Abstract of “Any Domain Parsing: Automatic Domain
Adaptation for Natural Language Parsing” by David McCladRly.D., Brown University, May, 2010.

Current efforts in syntactic parsing are largely data-hmivThese methods require labeled examples of syn-
tactic structures to learn statistical patterns goverttiege structures. Labeled data typically requires expert
annotators which makes it both time consuming and costlyddyce. Furthermore, once training data has
been created for one textual domain, portability to similamains is limited. This domain-dependence has
inspired a large body of work since syntactic parsing aimsajature syntactic patterns across an entire lan-
guage rather than just a specific domain.

The simplest approach to this task is to assume that thet tdogeain is essentially the same as the source
domain. No additional knowledge about the target domaindtuded. A more realistic approach assumes
that only raw text from the target domain is available. Ttasuanption lends itself well to semi-supervised
learning methods since these utilize both labeled and efddlexamples.

This dissertation focuses on a family of semi-supervisethots called self-training. Self-training creates
semi-supervised learners from existing supervised leawéh minimal effort. We first show results on
self-training for constituency parsing within a single d@m While self-training has failed here in the past,
we present a simple modification which allows it to succeeddpcing state-of-the-art results for English
constituency parsing. Next, we show how self-training isdfcial when parsing across domains and helps
further when raw text is available from the target domaine ©fthe remaining issues is that one must choose
a training corpus appropriate for the target domain or perémce may be severely impaired. Humans can do
this in some situations, but this strategy becomes lessdipahas we approach larger data sets. We present a
technique, Any Domain Parsing, which automatically deteseful source domains and mixes them together
to produce a customized parsing model. The resulting maaeferm almost as well as the best seen parsing
models (oracle) for each target domain. As a result, we hdullysaautomatic syntactic constituency parser
which can produce high-quality parses for all types of teegardless of domain.

Abstract of “Any Domain Parsing: Automatic Domain
Adaptation for Natural Language Parsing” by David McCladRly.D., Brown University, May, 2010.

Current efforts in syntactic parsing are largely data-hmivThese methods require labeled examples of syn-
tactic structures to learn statistical patterns goverttiege structures. Labeled data typically requires expert
annotators which makes it both time consuming and costlyddyce. Furthermore, once training data has
been created for one textual domain, portability to similamains is limited. This domain-dependence has
inspired a large body of work since syntactic parsing aimsajature syntactic patterns across an entire lan-
guage rather than just a specific domain.

The simplest approach to this task is to assume that thet tdogeain is essentially the same as the source
domain. No additional knowledge about the target domaindtuded. A more realistic approach assumes
that only raw text from the target domain is available. Ttasuanption lends itself well to semi-supervised
learning methods since these utilize both labeled and efddlexamples.

This dissertation focuses on a family of semi-supervisethots called self-training. Self-training creates
semi-supervised learners from existing supervised leawéh minimal effort. We first show results on
self-training for constituency parsing within a single d@m While self-training has failed here in the past,
we present a simple modification which allows it to succeeddpcing state-of-the-art results for English
constituency parsing. Next, we show how self-training isdfcial when parsing across domains and helps
further when raw text is available from the target domaine ©fthe remaining issues is that one must choose
a training corpus appropriate for the target domain or perémce may be severely impaired. Humans can do
this in some situations, but this strategy becomes lessdipahas we approach larger data sets. We present a
technique, Any Domain Parsing, which automatically deteseful source domains and mixes them together
to produce a customized parsing model. The resulting maaeferm almost as well as the best seen parsing
models (oracle) for each target domain. As a result, we hdullysaautomatic syntactic constituency parser
which can produce high-quality parses for all types of teegardless of domain.

Any Domain Parsing: Automatic Domain
Adaptation for Natural Language Parsing

by
David McClosky
B. S., University of Rochester, 2004
Sc. M., Brown University, 2006

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in
the Department of Computer Science at Brown University.

Providence, Rhode Island
May, 2010

(© Copyright 2010 by David McClosky

This dissertation by David McClosky is accepted in its pne$erm by
the Department of Computer Science as satisfying the digser requirement
for the degree of Doctor of Philosophy.

Date
Eugene Charniak, Director
Recommended to the Graduate Council
Date
Mark Johnson, Reader

Cognitive and Linguistic Sciences

Date
Dan Klein, Reader
University of California at Berkeley
Approved by the Graduate Council

Date

Sheila Bond
Dean of the Graduate School

Acknowledgements

| am deeply thankful for the help and support I've receivexiirothers as a graduate student. This dissertation
couldn’t have been done without them (besides, even if itdzouwouldn’t have been much fun).

My advisors Eugene Charniak and Mark Johnson were alwap$utend insightful. Eugene and Mark’s
approaches complement each other nicely and | have beemé#&betto be able to learn from both of them.

| am also indebted to the many faculty who gave me feedbackyowank at conferences and elsewhere.
Thanks to Jason Eisner, Tom Giriffiths, Dan Klein, Alon Lavieakim Nivre, Brian Roark, and Noah Smith
for interesting discussions. Many of these lead to subtleatrso-subtle changes to my research direction
vector.

I will miss the BLLIP research meetings, especially thoss tipened with (generally groan-inspiring)
jokes. My lab mates, Matt Lease, Jenine Turner, William™&ieadden (lIl), Micha Elsner, Sharon Gold-
water, Stu Black, Engin Ural, Bevan Jones, David Ellis, Lrenduang, and Stella Frank ensured that our
meetings were always exciting, entertaining, and (nedwwgys) productive.

Additionally, | would like to thank friends from many diffent areas of my life for keeping things inter-
esting. Thanks to Allison Moore, Alptekin Kiip¢u, Antskekkens, Benjamin Van Durme, Bronwyn Lovell,
Carleton Coffrin, Celine Piser, C. Chris Erway, Collin ChyeiDan Grollman, Dan Venning, Drew Perttula,
Eric Rachlin, Frank Wood, Greg Cooper, Guillaume Marcean,Morrissey, Justin Palmer, Kelsi Perttula,
Liz Marai-Renieris, Maggie Benthall, Manos Marai-Rengefilatt Wronka, Melissa Chase, Mike “Spock”
Kass, Mira Belinkiy, Naomi Feldman, Nathan Backman, Rewrfegy, Roi Reichart, Ryan Tarpine, Shane
Bergsma, Sharon Goldwater, Stefan Roth, Stella FrankeSethard, Stu Black, Suman Karumuri, Tom
Kollar, Tomer Moscovich, Tony Evans, Tori Sweetser, Wai®ehudy, and Yanif Ahmad.

Finally, this would not possible without the love and suggiamm my family. Thanks to my parents Nan
and Dan and sister Karine. This dissertation is dedicateaytgrandparents, Herb and Mitzi McClosky and
Aaron and Shulamis Toder.

Contents

List of Tables

List of Figures

1

Introduction

1.1
1.2
13

Roadmap e
Statistical Natural Language Parsing i
Domain Dependence e

Background and Experimental setup

2.1
2.2
2.3
2.4

Generative Parser e e
Maximum Entropy Reranker e
COrpora v e
Evaluation e

Self-training

3.1

3.2

3.3
3.4

Self-training for Parsing e
3.1.1 Experiments . .. oL ..
Parser Portability e
3.2.1 Reranker Portability
3.2.2 Portingto moredistantdomains o o
Parser Adaptation e
Self-Training Extensions e

Analysis

4.1
4.2
4.3

Globalchanges e
Sentence-levelanalysis
Portability Studies e
4.3.1 Parser Agreement. e e

4.3.2 Statistical Analysis of-score differences oo oL

4.3.3 Feature selection forregression

Vii

N

© N o O

11

13
14
15
18
21
21
24
25

4.4

4.5

51
5.2

53
5.4

5.5

Four Hypotheses e e
4.4.1 PhaseTransition e e
4.4.2 SearchEITOrS e e
4.4.3 Non-generativererankerfeatures e oo
4.4.4 UnknownWords
SUMMANY . . . o e e
Automatic Domain Adaptation
Relatedwork e e
Domaindetection L e e
5.2.1 Regressionmodel e
5.2.2 Domain divergence measures and other features
Model combination
Evaluation e
541 Baselines e
Experiments e e
551 CoOrpora
5.5.2 Samplingparsingmodels
5.5.3 Model and feature selection
5.5.4 Maximizing the regression functiono L.
5,55 Results e
556 Analysis
DISCUSSION o e

5.6

6 Conclusion

Bibliography

Vi

42
44
45
46
47
51
51
53
54
54
54
57
58
59
60
63

66

68

List of Tables

1.1

2.1
2.2

3.1

3.2

3.3
3.4
3.5

3.6
3.7
3.8
3.9

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8
4.9

Effects of domain dependence betwasvandBrROwWN Corpora 5
Summary of treebanked corpora and basic statistics. oL 9
Summary of unlabeled corpora and basic statistics. 9

f-scores after adding either parser-best or reranker-bet#isces fromANC to wsJatraining
data e 17
f-scores from evaluating the reranking parser on three bieldections after adding reranker-

best sentences fronaNC towsJtrainingo oo 17
f-scores on all sentenceswsJsection23.o 18
Effects of addinguANC sentences tavsJtraining data orf-score forBROwN corpus 20
Performance of various combinations of parser and keranodels when evaluated on the
BROWNITESESEL e e 21
Parser and reranking pargescore performance on tlsaveD development corpus 22
Comparison of theiEDLINE self-trained parser against previous bestsemia beta2. . . . 23
Evaluationsonthe largeENIAdataset 24
f-scores from various combinationswisJ NANC, andBROWN corpora on theROWN de-
velopmentset L e 25
Oraclef-sCoreS OMWSJI v o v v e e e e e e e e e e 28
Oraclef-scoreS OIBROWN v v e e e e e e e e e e e e e e 28
Predictors for the question: “does the self-trainedg@amprove thef-score of the parse with

the highest probability?” e 30
Agreement between thes+NANC parser with thevsireranker and thBROWN parser with
theBROWNTEranker 32
Differences inf-score between different combinations of parser and reramlodels 32
Logistic model of wheBROWN parser performs better than the self-trainesbparser . . . 33
Performance oBROWN-trained parser vs. self-trainedsJsparser on various categories of
theBROWN developmentdivision 33
Parser performance ovsJwhen trained on different amounts of trainingdata 35
Effect of self-training using only a portion efsJas labeleddata 35

Vii

4.10 Test of whether “search help” from the self-trained slathpacts thevsaitrained model . .

4.11 Sizes ang-scores of reranker featuresubsets

4.12 Performance of the parser under various combinatidistibutions from thevsJjand self-
trainedwsimodelsonwsd

5.1 Cross-domain parser performanceonsixdomains
5.2 List of domains allowed in single round of evaluation
5.3 List of source and target domains for Automatic Domaiaptdtion experiments
5.4 Anexampleregressioninputdatapoint

5.5 Baselines and final results for each multiple-sourcealomdaptation evaluation scenarios .

5.6 Regression weights learned for theNiA andwsJevaluations round for out-of-domain and
iN-dOMAIN SCENANIOS v v e e e

viii

60

List of Figures

1.1

3.1
3.2
3.3

4.1
4.2

51
5.2
5.3

54
5.5

Two parses showing the importance of correct prepositiphrases attachments. 2

Effect of giving more relative weight twsJtraining data on parser and reranking parsscore 19

Reranking parsef-score on development data for four different self-tragréeenarios . . . 22
Precision and recaftscores when testing @ROWN development as a function of the num-

ber of NANC sentences added under four test conditions L. 26
Effect of self-trained model on performance for foufetiént variables. 29
Change in the number of incorrect parse tree nodes betwseand self-trained models as

a function of number of unknownitems o L Lo 39
Fifty most frequent words across all corpora sorted loyatesing frequency 49
Raw values from two domain divergence measures 50
Cumulative oraclg-score (averaged over all target domains) as more modelaademly
sampled e 56
Out-of-domainevaluation e 61
In-domain evaluation 62

Chapter 1

| ntroduction

The syntax of natural language characterizes the possibteisres and orderings of words within a sentence.
Itis generally accepted by linguists that the syntactiecttire of a sentence is key to determining its meaning.
Many theories of semantics state that meaning is compnaitand that the compositional units are based on
syntactic constructions. This dissertation centers ataatural language parsing, which explores algorithms
for finding the syntactic structure of sentences. Our pgrsiechanism is statistical in nature meaning that
it does not make categorical decisions about grammaticalitall structures for a sentence are possible,
but some are better than others. Our training data condissntences labeled with their correct syntactic
structure and we create our parsing models by estimatirigusstatistical distributions over the syntactic
structures within these corpora. These statistics cantt@applied to new sentences which we assume follow
the same distributions.

Current parsers are quite robust provided that the sergemeeare parsing actually do follow these dis-
tributions. However, the accuracy of most statistical peslegrades on sentences that have significantly
different statistical patterns than the training data. Qoal is to produce parsers which can analyze sen-
tences as well as humans, so this lack of generality is ar iaad one of the primary concerns of this
dissertation. For example, the text of Stephen ColbertskBbam America (And So Can You!)” follows
different statistical patterns than the text in a trangasiphis television show, “The Colbert Report” since
the former is written text and the latter is fluid speech. Bamaple, the transcript of the television may be
less fluent and contain more informal constructions tharteékein the book. While humans do not have
difficulty parsing either of these texts, current parsingdele are not general enough to span both well. In
the parsing literature, this difficulty is usually attrildtto a difference imlomain By domain, we mean the
style, genre, and medium of a document. Thus, Colbert’'scsper his show, his writing in his book, and
the news stories that inspire his show all come from diffedamains. Under current approaches, one would
need to train a different parsing model for each domain (ky lange requiring hand-annotated data) and
select the appropriate parsing model for each document diksertation explores methods of performing
automatic domain adaptation using either hand-annotateshotext, should annotations be unavailable.

Before going further, we start with a concrete example oftyipes of structure we hope to learn. Fig-
ure 1.1 shows two of the possible parse trees for the sentBungene buys a bowtie with polka-dots.” The

1

S
/\
NILP VBZ NP
/\
Eug|ene bu|ys NP PP
T~
a bowtie with polka-dots

(a) Parse tree where the bowtie has polka-dots.

S
/\
NP VP
_— 7 T
NILP VBZ NP PP
T~
Eug|ene bu|ys a bowtie with polka-dots

(b) Parse tree where polka-dots are used to make the bowthazse.

Figure 1.1: Two parses showing the importance of corregigsitional phrasedP) attachment.

leaves of the trees (terminals) are the words of the sendetioeir parents are their parts-of-speech (preter-
minals), and the remaining internal nodes represent lqigerses and clauses. Since syntactic constituents
are represented as nodes in the trees in our representatiarse the words “node” and “constituent” inter-
changeably. In both examples, the upper node represergatine sentenceS) and expands to a noun phrase
(NP) and a verb phras&P). The noun and verb phrases are in turn broken down into $tsbdme triangles
under theNPs andPPs indicate that the subtree has been elided for simpler d@igras The parse trees
differ in their handling of the prepositional phrase “witblka-dots” PP) — the upper parse tree attaches
it under a noun phrase while the lower parse tree places gruhe verb phrase. As a result, the two trees
have different semantics. In the upper tree, Eugene is buyibowtie which is patterned with polka-dots
but in the lower tree, polka-dots are (somehow) being usguitohase a bowtie. Outside of computational
linguistics articles like this one, few humans would notice latter reading since the former reading is much
more salient. However, we note that the lower tree is notemslly incorrect as it represents the standard
reading of the sentence “Eugene buys a bowtie with cashd Atge that these two trees are only two many
possible parses that a statistical parser would find forsthigence.

Parse trees like those in Figure 1.1 are valuable buildingkd for other linguistic applications (Lease et
al., 2006). Examples of these include language modelingiR@001; Charniak, 2001), speech recognition
(Chelba and Jelinek, 1998), machine translation (Charatial., 2003), dialogue systems, semantic role la-
beling (Pradhan et al., 2007), information extractiontiseent analysis (Greene and Resnik, 2009), question
answering, summarization (Turner and Charniak, 2005kfeoence (Luo and Zitouni, 2005; Charniak and
Elsner, 2009), and document coherence (Barzilay and Lapa@s8; Elsner et al., 2007; Elsner and Charniak,

2008). Outside of computational linguistics, parsing toastl applications in biology (Liu et al., 2007; Shi et
al., 2007; Medlock, 2008; Miyao et al., 2008; Airola et alD0B; Kilicoglu and Bergler, 2008) and forensics
(van Halteren, 2004; Luyckx and Daelemans, 2008).

1.1 Road map

A brief overview of this dissertation follows. In the remdar of this section, we provide a brief history
of statistical natural language parsing (Section 1.2) aedipus work on domain dependence (Section 1.3).
Section 2 gives an overview of our experimental setup inolydetails of the parser, data sets, and evaluation
metrics. We introduce and test self-training, a semi-stiped technique for improving parser performance
both in a single domain as well as across domains, in Secti@e&ion 4 shows empirical analyses of self-
training and explores several hypotheses of how it worksr pbaposed work, a method of automatic domain
adaptation, is covered in Section 5. Finally, we concludéwisummary and future work in Section 6.

1.2 Statistical Natural Language Parsing

There have been a wide variety of different statistical apphes to parsing natural language. As stated be-
fore, on the whole, these methods capture statisticalipatieom labeled corpora for the purpose of applying
them to new text. However, the specific types of patterns @xaan how they’re collected, and how they're
applied vary greatly. Syntactic structures can be reptedamder many different formalisms, (context-free
grammars, tree adjoining grammars (Schabes, 1992), catapjncategorical grammars (Steedman, 2000),
and dependency graphs (Mel'€uk, 1988; McDonald et al. 5200vre and Nilsson, 2005) to name a few)
each allowing its own avenues of approaching the problenasipg. Of course, the parsing formalism used
is only one of many dimensions in the space of parsing algmst Other dimensions include the type of
the model (generative, discriminative, hybrid, non-pialistic) and the scope of parsing decisions (local or
global). We cannot provide complete coverage here and $o@mlil discuss some of the key papers related
to our approach.

The first statistical natural language parsers (Black etl893; Jelinek et al., 1994; Magerman, 1995)
factored parsing decisions into three categories: paspetch tagging, connecting constituents, and labeling
constituents. Each type of classification was made by detisees where nodes in the tree ask questions
about the words and previous tagging and parsing decis@oiins (1997) and Charniak (1997) used gener-
ative probabilistic approaches for parsing where prolstluicontext free grammars (PCFGs) were extended
to include bilexical dependencies and parsing history. Motthe improvements came from annotating
nodes with their lexical heads and careful smoothing to etk sparsity introduced by additional condi-
tioning events. Ratnaparkhi (1999) provided the first disizrative parsing model where a maximum entropy
classifier chooses between several local parsing actiarditamned on parsing history and the current state.
In addition to being one of the first works on parser adaptatite paper also points out that the parsing charts
contain substantially better possible parses than thasedfo the Viterbi parse. This has inspired work on

INote that throughout this document, performance will rédethe accuracy of a parser, not its runtime speed.

n-best reranking (Collins, 2000; Charniak and Johnson, Pan8 ultimately forest-based reranking (Huang,
2008). Collins (2000) provided the firatbest reranker trained using the averaged perceptroniflgofsee
also Collins and Koo (2005)). Bod (2003) presented an ‘altitiiees” approach where the probability of a
tree is proportional to the product of the probabilitiestsfsubtrees in the training corpus (where there are
several methods of determining each subtree’s probahilMgural networks were used to estimate genera-
tive and discriminative parsing models in Henderson (2004 reranking parser by Charniak and Johnson
(2005) introduced a new search strategy (the coarse-t@dirser) and a reranker estimated with a maximum-
entropy model. We will discuss these two components in gresgpth in Sections 2.1 and 2.2. Petrov et al.
(2006) created a refined unlexicalized PCFG grammar by teglyssplitting and merging nodes in order to
improve corpus likelihood. Recently, there have been séattempts to train global discriminative models
of parsing (Petrov and Klein, 2008; Finkel et al., 2008; €gas et al., 2008). Huang (2008) presents forest-
based reranking which extends the ideas fretrest reranking to pick constituents from a parse chartaust
complete parses in anrbest list.

1.3 Domain Dependence

While parsers have seen substantial improvements in agcorain-domain text (i.e. text from the same
domain as the training set), their performance on sentengsile of their training domain has not necessarily
followed the same trends. This has inspired work on the thpkiser adaptation where the goal is to transfer
knowledge about one domain to another. Work in parser atlapta premised on the assumption that one
wants a single parser that can handle a wide variety of danaivhile this is the goal of the majority of
parsing researchers, it is not quite universal. Sekine{L&Bserves that for parsing a specific domain, data
from that domain is most beneficial, followed by data from shene class, data from a different class, and
data from a different domain. He also notes that differemdios have very different structures by looking at
frequent grammar productions. For these reasons he tak@®#ition that we should, instead, simply create
treebanks for a large number of domains. While this is a aaiteyosition, it is far from the majority view.

One benchmark for parser adaptation has been the accurammsivire trained statistical parsers on
literature. There have been a large number of studies otatsksvhere parsers are trained onwW&icorpus
(Wall Street Journal news) and evaluated ongRewN corpus (literature) (Ratnaparkhi, 1999; Gildea, 2001;
Bacchiani et al., 2006; McClosky et al., 2006b). More dstaih these corpora can be found in Section 2.3.
All of these works look at what happens to modevsxtrained statistical parsers (those by Ratnaparkhi,
Gildea, Roark, and Charniak and Johnson respectively)adsirig data varies in size or relevance. We
concentrate particularly on the work of (Gildea, 2001; Baani et al., 2006), though these trends are echoed
in McClosky et al. (2006b) which will be covered in greatepttein Sections 3.2 and 3.3.

In Table 1.1, we can see the effects of domain dependenceprébise meaning of-score, our primary
evaluation metric, will be covered in Section 2.4 — for nowngly note that highelf-scores mean more
accurate parses. Whaensytrained parsers are evaluated on BrWN test set instead of thesJtest set,
performance drops by approximately 6% . If we train ongR@WwN corpus instead (third row of the table),

2As opposed to local discriminative models where parsingsitts are made locally, e.g. (Ratnaparkhi, 1999; Hender2004).

f-score
Training Testing | Gildea (2001) Bacchiani et al. (2006)
WSJ WSJ 86.4 87.0
WSJ BROWN 80.6 81.1
BROWN BROWN 84.0 84.7
WSHBROWN BROWN 84.3 85.6

Table 1.1: Effects of domain dependence when evaluating®randeBrROWN using different combinations
of wsyandBROWN for training. Gildea (2001) evaluates on sentences of kergt0, Bacchiani et al. (2006)
on all sentences.

we recover about half of this performance dfojm the final row of the table, we see that there is a moderate
improvement if we combingzsjandBROWN training sets. One might be tempted to conclude that the best
course of action is to combine all corpora into one trainiag dndeed, as we will see in Section 5.4.1,
this technique can obtain quite good performance in genétalever, we will see that this is not always
beneficial — whilewsJis not too distant fronBROWN, other corpora, especially those constructed by parsers
rather than humans, are different enough to cause damage.

There are many different approaches to parser adaptatimedi®an et al. (2003b) apply co-training
to parser adaptation and find that co-training can work acdasnains. There is a considerable amount of
biomedical text available now. These documents use largtleg is considerably different from typical
training sets that special attention has been given to thisaih and the desire to automatically extract key
information and more accurately search these documents$gised various works (Lease and Charniak,
2005; Clegg and Shepherd, 2005; Clegg and Shepherd, 20689g @nd Shepherd (2005) provide an ex-
tensive side-by-side performance analysis of several mostatistical parsers when faced with such data.
They find that techniques which combine different parsech ss voting schemes and parse selection can
improve accuracy on biomedical data. Lease and Charnidd5j2@se the Charniak parser for biomedical
data and find that the use of out-of-domain trees and in-dow@iabulary information can considerably
improve performance. Gildea (2001) and Bacchiani et al0§200ok at how much of an improvement one
gets over a pureROWN system by addingvsJidata (as seen in the last two lines of Table 1.1). Both systems
use a “model merging” approach as described by Bacchiahi @06). The different corpora are, in effect,
concatenated together. However, Bacchiani et al. (200@pee a larger gain by weighting the in-domain
BROWN data more heavily than the out-of-domaisidata. The above works focus on adapting constituency
parsers. There has recently been a lot of attention givedaptang dependency parsers in the CoNLL 2007
Shared Task (Nivre et al., 2007).

3The BROWN training set is smaller than the'sJtraining set. This may, in part, explain why only half of therfprmance is
recovered.

Chapter 2

Background and Experimental setup

In this section, we describe the components of our expetisnerhis includes the Charniak and Johnson
parset (Charniak and Johnson, 2005), several labeled and unthbata sets (corpora), and our evaluation
measures for determining the accuracy of candidate pass.tr

Our parsing model consists of two phases. First, we use aapilidiic generative parser to produce a
list of then most probable parses (which we will refer to asrahest list). Next, a discriminative reranker
reorders the parses within thebest list. These components constitute two views of the,dabugh the
reranker’s view is heavily tied to the first stage parser. fEnanker can only select parses from within the
best list and, moreover, uses the probability of each pagsesiccording to the parser as a feature to perform
the reranking. Nevertheless, the reranker’s value comesifs ability to make use of more powerful features
which would be difficult to express in a generative framework

For some experiments, we evaluate only the first stage papgformance to in order to isolate it from
the reranker. In other cases, we evaluate the rerankingpassa whole. We distinguish these scenarios by
using the ternparseror first stage parsewhen we use only the generative parser eardnking parseifor
when we use both stages.

2.1 Generative parser

The first stage of our parser is the lexicalized probahilistintext-free parser described in (Charniak, 2000;
Charniak and Johnson, 2005). The parser’'s grammar is a Bewbthird-order Markov grammar, enhanced
with lexical heads, their parts of speech, and parent anttgia@rent information. The parser uses five prob-
ability distributions, the head’s part of speech tag, thachiself, the child constituent which includes the
head, and children to the left and right of the child constitu As all distributions are conditioned with five
or more features, they are all heavily backed off using Creaknff (theaverage countethod from Chen
and Goodman (1996)) to alleviate data sparsity. The bagkotimeters are determined from held out data.
Additionally, the statistics are lightly pruned to remotiese that are statistically less reliable.

1Available for download ahttp://bllip.cs.brown.edu/

The parsing model assigns a probability to a parbg a top-down process of considering each constituent
cin 7 and, for each, first guessing the preterminal (part of speech tag) ¢fc), then the lexical head of
h(c), and then the expansion ofinto further constituents(c). Thus the probability of parse is given by
the equation

P(m) = [] P |Ue),H(e))

cem

-P(h(c) [t(c), U(c), H(c))
P(e(e) [1(e), t(e), h(c), H(e))

wherel(c) is the label ot (e.g., whether it is a noun phradeR), verb phrase\(P), etc.) andH(c) is the
relevant history of: — information outside: that the probability model deems important in determinimg t
probability in question(c) may contain (among other possible features) the parentopaf speech, the
grandparent’s head, and/or the part-of-speech of thequiewsibling node.

For each expansiomr{c), we distinguish one of the children as the “middle” chilfl(c). M(c) is the
constituent from which the head lexical itelnis obtained according to deterministic rules (called head
finding rules) that pick the head of a constituent from amdwegteads of its childrehTo the left of M is a
sequence of one or more labélg¢) including the special termination symhaland similarly for the labels
to the right,R;(c). Thus, an expansiof(c) looks like: (all symbols in the following are functions @fvhich
we have omitted for simplicity)

| — ALp...LiMRy...R, .

The expansion is generated by guessing fisstthen L, throughL,,.1 (= A) in order, and similarly
for Ry throughR,,+1. In practice, we condition only on the previous three cdustits generated rather all
constituents between the current constituent&h@), forming a Markov grammar for expansions.

As in Charniak and Johnson (2005), the parser can producelsst list rather than a single parse.
However, the:-best parsing algorithm described in that paper has bedacegpby the much more efficient
algorithm described in (Jiménez and Marzal, 2000; Huartg@mang, 2005). For our experiments, we use
the 50 most probable parses unless stated otherwise. THaispter value was chosen from evaluations on
development data (Charniak and Johnson, 2005). Incretisrgjze of the:-best list improves performance
but with diminishing returns.

2.2 Maximum Entropy Reranker

The second stage of our parser is a Maximum Entropy reraslagscribed in (Charniak and Johnson, 2005).
The reranker takes thebest parses for each sentence produced by the first stageatjea parser and selects

2This may sound like a non-generative process since in oodexpgand constituent, we need to know the middle child efwhich
relies on the children of. However, the head finding rules are only used to mark theshgathe training data. The model is
responsible for generating the middle children at test time sense, the head finding rules are encoded as part ofathear.

the highest scoring parse according to the its model. It toesising the reranking methodology described in
Collins (2000), using a Maximum Entropy model with Gaussiegularization as described in Johnson et al.
(1999). The reranker classifies each parse with respectarga humber features (typically about 1.3 million
— most of which only occur on few parses). Features are defigedbstract feature schemas which produce
specific feature instantiations when given the trainingadet input. The features we use consist of those
described in Charniak and Johnson (2005), together withdditianal feature schema f&@DGE features.
EDGE features consist of the parts-of-speech, possibly togetite the words, that surround (i.e., precede
or follow) the left and right edges of each constituent with goal of capturing some distituent information.
Other examples of reranker feature schemas includ@ NG REE, (depth-limited subtrees of the original
tree)RULE, (context-free rules with varying amounts of contex) 3R, (how many coordinated structures
are parallel) and, most importantly, MIGP (the log-probability of the tree from the first stage pgrsés
one can see, some of these features could be implementee finsthstage parser, but others (e.goRBR
andeDGE features) would be nearly impossible to capture withoubithicing serious data sparsity.

Given a data set with training and development divisions,cveate a reranker in the following way.
First, we parse the training portion of the data set with @@-€ross-validation. This gives usbest lists for
sentences in each fold of the data set as parsed by a modeldman the other 19 folds (one of these 19 folds
is used as development data). Withinsratbest list, each parse is eithemanner (if its f-score matches the
highestf-score within the:-best list — note that there can be multiple winners) mser. Our next step is to
select features that distinguish winners from losers &t iz times or more in the training set. This pruning
step helps remove unpredictive and overly specific featuiiesn-best lists along with their gold parses are
fed to a numerical optimizer to estimate feature weights fegularization weights are tuned by evaluating
on the development portion of the data set.

2.3 Corpora

In this work, there are two large classes of corpora: labaledi unlabeled. Each labeled corpus consists
of a set of sentences which have been tagged with part of sgags and bracketed into a constituency
structure like those in Figure 1.1. Human annotators weti@ed and labeled the trees according to a set
of standard guidelines (Bies et al., 1995; Bies et al., 2009)nlabeled corpora are raw text and do not
include part of speech tags, constituent brackets, or esetesce boundari€s The names, descriptions,
and basic statistics of the labeled and unlabeled corperénatuded in Tables 2.1 and 2.2, respectively.
“Tokens/type” is the average number of word tokens we'vens#geesach word type. A high number in this
column indicates the corpus includes a large amount of wdaaprepetition, though this is also a function
of corpus length — shorter corpora have a lower maximum tekgpe value. Note that these statistics are
taken over each complete treebank and in many cases thecerarentions for dividing the treebanks into
training, development, and test sections. The rest of #d8an describes each corpus in further detail.

Our primary source of labeled data is the Penn Treebank (\Maet al., 1993). The Penn Treebank

SFor all unlabeled corpora, sentence boundaries were iddvieea simple discriminative classifier trained from a pmtiof the
labeled corpora.

Name Description Total sentences Avg. sentence length nEskpe
WSJ Newspaper 43,594 25.5 2616
BROWN Multiple genres 24,243 20.0 180
SWBD Phone conversations 104,482 9.2 62.3
BNC Multiple genres 1,000 28.3 3.9
ETT Translated broadcast news 4,834 25.6 14.8
GENIA Biomedical articles 10,848 27.5 19)9
Table 2.1: Summary of treebanked corpora and basic statisti
Name Description Total sentences Avg. sentence length nBdipe
NANC Newspaper 23,075,637 23.2 407.5
GUTENBERG Literature 687,782 26.2 83.1
BIOBOOKS Biology textbooks 79,540 22.5 327
MEDLINE Biomedical articles 278,192 27.2 41(5

Table 2.2: Summary of unlabeled corpora and basic statistic

includes the Wall Street Journal§J, BROWN, and SWBD corpora. wsJ collects approximately 40,000
sentences of newspaper stories from the newspaper of treersame in 1989. The corpus is divided into 25
sections, numbered 0 through 24:sJhas become the de facto standard for statistical parseuagiah in
English. Traditionally, sections 2—21 are used for tragrparsers, section 24 is used for held-out development
(though some authors use 0 or 22), and section 23 is used &befialuation.

The BROWN corpus (Francis and Kucera, 1979) consists of many diftegenres of text, intended to
approximate a “balanced” corpus. While the compkewN corpus consists of domains in both the fiction
and nonfiction categories, the sections that have beereldléth parse trees are primarily those containing
fiction. Examples of these sections include science fichamor, romance, mystery, adventure, and “popular
lore.” We use the same divisions as Bacchiani et al. (2006)p base their divisions on Gildea (2001).
Each division of the corpus consists of sentences from allave genres. The training division consists of
approximately 80% of the data, while held-out developmeuttesting divisions each make up 10% of the
data. The treebanked sections contain approximately Q5&@tences (458,000 words).

Switchboard $wBD) is a collection of “spontaneous conversations” recordethftelephone calls. Par-
ticipants in each telephone call were asked to converset abpewf 52 possible topics. We ignore the actual
audio portion of this corpus and use only the transcriptsheéé conversations along with their syntactic
trees. These trees include disfluency information to irtdisaeech repairs and related acts. Parsing speech
is a task unto itself and not the focus of this work. Thus, fastrof our experiments, we assume that our
corpora have had their speech repairs excised (e.g. asmsdolet al. (2004)). Note, however, that many of
the techniques in this dissertation could be incorporateu systems that jointly parse and perform speech
repairs.

Like theBROWN corpus, the British National CorpusNC) aims to approximate a balanced corpus with
a large number of genres using British English instead of Acaa English. The fulBNC contains over 100
million words but lacks syntactic annotations. A small ®thid the sentences have been annotated by (Foster

10

and van Genabith, 2008; Foster and Dickinson, 260Re sentences were chosen randomly, so each one is
potentially from a different domain.

The English Translation Treebank7T (Bies, 2007), is the translation of Arabic broadcast nevasfr
2005. The English translations and the syntactic annaitatieere created by humans as opposed to any
automatic mechanisms. In terms of domains, the corpus caindoght of as containing elements of both
wsJandswBD. Many entities in the corpus are left as transliterated Aredsulting in a unique and unusual
vocabulary.

TheGENIA treebank (Tateisi et al., 2005) is a corpus of abstracts thenMedline database selected from
a search with the keywords “human,” “blood cells,” and “saription factors.” Medlingis a large database
of abstracts from a wide variety of biomedical literatur&us, theGENIA treebank data are all from a small
domain within biology. Since a new version of this treebardswroduced during our earlier experiments,
we regrettably use two different versions of this treebdrkvious work and some of our earlier experiments
USEGENIA beta 2 while our more recent experiments use the largerorec$iGENIA which is a superset of
the earlier treebank. Our division of the largeENIA treebank is available onlirfe.

We now turn to our unlabeled corpora. The North American N&ag corpus,NANC (Graff, 1995),
is roughly the unlabeled equivalentwfsjand consists of approximately 24 million sentences froneisgv
news agencies. Our experiments use at most the first thréemskentences frommANC. NANC contains
no syntactic information. We perform some basic cleanupsimc to ease parsing (some orthographic
normalization).NANC contains news articles from various news sources incluttingVall Street Journal,
the New York Times, Los Angeles Times, and others. In our rpents, we only use articles from the LA
Times. Note thatvsiandNANC do not overlap: ThevsJstories are from 1989 whereasNC covers the
period from 1994-1998.

Our GUTENBERG corpus is 214 randomly selected books from Project Gutgnb@&roject Gutenberg
transcribes books which have entered into the public doanraitreleases them in machine-readable formats.
Our selected books cover a broad range of subjects, ingumbnks such as “An Icelandic Primer,” “Celtic
Literature,” “The Poetical Works of Henry Kirke White,” arftfliss Parloa’s New Cook Book.” Unfortu-
nately, the project does not track the year that each bookmnigten, but copyright law requires that none of
these books are especially modern (unless they were patliglthout a restrictive license).

We created a corpus of seven online biology textboeksgooKs). One textbook is a general biology
textbook while others focus on more specific topics (bastegy, biochemistry, or immunology). Various
processing has been applied to extract the text from its HEblirce while excluding figures and tables. The
corpus contains almost 80,000 sentences.

MEDLINE is an unlabeled corpus of biomedical article abstracts we lwallected from 50 different
biomedical journals in the same online databasemsiA.® It contains approximately 270,000 sentences —

4http://nclt.computing.dcu.ie/ ~ jfoster/resources/ , downloaded January 8th, 2009.
Shttp://www.ncbi.nlm.nih.gov/PubMed/

Shttp://bllip.cs.brown.edu/download/genial.0-divisio n-rell.tar.gz
http://www.gutenberg.org/

8We use the EFetch interfacehttp://www.ncbi.nim.nih.gov/corehtml/query/static/e fetchlit_help.
html

11

a random selection of about 31,000 abstracts from MedlimeeShese articles were chosen randomly, they
span a large number of biomedical subdomains, not just thas@ins present iIBENIA.

For experiments in Chapter 5, we preprocessed these cdmpmaove many of the differences in anno-
tation. Examples of these changes include standardizenggé of tags lik&IML, NX, NAC, convertingdVS
andBES to VBZ (since they only appear iswBD), removingEDITED nodes inswBD, BROWN, andeTT,
and removing rare tags froBROWN such asAUX andNEG. Nevertheless, it is inevitable that annotation
differences remain as the corpora were each created unglethystifferent annotation guidelines by differ-
ent annotators. One of the larger outstanding issues igrilngwre within noun phrases which some corpora
annotate (e.gGENIA andeTT) while others do not. When parsing across these corporgdtser produces
too much or too little internal structure in noun phrasesstlowering our accuracy (thus, our parsers may
be performing even better than we report). Additionallyjle/ve aimed to normalize tag sets, we did not
address how individual words are tagged across differemtora. To remove further differences of anno-
tation or formalism, there are several works on the subjgotith and Eisner (2009) addresses the issue of
structural mismatches by using a quasi-synchronous graniihea quasi-synchronous grammar allows them
to automatically learn the rules to transform treebanksifome annotation style to another. Since a given set
of sentences tend to be annotated under only one annotatieme, they use automatic parses as an approxi-
mation of the other annotation scheme. Boyd et al. (2008)rde=s how to detect many structural errors from
inconsistent annotations and Dickinson (2009) shows hgeéency errors can be automatically corrected.
To address mismatches in tagging, Dickinson and Jochin8(2fiScusses a method for determining reliable
tagging patterns. Niu et al. (2009) show how to convert ebmek in one formalism (dependency structures)
to another (constituency) without heuristic rules. Thialdde useful for obtaining additional corpora to use
as test sets.

2.4 Evaluation

Our evaluation follows the PARSEVAL standards (Black etE91) for constituency evaluation. To evaluate
a candidate parse against its human-annotated counteigaied thegold pars¢ we consider the overlap
between candidate and gold constituents. Each constiisieapresented as a labeled span (e.g. words 7
to 12 bracketed by aNP). We ignore the root node since it is trivial and pretermimadies since they are
considered outside the syntactic structure. Given thesdists of constituents, we can calculate the labeled
precisionandrecall. Precision tells us how many of the nodes in the candida¢edre present in the gold
parse whereas recall tells us how many nodes in the gold pemsepresent in the candidate tree. Precision
and recall can be formally defined in terms of the number & positives (TP), false positives (FP), and false
negatives (FN).

.. TP

labeled precision (LP) = TP 1 TP
TP

labeled recall (LR) = TP TN

In many cases, we seek a single number summarizing perfaengrscore (sometimes spelldd or

12

F-measure) is the weighted harmonic mean of precision aral (®an Rijsbergen, 1979). The most general
form is parameterized by which determines the relative importance of precision awhlt. By setting

£ = 1, we weight them equally which is the standard practice fos@aevaluation. One of the reasons that
the harmonic mean is used instead of the arithmetic meamighh harmonic mean of two numbers is O if
either of these numbers is 0. Thus, a ggestore requires both good precision and good recall scinss (
trivial to achieve a perfect precision score — simply doaturn any constituents).

(1+3?)- (LP-LR)

F
b (32 -LP + LR)
2.-LP-LR
-score = F| = ———
f ! LP + LR

Two other statistics that we can compute given candidatgalithbarse trees asxact matctandcrossing
brackets Exact match is the percentage of candidate parses thatearidal to their gold parses (i.e. those
with f-score = 1). Crossing brackets is the average number of itgerst spans that cross between the
candidate and gold parses. Given two constituent spang and(a,b) wherez < y, a < b, we say that
they cross ifa < y ora < b. We useevalb ° and Sparsev#l (Roark et al., 2006) to obtain these measures.
While f-score is useful for measuring the quality of a single caatdi@dgainst the gold standard, we typically
have multiple candidate parses for a given sentence due tesage of am-best parser. One measure that is
commonly employed is the notion of tleacle f-score. Given a list of, candidate parses of a sentence and
its corresponding gold parse, the oraglscore is defined as thgscore of the highest scoring parse in the
n-best list. This measure is useful as an upperbound on reraekformance.

To determine whether the differencefirscore between two sets of candidate parses is statigtgigHif-
icant, we use a randomized permutation test based on themanation of the paired sampteest described
by Cohen (1995). We use Dan Bikel's implementatiaas well as an in-house version by Mark Johnson (this
is not to imply that either implementation is incorrect).r Bois test, the null hypothesis is that the two sets
of candidate parses (call themand B) were produced by the same model and that each sentenceaiyyequ
likely to have either score. In each iteration of the test,oneate two sets of scores which we’ll call and
Y. Theith sentence itX, X;, is given with equal probability either the scofie or B; andY; is assigned the
other. Thus, we end up with two sets of scrambled scores., Nextecalculate the score function in question
(typically f-score in our case) faK andY and take the difference. Ovériterations, we count how many
times|u(X) — w(Y)| > |u(A) — u(B)| wherep is the score function. If this occugstimes, oump-value for
this testis(j +1)/(k + 1).

http://nlp.cs.nyu.edu/evalb/
10http://cslu.cse.ogi.edu/people/roark/papers_cv.html
Uhttp://www.cis.upenn.edu/ ~dbikel/software.html

Chapter 3
Self-training

In this section, we introducgelf-training a simple semi-supervised learning technique which carsbd to
improve parser performance. We first present a general féselfotraining and review other semi-supervised
learning techniques. Next, we show how self-training candes to achieve state-of-the-art performance for
parsing (Section 3.1). Finally, we demonstrate that salfiing can also be applied successfully to the tasks
of parser portability and parser adaptation (Sections 3d23a3 respectively).

To perform self-training, one needs a collection of labelad unlabeled data, a labeling function which
labels an unlabeled datum according to a specific model, drairang function which given labeled data
creates a new model. The process is outlined in Algorithmidst,Fve create a base model from available
labeled data which we use to label the unlabeled data. Théirgsautomatically labeled data is then treated
as truth and combined with the actual labeled data to traisvamodel. Optionally, one may weight the
labeled data more highly than the automatically labeled @athis combination. If there is significantly
more unlabeled data than labeled data, this may be necdesargure that the labeled data is not completely
washed out. Another variation is to only select a portionh# automatically labeled data(() in the
pseudocode performs this operation). Ideally, one codktsenly the more reliable elements of the data
without biasing the resulting distribution too heavily.dractice, this is often difficult and(-) ends up being
the identity function. Self-training can be iterated ovéfetdent sets of unlabeled data if desired: the self-
trained model in one iteration becomes the base model ingke(Algorithm 1 thus shows the steps for a
single iteration).

Semi-supervised learning has attracted much attentioecient years and has inspired a wide variety of
approaches. A survey of these techniques can be found in200v] and the ACL 2008 Semi-supervised
Learning tutorialt The Semi-supervised Learning for Natural Language Praug¥¥orkshop (Wang et al.,
2009) was formed in response to this interest. Most semersiged learning approaches can be categorized
as either bootstrapping, (which includes self-trainind asually involves minimizing a proxy for error on the
unlabeled data) graph regularization, (where the probdesmpressed as a graph and unlabeled data provides
a mechanism of smoothing the graph) or structural (wherdiarxproblems which are predictive for the

Ihttp://ssl-acl08.wikidot.com/

13

14

Input: labeled data, unlabeled data, weighting parametex
Output: self-trained model

base model « train(labeled data)
autolabeled data «— label(base model, unlabeled data)
selected autolabeled data — o(autolabeled data)
combined data «+— o x labeled data + selected autolabeled data
self-trained model « train(combined data)
return self-trained model
Algorithm 1: Pseudocode for one iteration of self-training

original task are used to label the unlabeled data). We fpdusarily on bootstrapping techniques here, but
note that other approaches are often used in the field asBegihgtt and Demiriz, 1998; Nigam et al., 2000;
Ng and Cardie, 2003; Zhu et al., 2003; Mihalcea, 2004; Andbzmang, 2005b; Ando and Zhang, 2005a,;
Blitzer et al., 2006; Fraser and Marcu, 2006; Deoskar, 2808;et al., 2008; Wang et al., 2008).

3.1 Sdf-training for Parsing

Self-training has been attempted several times for parsisigglly without success. To our knowledge, the
first reported use of self-training for parsing is by Chaknjg997). He used his parser trained wi$J to
parse 30 million words of unparsed news text from a diffecempus. He then trained a self-trained model
from the combination of the newly parsed text witlsJtraining data. However, the self-trained model did
not improve on the original model. Our work differs in that w&e a different first stage parser and consider
combining it with a reranker.

A close relative of self-training iso-training which is due to Blum and Mitchell (1998). Unlike self-
training, co-training requires multiple learners, eacthva different “view” of the data. Each view should
provide a complementary interpretation and in the stronggese, these would be conditionally independent.
When one learner is confident of its predictions about a daitat pve add that data point with its predicted
label to the training set of the other learners. A variatioggested by Dasgupta et al. (2001) is to add
data points to the training set when multiple learners agrethe label. If this is the case, we can be more
confident that the data was labeled correctly than if only leaener had labeled it since each learner has
reached the same analysis via a different path.

Sarkar (2001) investigated using co-training for parsindar the LTAG formalism. The author shows
that using about 10,000 labeled sentences and a large nwhbefabeled sentences, co-training can be
employed to raise performance from 70.g%core to 79.8%f-score on the test section wfsJ.

Self-training and co-training were subsequently inveggd for parsing as part of the 2002 CLSP Sum-
mer Workshop at Johns Hopkins University (Steedman et @032). The study suggests that this type of
co-training is most effective when small amounts (500-00,8entences) of labeled training data is avail-
able. Another one of their conclusions was that co-traimizig be used to improve parser portability. They
experimented with several different parameter settingsalll cases, they performed multiple iterations of
self-training and the number of sentences parsed peridanags relatively small (30 sentences). The largest

15

Input: wsJ NANC, weighting parameter
Output: self-trained parser model

parser model « train; (WSJ)
parsed NANC « parse; (parser model, NANC)
combined data < o X WSJI+ parsed NANC
self-trained parser model « trainy (combined data)
return self-trained parser model
Algorithm 2: Pseudocode for self-training with first stage parser

Input: wsJ NANC, weighting parametex
Output: self-trained parser model

parser model < train; (WSJ)
reranker model < trainy(WSJ)
parsed NANC < rrp(parser model, reranker model, NANC)
combined data «— o X WSJ+ parsed NANC
self-trained parser model « train; (combined data)
return self-trained parser model
Algorithm 3: Pseudocode for self-training with reranking parser

amount of labeled training dataded sizethey used was 10,000 sentences freisy, though many experi-
ments used only 500 or 1,000 sentences. They found that timetes settings, self-training did not yield a
significant gain.

In a closely related study, self-training and co-trainingrevevaluated for part of speech tagging in Clark
et al. (2003). Their conclusions are quite similar — cortirgg helps only when there are limited amounts of
training data. Self-training either has a small positiieatf no effect, or a large negative effect depending
on the specific tagger and seed size.

The unsupervised adaptation experiment by Bacchiani €2@0D6), initially presented in Roark and
Bacchiani (2003), is the only previous successful instasfcgelf-training for parsing that we have found.
The authors use a parser trained&®RDWN to parsewsJalong with additional unlabeled sentences from
other years of thevsa The new parses are mixed into thROWN training data as in Algorithm 2. This
technique improves performance on thisJjtest set from 75.7% to 80.6%. Our experiments tend to focus on
the opposite direction — usingsJto parseBROWN.

3.1.1 Experiments

Our first self-training experiment uses the training portidd wsJas our labeled data and variable amounts
of NANC as the unlabeled data. We replace the general functionsgarithm 1 with their more specific
counterparts. Letrain, (¢) be a function which trains theth stage of the parser from labeled sentences
and returns the new model. Lgirse,, (u,m) be a function which parses unlabeled sentencasing model

m and returns its parses of the sentences. As befoiredicates which stage to use, so the function for the
reranking parser looks like:

16

rrp(mq, ma, u) = parse,(parse, (u, my), ma)

wherem; is the generative parser's model and is the reranker's model. To replicate the results of
Charniak (1997), we first use only the first stage parser. ;TWasisetrain; for train andparse, for as the
label function (Algorithm 2). The 4" and “x” operators warrant some discussion. TsJtraining data
(sections 2-21) is combined with theancC data in the following way: The count of each parsing event is
the (optionally weighted) sum of the counts of that event @l\8treet Journal andANC. Bacchiani et al.
(2006) show that count merging is more effective than cngatiultiple models and calculating weights for
each model (model interpolation). Intuitively, this capends to concatenating our training sets, possibly
with multiple copies of each to account for weightifidNote that the selection step has been removed. We
refer to this scenario as “parser-best self-training” sime use the best parse according to the first stage
parser.

Algorithm 3 shows the pseudocode for self-training with i@néer (“reranker-best self-training”). Here,
our experiments depart from previous work. The primaryedédhce is that the reranking parser is used to
parseNANC instead of the first stage parser. Note that while both stagefrained fronwsJonly the first
stage is retrained from the combinationwe§iandNANC data. We attempted to retrain the reranker using
the self-trained sentences, but found no significant imgmoent.

We evaluated the first stage models created by parser-testamker-best self-training by parsing held
out wsJ data (section 22). Table 3.1 shows the difference in peroica when using parser-best versus
reranker-best models. Adding parser-best sentenceant reproduces previous self-training efforts and
confirms that this strategy is not beneficial. However, weaskege improvement from adding reranker-best
sentences. For our remaining experiments, we only usekerdrest self-training.

One may expect to see a monotonic improvement from this teabnbut this is not quite the case, as
seen when we add 1,000,000 sentences. This may be due to sotieas ofNANC being less similar to
WSJor containing more noisel@NC is quite noisy, including portions which are indistinguasife from line
noise). Another possibility is that these sections corttaitler sentences which we cannot parse as accurately
and thus are not as useful for self-training.

We also attempt to discover the optimal number of sentermcadd fromNANC. Much of the improve-
ment comes from the addition of the initial 50,000 self+igal trees. Recall that the experiments in (Steed-
man et al., 2003a) use a comparatively small amount of ulddlaiata® As we add more data, it appears that
the maximum benefit to parsing accuracy by strictly addimgrker-best sentences is about 0.7% and that
f-scores asymptotes around 91.0%. We return to this when n&der the relative weightings e¥sJjand
NANC data.

So far, we have only evaluated the first stage parser witheldrained models. We now turn to the
performance of the reranking parser. One hypothesis weidenesl is that the rerankedanc data had
incorporated some of the features from the reranker. Iftleiee the case, we would not see an improvement

2This implementation has the unfortunate requirement thateights must be integers, of course. Combining corpoating to
arbitrary distributions takes a bit of engineering and eapetl in Chapter 5.

3Most experiments perform 100—120 rounds of self- or casngj, adding 30 unlabeled sentences per round.

17

Sentences afANC added Parser-best Reranker-best

(baseline) 0 90.3 90.3

50,000 90.1 90.7

250,000 90.1 90.7

500,000 90.0 90.9

750,000 89.9 91.0

1,000,000 90.0 90.8

1,500,000 90.0 90.8

2,000,000 — 91.0

Table 3.1:f-scores after adding either parser-best or reranker-bestisces fromANC to wsJtraining data.
While the reranker was used to produce the reranker-bestrsms, we performed this evaluation using only
the first stage parsepdrse,) to parse all sentences from section 22. We did not train eefraldere we added
2,000,000 parser-best sentences.

wsJsection
Sentences afANC added| 1 22 24
(baseline) 0| 91.8 92.1 90.5
50,000| 91.8 92.4 90.8
250,000| 91.8 92.3 91.0
500,000| 92.0 92.4 90.9
750,000 92.0 92.4 91.1
1,000,000 92.1 92.2 91.3
1,500,000 92.1 92.1 91.2
1,750,000 92.1 92.0 91.3
2,000,000 92.2 92.0 91.3

Table 3.2:f-scores from evaluating the reranking parser on three tieldections after adding reranker-best
sentences fromANC to wsJtraining. These evaluations were performed on all sengence

when evaluating a reranking parser on the same models. le Bad, we see that our improvements from
using self-trained parses and from using the reranker dénegonal.

Up to this point, we have only considered giving our truertirag data a relative weight of one. A relative
weight of n is equivalent to using copies of a corpus, i.e. an event that occurretimes in the corpus
would occurz x n times in the weighted corpus. Thus, larger corpora domisratler corpora of the same
relative weight in terms of event counts. Increasing thegiveof thewsJdata should improve, or at least
not hurt, parsing performance. Indeed, this is the casedtr the parser (Figure 3.1a) and reranking parser
(Figure 3.1b). We considered assigningJ a relative weight of 1 through 5 while varying the number of
sentences included fromanc.* Putting more weight on the/sJtrees ensures that the counts of our events
are closer to our more accurate data source while still pam@ting new statistics fromanc. While it
appears that the performance still levels off after addimgudone million sentences fronaNc, the curves
corresponding to highewsJiweights achieve a higher asymptote.

Looking at the performance of these weighting schemes asexgions 1, 22, and 24, we decided that the
best combination of training data is to giwes Ja relative weight of 5 and use the first 1,750,000 reranket-be

4We arbitrarily chose a relative weight of 5 as our stoppingnpdowever, we expect that there are diminishing retuomshigher
weights.

18

Model Parser alone Reranking parser
Charniak and Johnson (2005) — 91.0
Current baselinewsJ 89.7 91.3

WSJ+ NANC 91.0 92.1

Table 3.3:f-scores on all sentences\wsJsection 23. WsJ+ NANC” represents the system trained wisJ
training (with a relative weight of 5) and 1,750,000 sentsiitom the reranker-best list BANC.

sentences frormANC.

Finally, we evaluate our new model on the test section of Bfaet Journal in Table 3.3. We note that the
baseline system (i.e. the parser and reranker trainedypame¥sJj has improved by 0.3% over Charniak and
Johnson (2005). The improvement from self-training is igant in both macro and micro tests £ 10~°).

We have shown that self-training can provide a substangakfit when the training and testing data are
drawn from the same domain. This study has raised the quedtishether the parsing models are too finely
tuned for parsingvsJat the expense of portability to other genres. Such woriaes Imerit. The next section
should alleviate these concerns. In it, we show that saifiitng and reranking are also effective means of
improving performance across domains in addition to withem.

3.2 Parser Portability

Parser portability studies examine how well parsers trhime one domaingpurce domaipperform on a
different one (arget domaip. Unfortunately, there is little consensus in the field élyawhat the tasks of
parser portability and parser adaptation entail. We defarser portabilityas the task where we are given no
labeled in-domain data for the target domain. When we do hagess to some amount of labeled in-domain
data, we call the tasparser adaptation

Naturally, there is always a penalty for changing domairthéf source and target domains do not suf-
ficiently overlap. Thus, parser portability informs us abthe generality of the parser as well as being an
approximate measure of distance between the source armd dangains. As mentioned in Section 1.3, these
studies have often been done by training parsems srand evaluating them oBROWN (Ratnaparkhi, 1999;
Gildea, 2001; Bacchiani et al., 2006). For ease of compayise use the same setup. We also usesthrelA
andswBbD corpora as alternative more distant target domains (Sestix2).

Our first experiment examines the performance of the saifi¢d parsers. While the parsers are created
entirely from labeledvsJiand unlabelediaNc data, they perform extremely well ®RowN development
(Table 3.4). The trends are the same as in the previous seétillling NANC data improves parsing perfor-
mance on th&RrowN development section considerably, improving flscore from 83.9% to 86.4%. As
moreNANC data is added, thgscore appears to approach an asymptote. NAMC data appears to help
reduce data sparsity and fill in some of the gaps intlsemodel. Additionally, the reranker provides further
benefit and adds an absolute 1-2% to fh&core. The improvements appear to be orthogonal, as otir bes
performance is reached when we use the reranker and add @)BG&If-trained sentences framNcC.

19

911 T T T T T T T

91

90.9

90.8

90.7

90.6

f-score

90.5
90.4
90.3
90.2

90.1 f

90 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

NANC sentences added (units of 50k sentences)
(a) First stage parser alone

924 T T T T T T T
92.3 e i
92.2

92.1

f-score

92

91.9

{
91.8

WSIx1 ——
WSJ X3 -
WSJ X5 -
91.7 1 1 1 1 1
0 5 10 15 20 25 30 35 40

NANC sentences added (units of 50k sentences)
(b) Reranking parser

Figure 3.1: Effect of giving more relative weighttesJjtraining data on parser and reranking parsscore.
Higher wsJweights generally improve parsing accuracy. Evaluatioesewdone from all sentences from
section 1.

20

f-score
Model Parser Reranking Parser
BaselineBROWN 86.4 87.4
BaselinewsJ 83.9 85.8
wsJ+ 50,000 sentencesANC 84.8 86.6
wsJ+ 250,000 sentenc@s\NC 85.7 87.2
wsJ+ 500,000 sentences\NC 86.0 87.3
wsJ+ 750,000 sentences\NC 86.1 87.5
wsJ+ 1,000,000 sentences\NC | 86.2 87.3
wsJ+ 1,250,000 sentenc@&aNC 86.3 87.5
wsJ+ 1,500,000 sentenc&sNC 86.2 87.6
wsJ+ 1,750,000 sentences\NC | 86.0 87.5
wsJ+ 2,000,000 sentences\NC | 86.1 87.7
wsJ+ 2,500,000 sentences\NC | 86.4 87.7
wsJ+ self-trainedBROWN 85.6 86.1

Table 3.4: Effects of addingANC sentences tovsJ training data onf-score. The parser and reranking
parsers were evaluated BROWN development data. The reranker model was trained/ sn

The results are even more surprising when we compare agapaiset trained on the labeled training
section of theBROWN corpus, with parameters tuned against its held-out se¢tamline in Table 3.4).
Despite having no access to in-domain example treesywgiEbased parser is able to match thecore of
theBROWN based parser.

Recall that increasing the relative weightwkJ sentences versusaANC sentences was effective when
testing onwsJin the previous section. However, when testing on gr@©wN development section, this
reweighting did not appear to have a significant effect. Weebe this is because the true distribution was
closer towsJin the previous section so it made sense to emphasize it., HerBROWN development data
does not follow the same distribution asJ.

The model trained omvs32,500,000 sentences mANC is the best model for parsilgROWN of the
ones we have considered. We also note that this “best” pargéferent from the “best” parser for parsing
wsJ which was trained owsJwith a relative weight of 5 and 1,750,000 sentences frayNC. For parsing
BROWN, the difference between these two parsers is not largegthdive have shown that self-training is a
valuable technique for improving parser portability. Oaxnsection discusses the portability of the reranker
briefly.

Bacchiani et al. (2006) applies self-training to parseipaation to utilize unlabeled in-domain data. The
authors find that it helps quite a bit when adapting frerRowN to wsJa They use a parser trained from the
BROWN train set to parsg&/siand add the parse@sJsentences to their training set. We perform a similar
experiment, using ouvstrained reranking parser to parse BrROWN training division (ignoring its parse
annotations) and testing @rowN development. Parsgrscore was boosted from 83.9% to 85.6% when we
added the parseBROWN sentences to our training set. Adding in 1,000,000 sengefioen NANC as well,
we saw a further increase to 86.3%. Adding self-trainedesergs fromBROWN improves performance over

5In this case, only the parser is trained BROWN. The reranker is mismatched, but still helps in all casesSdation 3.2.1, we
compare against a fullgrown-trained reranking parser as well.

21

Parser model Parser alonewsxreranker BROWN-reranker
WSJ 82.9 85.2 85.2
WSJ+ NANC 87.1 87.8 87.9
BROWN 86.7 88.2 88.4

Table 3.5: Performance of various combinations of parsdrraranker models when evaluated RowN
test set. Thevs#*NANC parser with thevsJireranker comes close to tlB&OwN-trained reranking parser.
TheBROWN reranker provides only a small improvement overitsicounterpart for all three parser models,
which is not statistically significant.

the purewsJbaseline, but is unsurprisingly not as good as the pe@vN model (which uses gold labels).

3.2.1 Reranker Portability

We have shown that thevstrained reranker is actually quite portable to #rowN fiction domain in
Table 3.4. The baselinesJparser achieves 85.8% with the reranker and 83.9% withouteAWMANC is
added, performance improves from 86.4% to 87.7% when wehesestanker. This may be surprising given
the large number of features — over a million in the case ofwise reranker — which have been tuned to
adjust for errors made in the-best lists by the first stage parser. It would seem the ctioreclearned by the
reranker are not as domain-specific as we might expect. Taeker’s regularization process during training
may encourage it to use only the more general features.

To compare against a model fully trained BROWN data, we created BROWN reranker. The resulting
reranker model had approximately 700,000 features — aladfiab many as the/saitrained reranker. This
may be due to the smaller size of theOWN training set or because the feature schemas for the reranker
were developed owsJdata. We evaluated three models (fulss +trained, the self-trained/sy, and fully
BROWN-trained) on the testing section BROWN, with and without the reranker. As seen in Table 3.5, the
BROWN reranker does not provide a significant improvement oventbereranker for parsingrRowN data.

If no labeledBrROWN data is available, the&'s+NANC model with thewsJreranker is our best bet for parsing
BROWN and achieves ajfrscore of 87.8%. The fullgrowN-trained reranking parser is only slightly better
at 88.4%.

3.2.2 Porting to moredistant domains

As further evidence that self-training improves parsetatality, we present the results of applying thwsJ
models to two domains which have much less in commonwahthansrRowN. We briefly present results on
SWBD (transcribed telephone conversations) and then providera m-depth study focGENIA (biomedical
article abstracts). Table 3.6 shows our evaluation of thgiral wsJand self-trainedvsJ models on the
swBD development section. We see that while the parser’s pediocmis low, self-training and reranking
continue to provide orthogonal benefits. The improvemesysasent a 12% error reduction and use no in-
domain data. Naturally, in-domain labeled examples andapspecific handling (e.g. disfluency modeling)
would dramatically improve accuracy as well. Additionallizere are likely better choices of unlabeled
corpora thamANC if our goal is to parsswBD. We now turn to our study aEENIA where we explore using

22

Parser model Parser Reranking parser
WSJ 74.0 75.9
wsJ+ 1,750,000NANC sentences 75.6 77.0

Table 3.6: Parser and reranking pargescore performance on tlevsD development corpus. Theanc
data and reranker improvements are orthogonal, but lessadi@than they are on trEROWN corpus. This
is likely becauseswBD is considerably less similar twsJithan theBROWN corpus.

84.4f
84.2t
84.0f
83.8
83.6F
83.4f
o 83.2
o L
% ove]
i
5 82.6/
g 82.4f
o 82.2F
2 82.0f
¥ 8lep
© 81.6f
& s1.4f
81.2F
81.0f
80.8f
80.6
B0.4F — — — A
80.2f

80.05 25000 50000 75000 100000 125000 150000 175000 200000 225000 250000 275000

Number of sentences added

e——e WSJ+Medline
+—a WSJ+BioBooks
=——a WSJ+NANC

---- WSJ (baseline)

Figure 3.2: Reranking parsgrscore on development data for four different self-trajngtenarios as a
function of number of self-training sentences.

different unlabeled corpora for self-training.

We did several experiments apeENIA development data using different unlabeled corpora fdr sel
training. As before, we usmANC but for this experiment, we also try two different in-domaiorpora:
BIOBOOKS and MEDLINE (descriptions of these corpora can be found in Section ZTB)ese results are
summarized in Figure 3.2. We show tliscore for four different self-training scenarios using thranking
parser as a function of number of self-training sentencasbefore, the reranker was trained solelyesJ
data. The tvsJ(baseline)” line is the raw reranking parser with no sedifting. At 80.4%, it is clearly the
worst of the lot. On the other hand, it is already comparabthé best previous result (80.2%) for biomedical
data from the parser by Lease and Charniak (2005), as refdayt€legg and Shepherd (2007 T.he parser
by Lease and Charniak (2005) is the first stage Charniak paiteaccess to an external in-domain tagger.

6We say comparable since the 80.4% is on the development thikil@0.2% is on tesENIA beta 2). However, these two data sets
are similar in difficulty.

23

Parser Reranking parser
System Precision Recall f-score| Precision Recall f-score
Lease and Charniak (2005) — — 80.2 — — —
(WEN 79.3 76.6 77.9 82.4 78.7 80.5
wsJ+ 266,000MEDLINE sentenceg 85.0 81.9 83.4 86.3 824 843

Table 3.7: Comparison of theeDLINE self-trained parser against previous bestan A beta 2.

We use the parser’s internal tagger which has been trainedsomut we achieve similar performance due
to the introduction of the 50-best reranker. If we selfriran NANC, our performance goes up to 81.4%,
regardless of how much parssdNc is incorporated.

Our best results come from self-training MEDLINE instead ofNANC. As seen in Figure 3.2, even a
thousand sentences REDLINE is enough to drive our results up to a new level and accuraatiroges to
improve until about 150,000 sentences at which point itlistreely flat. However, as adding about 270,000
sentences is fractionally better than 150,000 senteneespted for the higher number of self-training sen-
tences for our results on the test set.

The wsH#*BIOBOOKS line comes from interesting idea that failed to work. We n@nit in the hope
that others might be able to succeed where we have failed.edfned that biology textbooks would be a
particularly good “bridging corpus.” After all, they are itten to introduce someone ignorant of a field to
the ideas and terminology within it. Thus, one might expbat the English of a Biology textbook would
be intermediate between the more typical English of a netideaand the specialized English native to the
biomedical domain.

To test this, we created a biology textbook corpegEO0OKS). We observe in Figure 3.2 that for all
quantities of self-training data one does better withDLINE than BIOBOOKS. For example, at 37,000
sentences thBlIOBOOKS corpus is only able to achieve ghscore of 82.8% while theEDLINE corpus is
at 83.4% with the same amount of additional sentences. &umtbre,810BOOKS levels off in performance
while MEDLINE has significantimprovementleft in it. Thus, while the hylpegtis seems reasonable, we were
unable to make it work.

Our evaluation on theENIA test set is shown in Table 3.7. We weighted the origimab equally with
self-trainedMEDLINE data. We did not perform any tuning to find out if there is soratdr weighting.
Given that reweighting was not helpful when evaluatingg®owN (Section 3.2), it is unlikely to help here
sinceGENIA is quite different fromwsJa Clegg and Shepherd (2007) do not provide separate precsio
recall numbers for the Lease and Charniak (2005) system. eMermvwe can see that theeDLINE self-
trained reranking parser achievesjascore of 84.3%, which is an absolute reduction in error d%el. This
corresponds to an error rate reduction of 20% over the Leag&harniak (2005) baseline. Also note that,
as before, our improvements come from a combination oftsailiing and using the out-of-domain trained
reranker.

If labeled data is available, our accuracy is even highdslera.8 gives our results on the more modern and
significantly larger version of theENIA treebank. The “wsJ+ 266,000MEDLINE sentences” model from

“Experiments up to this point have been on ta&fi1A beta 2” corpus.

24

Parser model Reranker modelf-score
WSJ — 74.9
WSJ WwSsJ 76.8
WSJ+ MEDLINE (parsed byws) wsJ 80.7
GENIA — 83.6
GENIA WwSsJ 84.5
GENIA GENIA 85.7
WSJ+ MEDLINE (parsed byGENIA) GENIA 87.6
GENIA + MEDLINE (parsed byGENIA) GENIA 87.6

Table 3.8: Evaluations on the largeeNIA data set (10,848 sentences across all divisions).

Table 3.7 corresponds to the third line in this tabl$3+ GENIA (parsed bywsJ”). As before, we receive

a significant boost from both the reranker and self-trainifge table shows that as labeledNiA data is
used in more steps (base parser training, reranker traiaimg) as a corpus for self-training) performance
improves substantially. Despite the success of our saifitidwsJi model from Table 3.7 which obtains an
f-score of 80.7 on this dataset, once labeled data is avaifsformance shoots up to 83.6 even without a
reranker. Using an out-of-domamsJreranker gives us about an additional 1%fiscore and switching to
an in-domaincENIA reranker provides another 1% improvement. Self-trainisiggithatGENIA reranking
parser increases thescore to 87.6%. Perhaps surprisingly, this level of acyucan be achieved even if
the parser is trained usingsJ and the self-trainetheDLINE corpus (as parsed byeENIA). Using out-of-
domainwsJdata here does not hurt performance presumably since ieisuelmed by the larger amount
of self-trainedvEDLINE data and because tlsENIA reranker is able to correct enough of its mistakes.

3.3 Parser Adaptation

We now turn to the scenario where we have some labeled in-dalata. The most obvious way to incorpo-
rate labeled in-domain data is to combine it with the labeletiof-domain data. We have already seen the
results Gildea (2001) and Bacchiani et al. (2006) achieviabie 1.1.

We explore various combinations 8ROWN, wsJ, andNANC corpora. Because we are mainly inter-
ested in exploring techniques with self-trained modelseathan optimizing performance, we only consider
weighting each corpus with a relative weight of one for thipeximent. The models generated are tuned on
section 24 fronwsJ. The results are summarized in Table 3.9.

While bothwsJiandsrowN models benefit from a small amountofNC data, adding more than 250,000
NANC sentences to theROWN or combined models causes their performance to drop. FongeathewsJ
+ BROWN + 250,000NANC model achieves ajfi-score of 88.1% with the reranking parser, but only 87.7%
if an additional 250,000 sentences fromanc are added. Accuracy continues to fall as mereic data is
included. This is not surprising since adding “too muef¥NC overwhelms the more accurega@owN or
wsJcounts. By weighting the counts from each corpus appragyighis problem can be avoided.

Another way to incorporate labeled data is to tune the pdraek-off parameters on it. Bacchiani et
al. (2006) report that tuning on held-osikROWN data gives a large improvement over tuningwaJ data.

25

f-score
Parser model Parser Reranking parser
wsJalone 83.9 85.8
wsJ+ 2,500,00(NANC 86.4 87.7
BROWN alone 86.3 87.4
BROWN + 50,000NANC 86.8 88.0
BROWN + 250,000NANC 86.8 88.1
BROWN + 500,000NANC 86.7 87.8
BROWN + 1,000,00(NANC 86.6 87.8
WSJ+ BROWN 86.5 88.1
WSJ+ BROWN + 50,000NANC 86.8 88.1
WSJ+ BROWN + 250,000NANC 86.8 88.1
WsJ+ BROWN + 500,000NANC 86.6 87.7
WsJ+ BROWN + 1,000,000NANC | 86.6 87.6

Table 3.9:f-scores from various combinationswsJ, NANC, andBROWN corpora orBROWN development.
The reranking parser used thes 3trained reranker model. TiIBEROWN parsing model is naturally better than
the wsamaodel for this task, but combining the two training corpogaults in a better model (as in Gildea
(2001)). Adding small amounts efaNc further improves the results.

The improvement is mostly (but not entirely) in precisione Yérformed a similar experiment usingJas
training data, using eithewsJor BROWN data for parameter tuning to create parsing and rerankeelsod
(Figure 3.3). We do not see the same improvement as Bacdtiahi (2006) on the non-self-trained parser
(x = 0 NANC sentences) but this is likely due to differences in the parsélowever, we do see a similar
improvement for parsing accuracy once the self-trainedc data has been added. The reranking parser
generally sees an improvement, but it does not appear tgb#isant. From these two experiments, it seems
better to use labeled in-domain data for training rathem 8&dting parameters.

3.4 Sdf-Training Extensions

There have been two follow-up studies on self-training Wigive us additional data points of self-training’s
capabilities. Reichart and Rappoport (2007) showed thatoam self-train with only a generative parser if
the seed size is small. The conditions are similar to thoStdedman et al. (2003a), but only one iteration of
self-training is performed (i.e. all unlabeled data is ladeat oncef The authors show that self-training is
beneficial for in-domain parsing and parser adaptatiorhéir tase, they are able to demonstrate a reduction
in the number of labeled sentences required to achieve #ispgscore.

Foster et al. (2007) use self-training to improve perforogaonBNC. Rather than usingANC as their
unlabeled corpus, they use one million raw sentences frenctimpletesNc. They are able to improve
performance on the 1,000 sentemeec test set from 83.9% to 85.6% after adding the autonsic parses.
Similarly, they are able to improve performance on ¥&Jtest set from 91.3% to 91.7%. This is smaller
than the 0.8% improvement that we get from adding 1.7 milkenc parse$ and reinforces our point that

8performing multiple iterations presumably fails becadmeparsing models become increasingly biased.

9In both cases, performance has leveled off on the developseérso it is safe to assume that we would not see a similaoivement
from BNC if an additional 700,000 automatically parsedc sentences were added.

26

f-score

BROWN tuned reranking parser—+—
wsJtuned reranking parser-x - -
BROWN tuned parser - x - -

i IWs;gltunled parselr---m----

g3l | L L 1 1

'Ok 250k 500k 750k 1000k 1250k 1500k 1750k 2000k
NANC sentences added

Figure 3.3: Precision and recglscores when testing @rowN development as a function of the number
of NANC sentences added under four test conditiorBRCGWN tuned” indicates thaBROWN training data
was used to tune the parameters (since the normal held-ctidrsevas being used for testing). Fow$J
tuned,” we tuned the parameters from section 24/6f. Tuning onBROWN helps the parser, but not for the
reranking parser.

picking a self-training corpus that matches the test settisw@hportant. We return to this issue in Chapter 5.

Chapter 4
Analysis

While the success of self-training has demonstrated itsthiteremains unclear why self-training helps in
some cases but not others. Our goal is to better understaed ad why self-training is beneficial. We
perform a variety of tests, covering the global behavioref parser (Section 4.1), sentence-level changes
(Section 4.2), and parser agreement betweeB#mvN and self-trainedvsimodels (Section 4.3). Next, we
explore four hypotheses for why self-training helps in #ec#.4. At a high level, the hypotheses are (1) self-
training helps after a phase transition, (2) self-traimieduces search errors, (3) specific classes of reranker
features are needed for self-training, and (4) self-trgrimproves because we see new combinations of
words. We summarize our analysis in Section 4.5.

4.1 Global changes

It is important to keep in mind that while the reranker seeonisa key to our performance improvement, the
reranker per se never sees the extra automatically parstshses. It only sees the 50-best lists produced by
the first stage parser. Thus, the nature of the changes ®liktssare important.

We have already noted that the first stage parser’s onefkmsire has significantly improved omsJ
when self-trained sentences from the reranking parsemdaieddo training data (see Table 3.1). In Table 4.1,
we see that the 50-best oracle score also improves from 98d@%he original first stage parser) to 96.4%
(for our final model). We do not show it in the table, but if wdfseain using first stage parser’'s one-best,
there is no change in oracle score. The oracle scores oBRb&N development section are shown in
Table 4.2. While thevsJ parser initially has relatively low oraclgscores, adding sentences froeaNC
produces a parser with comparable oracle scores as the paised fromBROWN training. TheBROWN
and self-trainedvsimodels have essentially the same potential for good paf¢lee BROWN corpus. Thus,
the self-trained models have better oracle scores thanrii@a wsJmodel for both thewsjandBROWN
domains. Overall, the oracle scores BROWN are 2-3% lower than those omsJ probably due to the
increased variability of theROWN corpus.

The first stage parser also becomes more “decisive” aftetra@ing. The average (geometric mean) of

27

28

Model 1-best 2-best 10-best 25-best 50-best
Baseline (vsJ 89.0 91.0 94.1 95.3 95.9
WwsJ+ 250,000NANC 89.8 91.4 94.6 95.5 96.1
wsix5+ 1,750,000l aNC 904 91.9 94.8 95.8 96.4

Table 4.1: Oraclg-scores of tom parses produced by the baselingJparser, a small self-trained parser,
and the “best” parser owsJsection 24.

Model 1-best 2-best 10-best 25-best 50-best
WSJ 82.6 84.8 88.9 90.7 91.9
wsJ+ 2,500,000NANC 86.4 88.5 92.1 93.5 94.3
BROWN 86.3 88.4 92.0 93.3 94.2

Table 4.2: Oraclef-scores of top: parses produced by the baselineJjparser, a combined/'siandNANC
parser, and the baseliB®&owN parser on th&eROWN development section.

log, (Pr(1-best parse) / Pr(50th-best parse)) (i.e. the ratbwden the probabilities in log space) increases
from 11.959 for the baseline parser to 14.104 for the finadgrarin other words, the probability of the top
parse increases relative to the 50th-best parse. We haveadier that this additional confidence is deserved,
as the first stage one-best is much better. Additionallyy wibre data available, the self-trained parser backs
off to smoothing less often which also has the effect of iasieg the probabilities of parses.

4.2 Sentence-level analysis

Until this point we have looked at bulk properties of thévest lists fed to the reranker. We now turn to
studying the performance of individual sentences. In paldr, we analyzed the original and self-trained
parsers’ behavior on 5,039 sentences from sections 1, 224rud the Penn treebank. Specifically, we
classified each sentence into one of three classes: those Wieself-trained parser’sscore increased
relative to the baseline parseifsscore, those where thgscore remained the same, and those where the
self-trained parser'g-score decreased relative to the baseline pargestore. We charted the distribution
of sentences into these classes with respect to four facterdence length, the number of unknown words
(i.e., words not appearing in sections 2—21 of the Penn arddbin the sentence, the number of coordinating
conjunctions CC) in the sentence, and the number of prepositidN¥ ih the sentence. The distributions of
classes (better, worse, no change) with respect to eactesé flactors individually are graphed in Figures
4.1athrough 4.1d.

Figure 4.1a shows how the self-training affe¢tscore as a function of sentence length. The top line
shows that thef-score of most sentences remain unchanged. The middleslthe number of sentences that
improved theirf-score, and the bottom are those which got worse. So, for pbearfior sentences of length
30, about 80 were unchanged, 25 improved, and 22 worsergzkrits clear that there is no improvement for
either very short or very long sentences. (For long sentetieegraph is hard to read. We show a regression
analysis later in this section that confirms this statemeafthile we did not predict this effect, in retrospect
it seems reasonable. The parser was already doing very welhort sentences. The very long ones are

Number of sentences (smoothet

Number of sentences

200

20 40 60 80 100

600

400

Better
—— No changs
Worse

20

30 40 50 6

Sentence length
(a) Sentence length

Better
—— No changs
Worse

4

Number of INs
(c) Number of prepositions

6 8 1

Number of sentences

500

Number of sentences

500

1000 1500 200!

1500 200

1000

29

Better
No change
Worse

Unknown word

S

(b) Number of unknown words

Better
No changeg
Worse

Number of CCs

(d) Number of conjunctions

Figure 4.1: Effect of self-trained model on performanceftur different variables.

30

Feature Estimate P#0)
(Intercept) -0.25328 0.3649
BinnedLength(10,20] 0.02901 0.9228
BinnedLength(20,30] 0.45556 0.1201
BinnedLength(30,40] 0.40206 0.1808

4

1

BinnedLength(40,50] 0.26585 0.408
BinnedLength(50,200] -0.06507 0.867
CCs 0.12333 0.0541

Table 4.3: Predictors for the question: “does the selfardiparser improve thgscore of the parse with the
highest probability?”

hopeless, and the middle ones are just right. We call thiSthidilocks effect.

As for the other three of these graphs, their stories are hy@ans clear. Figure 4.1b seems to indicate
that the number of unknown words in the sentence aam¢predict that the reranker will help. Figure 4.1c
might indicate that the self-trained parser improves pséjmmal-phrase attachment, but the graph looks
suspiciously like that for sentence length, so the improsmets might just be due to the Goldilocks effect.
Finally, the improvementin Figure 4.1d is hard to judge.

To get a better handle on these effects, we performed pogdiefection within a selection model using the
same four factors. As Figure 4.1a makes clear, the relagikfepnance of the self-trained and baseline parsers
does not vary linearly with sentence length, so sentenagherwere binned (with each bin of length 10).
Because the self-trained and baseline parsers producédlkemt output on 3,346 (66%) of the sentences,
we restricted attention to the 1,693 sentences on whichdifi¢rained and baseline parsersscores differ.
The results are shown in Table 4.3.

The regression analysis is trying to model the log odds asreclinearly weighted factors. That is:

P(l|x Ui
log (71 — (P|(1|):17)) = ap+ ; a;fi(x)

In Table 4.3, the first column gives the name of the factor. §émond displays the change in the log-odds
resulting from this factor being present (in the cas€6fk andINs, multiplied by the number of them) and
the last column is the probability that this factor is realtyn-zero. “(Intercept)” refers ta,y in the equation.

Note that there is no row for either PPs or unknown words. Ehizecause we also asked the program
to do a model search using the Akaike Information CriteridlQ)) over all single and pairwise factors. The
model it chooses predicts that the self-trained parsekédylito produce a better parse than the baseline only
for sentences of length 20—40 or sentences containingad&@s. It did not include the number of unknown
words and the number dNs as factors because they did not receive a weight signifjcdifterent from
zero, and the AIC model search dropped them as factors frermtidel.

In other words, the self-trained parser is more likely to berect for sentences of length 20—-40 and as
the number ofCCs in the sentence increases. The self-trained parsemabaraprove prepositional-phrase
attachment or the handling of unknown words.

This result is mildly perplexing. It is fair to say that nesthwe, nor anyone we talked to, thought con-
junction handling would be improved. Conjunctions are dtibe hardest things in parsing, and we have no

31

grip on exactly what it takes to help parse them. Conversselryone expected improvements on unknown
words, as the self-training should drastically reduce thlper of them. It is also the case that we thought PP
attachment might be improved because of the increasedagwef preposition-noun and preposition-verb
combinations that work such as Hindle and Rooth (1993) sldvetso important.

Currently, our best conjecture is that unknowns are not avgd because the words that are unknown
in the wsJ are not significantly represented in the LA Times we used étfrtsaining. CCs are difficult
for parsers because each conjunct has only one secure lygufidiés is particularly the case with longer
conjunctions, those 0fPs andSs. One thing we know is that self-training always improvesgrenance of
the parsing model when used as a language model. We @fthkmprovement is connected with this fact
and our earlier point that the probabilities of the 50-bestps are becoming more skewed. In essence the
model is learning, in general, wh¥fs andSs look like so it is becoming easier to pull them out of the
stew surrounding the conjunct. Conversely, language nriglélas comparatively less reason to hEPR
attachment. As long as the parser is doing it consisterttigclaing thePP either way will work almost as
well.

4.3 Portability Studies

We perform several types of analysis to measure the dift@®and similarities between tbeownN trained
and self-trainedvsJreranking parsers. Despite their different training seara¢hese two parsers are ex-
tremely close in performance @rowN. While the two parsers agree on a large number of parse higacke
(Section 4.3.1), there are categorical differences betweem (Section 4.3.2). In Section 4.3.3, we perform
feature selection to better understand the circumstanagkich each parser does better.

43.1 Parser Agreement

In this section, we compare the output of the *+NANC-trained andBROWN-trained reranking parsers. We
useevalbto calculate how similar the two sets of output are on a bridekel by treating one set of parses as
candidate parses and the other as dgoldble 4.4 shows the results. The two parsers agree on a gotaipo

of the brackets and achieved an 88.¢%core between them. Additionally, the two parsers agreethe
entire parse almost half the time and have approximatelyooesing bracket on average. The part of speech
tagging agreement is fairly high as well. Considering th&rentrained from different corpora, this seems
like a high level of agreement. It would be nice to perform affigrained analysis of this to better determine
the nature of the disagreements.

4.3.2 Statistical Analysisof f-score differences

We are interested in whether the differences between theusaparsers produced while adapting ther
trained parser to thBROWN corpus are statistically significant. To test this, we cartdd randomized per-
mutation tests for the significance of the difference in osrfyscore (recall Section 2.4). The null hypothesis

1We can choose these arbitrarily since all of these metresynmetric.

32

Bracketing agreemerftscore| 88.0%
Complete match 44.9%
Average crossing brackets 0.94
POS tagging agreement 94.9%

Table 4.4: Agreement between thes 3+NANC parser with thevsJireranker and theROWN parser with the
BROWN reranker. Complete match is how often the two rerankinggrarseturned the exact same parse.
Though created by different sets of data, the two parsereaguwith surprisingly similar results on the
bracket level.

Parser/Rerankermod¢IWSJ+NANc/WSJ BROWNWSJ BROWNBROWN

wsJywsJ | 0.025 (0) 0.030 (0) 0.031 (0)
WSHNANC/WSJ 0.004 (0.1) 0.006 (0.025)
BROWN/WSJ 0.002 (0.27)

Table 4.5: The difference ifiscore between different combinations of parsers and kerapand the signifi-
cance of the difference in parentheses as estimated by amaration test with 0° samples. #/y” indicates
that the first stage parser was trained on data: s8id the second stage reranker was trained on data set
Differences between combinations that are not signifigatitferent are shown in bold font.

is that the two parsers being compared are in fact behavangizhlly, so permuting or swapping the parse
trees produced by the parsers for the same test sentendd sboaffect the corpug-scores. By estimating
the proportion of permutations that result in an absolutiedince in corpugf-scores at least as great as
that observed in the actual output, we obtain a distributier estimate of significance that is robust against
parser and evaluator failures. The results of this testfaoevs in Table 4.5. The#/y” notation indicates
that the first stage parser was trained on datars@td the second stage reranker was trained on data set
y. The table shows that ttEROWN reranker is not significantly different from tivesJireranker (the differ-
ence between therRowN andwsJrerankers is significant with a-value= 0.27 and thus not statistically
significant). We can also see that the difference betweewgw®NANC andBROWN parsing models is not
statistically significant if thewsJ reranker is used for bottp{value= 0.1). The difference between the
wsxtrained reranking parsemwSi*NANC/WSJ) andBROWN-trained reranking parseBROWN/BROWN) is,
however, statistically significanp{value~ 0).

4.3.3 Featureselection for regression

In order to better understand the difference between tHg BRown-trained and the self-trainedsJ
reranking parsers oBROWN data, we constructed a logistic regression model of themiffce between
the two parsersf-scores on the development data using the R statisticalagaékOf the 2,078 sentences
in the development data, 29 sentences were discarded leemalbfailed to evaluate at least one of the
parses. A Wilcoxon signed rank test on the remaining 2,049 pairedeswre levelf-scores was significant
atp = 0.0003. Of these 2,049 sentences, there were 983 parse pairs wiglathe sentence-levekcore. Of

2http://www.r-project.org/

3This occurs when an apostrophe is analyzed as a possessier iimathe gold tree and a punctuation symbol in the parse te
vice versa.

33

Feature Estimate z-value Pr(> |z|)
(Intercept) 0.054 0.3 0.77

#INs -0.134 -4.4 8.4e-06 k%
ID=Letters, bibliography, memories 0.584 25 0.011 *
ID=General fiction 0.697 29 0.003 Kok
ID=Mystery 0.552 2.3 0.021 *
ID=Science fiction 0.376 0.9 0.33
ID=Adventure and Western fiction 0.642 2.7 0.0055 xx
ID=Romance and Love story 0.624 2.7 0.0069 xx
ID=Humor 0.040 0.1 0.90

Table 4.6: The logistic model ROWN/BROWN f-score> WSH*NANC/WSJ f-score identified by model
selection. The feature “#Ns” is the number prepositions in the sentence, while ID ifiesttheBROWN
subcorpus that the sentence comes from. Stars indicatiécagice level.

Category Description # SentencCe8BROWN WSIHNANC A

F Popular Lore 271 87.3 89.6 2.28
G Letters, bibliography, memories 281 87.6 87.1 -0|45
K General fiction 333 87.2 85.9 -1.29
L Mystery 318 88.7 88.3 -0.45

M Science fiction 76 87.7 88.8 1.7
N Adventure and Western fiction 378 89.7 89.0 -0/64
P Romance and Love story 338 88.0 86.6 -1140
R Humor 83 84.6 87.0 2.45

Table 4.7: Performance @RowN-trained reranking parser vs. b&gs*+NANC reranking parser on various
categories of therRowN development division. Both rerankers usstrained models.

the 1,066 sentences for which the parsers produced pargedifférent f-scores, there were 580 sentences
for which theBROWN/BROWN parser produced a parse with a higher sentence-fesebre and 486 sentences
for which thewsxNANC/wsJparser produced a parse with a higlfescore. We constructed a generalized
linear model with a binomial link to predict Whe@ROWN/BROWN f-score> WSH*NANC/WSJ f-score. For
explanatory variables, we used sentence length, the nuofipegpositionsifN), the number of conjunctions
(CC), and thesroWN subcorpus ID. The goal of the last class of features is tarate if there are certain
genres withinBROWN that are harder fowsJto parse. Model selection (using the “step” procedure) dis-
carded all but théN andBrROWN ID explanatory variables. The final estimated model is shimwiable 4.6.
The wsH*NANC/wsSJ parser becomes more likely to have a higliescore than th®@ROWN/BROWN parser

as the number of prepositions in the sentence increasesRtWwWN/BROWN parser is more likely to have a
higher f-score on sections K (general fiction), N (adventure andavediction), P (romance and love story),
G (letters and memories) and L (mystery) sections ofstRewN corpus. The three sections BROWN not

in this list are F (popular lore), M (science fiction), and Ruior) which contain too few sentences to result
in significant effects. The performance on individual carégs of theBROWN corpus is shown in Table 4.7.
This table confirms that therowN based model performs better on categories with sufficieriesees with
the exception of category F (“popular lore”).

34

4.4 Four Hypotheses

The question of why self-training helps in some cases (eagtiG 3 and Reichart and Rappoport (2007;
Foster et al. (2007)) but not others (Charniak, 1997; Stesedet al., 2003a) has inspired various theories.
We investigate four of these to better understand the cistainces which govern self-training’s success.

441 PhaseTransition

The phase transition hypothesis is that once a parser hassadla certain threshold of performance, it
can label data sufficiently accurately. Once this happ&edatbels will be “good enough” for self-training.

To test the phase transition hypothesis, we intentionabyrade the parser’s performance to see if it can
still self-train. We do this by using the same parser as otdreeaelf-training experiments in Section 3 but
train on only a fraction ofvsJto see if self-training is still helpful. This is similar tose of the experiments
by Reichart and Rappoport (2007) but with the use of a reraakd slightly larger seed sizes. The self-
training protocol is the same as in (Charniak, 1997; McGlaskal., 2006a; Reichart and Rappoport, 2007):
we parse the entire unlabeled corpus in one iteration. Welstanaking a random subset of thesjtraining
sections (2—21), accepting each sentence with probabilitjfe create two subsets wfsJ(k € {0.1,0.5}).
This approach to testing the phase transition hypothesis dot include other parsers or other methods of
performance degradation. It is possible that we might sdeaeptransition in these cases (James Henderson,
personal communication).

With the sampled training section and the standard devedopiiata, we train a parser and a reranker.
In Table 4.8, we show the performance of the parser with aridowt the reranker. For reference, we show
the performance when using the complete training divisowaell. Unsurprisingly, both metrics drop as we
decrease the amount of training data. These scores repoesdraselines for this experiment.

Using these parser models, we parse one million sentenoesNANC, both with and without the
reranker. We combine parsed sentences with the sampleetsutfa/straining and train new parser models
from them?

Finally, we evaluate these self-trained models (Table 4:8¢ numbers in parentheses indicate the change
from the corresponding model made without self-training.iReichart and Rappoport (2007), we see large
improvements when self-training on a small seed size (10howt using the reranker. We still see signif-
icant improvements in most cases when the seed size is 5@¥%hebabsolute values of these improvements
are smaller. However, using the reranker to parse the rseifitg and/or evaluation sentences further im-
proves results. From Section 3.1.1, we know that when 100#teofraining data is used, self-training does
not improve performance unless the reranking parser is togearSeNANC.

From this we conclude that there is no such threshold phassition in this case. High performance is
not a requirement to successfully use self-training fosipay, since there are lower performing parsers which
can self-train and higher performing parsers which caniidie higher performing Charniak and Johnson

4We do not weight the originalvss data, though our expectation is that performance would ovepif wsJiwere given a higher
relative weight.

35

% wsJ #sentences Parsgrscore Reranking parsérscore
10 3,995 85.8 87.0
25 9,903 87.9 89.3
50 19,975 89.0 90.4
100 39,832 89.9 91.5

Table 4.8: Parser and reranking parser performance onsaste 100 words in sections 1, 22, and 24 when
trained on different amounts of training data. W&Jis the probability of selecting a sentence fromsJ
training (this is why the 10% column doesn’t have exactly 10Pthe sentences, etc.). Note that the full
amount of development data is still used as held out data.

% wsJ ParsedNANC with reranker? Parsegkscore Reranking parsérscore
10% No 87.7 (+1.9) 88.7 (+1.7)
10% Yes 88.4 (+2.6) 89.0 (+2.0)
50% No 89.3 (+0.3) 91.0 (+0.6)
50% Yes 89.7 (+0.7) 91.0 (+0.6)

Table 4.9: Effect of self-training using only a portionwkJas labeled data. The parser model is trained
fromwsJand one million parsed sentences freanc. The first column indicates whether the millieanc
sentences were parsed by the parser or reranking parsesetbid and third columns differ in whether the
reranker is used to parse the test sentenaess §ections 1, 22, and 24, sentences 100 words and shorter).
Numbers in parentheses are the improvements over the por@isig non-self-trained parser.

(2005) parser without reranker achievesfascore of 89.0 on section 24 when trained on alixga This
parser does not benefit from self-training unless pairet witeranker. Contrast this with the same parser
trained on only 10% o#sJ, where it gets arf-score of 85.8 (Table 4.9) or the small seed models of Retichar
and Rappoport (2007). Both of these lower performing parsan successfully self-train. Additionally, we
now know that while a reranker is not required for self-tiagnwhen the seed size is small, it still helps
performance considerably-score improves from 87.7 to 89.0 in the 10% case and 89.3.iA1he 50%
case).

442 SearchErrors

Another possible explanation of self-training’s improwemts is that seeing newly labeled data results in
fewer search errors (Daniel Marcu, personal communicatidisearch error would indicate that the parsing
model could have produced better (more probable) parsex fon heuristics in the search procedure. The
additional parse trees may help produce sharper distibsitand reduce data sparsity, making the search
process easier. To test this, first we present some statistithen-best lists { = 50) from the baselingvsJ
trained parser and self-trained model. We use each modelse gentences from held-out data (sections 1,
22, and 24) and examine thebest lists.

We compute statistics of th@siand self-trainecdh-best lists with the goal of understanding how much
they intersect and whether there are search errors. Onggyeheen-best lists overlap by 66.0%. Put another
way, this means that about a third of the parses from each Inaoeleinique, so the parsers do find a fair
number of different parses in their search. The next quessiovhere the differences in thebest lists lie
— if all the differences were near the bottom, this would ksslmeaningful. LetV and S represent the

36

Model f-score
WSJ 91.5

wsJwith search help 91.7
Self-trained 92.0

Table 4.10: Test of whether “search help” from the selfrteai model impacts thevsitrained modelwsJ

with search help is made by adding self-trained parses mpigsed by thevsJitrained parser but to which
the parser assigns a positive probability. MasJreranker is used in all cases to select the best parse for
sections 1, 22, and 24.

n-best lists from the baselingsJand self-trained parsers, respectively. Thg,,(¢) function returns the
highest scoring parse in thebest list/ according to the reranker and parser model Aimost 40% of the
time, the top parse in the self-trained model is not invires model'sn-best list, (ops(S) ¢ W) though the
two models agree on the top parse roughly 42.4% of the time (S) = top,,(W)). Search errors can be
formulated agop;(S) ¢ W A tops(S) = top,(W U S). This captures sentences where the parse that the
reranker chose in the self-trained model is not presentéamtiy model’'sn-best list, but if the parse were
added to thevsamodel’s list, the parse’s probability in tesimodel and other reranker features would have
caused it to be chosen. These search errors occur in only &. 8% n-best lists. At first glance, one might
think that this could be enough to account for the differenaince the self-trained model is only several
tenths better irnf-score. However, we know from Section 4.2 that on averagsgegalo not change between
thewsJand self-trained models and when they do, they only impréigatyy more than half the time. For
this reason, we run a second test more focused on performance

For our second test we help thesitrained model find the parses that the self-trained modeldo&or
each sentence, we start with thébest list ¢ = 500 here) from thewsJtrained parsef)/. We then consider
parses in the self-trained parsensbest list,S, that are not present i’ (in other words, we take the set
S — W). For each of these parses, we determine its probabilitgutite wsJ trained parsing model. If
the probability is non-zero, we add the parse tostHeest listiV, otherwise we ignore the parse. In other
words, we find parses that tkesJitrained model could have produced but didn’t due to searahigtees. In
Table 4.10, we show the performance of theJtrained model, the model with “search help” as described
above, and the self-trained model ersJsections 1, 22, and 24. ThesJreranker is used to pick the best
parse from each-best list. wsJwith search help performs slightly better tharssalone but does not reach
the level of the self-trained model. From these experimevesconclude that reduced search errors can only
explain a small amount of self-training’s improvements.

4.4.3 Non-generativereranker features

We examine the role of specific reranker features by traingngnkers using only subsets of the features.
Our goal is to determine whether some classes of rerankerrésabenefit self-training more than others.
We hypothesize that features which are not easily captuydtidgenerative first stage parser are the most
beneficial for self-training. If we treat the parser and n&iag parser as different (but clearly dependent)

5Recall that the parser’s probability is a reranker featorthe parsing model influences the ranking.

37

f-score
Feature set # featurgsOriginal parser Self-trained parser
GEN 448,349 89.8 90.4
NON-GEN 885,492 90.5 91.1
EDGE 601,578 90.2 91.0
NON-EDGE 732,263 90.3 91.1
ALL 1,333,519 90.5 91.3

Table 4.11: Sizes anflscores of reranker feature subsets. Reranking pgrseores are on all sentences in
section 24. Recall that the original parser without a reeauglets arnf-score of 89.0% on this section.

views, this is a bit like co-training. If the reranker useattees which are captured by the first stage, the
views may be too similar for there to be an improvement.

We consider two classes of featurese(and EDGE) and their complementsNON-GEN and NON-
EDGE).® GEN consists of features that are roughly captured by the fiagiestienerative parser: rule rewrites,
head-child dependencies, eeDGE features describe items across constituent boundariésindfudes the
words and parts of speech of the tokens on the edges betwestitaents and the labels of these constituents.
This represents a specific class of features not captureldebfjrst stage. These subsets and their sizes are
shown in Table 4.11. For comparison, we also include thdtestiexperiments using the full feature set, as
in Section 3.1.1, labeledLL . TheGEN features are roughly one third the size of the full featute se

We evaluate the effect of these new reranker models onrsétiiig (Table 4.11). For each feature set,
we do the following: We parse one milliomaNC sentences with the reranking parser. Combining the parses
with wsJtraining data, we train a new first stage model. Using this fiet/stage model and the reranker
subset, we evaluate on section 24rafJ. GEN's performance is weaker while the other three subsetsaehie
almost the same score as the full feature set. This confirmbypothesis that when the reranker helps in
self-training it is due to features which are not capturetheygenerative first stage model.

4.4.4 Unknown Words

Given the large size of the parsed self-training corpugyitains an immense number of parsing events which
never occur in the training corpus. The most obvious of tkeesats is words — the vocabulary grows from
39,548 to 265,926 words as we transition fromwh&itrained model to the self-trained model. Slightly less
obvious is bigrams. There are roughly 330,000 bigrams$atraining data and approximately 4.8 million
new bigrams in the self-training corpus.

One hypothesis (Mitch Marcus, personal communicatiom)as the parser is able to learn a lot of new
bilexical head-to-head dependencies (biheads) fromtisgifing. The reasoning is as follows: Assume the
self-training corpus is parsed in a mostly correct manrfethdre are not too many new pairs of words in
a sentence, there is a decent chance that we can tag theseasorectly and bracket them in a reasonable
fashion from context. Thus, using these parses as part afdatmng data improves parsing because should
we see these pairs of words together in the future, we will beerfikely to connect them together properly.

6A small number of features overlap hence these sizes do daimd

38

We test this hypothesis in two ways. First, we perform anresite of the feature selection similar to
that in Section 4.2. This is done via a generalized lineareggion model intended to determine which
features of parse trees can predict when the self-trainimdetrwill perform better. We consider many of the
same features (e.g. bucketed sentence length, number johctions, and number of unknown words) but
also consider two new features: unknown bigrams and unkrmieads. Unknown items (words, bigrams,
biheads) are calculated by counting the number of itemsiwtéwe never been seenvrsJtraining but have
been seen in the parsedNC data. Given these features, we take frecores for each sentence when parsed
by thewsJand self-trained models and look at the differences. Out igd® find out which features, if
any, can predict thesgscore differences. Specifically, we ask the question ofthdreseeing more unknown
items indicates whether we are more likely to see improvemehen self-training.

The effect of unknown items on self-training’s relative foemance is summarized in Figure 4.2. For
each item, we show the total number of incorrect parse nadesntences that contain the item. We also
show the change in the number of correct parse nodes in teesenses between thvesJand self-trained
models. A positive change means that performance imprornddnself-training. In other words, looking
at Figure 4.2a, the greatest performance improvement scparhaps surprisingly, when we have seen no
unknown words. As we see more unknown words, the improveifinent self-training decreases. This
is a pretty clear indication that unknown words are not a gprlictor of when self-training improves
performance.

A possible objection that one might raise is that using umkmbiheads as a regression feature biases
our results if they are counted from gold trees instead cdgrhtrees. Seeing a bihead in training causes the
otherwise sparse biheads distribution to be extremelygmbakound that bihead. If we see the same pair of
words in testing, we are likely to connect them in the samieifas Thus, if we count unknown biheads from
gold trees, this feature may explain away other improvementhen gold trees contain a bihead found in
our self-training data, we almost always see an improventdotever, given the similar trends in Figures
4.2b and 4.2c, we propose that unknown bigrams can be thafigista rough approximation of unknown
biheads.

The regression analysis reveals that unknown bigrams akdown biheads are good predictors of
f-score improvements. The significant predictors from $acti.2 such as the number of conjunctions or
sentence length continue to be helpful whereas unknownsnarala weak predictor at best. These results are
apparentin Figure 4.2: as stated before, seeing more unknands does not correlate with improvements.
However, seeing more unknown bigrams and biheads doesptkdse changes fairly well. When we have
seen zero or one new bigrams or biheads, self-training ivegiaimpacts performance. After seeing two or
more, we see positive effects until about six to ten afterciwiinprovements taper off.

To see the effect of biheads on performance more directhalaeexperiment by interpolating between
the wsJand self-trained models on a distribution level. To do this,take specific distributions (see Sec-
tion 2.1) from the self-trained model and have them overttigecorresponding distributions in a compatible
wsJtrained model. From this we hope to show which distributisel-training boosts. According to the
biheads hypothesis, the biheads distribution (which aagtinformation about head-to-head dependencies)
should account for most of the improvement.

39

Total number of
incorrect nodes
0 6000

o 1 2 3 4 5 6 7 10 11 12

Reduction in
incorrect nodes
0 300

o 1 2 3 4 5 6 7 10 11 12

Number of unknown words in tree

(a) Effect of unknown words on performance

10 12 14 16 18 20

Total number of
incorrect nodes
0 1000

-100 100

Reduction in
incorrect nodes

2 4 6 8 10 12 14 16 18 20

Number of unknown bigrams in tree

(b) Effect of unknown bigrams on performance

8 10 12 14 16 18 20 25

Total number of
incorrect nodes
0 1000

100

% I__lllll-ll-

0 2 4 6 8 10 12 14 16 18 20 25

Q
i

Reduction in
incorrect nodes

Number of unknown biheads in tree

(c) Effect of unknown biheads on performance

Figure 4.2: Change in the number of incorrect parse tree hbdeveenvsJand self-trained models as a
function of number of unknown items. Seeing any number ofnemkn words results in fewer errors on
average whereas seeing zero or one unknown bigrams or Bifgeliicely to hurt performance.

40

f-score Model
89.8 x wsJ(baseline)
89.8 * WSJ+NANC M
89.9 * WSJ+NANCT
89.9 * WSJ+ NANC L
90.0 * WSJ+NANCR
90.0 WSJ+ NANC MT
90.1 WSJ+ NANC H
90.2 WSJ+ NANC LR
90.3 WSJ+ NANC LRT
90.4 WSJ+ NANC LMRT
90.4 WSJ+ NANC LMR
90.5 WSJ+ NANC LRH
90.7 ® WwsJ+NANC LMRH
90.8 @ wsJ+ NANC (fully self-trained)

Table 4.12: Performance of the first stage parser underusdombinations of distributions from tivesJ
andws3NANC (self-trained) models on sections 1, 22, and 24. Distrimgiard. (left expansion)R (right
expansion)H (head word)M (head phrasal category), afdhead POS tag): and® indicate the model is
not significantly different from baseline and self-traimaddel, respectively.

The results of swapping these distributions is shown in &a&bl2. For each new model,indicates
that the model’s performance is not significantly differtren the baselinevssmodel and® that it is not
significantly different than the self-trained modél. (biheads) is the strongest single feature and the only
one to be significantly better than the baseline. Neversiseieis only 0.3% higher, accounting for 30% of
the full self-training improvement. In general, the penfiance improvements from distributions are additive
(+/— 0.1%). Self-training improves all distributions, so bitieare not the full picture. Nevertheless, they
remain the strongest single feature.

4.5 Summary

The experiments in this chapter have clarified many dethitsibthe nature of self-training for parsing. We
have shown that the phase transition hypothesis does ntatiexphen self-training is effective. Reduced
search errors are responsible for some, but not all, of tipedwements in self-training. We have confirmed
that non-generative reranker features are more benefieialgenerative reranker features since they make the
reranking parser more different from the base parser. lyjived have found that while unknown bigrams and
biheads are a significant source of improvement, they artheatole source of it. Since unknown words do
not correlate well with self-training improvements, weibe¢ it is the unknown bigrams and biheads which
aid the parser in self-training. Our belief is that new comaltions of words we have already seen guides the
parser in the right direction. Additionally, these new canalbions result in more peaked distributions which
decreases the number of search errors.
However, while these experiments and others get us closenderstanding self-training, we still lack
a complete explanation. Naturally, the hypotheses testedy no means exhaustive. Additionally, we

41

have only considered generative constituency parsersamte good direction for future research would
be to see if self-training generalizes to a broader classao$qrs. We suspect that using a generative
parser/discriminative reranker paradigm should allodsalning to extend to other parsing formalisms and
related tasks.

Finally, we believe that there are actually two differenueyg of self-training happening, depending on the
amount of labelled data available. Recall that in Reichadt Rappoport (2007) where only a small amount
of labeled data was used, self-training was possible wittimuuse of a reranker (see also our experiments in
Section 4.4.1). Reichart and Rappoport (2007) showedlleattmber of unknown words in a sentence was
a strong predictor of when self-training benefits. When gdamount of labeled data is available, unknown
words are no longer correlated with these gains, but unkrzgrams and biheads are. Our theory is that
when using a small amount of training data, unknown wordsuaedul since we have not seen very many
words yet and the increased lexical coverage is key. As thmuatrof training data increases, we see fewer
new words but the number of new bigrams and biheads remaihs We postulate that this difference may
help explain the shift from unknown words to unknown bigraand biheads. We hope to further investigate
the role of these unknown items by seeing how our analysesyehander different amounts of labeled data

relative to unknown item rates.

Chapter 5

Automatic Domain Adaptation

Until this point, our experiments have been designed gikieridentity of the domain being parsed. We have
assumed we (i.e. human agents) can easily determine whitlaide would be useful as training data or
for self-training. In many cases, this is not an unreasaabsumption. For example, the bioinformatics
community’s desire for highly accurate parses has prodtleedENIA corpus as well as numerous other
resources. However, relatively few domains have receikedtype of treatment and there are still many
applications where this assumption does not hold. For elgnepnsider the task of parsing text on an
arbitrary web page. Each web page is potentially a diffedamhain with a different optimal mixture of
training corpora. Our goal is to explore methods of autocadlti creating parsing models tailored to specific
target text, ideally without a significant drop in accuracy.

To study this, we create an extension to the standard sgmeirgsed parser adaptation task allowing for
multiple source domains rather than just one. For examppmase that we need to parse HEOWN corpus
and we're given newswire text, biomedical abstracts, andmatically parsed Gutenberg books as possible
training data. It is clear that the newswire text is helpfak seen in Section 3.2) the Gutenberg books are
likely to help despite their automatic nature, and biomaldibstracts are probably not be as useful and may
even hurt performance. However, the optimal mixture (i.eightings) of these training corpora is far from
clear. In earlier experiments, we were able to tune our wigigh based on development data (albeit in a time
consuming manner). For this scenario, we are not allowedradgmain development datawe refer to this
task agnultiple-source domain adaptation

Multiple-source domain adaptation also has applicatiorta/b issues that come up when applying self-
training. We have shown earlier in Chapter 3 that self-tregjis a valuable tool for improving parser portabil-
ity and parser adaptation. In our previous earlier expamis)ehe texts and base parsers used for self-training
were selected by hand. Currently, no mechanism exists fionzatically determining this. The choice of
target domain can have a significant effect on parsing pedoce (as seen in Figure 3.2) thus selecting the
correct training corpora is an important task. Our formuolabf the problem allows us to answer all of these
guestions using the same framework.

1We note, though, that like other tasks, performance on #isis should improve in the presence of in-domain data wheitahie

42

43

Our proposed solutionAny Domain Parsingis based on the assumption that the target domain is a
mixture of the source domains. That is, using a combinatioedr, in this case) of the statistics from each
source domain, we can create a new parsing model speciffioallye target domain. Each source domain is
treated atomically, though in theory they could be splittoréase granularif/We divide the task into two
steps. The first steplomain detections to weight the importance of each source domain with egsr the
target domain text. For the example mentioned in the secaraypaph where the target domain is simewN
corpus, this might mean giving a weight of 0.6 to the newsteixe, 0.3 to the automatically parsed Gutenberg
books, and 0.1 to the biomedical journal article abstra@wen these weights, we linearly combine each
source domain and create a new parsing model in the secqn¢hsbelel combination Domain detection
is the focus of our exploratiohBroadly put, we learn a model of how domain differences infaeeparsing
accuracy. This is done by taking several computational oreaf domain differencesld@main divergence
measuresbetween the target text and each source domain. We userttesseires as features in a regression
model. The regression model predicts the accuracy of theehpdduced by the source domain mixture on
the target domain. To parse the target text, one simply hedsdst predicted scoring source domain mixture.
We show that our method is able to predict these accuracitswell and that the source domain mixtures it
suggests are among the best we have seen for parsing thetétde question.

Before delving into the details of our model, we note thattthe step approach described above is not
the only way do multiple-source domain adaptation, of ceuf@ne could imagine other approaches where
existing resources are augmented or selected rather tleahaismically (note, though, that some of these
approaches would simply correspond to a more sophisticatetkl combination function). Additionally,
while we use regression in our first step, there are additiwags of formulating the regression problem as
well as classification-based approaches one could usethsfes an example of another way to phrase the
regression problem, imagine that each domain is a pointimesgpace. The axes of these spaces are the
relative weights of each source domain and moving arountdrspace corresponds to choosing different
mixtures of source domains. One could use multi-dimensi@gaession to learn where a new corpus should
map into this domain mixture space and then perform modebdauetion as before. However, this has the
downside that it results in a small humber of training data{so(one data point per target domain) which
would create severe data sparsity. Our formulation of tigeession allows for an essentially unbounded
number of possible training data points.

Note that in this chapter, our experiments only use the diaste parser. This is because our approach
is specific to models with easily blendable models. Howewdrile reranker models cannot be linearly
interpolated like generative parsing models, the scorisdim outputs can still be blended. Our two stage
detect-and-combine framework is thus still applicableimrA@er approach would be to use a single reranker
model for all domains. While this may seem unsatisfyingpfrearlier experiments (Sections 3.2.1 and 3.2.2)
we can see that using thvesxtrained reranker improves performance for many domains. likely that a
reranker trained from all available domains would perfoumrebetter across multiple domains. As with the
first-stage parser, we could simultaneously train rerant@dels for all available domains while explicitly

23plitting could be done using the divisions given in eactpoaa, e.g. article boundaries s Alternatively, the splits could be
created automatically via syntactically-driven clusigri

SHowever, we will discuss some possible variations of the @hodmbination step.

44

learning which features were domain-specific (Daumé D2, Finkel and Manning, 2009).

In Section 5.1, we detail recent work on similar tasks. Dandgtection, the first step of our system,
is covered in Section 5.2. Section 5.3 describes the sedepdrhere the weights from domain detection
are used as input to a model mixing procedure to produce a aesing model. We describe an evaluation
strategy in Section 5.4. Since multiple-source domain tdi@m is a new parsing task, we have created some
baselines and upper bounds to give a sense of current apeax the task (Section 5.4.1). The results
of our experiments are detailed in Section 5.5 where we shaivdur system outperforms all non-oracle
baselines. In our discussion (Section 5.6), we describetb@pply our model to the questions raised in this
section.

5.1 Reated work

The closest work to ours is Plank and Sima’an (2008) wherahahéd text is used to group text withivsJ

into subdomains. The authors create a model for each subidavhich weights trees from its subdomain
more highly than others. The weights are based on prohliabiftom ann-gram language model. Given the
domain specific models, they consider two parser combinatiategies. The first approach is to pick a single
model to parse the target domain. The second techniquespsgaences using models from all subdomains
and creates a single tree from their outputs (along simit@slto Sagae and Lavie (2006)). Unfortunately,
these methods do not result in a statistically significamtromement.

Multiple source domain adaptation has been done for ottsiistee.g. classification in (Blitzer et al.,
2007; Daumeé lll, 2007; Dredze and Crammer, 2008) and ise@le multitask learning. Daumeé IIl (2007)
shows that an extremely simple method delivers solid perémce on a number of domain adaptation classi-
fication tasks. This is achieved by making a copy of each fedtr each source domain plus the “general”
pseudodomain (for capturing domain independent featufés3 allows the classifier to directly model which
features are domain-specific and share the statistics oégteFinkel and Manning (2009) demonstrate the
hierarchical Bayesian extension of this where domainifipecodels draw from a general base distribution.
This is applied to classification (named entity recognit@asmwell as dependency parsing. Dredze and Cram-
mer (2008) approach this problem by combining multiple atarice-weighted linear classifiers. All of these
works have the nice property that they extend naturally tp rammber of source domains. However, it is
not obvious how work on classifiers can be applied to our pgrsiodel (though it would fit nicely with a
parsing model based on classifiers such as Ratnaparkhi)j198@ditionally, these works describe how to
train models in many different domains but sidestep thelprolof domain detection. Thus, our work could
be combined with theirs.

Our domain detection step draws on work in parser accuragjigtion (Ravi et al., 2008; Kawahara and
Uchimoto, 2008). These works aim to predict the parser perdioce on a given target sentence. Ravi et al.
(2008) frame this as a regression problem. Kawahara andnthi(2008) treat it as a binary classification
task and predict whether a specific parse is at a certaindéaelcuracy or higher. Some examples of features
used in these systems include sentence length, estimdeesaail and orthographic difficulty (rarer/unknown
words and more sentence-internal punctuation marks likentas tend to make parsing less accurate), and

45

Test
Train BNC GENIA BROWN SWBD ETT WsJ| Average
GENIA 66.3 83.6 64.6 51.6 69.0 66.6 67.0
BROWN | 81.0 71.5 86.3 79.0 80.9 80.6f 79.9
SWBD 70.8 62.9 755 89.0 759 69.1] 73.9
ETT 72.7 65.3 75.4 75.2 819 73]2 73.9
WSJ 825 749 83.8 78,5 834 89.0 82.0
Average| 74.7 71.6 77.1 747 78.2 75]7 75.3

Table 5.1: Cross-domain parser performance (first stageepanly). Averages are macro-averages. Unsur-
prisingly, most domains perform the best when parsing tleéras (the lone exception isTT which is better
parsed bywsJipossibly due to decreased sparsity). On averaga,s the most accurate&sENIA andSWBD
have the highest variation.

structural information such as the counts of labels in theg@tee. While accurately predicting the accuracy
of a sentence is not our primary concern, we are interestékeirrelative performance of parsing under
different source model combinations and we incorporaterséof their features. Ravi et al. (2008) show that
their system can be used to return a ranking over differersipgmodels which we extend to the multiple
domain setting. They also demonstrate that training theidehonwsJ allows them to accurately predict
parsing accuracy on trEROWN domain. In contrast, our models are trained with multiplends in mind
giving them a better sense of which factors influence crassain performance.

5.2 Domain detection

The goal of this subtask is to predict the relative propogiof our source domains which should be used
to parse a given set of target text. Our input consists of tovex labeled source domaiis (each ideally

its own domain, though this is not required) and unlabelegetatextt. Our goal is to produce domain
divergence functions which assign weights to the labelegara,detect : C x ¢ — w wherew is a weight
vector of positive real numbers with the same cardinalit¢asligher weights inw should indicate that the
corresponding source domain is more similar to the target te

Imagine a very simple approach to this problem involving aibaotion of how domains differ (e.g.
cosine similarity between vectors of common word frequesici We'll refer to these notions aomain
divergence measure3 he approach is to weight each source domain in proportigts t‘closeness” to the
target text where closeness is determined by the domaingdinee measure.

While this method is a good first approximation to a solutiibris likely to run into difficulties. Our
problems can be summarized by the phrase “not all corporeraated equally” — that is, some corpora are
larger, more accurate, and/or more general. Smaller camgsult in less accurate predictions for domain
divergence measures due to data sparsity. Regarding agcwtile we hope that all our labeled corpora are
of comparable accuracy and their annotations standardizedystem should also be able to make effective
use of self-trained corpora. Our system needs a mechanismstge that our self-training corpora obtain a
reasonable weight relative to the hand-labeled corporalllyj regarding generality, we can see in Table 5.2

46

thatwsJperforms quite well over a range of different corpora whereaNIA works well only within its own
domain. There is also the issue that this strategy ties usitogée domain divergence measure when better
performance may be achieved by a combination of domain gidrere measures.

To handle these issues, our approach follows a machineitggimspired route to automatically learn
per-corpora biases and which features are useful for giedicross-domain performance with a regression
model. Ourdetect function uses the predictions of the regression model terdene its results. Each input
to the regression model describes a mixture of source daniaén a distribution over them) and the domain
divergences between those source domains and the target ¢grestion. Regression outputs are fhgcore
of the parsing model created from the source domain mixtarthe target text. By using multiple domain
divergence measures, we allow them to complement each, ptbesibly providing more reliable estimates
of domain divergence. Our system is similar to Ravi et alO@Unasmuch as they both use regression to
predict f-scores and some of our features are similar.

Our inputs to the regressor can be any function of the sowo®dh mixture §) and the surface form of
the target texti):

predict(s,t) =y

wherey is the predicted-score. Assuming we can build such a model with reasonableacy, the question
remains: How would this be useful for the problem of creathredetect function? If we have a set of source
domain models$, we can use our regression function to select the best mamelthis set:

detect(C, t) = arg max predict(s, t)
seS

where all source domains in each source domain mixiuaee contained irC. However, we can also
attempt to optimize our regression functipredict if it is convex and otherwise we can find local maxima.
Now ourarg max function can (in theory) select any source domain mixture:

detect(C, t) = arg max predict(s, t)
S

In terms of practical performance, these techniques do fiffer gignificantly if one has a sufficiently
large set of source domain models.

In the following subsections, we provide further detailgle# regression model. Our regression model
itself is a generalized linear model (GLM), as outlined irct8® 5.2.1. Section 5.2.2 describes the domain
divergence functions and other functions of the source doma

5.2.1 Regression model

One of the simplest forms of regression is the linear regyagnodel. Linear regression learns functions
where the output is linear combination of the inputs

y=alx+b

When fitting the model to a set of inputs and outputs, the faégtaa andb are adjusted. Linear regression
assumes a linear relationship between the inputs and camputhat all inputs are independent. In practice,

47

linear regression works best among all the regression radtlat we explored so the linear relationship
appears to be at least a reasonable assumption overall pds@ble that a more sophisticated regression
model which mapped each feature onto its own scale wouldperbetter.
For completeness, we describe the other regression mddglsve explored. The generalized linear
model allows us to break down the first assumption. In thigcag use a link functiory, which allows us
to map the inputs nonlinearly:
y=yg '(ax+b)

Note that if the link function is the identity, generalizexddar regression reduces to linear regression. The
link function in a generalized linear model is actually atireation of the distribution of errors between our
prediction and the mean of the output:

Ely] = p=glax+)

In our specific case, this would be beneficial if the composiefk (i.e. our domain divergence measures
along with the other features) were not on a linear scale aptyig the link function resulted in a linear
between inputs and outputs. However, it would still reqtfirat they all be on the same scale. Naturally,
if one has prior knowledge that a componentxois on a specific nonlinear scale, one can preprocess that
component to make it more amenable to linear regression.

Prediction and estimation are fairly straightforward. Téarned function can be used immediately to
predict new outputs for a given input. These models are &figiestimated using least squares methods
to obtain the maximum likelihood estimate. More details ba &ctual data points for this estimation is
forthcoming. The next section describes what each datd fomiks like and Section 5.5.2 where explain the
origin of the points.

In our experiments, we explored several different famibisrror distributions including Gaussian (which
uses the identity link function), gamma, inverse gamma, Roidson. As stated earlier, the Gaussian error
distribution outperformed the others. In pilot studies, algo explored other forms of regression such as
Locally Weighted Projection Regression (LWPR) (Vijayalkamet al., 2005). LWPR essentially works by
clustering the data points and finding local linear appr@tions of each cluster. However, LWPR did not
perform as well as linear regression in our pilot studiesr @gression training dataset is somewhat small
which may have made it tricky for LWPR to find decent clustekdditionally, LWPR is stochastic and for
this task we prefer to have a more stable prediction function

5.2.2 Domain divergence measures and other features

We describe the possible features which are designed tatinelegression model determine if a particular
source domain mixture is well suited for a specific target diom Some of these features directly connect
the two (domain divergence measures) whereas others segenaral information about the source domain
mixture. The latter allow the regression model to capturelinear patterns about good source domain
mixtures (e.g. how many/which source domains should be,Usad uniform the distribution should be,
etc.).

48

As stated earlier, domain divergence measures are desigraggbroximate how different the target do-
main is from a specific source domain. Only the surface foriheftarget text and automatic analyses are
available (e.g. we can tag or parse the target text but carsgogold tags or trees). Our features make use of
word frequency, vocabularies, sentence lengths, and simgtam language models.

While this section describes all the features that we erplowe note that our feature selection step
selected only three of them GINETOP50, UNKWORDSREV, andeENTROPY from uniform). The rest of
the details are here for completeness.

Word frequencies and vocabulary are an important indigatdomain. We can use a spatial representa-
tion to summarize the vocabulary of a corpus as a single vevextor space approaches map each source
domain to a point in a metric space allowing distances betwlsmains to be measured using standard
methods (Euclidean, Manhattan, cosine similarity etcgtuxally, there are a large number of ways that the
contents of a corpus can be mapped into vector space. A commathod is to represent each corpus as a
vector of frequencies of themost frequent words (Schiitze, 1995). To find thaost frequent words across
corpora, we take the count of all words in each corpus divietthe number of tokens in the corpus and sum
these counts across all corpora. This ensures that ourf liseanost frequent words are not dominated by
the words in our larger corpora. The vectors are normaliaeshsure that they all have the same magnitude.
Typically, one applies dimensionality reduction (e.g.gsilar value decomposition) to these points to focus
on the most salient differences, though in our case we doaa Bnough points to warrant dimensionality
reduction. Under this setup, this method assigns high aiityilto domains with a large amount of overlap
in the high-frequency vocabulary items. We create theséovea@and use cosine similarity (i.e. the angle
between the two vectors) to determine the divergence bettveedomains:

similarity (4, B) = AB_

AN Bl

We refer to these features a®&NETOPK where Ke (5,50, 500, 5000) indicates how many of the most
frequent words we include in our vector. We show the top 50dwacross our corpora in Figure ref-
fig:Top50Words. An example of the raw values from theSINETOP5000 domain divergence measure
can be found in Figure 5.2a. Note hawsJis fairly similar to almost all domains whereas/sD is similar
only to itself. Additionally, we can use cosine similargtiever vectors of punctuation @SINEPUNC). Do-
mains differ in their usage of punctuation (e.g. we wouldestvsJito use quotation marks more than other
corpora) so these statistics may provide a fast way of djatghing gross differences in domain.

Another way of comparing the vocabularies across domaites determine how many words would be
unknown if one built a vocabulary from a different domain. iSThan be done on the word type or word
token level. We opt for the word token level since unknowndgquose problems for parsing each time they
occur. The domain divergence measumnekWORDS computes the percentage of word tokens in the target
domain that are unknown given the source domain’s vocapulitk WORDSREV is the same idea with the
source and target domains swapped (i.e. percentage of wotbe source domain that are never seen in
the target domain). The raw values of the latter feature easelen in Figure 5.2b. The broad trend of this
chart is thatcGENIA andMEDLINE are similar to each other but very dissimilar from everythétse. Other
domains tend to have about a 5—-15% unknown word rate withgbk@s and 20-25% unknown word rate

49

, the . of and to in a that is i for it (was with) 's by on as “ ™
you he we this from at not but be have are or were they an his uh ha d
which cells n't has said do one there all

Figure 5.1: Fifty most frequent words across all corpordesbby decreasing frequency. Unsurprisingly,
nearly all of these words are closed-class words. “cellgieaps due to its high frequency in theeDLINE
corpus.

with non-medical domains.

We also consider language models as domain divergence meagsiven a language model and some
input text, a language model estimates the probability oflpcing the input text. Thus, given a collection
of domains we can make a language model for each domain anth&matobability of generating the target
domain text from each source domain. The most common formmfuage models usegrams (c.f. (Chen
and Goodman, 1996; Goodman, 2001; Brants and Franz, 208& a@ssume that generating each word in a
sentence is only conditioned on the previausl words. More sophisticated approaches (Chelba and Jelinek,
1998; Roark, 2001; Charniak, 2001; Xu et al., 2002) takeasyirtto account and generate all possible trees
which have the sentence as the leaves. The probability ¢f setence is the sum of the probabilities of
each of its possible trees. We could potentially use a sybémed language model which would allow us to
make full use of the syntactic trees in our training data.ngsi language model for domain detection may
be able to make better use of context than the other appreaétoe experiments, we use simple Kneser-
Ney smoothed trigram model with an open vocabulary from $RfLWe create three domain divergence
measures corresponding to the three scores from the laaguadgel (perplexity, perplexity ignoring sentence
boundaries, and log probability).

A quick study of sentence lengths revealed that these maystdrstantially across domains (see Ta-
bles 2.1 and 2.2). We allow our model to capture this infofomaby introducing two domain divergence
measures, YERAGELENGTH and AVERAGEL ENGTHDIRECTED. Both features examine the difference be-
tween the average sentence lengths. The former featurasehe absolute value of these differences.

Note that since domain divergence measures merely medsusanilarity between each source domain
and target text, the raw values of measures must remainasdrastross all source domains mixtures parsing
the same target text. In other words, the raw domain divergemeasures fail to distinguish any source
domains from each other. Naturally, this is undesirableusTtour computed domain divergence measures
must connected to their corresponding source domain neéxteight in some way. The best method which
we have found is to divide the mixture weight of the source dionby the divergence. When the source is
not used, the adjusted divergence is zero regardless ohtheivergence (which is reasonable). Given the
choice between two source domains, we obtain a higher adjwuitergence score from the source domain
with the smaller divergence measure, thus encouragingysters to use the more similar (i.e. less divergent)
source domains. Thus, we apply this procedure to all doma@rgence measures. For the remainder of this
chapter, domain divergence measures will refer to theirpuged values unless explicitly stated.

In addition to the domain divergence measures, we includerakfeatures which are purely a function

4SRILM is available fromhttp://www.speech.sri.com/projects/srilm/

50

< é a)

c & g = £ 8
Source domain o) o n w =
GENIA 0.894 0.998 0.860 0.676 0.887 0.881
MEDLINE 0.911 0.977 0.875 0.697 0.895 0.897
BROWN 0.976 0.862 0.999 0.828 0.917 0.960
GUTENBERG 0.982 0.868 0.977 0.839 0.929 0.957
SWBD 0.779 0.663 0.825 0.992 0.695 0.789
ETT 0.971 0.896 0.937 0.766 0.992 0.959
WSJ 0.968 0.880 0.963 0.803 0.941 0.997
NANC 0.983 0.888 0.979 0.801 0.950 0.987

(a) Divergences from 6SINETOP5000. Higher values are more similar.
< é a)

S i 2 = = 3
Source domain @) o n w =
GENIA 3333 10.8
MEDLINE 325 21.5
BROWN 14.3 10.7 21.5 22.7
GUTENBERG 16.0 14.3 23.7 23.2 20.0
SWBD 9.0 30.6 6.1 4.6 11.1 11.4
ETT 18.1 17.4 22.1 10.3 16.6
WSJ 23.1 22.5 30.1 25.4 14.2
NANC 20.4 19.3 27.1 24.5 18.3

(b) Divergences from ik WORDSREV. Lower values are more similar.

Figure 5.2: Raw values from two domain divergence measWéesuse the training division for the source
domains and the development division for the target text is-if\why the charts are not symmetric even
for symmetric measures like cosine similarity. This is aldty, for example, thevsisource domain doesn't
have cosine similarity 1 with thezsJtarget text. Cells have been colored from white (more siitablack
(less similar). For self-trained corporaTENBERG MEDLINE, andNANC) we do not list the base parser
used to parse it since neither of these divergence measseésfarmation from syntactic trees and thus gave
the same scores regardless of base parser.

51

of the source domain mixture. From pilot studies, we learted models with a large number of source
domains tended to perform well. We created several featithghis in mind to allow the regression model
to capture the relevant properties. One feature, “# sowogaihs used,” lets the regressor learn a weight for
adding or removing an arbitrary source domain. In case $hisa coarse we createNedbNzERO feature for
each source domain which is 1 when the source domain is givatiyee weight. To capture the uniformity of
the distribution of source domains, we introduceghia RoPYwhich measures the entropy of the distribution
over source domains. Finally, to provide the regressionehwith a control for how much self-trained data
is used, we create a feature which measures the percent gbtliee domain mixture which consists of
self-trained corpora.

5.3 Modd combination

Given parsing models for each source domain, . . ., my, and a mixing distribution}, ..., A\, over the
source domains as input, this step combines them into a neinganodel. As mentioned befor@jx (m, \)
creates a new model by linearly interpolating modealaising weights\. In this model, the probability of
parsing event is

Pmix(e) X)\101(6) +)\202(6) + -4)\NCN(e)

whereCy (e) is the count of event in parsing modem,,. This approach perfornmixing by countdut
we could also danixing by modets(Bacchiani et al., 2006)

P...(e) = P(e)+ XaPy(e) + -+ AnPu(e)

whereP, (e) is the probability of everd in parsing modein;. While these both have similar forms, they
make different predictions. As in Bacchiani et al. (20068, @xpect mixing by counts to perform better than
mixing by models.

One detail to consider is that models may be mixed completebn a per-component basis (in this case,
component refers to one of the five distributions that makéhepparsing model described in Section 2.1).
For example, we could allow for a different mixing distrilmrt for the left and right expansion components
(L andR) than for the biheads componefit)(This is potentially useful since the left and right exgans
components are more likely to be shared across models thaihtbads component because the latter encodes
more lexical information. To do mixing at this level, we wduleed to train separate regression functions for
each component which may be too computationally expensilternatively, we could select only a subset
of distributions to mix. In future work, we plan to investiggparser portability on a per-component level.
This could result in better model combination strategies.

5.4 Evaluation

Multiple-source domain adaptation is a new task for parsimg) thus some thought must be given to evalu-
ation methodology. We describe two evaluation scenarigstwdiffer in how foreign the target text is from

Train Test Train Test
Source Target| Source Target| Source Target| Source Target
C\{t} C\{t} |C\{t} (&} C C\{#] ¢ {t}

52

(a) Out-of-domain evaluation (b) In-domain evaluation

Table 5.2: List of domains allowed in single round of evaloat In each round, the evaluation corpus.is
C is the set of all target domains. For example, when trainidgraain detection system in the in-domain
scenario, one may build models using all domains and ewathatn on any domain exceptOne detail not
shown is that any derived corpora are removed as well (ife=ifwsJ, we must removelANC as well since
NANC is created from avsibase parser).

our source domains. Schemas for these evaluation sceagiahown in Table 5.2. Note that training and
testing here refer to training and testing of our regressiodel,not the parsing models which are trained in
the conventional fashion.

In the first scenariogut-of-domain evaluatigrone target domain is completely removed from consider-
ation and only used to evaluate proposed models at test Tilreregressor is trained on training points that
use any of the remaining corpoi@,\ {t}, as sources or targets. For example, # wsJ we can train the
regressor on all data points which don’t wgeJ (or any self-trained corpora derived frowsJ) as a source
or target domain. At test time, we are given the texiwstjs test set. From this, our system creates a parsing
model using the remaining available corpora for parsing&ewsJtext.

This evaluation scenario is intended to evaluate how welkgatem can adapt to an entirely new domain
with only raw text from the new domain (for example, parsimgnizedical text when none is available in our
list of source domains). Ideally, we would have a large nunolb@veb pages or other documents from other
domains which we could use solely for evaluation. Unfortahaat this time, only a handful of domains
have been annotated with constituency structures undesatime annotation guidelines. Instead, we hold
out each hand-annotated domain(including any automatically parsed corpora derived fithiait source
domain) as a test set in a round-robin fashidfor each round of the round robin we obtain fascore and
we report the mean and variance of tfiscores for each model.

The second scenarim-domain evaluationallows the target domaim, to be used as a source domain in
training but not as a target domain. This is intended to etelthe situation where the target domain is not
actually that different from our source domains. The in-domevaluation can approximate how our system
would perform when, for example, we hawesJas a source domain and the target text is news from a source
other tharwsJa Thus, our model still has to learn thasJand the North American News Text corpugfC)
are good for parsing news text likesswithout seeing any direct evaluations of the sersgandNANC can
be used in models which are evaluated oro#iiler corpora, though).

5Thus, the schemas in Table 5.2 are schemas for each round.

53

54.1 Basdines

Given that this is a new task for parsing, we needed to cresgelines which demonstrate the current ap-
proaches to multiple-source domain adaptation. One apprigao take all available corpora and mix them
together uniformly?. The UNIFORM baseline does exactly this using the available hand-loaitting corpora.
SELF-TRAINED UNIFORM uses self-trained corpora as well in its mixtures. In theafedomain scenario,
these exclude the held out domain. When used in the in-dosediimg, the held out domain is included.
These baselines are similar to theltAand WEIGHTED baselines in Daumé 111 (2007).

Another simple baseline is to use the same parsing modaidiega of target domain. This is essentially
how large heterogeneous document collections are gepbeaidled currently. We use thesJicorpus since
it is the best single corpus for parsing all six domains (sg#el and Section 3.2). We refer to this baseline as
FIXED SET: wsJ In the out-of-domain scenario, we fall back tal$-TRAINED UNIFORM when the target
domain iswsJwhile the in-domain scenario uses tsJmodel throughout.

There are several interesting oracle baselines as wellhvg@o/e to measure the limits of our approach.
These baselines examine the resultfirgcores of models and pick the best model according to soiteeiar
The first oracle baseline isi$cLE CorRPUSWhich parses each corpus with the training corpus that max-
imizes performance on the test corpus. In almost all cakespaseline selects each corpus to parse itself
when possiblé. This baseline roughly corresponds to a human picking theogypiate source domain in each
case (though it could easily outperform the human given sofittee surprises we have seen).

Our second oracle baselinez 8T SEEN, chooses the best parsing model from all those exploredafdr e
test set. Recall that while training the regression mod8&kation 5.2.1, we needed to explore many possible
source domain mixtures which approximate the completeespmixed parsing models. To the extent that
we can fully explore the space of mixed parsing models, thi&ebne represents an actual upper bound for
model mixing approaches. Since fully exploring the spaqeoskible weightings is intractable, it is not a true
upper bound. Nevertheless, we believe that we have obtairféidient samples (we elaborate on this when
we describe our sampling strategy in Section 5.5.2). While theoretically possible to beat this baseline,
(indeed, this is the mark of a good domain detection systeisjar from easy. We provideiSGLE CORPUS
and BEST SEEN for both in-domain and out-of-domain scenarios. The outl@hain scenario restricts the
set of possible models to those not including the target dema

Finally, we searched for theeEBsT OVERALL MODEL. This is the model with the highest averafyscore
across all six target domains. This baseline can be thougas @n oracle version ofIKED SET: wWsJ
and demonstrates the limit of using a single parsing modglritdess of target domain. Naturally, the very
nature of this baseline places it only in the in-domain exédun scenario. Since it was able to select the
model according tgf-scores on our six target domains, its performance on damaitside that set is not
guaranteed.

To provide a better sense of the space of mixed parsing modelslso provide the \WRST SEEN

8Accounting for corpus size so that the larger corpora dorérehelm the smaller ones.

"For corpora that are too small to have both training andrigstivisions, BNC in our case) this baseline has to choose a different
corpus. AdditionallywsJactually performs better at parsigg T than the training portion cf TT — this is most likely due to the
small size ofeTT.

54

baseline which picks the worst model available for a spetdfiget corpus.

5.5 Experiments

We discuss the specifics of our experiments in this sectioa.statt with our rationale for the selection of

source and target domains (Section 5.5.1). Next, we desotib strategy for randomly sampling parsing

models and empirical evidence that we have enough sampbpitel¢he sampling space’s high dimension-
ality in Section 5.5.2. In Section 5.5.3, we describe a gyestchtegy for picking which features (domain

divergence measures and other features) to include in guession model. The results of our experiments
with baseline comparisons are described in Section 5.5r&ll¥% we conclude this chapter with some dis-

cussion (Section 5.6).

551 Corpora

We had a variety of goals for selecting the source and taayaaihs which ultimately resulted in nine source
domains and six target domains. The breakdown of how coruerased is shown in Table 5.3. The primary
goal was to cover as many source domains as possible. Igeallwould include a large number of self-
trained texts and each hand-labeled corpus would havesitdaa self-trained text derived from it. Initially,
we were concerned that the space of parsing models wouldobarge. We opted towards fewer corpora
to make experiments more reproducible by other researchiéndle there is essentially an infinite amount
of raw text that we could use for self-training, we selectety dour self-trained texts to use. We include
GUTENBERG as a self-trained corpus as parsedvibgy ParsingGUTENBERG with wsJ rather than the
presumably more closely matcheaowN surprisingly resulted in better performance during pikoidées.
We also include two versions of the self-train@dDLINE corpus — one parsed ByENIA, the other parsed
by wsi— to see if our system can learn preferences between the tasilyl we include thelANC corpus
as parsed bysi We omitted theBIOBOOKS corpus given its relatively small size and lower performeanc
ONGENIA. When training parsing models from self-trained corporaneed to trees to use for tuning. Since
these need to be gold trees, we use the development portibasef parser’'s corpus. In other words, the
parsing model foMEDLINE (by wsJ) useswsJs development section for tuning. Finally, note that thisre
mismatch in the number of source and target domains ginceis too small to be used as a source domain.
Self-trained corpora shouldn’t be used as target domaitiseérstrees are not necessarily correct.

As mentioned in Section 2.3, the corporain this chapter baea preprocessed to standardize many of the
differences in annotation. Thus, results on them are $jiglifferent than in previous chapters. Nevertheless,
we do not expect these changes to significantly impact dysegformance.

5.5.2 Sampling parsing models

We wish to sample parsing models which have varied perfoceanross all corpora to use as training data
for our regression model. We present here a simple stratéighvempirically achieves our goal. First, we

8This turns out to besENIA for all corpora other thasENIA andswBD when the target domain SENIA.

55

Corpus Source domain Target domai

BNC o

BROWN

ETT

GENIA
MEDLINE

SWBD

wsJ
NANC
GUTENBERG
MEDLINE

n

Table 5.3: List of source and target domains. Indented rodiate self-trained corpora parsed using the
non-indented row as a base parser.

sample the number of source domains to use. We draw valumsafincexponential distribution until we find
one between two and the maximum number of source domains, (imrour case). Using an exponential
distribution encourages this number to be closer to two evsiill allowing for the occasional nine. This
means that we try many different subsets of source domahes) parameter for the exponential distribution
was adjusted by hand to place most probability mass on smrmall@bers of source domains and we found
that\ = 0.4 produces a reasonable curve.

Once we know the number of source domains, we sample theiesiamiformly at random without
replacement from the list of all source domains. Finally, seenple the weights for the source domains
uniformly from a simplex. The dimension of the simplex is #zne as the number of source domains so we
end up with a probability distribution over the sampled sewtomains.

In total, we created 1,040 sampled source domain mixturésttair corresponding parsing models.
Each of these parsing models is evaluated on each of thergiattdomains giving us 6,240 data points
total. To ensure that the simple cases are covered, we madendi@urations which include each single
source domains and several simple combinations of sounoaiths. The above strategy was used to create
500 samples. For the remaining 500 samples, we made a smdifiication. Since our evaluation scheme
excludes one target domain and all corpora derived fronf ityei select the corpora to use uniformly at
random, there is a good chance that the model could be extfoda large number of target domains. To
work around this, we rotated through the set of target dosdinlding out each target domain and any
derived corpora each time. This guarantees that each nedséble for at least one target domain.

As stated before, this is a large space and we were initialhigerned about covering it. To alleviate these
concerns, we show a graph of the cumulative oracle scoreafdr eorpus (Figure 5.3). Each data point is
the average of th¢-scores of the best parsing models seen for the six targetidgrthey need not be the
same model). In other words, for each of the six target dospdire oracle is allowed to pick the best of the
first K models when plotting théth point. The shape of Figure 5.3 implies that we have covidredpace
well. After the first 200 samples, the cumulative oragiscore does not increase much meaning that we find
models which perform well for each domain quickly. This aushows the performance for tiredomain
cumulative oraclg-score — that is, where models trained on the target domaimatuded. The curve for

56

87.5F]

87.01 b

[oF] (o] [o¢]
a o o
ul o w
T T T
l l l

oracle f-score

oo}
vl
o
T
I

84.5F b

84.01 b

0 200 400 600 800 1000
Number of mixed parsing model samples

Figure 5.3: Cumulative oraclg-score (averaged over all target domains) as more modelsaadomly
sampled. Most of the improvement comes the first 200 samptisdting that our samples are sufficient to
cover the space of good source domain mixtures.

57

the more conservativeut-of-domaircumulative oraclef-score has a similar shape but is nearly completely
flat after the 400 samples instead of 200. In both cases, wplsamore than enough points to reach a
performance plateau.

5.5.3 Model and feature selection

In order to explore many different regression models antufea for said models without hill climbing
on our test data, we created a tuning scenario. Since thefaldmain evaluation scenario holds out one
target domain, this gives us six test evaluation rounds. elach of these six rounds, we hold out one of
the remaining five target domains for tuning. This gives usu80ng evaluation rounds and we tune our
parameters by optimizing our aggregate performance oVef #siem. A model that performs well in this
situation has proven that it has useful features which feans unknown target domains.

The next step is to determine the loss function to optimiag. @imary guide i®racle f-score lossvhich
is determined as follows. We take all test data points (ioéntg that evaluated on target domain) and predict
their f-scores. In particular for this measure, we are interesiéiubi point with the highest predictgescore.
We take its actuaf-score and call that theandidatef-score When tuning, we know the trugscores of all
test points. The difference between the highfestore (the oracl¢-score for this dataset) and the candidate
f-score is the oraclg-score loss. Ties need to be handled correctly to avoid dggemodels. If there
is a tie for highest predicte@tscore, the candidatgscore is the one with thiewestactual f-score. This
approach is conservative but ensures that regression mwtialh give everything the same predicjéescore
do not receive zero oraclescore loss.

Since oraclef-score loss is only concerned with a single data point, wetwieeother loss functions to
ensure a good holistic fit. The first is the comnmean squared errowhere we sum the squared differences
between the predicted and triiscores. To encourage fits which do better on points withdrigiue f-scores,
we also introducenodified mean squared error

g [true — predicted|!TtTue
{predicted,true}

Modified mean squared error interpolates betweeandL- loss as data points increase in their tifuscore.
Thus, errors on points with higher tryfescores are more heavily penalized.

Armed with a tuning regime and loss functions to guide us, am wow use them to select regression
models and features for those models. We created a pazatdbest-first feature searcher which performs
best-first search. We provided it with several seed pararseténgs (one for each domain divergence mea-
sure). These settings are evaluated in parallel to deterthéir oraclef-score loss. At each stage, the setting
with the lowest loss is expanded by toggling all possiblérsgs (e.g. if the setting included thedSINE-
TopP5000 divergence measure, we create a copy of the settingutithat domain divergence measure).
These new settings are evaluated and the cycle repeats. dklnaist all expansions of the setting with the
lowest loss, we backtrack to the next best scoring setting.

For demonstration purposes, Table 5.4 provides an exarmsglession input data point. It includes
two domain divergence measures(€&NEToOP5000 and WIK WORDSREV), the source domain distribution,
whether each source domain is non-zero and the three otiterds of the source domain distribution.

58

Description Value | Description Value
% WSJ — COSINETOP5000:WsJ 0.000
% BROWN 6.9% | COSINETOP5000:BROWN 0.083
% GENIA 27.4% | COSINETOP5000:GENIA 0.405
% SWBD — COSINETOP5000:SWBD 0.000
YETT — COSINETOP5000:ETT 0.000
% NANC COSINETOP5000:NANC 0.696
% GUTENBERG 10.0% | COSINETOP5000:GUTENBERG 0.119
% MEDLINE (by wsJ) — COSINETOP5000: MEDLINE (by WsJ) 0.000
% MEDLINE (by GENIA) — COSINETOP5000:MEDLINE (by GENIA) | 0.000
usedwsJ? FALSE | UNKWORDSREV: WSJ 0.000
usedBROWN? LU UNKWORDSREV: BROWN 0.321
usedGENIA? UNKWORDSREV: GENIA 0.599
usedswBD? FALSE | UNKWORDSREV: SWBD 0.000
usedeTT? FALSE | UNKWORDSREV: ETT 0.000
usedNANC? = UNKWORDSREV: NANC 2.057
usedGUTENBERG? UNKWORDSREV: GUTENBERG 0.421
usedMEDLINE (by wsJ)? FALSE | UNKWORDSREV: MEDLINE (by wsJ) 0.000
usedMEDLINE (by GENIA)? | FALSE | UNKWORDSREV: MEDLINE (by GENIA) | 0.000
source domains used 4

ENTROPY 1.591

% self-trained corpora

Table 5.4: An example regression input data point v@BD as the target text. Percentages and booleans
have been color-coded. Features in the left half of the @fgléunctions solely of the source domain mixture
whereas the right half has features which are functionseofdtget text as well. Only two domain divergence
measures are listed @SINETOP5000 and Wik WORDSREV) but in practice many others are available.

The best setting we found uses only three featurasiRoPY with the CosSINETOP50 and WINKWORD-
SREV domain divergence measures. We evaluated over 6,000gs=ftinthe GLM model, though this setting
was found very early on (within the first 200 settings) so weetsbme degree of confidence that this is one of
the best settings. The setting gets an average 0.37 gf&cdere loss on the 30 tuning datasets. The average
unmodified and modified mean squared errors are 0.48 andésp6éatively. These settings make a reason-
able schema for a regression model — it uses two relativetyogonal domain divergence measures (see
Figure 5.2.2) an&NTROPY feature allows it to prefer more uniform distributions amgteurages it to use
more source domains. TlTROPY feature is especially valuable when considering the higfopmance
of the Self-trained Uniform baseline (see Table 5.5).

5.5.4 Maximizingtheregression function

Once we have trained our regression function, we can usesilaxt the model with the highest predicted
f-score on the target domain. However, as mentioned in $E8) we can also attempt to search for an even
better model by maximizing the regression function. Rettedt the regression function takes information
about the source domain distribution and the target textasti Here, we hold the target text constant and
create a proxy function which takes weights (i.e. unnorpegliprobabilities) for the source domains. This
proxy function computes the correct input to the regresiiaction by normalizing its input and calculating
any features of the source domain distribution (e.g. # sodotnains used, entropy, etc.). The proxy function

59

returns the predicted-score on the target text. We optimize the proxy functiorhwite L-BFGS-B con-
strained numerical optimizer package (Byrd et al., 1995 &hal., 1997). We prefer a numerical optimizer
with constraints since it allows us to constrain all parareto be non-negative.

Unfortunately, due to features likeNTROPY and "# source domains used,” the proxy function is highly
non-convex. We are likely to get trapped in local maxima whigtimizing it. To alleviate this, we performten
numerical optimizations, each initialized from one of thoéns with the ten best predictgéscores. We then
use whichever optimized setting results in the highestipted f-score. In practice, the predictgescores
from these ten optimizations do not differ too greatly froaclke other. They tend to be about 0.5%-1% higher
than the original predicteftscore. When actually evaluating these new settings inuhieg scenario, they
show a small improvement over the previous non-optimizédhggs. The improvement, however, is probably
not statistically significant. Nevertheless, we maximleetegression function for our final results.

The most exciting aspect of this experiment is that in sévses, the settings discovered by the opti-
mizer are better than any we have seen from sampling. Thisates to us that the model is guiding us well
towards better source domain mixtures. It is difficult toedstine if there are global maxima in the proxy
function which would result in significantly improved penfioance. Our hypothesis is that we would need a
more sophisticated regression model rather than betteencahoptimization here to close the gap between
our system and the best seen settings. This takes into adt@uassumption that the best seen settings are
in fact close to the best settings for this type of model caratibn, as supported by Section 5.5.2.

555 Results

We present an overview of our final results for out-of-donsid in-domain evaluation in Table 5.5. The
results include theg-score averaged over the six target domains and the staddaiation. More detailed
results on individual target domains can be seen in Figurearkd 5.5. As stated earlier, these experiments
use only the first-stage parser and thus have lower perfaethan some of our previous experiments.

Our system, Any Domain Parsing, is the best non-oracle sy&te both tasks. For out-of-domain eval-
uation, our system is only 0.3% worse than the best seen sémtetach target domain. For the in-domain
scenario, we are within 0.6% of theeBT SEEN models. Additionally, our model is 0.7% better than the
BEST OVERALL MODEL. Recall that the BST OVERALL MODEL is the single model with the best perfor-
mance across all six target domains. By beating this baselwe show that there is value in customizing
parsing models to the target domain.

Our baselines reveal some interesting properties of olraad corpora. In both situations, thexEp
SET. WsJbaseline performs fairly poorly. Not surprisingly, assagiall of our target domains are close
enough tovsiaworks badly for our set of target domains and it does pasitybad onswBD andGENIA.

On average, the NiIFORM baseline does slightly better for out-of-domain and overt®¥ter for in-domain.
UNIFORM actually does fairly well for out-of-domain except @eNIA. In general, using more source
domains is better which partially explains the successnfFidrRM. This seems to be the case since even if a
source domain is terribly mismatched with the target doriaimay still be able to fill in some holes left by
the other source domains. Of course, if it overpowers mdevaat domains, performance may suffer. The
SELF-TRAINED UNIFORM baseline uses even more source domains which are also glestianes. In both

60

Oracle Baseline or model Averagfescore Oracle Baseline or model Averagescore
° Worst seen 62.6:6.1 Fixed set:wsJ 82.3+4.4
° Single corpus 81.829 Uniform 85.4+24
Fixed set:wsJ 81.24+3.1 ° Single corpus 85.6-2.9
Uniform 81.4+ 3.6 Self-trained Uniform 86.1 2.0
Self-trained Uniform 83.4 25 ° Best overall model 86.2 1.9
Any Domain Parsing 84.0+ 2.5 Any Domain Parsing 86.9+2.4
° Best seen 84.3 2.6 ° Best seen 87.521
(a) Out-of-domain evaluation (b) In-domain evaluation

Table 5.5: Baselines and final results for each multipless®domain adaptation evaluation scenarios. Re-
sults aref-scores, averaged over all six target domains with themdsted deviation. Our model, Any Domain
Parsing, is the best non-oracle based system.

evaluations, this dramatically improves performance aritlé second-best non-oracle system. This baseline
provides more evidence as to the power of self-trainingrfgeroving parser adaptation. If we excluded all
self-trained corpora, our performance on this task woulduiestantially worse. The®BsT SINGLE CORPUS

is poor in the out-of-domain scenario primarily becausesttteal best single corpus is excluded by the task
specification in most cases. When we move to in-domain, tiéeline improves but is still worse thag(S--
TRAINED UNIFORM on average. It beatsERF-TRAINED UNIFORM primarily onwsJ, SWBD, andGENIA
indicating that these three domains are best when not dilweothers. Perhaps surprisinglyg 8T SINGLE
coRrpusand RXED sSeT: wsJperform similarly in the out-of-domain setting. This is besewsJis the
best single corpus to use in most casagEb SET: wsJends up doing slightly better because it is forced to
fall back to uniform when evaluating omsJa. By definition, the WORST SEENbaseline does terribly, almost
20% worse then BST SINGLE CORPUS We omit this baseline from Figures 5.4 and 5.5 to avoid skgwi
the scale.

5.5.6 Analysis

For the in-domain evaluation, our biggest loss comes fronewaluation onGENIA. At the same time, our
results onwsJare near the best seen models for both scenarios — for thef@dmain evaluation, it actually
performs better than theEsT SEEN baseline (although not by a significant margin). In Table w& show
the weights on the linear regression model for §@niA and wsJ evaluation rounds to give examples of
bad and good regression models. We note that the magnitfidesghts are not directly comparable across
groups of features (i.e. weights fooSINETOP50 are on a different scale thamkdWORDSREV). However,
it is meaningful to compare weights of features within greapd across evaluation scenarios.

This discrepancy in performance warrants some exploratiothe out-of-domain scenariceNIA and
MEDLINE (by GENIA) are excluded, but the regressor learns that it should faro INE (by wsJ) and gives
it the highest weights amongd3INETOP50 and LWKWORDSREV. Note that self-trained corpora tend to
have higher weights. Presumably this is because the sdtfett corpora are larger and thus applicable to a
large number of target domains. In the in-domain evaluatioth versions ofMEDLINE are available. The
regressor assigns a higher weight to thedDLINE which useswvsJas its base parser — this is most likely

87 Brown
® Brown
86 BNC‘ ETT
@ Brown
BNC * ETT
v ETT
85
4 BNC
Average ®
84 ETT Average
® Brown ® Brown
ETT ETT Brown
Average ®
83 * WS) W) Switchboard
* WS) * WS) Switchboard
BNC BNC : :
BNC & Switchboard Switchboard
82 ws)
Average @
Average @
81 Average
* WS)
® GENIA
80 GENIA
® GENIA
79 Switchboard
Switchboard
78
77
® GENIA ® GENIA
76
75
74 ® GENIA
Best single Fixed set: WS]) Uniform Self-trained Any Domain Best seen
corpus Uniform Parsing

Figure 5.4: Out-of-domain evaluation

& WS
90 !
* WS)
Switchboard
* WSJ
89 Ws} WS e Switchboard Switchboard
¢ WSJ
88| Switchboard
+ WS Switchboard Brown ® Brown
Average
87 Switchbgard .o
@ Brown o v ETT
Brown VETT
@ Brown Average ®
B Average @ AN
86 Brown BNC
v ETT v ETT
Average ® 4 BNC
Average ® ETT
A BNC
85
® GENIA
4 BNC
84
L
Brown % GENIA « GENIA
*
. * GENIA GENIA
2
® GENIA
BNC BNC
Average ® & BNC
82
81
80
79
Switchboard
78
77
® GENIA
A
76 Fixed set: WS) Uniform Best single Self-trained Best overall Any Domain Best seen
corpus Uniform model Parsing

Figure 5.5: In-domain evaluation

63

the main factor in why it produces a suboptimal parsing moutlis evaluation. The question remains, why
would it assign a higher weight teeDLINE (by wsJ)? The answer seems to be because self-trained corpora
incorporate many of the statistics of their base parser.siabpLINE (by wsJ) acts in many ways like a
larger version ofvsa Since we aren'’t allowed to evaluate GENIA when testing on it, the regressor only
knows how well the models do on other target domains. By amg|dahe other target domains are more like
wsJthanGENIA (this is certainly the case from an unknown word point of viewecall Figure 5.2b). Thus,

the regressor believes it should trestDLINE (by WSJ) more.

We had hoped that our system would be able to handle the case\tiie same raw corpus has been
parsed by multiple base parsers. Given the above, it is thedrthis is a limitation of our model. One
problem is that from a domain divergence standpoint, theM\mOLINE corpora are nearly identical since
these features only look at surface words. Adding treeddsenain divergence measures (e.g. syntactic
language models) may improve the situation, though then® iguarantee. The easiest solution is to only
include each raw corpus once and to use the best model assbgasser. In the next section, we discuss
how to select the best base parser for raw corpus and we afiderthat it would selectENIA overwsJ
to parsevEDLINE. If the experiment was repeated withatgDLINE (by wsJ), we suspect that the resulting
model forGENIA would improve significantly.

One may be concerned that tsignof the weights for the GsINETOP50 and LINK WORDSREV features
is the same even though they are on reversed staheeed, this was an unexpected finding. To investigate,
we created two regression models to isolate the featuresfirBhused only ik WORDSREV andENTROPY
as features while the second used ontySINETOP50 andeNTROPY as features. When NKWORDSREV
and GOSINETOP50 operate on their own, their feature weights do obtairedffit signs (llK WORDSREV
is positive while @SINETOP50 is negative). Thus, the reason that they both have pesitaights in the
original model is the result of feature interactions. Thedelovithout GSINETOP50 performs nearly as
well as the one with it, so it seems thaNkWORDSREV is doing most of the work while GSINETOP50 is
acting as a small correction factor.

5.6 Discussion

We have shown that for both evaluation conditions, our sysseexcellent at predicting the effects of domain
divergence on parsing accuracy. Now we return to the questitat we raised at the start of this chapter.
Any Domain Parsing suggests a combination of source dontainse when we wish to parse a new text.
However, while we know that self-trained corpora can draca#ly improve performance, we also hoped to
create a tool for determining the best corpus to self-train We posit that our model can be used here as
well: Simply choose the raw text with the highest predicfestore. Treat each raw text as a candidate target
text and determine the best mixture of source domains tepeasong with its predicteg-score. Since our
system translates domain divergences into lowgredore performance, it should assign a higfiscore to a
more similar domain. This approach also answers our othir queestions regarding self-training — namely,

9CosINETOP50 has a raw divergence score of 1.0 when the two domains eméidel according to the measure and 0.0 when they
are completely orthogonal. Nk WORDSREV has the opposite behavior and ranges from 0.0 (high sityj)dd 1.0 (low similarity).

64

GENIA WSJ
Out In Out In Feature

1.548 1.715| 2.464 1.946| COSINETOP50: BROWN

1.192 1.226| 1.878 1.521| COSINETOP50: ETT

— 1.341| 2.047 1.684| COSINETOP50: GENIA

— 1.833| 2.987 2.556| COSINETOP50: MEDLINE (by GENIA)

2.659 2.851 — 2.690| CoSINETOP50: MEDLINE (by ws))
0.747 0.814| 1.094 0.956| COSINETOP50: SWBD

2.254 2.482 — 2.767 | COSINETOP50: WsSJ

2.492 2.724 — 2.874| COSINETOP50: NANC

1.982 2.151 — 2.317 | COSINETOP50: GUTENBERG

1.568 1.729| 2.514 1.913] UNKWORDSREV: BROWN
1.015 1.119] 1.791 1.422| UNKWORDSREV: ETT
— 0.930| 1.783 1.558] UNKWORDSREV: GENIA
— 1.699| 3.361 2.512| UNKWORDSREV: MEDLINE (by GENIA)

2.635 2.530 — 2.640| UNKWORDSREV: MEDLINE (by wsJ)
0.716 0.808| 1.101 0.941| UNKWORDSREV: SWBD

2.291 2.437 — 2.707 | UNKWORDSREV: WSJ

2.472 2.683 — 2.868 | UNKWORDSREV: NANC

1.931 2.183 — 2.354 | UNKWORDSREV: GUTENBERG

2.199 2.643| 4.601 2.463| Entropy
77537 77.527 76.826 75.123 Intercept

Table 5.6: Regression weights learned for theniA and wsJ evaluations round for out-of-domain and
in-domain scenarios. ‘—’s indicate that this domain waduded since it was the target domain in an out-
of-domain evaluation.

65

which parsing model should we use to parse our raw text andshowld self-trained data be combined with
hand-annotated corpora?

There are a number of practical concerns should this systamally be employed to perform large-scale
parsing of heterogeneous domains. Making a new model fdr agile is likely to be prohibitively ex-
pensive. However, as we have seen, making a small numbendbmay sampled models is likely to be
sufficient. This step would be necessarily to generateitrgidata to train an initial regression model. Sub-
sequent models could be mixed on demand, using existing Isatien they're sufficiently close (closeness
can be measured by KL divergence or the difference in predjtscores on the text in question among other
methods). To determine which raw texts to use, one mighteitise articles by topic or syntactically. Alter-
natively, using the domain divergence measures, it may bsilple to frame the problem as a multi-cut graph
problem where edges represent divergences and the goahisitaize divergences within each cluster.

One interesting question is how much variation our moded geeorpora with multiple domains such as
BROWN oOr BNC. As in Ravi et al. (2008), we would need a mechanism of digdip corpora into smaller
units which could be articles, groups of articles, or simgintiguous blocks of sentences. One segmented,
we can could ask our model to calculate the best source domiatare for each segment. If these source
domain mixtures vary significantly, it would be interestifigmproved corpora can be obtained for these
corpora. As stated earlier, Plank and Sima’an (2008) attedno automatically uncover these subdomains
for wsawithout much success but our approach is sufficiently déffiéthat it is worth looking into.

Chapter 6

Conclusion

In this dissertation, we have described a semi-supervistidad for statistical natural language parsing called
self-training. Self-training for parsing works by treagithe parse trees of raw sentences from a supervised
parser as correct. One would not expect this to work well megal and, indeed, this is not the case (Charniak,
1997; Steedman et al., 2003a). We have shown that when tlegagee parser is used in conjunction with
a discriminative reranker, self-training produces a pangth state-of-the-art accuracy. Additionally, self-
training has proved to be extremely valuable for improvimg parser portability and parser adaptation tasks.
Unlabeled data can be effectively leveraged to help coveraiios which lack sufficient labeled training data.

We have addressed the issue of how to best parse completelyanget texts given multiple source
domains with our Any Domain Parsing model. To our knowledbe, problem of multiple source parser
adaptation has not been tackled before. Without an autommegchanism for performing this task, a human
would have to select the best model for the text to be parsddlewhis is feasible in some cases, there are
many cases (e.g. parsing the web where there are a large nofrdmmains which may change frequently)
where itis less obvious what the best mixture of source dosraight be. Our model learns which properties
of domain divergence influence parsing accuracy. It usedrformation to suggest combinations of source
domains which perform extremely well in practice. Our higlc@racies on both evaluation scenarios is in
part due to the use of self-trained corpora and our crosstiopeaformance would certainly suffer without
them.

Looking beyond this work, there are some broader issueshngiggest future avenues of investigation.
Syntactic parsing is but one of many tasks in natural langyagcessing and machine learning. It is possible
that other tasks which lend themselves to a two-stage g@redtiscriminative framework may benefit from
self-training as well. Additionally, despite our work onadyring self-training, we do not yet know the
effect of self-training on other parsers with differentrfa@lisms. It would be interesting to investigate how
well self-training and Any Domain Parsing work for CCG, LTA@nd so on. Finally, the machine learning
community has proposed many new semi-supervised learadigiques, generally involving discriminative
models. The challenge in this case is finding ways of intéggahese techniques into parsing frameworks.

However, the parsing accuracy for English is quite goodeast for the level of annotation used in this
dissertation. The main challenge for parsing lies in otaeglages. Other languages may have complex

66

67

morphological systems, (e.g. Turkish, Czech, and Hunggad#ficult segmentation problems, (e.g. Chinese
and Japanese), or a large amount of dialectal variation fgapic). In theory, the techniques described in
this thesis should be applicable to other languages andave this to future studies.

Bibliography

Antti Airola, Sampo Pyysalo, Jari Bjorne, Tapio Pahikkddip Ginter, and Tapio Salakoski. 2008. All-
paths graph kernel for protein-protein interaction exteacwith evaluation of cross-corpus learniigMC
Bioinformatics 9(Suppl 11):S2.

Rie Kubota Ando and Tong Zhang. 2005a. A framework for leagrpredictive structures from multiple
tasks and unlabeled datdournal of Machine Learning Researd11817—-1853.

Rie Kubota Ando and Tong Zhang. 2005b. A high-performanog@-seipervised learning method for text
chunking. InProceedings of the 43rd Annual Meeting on Association fan@atational Linguistics (ACL
2005) pages 1-9, Morristown, NJ, USA. Association for Compotai Linguistics.

Michiel Bacchiani, Michael Riley, Brian Roark, and Rich&gdroat. 2006. MAP adaptation of stochastic
grammarsComputer Speech and Languagé(1):41-68.

Regina Barzilay and Mirella Lapata. 2008. Modeling locateence: an entity-based approaClompu-
tational Linguistics 34(1):1-34.

Kristin P. Bennett and Ayhan Demiriz. 1998. Semi-supeisepport vector machines. In Michael J.
Kearns, Sara A. Solla, and David A. Cohn, edittdd?S pages 368—374. The MIT Press.

Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIntyB85L Bracketting Guideliness for Tree-
bank Il style Penn Treebank ProjedtDC.

Ann Bies, Justin Mott, and Colin Warner, 200&ddendum to the Switchboard Treebank Guidelih&xC.

Ann Bies. 2007.GALE Phase 3 Release 1 - English Translation Treebaiguistic Data Consortium.
LDC2007E105.

Ezra Black, Steven P. Abney, D. Flickenger, Claudia Gdanalph Grishman, P. Harrison, Donald
Hindle, Robert Ingria, Frederick Jelinek, Judith L. KlagaMark Liberman, Mitchell P. Marcus, Salim
Roukos, Beatrice Santorini, and Tomek Strzalkowski. 19hcedure for quantitatively comparing the
syntactic coverage of English grammars.Pimceedings of Workshop on Speech and Natural Language
pages 306—311. Morgan Kaufmann.

68

69

Ezra Black, Fred Jelinek, John Lafrerty, David M. MagernmRabert Mercer, and Salim Roukos. 1993.
Towards history-based grammars: Using richer models fobalilistic parsing. IrProceedings of the
31st Annual Meeting of the Association for Computationalguistics pages 31-37, Columbus, Ohio,
USA, June. Association for Computational Linguistics.

John Blitzer, Ryan McDonald, and Fernando Pereira. 2006mého adaptation with structural corre-
spondence learning. IRroceedings of the 2006 Conference on Empirical Methodsaituitdl Language
Processingpages 120-128, Sydney, Australia, July. Association fim@utational Linguistics.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007. mfyges, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classificationAssociation for Computational Linguistics
Prague, Czech Republic.

Avrim Blum and Tom Mitchell. 1998. Combining labeled and aimtled data with co-training. IRAro-
ceedings of the 11th Annual Conference on Computationahlireg Theory (COLT-98)

Rens Bod. 2003. An efficient implementation of a new DOP mobhelOth Conference of the European
Chapter of the Association for Computational LinguistiBadapest, Hungary.

Adriane Boyd, Markus Dickinson, and Detmar Meurers. 2008. d®tecting errors in dependency tree-
banks.Research on Language and Computaief2):113—-137.

Thorsten Brants and Alex Franz. 2008Meb 1T 5-gram Version.1 Linguistic Data Consortium.
LDC2006T13.

R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. 1995. A limited meynalgorithm for bound constrained
optimization.SIAM Journal on Scientific Computing6(5):1190-1208.

Xavier Carreras, Michael Collins, and Terry Koo. 2008. TAlgnamic programming, and the perceptron
for efficient, feature-rich parsing. IBoNLL 2008: Proceedings of the Twelfth Conference on Coaaput
tional Natural Language Learningpages 9-16, Manchester, England, August. Coling 2008r@rigg
Committee.

Eugene Charniak and Micha Elsner. 2009. Em works for proramaphora resolution. IRroceedings
of the Conference of the European Chapter of the Associ&io@omputational Linguistics (EACL-09)
Athens, Greece.

Eugene Charniak and Mark Johnson. 2005. Coarse-toafiest parsing and MaxEnt discriminative
reranking. InProceedings of the 2005 Meeting of the Assoc. for Compuiaitidnguistics (ACL) pages
173-180.

Eugene Charniak, Kevin Knight, and Kenji Yamada. 2003. &ysltased language models for statistical
machine translation. IMT Summitinternational Association for Machine Translation.

Eugene Charniak. 1997. Statistical parsing with a corfired-grammar and word statistics. Proceed-
ings of AAA] pages 598-603.

70

Eugene Charniak. 2000. A maximum-entropy-inspired parteiProceedings of the North American
Chapter of the ACL (NAACL pages 132-139.

Eugene Charniak. 2001. Immediate-head parsing for laregmamglels. IrProceedings of the Assoc. for
Computational Linguistics (AClLpages 116-123.

Ciprian Chelba and Frederick Jelinek. 1998. Exploitingtagtic structure for language modeling. In
Christian Boitet and Pete Whitelock, editoPspceedings of the Thirty-Sixth Annual Meeting of the Asso-
ciation for Computational Linguistics and Seventeentledmational Conference on Computational Lin-
guistics pages 225-231, San Francisco, California. Morgan Kaufnfarblishers.

Stanley F. Chen and Joshua Goodman. 1996. An empirical stustyoothing techniques for language
modeling. InProceedings of the Assoc. for Comp. Linguistics (A@apes 310-318.

Stephen Clark, James Curran, and Miles Osborne. 2003. Bamiing POS-taggers using unlabelled
data. InProceedings of CoNLL-2003

Andrew B. Clegg and Adrian Shepherd. 2005. Evaluating atedjiating treebank parsers on a biomedical
corpus. InProceedings of the ACL Workshop on Software

A.B. Clegg and A.J. Shepherd. 2007. Benchmarking natarajtiage parsers for biological applications
using dependency grapHBMC Bioinformatics8(1):24.

Paul R. Cohen. 1995Empirical Methods for Artificial IntelligenceThe MIT Press, Cambridge, Mas-
sachusetts.

Michael Collins and Terry Koo. 2005. Discriminative Reramkfor Natural Language Parsin@.ompu-
tational Linguistics 31(1):25-69.

Michael Collins. 1997. Three generative, lexicalised meder statistical parsing. IRroceedings of the
Assoc. for Computational Linguistigsages 16—-23.

Michael Collins. 2000. Discriminative reranking for naablanguage parsing. IMachine Learning: Pro-
ceedings of the Seventeenth International Conferencel(|2000) pages 175-182, Stanford, California.

Sanjoy Dasgupta, M.L. Littman, and D. McAllester. 2001. Pgé€heralization bounds for co-training. In
Advances in Neural Information Processing Systems (N F)L

Hal Daumeé IIl. 2007. Frustratingly easy domain adaptationConference of the Association for Com-
putational Linguistics (ACL)Prague, Czech Republic.

Tejaswini Deoskar. 2008. Re-estimation of lexical parareefor treebank PCFGs. Rroceedings of the
22nd International Conference on Computational Linges{iColing 2008)pages 193—200, Manchester,
UK, August. Coling 2008 Organizing Committee.

Markus Dickinson and Charles Jochim. 2008. A simple metlodigset comparison. roceedings of
the 6th Language Resources and Evaluation Conference (LR®BE8) Marrakech, Morocco.

71

Markus Dickinson. 2009. Correcting dependency annotaticors. InProceedings of the 12th Conference
of the European Chapter of the Association for Computatibimguistics (EACL-09)Athens, Greece.

Mark Dredze and Koby Crammer. 2008. Online methods for rudthain learning and adaptation. In
Proceedings of the 2008 Conference on Empirical Methodsaiifdl Language Processingages 689—
697, Honolulu, Hawaii, October. Association for Compudatl Linguistics.

Micha Elsner and Eugene Charniak. 2008. Coreferenceratpoherence modeling. Proceedings
of ACL-08: HLT, Short Paperpages 41-44, Columbus, Ohio, June. Association for Coatipugl Lin-
guistics.

Micha Elsner, Joseph Austerweil, and Eugene Charniak. .2@01nified local and global model for
discourse coherence. Froceedings of HLT-NAACL 'QRochester, New York, April. Association for
Computational Linguistics.

Jenny Rose Finkel and Christopher D. Manning. 2009. Hibieat bayesian domain adaptation. In
Proceedings of HLT-NAACL 200pages 602—610, Boulder, Colorado, June.

Jenny Rose Finkel, Alex Kleeman, and Christopher D. Mann2@08. Efficient, feature-based, condi-
tional random field parsing. IRroceedings of ACL-08: HLTpages 959-967, Columbus, Ohio, June.
Association for Computational Linguistics.

Jennifer Foster and Markus Dickinson. 2009. Similarityeslilexploring methods for ad-hoc rule detec-
tion. In Proceedings of the Fifth Workshop on Treebanks and Liniguisteories (TLT-2009)Groningen,
The Netherlands.

Jennifer Foster and Josef van Genabith. 2008. Parser &ealaad the bnc: Evaluating 4 constituency
parsers with 3 metrics. In European Language Resourcegiaisn (ELRA), editorProceedings of the
Sixth International Language Resources and EvaluatiorECR8), Marrakech, Morocco, May.

Jennifer Foster, Joachim Wagner, Djamé Seddah, and Jase&benabith. 2007. Adapting WSJ-trained
parsers to the British National Corpus using in-domainsaihing. InProceedings of the Tenth Interna-
tional Conference on Parsing Technologipages 33—-35, Prague, Czech Republic, June. Association fo
Computational Linguistics.

W. Nelson Francis and Henry Kucera. 197danual of Information to accompany a Standard Corpus
of Present-day Edited American Englisbr use with Digital Computers. Brown University, Providen
Rhode Island.

Alexander Fraser and Daniel Marcu. 2006. Semi-superviseaing for statistical word alignment. In
Proceedings of the 21st International Conference on Coatfmurtal Linguistics and 44th Annual Meeting
of the Association for Computational Linguistipgges 769—776, Sydney, Australia, July. Association for
Computational Linguistics.

72

Daniel Gildea. 2001. Corpus variation and parser perfoceamEmpirical Methods in Natural Language
Processing (EMNLR)pages 167-202.

Joshua T. Goodman. 2001. A bit of progress in language muylelitended version. Technical Report
2001-72, Microsoft Research.

David Graff. 1995.North American News Text Corpusinguistic Data Consortium. LDC95T21.

Stephan Greene and Philip Resnik. 2009. More than wordsa8jmpackaging and implicit sentiment.
In Proceedings of Human Language Technologies: The 2009 A@waerence of the North Ameri-
can Chapter of the Association for Computational Lingestpages 503-511, Boulder, Colorado, June.
Association for Computational Linguistics.

James Henderson. 2004. Discriminative training of a neweélork statistical parser. IRroc. 42nd
Meeting of Association for Computational Linguistics (AZQ04), Barcelona, Spain

Donald Hindle and Mats Rooth. 1993. Structural ambiguity kexical relationsComputational Linguis-
tics, 19(1):103-120.

Liang Huang and David Chiang. 2005. Better k-best parsind?rbceedings of the Ninth International
Workshop on Parsing Technolagyages 53-64, Vancouver, British Columbia, October. Assion for
Computational Linguistics.

Liang Huang. 2008. Forest reranking: Discriminative pagsiith non-local features. IRroceedings of
ACL-08: HLT, pages 586-594, Columbus, Ohio, June. Association for @eatipnal Linguistics.

Frederick Jelinek, John D. Lafferty, David M. Magerman, Bdl_. Mercer, Adwait Ratnaparkhi, and
Salim Roukos. 1994. Decision tree parsing using a hiddewatem model. INHLT. Morgan Kaufmann.

Victor M. Jiménez and Andres Marzal. 2000. Computationhaf h best parse trees for weighted and
stochastic context-free grammars.Jwint Intl. Workshops on Advances in Pattern RecognitiéP)

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, afdrsRiezler. 1999. Estimators for stochas-
tic “unification-based” grammars. Mhe Proceedings of the 37th Annual Conference of the Adsmtia
for Computational Linguisticpages 535-541, San Francisco. Morgan Kaufmann.

Mark Johnson, Eugene Charniak, and Matthew Lease. 2004mparoved model for recognizing disflu-
encies in conversational speech FAroc. of the Rich Text 2004 Fall Workshop (RT-04F)

Daisuke Kawahara and Kiyotaka Uchimoto. 2008. Learninigldity of parses for domain adaptation of
dependency parsing. [Fhird International Joint Conference on Natural Languagedessing (IJCNLP
'08).

H. Kilicoglu and S. Bergler. 2008. Recognizing speculatargguage in biomedical research articles: a
linguistically motivated perspectiv&MC Bioinformatics9(11):S10.

73

Terry Koo, Xavier Carreras, and Michael Collins. 2008. Sengemi-supervised dependency parsing.
In Proceedings of ACL-08: HLTpages 595-603, Columbus, Ohio, June. Association for Qeatipnal
Linguistics.

Matthew Lease and Eugene Charniak. 2005. Parsing bionmditécature. InSecond International Joint
Conference on Natural Language Processing (IJCNLP’05)

Matthew Lease, Eugene Charniak, Mark Johnson, and Daviddg&g 2006. A look at parsing and its
applications. IrProceedings of the Twenty-First National Conference oifigidl Intelligence (AAAI-06)
16-20 July.

Yudong Liu, Zhongmin Shi, and Anoop Sarkar. 2007. Explgjtiich syntactic information for rela-
tionship extraction from biomedical articles. Human Language Technologies 2007: The Conference of
the North American Chapter of the Association for Compatel Linguistics; Companion Volume, Short
Papers pages 97-100, Rochester, New York, April. Associationdomputational Linguistics.

Xiaogiang Luo and Imed Zitouni. 2005. Multi-lingual coredace resolution with syntactic features. In
Proceedings of Human Language Technology Conference anfk@mce on Empirical Methods in Nat-
ural Language Processingages 660—667, Vancouver, British Columbia, Canada,l@cté\ssociation
for Computational Linguistics.

Kim Luyckx and Walter Daelemans. 2008. Authorship attriund verification with many authors and
limited data. InProceedings of the 22nd International Conference on Coatjmutal Linguistics (Coling
2008) pages 513-520, Manchester, UK, August. Coling 2008 OrgagpiCommittee.

David M. Magerman. 1995. Statistical decision-tree moft@iparsing. InThe Proceedings of the 33rd
Annual Meeting of the Association for Computational Lirsgigs pages 276—283, San Francisco. The
Association for Computational Linguistics, Morgan Kaufma

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Maideawicz. 1993. Building a large annotated
corpus of English: The Penn Treebai@omp. Linguistics19(2):313-330.

David McClosky, Eugene Charniak, and Mark Johnson. 2006&ctve self-training for parsing. In
Proceedings of the Human Language Technology ConferenteedlAACL, Main Conferencgages
152-159.

David McClosky, Eugene Charniak, and Mark Johnson. 2006traiking and self-training for parser
adaptation. IrProceedings of the 21st International Conference on Coatfmutal Linguistics and 44th
Annual Meeting of the Association for Computational Lirsgies (ACL'06) pages 337—344, Sydney, Aus-
tralia, July. Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Janiddap005. Non-projective dependency
parsing using spanning tree algorithms.Pimceedings of Human Language Technology Conference and
Conference on Empirical Methods in Natural Language Preires pages 523-530, Vancouver, British
Columbia, Canada, October. Association for Computatibmaguistics.

74

B. Medlock. 2008. Exploring hedge identification in biomeadiliterature.Journal of Biomedical Infor-
matics 41(4):636—654.

Igor A. Mel’Cuk. 1988. Dependency Syntax: Theory and PractiS&tate University of New York Press,
Albany.

Rada Mihalcea. 2004. Co-training and self-training fordveense disambiguation. In Hwee Tou Ng and
Ellen Riloff, editors,HLT-NAACL 2004 Workshop: Eighth Conference on Computatibiatural Lan-
guage Learning (CoNLL-2004pages 33—-40, Boston, Massachusetts, USA, May 6 - May 7.chssm

for Computational Linguistics.

Yusuke Miyao, Rune Seetre, Kenji Sagae, Takuya MatsuzalliJan’ichi Tsujii. 2008. Task-oriented
evaluation of syntactic parsers and their representatibonBroceedings of ACL-08: HLTpages 46-54,
Columbus, Ohio, June. Association for Computational Listics.

Vincent Ng and Claire Cardie. 2003. Weakly supervised métanguage learning without redundant
views. InHLT-NAACL

Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thru, Bam Mitchell. 2000. Text Classification
from Labeled and Unlabeled Documents using BWachine Learning39(2):103-134.

Zheng-Yu Niu, Haifeng Wang, and Hua Wu. 2009. Exploitingenegeneous treebanks for parsing. In
Proceedings of the Joint Conference of the 47th Annual Mgetithe ACL and the 4th International Joint
Conference on Natural Language Processing of the AFENidges 4654, Suntec, Singapore, August.
Association for Computational Linguistics.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projectivertiigncy parsing. IRroceedings of the 43rd
Annual Meeting of the Association for Computational Lirsgics (ACL'05) pages 99-106, Ann Arbor,
Michigan, June. Association for Computational Linguistic

Joakim Nivre, Johan Hall, Sandra Kibler, Ryan McDonalessJdilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on dependency parbirProceedings of the CoNLL Shared

Task Session of EMNLP-CoNLL 2QQ¥ages 915-932, Prague, Czech Republic, June. Assocfation

Computational Linguistics.

Slav Petrov and Dan Klein. 2008. Discriminative log-lingeammars with latent variables. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editofsjvances in Neural Information Processing Systempa@es
1153-1160. MIT Press, Cambridge, MA.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan KleirD&Q_earning accurate, compact, and inter-
pretable tree annotation. Proceedings of the 21st International Conference on Coatjmurtal Linguis-
tics and 44th Annual Meeting of the Association for Compaoret Linguistics pages 433—440, Sydney,
Australia, July. Association for Computational Linguisti

75

Barbara Plank and Khalil Sima’an. 2008. Subdomain sersghatistical parsing using raw corpora.
In Proceedings of the Sixth International Language ResouscesEvaluation (LREC’08)Marrakech,
Morocco, May.

Sameer Pradhan, Wayne Ward, and James Martin. 2007. Towabdst semantic role labeling. In

Human Language Technologies 2007: The Conference of thta Ranerican Chapter of the Association
for Computational Linguistics; Proceedings of the Main @oance pages 556-563, Rochester, New
York, April. Association for Computational Linguistics.

Adwait Ratnaparkhi. 1999. Learning to parse natural lagguwsith maximum entropy model&lachine
Learning 34(1-3):151-175.

Sujith Ravi, Kevin Knight, and Radu Soricut. 2008. Automgirediction of parser accuracy. Rro-
ceedings of the 2008 Conference on Empirical Methods inrfgdbitianguage Processingages 887—-896,
Honolulu, Hawaii, October. Association for Computatiohaiguistics.

Roi Reichart and Ari Rappoport. 2007. Self-training for anbement and domain adaptation of sta-
tistical parsers trained on small datase®soceedings of the 45th Annual Meeting of the Association of
Computational Linguisticpages 616-623.

Brian Roark and Michiel Bacchiani. 2003. Supervised andupasvised PCFG adaptation to novel
domains. In Marti Hearst and Mari Ostendorf, editdi, T-NAACL 2003: Main Proceedingpages
205-212, Edmonton, Alberta, Canada, May 27 — June 1. Assmtimr Computational Linguistics.

Brian Roark, Mary Harper, Eugene Charniak, Bonnie Dorr,MBrhnson, Jeremy Kahn, Yang Liu, Mari
Ostendorf, John Hale, Anna Krasnyanskaya, Matthew LeakakIShafran, Matthew Snover, Robin Stew-
art, and Lisa Yung. 2006. Sparseval: Evaluation metricpéosing speech. IRroceedings of LREC

Brian Roark. 2001. Probabilistic top-down parsing and teage modeling Computational Linguistics
27(2):249-276.

Kenji Sagae and Alon Lavie. 2006. Parser combination byreépg. In Proceedings of the Human
Language Technology Conference of the NAACL, CompaniamélShort Paperpages 129-132, New
York City, USA, June. Association for Computational Lingtigs.

Anoop Sarkar. 2001. Applying cotraining methods to statidtparsing. InProceedings of the 2001
NAACL Conference

Yves Schabes. 1992. Stochastic lexicalized tree-adjgpigiammars. IImThe Proceedings of the fifteenth
International Conference on Computational LinguisticQIING-92 volume 2, pages 426—432, Nantes,
France.

Hinrich Schitze. 1995. Distributional part-of-speedjgiag. InProceedings of the 7th conference of the
EACL pages 141-148.

76

Satoshi Sekine. 1997. The domain dependence of parsifgotn Applied Natural Language Processing
(ANLP), pages 96-102.

Zhongmin Shi, Anoop Sarkar, and Fred Popowich. 2007. Samelbus identification of biomedical
named-entity and functional relation using statisticakp®y techniques. Ihluman Language Technolo-
gies 2007: The Conference of the North American Chapter efAtssociation for Computational Lin-
guistics; Companion Volume, Short Papgrages 161-164, Rochester, New York, April. Association fo
Computational Linguistics.

David A. Smith and Jason Eisner. 2009. Parser adaptatioprafettion with quasi-synchronous grammar
features. IrProceedings of the 2009 Conference on Empirical Methodsaitufdl Language Processing
pages 822-831, Singapore, August. Association for Contipot Linguistics.

Mark Steedman, Steven Baker, Jeremiah Crim, Stephen Clalik, Hockenmaier, Rebecca Hwa, Miles
Osborne, Paul Ruhlen, and Anoop Sarkar. 2003a. CLSP WSHz2 Report: Semi-Supervised Training
for Statistical Parsing. Technical report, Johns Hopking/ersity.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen ORekecca Hwa, Julia Hockenmaier, Paul
Ruhlen, Steven Baker, and Jeremiah Crim. 2003b. Bootstrgpatistical parsers from small datasets.
In Proc. of European ACL (EACL pages 331-338.

Mark J. Steedman. 2000 he syntactic procesMIT Press, Cambridge, Massachusetts.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and Jun’ichujlis 2005. Syntax Annotation for the
GENIA corpus.Proceedings of IJICNLP 2005, Companion volympeges 222—-227.

Jenine Turner and Eugene Charniak. 2005. Supervised angemnised learning for sentence compres-
sion. InProc. Assoc. for Computational Linguistics (AChages 290-297.

Hans van Halteren. 2004. Linguistic profiling for authopstgécognition and verification. IRroceedings
of the 42nd Meeting of the Association for Computationaplistics (ACL'04), Main Volumepages
199-206, Barcelona, Spain, July.

C. J. van Rijsbergen. 1979nformation Retrieval, 2nd editionDepartment of Computer Science, Uni-
versity of Glasgow.

S. Vijayakumar, A. D'souza, and S. Schaal. 2005. Increnteniae learning in high dimensionsleural
Computation17(12):2602—-2634.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin. 2008. Seipésvised convex training for depen-
dency parsing. IfProceedings of ACL-08: HLTpages 532-540, Columbus, Ohio, June. Association for
Computational Linguistics.

Qin Iris Wang, Kevin Duh, and Dekang Lin, editors. 200®0oceedings of the NAACL HLT 2009 Work-
shop on Semi-supervised Learning for Natural Language éasing Association for Computational
Linguistics, Boulder, Colorado, June.

77

Peng Xu, Ciprian Chelba, and Frederick Jelinek. 2002. Aystudricher syntactic dependencies for
structured language modeling. Rtoc. Assoc. for Computational Linguistics (ACphages 191-198.

Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedd@971 Algorithm 778: L-BFGS-B:
Fortran subroutines for Large-Scale bound constrainechigztion. ACM Transactions on Mathematical
Software 23(4):550-560, December.

Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. 20@&mi-supervised learning using gaussian
fields and harmonic functions. In Tom Fawcett and Nina Mishditors,Machine Learning, Proceedings
of the Twentieth International Conference (ICMppages 912-919, Washington, DC, USA. AAAI Press.

Xiaojin Zhu. 2007. Semi-supervised learning literatunesey. Technical Report 1530, Computer Science,

University of Wisconsin-Madison.

