I) = max
k=0...R

(
MA,k − ck

)
.

86



All in all, the whole preprocessing, dynamic programming phase, and then deciding the optimal

number of interceptors to use globally takes O(AR2)-time. Moreover, given a state (t, L, U, P,m)

and two scenarios Y, Y ′ ⊆ U ∪ P , note that if Y ∩ P = Y ′ ∩ P , then the processing and dynamic

programming phase can be shared by the two offlines: only the last phase, which is not the bottleneck,

might differ. Therefore, when enumerating the scenarios compatible with a state, we can use a

caching mechanism to store and reuse the M values.

To illustrate the algorithm, let’s run an example. Let a, b, c be three assets of value v(a) =

40, v(b) = 40 v(c) = 20. There are four successful interceptors, and the value for remaining unused

resource is 2. Incoming missiles are as follow:

Missile ea1 ea2 ea3 eb1 eb2 ec1 ec2

Target a a a b b c c

Probability .6 .5 .25 .8 .75 .75 .2

Using the above formula for V , we compute the expected value of each asset after intercepting the

k most threatening missiles:

k = 0 1 2 3 4

asset a 6 15 30 40 40

asset b 2 10 40 40 40

asset c 4 16 20 20 20

We can now run the dynamic program. Here we show a two-dimensional array for clarity, but only

one column at a time needs to be stored.

M asset a assets a, b assets a, b, c

k = 0 6 6 + 2 = 8 8 + 4 = 12

k = 1 15 max(2 + 15, 10 + 6) = 17 max(4 + 17, 16 + 8) = 24

k = 2 30 max(2 + 30, 10 + 15, 40 + 6) = 46 max(4 + 46, 16 + 17, 20 + 8) = 50

k = 3 40 max(2 + 40, 10 + 30, 40 + 15) = 55 max(4 + 55, 16 + 46, 20 + 17) = 62

k = 4 40 max(2 + 40, 10 + 40, 40 + 30) = 70 max(4 + 70, 16 + 55, 20 + 46) = 74

Finally, the value of unused interceptors is taken into account: the following table gives the optimal

score achievable depending on the number of used interceptors:

k 0 1 2 3 4

value 12 + 4× 2 = 20 24 + 3× 2 = 30 50 + 2× 2 = 54 62 + 1× 2 = 64 74 + 0× 2 = 74

And we find that the optimum is to use all the interceptors, to intercept I =
{
ea1 , e

a
2 , e

b
1, e

b
2

}
, which

has a score of g(I) = 74. Note how a greedy algorithm, that would assign the interceptors one by

one to the missile leading to the largest increase in value, would instead intercept ea1 , e
a
2 , e

a
3 and ec1,

getting a value of Va,3 + Vb,0 + Vc,1 = 58, which is suboptimal.
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7.3.3 Empirical Results

7.3.4 Computing Optimal Policies

While Amsaa was primarily designed for anytime decision making, using sampling approach, if the

distribution has a small enough support it can also be used to compute optimal policy. To do so, the

scenario sampler is replaced by a scenario generator that enumerates all possible realizations. There

are 2R possible scenarios, so this approach is reasonable up to about 12 interceptors. (Remember that

Amsaa stores explicitly the list of compatible scenarios at each decision node. With 12 interceptors,

the list of compatible scenarios will take 16kB, assuming pointers to scenarios take 4 bytes each).

In this experiment, we compare the computation time of Amsaa to to compute the optimal

policy with the one from a prototype developed by David Grabiner of Lincoln Lab. We have at

hand 100 instances, with 1 to 5 assets to protect, 1 to 10 incoming missiles, and 1 to 10 available

identical interceptors (David’s prototype does not support non-identical resources). The following

table provides some quantiles of the runtime needed to compute the optimal policy by the two

programs among these 100 instances.

quantile 50% 95% 98% 99% 100%

DP cpu time 30 ms 15.7 s 36.0 s 48.7 s 239 s

Amsaa cpu time 130 ms 16.4 s 32.0 s 33.2 s 43.1 s

It appears that while a pure dynamic programming approach (without upper bounds) is faster in

most cases, on the 2% hardest instances, Amsaa is faster, and the gap widens on the very hard

instances. Hence it appears that the hE,max upper bound used by Amsaa provides some protection

against combinatorial explosion in hard instances.

7.3.5 Comparison With 1s-AA

The previous experiments revealed that Amsaa was an attractive solution to compute optimal poli-

cies, as long as the number of resources is small enough. It did not measure whether there was

any value to using the optimal policy instead of a one-step approach. In this experiment, we will

compare Amsaa to 1s-AA-E . To take away completely the sampling error, we will evaluate 1s-AA-E

using all the possible scenarios, which is a brutal way of measuring the performance of 1s-AA after

convergence.

We ran 1s-AA-E with this perfect scenario generation on 100 realization for each of the 100

instances. The following array reports the distribution of the optimality gap of 1s-AA-E , compared

to the optimum online policy.

quantile 5% 25% 50% 75% 95%

optimality gap 66% 25% 5.8% 0.41% 0.07%

The results yielded by 1s-AA are on this problem very suboptimal on many instances: the median

optimality gap is 5.8%, and on 5 instances out of 100 1s-AA returns an expected value of just a

88



third of the optimal, which is definitely not satisfying. There is a very clear explanation of why.

Remember that from an offline point of view, timing is not relevant: all that matters is what missiles

are intercepted, not when. Therefore, in a one-step approach, and for all time periods but the last,

there is never any incentive to send interceptors at the current time period, when their outcome is

unknown, since at the next time period their outcome will be known. Hence, the one-step approach

postpones as much as possible the sending of the interceptors. If the model allows to send no

interceptors in a time period, this will always be chosen. The model we used enforces to send at

least one interceptor per time period, and therefore the one-step algorithm never uses more than

one resource for each period, except at the last one.

This is an important limitation of 1s-AA, which reveals one case in which it cannot be used

satisfyingly. In all the problems studied where 1s-AA was very successful (e.g., stochastic vehicle

routing and stochastic multiknapsack), the temporality of decisions matters offline too: in vehicle

routing, because sending the vehicles too late would cause not having times to complete tours, and

in SMK, because the currently considered item can be taken only right now. If the item is rejected,

there will be no further opportunity to take it.

A similar situation occurred in the S-RCPSP, but to a lesser extent: the revenues were non-

increasing functions of the completion time of projects, and so postponing a scheduling decision

(offline) would cause a reduction in the revenues. However, this was not always the case, because

the revenues functions were flat on some intervals. Interestingly, [21] reported that on the S-RCPSP,

1s-AA-E yielded better results if leaving a lab temporarily unused while a task was ready to start

was disallowed.

As a conclusion, a necessary condition for 1s-AA to perform well is that decisions cannot be

postponed in the offline problem without suffering a loss. If this is not the case, 1s-AA tends to

always wait, because of the deceptive belief that it will make more informed decisions later.

7.4 Stochastic Batch Scheduling

We now turn to the stochastic batch scheduling problem, on which want to verify the applicability

of 1s-AA and Amsaa, and measure whether Amsaa outperforms one-step approaches.

7.4.1 Two Types of Partial Decisions

At each time period, in the online model used, the number of polymerizations for each recipe and

the status of the finishing lines must be decided. As these are decisions of very different nature, it is

natural to decompose the decision making. There are few possible decisions for the finishing lines:

at most, there are three possibilities for each line (OFF, OFF ON, OFF ON OFF). Since there are

two finishing lines, that’s nine possible decisions.

Moreover, choosing the finishing line statuses constrains the reactions that can be started. For

instance, if the corresponding line is OFF, no polymerizations can be done, because there would be
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nowhere to place the products of the reaction. If the line is ON, then sufficiently many polymeriza-

tions must be done to keep the mixer from running empty.

Therefore, we decompose the online decision into two partial decisions. First we choose the

finishing line statuses, and then we choose the number of polymerizations for each recipe. There is

no observation in between, as this decomposition is purely internal to the decision making algorithm.

7.4.2 Offline-Driven Decisions Pool Generator

On the stochastic Batch Scheduling problem, a major difficulty to use either 1s-AA or Amsaa is

the number of possible decisions in each state: there are 10 recipes, and up to 12 polymerizations

can be started in each state. This leads to roughly 1012

10! possible decisions, which is more than 105,

for polymerizations alone. This is to be compared with 6 possible decisions in the instances of the

stochastic multiknapsack instances we studied, and up to 10 decisions of the regular instance of the

S-RCPSP.

In the WRM problem, we are able to mitigate the explosion of feasible decision using dominance

properties and symmetry breaking. Here, there are no symmetry between polymerizations with

different recipes, and no obvious dominance properties. Therefore, in order to use any algorithm

that enumerates decisions, such that 1s-AA-E and Amsaa, the number of decisions has to be limited

in some way.

We introduce a heuristic we call the offline-driven decision pool generator. The idea is to first

compute the optimal offline solutions for a number of scenarios without enforcing the initial decisions.

Then, we derive heuristically a set of good candidates for the first decision by looking at the shape

of the set of optimal initial offline decisions in the 10-dimensional space of number of polymerization

per recipes.

Suppose that all initial offline decisions are very clustered in one region of this 10-dimensional

space. It is then very reasonable to think that a good online decision will also lie in that region.

Suppose now that the initial decisions are mostly spread out along one direction in the polymerization

space. Then, while it is not clear where the optimal online decision is, it seems reasonable to try

several candidate along that same direction.

The previous paragraph might suggest the use of Principal Component Analysis (PCA) to analyze

the shape of the initial offline decisions set and determine the principal directions it is spread out

along. In fact, we chose not to use PCA, mostly because we need to generate integer points: the

number of polymerizations has to be an integer for each recipe.

Instead, we generate the set of candidates by feeding a simple rounding models to CPLEX, and

uses the solution pool feature to generate a few good roundings. Suppose that the optimal offline

initial decision for scenario i is the vector xi. The model is, very simply, with n the number of

scenarios used to generate the offline decision:

Minimize
∑n
i=1 ‖x− xi‖

Subject to x is a feasible online decision.
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The norm used is the L1-norm, which is easy to model in an integer program. This model is very

natural here, because the dimensions of the polymerizations space are very homogeneous: they all

represent a number of polymerizations to do for a recipe. If the decision space had very dissimilar

dimensions, for example, a component that is a natural number and a component that is a mass,

then the use of L1 norm would be harder to advocate.

CPLEX permits to store a parameterizable number k of integer solutions while searching for the

optimum. Depending on the parameters, this can be used to find either the k first solutions, the k

best solutions, or a set of k diverse solutions. Generating the k-best solutions and proving they are

the best is very computationally intensive. We use parameters that, while trying to generate the

k-best solutions, allow a proprietary algorithm to limit space. More specifically, the parameters are:

parameter value meaning of the value

SolnPoolIntensity 2 Limit the computational overhead by a proprietary algo-

rithm

SolnPoolReplace 1 When pool capacity is reached, replace worst solution if a

new and better one is found

PopulateLim 10,000 Stop after 10,000 times a solution is added to the pool (pos-

sibly in replacement of another one)

SolnPoolCapacity variable (from 1 to 8) variable number of solutions to return

7.4.3 Offline Model

The offline problems for the batch-scheduling problem can be modeled as integer programs. However,

these IPs are relatively complex to express, involving many different types of variables (the main

decision variables are polymerizations variables and finishing line status variables, but there are

also sales, inventory and shortage variables). While expressing such a model would be manageable

using a modelling language like AMPL or OPL, these causes integration issues with the rest of the

program, written in Java. On the other hand, using the Java API (Abstract Programming Interface)

for Ilog CPLEX (called the Concert technology), enables tight an easy integration with the rest of

the program, but the Java syntax is not well adapted to express mathematical constraints, and the

resulting code is very lengthly and hard to read.

To solve this problem, we use a modelling language called OptimJ [1]. This language has the

unique feature of being a superset of Java and enables the use of any Java object without any

interface. OptimJ can be seen as a front-end for solver APIs that permits the use of a math-friendly

syntax, 5 to 10 times more compact than the Java code calling the API. I thank Ateji, OptimJ’s

editor, for providing me with a complimentary license for the OptimJ compiler and for their support.

7.4.4 Scenario Trees for Amsaa

While on other problems we could use iid sampling, this will not be sufficient on this problem.

Indeed, remember that at each period, in highDem, there is a probability of 1/2 for the arrival of an
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order, for each product. Because order quantities are continuous, there is a zero probability than

two sampled scenarios have orders with the same quantity. Therefore, from a given state s, two

sampled scenarios ξ1 and ξ2 would satisfy τ(s, x, ξ1) = τ(s, x, ξ2) only if none has an order arrival

at the time period immediately those of s. This will happen with probability (1/210)2 ≈ 10−6 on

highDem.

Therefore, in order for the sample problem to have non-anticipativity constraints, non-

independent sampling is required. Fortunately, because demands are exogenous, we can use standard

techniques for generating scenario trees [22]. The simplest idea, that we use, consist of the following

steps:

1. Choose a depth k and a list of degrees d0, . . . , dk−1. di will be the degree of the scenario tree

at depth i. We choose to use k = 2, d0 = 4, d1 = 2. This means there will be four sampled

realizations of the order placement at the initial period, and then for each of them, two at the

next period, for a total of 8 scenarios.

2. Initialize the set of current partial scenarios to contain only an empty partial scenario (i.e.,

that does not specify the value of any random variable);

3. Recursively, go through the list of degrees. If the next degree is d, then for each partial scenario

ξ0..t, sample d realizations ξ1
t+1, . . . , ξ

d
t+1 of the next random variable to observe and in the

set replace this partial scenario by d partial scenarios formed by the possible concatenations,

from ξ0, . . . , ξt, ξ
1
t+1 to ξ0, . . . , ξt, ξ

d
t+1;

4. at the end, complete the partial scenarios into full scenarios by iid sampling.

The above algorithm is well known, and do not introduce any bias is the SAA problem.

7.4.5 Results

Algorithms are tested on seven different instances that differ a few different parameters. Instance

regular is the main instance from which the others are derived, and is inspired by the instance

provided in [44].

In regular, the parameter for the orders arrivals stochastic model is 0.4 — that is, at each

period, and for each product, there is a probability 0.5 that an order will arrive. This order will be

for a quantity drawn uniformly at random between 0 and 4. This demand correspond on average to

67% of the production capacity of the reactors. In the highDem instance, this probability is 0.5, while

the distribution for the time between order placement and order due date and for the quantities are

the same. In lowDem, this probability is 0.3. These demand correspond respectively to 83% and 50%

of the production capacity of the reactors.

In regular, the cost of of startup or of a shutdown of the finishing line is $3k. In contrast, this

cost is $2k in lowSwtCst, and $4k in highSwtCst. This cost is to be compared with the cost of

polymerizing one batch, which is $1k for all recipes in all instances.
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In regular, the inventory cost for a 48h period is $100 per batch, and the shortage penalty is

also $100 per batch and per 48h-period. Both these costs are $50 in lessJIT, and $200 in moreJIT.

This gives a total of seven instances – the main one, and variants obtained by changing the

finishing line mode switch costs, the frequency of the arrival of new orders, and how important it is

to complete the orders just-in-time.

The following table indicates the empirical expected value of the following algorithms:

1. Amsaa with 4 candidate solutions per time period and 4− 2 scenario tree;

2. Amsaa with 1 candidate solutions per time period and 4− 2 scenario tree;

3. Amsaa with 10 scenarios obtained by iid sampling, 1 candidate solution per time period;

4. 1s-AA-E , 10 scenarios, iid sampling, 1 candidate solutions per time period;

5. 1s-AA-E , 10 scenarios, iid sampling, 4 candidate solutions per time period;

6. 1s-AA-E , 10 scenarios, iid sampling, 8 candidate solutions per time period;

7. a clairvoyant solver, that knows the all future before hand;

8. blind, an online solver that at each time step assumes no more orders will arrive;

9. exp-sc, an online solver that at each step uses an expected scenario as a point forecast, and

makes the optimal decision for that scenario.

The results are obtained by running algorithms on 100 realizations of each instance.

regular highDem lowDem lowSwtCst highSwtCst lessJIT moreJIT

clairvoyant 52.1 64.2 37.9 54.0 49.1 57.3 43.3

Amsaa, nr=4, tree 4-2 49.1 60.9 35.0 51.5 45.6 54.6 40.3

Amsaa, nr=1, tree 4-2 -1.10% -0.75% -1.64% -0.90% -1.19% -1.00% -1.01%

1s-AA-E , nr=1, iid-8 -1.21% -0.36% -1.14% -1.38% -1.25% -1.33% -1.87%

1s-AA-E , nr=4, iid-8 +0.02% +0.52% +0.09% -0.35% +0.43% +0.03% +0.72%

1s-AA-E , nr=8, iid-8 +0.24% +0.71% +0.38% -0.09% +0.28% +0.39% +0.99%

exp-sc -0.91% -1.11% -5.16% -1.44% -1.58% -1.41% -1.87%

blind -8.25% -4.58% -12.8% -6.61% -13.5% -3.90% -9.59%

The first line is the expected value of the clairvoyant. Not surprisingly, it increases when the

demand is higher and when costs are lower. The second line is the expected value of Amsaa, nr=4,

tree 4-2. Then other lines report the gap between the considered algorithms and Amsaa, nr=4, tree

4-2. In order to have a meaningful comparison, 1s-AA was used with the same number of scenarios,

that is, 8.

A few comments are to be made. The first is that this is actually a fairly easy problem: online

values are surprisingly close to the expected value of the clairvoyant. As expected, the number of
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roundings considered has an influence of the solution value: the more decisions are being considered,

the higher the reward.

A somewhat disappointing observation, however, is that Amsaa did not improve decision quality

compared to 1s-AA. On most instances, the gap between Amsaa, nr=4, tree 4-2 and 1s-AA, nr=8,

iid-8 is not statistically significant. However, 1s-AA is significantly better on highDem, moreJIT,

and lessJIT. This is a very counterintuitive result, that could be due to the heuristic used to limit

the considered decisions: maybe the imperfections of this heuristic get amplified by exploration.

7.4.6 Conclusion

Compared to the three other problems considered earlier, the batch scheduling problem has a much

higher number of possible decisions per state, and the offline is more difficult, taking several tens of

second to solve optimally while it took less than a millisecond for the S-RCPSP. As a result, much

fewer scenarios can reasonably be used, and Amsaa’s exploration is necessarily very shallow. This

shallowness, in addition to the fact that 1s-AA is very close to the clairvoyant (and so a fortiori

to the online optimum) on these instance make that Amsaa does not provide an improvement in

expected value.

It therefore seem that on this problem, like for others, the importance of non-anticipativity

constraints is low, even though the importance of stochastic information is significant: taking into

account the distribution of possible future scenarios provide significantly higher rewards than using

a point forecast, and the gap is even higher compared with using a blind scenario.
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Chapter 8

Search Algorithms for Amsaa

8.1 A Brief Overview of Amsaa

This section gives a high-level description of Amsaa, an Anytime MultiStep Anticipatory Algorithm.

A detailed presentation can be found in [38].

Scenarios and Offline Problems Exogenous uncertainty can be modelled by a distribution of

scenarios. The actual scenario is a random variable denoted ξ. A state is the whole information

available at a given time to the decision maker. This contains information about the actual scenario:

in the S-RCPSP, it contains the realizations of the completed tasks, and in the OSRS, it contains the

history of requests. We assume that the decision maker can sample replications of ξ conditionally

on any state s. We denote by C(s) the set of scenarios compatible with a state s, i.e., those scenarios

which are not inconsistent with the information in s. For a given scenario ξ compatible with the state

s, there is an offline problem which consists of finding the best way to act from s when the realization

ξ of ξ is known. Such an offline problem is deterministic and, for our applications, combinatorial: it

is a cumulative scheduling problem for the S-RCPSP and a multiknapsack problem for the OSRS.

We denote by O(s, ξ) the optimal value of this offline problem. Although these offline problems are

NP-hard, we assume an effective black-box is available to compute O(s, ξ), which is the case for the

motivating applications (branch and bound for the S-RCPSP; integer programming for the OSRS).

The MultiStep Anticipatory Algorithm The core of Amsaa is the Multi Step Anticipatory

Algorithm Msaa, whose pseudo-code is as follows.

The first step consists of approximating the problem by sampling a number of scenarios. This

is known as the Sampling Average Approximation (SAA) method, which was initially developed for

purely exogenous problems [32] and later generalized to Stoxuno problems [38]. Sampling scenarios

is an appealing approximation of a problem; it is superior to interior sampling methods for MDPs

[31] since many exogenous problems exhibit positive correlations for the decision values with respect

to scenarios. In other words, since there are good and bad scenarios independently of the decisions
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Function Msaa
Approximate the problem: replace ξ by a random scenario ξ′ whose distribution is the empirical
distribution on a sample of ξ;
Express the approximated problem as an MDP;
Solve the resulting MDP with a search algorithm using hE,max(s) = E [O(s, ξ′) | ξ′ ∈ C(s)] as an
upper bound;
return the greedy decision at the root node of the MDP.

(scenarios with more requests in the OSRS and with more successful projects in the S-RCPSP),

sampling scenarios leads to faster convergence than sampling outcomes of state-decision pairs [38].

The approximated problem is then modeled as an MDP which is solved optimally. Most real-

world stochastic optimization problems cannot be solved optimally if expressed as an MDP because of

the doubly exponential explosion due to (1) the outcomes and (2) the decisions. Sampling scenarios

eliminates the former explosion: for a given deterministic policy, the number of reachable states is

bounded by T × n, where T is the time horizon and n is the number of sampled scenarios. The

second combinatorial explosion must be tackled by effective search algorithms which can find the

optimal policy by exploring only a small fraction of the state space. Fortunately, MDPs produced

by Msaa enjoy an excellent upper bound to guide this search: for a state s, the offline upper bound

hE,max(s) is the expected value of a clairvoyant from state s, i.e., hE,max(s) = E [O(s, ξ′) | ξ′ ∈ C(s)].

Amsaa Amsaa is an anytime algorithm based on Msaa. It iteratively applies Msaa to increasingly

finer approximations of the original problem until some termination condition is met, typically a

time constraint (e.g., “make a decision within 30s”). This iterative refinement is efficient thanks to

incrementality : Calls to Msaa reuse earlier computations, so that resolving the MDP is fast after a

small change in the approximation.

Performance and Discussion Amsaa exhibits remarkable performance on the S-RCPSP. It out-

performs other available algorithms on a number of instances and under various time constraints.

[38] reported results with 12 instances varying the decision times from 31 ms to 32s. Each instance

has 2 labs, 5 projects, and a total of 17 tasks. Amsaa outperformed the one-step anticipatory algo-

rithm (1s-AA), even with gap reduction techniques [21], Bounded Real-Time Dynamic Programming

(B-RTDP), a mathematical programming approach, and the Heuristically Confined Dynamic Pro-

gramming (HC-DP) algorithm [17]. It is useful to spell out the strengths of Amsaa for Stoxuno

problems.

• By using search algorithms, Amsaa avoids the intractability of mathematical-programming

models which require a huge number of binary variables for Stoxuno problems because they

cannot precompute when scenarios will become distinguishable. See [24] for such a model and

[38] for a comparison with Amsaa.

• Amsaa applies the SAA method for sampling, leveraging positive correlations of the decisions

contrary to interior sampling methods;
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• Amsaa exploits a good upper bound to guide the search efficiently, leveraging the combinatorial

structure of the application; For instance, on instance Reg of the S-RCPSP, the gap of the

traditional hmax,maxbound for MDPs is more than 6 times larger than hE,max’s one.

On OSRS, Amsaa performs as well, not better, than other state-of-the-art algorithms.

8.2 Stochastic Dynamic Programming

This section gives a brief overview of Stochastic Dynamic Programming, which aims at solving

Markov Decision Processes (MDPs). MDPs can model purely endogenous problems, purely exoge-

nous, and Stoxuno problems. We only consider finite horizon MDPs with no reward discounting and

no transition costs, because MDPs generated by Msaa are such.

Markov Decision Processes An MDP (S, s0, F,X,⊥,X , f,P) consists of:

• a finite state space S, an initial state s0 ∈ S, and a set of final states F ⊆ S.

• a decision space X containing a decision ⊥ (denoting no action) and a function X : S → X

returning the set of feasible decisions in a given state such that ∀s ∈ S,X (s) 6= ∅ and that

∀s ∈ F,X (s) = {⊥}.

• a bounded reward function f : F → R.

• a transition function P : S×X → prob(S), where prob(S) is the set of probability distributions

over S, satisfying ∀s ∈ F,P(s,⊥)({s}) = 1.

For convenience, we write P(·|s, x) instead of P(s, x)(·). A run of an MDP (S, s0, F,X,⊥,X , f,P)

starts in the initial state s0. In a given state s, the decision maker selects a decision x ∈ X (s) which

initiates a transition to state s′ ∈ S with probability P(s′|s, x). The resulting sequence of states and

decisions, i.e. s0
x0−→ s1

x1−→ . . .
xt−1−−−→ st

xt−→ . . . , is called a trajectory. This is a Markovian process:

conditionally on si and xi, the distribution of si+1 is independent of the past trajectory. We assume

horizon finiteness: there exists an integer T such that all trajectories starting in s0 are such that sT
is final. As a corollary, the state space graph has to be acyclic. The objective of the decision maker

is to maximize E [f(sT )].

Policies, Value Functions, and Optimality A (deterministic) Markovian policy π : S → X is

a map from states to feasible decisions, i.e., that satisfies ∀s ∈ S, π(s) ∈ X (s). The value vπ(s) of

policy π in state s is the expected value obtained by running policy π from state s. A policy π is

optimal if the value vπ(s0) is maximal among all policies.

A value function v is a map S → R. The Q-value function canonically associated to v is the

mapping S × X → R defined by Q(s, x) = EP [v(s′)|s, x] , which, in the case of finite state space,

becomes Q(s, x) =
∑
s′∈S v(s′)P(s′|s, x). Given a value function v and a state s, a decision x ∈ X (s)

is greedy if Q(s, x) = maxx′∈X (s)Q(s, x′). We assume that there is a rule to break ties, so we can

talk about “the” greedy decision even though it is not unique. The greedy policy πv associated with
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a value function v is the policy defined by taking the greedy decision in every state. A value function

is optimal if the associated greedy policy is optimal. A necessary and sufficient condition for v to be

optimal is that, for all state s reachable under πv, we have v(s) = f(s) if s is final, and Resv(s) = 0

otherwise, where Resv(s) = v(s) −maxQ(s, x) is called the Bellman residual of v at s. Under our

assumptions, there is always an optimal value function v?.

Heuristic Search Algorithms for MDPs Once Amsaa has solved an approximation of the

problem, it solves a finer one. Hence the MDP algorithm used as a subroutine needs to terminate. We

focus on heuristic search algorithms, which solve MDPs optimally and terminate. These algorithms

perform a partial exploration of the state space, using a — possibly monotone — upper bound to

guide the search. A value function h : S → R is an upper bound if ∀s ∈ S, h(s) ≥ v?(s), and

is a monotone upper bound if, in addition, Resh(s) ≥ 0 for all state s. A monotone upper bound

is an optimistic evaluation of a state that cannot become more optimistic if a Bellman update is

performed.

Function heuristicSearch(MDP A, h upper bound)
precondition: h(s) = f(s) if s is final
foreach s ∈ S do v(s)← h(s)
repeat

Pick a state s
v(s)← maxx∈X (s)Q(s, x)

until no state s reachable from s0 and πv has Resv(s) 6= 0
return v

Function heuristicSearch, captures the general schema of heuristic search algorithm for MDPs

and returns an optimal value function upon termination. At each step, the algorithm selects a state

and performs a Bellman update. When h is monotone, only strictly positive (instead of non-zero)

Bellman residuals must be considered. Different instantiations of this generic schema differ in the

choice of the state to reconsider. They include, among others, HDP [13], Learning Depth-First

Search (LDFS) [14], Real-Time Dynamic Programming (RTDP) [2], Bounded RTDP [36], and AO*

[25]. These algorithms only manipulate partial value functions defined only on the states visited so

far, performing the initialization v(s) ← h(s) on demand. The first time a Bellman update needs

to be performed on a state s, its immediate successors are created and initialized. We say that s is

expanded.

Properties of the MDPs Solved in Amsaa The MDPs solved in Amsaa have a number of

specific properties: (1) their state and decision spaces are finite; (2) the time horizon is finite and

the state space is thus acyclic; (3) The number of outcomes of a transition from state s and decision

x tend to decrease with the depth of the state; (4) the offline upper bound hE,maxis available, is

monotone, and can be computed by solving an offline problem for each scenario in C(s).
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8.3 Heuristic Search Algorithms

This section classifies the heuristic search algorithms for acyclic MDPs we are aware of. We did not

include RTDP, which cannot detect convergence, nor HDP and LAO* since they reduce respectively

to acyclic-LDFS and to AO* in the acyclic case. We use LDFS to denote the acyclic version of

LDFS. The following table summarizes the features of the considered algorithms.

LRTDP LDFS BRTDP AO*

expansion strategy trials all tips trials one tip

maintain zero residual no no no yes

convergence testing labels labels
lower

bounds
implicit

randomized yes no yes N/A

One of the key observations is that these algorithms often make fundamentally different design

decisions, which makes it hard to determine which features are critical for a class of applications.

We examine these design decisions now, starting with some notations.

• E is the sets of explored states which have been initialized (v(s)← h(s)) at some time in the

algorithm;

• Z ⊆ E is the sets of explored states s ∈ E such that there exists a path s0, s1, . . . , sn, s such

that, for all 0 ≤ i ≤ n, si ∈ E and Res(si) = 0. Note that Res(s) can be zero or non-zero.

• R ⊆ E is the set of explored states s ∈ E that can be reached using the current greedy policy,

visiting only nodes of E;

• T is the set of tips: it is the sets of states s ∈ (R∩Z) \F that either have not been expanded

or have a non-zero residual. These are the states which should get prime attention by an

algorithm.

Expansion Strategy Most of the algorithms differ in their expansion strategy, i.e., in which states

s ∈ E are selected to be expanded. The “trials” strategy consists of simulating executions of the

stochastic problem following the current greedy policy πv, starting at a root node, and ending in a

state for which v?(s) is known. At the beginning of execution, this generally means a final node.

The nodes in the trajectory of the trial are expanded whenever necessary. In this strategy, expanded

states are in E but may be outside of R and/or outside of Z. The trial strategy always explores

deep in the state space, even at the very beginning of the exploration. In contrast, the two other

strategies (“all tips” and “one tip”) are Iterative Deepening (ID) strategies: they only expand or

update states in T . When a state is expanded, its children can be only expanded next if they are

tips. This is often not the case, because the state expansion may decrease its value and remove

it from R. At each iteration of LDFS, all the tips are expanded or updated: a depth-first search
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explores the whole frontier of Z ∩R. In AO*, a single tip is chosen (using any appropriate heuristic)

and this tip is expanded.

Maintaining Zero Residual Once a state has been expanded, the second design issue is whether

to maintain zero Bellman residuals in the explored state space. For instance, AO* restores the

invariant E = Z each time a state s is expanded by performing appropriate Bellman updates

bottom-up. Note that AO* could instead restore the invariant R ⊆ Z. This would not affect the

set T and AO* would behave similarly, provided that the tip-selection heuristic is not influenced by

unreachable nodes. None of the other algorithms maintain such a property, so typically R 6⊆ Z. In

LRTDP and BRTDP, this is because these algorithms were designed for cyclic MDPs and maintaining

this invariant is expensive. In the acyclic case, it is possible to design variants of LRTDP, LDFS,

and BRTDP that maintains one of these two invariants. For LDFS, maintaining R ⊆ Z or E = Z

would lead to the same behavior.

Convergence Testing Detecting termination is of primary importance for our applications. AO*

terminates when T becomes empty. LDFS and LRTDP use flags to label states as “solved”, meaning

that it has been proved that v(s) = v?(s). AO* could also use flags to test whether T is empty.

Finally, BRTDP here is quite different: It maintains two value functions v+ and v− satisfying the

invariant that for each state s, v−(s) ≤ v?(s) ≤ v+(s). Hence termination is detected by checking

the gap between v−(s0) and v+(s0).

Randomization LDFS is a deterministic algorithm: it always expands/updates all tips. AO*

may or may not be randomized, depending on the tip selection heuristic, which is left unspecified.

LRTDP and BRTDP are randomized. LRTDP trials are pure Monte-Carlo simulation of the MDP

with the current greedy policy. BRTDP trials are different: in state s with greedy decision x, the

chosen outcome is s′ with a probability proportional to P(s′|s, x) · (v+(s′)− v−(s′)). Note that, for

each s′, this quantity is the maximum possible decrease of Q(s, x) achievable by expanding s′. This

remark suggests a derandomized variant of BRTDP, in which the explored outcome maximizes this

quantity.

Discussion on the Design of Algorithms The four design decisions we identified are inde-

pendent and the proposed algorithms only represent a subset of the space of all possible heuristic

search algorithm. In particular, many new algorithms can be constructed by combining these de-

sign choices differently. Moreover, existing algorithms often make very different decisions so that a

direct comparison between these algorithms may not reveal which design decisions are significant

for explaining the performance of an algorithms. In the next section, we systematically explore this

design space in the hope of revealing the salient features of effective heuristic search algorithms for

our domain.
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8.4 Empirical Evaluation

8.4.1 Experimental Setting

Methodology and Goals Our first version of Amsaa used LDFS to solve MDPs. The goal of

this paper is to find whether Amsaa’s performance can be improved by using a more sophisticated

algorithm. An important aspect of Amsaa is the upper bound hE,max(s) for a state s, which solves

an offline problem for each scenario in C(s). (See [38] for experimental results indicating why this

upper bound is critical). These offline problems are typically NP-complete, so it is important to

solve as few of them as possible. In a first approximation, we assume that a depth-first search

on the explored spates is much cheaper than initializing a state. This assumption was validated

experimentally: When solving the S-RCPSP instance 3L8J with Amsaa and LDFS, 90% of the cpu

time is spent solving offline problems and 5% in creating nodes in the search space (which includes

computing sets C(s)). Moreover, in a modified version of LDFS which performs a useless depth-first

search of the currently reachable nodes between two iterations, only 0.8% of the time is spent in this

useless DFS. It is even more striking on the OSRS, for which such a useless DFS takes 0.05% of the

time.

Therefore, it makes sense to look for search heuristics that minimize the number of states created

and/or the number of calls to the offline solver, even if it means spending more time exploring the

state space. For this reason, implementations of the search algorithms here are not optimized in

general and we only optimize those promising ones for which a significant amount of time appears

is spent in exploration.

We examine several design choices which we compare on one instance of OSRS (b1hh, similar

to the one in [3]) and three instances of S-RCPSP (Reg, the regular instance; Agr, the instance we

have on which SAA problems are the harder to solve; and 3L8J, and instance with 3 labs, 8 jobs,

that has harder offline problems than Reg and Agr). For each instance, we solve 10 SAA problems

with 1,000 scenarios. For each run, we measure the number of explored states, the number of calls

to the offline solver, and the cpu time of the run. We use the following abbreviations: Dfs for LDFS,

Bdp for BRTDP, and Ldp for LRTDP. Variants of algorithms are denoted by attaching feature at

the name, in a mixed-case fashion. For example, BdpIdMzr is a variant of Bdp featuring ID and

MZR.

Designing Lower Bounds There are basically two ways to design lower bounds for MDPs solved

in Amsaa. (recall we want to maximize the expected score).

One is to use the idea from Stochastic Programming. Readers not familiar with this area can

safely skip this paragraph. The scenario decomposition algorithm [42, Ch. 4,p 244] uses heuristics

to transform anticipative solutions into non-anticipative ones an obtain lower bounds. Similarly,

the set of offline solutions for scenarios in C(s) can be heuristically turned into a non-anticipative

policy starting in s, providing a lower bound on v(s). However, in Amsaa, this would probably

be a bad idea. Indeed, Amsaa is an efficient anytime algorithm because any upper bound can be
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made incremental [38] but similar incrementality is not available for lower bounds. Hence, using

primal-rounding heuristics to compute lower bounds is possible, but is not incremental.

The other idea is to run an online heuristic for each scenario in C(s). The mean score obtained

by the online heuristic is a lower bound of v?(s). Moreover this is a perfectly incremental idea:

adding new scenarios will never violate any non-anticipativity constraints. Note that, in the case of

randomized online heuristic, it is important to use the same seed for all scenarios in a given state,

since otherwise the mean score could not be a lower bound. In the experimental results, we use the

following online heuristics. For the OSRS, in a given state, assign the incoming item to the best-fit

knapsack. For S-RCPSP, we compared the three following heuristics:

1. Do Nothing (DN) is a very bad heuristics that simply terminates the currently running task,

if any, and schedules nothing else. DN always gets a score of zero when used from the initial

state;

2. Highest Best-Case Reward (HBCR) is a reasonable heuristics: on Reg, it is 15% be-

low Amsaa-32s and, on Agr, it is 9% below Amsaa-32s. It is inspired by the problem-

independent online heuristics consisting of choosing in state s the decision x maximizing

maxx∈X (s) maxξ∈C(s)O(s, ξ).

3. Highest Isolated Expected Profit (HIEP) is an excellent, but expensive, online heuristics. For

each available task, it solves optimally the MDP with only the project of the given task.

It then chooses the task maximizing this one-project expected profit, or no task if all these

expected profits are negative. This heuristic gets an expected profit that sometimes beat one-

step anticipatory algorithms: It is less than 5% below Amsaa-32s on Reg, and less than 9%

below on Agr.

Unless indicated, the lower bound used in HBCR for S-RCPSP.

8.4.2 Comparison of the Existing Algorithms

Figure 8.1 reports on the performance of the four main algorithms. Here AO* has the simplest

tip selection heuristic, choosing tips according to the distribution of them being reached following

the greedy policy. The results indicates that the number of states is far greater for Ldp and Bdp,

suggesting that an iterative deepening strategy is superior to a “trial” exploration. The runtimes of

Bdp are much larger because the lower bound is not optimized.

8.4.3 Testing Single Features

The Importance of Iterative Deepening To test the hypothesis that iterative deepening ex-

plains the performance difference, we compare Ldp and Bdp with their ID variants. The following

table reports the difference in percentage of the calls to the offline solver between the ID variant,

the nonId variant, and Dfs.
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Figure 8.1: Number of States (E) (left) and Runtime (right) of the Main Algorithms
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LdpId BdpId

wrt. Ldp Dfs Bdp Dfs

b1hh -3.9 -1.7 -4.4 -1.8

Reg -35 -7.8 -36 -7.1

Agr -25 -7.5 -27 -4.5

3L8J -48 3.3 -50 2.4

These results provide conclusive evidence that an ID strategy is indeed fundamental, sometimes

dividing the number of offline solver calls by 2 (on 3L8J), the number of states by 4 (Ldp, 3L8J),

and reducing the cpu time by a third. Compared to Dfs, BdpId and LdpId make fewer calls to

the offline solver, which suggests that a “one tip” strategy explores fewer states than an “all tips”

strategy. In terms of cpu time however, Ldp is slightly dominated by Dfs, which ranges from 2%

faster to 17% slower.

Maintaining Zero Residuals To evaluate the benefits of maintaining zero residuals, we compare

DfsId, LdpId, and BdpId with their MZR variants. Since nodes are expensive to create and main-

taining this property is cheap, we expected the MZR variants to be faster than nonMzr versions.

The following table reports the variation in terms of calls to the offline solver between the MZR and

nonMzr variants, and between the MZR variant and DfsMzr. All differences are in percentage.

DfsMzr LdpIdMzr BdpIdMzr

wrt. Dfs LdpId DfsMzr BdpId DfsMzr

b1hh -.05 -.12 -1.7 .19 -1.5

Reg -4.8 -1.3 -4.4 -1.4 -3.8

Agr -7.1 -4.7 -5.1 -5.6 -2.9

3L8J -.87 -.27 3.9 -.32 2.9

As expected, the number of calls to the offline solver decreases, although by a rather small (but

consistent) quantity. Note that for technical reasons, we maintain R ⊆ Z in LdfsMzr and Z = E in

LdpIdMzr and BdpIdMzr. In term of runtimes, DfsMzr is faster than Dfs by 0% to 8%. The two

other algorithms have a similar runtime with and without MZR, except on Agr for which bottom-up

updates take significant time and result in large slowdown. All in all, maintaining R ⊆ Z is a good

idea for Dfs, thanks to the consistency of gains. Maintaining Z = E is not a good idea. It would

be interesting to evaluate maintaining R ⊆ Z on Ldp.

Testing for Convergence We observed that LdpIdMzr solves slightly fewer offline problems (up

to −2.5%) but creates slightly more states (up to 4% more) than BdpIdMzr. We now try to explain

this difference. BdpIdMzr uses lower bounds for two reasons: to test convergence and to guide the
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search by biasing the probability of selecting an outcome toward states with lage gaps between the

upper and lower bounds. To separate both effects, we created a variant LdpIdMzrLb that maintains

a lower bound v− like Bdp but only uses it only for convergence testing. Hence LdpIdMzrLb and

BdpIdMzr differ only by the probabilities of choosing a given outcome. We observed no statistically

significant difference between LdpIdMzr and LdpIdMzrLb for both for the number of nodes and the

number of calls to the offline solver. Therefore the difference in behavior between BdpIdMzr and

LdpIdMzr is explained by the different outcome selection. A possible interpretation is that favoring

“unknown” states tends to expand states with many compatible scenarios. We also tried to add a

lower bound to test convergence to DfsMzr. It made virtually no difference, decreasing the number

of offline problems by 0 to 0.3%, and increasing the runtime by up to 0.2%.

Tip Selection Heuristics for AO* Thanks to the one-tip strategy, AO* is the most reluctant

algorithm to create a new state. Therefore, in the case initializing states is expensive, AO* would

seem the best choice if a good tip-selecting strategy is available. We compare several tip selection

heuristics for AO* or a variant of AO* maintaining two value functions v+ and v− like in Bdp. In

addition to the two instances of AO* already presented (LdpMzrId and BdpMzrId), we developped

four tip-selection heuristics, all based on the same idea: a tip is important if decreasing its v+ can

impact v+(s0) significantly. We denote LocalMaxDecr(s) the maximum decrease of v+(s) resulting

from the expansion of one node. If s is a tip, this is v+(s) − v−(s). If s is not a tip, this is the

difference between Q(s, x1) and Q(s, x2) with x1 and x2 being the best and second-best decision in

s. The three heuristics are:

• Deterministic BdpIdMzr (BdpIdMzr-D). To choose the tip, a Bdp-like trial is done, choosing

at each step the outcome s′ of (s, x) maximizing P(s′|s, x)× (v+(s′)− v−(s)). The trial ends

when a tip a reached, and this is the chosen tip.

• Globally Most Important Tip (GMIT). The chosen tip s maximizes LocalMaxDecr(s) ×
P(s0 → s|greedy), where P(s0 → s|greedy) is the probability of reaching s in the current

greedy policy;

• GMIT-Path (GMITP). For each tip s, there is a unique path s0, s1, . . . , sn, s following the

current greedy policy. Define MaxDecr(s0, s) as the minimum, among the states s of the

path excluding s0, of LocalMaxDecr(s)×P(s0 → s|greedy). The heuristic GMITP takes the

tip maximizing MaxDecr(s). The minimum of MaxDecr(s) and LocalMaxDecr(s0) is the

maximum possible decrease of v+(s0) resulting from expanding s.

• GMIT-Lexicographic (GMITL). GMITP may have many ties if the limiting states are near

the beginning of the paths. To address this problem, GMITL selects the tip s that is maximal

for the lexicographic order over the vectors (MaxDecr(s0, s),MaxDecr(s1, s), . . . ). In other

words, the potential decrease of v+(s0) is the most important criteria. If there are ties, the

potential decrease of an immediate child of s0 is considered, and so on for the other depths.

These heuristics are quite sophisticated, and complex data structures may be needed to find the

tip to expand efficiently. In a first experiment, we took no care in optimizing this, and so we do not
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report cpu times. We decided to investigate efficiency only if these heuristics look promising with

respect to the number of states created and calls to the offline solver.

The following table reports the mean differences on the number of calls to the offline solver when

compared to BdpIdMzr. All lower bounds are intermediate.

D
fs
Id

M
zr

Ldp
Id

M
zr

B
dp

Id
M

zr
D
et

G
M

IT

G
M

IT
P

G
M

IT
L

b1hh 1.5 .21 -.16 .09 .39 1.2

Reg 3.9 -.45 83 1.1 22 -3.0

Agr 2.7 -2.3 12 7.6 13 7.1

3L8J -2.9 .99 198 2.3 57 -7.1

Most entries are positive: BdpIdMzr is, with LdpIdMzr, the heuristic that calls the offline solver

the least. In particular, all the deterministic strategies are clearly dominated. Differences for the

number of states created are even more favourable to randomized tip selection strategies.

Comparing the Lower Bounds We compare BdpIdMzr with these three bounds. In a first

experiment, the computation of the lower bounds is not optimized: there are computed by running

the above heuristics with the data structures developed for running simulations. In particular, a

new state is physically created for each decision taken by these heuristics. Once again, the strategy

was to evaluate the potential gain first before optimizing. The following table reports differences

and ratios of quantity when using HBCR or HIEP instead of DN in BdpIdMzr. For the number of

explored nodes and calls to the offline solver, it gives the mean difference (in percentage) and for

the cputime, the mean ratio.

Reg Agr 3L8J

HBCR HIEP HBCR HIEP HBCR HIEP

states(%) -.38 -1.8 -5.3 -5.6 -1.3 -1.6

offline(%) 0.58 0.1 -.83 -1.1 -.83 -.98

cputime ×1.8 ×7.3 ×1.1 ×3.0 ×1.6 ×5.1

As expected, the tighter the bound, the fewer states are explored. It is also somewhat true for

the number of calls to the offline solver although, on Reg, there is an unexpected loss. The numbers

on the call to the offline solvers show that a careful implementation of HBCR or HIEP would be

a waste of time, because the potential for gain is very small: 1% at most without counting the

time spent in the online heuristic. The small impact of the lower-bound quality on the performance

suggest that, when solving MDPs optimally, lower bounds are not very useful to guide the search.
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8.5 Conclusion

This paper investigated how different heuristic search algorithms impact the efficiency of Amsaa,

an anytime multistep anticipatory algorithm for online stochastic combinatorial optimization. We

evaluated existing algorithms, as well as novel approaches combining their orthogonal components

on two applications: online project scheduling and online reservations. The main conclusion that

trial-based methods are dominated by algorithms using iterative deepening. Other features have a

much smaller impact, although maintaining zero residuals is a good idea with Dfs. With our current

implementations, the best algorithms is DfsMzr, with Dfs and LdpId being very close. All three

are within percents of each other by all measures. An efficient lower-bound implementation would

bring BdpId to the same performance at best. The use of sophisticated lower bounds or tip-selection

heuristics have little potential for gain, at least for solving MDPs optimally on our applications.

However, lower bounds can certainly test if a given optimality tolerance is reached, which may be

important in other contexts.

These small differences are actually rather reassuring: it means that there is some robustness in

heuristic search algorithms. We have no example of an algorithm being the best on an instance and

very bad on another. Therefore, we hope that little tuning will be needed to use Amsaa on new

problems. Finally, although these experiments were concerned with Amsaa only, it is likely that our

main conclusions will apply to any acyclic MDPs with expensive upper bounds.
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Chapter 9

Conclusion

9.1 Summary of the Contributions

There were two goals to this doctoral work:

1. Advance the state-of-the-art in computing decisions in a limited amount of time for OSCO

problems;

2. Show that online stochastic optimization can be applied to realistic problems.

I believe that these two goals have been reached to a satisfying extent. On computing decisions,

we first made progresses on understanding when one-step anticipatory algorithms, that ignores the

alternating character of decisions and observations. We showed that such a relaxation is satisfying

when the global anticipatory gap is small. The core of this thesis, however, is to address the case

where one-step algorithms are not quite satisfying enough. Amsaa was developed to address this

case. Amsaa features three desirable properties:

• it is an anytime algorithm: its continuously refine the chosen decision until there is no time

left;

• when the available runtime converges to infinity, Amsaa’s decision converges to the optimal

one, provided that the stochastic distribution of the uncertain variables are discrete, or that

scenario sampling is done in such a way that the solution sub-graph has out-degrees converging

to infinity at every layers;

• it allows to derive a probabilistic upper-bound (when maximizing) that converges to the optimal

online expected value.

Taking the non-anticipativity constraints into account was experimentally shown to lead to better

decisions than ignoring them on two problems:

• the S-RCPSP, on which Amsaa largely outperforms all the other previously existing algorithms;
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• the WRM, where a one-step approach in incapable of deciding to send several interceptors at

once, which in some cases is disastrous.

Taking or not the non-anticipativity constraints into account did not seem to make a difference on

the two other problems: the SKM and the BS problems.

The good experimental results for Amsaa on S-RCPSP and WRM can be explained by the

following arguments:

• using exterior sampling makes it possible to rank decisions with a low variance, even though

the estimations of their value might be high;

• the upper bound hE,max considers the stochastic and the combinatorial aspects altogether,

which explains why it is tight of some problems, and thus why it is well-adapted to do guidance

and pruning in the state-space;

• using a black-box offline solver enables the modeler to use the best technique available — be

it Mixed Integer Programming, Constraint Programming, Dynamic Programming — to solve

the offline problems.

The second goal of this thesis was to show that stochastic optimization is not just a mere

academic exercise. Although we have not implemented the solutions developed in this work at a

client, I believe the breadth of the problems tackled, and their tight connection to real problems,

makes the point. None of the problems considered has enough mathematical structure so that a

specialized solution is known. The problems presented diverse challenges. The stochastic project

scheduling problem featured endogenous observations, something that is known to be difficult to

manage in the stochastic programming community. On weapon resource management, we had to

introduce the concept of decision decomposition, and to deal with decision symmetries. The number

of decisions was also a challenge on batch scheduling. There, no symmetry breaking could mitigate

the problem, and we had to introduce the offline-driven decisions because the number we showed

that Amsaa could accommodate heuristics to limit the number of considered decisions.

9.2 Research Perspectives

Along this thesis, we raised a few questions that would be interesting to investigate for the future.

Concerning one-step algorithms, the techniques we used to bound the global anticipatory gap were

very primitive, and advances on that matter would be theoretically interesting.

9.2.1 Applicability of Amsaa

Concerning Amsaa, a few directions for future research emerged. First, we only considered problems

with discrete decision space. A generalisation to mixed discrete-continuous spaces would have a lot

of value, as many problems have continuous decisions. An example of online stochastic optimization
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problem with continuous decision variables is the banner ad auction clearing problem introduced

in [15]. There has been recent work on search algorithms for deterministic planning problems with

continuous actions space [29]; maybe the same ideas can be applied to Amsaa.

The problems we studied also all had discrete opportunities in time were decisions could be made.

In some problems, like the problems described in the section on control theory (section 3.1), it is

continuously possible to adjust some parameters. There is of course a research opportunity here:

can anticipatory algorithms, an Amsaa in particular, be modified to make decision continuously?

9.2.2 Performance of Amsaa

While the two above research directions are concerned with the applicability of Amsaa, there are also

possible lines of research concerned with its efficiency. Here the most important issue is whether one

can do better that sampling independent and identically distributed scenarios for Stoxuno problems.

The answer is known to be yes for purely exogenous problems [22]; and it is known that iid sampling

does not converge to the optimal decision is presence of continuous distributions. However, the

techniques to generate scenario trees sound difficult to adapt to the case of endogenous observations.

Another potential way of improving Amsaa’s performance would be to hybridize it with gap-

reduction techniques [21]. Indeed, we have seen how, under time constraints, Amsaa’s solution tree

can be limited in depth and thus not take into account non-anticipativity constraints that occur after

the solution trees leaves. Gap reduction techniques are heuristic ways of taking non-anticipativity

constraints into account that requires negligible computation time.
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