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Abstract of “Detailed Human Shape and Pose from Images” by Alexandru O. Bălan, Ph.D., Brown

University, May 2010.

Automating the process of measuring human shape characteristics and estimating body postures

from images is central to many practical applications. While the problem is difficult in general, it can

be made tractable by employing simplifying assumptions and relying on domain specific knowledge,

or by engineering the environment appropriately.

In this thesis we demonstrate that using a data-driven model of the human body supports the

recovery of both human shape and articulated pose from images, and has many benefits over previous

body models. Specifically, we represent the body using SCAPE, a low-dimensional, but detailed,

parametric model of body shape and pose deformations. We show that the parameters of the SCAPE

model can be estimated directly from image data in a variety of imaging conditions and present a

series of techniques enabled by this model.

We first consider the case of multiple calibrated and synchronized camera views and assume

the subject wears tight-fitting clothing. We define a cost function between image silhouettes and

a hypothesized mesh and formulate the problem as an optimization over the body shape and pose

parameters. Second, we relax the tight-fitting clothing assumption and develop a robust method

that accounts for the fact that observed silhouettes of clothed people provide only weak constraints

on the true shape. Our approach is to accumulate many weak silhouette constraints while observing

the subject in various poses and combine them with strong constraints from regions detected as

skin and with a prior expectation of typical shapes to infer the most likely shape under clothing.

Third, we consider scenes with strong lighting and show that a point light source and the shadow

of the body cast on the ground provide an additional view equivalent to a silhouette from an actual

camera. This approach effectively reduces the number of cameras needed for successful recovery of

the body model by taking advantage of the lighting information in the scene. Results on a novel

database of thousands of images of clothed and “naked” subjects, as well as sequences from the

HumanEva dataset, suggest these methods may be accurate enough for biometric shape analysis in

video.



Chapter 1

Introduction

1.1 Thesis Statement

Realistic models of the intrinsic human shape can be estimated directly from images by relying

on data-driven deformable shape models.

1.2 Introduction

For an artificial system to perform the high-level tasks of understanding and interacting with

the physical world, it needs, among other things, to be able to perceive, represent and reason about

its environment. Computer vision uses visual perception to observe the world, analogous to the

visual system in humans that allows individuals to assimilate information from the environment

based on the visible light reaching the eye. The main goal of computer vision is to extract low-level

features from images obtained using digital image sensors and infer meaningful properties about

objects in the scene that support the high-level tasks like content understanding. To this end,

the computer needs to be able to represent and reason about the entities in the scene and their

properties. In particular, vision-based capture and analysis of humans and their actions is an active

research area and accurate recovery of appropriate shape and pose representations enables many

potential applications in surveillance, robotics, entertainment and health-care industries.

1.3 Problem Statement

In this thesis we address the problem of extracting geometric information about the human body

from images. Specifically, we are interested in recovering two fundamental properties that are related

to physiological and behavioral characteristics of humans, namely body shape and pose. In a dynamic

setting, these are also referred to as motion and shape deformations. Earlier engineering solutions

focused on estimating one but not the other, (e. g., marker-based motion capture system for pose

1



2

Figure 1.1: 3D Body Model Estimation from Images. Given image observations of a subject
from multiple camera views, a deformable body model is matched to various image features. We
recover a detailed three dimensional representation of the body in the form of a triangular mesh which
can be used in many ways, including inferring the kinematic structure of the skeleton underneath
the skin or extracting biometric measurements from the virtual body. (Top-right illustration is part
of the exhibition “The Human Body Revealed” by Anatomical Travelogue of New York on display
at the National Museum of Health and Medicine in Washington, D.C.).

estimation or 3D scanners for capturing rigid shapes), required specialized hardware and worked

in carefully controlled environments. In contrast we propose a computer vision solution that uses

images for extracting shape and pose measurements and allows the human subject to move freely in

front of the cameras. As illustrated in Figure 1.1, our approach uses multiple camera views to recover

a detailed 3D representation of the person. To make this possible, we exploit a statistical model of

human form which is capable of adapting to the shape of different people in various poses. This

graphics model is learned from a database of human shapes and can be controlled by a relatively small

number of parameters. In this thesis we formulate several solutions that estimate these parameters

by matching the body model to image features in several imaging conditions. This line of research

produces a three dimensional representation of the human body that embodies both shape as well

as kinematic information at specific time instances. This representation can be used directly for

animations, or indirectly for extracting important body attributes such as shape measurements or

the location of the joints in the skeleton.

In this chapter we give a broad overview of the problem of capturing and analyzing the human
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form. We motivate the problem and identify the difficulties involved, describe our approach and

conclude with a brief presentation of the major contributions of the work, and the structure of the

thesis.

1.4 Motivation

To understand what we mean by pose and shape and what are suitable representations for them,

we first consider some of the applications.

1.4.1 Applications for Shape and Motion Capture

Figure 1.2: Motion Capture for Anima-

tion. Marker-based motion capture used

for animating human-like characters in the

movie The Polar Express (2004).

The entertainment industry uses computer graph-

ics for generating captivating virtual reality content in

the form of animated movies, special effects and video

games. As such, either or both shape and motion cap-

ture technologies are instrumental for achieving realis-

tic animations of virtual human characters (e. g., The

Polar Express (2004), Avatar (2009)). Shape capture

can also be used to create avatars inside video games

that can be animated using motion capture. Animat-

ing a virtual character involves modeling the shape and

pose of the character by first designing the surface ge-

ometry and shading, then rigging the character with

a skeleton for pose editing and finally specifying the

motion trajectories for the bones. Motion capture is

useful because it is transferable between different char-

acters. Attractive special effects can be achieved when

the body shape is reconstructed from a few camera

views and rendered from novel views, similar to the

bullet-time effect in the movie The Matrix (1999).

1.4.2 Applications for Shape Capture

From an anatomical point of view, people are similar to each other, but at the same time the

shape of the human body is very diverse and distinctive. There are many factors that contribute

to the body shape variations, including among others, gender (a human observer can easily tell

women apart from men based on shape), age (children grow up to be adults and start shrinking as

they become old), race (Scandinavians are typically much taller than Asians), and lifestyle (fitness,

nutrition). Anthropometry deals with measuring human shape attributes (height, weight, etc.) with

the purpose of understanding these types of human physical variation, playing an important role in
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industrial design (clothing, vehicles, furniture) and ergonomics.

Modern anthropometric approaches streamline the shape acquisition process by capturing three-

dimensional body scans from which measurements can be automatically extracted. This is important

for large scale projects. For instance, in an effort to reduce health care costs, Japan is using the waist

circumference as an indicator for the metabolic syndrome and started in 2008 a massive campaign

(Figure 1.3) to acquire measurements from more than 56 million of its population [Onishi (2008)].

Figure 1.3: Metabo. A Japanese poster

that reads “Can you still wear pants that

you wore at the age of 20?” promotes

awareness of the metabolic syndrome, a

term that is related to being overweight

[Onishi (2008)].

It is an open question as to whether more detailed mea-

surements of the body could provide better predictions

of health risks.

Having access to a dense shape representation can be

useful for other medical applications. During a weight-

loss program, it is helpful to be able to visualize and

monitor changes in body shape over time as well as

ensure that the body mass index (BMI) stays within

healthy limits. Indicators like BMI can be automatically

derived from the captured 3D shape.

Shape capture from video footage is also useful for

extracting biometric traits to uniquely recognize hu-

mans, which is important for identity access manage-

ment, forensic analysis and visual surveillance, as well

as video search and retrieval applications.

In addition to the aforementioned factors that con-

tribute to the body shape variations, the perceived shape

of an individual also changes over time during move-

ment. Capturing the human body in different poses is

important in computer graphics for modeling shape deformations due to pose in a data-driven way

and facilitating character editing.

1.4.3 Applications for Motion Capture

There is a wide variety of methods for capturing and analyzing the motion of the human body.

Capturing motion amounts to capturing pose over time. Motion is a very important cue for activity

and gesture recognition such as hand waiving or head nodding or pointing and therefore very useful

for human-computer interaction. In robotics, being able to observe and anticipate dynamic human

actions is critical for real-time interaction as well as autonomous navigation and obstacle avoidance.

Certain types of behavior captured by traits such as gait or typing rhythm can sometimes be used

as biometric characteristics for identifying particular individuals. Automated visual surveillance

systems detect suspicious human activity in a scene by tracking people’s pose and discriminating

between normal activity patterns and anomalous activity. Closely related are health-care systems

that provide monitoring of elderly people by tracking the patterns of daily activities and signaling
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emergency situations. In biomechanics, scientists are interested in capturing human motion for

modeling mechanical properties of the bones and soft tissue and their interaction at the joints,

which also has medical applications for injury detection, while in sports the goal is to understand

athletic performance through modeling and simulation of motion.

1.4.4 Shape and Pose Representation

All these applications have different requirements, which brings the next question: what consti-

tutes a solution to our problem and how do we represent it?

Different levels of abstraction are possible. Shapes can be characterized sparsely in terms of

a small set of shape measurements (height, weight), which is sufficient for anthropometric and

biometric applications, while more dense representations are needed for character animation. In

general, it is useful to think of articulated objects as being a collection of parts with almost rigid shape

and connected by joints. Most computer graphics applications see the human body as consisting

of an articulated skeleton structure with rigid bones, surrounded by soft tissue (muscle and fat)

and covered by the outer skin. In this view, the apparent shape of the human body can simply

be described as the topology of the skin surface and is typically represented as meshes or dense

point clouds. In contrast, computer vision applications have traditionally modeled the human shape

more abstractly using much simpler parametric geometric primitives such as generalized cylinders

or superquadrics. As the body moves, the apparent shape changes due to pose variations. It is

therefore useful to also envision an intrinsic pose-independent representation of the body shape that

is specific to each individual and which remains the same during movement. We address this aspect

later on in the thesis.

As far as posture is concerned, it characterizes the skeletal configuration at any given time

instance and is defined in terms of the position of the bones and joints. A fine distinction can be

made here about using a global coordinate system for all body parts versus a relative representation

between consecutive parts. Applications that involve activity recognition typically represent motion

in terms of the evolution of the relative joint angles between adjacent parts over time. Sometimes

even recovering 2D joint angles in the image space is sufficient for recognizing some activities. In

contrast, being able to recover 3D joint positions can prove valuable for a robotic system to physically

interact with humans.

1.4.5 Why Vision-based?

Our goal is to recover dense body shape and pose information directly from images. This is

in sharp contrast with the state of the art motion capture system that uses markers near each

joint to identify the motion by the positions or angles between the markers. Marker-based motion

capture can have sub-pixel accuracy, works in real-time and is often taken as the gold-standard.

However, it only works in controlled environments and requires tedious placement of markers on the

subject’s body. Video-based motion capture approaches often provide the only non-invasive solution,
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motivating the approach we take in this thesis.

1.5 Challenges/Difficulties

In its most general form, the problem of estimating pose or shape is severely under-constrained

due to many factors such as: the image formation process, occlusions, changes in appearance, and

the complexity of the human body structure itself. We briefly review each below.

Image capture. From a geometric point of view, an image is a projection of the 3D world onto a

2D image plane. As such, explicit depth information is lost during the imaging process. From

a technological point of view, various settings for the digital camera used for capture also limit

and degrade image quality (e. g., image resolution, motion blur, lens distortions, image noise,

etc.). All these imaging factors cause ambiguities in matching image features to 3D surface

points.

Occlusions. In a single image, at least half of the body is not visible due to self occlusion, where the

side facing the camera occludes the side away from the camera. Given the highly articulated

nature of the human body, body parts tend to be occluded by other parts. Clothing as well

as other objects present in the scene also pose problems by obscuring the body shape.

Appearance changes. As people move in the scene with respect to the camera, the surface ap-

pearance changes as well due to motion, clothing, viewpoint or lighting.

High-dimensional search space. The complexity of the human kinematic structure and the large

variability in body shape between individuals imply there are many parameters that need to

be estimated. When defining the problem as an optimization of an objective function over the

model parameters, the search space becomes very high dimensional and needs to be explored

efficiently to get as close as possible to the global optimum.

These difficulties can be overcome by employing simplifying assumptions and domain specific

knowledge, or by engineering the environment appropriately. In certain scenarios, we can control

the lighting and camera placement, we can use multiple cameras to reduce depth ambiguities, and/or

we can require the subject to wear tight-fitting clothing.

1.6 Previous Approaches

Given the wide array of potential applications for markerless motion capture for animation, gait

analysis, action recognition, surveillance and human-computer interaction, this problem has received

broad attention from the vision community. On the other hand, recovering the shape has not really

been addressed until recently. We argue that there are many motivations for recovering body shape

information simultaneously with pose. For some graphics applications, having direct access to the

shape model for a particular subject removes an additional step of mapping kinematic motions to
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Figure 1.4: Use of a Body Model to Explain Image Evidence. Two body models are being
matched to the image silhouette shown in red. The parameters of the model are optimized to maxi-
mize the overlap area shown in yellow between the projected body model and the image silhouette.
Because of the shape mis-match, an ambiguity remains in placing the cylinders of the left model
inside the image silhouette. The body model on the right explains the image evidence much better
given its shape.

3D models. By recovering a shape model that more closely matches the image observations, it can

even make pose estimation more robust (Chapter 4).

Much of the recent work on human pose estimation and tracking exploits Bayesian methods which

require generative models of image structure. Most of these models, however, are quite crude and,

for example, model the human body as an articulated tree of simple geometric primitives [Gavrila

and Davis (1996); Pentland and Horowitz (1991); Sminchisescu and Triggs (2003); Terzopoulos and

Metaxas (1991)]. For instance, a model based on cylindrical body parts proposed by Marr and

Nishihara in 1978 [Marr and Nishihara (1978)] is still used today in human tracking applications

[Deutscher and Reid (2005)]. In a generative framework, methods make use of the model to adjust

the joint angles between the rigid parts to make them align with the image features. Arguably these

generative models are a poor representation of human shape because they do not explain the image

evidence very well, leaving room for extra ambiguities. Figure 1.4 illustrates one such ambiguity

when trying to match different body types to image silhouettes. This ambiguity can be reduced if

the shape of body model better conforms to the shape of the observed person. Moreover, because

these models are typically designed with only posture estimation in mind, they are too simplistic to

be suitable for shape estimation.

Based on the hypothesis that using more realistic shape models can lead to better tracking, more

recent approaches [Mündermann et al. (2007); Rosenhahn et al. (2006)] have used body models

obtained from 3D laser scans. They assume the body shape has been estimated a priori and consider

only articulated deformations, effectively chopping the laser scan into body parts and using the rigid

segments instead of cylinders to perform pose estimation. They keep the shape of the parts fixed

during tracking and ignore non-rigid deformations close to the joints.

In the graphics community however, the emphasis is put on photo-realistic display of human

performances. As such, they require dense faithful reconstruction of surface geometry and motion
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Figure 1.5: SCAPE Deformation Process. The SCAPE model is a deformable body model
that admits a low dimensional parameterization of shape and pose. Starting from a reference mesh
shown on the left, we can change the pose by specifying new rigid orientations for each of the 15
body parts. After the model automatically corrects for non-rigid deformations, we control the shape
by adjusting a few shape parameters.

[de Aguiar et al. (2008); Vlasic et al. (2008)]. One way to make the problem practical is to use a

detailed template model, typically obtained by laser scanning the subject prior to the capture. User

assistance is often considered acceptable in applications targeted to movie production and animation.

Other techniques are able to densely estimate shape of arbitrary objects without employing any

knowledge about the object being scanned. Approaches include structured light, laser scanning,

volumetric reconstructions from silhouettes, and stereo matching. Being free of a model allows

for generalizations to arbitrary shapes (e. g. garments) to be captured; on the other hand, this non-

parametric representation lacks robustness to noise in the image observations and makes it unsuitable

for making any inferences about the articulated pose without an associated kinematic skeleton.

1.7 Proposed Approach

As an alternative, we propose the use of a deformable graphics model of human shape that is

learned from a database of detailed 3D range scans of multiple people. Specifically we use the SCAPE

(Shape Completion and Animation of PEople) model [Anguelov et al. (2005b)] which represents both

articulated and non-rigid deformations of the human body. This model is also capable of adapting to

the shape of previously unseen subjects. SCAPE can be thought of as having two components. The

pose deformation model captures how the body shape of a person varies as a function of their pose.

For example, this can model the bulging of a bicep or calf muscle as the elbow or knee joint varies.

The second component is a shape deformation model which captures the variability in body shape

across people using a low-dimensional linear representation. These two models are learned from

examples and consequently capture a rich and natural range of body shapes, and provide a more

detailed 3D triangulated mesh model of the human body than previous models used in video-based

pose estimation. We illustrate the SCAPE deformation model in Figure 1.5.
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The model has many advantages over previous deformable body models used in computer vision.

In particular, since it is learned from a database of human shapes it captures the correlations

between the sizes and shapes of different body parts. It also captures a wide range of human forms

and shape deformations due to pose. Modeling how the shape varies with pose reduces problems of

other approaches associated with modeling the body shape at the joints between parts. In contrast

with earlier methods that only estimate pose, learning a low dimensional shape model decoupled

from pose means that the number of total parameters increases by as few as six coefficients. These

advantages come at the expense of increased computational complexity and being able to only

represent naked bodies.

We claim such a deformable model of human shape can be estimated directly from images in a

variety of imaging conditions. The model is capable of adapting to the shape of previously unseen

subjects in various poses. This eliminates the need for building subject-specific body models a priori.

In addition to recovering shape, such a detailed body model can play a central role in improving the

reliability of pose inference by being able to more closely match image observations. Even when the

body is occluded by normal clothing, constraints from multiple camera views and poses, and from

bare skin regions in the images can be combined to infer the most likely shape model that lies under

the clothes. Furthermore, such a detailed shape model allows us to exploit additional image cues

such as shadows to more robustly estimate shape and pose. Lastly, the recovered shape model can

be used for gender classification as well as for extracting anthropometric measurements.

1.8 Contributions

In this thesis we have developed a collection of techniques to recover a deformable body model

in a variety of imaging conditions.

1. We have developed a method to recover the shape and pose of a person using multiple calibrated

and synchronized camera views. The method relies on silhouette matching and assumes the

subject is wearing tight-fitting clothing (Chapter 4).

2. We have developed a method that is robust to strong lighting present in the scene. Rather

than causing problems, we find that we can take advantage of cast shadows to more robustly

estimate the pose and shape of a person. We rely on the concept of a “shadow camera”

illustrated in Figure 1.6 that consists of one or more point light sources and a ground surface

on which shadows are cast. This effectively allows us to reduce the number of real cameras

and enables monocular pose and shape estimation (Chapter 5).

3. We have developed a method to infer the most likely shape of a person wearing clothing. Unlike

the graphics techniques that specifically target the capture of the garment surface, our goal is

to actually infer the intrinsic human body shape. The method relies on multiple calibrated and

synchronized camera views and defines an image matching function that is robust to clothing.

It integrates body shape constancy constraints across pose with a generalization of visual hulls
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Figure 1.6: The Shadow Camera. Shadows cast on the ground may reveal structure not directly
observed on an object such as the right arm or the left leg of the person in the image. The lights
together with the ground plane act like another camera view providing an additional silhouette of
the object.

to account for clothing (Figure 1.7) as well as tight constraints in regions detected as bare skin

(Chapter 6).

1.9 Thesis Outline

Chapter 1. Introduction. Thesis statement, motivation, challenges and contributions.

Chapter 2. State of the Art. We provide a brief overview of the state of the art of the field

of human shape and motion capture, concentrating on the type of body models used in the

computer vision and computer graphics literature.

Chapter 3. SCAPE: A Deformable Body Model of Shape and Pose. Central to this the-

sis is a recently proposed deformable body model called SCAPE that is more suitable for

analyzing human activity in images than traditional models. The SCAPE model is reviewed

and our specific implementation is described in detail.

Chapter 4. A Framework for Model Fitting to Images. This chapter describes our basic ap-

proach to estimating the pose and shape of a person from multiple images.

Chapter 5. Shape from Shadows. Strong lighting typically causes severe changes in appearance

and is seen as a nuisance for image understanding. In this chapter we show that rather

than causing problems, strong lighting can be exploited to improve human pose and shape

estimation. Here we concentrate on cast shadows.
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Figure 1.7: Shape Under Clothing. One way to improve the reliability of shape estimation in
the presence of clothing is to observe a human subject in multiple poses, thereby deriving multiple
pose-dependent constraints on body shape that can be combined to infer the most likely shape under
clothing.

Chapter 6. Shape under Clothing. In this chapter we relax the assumption that clothes are

tight-fitting and generalize the image matching formulation to handle loose clothing.

Chapter 7. Conclusions. We summarize the contributions of the thesis and propose extensions

and directions for future research.

1.10 List of Published Papers

The thesis is based on material from the following published papers, listed in the order of rele-
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Alexandru O. Bălan, Leonid Sigal, Michael J. Black, James E. Davis and Horst W. Haussecker.

Detailed human shape and pose from images. In IEEE Conference on Computer Vision and

Pattern Recognition, June 2007.

Alexandru O. Bălan and Michael J. Black. The naked truth: Estimating body shape under

clothing. In European Conference on Computer Vision, volume 5303, pages 15–29, October

2008.

Alexandru O. Bălan, Michael J. Black, Leonid Sigal and Horst W. Haussecker. Shining a light

on human pose: On shadows, shading and the estimation of pose and shape. In IEEE

International Conference on Computer Vision, October 2007.



Chapter 2

State of the Art: A Review

2.1 Introduction

This chapter gives a brief overview of the state of the art of the field of human shape and motion

capture. Traditionally, human motion capture has been considered separately from shape capture,

mainly because most viable approaches were only capable of recovering one or the other, and the

technologies employed were very different. Early successful motion capture systems assumed that the

shape of the human subject was known a priori, that the subject was wearing tight-fitting clothing,

and that the body parts were moving rigidly with respect to each other. Interestingly, achieving

the highest level of accuracy meant that a marker-based system had to be used in which the human

subject was required to wear markers attached to the body. Such systems have difficulties performing

motion capture in the presence of loose garments, and do not reconstruct realistic and detailed body

shape models for unknown subjects. In contrast, existing 3D body scanners are designed to work

with static objects. They capture fine details of the whole human body surface and appearance, but

it can take 15 seconds to acquire a complete scan. While this makes it possible to capture the shape

of people with arbitrary clothing in fixed poses, 3D body scanners cannot capture dynamic events

such as the motion of the skeleton or the clothes.

Recent advances in 2D and 3D image capture and processing technologies have brought about a

paradigm shift in the state of the art of motion capture, with new applications becoming possible

in recent years. First, the advent of 3D whole body scanning has enabled modeling and animation

of the human body by example. Such a data-driven approach can be used to recover realistic body

shapes from image data during motion capture. Second, it is now possible to record high-resolution

images from many cameras at high frame-rate with hardware synchronization, making it possible to

capture not only the articulated pose, but also detailed appearance, dynamics, and fine geometric

details of the skin or garments, in a process that is now being referred to as human performance

capture.

12
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(a) Gypsy Gyro - Meta MotionTM (b) Marker-based Motion Capture

(c) Marker-less Motion Capture - Organic MotionTM

Figure 2.1: Motion Capture Technologies. (a) A portable and relatively inexpensive inertial
motion capture system. (b) Marker-based optical motion capture for character animation (Reprinted
from Wikipedia – Activemarker2.png; accessed December 14, 2009). (c) An image-based motion
capture system.

2.1.1 Commercial Technologies

Motion Capture

Most existing commercial systems for motion capture (often referred to as MoCap) employ either

active or passive sensing devices to track spatial coordinates of segments or joints over time (e. g.,

ViconTM, Motion AnalysisTM, Meta MotionTM). Active sensing usually involves attaching active

(mechanic, electro-magnetic or acoustic sensors, as well as accelerometers) or pseudo-passive (reflec-

tive markers) devices to the moving body parts, from which some kind of a signal is obtained that

directly relates to the relative configuration, motion acceleration or 3D location (though triangula-

tion) of the devices, requiring minimal post-processing for inferring joint motion (cf. Figure 2.1a,b).

Because active sensing MoCap can generally provide sub-millimeter precision at high frame-rate

(120fps and above), it is used in medical, bio-mechanics and sports applications for measuring and

analyzing motion patterns of humans, as well as Human Computer Interaction (HCI) and animation

of virtual characters.

The downside of marker-based motion capture is that the devices the subject has to wear are

usually cumbersome and hamper movement, and are even impossible to wear in certain scenarios.
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This makes marker-less motion capture approaches more attractive and general, enabling many

other applications like visual surveillance or gesture recognition. While this is a desirable goal, the

problem of marker-less motion capture is significantly more difficult because it relies on inherently

ambiguous images from one or more cameras to capture the motion. As such, marker-less motion

capture solutions are only slowly emerging in recent years (e. g., Organic MotionTM, Figure 2.1c).

Shape Capture

Successful shape capture technologies are designed for capturing shape information and possibly

the appearance (i. e. color), mostly of generic objects. 3D scanners can also be classified as passive or

active, depending on whether they use images as the only source of information or require additional

specialized emitting and sensing hardware.

Active 3D scanners emit some kind of radiation (laser rays, structured light pattern, ultrasound

or X-ray) and detect the distorted reflection off the object in order to infer shape. A single scan

typically produces only a partial view, requiring multiple scans from different views that subsequently

need to be merged into a common coordinate system. Due to the interference between radiation

emitted from multiple directions, complete shape reconstructions are difficult to achieve in real time.

The shape is recovered as a point cloud of the outer surface or a depth map from which a complete

surface mesh can potentially be reconstructed though interpolation.

While active scanning techniques produce high resolution shape estimates, most of them are

expensive, require specialized hardware in a controlled environment, can only produce partial views

in real-time, and cannot capture generic dynamic objects in 360◦. They also do not provide any

temporal surface correspondences, necessary for shape editing or texture-mapping. Pattern projec-

tion techniques often impose restrictions on the surface reflective properties or color, encountering

difficulties with shiny, mirroring, transparent or dark objects unless they are coated with some kind

of white powder. Since active 3D scanners produce very detailed shape reconstructions, they are

extensively used for graphics applications, character modeling and rendering, as well as for industrial

design.

A solution to capturing complete shapes in real-time is to use vision-based passive scanning

techniques which are not as accurate. Passive scanners do not emit any kind of radiation themselves,

but instead rely on detecting reflected ambient radiation (i. e. visible light) simply using regular

cameras, making such systems much cheaper. In computer vision, the techniques to recover shape

are called Shape-from-X techniques, where X can be silhouettes, stereo, motion, texture, shading,

focus etc. Many of these techniques are particularly important in the single camera case where the

problem of reconstructing shape is not well constrained. Currently no complete solution exists to the

single-camera 3D shape extraction problem. In the multi-camera case, which is more popular, typical

approaches work in carefully controlled settings. They include shape-from-silhouette and multi-view

stereo techniques that reconstruct complete 3D object models using volume intersection or ray

intersection based a collection of images taken from known camera viewpoints. These techniques

are accurate enough for free view-point re-animations and, when combined with a reference body

model, enable capturing human performance.
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2.1.2 Vision-based Human Shape and Motion Capture

Vision-based human motion capture is a well established and very active field with a long history

motivated by real-world applications like automatic image understanding. Numerous surveys have

been written that span the period 1978-2007 [Gavrila and Davis (1996); Moeslund and Granum

(2001); Moeslund et al. (2006)] and have focused on image detection and tracking of people as well

as articulated motion estimation, analysis and recognition.

In the last decade, the field has evolved to include not only kinematic pose estimation, but

also the closely related problems of acquiring a human body model of shape from images, useful

for extracting anthropometric measurements for the clothing industry, as well as capturing human

performance, in the form of detailed appearance, dynamics, and fine geometric details of the skin or

garments. While no surveys exist that focus on extracting human body shape directly from images,

there are some that analyze modeling of virtual humans and clothing [Magnenat-Thalmann et al.

(2004)] or time-varying scene capture technologies [Stoykova et al. (2007)].

2.2 Analysis by Synthesis

Most motion-capture approaches employ an analysis by synthesis framework which will be the

focus of our review. The problem is framed as an optimization of an objective function over some

model parameters. The objective function measures the similarity between the features extracted

from image observations (image evidence) and a reconstruction given a set of parameters controlling

things like a parametric model of the human body, a camera projection model, and other models of

entities in the scene (background, lighting, etc.).

Some of these parameters can be known in advance, given a calibrated camera or a known subject

(dimensions of body parts) or a priori knowledge about the range of motion. Having a smaller set

of unknown parameters makes the estimation more tractable but also imposes limitations on the

visual input that can be appropriately analyzed. On the other hand, as the number of unknown

parameters increases the problem quickly becomes severely under-constrained.

For image-based human shape and motion capture, a parametric model of the human body is

needed. It needs to be adjustable in terms of kinematics (articulated pose) and body dimensions

(shape). Different levels of complexity exist for designing body models depending on the application.

For pose estimation only, simplistic (approximate) body models based on simple geometric primitives

are generally sufficient and computationally more efficient. For virtual reality animations and for

accurate dense shape measurements, more realistic humanoid models are often necessary.

2.3 Human Body Models

Human body models describe both the kinematic properties of the body (skeleton) and the shape

(human tissue/ the flesh and skin, and sometimes the clothing). In some scenarios like virtual reality

applications an appearance is also defined.
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2.3.1 Kinematic Models

Figure 2.2: Kinematic Articulated Model.

The skeleton of a person can be represented as

a kinematic tree with bone segments linked by

joints. Each bone has associated with it a local

coordinate system. The relative rotations be-

tween consecutive bone segments are expressed

using joint angles. (Reprinted from [Barrón and

Kakadiaris (2003)])

Kinematic models are almost always repre-

sented as kinematic trees consisting of segments

that are linked by joints, although for some vision

applications that perform bottom-up articulated

pose reconstruction it is sometimes convenient to

represent the kinematic structure of the body as a

collection of individual body parts with soft con-

straints between joints.

The pose parameters of a 3D kinematic tree

are given by the position and orientation of the

root joint in the world coordinate system, as well

as the joint angles between adjacent parts encod-

ing the orientation of a part in the coordinate sys-

tem of its parent (Figure 2.2). In general a joint

can have 3 degrees of freedom (DOFs) like a ball-

and-socket joint, but it is common to model spe-

cial types of joints with fewer DOFs: like modeling

the knee as a hinge joint with 1 DOF. Overall the

dimensionality of the pose parameters can vary

anywhere from 25-60 DOFs. Note that this sim-

ple model of relative joint rotations does not eas-

ily extend to model more complex joints such as

the shoulder or structures such as the neck/spine.

Equivalent 2D planar models have also been de-

fined to be used in the image domain with a single

DOF for each joint.

Many parameterizations are possible for rep-

resenting 3D joint angles including rotation ma-

trices, Euler angles, quaternions and exponential

maps (see Appendix B). Each suffers from different limitations (many-to-1 representations, excess

dimensionality, instability due to the ‘Gimbal lock’) and the choice often depends on the optimization

strategy.

2.3.2 Shape Models

A variety of 2D and 3D models have been proposed to approximate a subject’s shape. In early

vision approaches, 2D models based on quadrilateral or elliptical patches to approximate body parts

and 2.5D models that add a depth ordering of the part patches to handle self-occlusions have proved



17

(a) (b) (c)

Figure 2.3: Part-based Body Models. (a) Body model built using tapered cylinders. (Reprinted
from [Deutscher and Reid (2005)]). (b) Body model built using superquadrics. (Reprinted from
[Grest et al. (2005)]). (c) Laser-scanned body model partitioned into rigid body parts and used for
pose estimation (Reprinted from [Mündermann et al. (2007)]).

effective for surveillance applications that sought only an approximate pose estimate and where the

motion was mostly parallel to the image plane. Inherently however such 2D models live in the image

space and are not appropriate for recovering volumetric shape measurements or for reasoning about

3D events like inter-penetration the way actual 3D models are. Based on the level of complexity,

3D shape body models can be classified as part-based and whole-body shape models.

Part-based Shape Models

Part-based shape models represent each part as a rigid shape attached to a joint of the kinematic

tree. These models are easy to animate and have been used successfully for articulated human

body pose estimation and tracking. Most commonly used representations include simple geometric

primitives like cylinders, truncated cones or ellipsoids (e. g. [Deutscher and Reid (2005)]), include

some scaling parameters to make it fit different human shapes, and are typically built by hand (e. g.

[Pentland and Horowitz (1991)]). In particular, the use of generalized cylinders for representing

shapes have been proposed as early as the 70’s by Nevatia and Binford (1973) and Marr and Nishihara

(1978). Such models are too simplistic to fit the body shape well (see Figure 2.3a).

More complex parametric shapes like superquadrics [Gavrila and Davis (1996); Grest et al. (2005);

Pentland and Horowitz (1991); Sminchisescu and Triggs (2003); Terzopoulos and Metaxas (1991)]

are still too crude to allow for precise recovery of both shape and pose (e. g. Figure 2.3b). Detailed

but fixed, subject-specific, laser-scanned body parts represented as free-form surfaces or polygonal

meshes have also been used for motion estimation [Mündermann et al. (2006, 2007); Rosenhahn

et al. (2007)] (e. g. Figure 2.3c).
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Part-based shape models do not deform during motion, rigidly moving together with the skeleton

segment; as such, they introduce artifacts at the joints where the surface geometry is not modeled.

The scaling parameters of the shape model (such as the limb lengths and widths) are often

assumed known [Deutscher and Reid (2005); Mündermann et al. (2006, 2007)] or are estimated in

calibration phase prior to tracking [Gavrila and Davis (1996); Grest et al. (2005); Rosenhahn et al.

(2006); Sminchisescu and Triggs (2003)] by having the subject assume a set of pre-defined canonical

poses.

Whole-body Shape Models

Realistic body models can be designed by modeling the shape as a single deformable surface

for the entire body that avoids discontinuities at the joints. Typically represented as a mesh of

polygons, fine anatomic details of the skin can be captured.

Whole-body shape models have originally been developed in the computer graphics (CG) com-

munity for animations and virtual reality applications. While more realistic, these models are more

complex to design and animate. Given the recent computing power advances, humanoid models are

slowly being adopted by the computer vision community for improving the capture of motion and

shape of humans from images. We identify three categories of CG models that can be animated:

surface-based, anatomically-based, and data-driven statistical models.

Skeleton-driven Surface-based Models

Classical surface-based modeling for animation is done in two stages. First, the surface geom-

etry needs to be modeled. When designed by a graphics artist using specialized software (e. g. 3D

Studio MaxTM - Autodesk, BodyBuilderTM - Vicon, MayaTM - Alias Wavefront, PoserTM - Smith

Micro Software), creative characters emerge, but often look cartoon-ish. In contrast, reconstructive

approaches build the 3D geometry automatically by capturing the shape of real people using 3D

scanners. The second stage of the process is called rigging or skinning, in which the skin is fitted

with a skeleton for synthesizing skin deformations due to articulated motion. Each vertex of the

mesh is assigned to one or more affecting bones with corresponding weights. As the bones are

transformed, the vertices move in order to stay aligned with them, effectively following a weighted

interpolation of rigid transformations. Arguably the most widely used technique for skeleton-driven

skin deformations is linear blend skinning and its variants, spherical and dual-quaternion blend skin-

ning; they also come under various other names such as joint-dependent local deformations (JLD),

sub-space deformations (SSD), skeleton-driven deformations (SDD) and enveloping. The increased

realism comes from creating associations that allow for surface vertices to be influenced by more

than one joint. While such procedural methods are computationally efficient, they are notorious for

generating not-always-anatomically-correct deformations, including collapsing-joints artifacts and

the absence of muscle bulging.

The creation of several standards (VRML, BVH, X3D, MPEG-4, H-Anim) in the CG commu-

nity for representing animated humanoids (both the joint hierarchy and the surface geometry) has
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(a) (b)

Figure 2.4: Skeleton-driven Surface-based Models. (a) Generic humanoid model defined
using the H-Anim standard and animated using linear blend skinning (Reprinted from [Hilton
et al. (2000)]). (b) Artist-designed model from PoserTM and rigged with a skeleton for animation
(Reprinted from [Kehl et al. (2005)]).

facilitated the adoption of artist-designed models by the computer vision community to be used

for capturing human shape and motion from images. For example, Kehl et al. (2005) use a body

model exported from PoserTM with 22, 000 vertices, rigged with a skeleton exhibiting 24 DOFs, and

employing linear blend skinning deformations (see Figure 2.4b). The model is fitted to a volumetric

reconstruction from up to 16 silhouettes. Estimates of shape and initial pose are obtained in a

calibration stage in which the user adopts a ‘Da Vinci’ pose. Statistics of ratios between different

limb lengths are also utilized. Closely related is the work of Hilton et al. (1999, 2000) who use a

VRML body model, as illustrated in Figure 2.4a. Their approach requires the subject to stand in

a known pose for the purpose of extracting key features from their silhouette contour which allows

alignment with the 3D model. Vlasic et al. (2008) employ a laser-scan of the subject that is initially

deformed using linear-blend skinning based on a kinematic skeleton fitted into visual hulls. The

shape is subsequently refined by letting the vertices move toward the contours of the silhouettes.

An extension of the method is provided by Gall et al. (2009).

Anatomically-based Models

Anatomically-based models provide an approximation of the components inside the body like

major bones, muscle and fat tissue and their dynamics. During movement, the deformation of the

interior structures induces a corresponding deformation of the skin that is wrapped over them. An

example of this is given by Plänkers and Fua (2001a,b, 2003) who define a complex body model

consisting of 3 layers: a kinematic tree model, soft objects (“meta-balls”) attached to the skeleton

structure and a polygonal skin surface (see Figure 2.5a). Having these “meta-balls” expressed as

field functions based on 3D Gaussian blobs makes the skin be defined implicitly as a level set surface.

This approach eliminates surface discontinuities at joint locations, but requires the relative shapes
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(a) (b)

Figure 2.5: Anatomically-based Body Models. (a) Muscle and fat tissue are simulated using
simple volumetric primitives (meta-balls) and attached to a skeleton to induce an implicit skin
surface (Reprinted from [Plänkers and Fua (2003)]). (b) Physical simulation of a contracting muscle
together with the induced skin deformation (Reprinted from [Scheepers et al. (1997)]).

and locations of these “meta-balls” be defined a priori by hand. Their relative scale is based on an

estimated length and width of the corresponding limb. An iterative optimization method is proposed

to fit each limb segment to silhouette and stereo data, constraining the left and right limbs to have

the same measurements.

More complex, physically realistic, body models have been proposed [Aubel and Thalmann

(2001); Dong et al. (2002); Scheepers et al. (1997); Shen and Thalmann (1995); Wilhelms and

Van Gelder (1997)], performing multi-layered physical simulations of muscles contracting or skin

stretching (e. g., Figure 2.5b). These models are tedious to design even by a modeling expert,

requiring considerable user intervention, and are computationally expensive to simulate.

Example-based Statistical Body Models

With the advent of 3D whole body scanner technologies, example-based techniques for modeling

human shape have become increasingly popular for generating and animating realistic human models.

By relying on scan data and some interpolation scheme, realistic new shape models can be generated

efficiently and without (significant) user intervention. Data-driven modeling can be used either for

generating realistic body shapes [Allen et al. (2003); Seo and Magnenat-Thalmann (2003); Seo et al.

(2003); Seo and Magnenat-Thalmann (2004)] or for predicting realistic skin deformations [Allen

et al. (2002); Wang et al. (2007); Weber et al. (2007)], or both [Anguelov et al. (2005b); Hasler et al.

(2009b)].

Two stages can be identified: (1) a training stage in which the scans are acquired, pre-processed

and a model of deformations is learned, and (2) a morphing stage in which new examples are
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Figure 2.6: Example-based Statistical Body Models. Animation of the SCAPE model jointly
varying body shape and pose. SCAPE uses a deformation model of shape and pose learned from
example body scans. (Reprinted from [Anguelov et al. (2005b)])

generated by leveraging the learned deformation model. The key to learning a deformation model

is bringing all scans into full correspondence using a process called registration or alignment. This

is typically done by non-rigidly deforming a shape template mesh (also called the shape reference

mesh) to match each of the scanned shapes [Allen et al. (2003); Anguelov et al. (2005a); Seo and

Magnenat-Thalmann (2003)]. The output is a mapping between every point on the template surface

and its corresponding point in the scan. The template can be artist-designed or a cleaned-up scan

that may be rigged with a skeleton. The registration may take as input several sparse corresponding

features between the scans and the template to facilitate the process and obtain more accurate

alignments.

Having the scans in full correspondence has many benefits, including being able to interpolate

between existing shapes or learning a statistical model that captures correlations of shape defor-

mations between different body parts as well as correlations between articulated poses and skin

deformations. For example, the SCAPE model proposed by Anguelov et al. (2005b) follows this

approach. As illustrated in Figure 2.6, SCAPE generalizes to new shapes not present in the training

data set while being capable of handling changes in pose without introducing artifacts at the joints.

These features make SCAPE a highly flexible and realistic body model.

Being able to synthesize realistic shapes of arbitrary people in various poses that can match

the appearance of humans in photographs makes data-driven shape modeling the method of choice

for image-based fitting. Data-driven shape modeling eliminates the need for manual shape design,

predicts more accurately skin deformations at the joints than classical skinning, and is more efficient

than anatomical approaches running physical simulations.

2.3.3 Generic Shape Modeling

Finally, it is worth remarking that modeling the entire human body constitutes only a small

subset of the vast amount of literature on modeling generic shapes. Pioneering works by Terzopoulos
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and Metaxas (1991) and Cootes et al. (1995) have proposed the concept of using prior models of

shape of same-class non-identical objects to assist in the recovery of shape information from noisy

image observations. Early examples include deformable superquadrics [Terzopoulos and Metaxas

(1991)], active shape models (ASM’s) [Cootes et al. (1995)], or eigen-models of 3D objects [Sclaroff

and Pentland (1995)].

There is also a large body of literature dedicated to modeling the geometry of faces. Here we

briefly mention the seminal work of Blanz and Vetter (1999). They describe a morphable face model

in which new faces are modeled by forming linear combinations of 200 example scanned face models.

They also provide the ability to manipulate an existing face model according to changes in certain

facial attributes.

2.4 Sources of Information

In order to extract human models from images, generative approaches need to compare synthe-

sized instances of a parametric model with image observations. Since the appearance of humans

in images can be affected by many factors such as lighting conditions or clothing, various image

descriptors have been used in the literature for matching human models to features from the image

domain. These include silhouettes (contours), edges, appearance (texture), optical flow (motion

boundaries), and 3D reconstructions (visual hulls, stereo, shape-from-X).

2.4.1 2D Image Features

Silhouettes and Contours

When the contour of the human silhouette can be extracted reliably, it can be very powerful at

constraining both shape and articulated pose, making them one of the most exploited image cues. A

matching function in the image domain is often based on area overlap between the observed image

silhouette and the silhouette of the projected model [Deutscher and Reid (2005); Sminchisescu and

Triggs (2003)], but matching just the silhouette contours is also common. Hilton et al. (1999, 2000);

Lee et al. (2000); Seo et al. (2006) use the silhouette contours from orthogonal views for generating

3D human models. Silhouettes from multiple views can also be combined to obtain 3D volumetric

reconstructions.

Silhouettes are very good for localizing the person in the image, providing a strong global lock on

the subject during tracking that prevents drifting over time. Because they do not convey information

about the internal structure, they are susceptible to self-occlusions when limbs are projected inside

the body contour for certain camera views (e. g., having an arm between the torso and the camera).

Silhouettes can be extracted robustly and with low computational cost from images when then

background is relatively stationary and known. The popular background subtraction technique de-

tects large pixel value differences between a background image and images containing the foreground
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object (the human subject). Variants exist that handle slowly changing backgrounds by using adap-

tive background models, or perform segmentation based on motion. Contour tracking processes

assume that the appearance of the foreground is vastly different than that of the background and

attempt to find a separation of the two using snakes, active contours, or graph-cut methods. Rec-

ognizing the fact that such separation can be ambiguous, a final determination may be postponed

by incorporating the image segmentation process in the model fitting stage. Guan et al. (2009) and

Hasler et al. (2009a) perform joint image segmentation/pose estimation using 3D body models as

shape priors for silhouette extraction.

Silhouettes cannot always be estimated robustly in the presence of shadows or moving back-

ground, making them unusable in these situations.

Edges

Edges are often used for human tracking because they are easy to compute and are often useful

for more precisely localizing individual body parts [Deutscher and Reid (2005); Gavrila and Davis

(1996); Kakadiaris and Metaxas (2000); Sminchisescu and Triggs (2003); Wachter and Nagel (1999)].

Matching functions typically compute a distance between the model’s apparent edges when projected

into the image and the closest observed edges detected in the image. Exploiting edges is advantageous

because they provide some invariance to viewpoint, lighting conditions and local contrast, and can be

used to complement the silhouettes by providing internal contours. However, many spurious edges

can be detected in cluttered backgrounds or textured clothing, providing false matches and hiding

the relevant ones. Using edge cues by themselves is problematic because it is easy to get confused

by spurious edges, leading to tracking failures. Moreover, edges do not help with the recovery of

limb rotations around the central axis.

Texture

In contrast to edges that are sparse in nature, image texture captures dense information about

the appearance of objects in the scene. Template matching can be used for finding regions in an

image which match a template image of a face or other body parts. A reference texture can also

be mapped onto the model surface and matched against the texture in the image. Such a reference

texture can be provided a priori and kept fixed during tracking, or can be updated over time using the

estimated models from previous frames [Wachter and Nagel (1999); Sidenbladh et al. (2000); Bregler

et al. (2004)]. Matching can be done using convolution or cross-correlation over raw pixel intensities,

or by matching color Gaussian distributions or histograms. Texture-based methods are affected by

intensity variations due to changes in lighting or orientation. They also suffer in the presence of

loose deformable clothing or in large smooth texture-less regions, causing tracking systems to drift

into the background over time.

Texture is being exploited for computing optical flow between consecutive frames, for structure-

from-motion, and for 3D stereo reconstructions between different camera views.
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Optical Flow

Optical flow is a 2D motion field in the image plane that densely captures the relative motion

between frames. Texture information is used to compute smooth pixel displacements from one frame

to the next to match the color, thereby relying on the brightness constancy and spatial consistency

assumptions. Optical flow can be computed robustly using a multi-scale approach based on image

pyramids [Black and Anandan (1996)]. Optical flow could be used for human tracking by matching

the estimated optical flow field of the model to the observed optical flow field in images, but it is

prone to the accumulation of error and drift, making tracking particularly unstable. Sminchisescu

and Triggs (2003) use optical flow to construct outlier maps representing motion boundaries which

are used to reinforce select edges.

Switching from the image domain to 3D, optical flow from multiple camera views can be combined

to compute a 3D motion field called scene flow [Vedula and Baker (2005)] which captures the 3D

motion of points in the scene. Scene flow can be used to constrain the estimation of 3D body motion.

Theobalt et al. (2003) uses scene flow to augment a silhouette-based fitting method. They present

a method for extracting hierarchical rigid body transformations from the motion fields and show

that it is best used in conjunction with silhouette-based tracking. A generic body model is first fit

to image silhouettes and then pose is refined to conform with estimates from the computed motion

field.

Scene flow is also useful for establishing correspondences between 3D shape reconstructions at

discrete time instances. Vedula et al. (2005) use the scene flow to perform continuous spatio-

temporal shape modeling of dynamic objects in the scene. They capture the time-varying geometry

of moving objects at discrete time instances using a shape-from-silhouettes approach and use “scene

flow”-based interpolation to compute non-rigid changes in shape as a continuous function of time.

de Aguiar et al. (2007) use a deformable mesh to capture the motion and dynamic shape of humans.

They track surface deformations of an actor wearing wide apparel by evolving an a priori shape

model according to 3D correspondences given by the scene flow. A Laplacian tracking scheme is

incorporated to achieve robustness against errors in the 3D flow.

2.4.2 Depth Information from 3D Reconstructions

The image features presented so far, with the exception of scene flow, are inherently 2D, do

not encode any depth information, and encounter difficulties with self-occlusions. Being able to

extract 3D information from images can help a great deal with human shape and pose recovery. In

the case of single images, this is particularly challenging, being an ill-posed problem. Nonetheless,

shape-from-X techniques exist that attempt to recover shape information of generic rigid objects

(e. g. a statue, building or toy) from single images in carefully-controlled environments. The shape

recovery problem becomes much easier when combining information from multiple calibrated camera

views. Here we focus our discussion on shape-from-silhouettes and multi-view stereo reconstruction

methods for capturing people.
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Shape-from-Silhouettes

Image silhouettes from multiple camera views can be used to compute 3D reconstructions of

objects in the scene. These reconstructions are called visual hulls [Laurentini (1994)] and are the

maximal possible 3D volume that still projects inside the image silhouettes. Two basic techniques

exist for computing shape-from-silhouettes (SfS): one is based on voxel carving, while the other is

based on intersecting generalized cones. Both methods require that camera calibration parameters

(both intrinsic and extrinsic) be estimated in a calibration step, and rely on the fact that image

silhouettes are the 2D projection of the actual 3D object onto the camera image plane. A silhou-

ette, together with the camera calibration parameters, define a back-projected generalized cone that

tangentially contains the actual object. The visual hull can be obtained by taking the volume inter-

section of several silhouette cones from multiple camera views [Franco et al. (2006)]. Alternatively,

a bounding box of the capture volume of interest can be discretized into 3-dimensional equal-sized

cubes called voxels (the 3D equivalent of 2-dimensional pixels in the image domain) and a carving

procedure is employed that eliminates all voxels whose projections do not fall inside the image sil-

houettes in each camera view. The remaining voxels or the visual hull provide an upper-bound on

the volume occupied by the actual object in the scene. The bound becomes tighter as more camera

views are employed, but artifacts will remain in concave regions regardless of the number of views.

A variation of voxel carving is given by voxel coloring [Cheung et al. (2003a)] in which the maximal

volume also has a consistent foreground color across all views. Reconstructing the visual hull for the

human body can be done with as little as 3 or 4 camera views, but more acceptable reconstructions

require between 8 and 16 camera views. Shape-from-silhouette methods are susceptible to errors in

the extracted image silhouettes and are usually used in combination with a chroma-key technique

that makes foreground segmentation trivial. Chroma-keying involves making the background green

or blue such that it is distinct from the color of skin or the clothes worn by the subject. Reconstruc-

tions based on voxel carving [Cheung et al. (2000, 2003a); Mikić et al. (2003); Kehl et al. (2005)]

and visual hulls [Chu et al. (2003); Cheung et al. (2003b); Menier et al. (2006)] have been used

extensively for human pose estimation.

Stereo Reconstruction

In addition to silhouettes, texture can also be used for extracting depth information. Stereo

reconstruction algorithms use texture to establish pixel correspondences between multiple calibrated

camera views before computing the 3D intersection of back-projected rays through corresponding

pixel locations. Color calibrated cameras are required for matching pixels based on color between

different cameras. The output is a 3D point cloud that can be post-processed into a surface mesh.

The resulting mesh will contain holes in regions occluded from the cameras.

Classical binocular stereo uses epipolar geometry between two cameras with a narrow baseline

to simplify the search for image correspondences, but only produces one-side reconstructions. In

[Grest et al. (2005)], a 3D body model is then fit to such stereo reconstructions to estimate frontal

human motion by employing an Iterative Closest Point (ICP) method that finds correspondences
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(a) Input image (b) Shape from silhouettes (c) Multi-view Stereo (d) Refined shape

Figure 2.7: Multi-view 3D Reconstructions. Images (a) from 8 wide-baseline camera views can
be used to reconstruct shape from silhouettes (b), or using multi-view stereo (c). Starck and Hilton
(2007) compute refined shape reconstructions (d) by fusing silhouette and stereo cues with matched
surface features between views. (Reprinted from [Starck and Hilton (2007)])

between points on the body model and the stereo reconstructed points.

Multi-view stereo techniques [Seitz et al. (2006)] can reconstruct all-around volumetric models

by using three or more images taken from known camera viewpoints in a 360◦ configuration. Estab-

lishing correct pixel correspondences for triangulation between views becomes more challenging due

to the wide baseline between the cameras. In addition to individual pixel correspondences based on

intensities, other image features (e. g., texture discontinuities or SIFT1 descriptors) can also be used

for sparse matching, assisting in the 3D reconstruction process [Starck and Hilton (2007)].

Bradley et al. (2008) capture the geometry and motion of garments worn by people in action

using multi-view stereo from 16 cameras to extract initial 3D meshes for each frame. Since the stereo

meshes contain holes and have different connectivity, a template-based mesh completion technique

is then applied that both completes the surface geometry and establishes temporal correspondences.

More accurate and robust reconstructions (cf. Figure 2.7) can be obtained by combining silhou-

ette-based and stereo-based methods [Furukawa and Ponce (2009); Starck and Hilton (2007)].

2.5 Human Body Model Acquisition for Motion Capture

For the purpose of this thesis, the problem of Markerless Human Motion Capture consists of

several phases: 1) body model acquisition, 2) pose estimation, and 3) tracking. Body model ac-

quisition deals with generating a body model specific to the subject being tracked. Given a body

model, pose estimation consists of recovering the articulated kinematic structure in a single frame
1The Scale-Invariant Feature Transform features (SIFT [Lowe (1999)]) are local textural image descriptors of
particular interest points in the scene. SIFT is invariant to image scale and rotation, robust to changes in
illumination and minor changes in viewpoint, and highly distinctive, making it appropriate for robust image
matching.
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using one or more camera views, which can be used to initialize a tracking procedure. Tracking then

refers to the estimation of the articulated pose and shape over an image sequence that exploits the

temporal correlations between consecutive frames to simplify the estimation problem. Tracking can

be followed by a motion or shape analysis and recognition phase.

2.5.1 Shape Initialization

Estimating the kinematics of a body model from images relies heavily on having access to the

correct body shape measurements, which are often assumed known or estimated in a pre-processing

step prior to tracking. For generic part-based shape models that represent each part as a rigid

volumetric object attached to a skeleton, the shape is often described in terms of a few scaling

proportions that capture the lengths of the bone and the widths of the limb. Many previous ap-

proaches use manually measured shape parameters of the body parts to be tracked [Deutscher and

Reid (2005)], or manually tune them to match the body shape in an image [Bandouch et al. (2008)].

Others extract the shape parameters (semi)-automatically directly from images with the subject

standing in several canonical poses [Gavrila and Davis (1996)].

In [Gavrila and Davis (1996)], a cooperating subject assumes a standing pose in two orthogonal

views (frontal and side) and a model based on tapered superquadrics is fitted to silhouette contours

in a coarse-to-fine fashion. First the head is detected using color histograms and the major axis of

the silhouette is used to obtain the torso-head configuration. Multiple views provide a 3D estimate

of the major torso axis, followed by an incremental search for the orientation and dimensions of the

limbs.

While it is simpler to estimate the scaling parameters for part-based shape models, such models

are limited in fidelity. More sophisticated models can be obtained from images by relying on a

reference humanoid model that is deformed to match silhouette contours.

Hilton et al. (1999, 2000) transform a standard 3D generic humanoid model to approximate a

person’s shape and anatomical structure observed from 4 orthogonal views (front, sides and back).

With the person standing in the same pose as the humanoid model, feature points along the silhou-

ette contours at extrema locations are used to determine dense interpolated correspondences with

synthetic contours of the reference model. The vertex displacements in the planes are then inter-

polated to obtain vertex displacements over the entire body. The kinematic skeleton is estimated

from the principal axes of the image contours. The method is simple and fully automatic, but the

shape reconstructions are lacking. Following a similar approach, Lee et al. (2000) use a seam-less

humanoid model to increase the realism of the recovered shape model and manually specify feature

points along the silhouette contours taken from orthogonal views for better accuracy. They perform

body cloning using a 2 stage body modification, first based on feature points and second on silhou-

ette contours. The kinematic skeleton is also estimated from the contours. Such simple methods

produce reasonable but not great body shapes. Instead of a simple reference humanoid model, Seo

et al. (2006) employ a statistical model of human shape deformations to reconstruct human body

models from orthogonal silhouettes.
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Other approaches can reconstruct surface models without relying on a reference body model.

Kakadiaris and Metaxas (1998) define a protocol of controlled movements that, when performed by

the subject, reveal the structure of the human body. 3D surface shape models are reconstructed

from 2D contours from 3 orthogonal views. In [Cheung et al. (2005)], the subjects performs a series

of specific actions that are used for identifying the joint centers of several main joints of the human

body using voxel data.

For body models using detailed surface-based representations, 3D surface models may be obtained

using laser-scanning or shape-from-silhouette and stereo methods. A laser scan may provide a high

resolution mesh model of the body, but the articulations are not explicit. The 3D mesh is then

rigged with a kinematic skeleton either manually [Vlasic et al. (2008)] or automatically [Corazza

et al. (2008)] using a learning approach. The scan can also be segmented into body parts which

are kept rigid during tracking [Rosenhahn et al. (2005); Mündermann et al. (2007)]. For providing

a better fit with the image observations during tracking, it is better to have the subjects scanned

with the same clothes as during the motion capture phase. This makes tracking dynamic surfaces

tractable [de Aguiar et al. (2007); Vlasic et al. (2008); de Aguiar et al. (2008)].

Finally, Mikić et al. (2003) use a body part localization procedure based on template fitting and

growing, and optimize the scaling parameters of the ellipsoids and cylinders used as body parts.

Instead of estimating the shape parameters in a pre-processing step, they perform shape refinement

using a Bayesian network that is incorporated into the tracking framework for several frames in the

beginning of the sequence. They use prior knowledge of average body part shapes and dimensions

to impose human body proportions onto the body part size estimates. Tracking is performed using

an Extended Kalman Filter (EKF).

2.5.2 Pose Initialization

Analysis by synthesis is typically implemented as a local search around an initial estimate of the

state parameters. When tracking an entire image sequence, the estimate at the previous frame can

be used as initialization for the current frame. This leaves open the question on how to initialize

the model in the first frame of the sequence.

Many approaches assume the initial kinematic pose is known (e. g. [Wachter and Nagel (1999)])

or use a manual procedure for initialization. Some methods benefit from a cooperative subject that

strikes a predefined canonical pose to be detected by the tracking system and then proceeds to

perform the actions of interest [Kehl et al. (2005)]. Others acquire the initial pose using a marker-

based motion capture system [Sigal et al. (2010)].

More general pose estimation methods can be categorized into generative and discriminative.

Generative methods are model-based and use a top-down approach, matching projections of hy-

pothesized body models to image observations. As such, they fall into the analysis-by-synthesis

framework (Section 2.2) and require a good initial estimate of the pose. In contrast, discriminative

methods, which we describe next, predict the body model by analyzing the image data directly.

They either work in a bottom-up fashion, where candidates for individual body parts are located in
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the image and then assembled into a consistent human body configuration, or use training examples

to learn a direct mapping from images to pose. Such methods can be fully automatic, but are not

sufficiently precise in general, making them appropriate for initializing generative methods.

Semi-Supervised Geometric Methods

Semi-supervised approaches based on geometry reasoning have been proposed both for estimation

of anthropometry and pose estimation from a single calibrated or uncalibrated image. Geometric

approaches use manually clicked points in a 2D image corresponding to major joints and some

statistical prior over bone length proportions to recover a family of 3D skeleton configurations

consistent with the 2D constraints, up to a scale factor. Taylor (2000) assumes known limb lengths

and takes the image foreshortening of the segments into account, but has to specify the depth

ordering for each bone manually. Since it assumes a scaled orthographic camera, the approach is

limited to far views, although Lee and Chen (1985) presented a perspective solution earlier. Various

extensions exist with different assumptions about the anthropometric measurements of the skeleton

[BenAbdelkader and Davis (2006); BenAbdelkader and Yacoob (2008)] or the geometry of the pose

[Barrón and Kakadiaris (2001, 2003)]. Mori and Malik (2006) extend the method to obtain the 2D

joint locations automatically using shape context features. Geometric approaches remain particularly

unstable to minor perturbations of the marked joint locations in 2D.

Automatic Bottom-up Discriminative Methods

One way to estimate the initial pose automatically is to use a bottom-up approach which works

by first locating candidates for individual body parts in the image domain or within volumetric data

and then assembling them into a consistent human body configuration.

The human body is decomposed into parts which are modeled using simple 2D or 3D geometric

primitives. Part-specific detectors are devised to provide initial hypotheses for the placement of

each limb. In general, the detectors are not very precise due to lack of strong identifying features,

missing some parts and providing many false positives for others. A set of pair-wise constraints

between parts, encoded directly in terms of compatibility, or probabilistically, need also be defined

before a consistent body configuration is assembled. The process requires no manual intervention

however the solution is often not well localized due to parts not being detected or to the inability to

incorporate constraints other than kinematic constraints. A decomposition into body parts is also

assumed, which may not be appropriate for people wearing loose clothing such as dresses.

Hybrid methods combine bottom-up and top-down approaches to complement each other. Bot-

tom-up strategies provide a way to initialize and recover from drift during motion tracking, while

top-down methods can recover more precise pose estimates by being able to provide robustness

against noisy image observations, reason about the human body and its interaction with the envi-

ronment, incorporate various types of constrains, and handle non-rigid deformations.

Sigal et al. (2003) represent the 3D human body as a graphical model in which the relationships

between the body parts are encoded by conditional probability distributions and formulate the
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problem as a probabilistic inference over a graphical model using approximate belief propagation.

Rodgers et al. (2006) follow a similar approach, but deal with estimating pose from 3D range-scan

data and relying on 3D part detectors. Nonetheless their methods are applicable to any type of

volumetric input data (e. g. shape-from-silhouettes or stereo depth reconstruction). They also refine

the pose estimates using a top-down Iterative Closest Point (ICP) approach. Gavrila and Davis

(1996) use a combination of bottom-up and top-down for pose initialization. They employ a search-

space decomposition strategy that first uses part detectors to find the head and torso, and then

localize the limbs incrementally along the kinematic tree.

Example-based Discriminative Methods

Example-based discriminative approaches do not use an explicit model of the human body but

rather attempt to learn a mapping directly from 2D image features on the body to 3D kinematic

pose. The mapping can be exemplar-based [Shakhnarovich et al. (2003)], in which a database of

example feature-pose associations is queried for nearest neighbor matches, or probabilistic-based, in

which a more compact representation is learned from training feature-pose pairs using various flavors

of regression [Agarwal and Triggs (2006)] or Bayesian Mixture of Experts [Sminchisescu et al. (2005);

Sigal et al. (2008)]. Most commonly used image features include: shape contexts [Sminchisescu et al.

(2005); Agarwal and Triggs (2006)] and histogram of oriented gradients [Shakhnarovich et al. (2003)],

etc. Such approaches are computationally efficient, but require a training database that spans the set

of all possible poses, body shapes, and/or scene conditions (lighting, clothing, background etc.) to

be effective. Moreover, the performance degrades significantly when the image features are corrupted

by noise or clutter. In such cases, a generative approach is more appropriate as it models the image

formation process explicitly.

Sigal et al. (2008) combines a discriminative approach with a generative approach for model

verification and refinement. Their technique uses shape context features not only for predicting

pose, but also for predicting shape parameters from silhouette contours.

2.5.3 Model Tracking

Tracking the human body is a simplified version of the pose estimation problem since the pose

estimate in the previous frame gives a strong indication on what the body configuration might be in

the current frame. Tracking is not the focus of this thesis. For an extensive review on the subject,

please refer to [Moeslund et al. (2006)].



Chapter 3

SCAPE: A Deformable Body

Model of Shape and Pose

3.1 Introduction

Central to this thesis is a recently proposed deformable body model called SCAPE (Shape Com-

pletion and Animation of PEople) that is more suitable for analyzing humans in images than tra-

ditional models. Originally, SCAPE was designed for graphics applications to produce realistic

animations. We aim to use this model for computer vision tasks such as matching the shape and

pose of arbitrary, previously unseen, subjects directly from images. In this chapter we describe

the main features of the SCAPE model as proposed in [Anguelov (2005)] and highlight the key

differences between the original formulation and ours.

SCAPE is a morphable body model that is able to capture both variability of human shapes

between individuals as well as pose-related skin deformations (see Figure 3.1). The model is learned

from example shapes acquired with 3D laser scanners and is able to reconstruct shapes that are a lot

more realistic than the part-based body models used in the computer vision literature. Specifically,

it models both articulated and non-rigid surface deformations and captures the correlations between

sizes and shapes of different body parts. Equally important for computer vision applications, the

model factors changes in shape due to identity from shape changes due to pose. Compared to the

physics-based simulation models, it is also more efficient and relatively low dimensional.

Statistical modeling of surface deformations requires known correspondences between semanti-

cally equivalent locations on the example bodies. To that end, we describe a non-rigid iterative

closest point technique that registers a reference mesh with the laser scans and in the process deals

with missing surfaces in the raw scans.

Unlike previous implementations, our work relies on an extensive dataset of high resolution

laser scans comprising more than 2000 individuals. This allows us to more accurately capture the

variability in human form between individuals than previously possible. Dealing with such a large

31
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Figure 3.1: SCAPE Synthesized Human Models. The SCAPE model can be used to transform
a reference body (left) into different poses (top), different body shapes (bottom), or a combination
of different shapes in different poses (right).

amount of data however pushes the limits of current computer hardware capabilities. We use an

incremental Principal Component Analysis approach (Appendix D) to address computer memory

limitations and make learning a shape deformation model practical. We also go beyond previous work

and learn three different shape models: one for men, one for women, and one gender-neutral model

combining both men and women, which becomes useful for gender-constrained shape estimation

from images.

3.2 Related Work

Simpler body models exist in the graphics literature. For example, synthetic humanoid models

can be designed using specialized commercial software tools, with the shape controlled though a

number of scaling parameters and pose varied by associating the surface mesh with a kinematic

skeleton. While such models are easy to animate, and allow for pose and shape to be altered

independently, the resulting shapes often lack realism.

Until very recently, models gained realism by learning either the deformations due to pose or

due to identity changes from example 3D body scans, but not both. They used incompatible
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representations that made merging the two deformation models difficult. For example, Allen et al.

(2002) learn a model of pose deformations using point displacements from an underlying articulated

model but can only handle a single subject, while Allen et al. (2003) and Seo and Magnenat-

Thalmann (2003) model identity changes as point displacements from an average shape which are

embedded in a linear subspace, but need to keep the pose fixed. The latter can be animated using

procedural skinning techniques that cannot capture muscle bulging and that introduce twisting

artifacts at the joints.

The SCAPE model [Anguelov et al. (2005b)] was the first to change the representation to triangle-

based deformations, allowing for models of pose and body shape deformations to be learned sep-

arately, and using simple matrix multiplication to combine them, thus producing body models of

different people in different poses with realistic skin deformations.

Since SCAPE, two new models have been proposed that combine pose and identity shape changes.

Allen et al. (2006) learn a complex system that combines corrective skinning learned from examples

with a latent model of identity variation. Unfortunately the complexity of the proposed training

phase limits the amount of training data that can be used, which consequently impairs the model’s

realism. Hasler et al. (2009b) propose a representation that couples pose and identity shape de-

formations into a single linear subspace, where the deformations are based on an encoding that

is locally invariant to translation and rotation. However, their model lacks the property of being

able to factor changes due to pose from changes due to identity, which is necessary for estimating a

consistent shape across different poses (Chapter 6).

3.3 3D Scan Dataset Acquisition

Models of human body deformations can be learned from examples acquired in the form of

high resolution 3D laser scans of real people. We use scans acquired using CyberwareTM whole-

body scanners that capture two to four simultaneous scans from orthogonal views and stitch them

together into all-around surface meshes (Figure 3.2). The reconstructed meshes are not complete;

holes remain in the reconstruction due to self occlusion and grazing angle views (Figure 3.2b). The

subjects are scanned wearing minimal skin-tight shorts and a latex cap to cover the hair, with the

women also wearing sports bras.

SCAPE can be thought of having 2 components. The first component is a pose deformation

model which captures how the body shape of a person varies as a function of their pose; for example,

this captures how the bicep muscle budges as the arm is bent. The second component is a shape de-

formation model that captures the variability in human shape across people using a low-dimensional

linear representation. We obtain separate training sets for the two models.

For the pose training set, we use the same data as in [Anguelov (2005)]. Specifically, a single

male subject is scanned in 71 diverse poses (Figure 3.3b). For the shape training set, we acquired

the American edition of the publicly available CAESAR dataset (Civilian American and European
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(a)

(b) (c)

Figure 3.2: Shape Acquisition using Laser Scanning. (a) A Cyberware whole-body laser
scanner measures the 3D position and appearance for hundreds of thousands of points on the surface
of the scanned body. (b) A typical surface scan is shown without texture, revealing common scanning
artifacts. Holes remain where the surface cannot be estimated due to self occlusion or grazing angle
views. (c) The same scan is shown front and back with the captured texture. Since the measured
points come with no semantic meaning, sparse white markers (visible in (c)) can optionally be
placed at anthropometric landmark locations on the body during scanning, providing context for
body measuring and scan registration. Their 3D locations are estimated and manually labeled in a
post-processing step and displayed as red dots in (b).
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Surface Anthropometry Resource, SAE International). This dataset contains 2,3841 range scans of

adults from North America, aged 18-65 and with about equal gender representation. All subjects

in the CAESAR dataset are scanned in a very similar, but not exactly identical, standing pose

(Figure 3.3c). Prior to scanning, 74 white markers are placed on each subject at anthropometric

landmarks and their 3D location computed (Figure 3.2b,c).

Our use of the extensive CAESAR dataset for capturing shape variability between individuals

is in sharp contrast with the number of subjects used in the original implementation of the SCAPE

model [Anguelov (2005)]. Their shape deformation model was built using only 45 different subjects,

which is arguably insufficient to adequately represent the complex space of human shapes.

The raw scans contain missing surface regions due to limitations in the scanning process, provide

no semantic correspondences between surface points necessary for shape modeling, and are at very

high resolution, having between 200,000 and 350,000 triangles. However, for computational and

algorithmic reasons, it is desirable to have lower resolution meshes that share the same vertex

connectivity. The standard approach for jointly addressing these problems is to use a template-

based non-rigid registration technique that brings all human laser scans in the training sets into

full correspondence with respect to a reference mesh (Figure 3.3a), and implicitly with each other.

By this, what is meant, for example, is that a mesh vertex on the right shoulder in one person

corresponds to the same vertex on another person’s shoulder. It also means that all aligned meshes

have the same number of vertices and triangles. We discuss this process of surface registration and

hole filling next.

3.4 Surface Registration

Surface registration is the process of establishing point-to-point correspondences among similar

objects that exhibit the same overall structure but substantial variations in shape. In our case, we

are interested in registering scans that exhibit deformations due to changes in pose and to variations

in shape among different people. The general idea of template-based mesh registration techniques

is to smoothly deform a reference mesh with a desired topology toward the example scans such that

the resulting meshes have the geometry of the raw scans, but the topology of the reference mesh.

One approach is to use the technique of Allen et al. (2003) that employs a non-rigid Iterative

Closest Point (ICP) algorithm. While computationally efficient, such an approach generally requires

a set of sparse correspondences between the template and the raw scan be specified in advance to ini-

tialize and guide the alignment in the presence of large deformations. Alternatively, the Correlated

Correspondence algorithm of Anguelov et al. (2005a) can be used to register significantly deforming

surfaces in a mostly unsupervised manner. The algorithm is based on a probabilistic model over

the set of all possible point-to-point correspondences and relies on matching the local geometry

and preserving geodesic distances and local surface deformations. The search in the combinatorial

space of correspondence assignments is done using probabilistic inference over a Markov network.
1Due to various scanning artifacts, we only use the scans from 1,051 male subjects and 1,096 female subjects.
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(a) (b)

(c)

Figure 3.3: Training Scans. (a) Template mesh, hole-filled and sub-sampled to 12, 500 vertices
and 25, 000 triangles. (b) Subset of the pose training set, containing raw scans of a single subject in
71 poses. (c) Subset of the body shape training set, consisting of raw scans of 1000+ female subjects
and 1000+ male subjects from the CAESAR dataset (SAE International).

With exact inference being infeasible, and approximate loopy belief propagation requiring significant

amounts of computer memory and converging too slowly over large Markov networks, the Corre-

lated Correspondence algorithm becomes practical only for sub-sampled meshes with approximately

250 vertices [Anguelov (2005)]. However, because it is designed to work in more general settings

without requiring markers or other prior knowledge about the object shape, it remains effective at
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coarsely aligning surfaces that undergo significant articulated deformations and subsequently use

the alignment to initialize a standard non-rigid ICP algorithm (i. e. [Allen et al. (2003)]).

3.4.1 Marker-based Non-Rigid Iterative Closest Point Registration

Here we describe the method we applied for aligning a template mesh T to a deformed target mesh

D given some corresponding marker locations, as proposed by Allen et al. (2003). The template mesh

acts as a reference mesh that is smoothly deformed into other poses and body shapes to establish

correspondences between all training meshes. Each of these shapes are represented as triangular

meshes (although any polygon mesh representation can be used) consisting of a set of V vertices

and a set of T triangle faces sharing common vertices. An optimization problem is formulated that

solves for the 4 × 4 affine transformation Ti for each vertex ~vi of the template mesh T using an

objective function that trades off fit to the raw scan data, fit to known markers, and smoothness of the

transformation. For the purpose of mesh registration, vertex locations are expressed in homogeneous

coordinates: ~vi = [xi, yi, zi, 1]T.

Data Error

Our first objective is for the aligned template surface to be as close as possible to the target

surface. As such, we encourage vertices of the template mesh to move toward the closest respective

points on the surface of the target mesh in order to acquire the geometry of the raw scan. We use

the data error term Ed to penalize the remaining gap between the transformed vertices Ti~vi and

the target surface D:

Ed =
V∑

i=1

wi gap2(Ti~vi,D) . (3.1)

Here, V denotes the number of vertices for the template mesh T and wi is used to control the influence

of the data term in the presence of holes in the target mesh. The function gap(·, ·) computes the

distance from a point to the closest compatible vertex of a surface and it is implemented using a

KD-tree data structure for computational efficiency. The compatibility restriction safeguards against

front-facing surfaces being matched to back-facing surfaces and is measured in terms of the angle

between the surface normals. It also restricts the distance between them to a threshold to avoid

matching through holes in the target mesh.

Smoothness Error

Matching points to a wavy surface independently using the closest point strategy alone introduces

unnatural folding and stretching artifacts. The solution can be regularized by adding a deformation

smoothness constraint Es that require affine transformations applied to adjacent vertices on the

surface to be as similar as possible:

Es =
∑

{i,j|(~vi,~vj)∈edges(T )}
||Ti −Tj ||2F , (3.2)
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(a) (b) (c)

Figure 3.4: Mesh Registration Process. (a) Sparse landmark correspondences between the
template mesh (green) and a raw scan (gray). (b) Vertices and edges located on the boundary of
a hole in the scan are highlighted in red. (c) Vertex weights wi for the data term. Black regions
correspond to vertices from the template mesh with a zero data-fitting weight, while white regions
have weight one.

where || · ||F denotes the Frobenius norm.

Applying this constraint is not the same as applying a surface smoothness constraint. This is

important because what we want is to preserve the surface details present in the template mesh,

particularly in regions where the target mesh contains holes.

Marker Error

In the presence of large surface deformations of the target mesh with respect to the template,

the data and smoothness constraints are often insufficient for achieving a correct alignment. To

assist the alignment process and help guide the deformation of the template mesh into place, a set

of points on the target surface ~mi that correspond to known points on the template are identified.

We need to encourage the correspondences at marker locations to be correct. We use the marker

error term Em to minimize the distance between each marker’s location on the template surface and

its location on the target surface:

Em =
M∑

i=1

||Tκi~vκi − ~mi||2 . (3.3)

Here κ1···M is a list of vertex indices from the template mesh that correspond to the markers on the

target surface (Figure 3.4a).
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Objective Function - Optimization Strategy

The complete objective function is a weighted sum of the three error terms:

E = αEd + βEs + γEm (3.4)

and can be optimized using gradient descent.

The optimization is initialized using a global transformation that aligns the center of mass of the

template to the target mesh and the overall orientation and scale. The optimization continues in

stages, following different weighting schedules that emphasize matching landmarks (10,000 iterations

with α = 0, β = 10, γ = 20), overall shape fitting (600 iterations with α = 2, β = 10, γ = 2), and

refinement of the surface geometry (400 iterations with α = 1, β = 0.1, γ = 0.1).

Hole-filling

Large holes in the scanned mesh pose problems to the method described so far. In this case

many vertices on the template have no correct correspondence on the scanned mesh. The data term

encourages these vertices to move instead to the closest existing patch from the target mesh causing

undesirable stretching. Fortunately, at each iteration we can easily identify the vertices ~vi with no

true correspondence as the ones whose closest point on the target mesh is located on the boundary

edge of a hole (Figure 3.4b). For these vertices, we set the weight wi in Ed to zero so that the

transformations Ti will be driven by the smoothness constraint Es. The effect is that holes are filled

in by seamlessly transformed parts of the template surface.

3.4.2 Processing Pipeline

We apply the non-rigid mesh registration technique to our two training data sets, one containing

the same subject in different poses, and the other containing different subjects in the same canonical

standing pose.

Template Mesh

We choose a mesh from the pose training set standing in the canonical pose to be the template

mesh. The template mesh is hole-filled and subsampled to contain 25, 000 triangles with 12, 500

vertices (Figure 3.3a). The remaining instance meshes are brought into full correspondence with the

template mesh.

Acquisition of Marker Locations

Marker locations are obtained differently for the two training sets. For the shape training set, we

use the location of the 74 anthropometric markers from the CAESAR dataset (see Figure 3.2b,c) to

establish sparse correspondences with the template mesh. In the case of the pose training set in which

the surface deformations due to articulated pose changes are more significant, many more marker
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locations are obtained using the Correlated Correspondence algorithm [Anguelov et al. (2005a)].

This algorithm uses only 4-10 pairs of manually-placed initial markers to break the scan symmetries

and produces a larger marker set of about 200 (approximate) sparse correspondences. These markers

are subsequently used in Equation 3.3.

Initialization of the Mesh Registration

The registration algorithm is initialized using a global transformation that aligns the center of

mass of the template to the target mesh and the overall orientation and scale. For the pose training

set, all scans are of the same subject so the scale is kept constant. To estimate the initial overall

orientation with respect to the template, the landmarks can be used to compute the optimal rigid

global rotation between two corresponding point sets (see Appendix C.1). In the case of the shape

training set, the subjects were already scanned in matching orientation. The scale factor is set to fit

the apparent height of the CAESAR scans to the height of the template. The apparent height is just

the z-coordinate difference between the highest and the lowest vertex of the mesh since the subjects

were all scanned in the same standing pose. The translation is obtained as the difference between

the centroids of the vertex sets of the two meshes. We use the global rotation R, translation ~t and

scale s to form the global rigid transformation T0 which is used to initialize the transformation for

each vertex Ti:

T0 =

[
sR ~t

0 1

]
. (3.5)

Exclusion of Poorly Scanned Regions

The registration method handles large holes by automatically detecting vertices that are attracted

to boundary edges and ignoring the data term. Special care must also be taken in regions that

contain scattered surface fragments instead of a large hole since it is difficult to correctly match

small fragments reliably to the template mesh. Poorly scanned regions include the ears, fingers,

feet, arm pits and crouch. Additionally, the subjects in the CAESAR dataset were scanned using

open hands while the template and the pose dataset contain closed hands as fists2. We manually

identify these specific regions on the template mesh (see Figure 3.4c) and set wi to zero to favor the

template over the scanned data in these regions.

3.4.3 Results and Applications for Shape Registration

Figure 3.5 illustrates typical results for the shape registration process. The resulting meshes

have the geometry of the raw scans, but the topology of the reference mesh. Having all the meshes

in full vertex and triangle correspondence enables several applications. Some particularly trivial

applications include texture transfer and interpolated shape morphing by linearly combining vertex

locations of registered meshes (Figure 3.6).
2Our implementation explicitly ignores landmarks 37 and 49. These are landmarks at the ends of the fingers. This
is done because the template model has its hands in a fist pose while the CAESAR models are open hand.
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Figure 3.5: Mesh Registration Results. Example meshes obtained using the mesh registration
process, where the template mesh (top left) has been brought into alignment with the scans. By
construction, these meshes maintain full per-vertex and per-triangle correspondence with the tem-
plate mesh and are hole-filled. Given a segmentation of the template mesh into 15 body parts,
the segmentation transfers naturally to the example meshes using the learned correspondences. We
illustrate the transfer by assigning a different color to each body part. (Top) example meshes from
the pose training set; (Bottom) example meshes from the shape training set.

The registered pose training set can be used for unsupervised learning of the articulated structure

of the body. Anguelov (2005) proposes an algorithm that uses a set of meshes corresponding to

different configurations of an articulated object to automatically recover a decomposition of the

object into approximately rigid parts. It defines a graphical model to capture the spatial contiguity

of parts and performs segmentation using the EM algorithm. The method produces an initial

segmentation of the template mesh into 18 parts, where the front and back of the pelvis area and the

torso were split into several pieces. After manually merging some of them, we obtain a segmentation

of the template triangles into 15 body parts corresponding to pelvis, torso, head, upper and lower

arms and legs, hands and feet. Since the training data is in full triangle correspondence, the division

into parts naturally applies to all meshes. Figure 3.5 shows the aligned meshes with the individual

body parts color-coded.

Next, we are using the meshes in full correspondence for shape morphing and statistical modeling

of the shape deformation space.
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Figure 3.6: Example Applications of Shape Registration. The leftmost and rightmost meshes
are in full vertex and triangle correspondence. This allows us to easily generate the intermediate
meshes, which vary both in body shape and in pose, by linearly interpolating between corresponding
vertex locations. Texture transfer is also immediate when meshes are in full alignment.

3.5 Deformation Modeling

From the pre-processing step, we have obtained a dataset of meshes consisting of a template mesh3

X , a set of example meshes of the same subject as the template but in different poses A = {Yi},
and a set of example meshes of different subjects B = {Yj}. All meshes share the same connectivity

structure, with V = 12, 500 vertices and T = 25, 000 triangles in complete correspondence. The

triangles are clustered into P = 15 body parts.

In order to model the deformations between example meshes, we need to choose an appropriate

representation capable of encoding important shape properties like pose-dependent non-rigid defor-

mations and body shape variations. Simple representations based directly on vertex coordinates in a

global frame or on vertex displacements from a template shape fail to capture local shape properties

and the relationship between neighboring vertices. More importantly, they make combining vertex

deformations models of different types difficult.

The strength of SCAPE comes from the way it represents deformations, using shape deformation

gradients instead of vertex displacements. This gives SCAPE the ability to model pose and body

shape deformations separately and then combine the two different deformation models in a natural

way.

3.5.1 Shape Deformation Gradients

In this section, we first define the shape deformation gradients in general as it applies to any

given two triangular meshes in complete correspondence.

We want to model the deformations that morph a source mesh X into a target mesh Y in the

training set. We use the shape deformation gradients to encode the deformations at a triangle level,
3Note that the template mesh used for modeling deformations can be different from the template mesh used for
aligning meshes in Section 3.4.1.
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Figure 3.7: Deformations Based on Shape Gradients. Shape deformation gradients are the
non-translational component At of an affine transformation that align the edge vectors ∆~xt,k of a
source mesh (left) to a target mesh (right). Since the shape deformation gradients are translation
invariant, applying the deformations to each triangle of the source mesh independently results in a
disconnected triangle “soup”, but with the desired orientation, scale and skew (middle). A consistent
mesh (right) can be obtained by solving a least squares problem over the shared triangle vertices
which implicitly encodes the mesh connectivity.

using inspiration from the work of Sumner and Popović (2004) on mesh deformation transfer.

The deformation gradients are based on the affine transformations that align corresponding

triangles between X and Y. For a given triangle t of the source mesh X containing the vertices

(~xt,1, ~xt,2, ~xt,3) and the corresponding triangle of the target mesh Y with vertices (~yt,1, ~yt,2, ~yt,3), we

consider an affine transformation defined by a 3 × 3 matrix At and a displacement vector ~tt such

that

At~xt,k + ~tt = ~yt,k , k ∈ {1, 2, 3} . (3.6)

By substructing the first equation from the others to eliminate the translation component ~tt we

obtain

At (~xt,k − ~xt,1) = ~yt,k − ~yt,1 , k ∈ {2, 3} , (3.7)

which can be rewritten in matrix form as

At [∆~xt,2 , ∆~xt,3] = [∆~yt,2 , ∆~yt,3] , (3.8)

where the ∆ operator computes the edge vector: ∆~xt,k = ~xt,k − ~xt,1.

The deformation gradient for each triangle is given by At, the non-translational component of

the affine transformation, which encodes only the local change in orientation, scale and skew induced
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by the deformation of the triangle edges (Figure 3.7). The set of deformation gradients tabulated

for each triangle provide only an intrinsic representation of the mesh geometry. Therefore we need

address two problems: how to compute the deformations for example meshes and how to reconstruct

meshes from shape gradients.

Since for a given triangle only two of its edges are actually constraining the shape gradient in

Eq. 3.8, At is not uniquely determined. Sumner and Popović (2004) propose adding an ad hoc

forth vertex to each triangle along the direction perpendicular to the triangle plane to implicitly

add a third constraint for the subspace orthogonal to the triangle. We follow a more principled

approach and regularize the solution by introducing a smoothness constraint which prefers similar

deformations in adjacent triangles. We formulate a least-squares linear regression problem and solve

for all deformations gradients at once:

arg min
{A1,··· ,AT }

T∑
t=1

∑

k=2,3

||At∆~xt,k −∆~yt,k||2 + ws

∑

t1,t2 adj

||At1 −At2 ||2F . (3.9)

This approach effectively removes high-frequency noise from the mesh geometry and leads to better

generalization when modeling the deformations in subsequent steps.

We now consider the problem of reconstructing a mesh from a set of shape gradients. Due to the

local nature of the deformations gradients that contain no notion of translation or connectivity, if

we were to transform individual triangles of the template by the corresponding deformation At, we

would get inconsistent edge vectors and unknown placement with respect to the neighbor triangles

(Figure 3.7). Given a set of deformation gradients, reconstructing a consistent mesh requires solving

a linear least squares problem over shared vertex coordinates:

arg min
{~y1,··· ,~yV }

T∑
t=1

∑

k=2,3

||At∆~xt,k −∆~yt,k||2 . (3.10)

This approach computes the best possible connected mesh whose edges ∆~yt,k are best aligned in a

least-square sense to the individually predicted deformed edges within each triangle At∆~xt,k. Since

all constraints are local, a global translational degree of freedom remains over the entire mesh. This

can be accounted for by anchoring one of the vertices of the target mesh (assuming that the mesh

is a single connected component).

We have shown how to extract shape deformation gradients from the example shapes and how to

reconstruct meshes from a set of deformation gradients. We note however that for a mesh topology

with 25, 000 triangles, each associated with a 3 × 3 matrix At, the space of shape deformations is

very high dimensional with 225, 000 dimensions and highly redundant.

In order to reduce the dimensionality, we take advantage of the deformation gradients being local

and translation invariant and decouple the deformation transformations into a rigid and a non-rigid

pose component and a body shape component, each modeled independently. We then express the

triangle deformations as a sequence of linear transformations

At = Rp[t]DtQt . (3.11)
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Qt is a 3 × 3 linear transformation matrix specific for triangle t corresponding to non-rigid pose-

dependent deformations such as muscle bulging. Dt is a linear transformation matrix corresponding

to changes in body shape between individuals and is also triangle specific. Finally, Rp[t] is a rigid

rotation matrix applied to the articulated skeleton and specific to the body part p containing the

triangle t. We discuss each component next.

3.5.2 Articulated Rigid Deformations

We begin by addressing the articulated pose deformations. Let’s assume that each body part

is moving rigidly during changes in pose. In this case, the triangles experience only changes in

orientation. The deformations can be modeled using rotation matrices. We start by defining 3× 3

rotation matrices Rp[t] for each of the 15 body parts, where the triangles belonging to the same

part experience the same rotation. Optimal rotation matrices for each body part can be computed

in closed form using the known point correspondences between the template mesh X and example

meshes Y (see Appendix C.1).

By letting At = Rp[t], we can attempt to reconstruct a mesh Ŷ using

arg min
{~y1,··· ,~yV }

T∑
t=1

∑

k=2,3

∣∣∣∣Rp[t]∆~xt,k −∆~yt,k

∣∣∣∣2 . (3.12)

In Figure 3.8 we show one of the example meshes (b), for which we have computed the rotation

matrices for each body part relative to a template mesh (a), and its reconstruction (c) based on

these matrices. We note that the reconstruction captures well the overall articulated structure of the

body considering that we have reduced the dimensionality of the shape representation from 225, 000

to 45 (the rotation matrix for each of the 15 body parts has 3 degrees of freedom). Nonetheless, such

a model is too simplistic and needs to be extended to account for non-rigid deformations associated

with complex joints such as the shoulder, muscle bulging, and local deformation of soft tissue during

pose changes.

3.5.3 Non-rigid Pose-dependent Deformations.

We use the set of example meshes in different poses A = {Yi} to train a non-rigid pose-dependent

deformation model. Since the 70 meshes in the pose set belong to the same person as the template,

the resulting deformations can only be attributed to pose changes. We let the body shape defor-

mation Di
t be the identity matrix I3 in Equation 3.11 and write the triangle deformations for each

example mesh i as

Ai
t = Ri

p[t]Q
i
t , (3.13)

where Qi
t is the residual triangle deformation after accounting for the part-based rigid rotation Ri

p[t],

computed using point correspondences for each part (Appendix C.1). We can estimate the {Qi
t}
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(a) (b) (c) (d)

Figure 3.8: Articulated Rigid and Non-rigid Deformations. (a) Template mesh. (b) Example
scanned mesh for which we compute the part-based rotation matrices Rp[t]. (c) Reconstructed mesh
that assumes only articulated rigid deformations, using the rotation matrices as shape gradients
(Equation 3.12). Since non-rigid deformations are not captured at this stage, significant artifacts
remain mainly at the joints. The torso and shoulders retain the orientation of the template as
the arms are raised, making the skin fold on the boundary between adjacent body parts. (d)
Reconstructed mesh using articulated rigid and predicted non-rigid pose-dependent deformations
(Equation 3.16), closely resembling the example mesh in (b), albeit slightly smoother in regions
such as armpits, abdomen and knees.

matrices for each mesh Yi directly from training data using the same idea as in Equation 3.9:

arg min
{Qi

1,··· ,Qi
T }

T∑
t=1

∑

k=2,3

∣∣∣
∣∣∣Ri

p[t]Q
i
t∆~xt,k −∆~y i

t,k

∣∣∣
∣∣∣
2

+ ws

∑

t1,t2 adj
p[t1]=p[t2]

||Qi
t1 −Qi

t2 ||2F . (3.14)

As before, since the Q matrices are not fully constrained by the triangle edge vectors, we regularize

the solution by adding smoothing constraints that require similar deformations in adjacent triangles.

However, due to the foldings occurring at the boundary between adjacent body parts, as noted in

Figure 3.8c, we do not enforce smoothing constraints across the boundaries, bur rather on adjacent

triangles belonging to the same part. The smoothing factor ws is set to equal 0.001ρ, where ρ is the

mesh resolution, computed as the median value of the template mesh edge lengths.

Similar to [Anguelov (2005)], we assume that the non-rigid deformations Q can be expressed as

a linear function of the pose parameters R. We use the example set of non-rigid deformations to

learn prediction models of these deformations given arbitrary new poses not present in the training

set. Such non-rigid deformations are induced by rotations of the joints whose effect is localized to

the body parts connected to moving joints. We learn a linear regression function for each triangle

t which expresses the transformation matrix Qt as a function of the relative joint rotations at the



47

closest joints. Let Np[t] be the list of body parts connected through a joint to the limb containing

triangle t. We compute the relative joint rotation ∆R(p[t],c) for each joint between the limbs p[t]

and c, c ∈ Np[t], from the absolute part rotations Rp[t] and Rc using

∆R(p[t],c) = RT
p[t]Rc. (3.15)

Using the axis-angle representation of a rotation, we encode each joint rotation ∆R(p[t],c) as a

3-element column vector ∆~ω(p[t],c) (see Appendix B.4). For each body part p[t] we concatenate all

adjacent joint rotations into a tall column vector ∆~w(p[t],Np[t]).

Each of the 9 values of the 3× 3 matrix Qt is denoted by qt,lm, with l, m ∈ {1, 2, 3}. We express

the elements of the non-rigid deformation matrices as a linear function of the relative joint rotations

adjacent to part p[t]:

qt,lm = FT
t,lm ·

[
∆~ω(p[t],Np[t])

1

]
, l, m ∈ {1, 2, 3} . (3.16)

We learn the linear coefficients Ft,lm from the example set of non-rigid deformations Qi
t and pose

parameters Ri
p[t] by solving a standard least-squares problem:

arg min
Ft,lm

∑

i

(
FT

t,lm ·
[

∆~ω i
(p[t],Np[t])

1

]
− qi

t,lm

)2

. (3.17)

Given a newly specified pose R′, we compute for each limb the vector of adjacent relative rotations

∆~ω ′
(p[t],Np[t]), and obtain the corresponding non-rigid deformations QF(R′) using Equation 3.16,

where F is pre-computed from examples according to Equation 3.17. Note that this formulation of

the relative rotation between parts does not require known joint locations or a skeleton-based pose

representation. Also note that the original formulation [Anguelov (2005)] embeds the relative joint

rotations in a lower dimensional subspace using Principal Component Analysis, motivated by the

fact that certain joint angles exhibit less than three degrees of freedom. While this is a good idea in

general, we feel that a sample size of 70 poses is insufficient for capturing a representative subspace.

Absent a larger sample set, we forgo implementing this extra step.

Figure 3.8d shows a reconstructed mesh using just a set of pose parameters R from which non-

rigid pose-dependent deformations are predicted. The non-rigid predictive model is able to capture

shoulder and elbow deformations much better than in the articulated rigid case (c), although some

smoothing in the arm pit areas, knees and abdomen remains. Additional synthesized results of

shapes in various poses not in the training dataset are presented in Figure 3.12.

3.5.4 Alternative Pose Parameterization

While the current parameterization of articulated pose is 45-dimensional, consisting of 3 degrees

of freedom specifying global orientation for each of the 15 body part rotations, it is still too broad,

allowing for pose configurations that are anatomically infeasible. With applications involving pose

estimation in mind, we may seek a more restrictive search space. We can model the skeleton of
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the body as a 3D kinematic tree and parameterize R in terms of the relative joint angles between

neighboring limbs and the orientation of the root part, jointly denoted by ~θ. In certain scenarios,

we may still need to model the hips, shoulders and pelvis as ball and socket joints with 3 DoF, but

could otherwise assume the knees, ankles, elbows, wrists and head to be hinge joints with 1 DoF,

effectively reducing the dimensionality to 27D.

Such parameterization makes it easy to impose anatomical limits on joint angles, although one

can define more elaborate pose priors using motion capture training data (e. g., [Sidenbladh et al.

(2000); Urtasun et al. (2006)]).

3.5.5 Non-rigid Body Shape Deformations.

We turn our attention to modeling deformations due to the changes in body shape between

individuals. The shape of a person is changed by applying a linear 3 × 3 shape deformation Dt to

each triangle in the mesh. Given a template mesh aligned with example bodies, the deformation for

each triangle in the template is computed to the corresponding triangle in each example mesh after

accounting for variations in pose. A low-dimensional, parametric, model is sought that characterizes

these variations within a population of people.

We use the set of example meshes of different people B = {Yj} as training data. As before,

for each mesh Yj we first estimate the rigid alignment Rj between parts point correspondences

and use those to predict the pose-dependent deformation QF
(
Rj

)
with the linear mapping from

Equation 3.16. After accounting for pose related deformations, the residual triangle deformations

can be attributed to changes in body shape. We factor out the deformation gradient for a triangle

t as

Aj
t = Rj

p[t]D
j
tQ

F
(
Rj

)
. (3.18)

Estimating the residual body shape example deformations Dj
t for each mesh Yj involves solving the

usual least-squares problem

arg min
{Dj

1,··· ,Dj
T }

T∑
t=1

∑

k=2,3

∣∣∣
∣∣∣Rj

p[t]D
j
tQ

F
(
Rj

)
∆~xt,k −∆~y j

t,k

∣∣∣
∣∣∣
2

+ ws

∑

t1,t2 adj

||Dj
t1 −Dj

t2 ||2F (3.19)

whose solution is regularized by including smoothing constraints that enforce similar deformations

in adjacent triangles. The smoothing factor ws is set to equal the mesh resolution ρ, computed as

the median value of the template mesh edge lengths.

For a given mesh Yj , the body shape deformations Dj
t for all T triangles can be concatenated

into a single column vector ~d j of size (3 · 3 · T ) × 1, and every example body Yj in the training

set B becomes a column in a matrix of deformations: DB =
[
· · · , ~d j , · · ·

]
. Specifically, for a mesh

with T = 25, 000 triangles, the body shape is specified using 225, 000 parameters that are highly

correlated. We use principal component analysis (PCA)4 to find a reduced-dimension subspace that

4Our implementation uses incremental principal component analysis (iPCA) [Brand (2002)] to cope with computer
memory limitations. Additional details are provided in Appendix D.
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Figure 3.9: PCA Gender Separation. Analyzing body shape variations of the aggregate dataset
of men and women. When the shape data is projected onto the first 3 principal components (PC),
the plot reveals the presence of two clusters induced by gender.

retains most of the variance in how body shapes deform (see Appendix D):

DB PCAr−−−−→ UB + ~µ~11×|B| . (3.20)

Here ~µ is the mean body shape deformation and the columns of the PCA basis matrix U are the

first r principal components given by PCA which are the directions of maximum variance in the

training data. The matrix B constitutes a compact representation of the shapes in the training

data using only r parameters per body. Each vector of shape deformations ~d j in the training set is

approximated by
~̂d j = U~βj + ~µ , (3.21)

where ~βj is a vector of r linear coefficients that characterizes a given shape j. The variance of each

shape coefficient ~βb is given by the eigen-value σ2
β,b obtained by PCA (Equation D.11). Note that

this formulation effectively provides a prior on body shape in the form of a Gaussian distribution

over the shape coefficients ~βb with estimated mean ~µb and variance σ2
β,b.

Gender Separation

One immediate application of PCA is to visualize the training data by projecting the shape

data onto the first three principal components. In Figure 3.9 each body in the CAESAR dataset

becomes a 3D point. We discover that the aggregate shape data forms two separate clusters induced

by gender, confirming that men and women have very distinctive body shapes. Because the shape

data over the entire population is clearly non-Gaussian, PCA will not find axes of variation that

are independent; in this case it just de-correlates the dimensions. To alleviate this, we depart from

the original SCAPE formulation and learn separate eigen-models for men and women respectively

in addition to the gender-neutral model with all the subjects combined. We use the variable χ to
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-3 std +3 std -3 std +3 std -3 std +3 std
Average Person Principal Component 1 Principal Component 2 Principal Component 3

-3 std +3 std -3 std +3 std -3 std +3 std
Average Female Principal Component 1 Principal Component 2 Principal Component 3

-3 std +3 std -3 std +3 std -3 std +3 std
Average Male Principal Component 1 Principal Component 2 Principal Component 3

Figure 3.10: PCA Shape Bases. The mean body shape (left) followed by deviations from the
mean along the first three principal components (±3 standard deviations) are illustrated for three
different eigen-shape models. The gender-neutral shape model is demonstrated on the top row, the
female-only model in the middle, and the male-only model on the bottom row.

denote the corresponding eigen-shape deformation model:

(
Uχ, ~µχ, σ2

β,χ

)
, χ ∈ {male, female, neutral} .

For the remainder of the thesis, whenever the choice of gender model can either be inferred from

the context or is not critical to the discussion, the χ gender superscript is omitted.
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(a) Gender-neutral Shape Model

(b) Female Shape Model (c) Male Shape Model

Figure 3.11: Accounted Shape Variability by PCA. Principal Component Analysis (PCA)
aligns the data with the directions of maximum variance (also called principal components). Dimen-
sionality reduction is achieved by retaining a few of the directions of maximum variance and throwing
away the rest, thus expressing shapes compactly using a few shape coefficients. The bar plots above
display the proportion of the entire variability in a given training dataset that is accounted for
when retaining the top r principal components. We show bar plots for the entire CAESAR dataset
combining over 1000 men and 1000 women (a), as well as separately for each gender (b,c).

Major Shape Variations

The PCA representation allows us to express new shapes not in the training data as deviations

from a mean shape by specifying only a few shape coefficients ~β

~d(~β) = U~β + ~µ . (3.22)

Figure 3.10 shows the mean shapes and deviations from the mean along the first three principal

components. For example, the first principal component of the gender-neutral model captures an

axis of variation from small, slim, women to tall, heavy, men. The shape bases account for variations

in gender, height and weight, as well as more specific fat and muscle distributions over the body.
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In contrast, the gender specific models keep the shape variations within the same gender class. The

shape of a particular individual is then represented as a linear combination of several of these bases,

whose coefficients form a pose-independent descriptor of the intrinsic body shape.

In Figure 3.11 we observe the relationship between the number of shape coefficients r and the

proportion of the total variability accounted for. We note that 6 principal components account

for about half of the total variability in the gender-specific models, while 20 principal components

raise the proportion to 65%. We typically use between 6 and 20 bases, though more can be used

to increase shape reconstruction accuracy. It would take more than 100 principal components to

achieve a 90% level of captured variance, increasing the dimensionality of the shape representation

considerably. Please note that while the gender-neutral PCA model appears more expressive, it is

only an artifact of the aggregate shape data being split into two distant clusters which increases the

overall variance.

3.5.6 New Body Mesh Generation

In the previous sections we have shown how to express pose and body shape deformations com-

pactly in terms of a few parameters. Given new joint angles ~θ, shape coefficients ~βχ and gender χ,

a new mesh Y, not present in the training set, can be computed by solving

Y(χ, ~βχ, ~θ ) = arg min
{~y1,··· ,~yV }

T∑
t=1

∑

k=2,3

∣∣∣
∣∣∣Rp[t](~θ )DUχ,~µχ

t (~βχ)QF
t

(
R(~θ )

)
∆~xt,k −∆~yt,k

∣∣∣
∣∣∣
2

. (3.23)

This optimization problem can be expressed as a linear system that can be solved very efficiently

using linear least-square regression techniques. We note that this formulation leaves unconstrained

three translational degrees of freedom. Therefore the global position of the mesh also needs to be

specified and, for notational convenience, these parameters are included in the parameter vector ~θ.

We demonstrate the expressiveness of the SCAPE model in Figure 3.12. It shows examples of

synthesized meshes for different subjects in a variety of poses and with realistic skin deformations,

none of which are represented in the training data. These meshes are specified compactly using joint

angles derived from marker-based motion capture data and randomly sampled PCA coefficients from

the gender-neutral shape model.
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Figure 3.12: SCAPE Animations. Novel meshes synthesized using the SCAPE model. Each row
represents a different individual dancing the Charleston. None of the individual shapes and poses
are present in the SCAPE training sets.



Chapter 4

A Framework for Model Fitting to

Images

4.1 Introduction

This chapter describes our basic approach to estimating the pose and shape of a person from

multi-camera images. Much of the research on video-based human motion capture assumes the body

shape is known a priori and is represented coarsely (e.g. using cylinders or superquadrics to model

limbs). These body models stand in sharp contrast to the richly detailed 3D body models used

by the graphics community. Detailed models of 3D human shape are useful not only for graphics

applications, but also for extracting accurate biometric measurements. Here we propose a method for

recovering such models directly from images. Specifically, we represent the body using the SCAPE

model described in Chapter 3. It employs a low-dimensional, but detailed, parametric model of

shape and pose-dependent deformations that is learned from a database of range scans of human

bodies. Previous work [Anguelov et al. (2005b)] showed that the parameters of the SCAPE model

could be estimated from marker-based motion capture data. Here we go further to estimate the

parameters directly from image data.

Our current implementation estimates the parameters of the body model using image silhouettes

computed from multiple calibrated cameras (typically 3-4). The learned model provides strong

constraints on the possible recovered shape of the body which means that pose/shape estimation

is robust to errors in the recovered silhouettes. Our generative model predicts silhouettes in each

camera view given the pose/shape parameters of the model. A fairly standard Euclidean distance

transform measure is used to define an objective function that we seek to optimize in terms of the

pose and shape parameters. Our results show that the SCAPE model better explains the image

evidence than does a more traditional coarse body model.

We obtain an automated method for recovering pose throughout an image sequence by using

body models with various levels of complexity and abstraction. Here we exploit previous work on

54
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3D human tracking using simplified body models. In particular, we adopt the approach of Deutscher

and Reid (2005) which uses anneal particle filtering to track an articulated body model in which the

limbs are approximated by simple cylinders or truncated cones. This automated tracking method

provides an initialization for the full SCAPE model optimization. By providing a reasonable starting

pose, it makes optimization of the fairly high-dimensional shape and pose space practical.

Our results show that such rich generative models can be used for automatic recovery of detailed

human shape information from images. We compare the performance of the SCAPE model with a

standard cylindrical body model and show that a more realistic body representation improves the

accuracy of human pose estimation from images. Results are presented for multiple subjects (none

of whom were present in the SCAPE training data) in various poses.

4.2 Related Work

We exploit the SCAPE model of human shape and pose deformation [Anguelov et al. (2005b)] but

go beyond previous work to estimate the parameters of the model directly from image data. Previous

work [Anguelov et al. (2005b)] estimates the parameters of the model from a sparse set of 56 markers

attached to the body. The 3D locations of the markers are determined using a commercial motion

capture system and provide constraints on the body shape. Pose and shape parameters are estimated

such that the reconstructed body is constrained to lie inside the measured marker locations. Closely

related is the work of Park and Hodgins (2006) who are able to capture more detailed human skin

deformations by using a much larger set of markers (∼350). Both methods assume that a 3D scan

of the body is available. This scan is used to place the markers in correspondence with the surface

model of the subject.

We go beyond these methods to estimate the pose and shape of a person directly from image

measurements. This has several advantages. In particular, video-based shape and pose capture

does not require markers to be placed on the body. Additionally, images provide a richer source of

information than a sparse set of markers and hence provide stronger constraints on the recovered

model. Furthermore, we show shape recovery from multi-camera images for subjects not present in

the shape training set.

Previous methods have established the feasibility of estimating 3D human shape and pose directly

from image data but have all suffered from limited realism in the 3D body models employed. A

variety of simplified body models have been used for articulated human body pose estimation and

tracking including cylinders or truncated cones (e.g. [Deutscher and Reid (2005)]) and various

deformable models such as superquadrics [Gavrila and Davis (1996); Pentland and Horowitz (1991);

Sminchisescu and Triggs (2003)] and free-form surface patches [Rosenhahn et al. (2006)]. These

models do not fit the body shape well, particularly at the joints and were typically built by hand

[Pentland and Horowitz (1991)] or estimated in a calibration phase prior to tracking [Gavrila and

Davis (1996); Rosenhahn et al. (2006); Sminchisescu and Triggs (2003)]. Detailed but fixed, person-

specific, body models have been acquired from range scans and used for tracking [Mündermann et al.
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(2006)] by fitting them to voxel representations; this approach did not model the body at the joints.

Gavrila and Davis (1996) fit tapered superquadrics to the limbs by using two specific calibration

poses.

Kakadiaris and Metaxas used generic deformable models to estimate 3D human shape from

silhouette contours taken from multiple camera views [Kakadiaris and Metaxas (1998)] and tracked

these shapes over multiple frames [Kakadiaris and Metaxas (2000)]. Their approach involved a 2-

stage process of first fitting the 3D shape and then tracking it. In contrast, pose and shape estimation

are performed simultaneously in our method. Their experiments focused on upper-body tracking

in simplified imaging environments in which near-perfect background subtraction results could be

obtained.

In related work Plänkers and Fua (2001a) defined a “soft” body model using 3D Gaussian blobs

arranged along an articulated skeletal body structure. The relative shapes of these “metaballs”

were defined a priori and were then scaled for each limb based on an estimated length and width

parameter for that limb. Left and right limbs were constrained to have the same measurements. The

surface of the body model was then defined implicitly as a level surface and an iterative optimization

method was proposed to fit each limb segment to silhouette and stereo data. Most experiments used

only upper body motion with simplified imaging environments, though some limited results on full

body tracking were reported in [Plänkers and Fua (2001b)].

Also closely related to the above methods is the work of Hilton et al. (1999, 2000) who used a

VRML body model. Their approach required the subject to stand in a known pose for the purpose

of extracting key features from their silhouette contour which allowed alignment with the 3D model.

Their model has a similar complexity to ours (∼20K polygons) but lacks the detail of the learned

SCAPE model.

In these previous models the limb shapes were modeled independently as separate parts. This

causes a number of problems. First, this makes it difficult to properly model the shape of the body

where limbs join. Second, the decoupling of limbs means that these methods do not model pose

dependent shape deformations (such as the bulging of the biceps during arm flexion). Addition-

ally none of these previous method automatically estimated 3D body shape using learned models.

Learning human body models has many advantages in that there are strong correlations between the

size and shape of different body parts; the SCAPE model captures these correlations in a relatively

low-dimensional body model. The result is a significantly more realistic body model which both

better constrains and explains image measurements and is more tolerant of noise. In previous work,

generic shape models could deform to explain erroneous image measurements (e.g. one leg could be

made fatter than the other to explain errors in silhouette extraction). With the full, learned, body

model, information from the entire body is combined to best explain the image data, reducing the

effect of errors in any one part of the body; the resulting estimated shape always faithfully represents

a natural human body. The SCAPE representation generalizes (linearly) to new body shapes not

present in the training set.
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Figure 4.1: SCAPE from Images. The estimation of the body pose and shape parameters using
image silhouettes (red) extracted using a known background. The estimation involves searching for
the SCAPE parameters such that the body model projected into each image (blue) best overlaps
(yellow) the observed image silhouettes.

Finally, there have been several non-parametric methods for estimating detailed 3D body infor-

mation using voxel representations and space carving [Cheung et al. (2000, 2005); Chu et al. (2003);

Mikić et al. (2003)]. While flexible, such non-parametric representations require further processing

for many applications such as joint angle extraction or graphics animation. The lack of a parametric

shape model means that it is difficult to enforce global shape properties across frames (e.g. related

to the height, weight and gender of the subject). Voxel representations are typically seen as an

intermediate representation from which one can fit other models [Mündermann et al. (2006); Starck

and Hilton (2003)]. Here we show that a detailed parametric model can be estimated directly from

the image data.

4.3 System Overview

In this chapter we describe a generic system for capturing the pose and shape of a person

from image data. We also provide alternative instantiations of the system in the following two

chapters. The major components of the system are given by: 1. environment instrumentation and

data acquisition; 2. data pre-processing; and 3. model fitting to image observations. Figure 4.1

illustrates the process.
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Sensor data is acquired using one or more digital cameras that have been calibrated and synchro-

nized. In the pre-processing step, images are segmented into regions of interest, including foreground

and background regions, though other image features may also be extracted to assist in the body

model estimation. Finally, using information about the precise camera placement in the world, a

3D parametric model is matched to the image observations such as foreground silhouettes.

Environment instrumentation refers to the process of controlling the environment to simplify

data pre-processing and model fitting. Image segmentation is easier when assuming a static known

background and static cameras or when chroma-keying the environment. We also initially assume

the subject wears tight-fitting clothing. This is because clothing is not represented by the SCAPE

body model. We relax this assumption in Chapter 6. Furthermore, it is common to acquire images

from multiple cameras simultaneously using hardware synchronization to ensure the pose has not

changed between views, while camera calibration is performed so that matching the 3D model to

images is done in a common coordinate system.

4.4 Camera Model and Calibration

In order to extract precise measurements from 2D image data and to combine information from

multiple camera views, it is common for many computer vision applications to assume that the

cameras have been calibrated in a pre-processing step. Camera calibration is the process of infer-

ring certain properties of the cameras which relate 3D locations in the world to corresponding 2D

projection locations in images.

Following a pinhole camera model with no lens distortion, a 3D point P in the scene with world

coordinates [x, y, z]T is mapped to a 2D image point with sub-pixel coordinates [u, v]T using the

standard camera projection equation in homogeneous coordinates [Hartley and Zisserman (2004)]:

λ




u

v

1


 = Kc

[
Rc ~tc

]




x

y

z

1




, (4.1)

where λ is an arbitrary scaling parameter related to depth, and Kc is the camera intrinsic parameter

matrix encoding focal length (fu, fv), principal point (cu, cv) and skew coefficient α:

Kc =




fu α cu

0 fv cv

0 0 1


 . (4.2)

The camera extrinsic parameters are represented by the rotation matrix Rc ∈ SO(3) and translation

vector ~tc ∈ R3, encoding a rigid body transformation of the camera in the world coordinate system

(Appendix B).

We use the Camera Calibration Toolbox for Matlab [Bouguet (2000)] and a planar checkerboard

pattern to estimate the internal and external parameters of the cameras. This procedure relies on
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Figure 4.2: Camera Calibration in a Controlled Environment. A checkerboard pattern can
be used to calibrate the cameras. The regular pattern provides easy correspondences between local
3D coordinates of the grid corners and the 2D pixel locations in each image. These correspondences
are used to solve for the transformation that relates a camera local coordinate system to the grid
local coordinate system. Having a static checkerboard pattern visible from all camera views helps
in defining a common world coordinate system for all of the cameras. Note that by attaching the
calibration pattern directly to planar surfaces in the scene, walls and the ground floor can also
become calibrated in the world coordinate system. The same checkerboard pattern can be used to
also estimate the camera intrinsic parameters (field of view, lens distortion, pixel skew, image center
offset) using corner constraints derived from observing the grid at multiple orientations (at least 2)
[Bouguet (2000)].

constraints derived from correspondences between 3D locations in the world and 2D pixel locations,

manually selecting in each image the outer four corners of the calibration grid of known size, and

discretizing the space between them to automatically detect all internal corners with sub-pixel accu-

racy. The internal parameters are estimated first by integrating constraints derived from observing

the calibration grid at multiple orientations. Afterward, the extrinsic parameters for each of the

cameras are estimated with respect to a common coordinate system by placing a single calibration

grid on the floor viewable from all camera views (Figure 4.2). Furthermore, by attaching the cal-

ibration pattern to any planar surfaces in the scene, the position and orientation of these surfaces

can also be expressed in the same common coordinate system. This can be useful for testing if the

body model is floating in the air or is penetrating hard surfaces like the walls or the floor. We will

be taking advantage of the known scene geometry in Chapter 5 for casting synthetic shadows in the

scene.

The pinhole camera model presented above can be extended to model lens distortion effects,

whose parameters are also estimated during calibration. Such a model introduces a high-order

polynomial filter that depends on the distance from the principal axis of the lens. In order to reduce

the computational complexity of algorithms that employ repetitive image projections, we reverse

the process and rectify the images to remove any radial or tangential image distortions [Bouguet

(2000)].

Assuming calibrated cameras and images that have been corrected for known lens distortions,
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we provide a shorthand notation for the transformation in Equation 4.1 that maps any 3D point P

in the world to a 2D image location [u, v]T in the kth camera view:

ProjCk(P ) = [u, v]T . (4.3)

4.5 Foreground Image Segmentation

We use foreground segmentation to identify the region in the image depicting the person. The

most common approach is to use statistical measures of image difference between an image with

and without a person present. For example, a standard method is to fit a Gaussian distribution (or

mixture of Gaussians [Stauffer and Grimson (1999)]) to the variation of pixel values taken over several

background images. For a new image with the person present, a statistical test is performed that

evaluates how likely the pixel is to have come from the background model. Typically a probability

threshold is set to classify the pixel. After individual pixels have been classified as foreground

or background, several image processing operations can be applied to improve the segmentation,

including dilation and erosion, median filtering, and removal of small disconnected components.

An extension of this approach that handles shadows robustly is described in detail in Section 5.5.

4.6 Problem Formulation

The SCAPE model is parameterized by a set of pose parameters ~θ, including global position and

orientation, shape coefficients ~β, and gender χ. The problem of estimating human body shape from

image data is reduced to one of solving for the optimal body model parameters that minimize some

error function E(χ, ~βχ, ~θ) given image measurements. Our approach uses foreground image silhou-

ettes obtained from multiple calibrated cameras for estimating the body pose and shape parameters

and assumes the subject wears minimal or tight fitting clothing. The framework is general however

and can be augmented to exploit additional image features such as edges and shading [Guan et al.

(2009)], shadows (Chapter 5), optical flow [Sminchisescu and Triggs (2003)], etc. A method for

dealing with the more challenging case involving clothing is proposed in Chapter 6.

A generative approach is adopted in which predicted model parameters are used to construct a 3D

body model from which a silhouette is computed and compared to the image silhouette. The model

is projected into a camera view k assuming known extrinsic and intrinsic camera calibration (Equa-

tion 4.3), which produces a predicted foreground silhouette of the estimated model F e
k

(
χ, ~βχ, ~θ

)
.

This silhouette is compared with the observed silhouette, F o
k , in camera view k, obtained by fore-

ground segmentation (Section 4.5).

4.6.1 Silhouette Similarity Measure

Measures have been proposed in the literature for computing (dis)similarity of silhouettes. For

instance, one of the most widely used measures is based on silhouette overlap, computed by summing
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Figure 4.3: Thresholded Distance Transform. The silhouette similarity measure is made robust
to outliers in the extracted image silhouette by thresholding the distance transform after τ pixels.

the non-zero pixels resulting from a pixel-wise XOR (exclusive OR) between the two image masks

(predicted and observed). While computationally efficient, this measure is not very informative

in guiding the search during optimization. Alternatively, the distance between the outline of one

silhouette and the outline of the other and vice-versa can be used.

Our approach uses a modified version of the Chamfer distance. First an asymmetric distance

from silhouette S to silhouette T is defined as

d̃τ (S, T ) =

∑
i,j Sij · Cτ

ij(T )
(∑

i,j Sij

)ξ
, (4.4)

where Sij = 1 for the pixels inside S and 0 otherwise; Cτ
ij(T ) is a distance transform function

which is zero if pixel (i, j) is inside T and is a robust Euclidean distance to the closest point on

the boundary of T for points outside (see Figure 4.4c). In order to cope with errors in the image

silhouettes, Cτ
ij(T ) is made robust by capping the Euclidean distance at a certain threshold τ (e.g.

20 pixels for an image size of 800 by 600 pixels). As illustrated in Figure 4.3, for pixels (i, j) that are

more than τ Euclidean distance away from T , Cτ
ij(T ) = τ . The denominator is a normalization term

based on the size of the silhouette S. Usually ξ = 1, in which case d̃(S, T ) measures the expected

Euclidean distance of a pixel in S to the closest pixel in T . Note however that in this case the

measure is not invariant to variations in camera depth. Everything else equal, moving the camera

away from the subject makes not only the silhouettes smaller, but also the distance from pixels in S

to T . Since distances in the image are linearly related to depth, but the number of silhouette pixels

is quadratically related, we can optionally raise the denominator to a power of ξ = 3
2 to achieve the

effect of depth invariance.

4.6.2 Objective Function - Minimal Clothing Case

We define a bi-directional objective function [Sminchisescu and Telea (2002)] that uses a sym-

metric distance to match the estimated and observed foreground silhouettes for a given camera view

k:

D(F e, F o) = d̃τ (F e, F o) + d̃τ (F o, F e) . (4.5)

As illustrated in Figure 4.4, in effect this objective function equally penalizes the regions of the

model silhouette that fall outside the image silhouette and the regions of the image silhouette that
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(a) (b) (c) (d) (e)

Figure 4.4: Silhouette Matching. The process of measuring the (dis)similarity between the
observed foreground silhouette (top) and the estimated silhouette of the body model (bottom) is
illustrated: (a) input image and hypothesized mesh; (b) image foreground silhouette F o and mesh
silhouette F e, with 1 for foreground and 0 for background; (c) silhouette distance transforms Cτ

ij(F
o)

and Cτ
ij(F

e), which are 0 inside the silhouette; the opposing silhouette is overlaid transparently to
illustrate the overlap between silhouettes; (d) contour maps for visualizing the silhouette distance
transforms; (e) per pixel silhouette distance map F e

ij · Cτ
ij(F

o) used to compute d̃τ (F e, F o) (top),
and F o

ij · Cτ
ij(F

e) used to compute d̃τ (F o, F e) (bottom).

are not covered by the model’s projection. This is appropriate for the case where the subject wears

tight-fitting clothing.

Using multiple synchronized camera views where the images are taken at the same time in-

stant, the constraints over the K camera views are integrated to optimize a consistent set of model

parameters

E
(
χ, ~βχ, ~θ

)
=

K∑

k=1

D
(
F e

k

(
χ, ~βχ, ~θ

)
, F o

k

)
. (4.6)

4.7 Optimization Strategy

Recovering shape and pose by minimizing an objective function of the form E
(
χ, ~βχ, ~θ

)
can be

challenging given that the number of parameters to estimate is large and the objective function has
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local optima. Body pose may be described by approximately 40 parameters while shape may be

described by 6-20 or more. We describe several strategies that can be used to effectively find good

solutions.

First, initial estimates of the parameters are obtained, providing a good starting point for the

optimization (Sections 4.7.1 and 4.7.2). An optional stochastic search method (Section 4.7.3) can

be used to generate more hypotheses of possible shape and pose parameters and explore the search

space more widely. Finally, estimates of pose and shape can then be refined using a direct search

method (Section 4.7.4).

4.7.1 Initialization of Pose

One way to make the optimization of body shape and pose practical is to initialize the search

relatively close to the true solution. This initialization component can take several forms depending

on the application domain.

The simplest approach involves directing the subject to stand in a particular canonical pose; for

example, a T-pose or a relaxed standing pose. The initial pose is refined in the optimization process.

This is appropriate in controlled environments with a cooperative subject. We utilize this approach

in Chapter 6.

Another approach uses coarser body models which allow for an efficient, albeit less accurate,

search over a larger space of poses, and then initializes the present model from the coarser method’s

result. For example, an existing human tracking algorithm [Bălan et al. (2005); Deutscher and Reid

(2005)] based on a cylindrical body model can be employed for a motion sequence. This method

is initialized in the first frame from marker data, and the position and joint angles of the body are

automatically tracked through subsequent frames. In particular, it uses an annealed particle filtering

technique for inference, uses fairly weak priors on joint angles, enforces non-inter-penetration of limbs

and takes both edges and silhouettes into account. The recovered position and joint angles together

with the mean body shape parameters can be used to initialize the optimization of the SCAPE

parameters. This approach works well in a multi-camera setup, but still requires initialization at

the first frame. Some of the experiments in this chapter make use of this approach.

In contrast, discriminative methods take image features and relate them directly to 3D body

shape and pose. In particular, the method described by Sigal et al. (2008) is fully automatic and

uses segmented foreground regions to produce a pose and shape estimate by exploiting a learned

mapping based on a mixture of linear regressors [Sminchisescu et al. (2005)]. Such methods are not

very precise, but are appropriate for initialization. In Chapter 5 we rely on this approach to cope

with pose ambiguities in monocular frames.

4.7.2 Initialization of Shape and Gender

A good starting point for optimizing the shape of the subject is the gender-specific mean shape

of the SCAPE model. In many applications, the gender of a person being estimated may be known
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or the user may specify that information. In these cases, body shape using the appropriate gender-

specific body model is estimated (Section 3.5.5). When gender is not known there are several

options. One can fit a gender-neutral body model that is capable of representing male or female

bodies. Second, one can fit using both male and female body shape models and select the one

that achieves a lower error of the objective function (Chapter 6). Third, one can fit a gender-neutral

model and then classify gender directly from the estimated shape coefficients. Once gender is known,

a refined shape estimate using the appropriate gender-specific shape model can be produced.

4.7.3 Stochastic Optimization

Exploration of the non-convex search space of shapes and poses can be done within an Iterated

Importance Sampling framework [Deutscher et al. (2002)]. Note that we do not make any rigorous

claims about our probabilistic model, rather we view the formulation here as enabling an effective

method for stochastic search. For a state vector ~s =
(
~βχ, ~θ

)
encoding the body parameters, we

define a state space probability distribution f(~s ) = exp (−E(~s )) (i. e. based on Equation 4.6) and

represent it non-parametrically using N particles with associated normalized weights {(~s(i), ~π(i))}N
i=1.

Such a particle set can be estimated by randomly sampling particles from a separate importance

density function g(~s ) and adjusting the weights as follows:

~s(i) ∼ g(~s ) , ~π(i) =
f(~s(i))
g(~s(i))

. (4.7)

The resulting Gaussian mixture density estimator for the f(~s ) distribution:

f̂(~s ) =
N∑

i=1

~π(i)N~s(i),Σ(~s ) (4.8)

is known to be a better approximation for f(~s ) the more similar the importance density function

g(~s ) is to f(~s ). We therefore adopt an iterative strategy that uses the density estimator f̂ (r−1)

obtained at iteration r − 1 as the importance density function g(r) at iteration r:

~s
(r)
(i) ∼ f̂ (r−1) , i = 1, 2, · · · , N (4.9)

~π
(r)
(i) =

f
(
~s

(r)
(i)

)

f̂ (r−1)
(
~s

(r)
(i)

) (4.10)

f̂ (r)(~s ) =
N∑

i=1

~π
(r)
(i)N~s

(r)
(i) ,Σ(r)(~s ) . (4.11)

The procedure is initialized using a mixture Gaussian model with covariance Σ(0) around initial

estimates of pose and shape {~s (0)
(i) }N0

i=1 obtained as described in Sections 4.7.1 and 4.7.2:

f̂ (0)(~s ) =
N0∑

i=1

f(~s (0)
(i) )N

~s
(0)
(i) ,Σ(0)(~s ) . (4.12)
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An annealing approach is used to initially search over a wide region of the state space and then

gradually focus in on a specific local minimum. The sampling covariance Σ controls the breath of

the search at each iteration, with a large Σ spreading sampled particles more widely. From iteration

to iteration we scale Σ by a scaling factor α:

Σ(r) = αΣ(r−1) . (4.13)

This parameter is used to gradually reduce the diffusion covariance matrix Σ during the later itera-

tions in order to drive the particles toward the modes of the state probability distribution. Typically

α is set to 0.5.

Additionally, to avoid becoming trapped in sharply peaked local optima, predicted particles are

re-weighted differently than in Equation 4.10 using a smoothed version of the state probability f :

~π
(r)
(i) =

1
Z(r)

(
f

(
~s

(r)
(i)

))t(r)

f̂ (r−1)
(
~s

(r)
(i)

) s.t.
N∑

i=1

~π
(r)
(i) = 1 , (4.14)

where t(r) is an annealing temperature parameter optimized so that approximately half the particles

get re-sampled at least once from the previous iteration [Deutscher and Reid (2005)], while Z(r) is

a normalizing parameter ensuring the particle weights integrate to 1.

The expected, as well as the most likely parameter states, can be computed from the resulting

particle set using:

ˆ̄~s =
N∑

i=1

~π
(r)
(i) ~s

(r)
(i) (4.15)

~̂sMAP = ~s
(r)
(j) , ~π

(r)
(j) = max

i

(
~π

(r)
(i)

)
. (4.16)

4.7.4 Shape and Pose Refinement

Estimates of pose and shape can be refined locally using direct search methods. Using some

variant of the steepest descent method is challenging as it requires an estimate of the gradient of

the objective function. However, expressing the gradient analytically is difficult, and estimating

it numerically using finite differencing is computationally expensive in high dimensions. Another

limiting aspect of gradient-based methods is that one needs to carefully redesign the objective

function to ensure it is continuous and differentiable. For example, an objective function based on

the silhouette distance transforms causes discontinuities when an arm is suddenly occluded by the

torso. Dealing with discontinuities at occlusion boundaries is problematic, although de la Gorce

et al. (2008) propose an elaborate solution to address this issue.

Instead we use the Nelder-Mead simplex method [Lagarias et al. (1998)], which is a gradient-

free direct search method minimizing an objective function in a many-dimensional space without

employing numerical or analytical gradients. As such, the objective function is not required to

be differentiable everywhere. It works by evaluating the objective function at the vertices of a

simplex, then iteratively transforming and shrinking the simplex as better points are found until
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some convergence criterion is satisfied. Compared to stochastic search methods based on particles

(Section 4.7.3), this method is deterministic and therefore more consistent, moves faster toward the

local optima, and is more precise at localizing it.

Faster convergence is obtained by partitioning the search space. For a given frame and gender

value, it is desirable to alternate between optimizing pose and optimizing shape in an incremental

fashion to help avoid local optima: after initializing with an initial pose and shape model, the

process of optimizing the global position of the torso and the first few shape coefficients (e.g. the

first 6) corresponding to the shape variation directions with the largest eigenvalues is commenced.

The rotation of individual body parts is then estimated, starting with those closest to the torso

(upper arms and upper legs) followed by lower arms and legs. Then all part rotations together with

additional shape coefficients (e.g. the first 12) are jointly optimized. In the last phase, the full set

of unknown variables including all pose parameters and shape coefficients are optimized.

4.8 Experiments and Evaluation

We show that when the subject wears tight fitting clothing, the silhouettes from multiple views

provide tight constraints on the contour of the body that are sufficient to estimate the shape of the

subject. Moreover, the learned model itself provides strong constraints on the possible recovered

shapes making pose/shape estimation robust to holes in the recovered silhouettes. In addition, we

find that using a more realistic body model improves pose estimates when compared with a more

traditional body model based on generalized cylinders.

4.8.1 Dataset

In order to quantitatively evaluate the ability of our proposed method to estimate human shape

and pose from image data, we use a video dataset with associated ground truth human motion

[Bălan et al. (2005)] in which the subjects wear tight fitting clothing. For our experiments we use

images depicting circular walking motion and ballet poses.

Ground truth motion is captured by a commercial Vicon System (Vicon Motion Systems Ltd,

Lake Forest, CA) that uses reflective markers and six 1M-pixel cameras to recover the three-

dimensional pose and motion of human subjects. Video data is captured simultaneously from four

Pulnix TM6710 cameras (JAI Pulnix, Sunnyvale, CA). These are grayscale progressive cameras with

a resolution of 644× 488 pixels and a frame rate of 120Hz (though to achieve better image quality

we capture video at 60Hz). Video streams are captured and stored to disk in real-time using a cus-

tom PC-based system built by Spica Technologies (Maui, HI). The Vicon system is calibrated using

Vicon’s proprietary software while the video cameras are calibrated using the Camera Calibration

Toolbox for Matlab [Bouguet (2000)]. Offline, the coordinate frames of the two systems are aligned

and temporal synchronization is achieved by tracking visible markers in both systems.

As an alternative to the SCAPE body model proposed in this thesis, we also construct a more

traditional body model built around the Vicon motion capture data. It approximates the body parts
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(a) Cylindrical Model (b) Virtual Markers (c) Vicon Skeleton from Markers

Figure 4.5: Kinematic Skeletons for Two Body Models. (a) Motion capture skeleton outfitted
with generalized cylinders as body parts. Motion capture software uses marker locations on the body
to infer the location and orientation of the local coordinate systems at each joint. (b) Virtual motion
capture markers defined for a reference SCAPE mesh. (c) Vicon kinematic skeleton obtained for a
SCAPE mesh from the virtual markers. For both the cylindrical model and SCAPE, the derived
joint locations are used for evaluating the pose estimates from images against ground truth.

with generalized cylinders. The cylindrical body model represents the skeleton of the body as a 3D

kinematic tree with 15 truncated cones as body parts (see Figure 4.5a). Such a model is useful for

obtaining a coarse initialization and also for quantitatively evaluating the merits of the two shape

models for pose estimation.

The Vicon motion capture system tracks the 3D location of 39 reflective markers physically

attached to the body of the subject. The recovered marker locations are used by Vicon’s propri-

etary software to infer the kinematic structure of the skeleton, specified through the location and

orientation of the local coordinate system at each joint (see Figure 4.5a).

There are two types of parameters that describe the pose and shape of the cylindrical body

model. The shape is given by the lengths and widths of the limbs which are assumed known and

fixed. The pose is parameterized in terms of the relative joint angles between neighboring limbs as

well as the position and orientation of the root part. This pose parameterization is the same as the

one used for the SCAPE body model in Section 3.5.4.

The subjects are measured using a standard Vicon protocol to obtain their height, weight, limb

width and shoulder offsets. Motion capture data is then used to estimate limb lengths for each

subject. Limb lengths are computed as the median distance between pairs of corresponding joint
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locations and are kept fixed for the cylindrical model during testing.

4.8.2 Evaluation Metric for Pose Estimation

We evaluate pose estimation results using an error measure based on the location of major body

joints [Bălan et al. (2005)]. Given a body model described by a state vector ~s =
(
~βχ, ~θ

)
, we use

~mj(~s) to denote the 3D location of the jth joint. The error between the estimated state ~̂s and the

ground truth state ~s is expressed as the average Euclidean distance between J = 14 individual joint

locations:

e(~̂s, ~s ) =
1
J

J∑

j=1

∣∣∣
∣∣∣~mj(~̂s )− ~mj(~s )

∣∣∣
∣∣∣ . (4.17)

For a sequence of T frames we compute the average performance using the following:

eseq =
1
T

T∑
t=1

e(~̂s t, ~s ) . (4.18)

For the cylindrical body model, finding the joint locations is immediate. The joints are explicitly

represented by the skeleton model (Figure 4.5a). In contrast, SCAPE does not have an explicit model

of the joints or a kinematic skeleton. Instead, the pose is given by the global orientation of each part

and by imposing constraints to preserve mesh connectivity (see Equation 3.23). Note however that

for evaluation purposes we can infer the joint locations for a given SCAPE mesh by following the

Vicon protocol. We attach virtual markers to a mesh model much the same way reflective markers

are physically attached to a subject’s body (Figure 4.5b). Following the same approach to obtaining

the ground truth joint locations from actual markers using the Vicon proprietary software, we obtain

the joint locations for an image-fitted SCAPE mesh from the location of the virtual markers (see

Figure 4.5c). Because SCAPE meshes are all in correspondence, the virtual markers need to be

associated with points on the surface of the mesh only once for the template mesh.

4.8.3 Optimization Pipeline

We illustrate the steps of our method in Figure 4.6 on a circular walking video sequence. After

foreground silhouettes are segmented from input images using background subtraction (Figure 4.6,

2nd row), an existing human tracking method [Bălan et al. (2005)] based on the cylindrical body

model is employed to provide coarse initial pose estimates (Section 4.7.1) for every frame in the

sequence (Figure 4.6, 3rd row). These pose estimates are refined together with the shape of a SCAPE

model starting from an average shape, where the SCAPE model used is based on a gender-neutral

body model obtained from a reduced shape training dataset1.
1 Unless explicitly stated otherwise, the experiments in Chapters 4 and 5 were performed using a preliminary
implementation of the SCAPE model that used a body shape training set consisting of only 10 people, 4 of which
were women, with distinctive body shape characteristics. After modeling the shape variations jointly for men and
women using PCA, we kept the first 6 eigenvectors which accounted for 80% of the total shape variance in this
shape training set. Gender-specific models were not learned due to insufficient data. The results are obtained by
optimizing the first 6 gender-neutral shape coefficients.
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Figure 4.6: Sequence of Poses. 1st row: Images from one of four cameras. 2nd row: Extracted
silhouettes with some shadow artifacts. 3rd row: Cylindrical body model tracking result [Bălan et al.
(2005)]. 4th row: SCAPE initialized with the pose from the cylindrical model and an average shape.
Initially, the arms and legs of the model do not align well with the images and the shape is bigger.
5th row: Image-fitted SCAPE models overlaid over input images. Alignment between the model and
the images is improved, albeit the shadows-corrupted silhouettes in the later frames misguide the
left leg. 6th row: Estimated 3D models. 7th row: Estimated shape morphed in a canonical pose.
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4.8.4 Qualitative Results

Some body models obtained before and after fitting the SCAPE model to images are shown in

Figure 4.6, rows 4-5 respectively. Additional representative results obtained with our method are

illustrated in Figure 4.7. With 3 or 4 camera views we recover detailed mesh models of people in

various poses and wearing sports and street clothing; none of the subjects are present in the SCAPE

training set. In contrast, voxel carving techniques require many more views to reach this level of

detail. The results illustrate how the SCAPE model generalizes to shapes and poses not present in

the training data. We also note that the optimization can tolerate a significant amount of noise in

the silhouettes due to shadows, clothing and foreground mis-segmentation.

While the proposed model does not take clothing into account, we find that the body shape can

be recovered in some cases in the presence of clothing. For example, in Figure 4.7c the subject’s

loose pants cannot be fit by the SCAPE model. The correlations in body shape help predict the

shape of some parts from those of others. As long as some parts of the body are seen un-occluded,

these provide strong constraints on the body shape; this is an advantage of a learned shape model.

We dedicate Chapter 6 to the problem of estimating body shape under loose clothing robustly.

4.8.5 Consistent Shape Estimation

For the results shown in Figure 4.6, even though the optimization is performed in each frame

independently of the others frames, the body shape remains consistent between frames. To illus-

trate this, the bottom row in Figure 4.6 shows what the template mesh looks like when the shape

parameters estimated in each frame are applied to it. The shapes are visually similar. By applying

the shape parameters recovered from 33 frames to the template mesh placed in a canonical pose, we

obtained a shape deviation per vertex of 8.8 ± 5.3mm, computed as the mean deviation from the

average location of each surface vertex.

In general, our framework is capable of explicitly enforcing shape consistency between frames.

We can either process several frames in a batch fashion where the shape parameters are shared across

frames (see Chapter 6) or employ a prior in tracking that enforces small changes in shape over time.

4.8.6 Shape Estimation – Anthropometric Measurements

We use extracted anthropometric measurements to quantitatively evaluate shape accuracy. Once

the shape parameters have been estimated in each frame, we can then place the mesh with the

corresponding shape in an appropriate pose for extracting anthropometric measurements. From the

T-pose in Figure 4.8 we can easily measure the height and arm span for each shape.

33 frames Actual Mean StDev

Height (mm) 1667 1672 15

Arm Span (mm) 1499 1492 16
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(a)

(b) (c)

Figure 4.7: SCAPE-from-image Results. Reconstruction results based on the views shown for
one male and two female subjects, in walking and ballet poses, wearing tight fitting as well as street
clothes. (top) Input images overlaid with estimated body model. (middle) Overlap (yellow) between
silhouette (red) and estimated model (blue). (bottom) Recovered model from each camera view.
Note that these results use a smaller training set of 10 body shapes. Note also that (c) uses 3 color
cameras rather than 4 grayscale cameras.
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Figure 4.8: T-pose. Pose useful for extracting anthropometric measurements once shape was
recovered from images.

The actual values for the height and arm span are within half a standard deviation from the

estimated values, with a deviation of less than 7mm. For reference, one pixel in our images corre-

sponds to about 6mm. This suggests the potential use of the method for surveillance and medical

applications.

This analysis of shape recovery is done here only for one subject. A more extensive analysis

for multiple subjects and additional measurements is provided in Chapter 6. Other measurements

that could also be estimated are leg length, abdomen and chest depths, shoulder breadth etc., by

measuring distances between relevant landmark positions on the template mesh, or mass and weight

by computing the mesh volume.

4.8.7 Quantitative Pose Estimation Analysis

In order to test the hypothesis that a more realistic shape model improves pose estimation, we

compare the performance of estimating pose using the SCAPE body model with that obtained using

a traditional body model having generalized cylinders as body parts.

Figure 4.9 presents results obtained using each of the two body models for one frame using

4 different camera views. The figure illustrates how the fitted SCAPE body model is capable of

explaining more of the image foreground silhouettes than the cylindrical model. This can potentially

make the image matching function better behaved for the SCAPE model.

One way to quantify this is to compute how much the predicted silhouette overlaps the actual

foreground (precision) and how much of the foreground is explained by the model (recall).

33 frames Precision Recall

Cylinder Model 91.07% 75.12%

SCAPE Model 88.13% 85.09%
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(a) (b) (c) (d) (e) (f)

Figure 4.9: Same Pose, Different Camera Views. Each row is a different camera view at the
same time instant. (a) Input images. (b) Image silhouettes. (c) 3D cylindrical model. (d) Overlap
between image silhouettes and cylindrical model. (e) 3D shape model. (f) Overlap between image
silhouettes and SCAPE model.
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Figure 4.10: Convergence from Random Pose. Pose estimation error after fitting the SCAPE
model and the cylindrical body model to images given different levels of initialization noise added to
the true pose. The SCAPE model always converges closer to the optimal pose and diverges slower
than the cylindrical body model as the distance between the initial and the true pose increases.

We find that the cylindrical model has 3% better precision because it is smaller and consequently

more able to overlap the image silhouettes. On the other hand, the SCAPE model has 10% better

recall because it is able to modify the shape to better explain the image silhouettes.

We also evaluate the accuracy of the pose estimates using the two body models by comparing

against ground truth pose data. Recall however that our optimization pipeline relies on using

the cylindrical body model to obtain initial pose estimates. To ensure fairness in comparing the

performance using the two body models, we provide both methods with the same initial pose estimate

derived from ground truth2 by perturbing the true joint angles with Gaussian noise at multiple levels.

In particular, we add Gaussian noise with a variance σ2
j equal to the maximum inter-frame difference

for each joint during a walking sequence, multiplied by a factor of 0, 2, 5 and 10 for each experiment,

respectively. We also assume the shape parameters are known and fixed for both models during this

experiment. We evaluate the performance for every fifth frame of 300 frames containing a subject

walking in a full circle and compute the average joint error using Equation 4.18.

Detailed per-frame results are shown in Figure 4.11, while aggregate results are summarized in

Figures 4.10. They illustrate that the SCAPE body model converges closer to the optimal pose for
2 Note that there is a certain systematic error for the SCAPE model when converting from ground truth pose
representation to SCAPE pose representation and then back to joint locations. Ground truth pose is represented
through the location and orientation of the local coordinate system at each joint, while for the SCAPE model only
the orientation of each part is used to specify pose. Since SCAPE does not have an explicit model of joints, we
estimate joint locations for a 3D SCAPE model from virtual markers on the mesh as described in Section 4.8.2.
The resulting joints deviate from the ground truth joint locations by 21.7mm on average. There is no such
systematic error for the cylindrical body model. This puts the SCAPE model at a slight disadvantage when
comparing performance based on predicting joint locations. This becomes apparent in the top row of Figure 4.11
where the cylindrical model is effectively initialized with zero pose error while the SCAPE model produces an
initial average joint error of 21.7mm absent any random error in initialization.
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Figure 4.11: Pose Estimation Comparison of SCAPE vs. Cylindrical Model. Average joint
error shown for individual frames of a walking sequence, before and after the optimization. Each
row contains a different level of noise added to initial poses. Left column: Results using the SCAPE
body model. Right column: Results using the cylindrical body model. The further away from the
true pose the cylindrical model is initialized, the easier it is for it to get stuck on local optima.
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all levels of noise added to the initial pose. The further away from the true pose the cylindrical

model is initialized, the sooner it gets stuck in local optima. We formally confirmed this using

Welch’s t-test and found the improvement in performance for the SCAPE body model relative to

the cylindrical model to be statistically significant at 95% confidence level for the zero noise case,

and at 99.99% confidence level whenever noise was added to the initialization. The results confirm

that the cylindrical body model is a poor generative model of human form and as such cannot

explain the image evidence very well, leaving room for extra ambiguities. Because the SCAPE body

model can better conform to the shape of the observed person, the ambiguities are reduced and the

convergence to the optimal pose is easier, achieving a lower average joint error. Additionally, we

observe in Figure 4.10 that the difference in performance between the cylindrical model and SCAPE

increases at a higher rate as more noise is added to the initialization, with the cylindrical model

performing much worse and diverging faster at higher levels of noise.

Finally, we note that the fitting procedure diverges slightly from the true pose for both models

even when initialized at the ground truth pose with zero noise (Figure 4.11, top row). This is due

to the presence of errors in image segmentation as well as some uncertainty in collecting the ground

truth data and estimating the joint locations.

4.9 Discussion

We have presented a method for estimating 3D human pose and shape from images. The approach

leverages a learned model of pose and shape deformation previously used for graphics applications.

The richness of the model provides a much closer match to image data than more common kinematic

tree body models based on simple geometric primitives. The learned representation is significantly

more detailed than previous non-rigid body models and captures both the global covariation in body

shape and deformations due to pose. We have shown how a standard body tracker can be used to

initialize a search over shape and pose parameters of this SCAPE model. Using a state of the art

model from the graphics community we are better able to explain image observations and make

the most of generative vision approaches. Additionally, the model can be used to extract relevant

biometric information about the subject.



Chapter 5

Shape from Shadows

5.1 Introduction

Strong illumination is often seen as a problem for pose estimation and tracking; this is particularly

true for human pose estimation. In contrast, we show that, rather than hinder human pose and

shape estimation, strong illumination can actually make it more robust. With a known light source,

shadows provide additional constraints for pose estimation. Conversely, if one has accurate pose

estimates, we can estimate the light source location. Putting both of these observations together

results in a complete framework for incorporating strong illumination in human body estimation.

These ideas, however, are applicable to object detection and tracking in general.

Consider the situation in which the scene is illuminated by a single, known, point light source

and is viewed through one, or more, calibrated cameras. Here we focus on indoor scenes where the

light source distance is finite. The approach, however, easily generalizes to distant light sources, the

most common being the sun in outdoor scenes. Our first observation is that a point light source

and the ground plane form what we call a shadow camera. The point light acts like the focal point

of a pinhole camera with the ground plane acting like the image plane. The image formed on the

ground is the shadow cast by the body (Figure 5.1). This can be generalized to multiple light sources

(which effectively produce a “camera” with multiple focal points). The cast shadow image acts like

a foreground silhouette mask in the image plane of a regular camera. Note, moreover, the “image

plane” of the shadow camera need not be planar but can be any calibrated surface (or surfaces) in

the scene. This shadow image provides additional constraints on body pose which make it possible

to estimate 3D pose from monocular camera views.

Making use of shadows requires the accurate segmentation of shadow regions in images. To

that end we propose a novel approach that uses background subtraction data and checks whether

putative shadow pixels are consistent with being on the calibrated ground plane.

For a complete framework, we must also estimate the lighting in the scene automatically. For

this, we develop an approach that exploits 3D body pose and shape represented using the SCAPE

77
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Figure 5.1: The Shadow Camera. The combination of one or more point light sources with a
known ground surface forms a virtual “shadow camera”. The light source is the focal point of a
pinhole camera, while the ground surface acts as the image plane. The silhouette of the shadow
provides an additional view of the body.

model (Chapter 3), the parameters of which are estimated directly from image foreground silhouettes

without knowledge of scene illumination (Chapter 4). This approach recovers a point light position

(or direction) from cast shadows. Using the known body pose in multiple frames and the detected

shadow regions, we optimize for the light position that best explains the cast shadows. Combining

many poses gives strong constraints on the location of the light. Hence by tracking an object with

fixed lighting we can actually infer the lighting; in this way the human body becomes a light probe

[Debevec (1998)].

We present results on several sequences with three light configurations and two subjects. A

quantitative evaluation of pose estimation under different numbers of cameras and different numbers

of point light sources is also provided. We assume the video cameras have been fully calibrated with

respect to a global coordinate system, as well as the ground plane on which the cast shadows are

visible. Finally, we assume we know the number of the light sources, but not their locations.

5.2 Related Work

There is a long history of recovering lighting and using it to infer 3D structure. This work

includes shape-from-shading, photometric stereo, shadow carving, inverse lighting, and reflectance

modeling. A thorough survey is beyond the scope of this thesis and the reader is referred to [Luong

et al. (2002)] for an overview.
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Our work is quite different from to the majority of work in shape, shading and lighting. Most

approaches assume a fixed object which is viewed under different lighting conditions. The most

common approaches attempt to estimate object shape from multiple images of a static object illu-

minated from different light locations (for example [Epstein et al. (1996); Yuille et al. (1999)]); in

many cases these light locations are known. We turn this standard problem around and use multiple

known poses (i.e. estimated from data) of the object to estimate the unknown lighting.

The most closely related work is that of Luong et al. (2002) which estimates light sources and

albedos using multiple views of an object. They assume a rigid object but move the camera to track

it. This is similar to our case where the camera is static but the object moves. We go beyond their

work to deal with an articulated non-rigid object which casts shadows on the ground plane.

There has been little work on articulated pose estimation from cast shadows, with the focus

on simple objects. Segen and Kumar (1999) describe a system to recognize basic hand gestures by

tracking the 3D position and orientation of two fingers using the hand shadow captured with a single

camera. More relevant is the work of Bruckstein et al. (2001) in which they geometrically recover

the pose of an articulated human stick figure and the light position from shadows. The approach

requires the skeletal joints, and their corresponding locations on the shadow, to be manually marked

in the image.

We apply a different strategy and define an objective function over the parametric pose and

shape of the subject and the point light source position such that the projection of the shape onto

the image silhouette and the shadow best overlap the observed body regions. We believe this to be

the first automatic procedure to estimate articulated human pose and shape by taking advantage of

cast shadows.

5.3 Pose & Shape from Silhouettes & Shadows

Much of the work on human pose estimation and tracking employs generative models of human

shape that are crude approximations of the body. In Chapter 4 we used a detailed graphics body

model (SCAPE), learned from range scans of real people, to address the problem of markerless human

pose and shape estimation in a multi-camera setting. The generative model predicts silhouettes in

each camera view given the pose/shape parameters of the body and matches them to foreground

silhouettes extracted from images using a fairly standard Chamfer distance measure. Here we extend

this framework to take advantage of shadows cast from point light sources. These shadows provide

additional constraints on pose and shape which are sufficient to disambiguate and effectively enable

monocular 3D pose estimation.

The new framework consists of the following steps:

1. Segment the images into background, foreground and shadow regions (Section 5.5);

2. Estimate pose and shape parameters from foreground silhouette data alone and generate

the surface meshes in each frame (Chapter 4);

3. Estimate light position from shadows (Section 5.7); and
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(a) (b) (c)

Figure 5.2: Shadow Formation. A shadow appears when an occluding object prevents a surface
from receiving full contribution from the light source. (a) For a single point light source, the shadow
is very dark and has sharp boundaries. (b) For a non-point light source, the shadow is divided into
umbra and penumbra. Umbra (U) is the surface region where no part of the light source can be
seen, while penumbra (P) is the surface region where only some portion of the light source is visible.
(c) The wider the light source, the greater the penumbra, with the umbra eventually disappearing.
Because the light source slowly disappears behind the occluder, the shadow boundaries become
smooth and the shadow blurred.

4. Re-estimate pose and shape from foreground regions, shadow regions and the estimated

light position (Section 5.6).

5.4 The Shadow Camera Model

In order to detect and exploit shadows in images, we first need to understand how shadows are

formed. Objects can be seen only when they are illuminated. In the absence of light, everything

would appear pure black. Therefore the presence of light in a scene is essential for observing it. The

more light reaches the surface of an object, the brighter it appears. Conversely, a shadow appears

when a surface area no longer receives direct illumination from a light source due to the obstruction

caused by the presence of an opaque object in the scene.

The appearance of shadows depends greatly on the type of lighting in the scene, as illustrated

in Figure 5.2. When the lighting is diffused, like in the case of an extended area light source,

the shadows produced are very weak and with smooth boundaries, making shadow detection and

segmentation ambiguous. Inferring light properties from the scene is also more difficult in this case.

A typical example of a wide light source is the sunlight going through a thick cloud: as light traverses

the cloud, water particles scatter the light rays in different directions, creating the equivalent of an

extended area light source. Another example is given by the rectangular fluorescent lights found in

tiled ceilings where the light passes through a semi-transparent diffuser screen. The wider the light
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source, the more blurred and less useful the shadow.

Shadows become more structured and informative when strong light concentrates in a small

volume relative to the observed scene. Direct, undiffused light casts strong shadows with crisp

boundaries, increasing the color contrast and saturation and making shadow detection and extraction

possible. As illustrated in Figure 5.2a, the transition from shadow to no shadow regions is done

quickly, making the shadow boundaries more precisely localized. This is exactly the case we would

like to exploit.

5.4.1 The Single Point Light Case

Consider the case where a single point light source exists in the scene and a human subject

occludes the ground plane from the light (Figure 5.1). The shadow is just the silhouette of the

subject seen from the location of the light onto the ground plane. The geometry of the shadow

follows the same principles as for a pinhole camera. The light position is the focal point of the

camera, while the ground plane is the image plane of the camera. Effectively the ground plane and

the light form a virtual “shadow camera”.

For a single light source at a finite distance, the shadow formation amounts to a perspective

projection of the 3D body shape on the ground plane through the light position. Let L be the 3D

position of a single point light source, and Πg = (Og, ~ng) the ground plane specified by the origin

Og and a normal vector ~ng to the plane. The shadow of point P onto the ground plane Πg from the

light L is given by the point S = ProjΠg,L(P ). This perspective projection is simply the intersection

between the light ray through P and the ground plane. Deriving the solution for the point S requires

satisfying the following constraints:
{

S = L + (P − L)λ , λ ∈ R (light ray constraint)

~nT
g (S −Og) = 0 (ground plane constraint)

(5.1)

Substituting the light ray constraint into the ground plane constraint, we solve for λ:

~nT
g (L + (P − L)λ−Og) = 0

~nT
g (P − L)λ = ~nT

g (Og − L)

λ =
~nT

g (Og − L)

~nT
g (P − L)

.

Finally, the shadow point is obtained by substituting λ back into the light ray constraint:

ProjΠg,L(P ) = L + (P − L)
~nT

g (Og − L)

~nT
g (P − L)

. (5.2)

If the ray from the light to P is parallel to the ground plane, then ~nT
g (P − L) = 0 and there is no

shadow point.

For a body model represented as a 3D triangle mesh whose geometry is defined by a set of

vertex locations and whose connectivity is stored using indexed arrays of vertex triplets, obtaining a
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mesh model of the shadow amounts to simply taking the perspective projection through the shadow

camera of the vertices of the body model while preserving the mesh connectivity. The shadow mesh,

while planar when projected onto the ground plane, is still a 3-dimensional shape model, sharing the

same topology as the body model. Hence, the process for computing the image shadow silhouette

for a given camera view is going to be identical to the one used for computing the image silhouette

of the actual body (see Equation 5.3).

5.4.2 Generalization of the Shadow Camera Model

Several extensions to the basic “shadow camera” model are possible.

Distant Point Light Source. When the light lies an infinite distance away from the scene, the

shadow camera has infinite focal length and the perspective projection of the shadow becomes

parallel projection. The sun in outdoor scenes is a common example of directional lighting. The

light rays illuminating the scene are considered parallel to each other. Specifying directional

lighting requires only two parameters (e. g., the elevation angle from a ground plane and the

azimuth angle in the plane).

Multiple Point Light Sources. In the case of several point light sources in the scene, several

possibly overlapping shadows are cast that depend on the light color and intensity of each

light source. The shadows become lighter in non-overlapping regions; differentiating between

the shadows is easier when the lights are covered by different color filters. When the shadow

cast from multiple light sources is taken to be the union of the individual shadows, the shadow

camera is the equivalent of a pinhole camera model with multiple pinholes (focal points).

Non-planar Projection Surfaces. Having a planar projection surface is optimal for computa-

tional reasons. However the image plane of the “shadow camera” need not be planar. The

shadows can be cast onto arbitrary surfaces of known geometry. For example the walls and

floors of an empty room form a multi-planar surface which can be established by affixing a

calibration checkerboard pattern to each plane and estimating a coordinate system rigid trans-

formation with respect to one of the cameras (Section 4.4). Handling more complex scenes

comes at a greater computational cost. It requires finding the intersection between light rays

and one or more arbitrary surfaces whose surface geometry also needs to be calibrated. A

complex scene can be decomposed into objects whose shapes are specified mathematically us-

ing simple geometric primitives (spheres, cones, planar patches, polygonal meshes) and for

which computing the point of intersection is simpler. Similar to the ray-tracing algorithm

in computer graphics, each light ray going through an occluding point P can be tested for

intersection with some subset of all the objects in the scene, identifying the nearest object and

computing the point of intersection with it.

Composition of Two Projections. The shadow projection in Equation 5.2 can be composed with

the camera projection in Equation 4.3 to directly obtain the shadow silhouette in one of the
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images

pi = ProjCi

(
ProjΠg,L(P )

)
, (5.3)

where pi is the pixel location in camera view Ci of the shadow cast by the occluding point P .

Shadow Camera vs. Pinhole Camera. It is worth pointing out one important difference be-

tween a shadow camera and a pinhole camera. In the shadow camera case, the object (person)

generally occludes part of the shadow (because it sits “inside” the camera). The information in

the partial shadow however is usually complementary to the foreground silhouette and there-

fore well suited to be exploited jointly. Nonetheless, the amount of information extracted from

the shadow greatly depends on the relative placement of the light and the camera with respect

to the body. In the special case where the camera and light are in the same location, the body

completely covers the shadow and no new information is gained.

5.5 Foreground and Shadow Segmentation

The detection of shadows in images is an important activity in computer vision. This is be-

cause shadows have long been viewed as an obstacle in reliably estimating the silhouettes of the

foreground objects. Image foreground silhouettes are typically extracted using standard background

subtraction methods that segment the image into two classes: foreground and background. Because

both foreground and shadows differ significantly from the background, distinguishing between them

is challenging. In this context, most work in shadow detection has focused on removing the shadows

to improve foreground segmentation [Prati et al. (2003)]. Segmenting the shadows with the purpose

of actually using them is also important because shadows can provide additional cues about the 3D

structure of the scene.

The vast majority of existing shadow detection/removal techniques are concerned with images

or videos taken with a single camera. Here we describe a new method to segment shadows from

foreground that becomes very robust when additional views of the scene are available. Starting from

an initial segmentation in each camera view, our method then employs homography constraints

to jointly detect and correct the segmentation in all views. This method applies to both shadow

detection and removal problems.

Multiple point light sources in the scene generate multiple shadows. Our segmentation approach

does not attempt to separate individual shadows. Instead we detect the union of the background

regions in the image that are in shadow due to the presence of the subject in the scene. Additionally,

our approach does not require any knowledge about the light sources in the scene, relying instead

on differences from images of the empty background.

5.5.1 Single-view Segmentation

The initial step involves classifying foreground, shadow, and background classes using a simple

classifier. This is done independently in each view. Images are first transformed into the HSV
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color space (Hue, Saturation, Value) with values between 0 and 1. The HSV color space can be

used more effectively in discriminating foreground from shadows than the RGB (Red, Green, Blue).

Alternative color spaces that also approximate the human visual system model include Y CbCr and

L*a*b.

We assume a stationary background and model each pixel independently with a mean µHSV =

[µH , µS , µV ]T and standard deviation σHSV = [σH , σS , σV ]T for each of the three HSV color chan-

nels, estimated from a set of images (B) of the empty scene. Note that circular statistics (the von

Mises distribution [Bishop (2006)]) need to be used for the Hue channel because the Hue values

wrap around:

µH = atan2
(
E

[
sin(2πBH)

]
,E

[
cos(2πBH)

])

σH =
√

E
[
min{|BH − µH |, 1− |BH − µH |}2],

(5.4)

where E[·] denotes the expected value.

The basic idea is to detect where a new image I differs from an image of the empty scene and clas-

sify those regions as non-background, and then distinguish foreground from shadows. Good results

are obtained by segmenting the foreground from non-background pixels using only the saturation

channel. We made this choice particularly for its decreased foreground false positive rate relative to

shadows. We employ a basic deterministic decision process:

Class =





Background :
∥∥[NH , NS , NV ]T

∥∥ < tHSV , else

Foreground : NS ≥ tS , else

Shadow : otherwise

(5.5)

where N∗ denotes the normalized absolute difference between expected and observed value for each

channel:

NH =
min

{∣∣IH − µH
∣∣ , 1−

∣∣IH − µH
∣∣}

σH

NS =

∣∣IS − µS
∣∣

σS

NV =

∣∣IV − µV
∣∣

σV
.

(5.6)

The thresholds tS and tHSV are determined empirically from data.

This initial segmentation is followed by several morphological operations, including median fil-

tering, image dilation and erosion, removal of small disconnected components and hole filling. Al-

ternative options include smoothing using regularization, anisotropic diffusion or other Bayesian

approaches such as Markov Random Fields. Rows 1 and 2 in Figure 5.3 show the segmentation

result before and after this procedure for four different views. In the next section we describe how

to improve these segmentation results from multiple views jointly.

Of course, there are many other methods known in the literature that can be used to obtain

this initial segmentation. The key novelty here lies in the combination of shadows across multiple

camera views. The insight is that the foreground changes in each view while the shadow does not

(relative to a planar homography).
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View 1 View 2 View 3 View 4

Figure 5.3: Foreground and Shadow Segmentation. The process of segmenting the images into
foreground and shadow regions is demonstrated for the case of two lights present in the scene. Each
column represents a different camera view. Row 1: Per pixel classification. Red denotes shadow
and blue foreground. Row 2: Morphological operations. Row 3: Multi-view integration. Note
the robustness introduced by this step. Row 4: Segmentation overlaid on original images. Row 5:
Original images (with two light sources).
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Figure 5.4: Shadow Integration. Segmented shadow regions from Figure 5.3 aligned in a single
coordinate frame. Each registered shadow can be thought of as voting for the presence of a shadow.
Regions that contain only one vote (light blue) can be classified as outliers and potentially relabeled
as foreground pixels.

5.5.2 Multi-view Segmentation

We employ a novel shadow segmentation method that uses multiple synchronized and calibrated

camera views of the scene and a calibrated ground plane on which the shadow is cast. By combin-

ing information about the shadow from different views, inconsistent shadow segmentations can be

detected and corrected. This is first made possible by the fact that shadows can be easily regis-

tered in a common coordinate system. All we need to know is how to warp the shadows between

views. Each camera view yields a 3D planar reconstruction of the shadow since each shadow pixel

corresponds to a 3D ray which can be intersected with the ground plane with known coordinates.

The reconstructed 3D shadow from one view can then be re-projected into any other view. This

means that shadows can be aligned and compared in a common coordinate system. We can think

of the segmented shadow in each view as voting for the true 3D shadow. For instance, Figure 5.4

shows the shadows from all 4 views warped to a virtual view directly above the ground plane and

accumulated.

Ideally, the reconstructed 3D image of the shadow is the same in all views. In practice, they

differ for two reasons: 1) the body occludes parts of the shadow in some camera views, and 2) the

initial shadow detection in images is unreliable.

Usually the shadow regions occluded by the foreground in one view are still visible in the majority

of the other views. On the other hand, foreground or background regions mis-labeled as shadow are

not expected to match the shadows from other views. For example, in Figure 5.3, View 3, most of

the torso is detected as shadow, yet it is not consistent with the shadow reconstructions in the other
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views.

We adopt a conservative approach and attempt to relabel inconsistent shadow regions only when

it leads to a spatially consistent foreground segmentation. More precisely, we re-label shadow pixels

as foreground when they are not explained by the other shadow views and are adjacent to foreground

pixels in the current view. Since this step alters the adjacency condition, the procedure is repeated

until convergence (between 3 and 5 iterations in our experiments). This alone leads to robust and

clean segmentations (see Figure 5.3).

Please note that this specific voting method with iterative removal is only one way to implement

the multi-view shadow segmentation idea. We could formulate the problem probabilistically with

each image giving a likelihood of foreground versus shadow. This can be combined with a spatial

prior and optimized using Bayesian or maximum-likelihood inference.

Our multi-view segmentation procedure is effective at correcting foreground regions incorrectly

detected as shadow. Typically there is a precision-recall trade-off in the initial classifier with respect

to detecting foreground regions versus shadows. Therefore the initial classifier should be designed

to maximize the precision of detecting foreground regions and not the recall.

5.6 Problem Formulation

Our goal is to estimate the shape and pose of the body from one or more images of the subject

under different illuminations. This can be done within a framework of Analysis through Synthesis

as illustrated in Figures 4.1 and 5.1. For a given set of body model parameters as well as the

position of the point light source(s) and the equation of the ground plane, the entire scene can be

reconstructed in 3D and subsequently rendered in 2D to simulate the camera imaging process. The

model parameters can be fitted by defining a metric that compares features in this simulated image

with features in the actual image captured with the camera. Following the approach introduced in

Chapter 4, we rely only on image silhouettes which have been widely used in human pose estimation

and tracking. The generative framework presented here, however, can be readily extended to exploit

other features such as edges, shading or optical flow.

Given a a predicted body shape and pose described by the state vector ~s = (χ, ~βχ, ~θ)
T
, a 3D

surface mesh of the body is constructed. For each active light source in the scene with an estimated

position, a 3D mesh of the cast shadow on the estimated ground plane is also constructed.

We use K calibrated cameras to capture synchronized images. Both the body mesh and each

shadow mesh are rendered into each camera view k using the camera calibration parameters Ck

(Section 4.4), light parameters ~̀ and ground plane parameters ~g. By rendering first the shadows and

then the body model into the image, the occluded regions of the shadows can easily be determined.

From this we obtain the estimated silhouettes of the subject F e
k (~s) and the visible joint cast shadows

Se
k(~s, ~̀, ~g). These can then be compared to the observed foreground and shadow silhouettes extracted

from the input images F o
k and So

k respectively.

To estimate the model parameters, we formulate an image error function in terms of a silhouette
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dissimilarity measure D(·e, ·o) between estimated and observed silhouettes. Many such measures can

be defined, and the exact choice is not critical. Following the approach in Chapter 4, the D(·e, ·o)
measure is implemented as a bidirectional Chamfer distance between the estimated and observed

silhouettes and vice-versa (see Equation 4.5).

The mismatch between the estimated silhouette of the subject observed in camera k is given by

D(F e
k (~s), F o

k ), while the mismatch for the shadow is given by D(Se
k(~s, ~̀, ~g), So

k). In Equation 4.6 we

relied on foreground silhouettes alone to estimate pose and shape; here we add a “shadow camera”

term 1
K

∑K
k=1 D

(
Se

k(~s, ~̀, ~g), So
k

)
to measure the shadow difference. Note that while there are K

actual cameras, there is only one “shadow camera”. The shadow contributions from different views

need to be averaged together as they do not really provide independent constraints (see Section 5.5.2).

To optimize pose and shape from silhouettes and shadows we minimize the image error function

E(~s) =
K∑

k=1

D(F e
k (~s), F o

k ) +
1
K

K∑

k=1

D
(
Se

k(~s, ~̀, ~g), So
k

)
. (5.7)

5.7 Estimating the Light Position

Estimating the light position can be done within the same Analysis through Synthesis framework.

The idea is to use the human body as a light probe. As a subject moves through the scene, the

shadows on the ground plane provide independent constraints on the position of the light assuming

a stationary light source. The shape and pose of a human subject, ~s t, at several time instants

t = 1 . . . T can be initially estimated without relying on any lighting information in the scene, based

solely on foreground silhouettes (Section 4.6.2), by optimizing the objective function

E(~s t) =
K∑

k=1

D
(
F e

k (~s t), F o
k

)
. (5.8)

Keeping the estimated pose and shape parameters fixed, we then optimize for a consistent light

position ~̀ over different body postures by minimizing an objective function based on the mismatch

between the predicted shadow silhouettes Se
k,t(~s

t, ~̀, ~g) and the observed shadow silhouettes So
k,t over

several time instants t:

E(~̀) =
T∑

t=1

K∑

k=1

D
(
Se

k,t(~s
t, ~̀, ~g), So

k,t

)
. (5.9)

This formulation assumes a calibrated ground plane (Section 4.4); the same objective function

however can be used to also estimate the parameters of the ground plane ~g, effectively performing

camera calibration for the “shadow camera”.

The location of the point light source can be parameterized as ~̀ = [γ, φ, z], where φ and γ are

the elevation angle from the ground plane and the azimuth angle in the plane respectively and z is

the height of the light source above the ground. In the case of a directional light source assumed to

be an infinite distance away from the scene, only the first two parameters need be estimated.
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5.8 Experiments and Evaluation

We perform experiments on three sequences denoted by SEQL1, SEQL2 and SEQL1,L2, with one

or two light sources (L1, L2), each captured by four synchronized and calibrated color cameras. We

use 500W GE PhotoFlood light bulbs and compute ground truth light positions using a commercial

motion capture system by affixing reflective markers to the top and the sides of the light bulbs while

turned off. The first two sequences capture the scene illuminated with different individual light

sources, while the third sequence has both lights turned on. While sequences SEQL1 and SEQL1,L2

are of the same subject, sequence SEQL2 contains a different subject. In all cases we fit 6 shape

parameters for a reduced SCAPE body model consisting of 10 example body shapes combining men

and women. The fitting is done independently in each frame, using a stochastic search technique

related to annealed particle filtering as described in Section 4.7.3. This optimization strategy requires

an initial estimate of the pose that is relatively close to the actual configuration. Toward that end, we

predict initial poses directly from individual silhouettes using a Bayesian Mixture of Experts (BME)

framework that learns a direct non-linear probabilistic mapping from image features to 3D pose

(Section 4.7.1). Here we make 3D predictions from monocular camera views using shape features

computed from silhouettes [Sigal et al. (2008)] to cope with pose ambiguities in monocular sequences.

5.8.1 Light Estimation Results

We first show how the light position can be estimated from the body model and extracted

shadows. We estimate the position of each light one at the time, using different subjects. For

each experiment, we assume only one light is turned on. We estimate the shape and pose of each

subject at several time instants using only the foreground silhouettes as image observations. Each

pose results in a different shadow and provides different constraints on the light position. Given the

estimated shape and pose, we optimize Equation 5.9 for the optimal light position using a direct

search approach. To initialize the search we parameterize the light location by its height from the

floor and its azimuth and elevation angles. We discretize the space in a reasonable range above the

person and compute the value of (5.9) for a total of 288 light positions. We then select the best

location, re-discretize around it using a 7× 7× 7 grid with a finer sampling, and repeat down to a

5mm discretization.

We evaluate the estimated light positions in terms of both direction and position error. In

particular, we report the relative distance error as a ratio of the placement error and the distance

from the light source to the average location of the subject on the floor.

The results in Table 5.1 suggest that the cast shadows are very good at recovering the light

direction, but not its precise location. This is due to the fact that small changes in the direction of

incoming light induce large changes in the cast shadow while, at the distances found here, variations

in the light distance to the subject produce smaller variations in cast shadows.
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Placement Relative Distance Direction
Error Error Error

Light 1 140mm 4.64% 0.87◦

Light 2 218mm 7.40% 1.83◦

Table 5.1: Estimated Light Position and Distance Accuracy. The position of each light is
estimated using different subjects. Light 1 was estimated with subject 1 (sequence SEQL1, 10 poses)
and light 2 with subject 2 (sequence SEQL2, 10 poses).

Figure 5.5: Contribution of Shadows to Monocular Pose and Shape Estimation (Se-
quence SEQL1, Subject 1). Fitting results are presented in the monocular case with and without
shadows. Row 1 shows the automatic initialization from silhouettes ([Sigal et al. (2008)]). Row
2 shows estimated pose and shape based on monocular silhouette optimization. Row 3 shows the
improvement obtained by adding shadows to the optimization. Color key: light green = model
silhouette (F e); light red = image silhouette (F o); light purple = agreement between F o and F e;
dark green = model shadow (Se); red = image shadow (So); brown = agreement between So and
Se. The estimation uses only the left-most view of each frame, with the alternate view presented
for visual inspection. The right two columns show the recovered 3D shape projected into the image
and rendered in green along with its shadow.

5.8.2 Body Fitting Results Using Shadows

We now presents results for the problem of estimating pose and shape in the presence of shadows.

To demonstrate the usefulness of the shadows, we first consider the less constrained monocular

case. Figures 5.5 and 5.6 show examples of the initialization (top row), estimated pose and shape
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Figure 5.6: Contribution of Shadows to Monocular Pose and Shape Estimation (Sequence
SEQL2, Subject 2). Fitting results are presented in the monocular case with and without shadows,
but for a different subject and a different position of the light than in Figure 5.5. For details, see
the caption of Figure 5.5.

based on monocular foreground silhouettes alone (middle row), and using both foreground and

shadows (bottom). In particular, the example in Figure 5.5 illustrates why monocular views are

inherently ambiguous and the optimization is under-constrained. While the fit of the foreground in

the optimized view is almost perfect, an alternate camera view (middle column) reveals that the

recovered pose is far from the truth; note also that the projected shadow (dark green) does not

match the observed shadow (red). The entire body of the person was actually estimated closer to

the camera and the body shape was reduced accordingly. The shadow in this case is sufficient to fully

constrain the pose and shape estimation (bottom). The example in Figure 5.6 shows a less dramatic

impact of the shadow which nonetheless correctly constraints the position of the left arm. This

demonstrates that shadows can provide powerful constraints for human pose and shape estimation

from monocular images. We note that in the absence of shadows the problem is clearly under-

constrained in the monocular case, as the optimization is able to explain the foreground silhouette

very well with a non-optimal solution. Using the shadows enables a more accurate recovery of pose.

We quantitatively evaluate pose recovery accuracy using joint placement error. Our video capture

is synchronized with a marker-based motion capture system which is used to acquire ground truth
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Figure 5.7: Monocular Pose and Shape Estimation with Shadows from Two Lights (Se-
quence SEQL1,L2, Subject 1). Fitting results are presented in the monocular case with and
without shadows, with two lights illuminating the scene. The top row contains the results that do
not take the shadows into account, while the middle row exploits the shadows during model fitting.
While the silhouettes are explained well, shadows are not well matched unless they are explicitly
taken into account. The bottom row contains the estimated 3D body model with shadows overlaid
over the original images. See the caption of Figure 5.5 for description of the color coding.
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Figure 5.8: Shadow-based Pose Estimation Comparison. Quantitative evaluation of the pose
reconstruction using different numbers of lights and camera views for optimization. The evaluation
is based on the average 3D joint location prediction error. Shadows prove most useful for monocular
sequences when generated by a single point light source, but provide no benefit when the subject is
observed from 4 camera views.

joint locations for each frame. We compute the average joint location error over 12 joints (hips,

knees, ankles, shoulders, elbows and wrists) according to Equation 4.17. Figure 5.8 shows the mean

and standard deviation of the errors over all the joints in mm. The results suggest that a single

shadow present in the scene offers a significant improvement in monocular pose estimation, decreasing

the error from 122 ± 54 mm to 63 ± 12 mm. The addition of a second point light source actually

reduces accuracy to 76 ± 10 mm, although the use of shadows in this case is still very beneficial

to pose estimation as illustrated in Figure 5.7. In the limit, too many lights will cause shadows

to overlap and lose their intrinsic information. It is important to note that these experiments,

while monocular, use shadows and light positions computed with the multi-view methods described

in Sections 5.5.2 and 5.7 respectively. These are likely to be much better estimated than in the

single-view case. Thus these experiments represent an upper bound on the kind of performance that

can be expected.

If all four camera views are used for model fitting, the shadows appear to offer no benefit

(Figure 5.8). The “shadow camera” is the equivalent of the fifth camera to the system, providing

minimal additional information. Representative examples are presented in Figures 5.9 and 5.10 for

different subjects.

Note that the spatial configuration of the cameras, light sources and the subject affect the

performance of the system. Intuitively, a cast shadow is most informative when the camera viewing

direction is orthogonal to the plane containing the light and subject. If the light, camera and

subject are relatively collinear, then there is little new information present in the shadow. This is
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more likely to happen in a multi-camera case. In our case, one light was placed above one of the

cameras, providing little contribution to the optimization cost function.

We conclude that cast shadows may provide an inexpensive means to generate a “second view”

for body model estimation in a controlled environment with a single camera.

5.9 Discussion

We have presented a framework for exploiting strong lighting in the estimation of 3D human

shape and pose. We have shown that a sufficiently rich model of the human body makes estimation

of light sources practical. We have also shown that knowing the lighting in a scene can make human

pose estimation more reliable. In contrast to the prevailing wisdom that strong lighting should

be avoided, or that vision algorithms should be invariant to lighting, we show that strong lighting

is actually beneficial to pose and shape estimation. These conclusions extend beyond the case of

human pose considered here.

In particular we showed that cast shadows can be treated as an extra “camera” and used to

improve pose and shape fitting even for monocular images. We also showed how these cast shadows

can be used to estimate the light source position in the scene to effectively calibrate the “shadow

camera”. The results presented however rely on fairly accurate segmentation of the shadow regions

in images, obtained using a novel approach that integrates shadow pixel constraints over multiple

camera views and assumes a calibrated ground plane. Also assumed known is the number of the

light sources, but not their locations.

In future work, we would like to extend the analysis for monocular images using single-view

segmented shadows which are harder to estimate reliably and can negatively impact the performance.

Additionally, we will experiment with jointly estimating the light, shape and pose in an iterative

fashion, as well as exploit shadows in tracking monocular sequences. Future work will also consider

extended light sources (which can be modeled as many point light sources) and will combine cast

shadows with shading [Bălan et al. (2007b)] for light source estimation.
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Figure 5.9: Multi-camera Estimation of Shape and Pose from Silhouettes and Shadows.
SCAPE models estimated in a laboratory setting with 4 calibrated cameras plus the shadow cast on
the ground from a single light source. Each body model was estimated independently in each frame.
There are no shape constraints imposed between different poses of the body.
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Figure 5.10: Multi-camera Estimation of Shape and Pose from Silhouettes and Shadows.
Additional results obtained for a second subject in the same scenario as in Figure 5.9 but with a
different light source.



Chapter 6

Shape under Clothing

6.1 Introduction

In this chapter we address the problem of reliably estimating a person’s body shape from images

of that person wearing clothing. Estimation of body shape has numerous applications particularly in

the areas of tracking, graphics, surveillance and forensic video analysis. To be practical any method

for estimating body shape must recover a representation that is invariant to changes in body pose.

To that end, we exploit the SCAPE body model and show that the 3D body shape parameters

are largely invariant to body pose. Additionally, such a model must be robust to clothing which

obscures the true body shape. Here we build on the concept of the visual hull, which represents a

bound on the underlying shape. In the case of a clothed person, the visual hull may only provide

a loose bound on body shape. To gain tighter bounds we exploit the pose-invariance of the shape

model to combine evidence from multiple poses. Specifically a clothed form provides constraints on

the body shape underneath. As a person moves, the constraints provided by the visual hull change

as the clothing becomes looser or tighter on different body parts. We combine these constraints to

estimate a maximal silhouette-consistent parametric 3D shape. Using a unique dataset of subjects

with both minimal and normal clothing we demonstrate that a person’s body shape can be recovered

from several images of them wearing clothes.

To our knowledge this is the first work to attempt to recover a detailed estimate of a person’s

3D body shape from natural (i. e. standard CCD) images when the body is obscured by clothing.

The approach is illustrated in Figure 6.1. In the previous two chapters we have shown that the

parameters of the SCAPE body model can be directly estimated from image silhouettes, but those

approaches were restricted to people wearing tight-fitting clothing. Here we go beyond that work to

1) estimate a single person-specific body shape by integrating information from multiple poses; and

2) infer the 3D body shape even when it is obscured by loose-fitting clothes.

Our method rests on two key hypotheses. First: human body shape can be recovered inde-

pendently of body pose. We test this hypothesis using a unique dataset of “naked” subjects in

97
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Figure 6.1: Shape under Clothing. Body shape recovery for two clothed subjects. For each
subject we show (left to right) one of four input images, the 3D body model superimposed on the
image (giving the impression of “X-ray” vision), and the estimated body model. The subjects’ faces
have been blurred for privacy considerations.

several poses captured with 4 calibrated cameras. We estimate their body shape in each pose both

independently and in a batch fashion that combines information from multiple poses. We find that

the variability in shape parameters across pose is small relative to the variability across subjects.

We exploit this relative pose-independence of shape to combine multiple poses to more accurately

estimate a single 3D body shape.

The second hypothesis is that images of the human body in clothing provide sufficient constraints

to infer the likely 3D body shape. Of course a garment or costume could be worn which completely

obscures or provides false information about the body shape. In normal “street clothes” however, we

argue that many constraints exist that can be combined with a learned model of 3D body shape to

infer the true underlying shape. Even when people wear clothing various parts of their body are often

seen unobscured (face, neck, hands, arms, legs); when observed, these parts provide tight constraints

on body shape. To formalize this, we define the notion of a maximal silhouette-consistent parametric

shape (MSCPS) that generalizes the notion of a visual hull. A visual hull has two properties [Cheung
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et al. (2003b); Laurentini (1994)]. First, the true 3D object lies completely within the visual hull

(and its projection into images lies within the image silhouettes). Second, each facet of the visual

hull touches the surface of the object. In the case of clothing, property 1 holds but property 2 does

not. The object itself is obscured such that the silhouette contours may, or may not, correspond to

true object boundaries. Rather, the silhouettes provide a bound on the possible shape which may

or may not be a tight bound. Note also that, with clothing, in some poses the bound may be tight

in some places and loose in others and these locations may change with pose.

In place of the visual hull, we define the maximal silhouette-consistent parametric shape (MSCPS)

that optimizes the following weak constraints: 1) the shape lies inside the visual hull; 2) the volume

of the shape is maximal; and 3) the shape belongs to a parametric family. In our case this family

is the family of 3D human body shapes. Constraint 2 is required to avoid the trivial solution where

the estimated shape is made arbitrarily small. In general, each of these constraints can be viewed

as a weak constraint with the last one being a statistical prior over 3D shapes. We go a step beyond

previous work to deal with time-varying constraints and non-rigid, articulated objects, by requiring

constraint 1 hold over multiple poses. We also use the fact that portions of the body may actually

provide tight constraints on shape. For example, when a person wears short sleeves, their bare

arms provide cues not only about the arm shape, but also about the overall weight of the person.

Consequently we automatically detect skin regions and exploit tight constraints in these regions.

Central to our solution is a learned human body model. We go beyond previous work to use

three different models: one for men, one for women, and one gender-neutral model combining both

men and women. We find that gender can be reliably inferred in most cases by fitting both gender-

specific models to the image data and selecting the one that best satisfies all the constraints. Given

this estimated gender, we then use a gender-specific model to produce a refined shape estimate.

To our knowledge this is the first method to estimate human gender directly from images using a

parametric model of body shape.

In summary, the key contributions described here include: a shape optimization method that

exploits shape constancy across pose; a generalization of visual hulls to deal with clothing; a method

for gender classification from body shape; and a complete system for estimating the shape of the

human body under clothing. The method is evaluated on thousands of images of multiple subjects.

6.2 Related Work

There are various sensing/scanning technologies that allow fairly direct access to body shape

under clothing including backscatter X-ray, infra-red cameras and millimeter waves. While our

body fitting techniques could be applied to these data, for many applications, such as forensic video

analysis, body shape must be extracted from standard video images. This problem is relatively

unexplored.

Rosenhahn et al. (2007) proposed a method to track lower limbs for a person wearing a skirt or

shorts. Their approach uses a generative model to explicitly estimate parameters of the occluding



100

clothing such as the cloth thickness and dynamics. In their work, they assume the shape of the body

and cloth measurements are known a priori and do not estimate them from image evidence. There

has been recent interest in generative models of cloth [Salzmann et al. (2007); White et al. (2007)]

but the huge variability in clothing appearance makes the use of such models today challenging.

Most human shape estimation methods attempt to estimate the shape with the clothing and

many of these techniques are based on visual hulls [de Aguiar et al. (2007)]. Visual hull methods

(including voxel-based and geometric methods) attempt to reconstruct the observed 3D shape with

the silhouette boundary providing an outer bound on that shape. A detailed review is beyond the

scope of this thesis. We focus instead on those methods that have tried to restrict the shape lying

inside the visual hull. Several authors have noted that, with small numbers of images, the visual hull

provides a crude bound on object shape. To address this in the case of people, Starck and Hilton

(2007) combine silhouettes with internal structure and stereo to refine the 3D surface. They still

assume the true surface projects to match the image silhouette features.

More generally, Franco et al. (2006) impose weak assumptions on the underlying shape. They

define a notion of a set of visual shapes that are consistent with the observed silhouettes (silhouette-

consistent). As the number of unique views tends to infinity, this set approaches the visual hull

(with the exception of concavities). The key contribution of their work is the idea of adding an

assumption of shape smoothness which regularizes the set of possible 3D shape solutions. The

observed silhouette is always considered as providing a tight bound on the surface with the priors

compensating for an impoverished set of views. Note, however, in our problem, the visual hull is not

the goal. Our case is different in that the object we care about (the human body) is obscured (by

clothing) meaning that observed silhouette boundaries often do not provide tight constraints. We

build on the notion of a visual shape set to define a person-specific prior model of the underlying

shape.

In related work Mündermann et al. (2007) fit a SCAPE body model to visual hulls extracted

using eight or more cameras. They do this in a single pose and assume tight-fitting clothing. We use

a more detailed body model than they did and do not explicitly reconstruct the visual hull. Instead,

we fit directly to image data and this allows us to use a smaller number of cameras (4 in our case).

Most visual hull reconstruction methods assume rigid objects. With non-rigid clothing we find it

important to integrate information over time to constrain the underlying 3D shape. In related work,

Cheung et al. (2005) combine information over time by performing rigid alignment of visual hulls

at different time instants and then refinement of the hulls using more constraints to get a tighter

bound on the shape. Knowing a rigid alignment over time effectively provides additional views. They

also extend this idea to articulated body parts but focus only on recovering the bounding volume.

Grauman et al. (2003a,b) estimate a 3D shape consistent with a temporal sequence of silhouettes

using assumptions on the smoothness and shape transitions. They apply this method to silhouettes

of humans and recover a visual hull using an example-based non-parametric model of body shapes.

They do not use a parametric body model or explicitly attempt to infer the shape under clothing.

Most previous work on gender classification from images has focused on faces (e.g. [Moghaddam
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and Yang (2002)]), but in many situations the face may be too small for reliable classification. The

other large body of work is on estimating gender from gait (e.g. [Davis and Gao (2004); Huang

and Wang (2007); Li et al. (2008)]). Surprisingly, this work typically takes silhouettes and extracts

information about gait while throwing away the body shape information that can provide direct

evidence about gender. We believe ours is the first method to infer a parametric 3D human body

shape from images of clothed people and to use it for gender classification.

6.3 Clothing

In the previous chapters we have established the basic model, its optimization and its application

to shape estimation in the absence of loose clothing. Estimating the human shape is made more

challenging when the subject is wearing loose clothing that obscures the true form of the naked

body.

We define an observation model that deals with clothing robustly using the concept that silhou-

ettes in 2D represent bounds on the underlying body shape. Consequently the true body should

fit “inside” the image measurements. In the case of a clothed person, the observations may only

provide loose bounds on body shape. This makes the problem significantly under-constrained and

therefore requires additional assumptions to regularize the solution.

Additionally, the objective function is made aware of the clothing, or lack of it, in different regions

of the body. Regions in the image data are identified that are likely to be skin. In these regions,

the optimization method constrains the fitted body model to match the silhouette contours. In the

remaining clothed (or hair) regions, the objective function is modified so that it does not have to

strictly match the observations.

Moreover, it is noted that clothing provides constraints on body shape that vary with pose as

illustrated in Figure 6.4(bottom). In each posture depicted, the clothing is loose or tight on different

parts of the body. Each posture provides different constraints on the possible underlying body shape.

Constraints from multiple poses, such as these, are accumulated by a consistent body model across

poses.

6.3.1 Maximal Silhouette-Consistent Parametric Shape

We introduce the concept of a maximal silhouette-consistent parametric shape that weakly sat-

isfies the following constraints:

1. the projected model falls completely inside the foreground silhouettes;

2. the model attempts to fill the image silhouette mainly in regions with tight or no clothing;

3. the intrinsic shape is consistent across different poses; and

4. the shape of the object belongs to a parametric family of shapes (in our case human bodies).
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Each aspect is discussed below.

The first constraint is satisfied by penalizing the regions of the projected model silhouette,

F e
k

(
χ, ~βχ, ~θ

)
, that fall outside the observed foreground silhouette F o

k . The silhouette match error

in camera k from Chapter 4 is separated into two pieces:

Ek
1pose

(
χ, ~βχ, ~θ

)
= Ek

inside

(
χ, ~βχ, ~θ

)
+ Ek

expand

(
χ, ~βχ, ~θ

)
(6.1)

For the “inside” term, the same distance function as defined in Chapter 4 is used:

Ek
inside

(
χ, ~βχ, ~θ

)
= d̃τ

(
F e

k

(
χ, ~βχ, ~θ

)
, F o

k

)
. (6.2)

For the second constraint, it is desirable that the projected model explain as much of the fore-

ground silhouette as possible; if the subject were not wearing clothing this would just be the second

term from the minimal-clothing case: d̃τ
(
F o

k , F e
k

(
χ, ~βχ, ~θ

))
. In the more general setting where

people wear clothing or interact with objects, the observed foreground silhouettes will be too large

producing a bias in the shape estimates. To cope with this, several strategies are employed. The

first is to down-weight the contribution of the second constraint, meaning it is more important for

the estimated shape to project inside the image silhouette than to fully explain it. The second is

to use features in the image that are more likely to accurately conform to the underlying shape. In

particular, skin-colored regions are detected (see Section 6.3.4) and, for these regions, the second

constraint is given full weight. The detected skin regions are denoted by F s
k and the non-skin regions

of the observed foreground silhouette by F o
k \ F s

k . Third, in the non-skin regions a robust penalty

function controlled by a parameter τ c < τ is employed. Recall that the distance function, d̃τ , already

has a threshold τ on the maximum distance, which makes the term robust to segmentation errors.

In putative clothing regions this threshold is reduced to τ c. When the clothes are tight (or skin is

being observed), it is desired that the error term increasingly penalize non-skin regions even when

they are far from the model silhouette. In this case, a large threshold τ is appropriate. However, if

the clothes are expected to be loose, a small threshold τ c effectively disables the silhouette distance

constraint in non-skin regions. It is possible to apply the robust operator also to the skin term

(with a corresponding τs threshold greater than τ c) to protect against errors in skin detection (but

typically τs .= τ).

The “expansion” constraint is then written as

Ek
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+ λcd̃
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χ, ~βχ, ~θ

))
, (6.3)

with λc ¿ 1 (e. g., 0.1).

Different parts of the body can be obscured by different pieces of clothing with different looseness

characteristics. The above formulation can be extended to incorporate any additional knowledge

about the looseness of clothing in G different regions of the body. More generally, imagine the image

silhouette is segmented into regions corresponding to different classes of clothing with associated

looseness / tightness properties. Such classes can represent broad categories such as skin versus

non-skin regions as described above, or can include more refined categories such as hair, t-shirt,
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jacket etc. Each category, g, has an associated looseness threshold τg and relative importance λg.

The “expansion” constraint can be generalized as:

Ek
expand2

(
χ, ~βχ, ~θ

)
=

G∑
g=1

λgd̃
τg

(
F g

k , F e
k

(
χ, ~βχ, ~θ

))
. (6.4)

Segmentation of the image into G labeled regions can be obtained using general skin, clothing and

hair classifiers described in the literature.

When a clothed subject is observed with clothing in only a single pose, the shape estimate may

not be very accurate. Additional constraints can be obtained by observing the subject in different

poses. This requires estimating a different set of pose parameters in each frame, but a single body

shape consistent for every pose:

Ek
multipose

(
χ, ~βχ,Θ

)
=

P∑
p=1

Ek
1pose

(
χ, ~βχ, ~θp

)
, (6.5)

where Θ =
(
~θ1, · · · , ~θP

)
represents the different body poses.

In the case of multiple synchronized camera views where the images are taken at the same time

instant, we integrate the constraints over the K camera views to optimize a consistent set of model

parameters given all sensor data

Esensor

(
χ, ~βχ,Θ

)
=

K∑

k=1

Ek
multipose

(
χ, ~βχ,Θ

)
. (6.6)

Finally, the sensor constraints are combined with domain knowledge constraints to ensure the

shape remains within the family of human shapes by exploiting the availability of a large database

of body shapes. It is not required that the estimated shape exist in the database; instead, com-

puted statistics on shape variability are used to penalize unlikely shape parameters, Eshape(χ, ~βχ).

Pose priors Epose(~θp) that penalize un-natural poses exceeding anatomical joint angle limits are

also enforced. Details about the shape and pose priors are provided in Sections 6.3.2 and 6.3.3

respectively.

The final objective function is given by

Eclothes

(
χ, ~βχ,Θ

)
= Esensor

(
χ, ~βχ,Θ

)
+ Eshape(χ, ~βχ) +

P∑
p=1

Epose(~θp) . (6.7)

It should be also noted that the terms in the objective functions can all be weighed by different

scaling constants to change the relative importance of each term.

6.3.2 Shape Prior

A penalty is defined for body shapes that do not conform to the observed statistics of true

human bodies. The SCAPE body shape model is learned from training bodies and the resulting

PCA model includes the variance along each principal component direction. The variance σ2
β,χ
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along these shape-deformation directions characterizes the shape of the population being modeled.

A standard Gaussian noise assumption would lead to an error term defined by the Mahalanobis

distance of a body from the mean.

To avoid biasing the estimates toward the mean we use a different penalty term. Specifically, a

shape prior is formulated that penalizes extreme shapes while assigning the same fixed cost for more

average shapes:

Eshape

(
χ, ~βχ

)
=

∑

b

max
(

0,
|βχ

b |
σβ,χ,b

− σthresh
β

)2

, (6.8)

where b ranges over all the shape parameters. Typically σthresh
β = 3 is chosen, thus penalizing only

those shapes that are more than 3 standard deviations from the mean.

6.3.3 Pose Prior

There are some poses that are anatomically impossible or highly unlikely. The elbow, for example,

cannot extend beyond a certain angle. To control this, a prior is enforced on body pose that is

uniform within joint angle limits and only penalizes poses beyond those limits. Impossible joint

angles are penalized, similar in formulation to the shape prior:
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(6.9)

where j ranges over all the pose parameters. Note that both the angle bounds
[
~θ min
j , ~θ max

j

]
and the

variances σ2
θ,j can be specified from anthropometric studies or learned from motion capture data.

The second term penalizes poses that deviate more than σ thresh
θ standard deviations (typically 3)

from an initial pose θ0
j . This second term is appropriate for cases where an approximate initial pose

is pre-specified and known. In such cases, w is set to 1; if the initial pose is unknown, w is set to 0.

6.3.4 Image Skin Detection and Segmentation

There are many algorithms in the literature that perform skin detection (e.g. [Jones and Rehg

(2002)]). Many of these deal with variations in lighting and skin tone across different people and can

be quite accurate. Clothing detection is a harder problem due to the wide variability of materials,

colors, and patterns used to make clothing. Hair detection has also received some attention. In our

case, skin detection is sufficient to constrain the remainder of the foreground region to be classified

as “clothing”. Skin and clothing regions will be treated differently in the fitting process.

We describe a method for segmenting an image into skin and non-skin regions, although the

precise formulation is not critical. In order to detect skin colored regions in an image, a skin

detector can be built from training data using a simple non-parametric model of skin colors in hue

and saturation space. Using a large dataset of images that have been segmented into skin or non-

skin, a normalized joint histogram P (H, S|skin) of Hue and Saturation values is built for the skin
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Figure 6.2: Skin Segmentation. Examples of segmented people and the regions identified as skin,
shown in orange. Note that this segmentation need not be perfect to provide useful constraints on
the shape fitting.

pixels. A threshold on the histogram is used to obtain a binary skin classifier for (Hue, Saturation)

pairs:

P (H, S|skin) ≥ threshold . (6.10)

After individual foreground pixels have been classified as being skin or not skin, several standard

image filters are applied to improve the segmentation, including dilation, median filtering, and

removal of small disconnected components. Note that, as a final step, we dilate the skin regions

by a few pixels within the foreground silhouette regions in an attempt to capitalize on the nearby

true negative skin pixels lying along the edge of the foreground silhouettes. Figure 6.2 shows several

examples of people in different clothing and the identified skin regions.

Skin Classifier Training Procedure

We automate the process of training the skin detectors from unlabeled training data. We rely on

the subset of the images from the Clothing Dataset (Section 6.4.1) where the subjects wear minimal

black clothing and build an aggregate color histogram of the foreground pixels. By switching from

the RGB to the HSV color space, the V alue channel can be ignored, which captures mostly lighting

intensity information (see Figure 6.3a). In Figure 6.3b a joint histogram is constructed for Hue and

Saturation channels. Hair and pants have Hue colors that can easily be pruned away as outliers. We

use a threshold on the histogram inside the red box to obtain a binary classifier for (Hue, Saturation)
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Original Image Hue Saturation Value

(a) RGB to HSV Conversion

(b) Skin Color Histogram

Figure 6.3: Learning a Skin Classifier. (a) Training images of subjects wearing minimal black
clothing are separated into HSV color channels for skin detection. The V alue channel contains
lighting information and is ignored. Foreground segmentation is also performed by chroma-keying
the background. (b) A joint Hue − Saturation histogram is build from foreground pixels. It is
reasonable to expect the hue of the skin to be in the interval [0,0.15] and the saturation in [0.15,0.50]
(red box). Values outside the box are attributed to clothing and hair, as well as green spill-over from
the indirect reflected light off the background. The white contour defines the classification boundary
of the skin detector. Note that the triangular shape of the classifier makes the non-parametric
representation a better choice. The Hue values are better constrained for higher saturation values.

pairs (Equation 6.10).

For our experiments, multiple skin detectors are trained. We use a leave-one-out cross-validation

method and train one classifier for each person in the Clothing Dataset using all the other people in

the database. Hence the skin of the left-out subject is segmented using a skin model that excludes

his/her data (Figure 6.2). We also train one skin model for each camera view, to account for color

variations in different cameras.
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6.4 Experiments and Evaluation

We perform experiments on a novel clothing dataset of thousands of images of clothed and

“naked” subjects captured in a controlled environment using green-screening and in pre-defined

poses. In addition, we also show results on the HumanEva dataset [Sigal et al. (2010)] in less than

ideal circumstances. Given initial poses, the optimization is done using a gradient-free direct search

simplex method as described in Section 4.7.4. This optimization over 27 pose parameters and 20

shape parameters for a SCAPE model in a single pose given 4 camera views with resolution 656 x 490

takes approximately 40min on a 2GHz processor with a Matlab implementation. In the case where

integration of information across multiple poses is performed, the optimization process alternates

between optimizing a single set of shape parameters applicable to all postures, and optimizing the

pose parameters ~θp independently for each posture.

6.4.1 Clothing Dataset

To test our ability to infer shape under clothing we collected a dataset of 6 subjects (3 male and

3 female); a small sample of images from the dataset is shown in Figure 6.4. Images of the subjects

were acquired in two conditions: 1) a “naked condition” (NC) where the subjects wore minimal tight

fitting clothing (Figure 6.4a), and 2) a “clothed condition” (CC) in which they wore a variety of

different “street” clothes (Figure 6.4b). Each subject was captured in each condition in a fixed set

of 11 postures, several of which are shown in Figure 6.4c. All postures were performed with 6 - 10

different sets of “street” clothing (trials) provided by the subjects. Overall, the dataset contains 53

trials with a total of 583 unique combinations of people, clothing and pose (a total of 2332 images).

For each of these, images were acquired with four hardware synchronized color cameras with a

resolution of 656 x 490 (Basler A602fc, Basler Vision Technologies). A full green-screen environment

was used to remove any variability due to imprecise foreground segmentation. The cameras as well as

the ground plane were calibrated using the Camera Calibration Toolbox for Matlab [Bouguet (2000)]

and the images were radially undistorted. Foreground silhouette masks were obtained using a stan-

dard background subtraction method, performed in the HSV color space to account for background

brightness variations induced by the presence of the foreground in the scene (e.g. shadows).

6.4.2 Shape Constancy

In previous chapters we only optimized the body shape at a particular time instant. Here we

take a different approach and integrate information about body shape over multiple poses. Our first

hypothesis is that the SCAPE model provides a representation of body shape that is invariant to

body pose. To test this hypothesis we optimize body shape and pose for each posture independently

in the “naked condition” (NC).

Figure 6.5a (top) shows three examples of the body shape recovered for one of the subjects in this

fashion using the minimum clothing objective function from Equation 4.6. We plot in Figure 6.5c the

aggregate variance υb in the recovered shape coefficients across pose for all subjects (yellow) versus
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(a) Naked Condition (NC)

(b) Clothed Condition (CC)

(c) A Variety of Poses

Figure 6.4: Clothing Dataset. Example images from the clothing dataset shown here after back-
ground subtraction. (a) All subjects in the “naked condition” (NC); (b) single subject in the
“clothed condition” (CC); (c) subject in 11 different poses.
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(a) Single Pose Fitting

(b) Batch Fitting
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(c) Shape Variability

Figure 6.5: Invariance of Body Shape to Pose. (a) Top row: 3D body reconstructions inde-
pendently estimated in several poses using the clothing-oblivious formulation from Chapter 4. Only
one of the four camera views used in the optimization is shown, with the 3D model superimposed
over the segmented image. Bottom row: The estimated shapes above displayed in the canonical
pose and textured with an error map measuring deviations between shapes estimated in a single
pose and the shape estimated in batch mode. (b) Model recovered in batch by combining constraints
across 11 different poses. (c) Variance in shape coefficients across subjects and poses.



110

the variability in these shape coefficients σ2
β,b (Section 3.5.5) across all subjects in the CAESAR

dataset (blue). The aggregate shape variability υb in our estimates is computed for each shape

coefficient ~̂βb by integrating over all poses p and all subjects j:

υb =
J∑

j=1

P∑
p=1

(
~̂βj,p

b − Ep

[
~̂βj,p

b

])2

, (6.11)

where Ep[·] denotes the expected value over poses. We find the variation of the major 3D shape

parameters with pose to be small relative to the variation across people (Figure 6.5c). Moreover,

our estimate of the shape variation with pose also encompasses the errors introduced by the image

fitting process. In contrast, there is no fitting error in computing the shape parameters for the

CAESAR dataset, suggesting that the variability due to pose might have been even smaller after

factoring out image fitting error.

Having established the shape constancy across pose property for the SCAPE body model, we

can exploit it by defining a “batch” optimization that extends the objective function to include P

different poses. In the naked case this is simply:

E(~β, ~θ1, . . . , ~θP ) =
P∑

p=1

K∑

k=1

d̃τ
(
F e

k (~β, ~θp), F o
k,p

)
+ d̃τ

(
F o

k,p, F
e
k (~β, ~θp)

)
. (6.12)

In the clothing case, the objective function in Equation 6.5 would be used instead. Figure 6.5b shows

the body shape recovered by integrating across pose, obtained by alternating between optimizing

a single set of shape parameters ~β applicable to all postures, and optimizing the pose parameters
~θp independently for each posture. The examples in Figure 6.5a (bottom) demonstrate that shapes

obtained with batch fitting differ from independently estimated body shapes in individual poses in

subtle ways, mainly in regions close to the joints exhibiting large motions. The magnitude of the

deviations however is indeed fairly small, not exceeding 2cm. Note that establishing this property of

shape invariance with respect to pose is useful for tracking applications and biometric shape analysis.

6.4.3 Qualitative Results in the Presence of Clothing

In Chapter 4 we demonstrated that the SCAPE model is able to provide a close match to image

silhouettes when the person wears tight fitting clothing. With that in mind, we defined an objective

function designed to maximize the overlap between the model and image silhouettes. In the presence

of loose clothing however that approach is not very good. To illustrate this, consider the extreme

case from Figure 6.6a depicting a women wearing a large coat. In this case the clothing-oblivious

method from Chapter 4, when applied to an individual pose and without enforcing priors on shape

coefficients, leads to unrealistic overestimates of shape and size. In contrast, the proposed clothing-

robust and shape-constrained formulation in this chapter results in much more plausible shape

estimates, although some shape ambiguity remains when estimating gender-neural shapes in different

poses independently (Figure 6.6b). Formulating the problem in a batch fashion and optimizing for

gender as well results in a plausible shape consistent across multiple poses (Figure 6.6c).
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(a) (b) Clothing-aware Single Pose (c) Clothing-aware Batch

Figure 6.6: Example Shapes Estimated by Three Different Methods. (a) The clothing-
oblivious method from Chapter 4 applied to an individual pose and without enforcing any priors
on shape coefficients leads to unrealistic overestimates of size/shape. (b) Estimated shapes using
the proposed clothing-robust formulation (6.7) but relying only on the gender-neutral shape model
and applied only to individual poses. Significant variations in shape across different poses are still
apparent, noting in particular inconsistencies in gender features. (c) A single gender-optimized shape
model estimated using the multi-pose shape consistency constraint in Equation 6.7.

6.4.4 Shape under Clothing - Clothing Dataset

We recover the body pose and shape for all 583 independent poses and the 53 batch trials in the

“clothed condition” (CC). A few representative batch results1 are shown in Figures 6.7 and 6.8.

We quantitatively evaluate the accuracy of the estimated 3D body models using a variety of

derived biometric measurements such as height, waist size and chest size. These body measurements

are collected from the results of fitting the body in batch fashion from the NC data. We treat these as

ground truth shape measurements for our quantitative evaluation. Figure 6.9a shows the recovered

3D body shape models used for ground truth. Displayed on the models in red are the locations used

to compute derived measurements for chest and waist size. These are obtained by slicing the body

mesh with a horizontal plane at a given location on the body and computing the perimeter of the

convex hull of the body cross section.

We show quantitative results in Figure 6.9 and report the mean and variance of the error from

ground truth measurements, both for single-pose fitting and for batch fitting. Figure 6.9 shows how

errors in height, waist and chest size decrease by combining information across pose. In particular,
1See http://www.cs.brown.edu/research/vision/scapeClothing for results on the entire Clothing dataset.
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Figure 6.7: Clothing Dataset Batch Results. (top) One of four input images after foreground
segmentation. (middle) Estimated body model superimposed on the image. (bottom) Estimated 3D
body model.

we find that height can be well recovered even in the presence of clothing, but that circumference

measurements are somewhat impacted by loose clothing which obscures the true shape of the body.

This is also supported by the larger variance observed in the case of chest and waist measurements.

6.4.5 Gender Classification

For gender classification, we estimate the pose and the first 6 shape parameters in each test

instance using the gender-neutral shape model. After convergence, we keep the pose parameters

fixed and re-estimate the shape parameters with both gender-specific shape models. The best fitting

model according to the objective function corresponds to the true gender 86% of the time when

the optimization is performed on individual poses (see Figure 6.10). By observing the same subject

striking 11 different poses within each trial and adopting a voting strategy based on the predicted

gender from each pose, the majority classification across all poses in a trial increases the accuracy
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Figure 6.8: Clothing Dataset Batch Results. Additional results similar to Figure 6.7.

to 90.6%. Finally, by estimating the shape parameters for the two gender models in batch fashion

over all poses in a trial, the gender classification improves to 94.3% accuracy on the dataset of 53

trials with natural clothing.

6.4.6 Shape under Clothing - HumanEva-II Dataset

To test the generality of our methods in less than ideal circumstances, we also perform exper-

iments on the generic HumanEva dataset [Sigal et al. (2010)] where the poses are “natural” and

background subtraction is imperfect. Specifically, we use the HumanEva-II subset which consists of

two sequences with two subjects S2 and S4 walking and jogging in a circle, followed by a leg-balancing

action. The subjects are wearing casual street clothing. A kinematic tree tracking algorithm using

a coarse cylindrical body model is used to obtain rough initial pose estimates at each frame which

were subsequently refined during shape estimation using our framework.

This dataset only contains 2 subjects, but we test our approach on approximately 200 frames in



114

(a) Measuring Shape Estimates

(b) Shape Estimates - Males (c) Shape Estimates - Females

(d) Aggregate Shape Estimates

Figure 6.9: Quantitative Evaluation of Shape. Accuracy of estimated body measurements
(height, waist, chest) relative to ground truth. Batch estimation across pose decreases the errors.
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Figure 6.10: Gender Classification. Gender is best predicted in batch model when a single shape
model is recovered that is consistent across image observations of subjects in multiple poses.

a wide variety of postures and with various levels of real silhouette corruption to estimate the body

shape (Figure 6.11); these results suggest the method is relatively robust to errors in foreground

segmentation. The optimization converges in all test cases we considered.

6.5 Discussion

We defined a new problem of inferring 3D human shape under clothing and presented a solution

that leverages a learned model of body shape. The method estimates the body shape that is

consistent with an extended definition of the visual hull that recognizes that shape bounds provided

by the visual hull may not be tight. Specifically, the recovered shape must come from the parametric

family of human shapes, it should lie completely within the visual hull, and it should explain as much

of the image evidence as possible. We observed that by watching people move, we could obtain more

constraints on the underlying 3D body shape than in a single pose. Consequently, we exploited the

relative pose-independence of our body shape model to integrate constraints from multiple poses by

solving for the body pose at each time instant and a single 3D shape across all time instants. We

integrated a skin detector to provide tight constraints on 3D shape when parts of the body are seen

unclothed. We also showed that gender could be reliably classified based on body shape and defined

gender-specific shape models to provide stronger priors on the unobserved shape. The method was

tested on a laboratory dataset of people in a fixed set of poses and two clothing conditions: with

and “without” clothes. The latter gave us “ground truth” with which to evaluate the method. We

also demonstrated the method for more natural sequences of clothed people from the HumanEva

dataset [Sigal et al. (2010)].

We envision several extensions to this line of research. Based on the observation that in different
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Figure 6.11: Example Body Shapes for the HumanEva-II Dataset. (left) One segmented
frame; (middle) several frames with the estimated model overlaid; (right) estimated body shape.

poses clothing imposes tight silhouette constraints in different regions of the body, our batch experi-

ments dealing with scanning the body shape under clothing relied on 11 pre-defined poses chosen in

an ad-hoc manner. As future work, we would like to find a minimal set of poses that best constrain

body shape. Additionally, in our example dataset none of the subjects are wearing shoes, nor are any

wearing hats or big hairstyles. Future work will involve dealing with hair and shoes appropriately.

As an example, the shape parameterization can be extended to include the shoe heel height as well

and infer it during the optimization process. Finally, our current fitting method does not make use

of any a priori knowledge of where clothing may be tight or loose. How tight a constraint might be

in different regions on the body may be predicted from the pose of the body, type of clothing and

properties of the material, and the effects of gravity and dynamics.



Chapter 7

Conclusions

7.1 Contributions

In this thesis we have presented several methods for jointly estimating shape and pose of a

person from standard digital images. This has many applications in personal fitness, retail apparel

and computer games. For forensic video applications, the extraction of body shape parameters could

be useful in identifying suspects.

The common theme is the utilization of a state of the art graphics body model learned from

examples that is very realistic and capable of representing both articulated and non-rigid deforma-

tions of the human body, as well as body shape variability between individuals. We have introduced

methods for recovering the parameters of such a model directly from image data and for extracting

relevant biometric information from the recovered body model, such as gender or height. A better

body model enables a more robust estimation from imperfect image observations.

The proposed methods address different scenarios. The first scenario uses multiple synchronized

camera views and expects the subject to wear tight fitting clothing. It uses extracted image silhou-

ettes to match the 3D parametric model to image evidence. We are able to relax the tight fitting

clothing assumption and propose an extended method for predicting shape under clothing by includ-

ing a multitude of constraints: shape constancy across poses, tight constraints in skin regions and

enforcement of a statistical model of human shapes. Finally, in cases where the scene is illuminated

with strong lighting, we find that shadows contain valuable information that we can use to effectively

reduce the number of cameras needed for model estimation, while at the same time the body can

be used to calibrate the light.

7.2 Extensions

There are many future directions for this new line of research.
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7.2.1 Going Beyond Silhouettes

In this work we rely on image silhouettes to match a low dimensional parametric model to im-

age observations. In particular, we assume a hard segmentation of the background and foreground.

Instead we could extract an alpha matte and modify the approach to take into account the uncer-

tainty in the segmentation regions. Additionally, we use silhouettes from multiple views to derive

view-dependent constraints on the outer contour. To potentially reduce the need of multiple cam-

era views, additional image cues that capture internal image structure, such as edges, shading and

optical flow, may be used as well [Guan et al. (2009)].

In [Bălan et al. (2007b)] we show that we can recover the albedo of the body for a known

geometry and lighting. Similarly, for known lighting and known albedo, local shape orientation can

also be estimated from images. This forms the basis for an iterative optimization procedure of pose,

shape and albedo by taking into account not only the silhouette contours and apparent edges, but

also the internal appearance and geometric information. It is also possible to apply these methods

to single uncalibrated images if additional information about the subject is known (such as their

height) [Guan et al. (2009)].

7.2.2 Monocular Estimation and Tracking in Video Sequences

One direction of future research involves extending our methods to extract body shape from

monocular image sequences by integrating information over time. Tracking is a specialization of

pose estimation to video sequences that exploits a motion model that describes the possible motion

of the subject between consecutive frames. For human tracking in video, estimating limb lengths,

body shape parameters and body mass can be useful as these could be used in the inference of

dynamics. Body shape and mass clearly affect gait and influence how external loads may alter

gait. Body shape parameters could be used in visual tracking applications to identify and re-acquire

subjects who come in and out of the field view.

Monocular estimation can further benefit from the inclusion of constraints on preventing inter-

penetration of body parts, and even more from the addition of a statistical model of expected

articulated poses by embedding the allowable poses in a much lower dimensional space. As an

illustrative example, any articulated pose from a monotonous walking motion can be encoded using

a single parameter, the phase in the periodic walking cycle.

7.2.3 Computing Time Considerations

Currently we have not exploited graphics hardware for the projection of 3D meshes and the

computation of the image matching function; such hardware will greatly reduce the computation

time required. Parallel computing is another way to speed up the processing time, particularly in

the case of particle-based stochastic optimization that requires the evaluation of multiple randomly

generated hypotheses within one iteration. The task of gender estimation by trying both gender

specific models and choosing the one that better fits the image evidence is also inherently parallel.
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Finally, a computational speedup can be achieved by adopting a coarse-to-fine fitting approach,

both in terms of images and the body model. A body model with a low-resolution mesh can be

fit to low-resolution images much more quickly than at full resolution. The solution is then locally

refined at successively finer resolutions of the body mesh and the images. In order for this to work, a

mapping of the body model parameters between successive mesh resolutions also needs to be learned

in advance from training data.

7.3 Privacy Considerations

Privacy concerns must be addressed for any technology that purports to “see” what someone

looks like under their clothes. Unlike backscatter X-ray and millimeter wave scanners, our approach

does not see through clothing. It does not have any information about the person’s body that is not

available essentially to the naked eye; in this sense it is not intrusive. The unwanted production of

a likeness or facsimile of a person’s unclothed shape might still be considered a violation of privacy.

It is important to maintain a distinction between body shape measurements and the graphical

representation of those measurements as a realistic 3D model; it is the latter which has the greatest

potential for concern but this may not be needed for many vision applications. We used such a

model in this dissertation only as a graphical means of conveying the measurement information

obtained by our method. There are numerous computer vision applications however where 3D

shape properties of the human body could prove very useful to the computer without ever producing

a graphical representation for human viewing. Provided the vision applications are not themselves

a violation of privacy, then the use of body measurements internally would likely be acceptable. In

many applications, people may even find this technology beneficial in that it can provide detailed

body measurements without the need to disrobe.

7.4 Open Problems

In the long term, the goal is to exceed the level of accuracy available from current commer-

cial marker-based shape capture systems [Park and Hodgins (2006, 2008)] by using images which

theoretically provide a richer source of information. We expect that, with additional cameras and

improved background subtraction, the level of detailed shape recovery from video will eventually

exceed that of marker-based systems.

This work was motivated by the desire to capture the shape of humans from standard digital

images. The general formulation proposed in this thesis however could be extended to use other

types of sensor inputs, such as depth sensors or millimeter wave scanners, and can be applied to

other objects as well. For example, a 3D deformable heart model in terms of the intrinsic shape or

the contracting phase can prove useful for medical imaging analysis, while for traffic monitoring, a

3D deformable vehicle model [Leotta and Mundy (2009)] may be used for tracking and recognizing

cars in surveillance video.



Appendix A

Mathematical Notation

We have tried to maintain a consistent mathematical notation throughout this thesis. Here we

summarize the conventions followed.

A.1 Conventions

a, b, c, . . . Scalar are typeset in regular italic lower-case

~a, ~b, ~c, . . . Vectors are typeset in italic lower-case and assumed column vectors: ~a = [a1, a2, · · · ]T

A, B, C, . . . Matrices are typeset in non-italic boldface capitals: A =

[
a11 a12

a21 a22

]

A, B, C, . . . Sets are typeset in upper-case calligraphic font: A = {a1, a2, · · · } orA = [~a1,~a2, · · · ]

A.2 Nomenclature

R - Real numbers

s - Scaling factor s ∈ R, s > 0

~t - Translation vector t ∈ R3

R - Rotation matrix R ∈ SO(3)

~q - Quaternion rotation

~ω - Axis-angle vector rotation

~n - Surface normal

In - Identity matrix In =




1
. . .

1




||A||F - Frobenius norm of a matrix A
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diag(A) - Matrix diagonals are manipulated using the diag(A) operator. If A is a vector of

length n, an n×n diagonal matrix is produced. If A is an n×n matrix, the diagonal

is extracted into a vector of length n.

tr(A) - The trace of square matrix A, which is the sum of the elements on its diagonal

Ā - Arithmetic mean

â - Estimated value for a

E - Error energy

Σ - Covariance matrix

Λ - A diagonal matrix of eigenvalues

λi - The ith eigenvalue

A.3 SCAPE notation

i - index on example meshes in different poses

j - index on example meshes for different subjects

k - index on vertices of a triangle

v - index on vertices of a mesh

t - index on triangles of a mesh

p - index on body parts

p[t] - index of body part to which triangle t belongs to

V - number of mesh vertices

T - number of mesh triangles

P - number of body parts

J - number of joints

J [p[t]] - list of joints for part p[t]

X - template mesh

{Yi,Yj} - set of example meshes

~xt,k - location of the kth vertex of triangle t for the template mesh X
~y i

t,k - location of the kth vertex of triangle t for a deformed mesh Yi

~yv - location of the vertex v for a deformed mesh Y
∆~xt,k - edge vector (~xt,k − ~xt,1)

At - 3× 3 - affine transformation matrix associated with triangle t

Rp - 3× 3 - rotation matrix associated with body part p
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Qt - 3× 3 - non-rigid pose deformation matrix associated with triangle t

Dt - 3× 3 - body shape deformation matrix associated with triangle t

∆Rp,c - 3× 3 - relative rotation between two adjacent body parts p and c

∆~ωp,c - 3× 1 - axis-angle representation of the relative rotation between two adjacent body

parts p and c

F - Linear coefficients used to predict non-rigid deformations Q from rigid part-based

rotations R

~θ - alternative pose parameterization in terms of joint angles between adjacent body

parts instead of global rotations Rp for each part

~d - 3 · 3 · T × 1 - column vector of body shape deformations containing vectorized 3× 3

body shape deformations Dt for all T triangles of the mesh

~β - eigen-shape coefficients

b - index for principal components

r - number of PCA principal components for the eigen-shape model

U - PCA basis matrix consisting of the top r eigen-shape column vectors

~µ - mean body shape deformation

σ2
β,b - variance for shape coefficient ~βb

χ - gender-specific shape model: χ ∈ {male, female, neutral}



Appendix B

Representations of Rigid Body

Transformations

Rigid body transformations are integral to many problems addressed in this thesis including pose

parameterization, shape registration and camera calibration. Here we briefly elaborate on several

representations employed in this thesis.

B.1 Standard Matrix Representation

Rigid body transformations are commonly represented by a translation component and a rotation

component. Translation is represented as a vector displacement in 3D: ~t = [tx, ty, tz]
T. Rotation

can be expressed as a 3 × 3 rotation matrix R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 subject to the constraints that

it is orthonormal and its determinant is positive. More formally, the set of all valid 3D rotations is

denoted by SO(3) = {R ∈ R3×3|RRT = RTR = I3,det(R) = +1}.
A point in the local coordinate system ~p1 = [px, py, pz]

T is transformed by

~p2 = R~p1 + ~t , (B.1)

which can also be expressed in homogeneous coordinates as
[
~p2

1

]
=

[
R ~t

0 1

][
~p1

1

]
. (B.2)

While there are 9 variables representing the rotation, the orthonormality constraint leaves only

3 free variables. Therefore, the space of all rigid transformations has 3 degrees of freedom for the

translation and 3 degrees of freedom for the rotation.
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B.2 Euler Angles

Euler angles (α, β, γ) can be used to represent any general 3D rotation R as a composition of

three rotations Rx(α), Ry(β) and Rz(γ) about the orthogonal coordinate axes:

R(α, β, γ) = Rz(γ)Ry(β)Rx(α)

=




cos γ − sin γ 0

sin γ cos γ 0

0 0 1







cosβ 0 sin β

0 1 0

− sin β 0 cos β







1 0 0

0 cos α − sinα

0 sin α cosα


 .

(B.3)

The order of the rotations needs to be pre-specified. This representation is used for parameterizing

articulated pose in terms of the relative joint angles between a child part and a parent part about

the x-, y- and z- axes of the parent coordinate system. The three angles are sometimes referred to

as roll, pitch and yaw. Euler angles are known to suffer from the Gimbal Lock problem which causes

one degree of freedom to be lost when two of the axes become aligned.

B.3 Quaternions

Quaternions are the generalization of complex numbers to 4 dimensions. A quaternion ~q consists

of a real part, a scalar w, and its imaginary part, a vector ~ω = [x, y, z]T. It is customary to denote

a quaternion by the notation ~q = w + ~ω.

A unit quaternion ~q ∈ {(w, x, y, z)|w2 +x2 +y2 +z2 = 1} is associated with the following rotation

matrix:

R(~q) = I3 + 2



−y2 − z2 xy − wz xz + wy

xy + wz −x2 − z2 yz − wx

xz − wy yz + wx −x2 − y2


 . (B.4)

It follows immediately that ~q and −~q induce the same rotation R. The rotation of angle θ about

the unit vector ~a is given by the unit quaternion

± ~q = cos
θ

2
+ sin

θ

2
~a . (B.5)

We use quaternions in the next section for computing the alignment between two point clouds.

B.4 Axis-angle Rotations

The axis-angle representation of a rotation parameterizes the direction of the axis of rotation

using a 3D unit vector ~u and the amount of rotation about the axis using the scalar angle θ.
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Converting a rotation matrix R to the axis-angle representation can be done using:

θ = arccos
(

tr(R)− 1
2

)
(B.6)

~u =
1

2 sin(θ)



R32 −R23

R13 −R31

R21 −R12


 . (B.7)

The two parameters are typically combined into a compact representation ~ω = θ~u thereby encoding

the angle of rotation as the magnitude of the rotation vector ~ω. This compact representation is used

for learning a prediction model from pose parameters to non-rigid pose deformations in Section 3.5.3.



Appendix C

Rigid Registration of 3-D Point

Clouds

Consider the problem of finding the relationship between two coordinate systems by using pairs

of measurements of the coordinates of a number of points in both systems. The goal is to estimate

the rigid transformation and sometimes the scaling factor that best aligns two shapes, represented as

a collection of 3D surface points, into a common coordinate system, minimizing the distance between

the shapes. One application of this can be found in Section 3.5.2 where the aim is to estimate the

optimal rotations for each body part between a template mesh and other example meshes that are

in full vertex correspondence.

We first discuss the special case in which there is a one-to-one correspondence between points in

the two point clouds. In this case, a closed-form solution exist that can be computed efficiently. We

then describe an iterative algorithm for computing the registration parameters for two point clouds

for which no such point correspondences exist and do not share the same number of vertices.

C.1 The Alignment of Corresponding Point Clouds

Various methods have been proposed in the literature that solve for the 3-D rigid body transfor-

mation that aligns two corresponding data points, most notably in closed-form [Horn (1987); Besl

and McKay (1992); Challis (1995); Eggert et al. (1997)].

Most deal with only computing the rotational and translational components of the transforma-

tion, though the extension to account for scale changes is immediate [Horn (1987)]. Deriving the

solution for the rotation component is the most challenging step. The translation and scale are easy

to determine once the rotation is known. Existing approaches differ in the rotation representation

used and the mathematical derivation employed. Horn (1987) and [Besl and McKay (1992)] derive

solutions based on unit quaternion representation for rotations. These are appropriate for points in

2 or 3 dimensions. When the data points have more than 3 dimensions, an SVD approach based
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on the cross-covariance matrix of the two point distributions is preferred [Challis (1995)]. For an

extensive comparison of different methods, see [Eggert et al. (1997)].

C.1.1 Least-squares Formulation

We present a method for computing the least-squares solution for the optimal rigid transformation

and scaling that best aligns two corresponding point sets. Let X = {~xi}n
i=1 and Y = {~yi}n

i=1 be two

sets of n ≥ 3 3-D points each for which ~xi and ~yi are known to be in correspondence. We seek the

rotation matrix R, the translation vector ~t and scale factor s that closely aligns X to Y. If the data

were perfect, we would have ~yi = sR~xi + ~t.

We start by defining a least squares objective function

arg min
s,R,~t

n∑

i=1

(√
sR~xi +

1√
s
(~t− ~yi)

)2

. (C.1)

This particular choice of the objective function was proposed by Horn (1987) in order to distribute

the uncertainty in the scale parameter equally between the two point sets. This choice is preferred

over the more typical

arg min
s,R,~t

n∑

i=1

(
sR~xi + ~t− ~yi

)2

because the latter can be shown to introduce an asymmetry in the determination of the optimal

scale factor. In other words, optimal scale factors when aligning X to Y versus when aligning Y to

X are not exact inverses of each other as one would expect.

C.1.2 Solving for the Translation

We begin by computing the centroids of the two point set

X̄ =
1
n

n∑

i=1

~xi ; Ȳ =
1
n

n∑

i=1

~yi ,

and define new coordinates for the two point sets, ~x ′i = ~xi−X̄ and ~y ′i = ~yi−Ȳ, whose centroids are

at the origin of the coordinate system. The objective function can be rewritten in terms of the new

coordinates

arg min
s,R,~t

n∑

i=1

(√
sR~x ′i −

~y ′i√
s

+
√

sRX̄ +
~t− Ȳ√

s

)2

= arg min
s,R,~t

n∑

i=1

(√
sR~x ′i −

~y ′i√
s

)2

+

2
(√

sRX̄ +
~t− Ȳ√

s

) n∑

i=1

(√
sR~x ′i −

~y ′i√
s

)
+

n

(√
sRX̄ +

~t− Ȳ√
s

)2

. (C.2)

Since the first term does not depend on ~t, the second term is equal to zero by construction (
∑n

i=1 ~x ′i =∑n
i=1 ~y ′i = 0), and the third term cannot be negative, we find that the optimal translation is given



128

by
~t = Ȳ − sRX̄ . (C.3)

Once the rotation and scale parameters are estimated, the translation is immediately obtained

using the above formula.

C.1.3 Solving for the Scaling

We have reduced the problem to one of solving for the rotation and scaling of two corresponding

points sets that are centered at the origin:

arg min
s,R

n∑

i=1

(√
sR~x ′i −

~y ′i√
s

)2

. (C.4)

We expand the square to obtain

n∑

i=1

(√
sR~x ′i −

~y ′i√
s

)2

= s
n∑

i=1

~x ′i
TRTR~x ′i +

1
s

n∑

i=1

~y ′2i − 2
n∑

i=1

~y ′i
TR~x ′i

= s

n∑

i=1

~x ′2i +
1
s

n∑

i=1

~y ′2i − 2
n∑

i=1

~y ′i
TR~x ′i . (C.5)

We used the fact that rotational matrices are orthonormal and hence RTR = I3. At this point, we

note that only the first two terms depend on s and only the third term depends on R, which means

s and R can be determined independently of each other:

s = arg min
s

(
s

n∑

i=1

~x ′2i +
1
s

n∑

i=1

~y ′2i

)
(C.6)

R = arg max
R

n∑

i=1

~y ′i
TR~x ′i (C.7)

We consider the scale parameter first. We let A =
∑n

i=1 ~x ′2i and B =
∑n

i=1 ~y ′2i and minimize

sA + 1
sB. By completing the square, we write

sA +
1
s
B =

(√
s
√

A− 1√
s

√
B

)2

+ 2
√

AB . (C.8)

Since only the first term depends on s and it cannot be negative, this expression is minimized when

s =
√

B
A or

s =

√ ∑n
i=1(~yi − Ȳ)2∑n
i=1(~xi − X̄ )2

. (C.9)

The main observation here is that the optimal scale factor can be computed independently of the

translation and rotation. Moreover, the determination of the rotation in the next step is not affected

by the choice of the scale parameter.
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C.1.4 Solving for the Rotation

The derivation of a closed form solution for determining the rotation is by far the most difficult

step. There are many representations possible for rotations. 3 × 3 rotation matrices are the most

commonly used, but enforcing the non-linear orthonormality constraint in closed-form requires deal-

ing with special cases. The unit quaternion representation however eliminates the need for handling

special cases because it is simpler to enforce quaternion unit magnitude than it is to ensure that a

matrix is orthonormal. Quaternions can easily be converted to rotation matrices.

We first provide a solution that computes the rotation matrix from the Singular Value Decompo-

sition of the cross-correlation matrix of the two point sets. We then outline the preferred alternative

procedure that uses the quaternion representation.

The problem we are solving is

arg max
R∈SO(3)

n∑

i=1

~y ′i
TR~x ′i . (C.10)

SVD Method

Since ~y ′i
TR~x ′i is a scalar, it is trivially identical to its trace, where the trace of a matrix is defined

as the sum of the elements on its main diagonal. The objective function can be rewritten as

n∑

i=1

~y ′i
TR~x ′i =

n∑

i=1

tr
(
~y ′i

TR~x ′i
)

=
n∑

i=1

tr
(
R~x ′i~y

′
i
T
)

, using tr(AB) = tr(BA)

= tr

(
R

n∑

i=1

~x ′i~y
′
i
T

)
(C.11)

The matrix C =
∑n

i=1 ~x ′i~y
′
i
T is called the un-normalized correlation matrix (sometimes also called

the cross-dispersion matrix or the cross-covariance matrix) and can be decomposed using Singular

Value Decomposition (SVD) into

C = USVT (C.12)

where U and V are orthonormal matrices and S is diagonal.

By combining the last three equations and using commutativity for trace we obtain

tr (RC) = tr
(
RUSVT

)

= tr
(
(VTRU)S

)
(C.13)

Because S is diagonal with singular values that are almost always positive, we seek

arg max
R∈SO(3)

(
tr

(
VTRU

))
.
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We note that VTRU is a product of orthonormal matrices and hence orthonormal itself and the

identity matrix is the only orthonormal matrix with maximal trace. As such

R = VUT (C.14)

In rare circumstances, the determinant of VUT is not +1 but rather -1, which corresponds to a

reflection instead of a rotation. To account for this special case, the following modification for

obtaining the optimal rotation is sufficient:

R = V




1 0 0

0 1 0

0 0 det(VUT)


UT . (C.15)

Unit Quaternion Method

We present the unit quaternion method due to [Horn (1987); Besl and McKay (1992)] without

the derivation.

First we compute the 3× 3 correlation matrix

C =
n∑

i=1

~x ′i~y
′
i
T

. (C.16)

Second, we build the column vector

∆ =



C23 −C32

C31 −C13

C12 −C21


 . (C.17)

Third, we form the symmetric 4× 4 matrix

Q =

[
tr(C) ∆T

∆ C + CT − tr(C)I3

]
. (C.18)

Forth, the unit eigenvector ~q corresponding to the largest positive eigenvalue of the matrix Q is

the unit quaternion corresponding to the optimal rotation R(~q) as given by Eq. B.4.

C.1.5 Algorithm

1. The optimal rotation represented as a unit quaternion was shown to be the eigenvector as-

sociated with the largest positive eigenvalue of a symmetric 4 × 4 matrix derived from the

correlation matrix of the two point sets. The elements of this matrix are simple combinations

of sums of products of coordinates of the points.

2. The best scale is equal to the ratio of the root-mean-square deviations of the coordinates in

the two systems from their respective centroids.

3. The optimal translation is found to be the difference between the centroid of the coordinates

in one system and the rotated and scaled centroid of the coordinates in the other system.
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C.2 The Iterative Closest Point Algorithm

We now describe an iterative algorithm for computing the registration parameters for two point

clouds for which no such point correspondences exist. The standard approach for rigidly matching

two point clouds is to use the Iterative Closest Point (ICP) algorithm. The algorithm is very simple:

it iteratively updates the transformation between the two point sets as they move closer together.

1. Establish point correspondences between the two point sets using the closest-point criterion;

2. Estimate the rigid transformation using the closed-form solution for aligning two point sets

with known correspondences (section C.1);

3. Transform the points using the estimated parameters;

4. Iterate until some criterion for stopping is met.



Appendix D

Large Scale Principal Component

Analysis

Principal component analysis (PCA) is a mathematical method commonly used for dimensional-

ity reduction that uses linear projection to relate a set of high dimensional vectors to a set of lower

dimensional vectors. It does so by finding a lower-dimensional linear subspace which, for a set size,

accounts for most of the variability in the input data.

The PCA derivation involves computing the eigenvalue decomposition of the data covariance

matrix. This becomes problematic when the dimensionality of the input data is very large and

the covariance matrix cannot fit into computer memory. The general accepted solution has been to

express the PCA basis in terms of the singular value decomposition (SVD) of the data matrix, which

has much lower memory requirements than using the covariance matrix when the number of data

points is very small relative to the number of data dimensions. For cases when the data matrix itself

is too large, we propose using a method for computing a reduced SVD in an incremental fashion in

order to bypass computer memory limitations.

D.1 Principal Component Analysis

Principal component analysis (PCA) is a mathematical procedure often used for extracting mean-

ingful information from overly redundant multi-dimensional data. PCA can be thought of as a

pseudo-rotation of the standard axes for a set of data points around their mean in order to align

them with the major axes of variation in the data set called principal components. The first princi-

pal component accounts for as much of the variability in the data as possible, and each succeeding

component accounts for as much of the remaining variability as possible after all correlation with the

previous principal components has been subtracted out from the data. In effect, PCA un-correlates

the data. While the top principal components accumulate most of the variance in the data, the

bottom ones may be left with noise or be highly correlated with the top ones. By dropping the
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bottom principal components, we can reduce the dimensionality of the input data with minimal loss

of information.

D.1.1 PCA Derivation using the Eigen-decomposition of the Covariance

Data Matrix

Let Xd×n = [~x1, · · · , ~xn] be the data matrix whose columns represent n data points embedded

in a d-dimensional space. PCA starts from the basic assumption that the data comes from a multi-

variate Gaussian distribution in order to find independent axes of variation in the data, and places a

strong emphasis on the statistical importance of the mean and covariance of the data. Without loss

of generality, the mean is factored out before further analyzing the covariance. A zero-mean data

matrix Ad×n = [~a1, · · · ,~an] is obtained by subtracting the empirical mean ~µX =
∑n

i=1 ~xi from the

original data:

A = X− ~µX
~11×n

~µX =
n∑

i=1

~xi

~µA =
n∑

i=1

~ai = ~0d×1 .

(D.1)

PCA seeks a new orthonormal basis UT
d×d for A such that the covariance between different

dimensions of the transformed data points, cov(UTA), is diagonal [Shlens (2009)]. In other words,

it wants to remove the correlated redundancy between different directions. The columns of U are

the principal components of A and are the directions of maximum variance in the data set.

If Bd×n = UTA is the transformed representation of the data set, then its covariance matrix is

given by

cov(B) =
1

n− 1
BBT

=
1

n− 1

(
UTA

)(
UTA

)T

= UT

(
1

n− 1
AAT

)
U

= UT cov(A)U .

(D.2)

Using the fact that U is an orthonormal basis and hence UT = U−1, we obtain

U cov(B) = cov(A)U . (D.3)

We express the fact that cov(B) needs to be diagonal explicitly

cov(B) = Λd×d =




λ1

. . .

λd


 (D.4)
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and further decompose U into its d-dimensional column vectors: U = [~u1, · · · , ~ud]. Equation D.3

then becomes

[~u1, · · · , ~ud]




λ1

. . .

λd


 = cov(A) [~u1, · · · , ~ud]

[λ1~u1, · · · , λd~ud] = cov(A) [~u1, · · · , ~ud] .

(D.5)

Since λi~ui = cov(A)~ui for every column i, it follows that each ~ui is an eigenvector of the

covariance matrix of A and λi the corresponding eigenvalue. This means one can obtain the new

set of basis vectors for A by simply performing an eigen-decomposition of the covariance matrix

cov(A) = 1
n−1AAT.

An eigen-decomposition is possible for any given square symmetric positive semi-definite matrix

like cov(A) and can be found using existing computer-based implementations1. It returns an or-

thonormal matrix Ud×d as a row of column eigenvectors, and a diagonal matrix Λd×d of non-negative

eigenvalues, arranged in decreasing order along the diagonal, such that

cov(A) = UΛUT . (D.6)

Moreover, since Λ is cov(UTA), the diagonal covariance matrix of the data expressed using a new

orthonormal basis (Equation D.4), each of the eigenvalues λi specifies the variance in the data set

along the direction of the principal component ~ui. The columns of the basis U are arranged in the

order of decreasing variance of the data they capture.

Given a point ~x in the original space, we can express it in the transformed space using

~b = UT (~x− ~µX) , (D.7)

and map it back using

~̂x = U~b + ~µX . (D.8)

D.1.2 Alternative Solution using Singular Value Decomposition

The problem with the covariance eigen-decomposition approach however for computing PCA is

that it requires to explicitly compute and store the covariance data matrix in the computer main

memory. The covariance matrix is d× d in size and typically non-sparse. To provide some context,

recall that in Chapter 3 we use PCA to find a reduced-dimension subspace that captures the variance

in how body shapes deform between individuals. There, the data set contains n = 2, 000 individuals

and the shape deformations are encoded using d = 225, 000 dimensions. The covariance matrix

would contain over 5× 1010, 8 byte, elements and would necessitate 377 GB just to store. Clearly,
1The eigen-decomposition of a matrix can be computed, for example, using the MatlabTM function:
[U,Λ] = eig(cov(A)), followed by a re-arrangement of the column vectors of U such that the diagonal elements
for Λ appear in non-increasing order.
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this is currently computationally impractical. In contrast, the data matrix itself requires only 3.35

GB of memory storage.

An alternative approach exists that uses the Singular Value Decomposition (SVD) of the matrix

A directly. SVD is a mathematical method for decomposing any arbitrary matrix A into a product

of three matrices of the form

A = UΣVT , (D.9)

where Ud×d and Vn×n are orthonormal matrices and Σd×n is a diagonal (albeit non-square) matrix

whose elements si along the diagonal, called singular values, are arranged in decreasing order.

Such decomposition can be computed for a given data matrix A using existing computer-based

implementations2.

When this decomposition is integrated into the computation of the covariance matrix of A, we

find that

cov(A) =
1

n− 1
AAT

=
1

n− 1

(
UΣVT

)(
UΣVT

)T

=
1

n− 1
UΣVTVΣTUT , (VTV = I)

=
1

n− 1
UΣΣTUT

= U
(

1
n− 1

Σ2

)
UT

= UΛUT , Λ =
1

n− 1
Σ2 .

(D.10)

It becomes pretty obvious when comparing Equation D.10 with Equation D.6 that the result

of SVD on the data matrix A can be used to infer the eigen-decomposition of the covariance data

matrix without actually computing cov(A). The SVD method applied to A directly returns the PCA

basis U, while the variance and standard deviation along the direction of the principal component

~ui are given by λi and σi, respectively:

λi =
s2

i

n− 1
, σi =

√
s2

i

n− 1
. (D.11)

Note that Σd×n is a non-square diagonal matrix which means there are at most min(d, n) non-zero

singular values along its diagonal. In particular, when n < d, the length of its diagonal is n, which

means only the first n columns of U are relevant for the SVD decomposition. The following reduced,

but equivalent, form is called an economy (or thin) SVD decomposition3:

Ad×n = Ud×nΣn×nVT
n×n = [~u1, · · · , ~un] diag (s1, · · · , sn) [~v1, · · · , ~vn]T . (D.12)

2The singular value decomposition of a matrix can be computed, for example, using the MatlabTM function:
[U,Σ,V] = svd(A). An economy version is also available that computes only the basis vectors corresponding to
the largest singular values and skips the ones whose corresponding singular values are guaranteed to be zero.

3 A similar economy decomposition exists for the case when d < n, which uses only the first d columns of V.
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The reduced SVD form is significant because it is more economical for storage and faster to compute

when n ¿ d.

D.1.3 Dimensionality Reduction

For many practical applications, the sample points in the data set may span a much smaller

dimensional sub-space than the one span by the Ud×min(d,n) basis. Assuming that the data truly

comes from an r-dimensional linear manifold, the entire variance would concentrate in the subspace

spanned by the first r principal components Ud×r = [~u1, · · · , ~ur], ordered in decreasing order of

the variance they capture. Ideally no variance is left in the complement space (λi = si = 0 for i ∈
{d−r+1, · · · , d}), although in practice the sample data set is often corrupted by noise and no singular

value along the diagonal of Σ is exactly zero (r ≤ rank(A) ≤ min(d, n)). Setting all the singular

values in Σ except the r largest ones to zero results in the best r-ranked matrix approximation

under the Frobenius norm difference measure:

Ad×n
SVDr−−−→ U




s1

. . .

sr

0




VT

= [~u1, · · · , ~ur] diag (s1, · · · , sr) [~v1, · · · , ~vr]
T

= Ud×rΣr×r(Vn×r)
T

.

(D.13)

Note that this representation admits a compact form consisting of the first r columns of U and

V and only the first r diagonal elements of Σ. The eigenvectors (principal components) ~ui that

correspond to the largest eigenvalues can be used to reconstruct a large portion of the variance of

the original data. The original space can been reduced with minimum data loss to a space spanned

by a few eigenvectors.

A d-dimensional data point ~a in the original space can be expressed with a few PCA coefficients
~br×1 by projecting onto the lower dimensional space spanned by Ud×r:

~b = (Ud×r)
T
~a (D.14)

from which we can reconstruct the best linear approximation for ~a using

~̂a = Ud×r
~b . (D.15)

D.2 Incremental Singular Value Decomposition

Standard SVD implementations are highly optimized to work in batch form, taking as input a full

matrix containing the entire data set, and produce an exact answer. For many practical cases, the

size of the data set may prove too large for the computer main memory. Moreover, for dimensionality
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reduction problems, only an r-rank approximation of the SVD factorization is actually needed, with

r ¿ min(d, n).

We describe an r-ranked approximation method for computing the singular value decomposition

of very large matrices in an incremental fashion, which can be obtained much quicker and with a

smaller memory footprint than the exact batch SVD methods. The procedure relies on a subroutine

that updates an SVD factorization of some data when additional data is taken into consideration

[Brand (2002)]. Essentially, given a large dataset of points, we compute the exact SVD for the first

r data points and then use the SVD-update subroutine to sequentially include small chunks of the

remaining data points.

D.2.1 Updating an SVD

Given a portion of the data for which we already obtained an r-ranked SVD, we are interested

in updating it given an additional chunk of data points. We assume the data has zero-mean or that

the mean can be estimated a priori and subtracted from the incoming data points.

Let A1 ∈ Rd×n1 be the r-ranked SVD approximation for a portion of n1 data points

A1 = Ud×rΣr×r(Vn1×r)
T

, (D.16)

and let A2 ∈ Rd×n2 be a new chunk of n2 data points which has been mean-centered. Since A2

may not be completely spanned by U, it can be decomposed into a component that lies within, and

a component orthogonal to, the subspace spanned by U. Specifically, let Br×n2 be the projection

coefficients of A2 onto the orthogonal basis U

B = UTA2 , (D.17)

and let the residual Hd×n2

H = A2 −UB = (I−UUT)A2 (D.18)

be the component of A2 orthogonal to the subspace spanned by U. We define an orthonormal basis

for H by applying a standard, economy size, QR-decomposition procedure4

Hd×n2

QR−−→ Jd×n2Kn2×n2 , (D.19)

where J is an orthogonal basis of H and K are the projection coefficients of A2 onto J:

K = JTH . (D.20)

By construction, for Equations D.18 and D.19 we have

A2 = UB + JK =
[
U J

] [
B

K

]
. (D.21)

4The economy size QR-decomposition of a matrix can be computed, for example, using the MatlabTM function:
[J,K] = qr(H, 0).
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Similarly, from Equation D.16

A1 = U(ΣVT) =
[
U J

] [
ΣVT

0

]
. (D.22)

The last two expressions can be combined into

[
A1 A2

]
=

[
U J

] [
ΣVT B

0 K

]

=
[
U J

] [
Σ B

0 K

][
VT 0

0 I

]
.

(D.23)

After diagonalizing the matrix in the middle using standard batch SVD
[
Σ B

0 K

]
SVD−−−→ U1Σ1VT

1 , (D.24)

we obtain

[
A1 A2

]
=

[
U J

]
U1Σ1VT

1

[
VT 0

0 I

]

=
([

U J
]
U1

)

︸ ︷︷ ︸
U2

Σ1

([
V 0

0 I

]
V1

)

︸ ︷︷ ︸
V2

T

.
(D.25)

Note that U2 ∈ Rd×(r+n2) and V2 ∈ Rr×(r+n2) are products of orthonormal matrices and hence

orthonormal themselves, while Σ1 is a proper SVD diagonal matrix by construction. As such, the

updated SVD is given by [
A1 A2

]
SVD−−−→ U2Σ1VT

2 . (D.26)

As this decomposition has r + n2 principal components, we obtain the best r-rank SVD by keeping

the top r most significant principal components and truncating the remaining n2. This is equiv-

alent to replacing the exact SVD solution in Equation D.24 with an r-rank SVDr approximation

(Equation D.13).

D.3 Incremental Principal Component Analysis

Incremental PCA is a direct extension of standard PCA where the input data needs to be

partitioned into smaller chunks in order to compute a reduced r-ranked SVD of the data matrix

in an incremental fashion as described in the previous section. Also necessary for large datasets

is to estimate the mean of the data incrementally as well, which is straightforward using a sum

accumulator and a count accumulator. In the end we obtain r principal components, the sample

mean, and associated variance and standard deviation for each principal component.
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Allen, B., Curless, B., and Popović, Z. (2002). Articulated body deformation from range scan data.

ACM Transactions on Graphics (TOG), SIGGRAPH , 21(3), 612–619.
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