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Current efforts in syntactic parsing are largely data-driven. These methods require labeled examples of syn-

tactic structures to learn statistical patterns governingthese structures. Labeled data typically requires expert

annotators which makes it both time consuming and costly to produce. Furthermore, once training data has

been created for one textual domain, portability to similardomains is limited. This domain-dependence has

inspired a large body of work since syntactic parsing aims tocapture syntactic patterns across an entire lan-

guage rather than just a specific domain.

The simplest approach to this task is to assume that the target domain is essentially the same as the source

domain. No additional knowledge about the target domain is included. A more realistic approach assumes

that only raw text from the target domain is available. This assumption lends itself well to semi-supervised

learning methods since these utilize both labeled and unlabeled examples.

This dissertation focuses on a family of semi-supervised methods called self-training. Self-training creates

semi-supervised learners from existing supervised learners with minimal effort. We first show results on

self-training for constituency parsing within a single domain. While self-training has failed here in the past,

we present a simple modification which allows it to succeed, producing state-of-the-art results for English

constituency parsing. Next, we show how self-training is beneficial when parsing across domains and helps

further when raw text is available from the target domain. One of the remaining issues is that one must choose

a training corpus appropriate for the target domain or performance may be severely impaired. Humans can do

this in some situations, but this strategy becomes less practical as we approach larger data sets. We present a

technique, Any Domain Parsing, which automatically detects useful source domains and mixes them together

to produce a customized parsing model. The resulting modelsperform almost as well as the best seen parsing

models (oracle) for each target domain. As a result, we have afully automatic syntactic constituency parser

which can produce high-quality parses for all types of text,regardless of domain.
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Chapter 1

Introduction

The syntax of natural language characterizes the possible structures and orderings of words within a sentence.

It is generally accepted by linguists that the syntactic structure of a sentence is key to determining its meaning.

Many theories of semantics state that meaning is compositional and that the compositional units are based on

syntactic constructions. This dissertation centers around natural language parsing, which explores algorithms

for finding the syntactic structure of sentences. Our parsing mechanism is statistical in nature meaning that

it does not make categorical decisions about grammaticality — all structures for a sentence are possible,

but some are better than others. Our training data consists of sentences labeled with their correct syntactic

structure and we create our parsing models by estimating various statistical distributions over the syntactic

structures within these corpora. These statistics can thenbe applied to new sentences which we assume follow

the same distributions.

Current parsers are quite robust provided that the sentences we are parsing actually do follow these dis-

tributions. However, the accuracy of most statistical parsers degrades on sentences that have significantly

different statistical patterns than the training data. Ourgoal is to produce parsers which can analyze sen-

tences as well as humans, so this lack of generality is an issue and one of the primary concerns of this

dissertation. For example, the text of Stephen Colbert’s book “I am America (And So Can You!)” follows

different statistical patterns than the text in a transcript of his television show, “The Colbert Report” since

the former is written text and the latter is fluid speech. For example, the transcript of the television may be

less fluent and contain more informal constructions than thetext in the book. While humans do not have

difficulty parsing either of these texts, current parsing models are not general enough to span both well. In

the parsing literature, this difficulty is usually attributed to a difference indomain. By domain, we mean the

style, genre, and medium of a document. Thus, Colbert’s speech on his show, his writing in his book, and

the news stories that inspire his show all come from different domains. Under current approaches, one would

need to train a different parsing model for each domain (by and large requiring hand-annotated data) and

select the appropriate parsing model for each document. This dissertation explores methods of performing

automatic domain adaptation using either hand-annotated or raw text, should annotations be unavailable.

Before going further, we start with a concrete example of thetypes of structure we hope to learn. Fig-

ure 1.1 shows two of the possible parse trees for the sentence“Eugene buys a bowtie with polka-dots.” The

1
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NP

a bowtie

PP

with polka-dots

S

NP

NNP

Eugene

VP

VBZ

buys

NP

(a) Parse tree where the bowtie has polka-dots.

NP

a bowtie

PP

with polka-dots

S

NP

NNP

Eugene

VP

VBZ

buys
(b) Parse tree where polka-dots are used to make the bowtie purchase.

Figure 1.1: Two parses showing the importance of correct prepositional phrases (PP) attachment.

leaves of the trees (terminals) are the words of the sentences, their parents are their parts-of-speech (preter-

minals), and the remaining internal nodes represent largerphrases and clauses. Since syntactic constituents

are represented as nodes in the trees in our representation,we use the words “node” and “constituent” inter-

changeably. In both examples, the upper node represents theentire sentence (S) and expands to a noun phrase

(NP) and a verb phrase (VP). The noun and verb phrases are in turn broken down into subunits. The triangles

under theNPs andPPs indicate that the subtree has been elided for simpler exposition. The parse trees

differ in their handling of the prepositional phrase “with polka-dots” (PP) — the upper parse tree attaches

it under a noun phrase while the lower parse tree places it under the verb phrase. As a result, the two trees

have different semantics. In the upper tree, Eugene is buying a bowtie which is patterned with polka-dots

but in the lower tree, polka-dots are (somehow) being used topurchase a bowtie. Outside of computational

linguistics articles like this one, few humans would noticethe latter reading since the former reading is much

more salient. However, we note that the lower tree is not universally incorrect as it represents the standard

reading of the sentence “Eugene buys a bowtie with cash.” Also note that these two trees are only two many

possible parses that a statistical parser would find for thissentence.

Parse trees like those in Figure 1.1 are valuable building blocks for other linguistic applications (Lease et

al., 2006). Examples of these include language modeling (Roark, 2001; Charniak, 2001), speech recognition

(Chelba and Jelinek, 1998), machine translation (Charniaket al., 2003), dialogue systems, semantic role la-

beling (Pradhan et al., 2007), information extraction, sentiment analysis (Greene and Resnik, 2009), question

answering, summarization (Turner and Charniak, 2005), coreference (Luo and Zitouni, 2005; Charniak and

Elsner, 2009), and document coherence (Barzilay and Lapata, 2008; Elsner et al., 2007; Elsner and Charniak,



3

2008). Outside of computational linguistics, parsing has found applications in biology (Liu et al., 2007; Shi et

al., 2007; Medlock, 2008; Miyao et al., 2008; Airola et al., 2008; Kilicoglu and Bergler, 2008) and forensics

(van Halteren, 2004; Luyckx and Daelemans, 2008).

1.1 Road map

A brief overview of this dissertation follows. In the remainder of this section, we provide a brief history

of statistical natural language parsing (Section 1.2) and previous work on domain dependence (Section 1.3).

Section 2 gives an overview of our experimental setup including details of the parser, data sets, and evaluation

metrics. We introduce and test self-training, a semi-supervised technique for improving parser performance1

both in a single domain as well as across domains, in Section 3. Section 4 shows empirical analyses of self-

training and explores several hypotheses of how it works. Our proposed work, a method of automatic domain

adaptation, is covered in Section 5. Finally, we conclude with a summary and future work in Section 6.

1.2 Statistical Natural Language Parsing

There have been a wide variety of different statistical approaches to parsing natural language. As stated be-

fore, on the whole, these methods capture statistical patterns from labeled corpora for the purpose of applying

them to new text. However, the specific types of patterns examined, how they’re collected, and how they’re

applied vary greatly. Syntactic structures can be represented under many different formalisms, (context-free

grammars, tree adjoining grammars (Schabes, 1992), combinatory categorical grammars (Steedman, 2000),

and dependency graphs (Mel’čuk, 1988; McDonald et al., 2005; Nivre and Nilsson, 2005) to name a few)

each allowing its own avenues of approaching the problem of parsing. Of course, the parsing formalism used

is only one of many dimensions in the space of parsing algorithms. Other dimensions include the type of

the model (generative, discriminative, hybrid, non-probabilistic) and the scope of parsing decisions (local or

global). We cannot provide complete coverage here and so will only discuss some of the key papers related

to our approach.

The first statistical natural language parsers (Black et al., 1993; Jelinek et al., 1994; Magerman, 1995)

factored parsing decisions into three categories: part-of-speech tagging, connecting constituents, and labeling

constituents. Each type of classification was made by decision trees where nodes in the tree ask questions

about the words and previous tagging and parsing decisions.Collins (1997) and Charniak (1997) used gener-

ative probabilistic approaches for parsing where probabilistic context free grammars (PCFGs) were extended

to include bilexical dependencies and parsing history. Much of the improvements came from annotating

nodes with their lexical heads and careful smoothing to handle the sparsity introduced by additional condi-

tioning events. Ratnaparkhi (1999) provided the first discriminative parsing model where a maximum entropy

classifier chooses between several local parsing actions conditioned on parsing history and the current state.

In addition to being one of the first works on parser adaptation, the paper also points out that the parsing charts

contain substantially better possible parses than those found in the Viterbi parse. This has inspired work on
1Note that throughout this document, performance will referto the accuracy of a parser, not its runtime speed.
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n-best reranking (Collins, 2000; Charniak and Johnson, 2005) and ultimately forest-based reranking (Huang,

2008). Collins (2000) provided the firstn-best reranker trained using the averaged perceptron algorithm (see

also Collins and Koo (2005)). Bod (2003) presented an “all-subtrees” approach where the probability of a

tree is proportional to the product of the probabilities of its subtrees in the training corpus (where there are

several methods of determining each subtree’s probability). Neural networks were used to estimate genera-

tive and discriminative parsing models in Henderson (2004). The reranking parser by Charniak and Johnson

(2005) introduced a new search strategy (the coarse-to-fineparser) and a reranker estimated with a maximum-

entropy model. We will discuss these two components in greater depth in Sections 2.1 and 2.2. Petrov et al.

(2006) created a refined unlexicalized PCFG grammar by repeatedly splitting and merging nodes in order to

improve corpus likelihood. Recently, there have been several attempts to train global discriminative models2

of parsing (Petrov and Klein, 2008; Finkel et al., 2008; Carreras et al., 2008). Huang (2008) presents forest-

based reranking which extends the ideas fromn-best reranking to pick constituents from a parse chart instead

complete parses in ann-best list.

1.3 Domain Dependence

While parsers have seen substantial improvements in accuracy on in-domain text (i.e. text from the same

domain as the training set), their performance on sentencesoutside of their training domain has not necessarily

followed the same trends. This has inspired work on the task of parser adaptation where the goal is to transfer

knowledge about one domain to another. Work in parser adaptation is premised on the assumption that one

wants a single parser that can handle a wide variety of domains. While this is the goal of the majority of

parsing researchers, it is not quite universal. Sekine (1997) observes that for parsing a specific domain, data

from that domain is most beneficial, followed by data from thesame class, data from a different class, and

data from a different domain. He also notes that different domains have very different structures by looking at

frequent grammar productions. For these reasons he takes the position that we should, instead, simply create

treebanks for a large number of domains. While this is a coherent position, it is far from the majority view.

One benchmark for parser adaptation has been the accuracy ofnewswire trained statistical parsers on

literature. There have been a large number of studies on thistask where parsers are trained on theWSJcorpus

(Wall Street Journal news) and evaluated on theBROWN corpus (literature) (Ratnaparkhi, 1999; Gildea, 2001;

Bacchiani et al., 2006; McClosky et al., 2006b). More details on these corpora can be found in Section 2.3.

All of these works look at what happens to modernWSJ-trained statistical parsers (those by Ratnaparkhi,

Gildea, Roark, and Charniak and Johnson respectively) as training data varies in size or relevance. We

concentrate particularly on the work of (Gildea, 2001; Bacchiani et al., 2006), though these trends are echoed

in McClosky et al. (2006b) which will be covered in greater depth in Sections 3.2 and 3.3.

In Table 1.1, we can see the effects of domain dependence. Theprecise meaning off-score, our primary

evaluation metric, will be covered in Section 2.4 — for now, simply note that higherf-scores mean more

accurate parses. WhenWSJ-trained parsers are evaluated on theBROWN test set instead of theWSJ test set,

performance drops by approximately 6% . If we train on theBROWN corpus instead (third row of the table),

2As opposed to local discriminative models where parsing decisions are made locally, e.g. (Ratnaparkhi, 1999; Henderson, 2004).
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f-score
Training Testing Gildea (2001) Bacchiani et al. (2006)

WSJ WSJ 86.4 87.0
WSJ BROWN 80.6 81.1

BROWN BROWN 84.0 84.7
WSJ+BROWN BROWN 84.3 85.6

Table 1.1: Effects of domain dependence when evaluating onWSJandBROWN using different combinations
of WSJandBROWN for training. Gildea (2001) evaluates on sentences of length≤ 40, Bacchiani et al. (2006)
on all sentences.

we recover about half of this performance drop.3 In the final row of the table, we see that there is a moderate

improvement if we combineWSJandBROWN training sets. One might be tempted to conclude that the best

course of action is to combine all corpora into one training set. Indeed, as we will see in Section 5.4.1,

this technique can obtain quite good performance in general. However, we will see that this is not always

beneficial — whileWSJis not too distant fromBROWN, other corpora, especially those constructed by parsers

rather than humans, are different enough to cause damage.

There are many different approaches to parser adaptation. Steedman et al. (2003b) apply co-training

to parser adaptation and find that co-training can work across domains. There is a considerable amount of

biomedical text available now. These documents use language that is considerably different from typical

training sets that special attention has been given to this domain and the desire to automatically extract key

information and more accurately search these documents hasinspired various works (Lease and Charniak,

2005; Clegg and Shepherd, 2005; Clegg and Shepherd, 2007). Clegg and Shepherd (2005) provide an ex-

tensive side-by-side performance analysis of several modern statistical parsers when faced with such data.

They find that techniques which combine different parsers such as voting schemes and parse selection can

improve accuracy on biomedical data. Lease and Charniak (2005) use the Charniak parser for biomedical

data and find that the use of out-of-domain trees and in-domain vocabulary information can considerably

improve performance. Gildea (2001) and Bacchiani et al. (2006) look at how much of an improvement one

gets over a pureBROWN system by addingWSJdata (as seen in the last two lines of Table 1.1). Both systems

use a “model merging” approach as described by Bacchiani et al. (2006). The different corpora are, in effect,

concatenated together. However, Bacchiani et al. (2006) achieve a larger gain by weighting the in-domain

BROWN data more heavily than the out-of-domainWSJdata. The above works focus on adapting constituency

parsers. There has recently been a lot of attention given to adapting dependency parsers in the CoNLL 2007

Shared Task (Nivre et al., 2007).

3The BROWN training set is smaller than theWSJ training set. This may, in part, explain why only half of the performance is
recovered.



Chapter 2

Background and Experimental setup

In this section, we describe the components of our experiments. This includes the Charniak and Johnson

parser1 (Charniak and Johnson, 2005), several labeled and unlabeled data sets (corpora), and our evaluation

measures for determining the accuracy of candidate parse trees.

Our parsing model consists of two phases. First, we use a probabilistic generative parser to produce a

list of then most probable parses (which we will refer to as ann-best list). Next, a discriminative reranker

reorders the parses within then-best list. These components constitute two views of the data, though the

reranker’s view is heavily tied to the first stage parser. Thereranker can only select parses from within then-

best list and, moreover, uses the probability of each parse tree according to the parser as a feature to perform

the reranking. Nevertheless, the reranker’s value comes from its ability to make use of more powerful features

which would be difficult to express in a generative framework.

For some experiments, we evaluate only the first stage parser’s performance to in order to isolate it from

the reranker. In other cases, we evaluate the reranking parser as a whole. We distinguish these scenarios by

using the termparseror first stage parserwhen we use only the generative parser andreranking parserfor

when we use both stages.

2.1 Generative parser

The first stage of our parser is the lexicalized probabilistic context-free parser described in (Charniak, 2000;

Charniak and Johnson, 2005). The parser’s grammar is a smoothed third-order Markov grammar, enhanced

with lexical heads, their parts of speech, and parent and grandparent information. The parser uses five prob-

ability distributions, the head’s part of speech tag, the head itself, the child constituent which includes the

head, and children to the left and right of the child constituent. As all distributions are conditioned with five

or more features, they are all heavily backed off using Chen back-off (theaverage countmethod from Chen

and Goodman (1996)) to alleviate data sparsity. The backoffparameters are determined from held out data.

Additionally, the statistics are lightly pruned to remove those that are statistically less reliable.

1Available for download athttp://bllip.cs.brown.edu/
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The parsing model assigns a probability to a parseπ by a top-down process of considering each constituent

c in π and, for eachc, first guessing the preterminal (part of speech tag) ofc, t(c), then the lexical head ofc,

h(c), and then the expansion ofc into further constituentse(c). Thus the probability of parseπ is given by

the equation

P (π) =
∏

c∈π

P (t(c) | l(c),H(c))

·P (h(c) | t(c), l(c),H(c))

·P (e(c) | l(c), t(c), h(c),H(c))

wherel(c) is the label ofc (e.g., whether it is a noun phrase (NP), verb phrase (VP), etc.) andH(c) is the

relevant history ofc — information outsidec that the probability model deems important in determining the

probability in question.H(c) may contain (among other possible features) the parent’s part of of speech, the

grandparent’s head, and/or the part-of-speech of the previous sibling node.

For each expansion,e(c), we distinguish one of the children as the “middle” childM(c). M(c) is the

constituent from which the head lexical itemh is obtained according to deterministic rules (called head

finding rules) that pick the head of a constituent from among the heads of its children.2 To the left ofM is a

sequence of one or more labelsLi(c) including the special termination symbol△ and similarly for the labels

to the right,Ri(c). Thus, an expansione(c) looks like: (all symbols in the following are functions ofc which

we have omitted for simplicity)

l→ △Lm...L1MR1...Rn△.

The expansion is generated by guessing firstM , thenL1 throughLm+1 (= △) in order, and similarly

for R1 throughRn+1. In practice, we condition only on the previous three constituents generated rather all

constituents between the current constituent andM(c), forming a Markov grammar for expansions.

As in Charniak and Johnson (2005), the parser can produce ann-best list rather than a single parse.

However, then-best parsing algorithm described in that paper has been replaced by the much more efficient

algorithm described in (Jiménez and Marzal, 2000; Huang and Chiang, 2005). For our experiments, we use

the 50 most probable parses unless stated otherwise. This parameter value was chosen from evaluations on

development data (Charniak and Johnson, 2005). Increasingthe size of then-best list improves performance

but with diminishing returns.

2.2 Maximum Entropy Reranker

The second stage of our parser is a Maximum Entropy reranker as described in (Charniak and Johnson, 2005).

The reranker takes then-best parses for each sentence produced by the first stage generative parser and selects

2This may sound like a non-generative process since in order to expand constituentc, we need to know the middle child ofc which
relies on the children ofc. However, the head finding rules are only used to mark the heads in the training data. The model is
responsible for generating the middle children at test time. In a sense, the head finding rules are encoded as part of the grammar.
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the highest scoring parse according to the its model. It doesthis using the reranking methodology described in

Collins (2000), using a Maximum Entropy model with Gaussianregularization as described in Johnson et al.

(1999). The reranker classifies each parse with respect to a large number features (typically about 1.3 million

— most of which only occur on few parses). Features are definedby abstract feature schemas which produce

specific feature instantiations when given the training data as input. The features we use consist of those

described in Charniak and Johnson (2005), together with an additional feature schema forEDGE features.

EDGE features consist of the parts-of-speech, possibly together with the words, that surround (i.e., precede

or follow) the left and right edges of each constituent with the goal of capturing some distituent information.

Other examples of reranker feature schemas include NGRAMTREE, (depth-limited subtrees of the original

tree)RULE, (context-free rules with varying amounts of context) COPAR, (how many coordinated structures

are parallel) and, most importantly, NLOGP (the log-probability of the tree from the first stage parser). As

one can see, some of these features could be implemented in the first stage parser, but others (e.g. COPAR

andEDGE features) would be nearly impossible to capture without introducing serious data sparsity.

Given a data set with training and development divisions, wecreate a reranker in the following way.

First, we parse the training portion of the data set with 20-fold cross-validation. This gives usn-best lists for

sentences in each fold of the data set as parsed by a model trained on the other 19 folds (one of these 19 folds

is used as development data). Within ann-best list, each parse is either awinner (if its f-score matches the

highestf-score within then-best list — note that there can be multiple winners) or aloser. Our next step is to

select features that distinguish winners from losers at least five times or more in the training set. This pruning

step helps remove unpredictive and overly specific features. Then-best lists along with their gold parses are

fed to a numerical optimizer to estimate feature weights. The regularization weights are tuned by evaluating

on the development portion of the data set.

2.3 Corpora

In this work, there are two large classes of corpora: labeledand unlabeled. Each labeled corpus consists

of a set of sentences which have been tagged with part of speech tags and bracketed into a constituency

structure like those in Figure 1.1. Human annotators were trained and labeled the trees according to a set

of standard guidelines (Bies et al., 1995; Bies et al., 2005). Unlabeled corpora are raw text and do not

include part of speech tags, constituent brackets, or even sentence boundaries.3 The names, descriptions,

and basic statistics of the labeled and unlabeled corpora are included in Tables 2.1 and 2.2, respectively.

“Tokens/type” is the average number of word tokens we’ve seen of each word type. A high number in this

column indicates the corpus includes a large amount of vocabulary repetition, though this is also a function

of corpus length — shorter corpora have a lower maximum tokens/type value. Note that these statistics are

taken over each complete treebank and in many cases there areconventions for dividing the treebanks into

training, development, and test sections. The rest of this section describes each corpus in further detail.

Our primary source of labeled data is the Penn Treebank (Marcus et al., 1993). The Penn Treebank

3For all unlabeled corpora, sentence boundaries were induced via a simple discriminative classifier trained from a portion of the
labeled corpora.
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Name Description Total sentences Avg. sentence length Tokens/type
WSJ Newspaper 43,594 25.5 26.6
BROWN Multiple genres 24,243 20.0 18.0
SWBD Phone conversations 104,482 9.2 62.3
BNC Multiple genres 1,000 28.3 3.9
ETT Translated broadcast news 4,834 25.6 14.8
GENIA Biomedical articles 10,848 27.5 19.9

Table 2.1: Summary of treebanked corpora and basic statistics.

Name Description Total sentences Avg. sentence length Tokens/type
NANC Newspaper 23,075,637 23.2 407.5
GUTENBERG Literature 687,782 26.2 83.1
BIOBOOKS Biology textbooks 79,540 22.5 32.7
MEDLINE Biomedical articles 278,192 27.2 41.5

Table 2.2: Summary of unlabeled corpora and basic statistics.

includes the Wall Street Journal (WSJ), BROWN, and SWBD corpora. WSJ collects approximately 40,000

sentences of newspaper stories from the newspaper of the same name in 1989. The corpus is divided into 25

sections, numbered 0 through 24.WSJ has become the de facto standard for statistical parser evaluation in

English. Traditionally, sections 2–21 are used for training parsers, section 24 is used for held-out development

(though some authors use 0 or 22), and section 23 is used for final evaluation.

The BROWN corpus (Francis and Kučera, 1979) consists of many different genres of text, intended to

approximate a “balanced” corpus. While the completeBROWN corpus consists of domains in both the fiction

and nonfiction categories, the sections that have been labeled with parse trees are primarily those containing

fiction. Examples of these sections include science fiction,humor, romance, mystery, adventure, and “popular

lore.” We use the same divisions as Bacchiani et al. (2006), who base their divisions on Gildea (2001).

Each division of the corpus consists of sentences from all available genres. The training division consists of

approximately 80% of the data, while held-out development and testing divisions each make up 10% of the

data. The treebanked sections contain approximately 25,000 sentences (458,000 words).

Switchboard (SWBD) is a collection of “spontaneous conversations” recorded from telephone calls. Par-

ticipants in each telephone call were asked to converse about one of 52 possible topics. We ignore the actual

audio portion of this corpus and use only the transcripts of these conversations along with their syntactic

trees. These trees include disfluency information to indicate speech repairs and related acts. Parsing speech

is a task unto itself and not the focus of this work. Thus, for most of our experiments, we assume that our

corpora have had their speech repairs excised (e.g. as in Johnson et al. (2004)). Note, however, that many of

the techniques in this dissertation could be incorporated into systems that jointly parse and perform speech

repairs.

Like theBROWN corpus, the British National Corpus (BNC) aims to approximate a balanced corpus with

a large number of genres using British English instead of American English. The fullBNC contains over 100

million words but lacks syntactic annotations. A small subset of the sentences have been annotated by (Foster
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and van Genabith, 2008; Foster and Dickinson, 2009).4 The sentences were chosen randomly, so each one is

potentially from a different domain.

The English Translation Treebank,ETT (Bies, 2007), is the translation of Arabic broadcast news from

2005. The English translations and the syntactic annotations were created by humans as opposed to any

automatic mechanisms. In terms of domains, the corpus can bethought of as containing elements of both

WSJandSWBD. Many entities in the corpus are left as transliterated Arabic resulting in a unique and unusual

vocabulary.

TheGENIA treebank (Tateisi et al., 2005) is a corpus of abstracts fromthe Medline database selected from

a search with the keywords “human,” “blood cells,” and “transcription factors.” Medline5 is a large database

of abstracts from a wide variety of biomedical literature. Thus, theGENIA treebank data are all from a small

domain within biology. Since a new version of this treebank was produced during our earlier experiments,

we regrettably use two different versions of this treebank.Previous work and some of our earlier experiments

useGENIA beta 2 while our more recent experiments use the larger version of GENIA which is a superset of

the earlier treebank. Our division of the largerGENIA treebank is available online.6

We now turn to our unlabeled corpora. The North American NewsText corpus,NANC (Graff, 1995),

is roughly the unlabeled equivalent ofWSJ and consists of approximately 24 million sentences from several

news agencies. Our experiments use at most the first three million sentences fromNANC. NANC contains

no syntactic information. We perform some basic cleanups onNANC to ease parsing (some orthographic

normalization).NANC contains news articles from various news sources includingthe Wall Street Journal,

the New York Times, Los Angeles Times, and others. In our experiments, we only use articles from the LA

Times. Note thatWSJ andNANC do not overlap: TheWSJ stories are from 1989 whereasNANC covers the

period from 1994–1998.

Our GUTENBERG corpus is 214 randomly selected books from Project Gutenberg.7 Project Gutenberg

transcribes books which have entered into the public domainand releases them in machine-readable formats.

Our selected books cover a broad range of subjects, including books such as “An Icelandic Primer,” “Celtic

Literature,” “The Poetical Works of Henry Kirke White,” and“Miss Parloa’s New Cook Book.” Unfortu-

nately, the project does not track the year that each book waswritten, but copyright law requires that none of

these books are especially modern (unless they were published without a restrictive license).

We created a corpus of seven online biology textbooks (BIOBOOKS). One textbook is a general biology

textbook while others focus on more specific topics (bacteriology, biochemistry, or immunology). Various

processing has been applied to extract the text from its HTMLsource while excluding figures and tables. The

corpus contains almost 80,000 sentences.

MEDLINE is an unlabeled corpus of biomedical article abstracts we have collected from 50 different

biomedical journals in the same online database asGENIA.8 It contains approximately 270,000 sentences —

4http://nclt.computing.dcu.ie/ ˜ jfoster/resources/ , downloaded January 8th, 2009.
5http://www.ncbi.nlm.nih.gov/PubMed/
6http://bllip.cs.brown.edu/download/genia1.0-divisio n-rel1.tar.gz
7http://www.gutenberg.org/
8We use the EFetch interface:http://www.ncbi.nlm.nih.gov/corehtml/query/static/e fetchlit_help.
html
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a random selection of about 31,000 abstracts from Medline. Since these articles were chosen randomly, they

span a large number of biomedical subdomains, not just thosedomains present inGENIA.

For experiments in Chapter 5, we preprocessed these corporato remove many of the differences in anno-

tation. Examples of these changes include standardizing the use of tags likeNML, NX, NAC, convertingHVS

andBES to VBZ (since they only appear inSWBD), removingEDITED nodes inSWBD, BROWN, andETT,

and removing rare tags fromBROWN such asAUX andNEG. Nevertheless, it is inevitable that annotation

differences remain as the corpora were each created under slightly different annotation guidelines by differ-

ent annotators. One of the larger outstanding issues is the structure within noun phrases which some corpora

annotate (e.g.GENIA andETT) while others do not. When parsing across these corpora, theparser produces

too much or too little internal structure in noun phrases, thus lowering our accuracy (thus, our parsers may

be performing even better than we report). Additionally, while we aimed to normalize tag sets, we did not

address how individual words are tagged across different corpora. To remove further differences of anno-

tation or formalism, there are several works on the subject.Smith and Eisner (2009) addresses the issue of

structural mismatches by using a quasi-synchronous grammar. The quasi-synchronous grammar allows them

to automatically learn the rules to transform treebanks from one annotation style to another. Since a given set

of sentences tend to be annotated under only one annotation scheme, they use automatic parses as an approxi-

mation of the other annotation scheme. Boyd et al. (2008) describes how to detect many structural errors from

inconsistent annotations and Dickinson (2009) shows how dependency errors can be automatically corrected.

To address mismatches in tagging, Dickinson and Jochim (2008) discusses a method for determining reliable

tagging patterns. Niu et al. (2009) show how to convert a treebank in one formalism (dependency structures)

to another (constituency) without heuristic rules. This could be useful for obtaining additional corpora to use

as test sets.

2.4 Evaluation

Our evaluation follows the PARSEVAL standards (Black et al., 1991) for constituency evaluation. To evaluate

a candidate parse against its human-annotated counterpart, (called thegold parse) we consider the overlap

between candidate and gold constituents. Each constituentis represented as a labeled span (e.g. words 7

to 12 bracketed by anNP). We ignore the root node since it is trivial and preterminalnodes since they are

considered outside the syntactic structure. Given these two lists of constituents, we can calculate the labeled

precisionandrecall. Precision tells us how many of the nodes in the candidate tree are present in the gold

parse whereas recall tells us how many nodes in the gold parsewere present in the candidate tree. Precision

and recall can be formally defined in terms of the number of true positives (TP), false positives (FP), and false

negatives (FN).

labeled precision (LP) =
TP

TP + FP

labeled recall (LR) =
TP

TP + FN

In many cases, we seek a single number summarizing performance. f-score (sometimes spelledF1 or
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F-measure) is the weighted harmonic mean of precision and recall (van Rijsbergen, 1979). The most general

form is parameterized byβ which determines the relative importance of precision and recall. By setting

β = 1, we weight them equally which is the standard practice for parser evaluation. One of the reasons that

the harmonic mean is used instead of the arithmetic mean is that the harmonic mean of two numbers is 0 if

either of these numbers is 0. Thus, a goodf-score requires both good precision and good recall scores (it is

trivial to achieve a perfect precision score — simply don’t return any constituents).

Fβ =
(1 + β2) · (LP · LR)

(β2 · LP + LR)

f-score = F1 =
2 · LP · LR

LP + LR

Two other statistics that we can compute given candidate andgold parse trees areexact matchandcrossing

brackets. Exact match is the percentage of candidate parses that are identical to their gold parses (i.e. those

with f-score = 1). Crossing brackets is the average number of constituent spans that cross between the

candidate and gold parses. Given two constituent spans(x, y) and(a, b) wherex ≤ y, a ≤ b, we say that

they cross ifa < y or x < b. We useevalb 9 and Sparseval10 (Roark et al., 2006) to obtain these measures.

While f-score is useful for measuring the quality of a single candidate against the gold standard, we typically

have multiple candidate parses for a given sentence due to our usage of ann-best parser. One measure that is

commonly employed is the notion of theoraclef-score. Given a list ofn candidate parses of a sentence and

its corresponding gold parse, the oraclef-score is defined as thef-score of the highest scoring parse in the

n-best list. This measure is useful as an upperbound on reranker performance.

To determine whether the difference inf-score between two sets of candidate parses is statistically signif-

icant, we use a randomized permutation test based on the randomization of the paired samplet-test described

by Cohen (1995). We use Dan Bikel’s implementation11 as well as an in-house version by Mark Johnson (this

is not to imply that either implementation is incorrect). For this test, the null hypothesis is that the two sets

of candidate parses (call themA andB) were produced by the same model and that each sentence is equally

likely to have either score. In each iteration of the test, wecreate two sets of scores which we’ll callX and

Y . Theith sentence inX , Xi, is given with equal probability either the scoreAi or Bi andYi is assigned the

other. Thus, we end up with two sets of scrambled scores. Next, we recalculate the score function in question

(typically f-score in our case) forX andY and take the difference. Overk iterations, we count how many

times|µ(X)− µ(Y )| ≥ |µ(A)− µ(B)| whereµ is the score function. If this occursj times, ourp-value for

this test is(j + 1)/(k + 1).

9http://nlp.cs.nyu.edu/evalb/
10http://cslu.cse.ogi.edu/people/roark/papers_cv.html
11http://www.cis.upenn.edu/ ˜ dbikel/software.html



Chapter 3

Self-training

In this section, we introduceself-training, a simple semi-supervised learning technique which can be used to

improve parser performance. We first present a general form of self-training and review other semi-supervised

learning techniques. Next, we show how self-training can beused to achieve state-of-the-art performance for

parsing (Section 3.1). Finally, we demonstrate that self-training can also be applied successfully to the tasks

of parser portability and parser adaptation (Sections 3.2 and 3.3 respectively).

To perform self-training, one needs a collection of labeledand unlabeled data, a labeling function which

labels an unlabeled datum according to a specific model, and atraining function which given labeled data

creates a new model. The process is outlined in Algorithm 1. First, we create a base model from available

labeled data which we use to label the unlabeled data. The resulting automatically labeled data is then treated

as truth and combined with the actual labeled data to train a new model. Optionally, one may weight the

labeled data more highly than the automatically labeled data in this combination. If there is significantly

more unlabeled data than labeled data, this may be necessaryto ensure that the labeled data is not completely

washed out. Another variation is to only select a portion of the automatically labeled data (σ(·) in the

pseudocode performs this operation). Ideally, one could select only the more reliable elements of the data

without biasing the resulting distribution too heavily. Inpractice, this is often difficult andσ(·) ends up being

the identity function. Self-training can be iterated over different sets of unlabeled data if desired: the self-

trained model in one iteration becomes the base model in the next (Algorithm 1 thus shows the steps for a

single iteration).

Semi-supervised learning has attracted much attention in recent years and has inspired a wide variety of

approaches. A survey of these techniques can be found in Zhu (2007) and the ACL 2008 Semi-supervised

Learning tutorial.1 The Semi-supervised Learning for Natural Language Processing Workshop (Wang et al.,

2009) was formed in response to this interest. Most semi-supervised learning approaches can be categorized

as either bootstrapping, (which includes self-training and usually involves minimizing a proxy for error on the

unlabeled data) graph regularization, (where the problem is expressed as a graph and unlabeled data provides

a mechanism of smoothing the graph) or structural (where auxiliary problems which are predictive for the

1http://ssl-acl08.wikidot.com/
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Input: labeled data, unlabeled data, weighting parameterα
Output: self-trained model

base model← train(labeled data)
autolabeled data← label(base model, unlabeled data)
selected autolabeled data← σ(autolabeled data)
combined data← α× labeled data + selected autolabeled data
self-trained model← train(combined data)
return self-trained model

Algorithm 1: Pseudocode for one iteration of self-training

original task are used to label the unlabeled data). We focusprimarily on bootstrapping techniques here, but

note that other approaches are often used in the field as well (Bennett and Demiriz, 1998; Nigam et al., 2000;

Ng and Cardie, 2003; Zhu et al., 2003; Mihalcea, 2004; Ando and Zhang, 2005b; Ando and Zhang, 2005a;

Blitzer et al., 2006; Fraser and Marcu, 2006; Deoskar, 2008;Koo et al., 2008; Wang et al., 2008).

3.1 Self-training for Parsing

Self-training has been attempted several times for parsing, usually without success. To our knowledge, the

first reported use of self-training for parsing is by Charniak (1997). He used his parser trained onWSJ to

parse 30 million words of unparsed news text from a differentcorpus. He then trained a self-trained model

from the combination of the newly parsed text withWSJ training data. However, the self-trained model did

not improve on the original model. Our work differs in that weuse a different first stage parser and consider

combining it with a reranker.

A close relative of self-training isco-trainingwhich is due to Blum and Mitchell (1998). Unlike self-

training, co-training requires multiple learners, each with a different “view” of the data. Each view should

provide a complementary interpretation and in the strongest case, these would be conditionally independent.

When one learner is confident of its predictions about a data point, we add that data point with its predicted

label to the training set of the other learners. A variation suggested by Dasgupta et al. (2001) is to add

data points to the training set when multiple learners agreeon the label. If this is the case, we can be more

confident that the data was labeled correctly than if only onelearner had labeled it since each learner has

reached the same analysis via a different path.

Sarkar (2001) investigated using co-training for parsing under the LTAG formalism. The author shows

that using about 10,000 labeled sentences and a large numberof unlabeled sentences, co-training can be

employed to raise performance from 70.6%f-score to 79.8%f-score on the test section ofWSJ.

Self-training and co-training were subsequently investigated for parsing as part of the 2002 CLSP Sum-

mer Workshop at Johns Hopkins University (Steedman et al., 2003a). The study suggests that this type of

co-training is most effective when small amounts (500-10,000 sentences) of labeled training data is avail-

able. Another one of their conclusions was that co-trainingcan be used to improve parser portability. They

experimented with several different parameter settings. In all cases, they performed multiple iterations of

self-training and the number of sentences parsed per iteration was relatively small (30 sentences). The largest
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Input: WSJ, NANC, weighting parameterα
Output: self-trained parser model

parser model← train1(WSJ)
parsed NANC ← parse1(parser model, NANC)
combined data← α× WSJ+ parsed NANC

self-trained parser model← train1(combined data)
return self-trained parser model

Algorithm 2: Pseudocode for self-training with first stage parser

Input: WSJ, NANC, weighting parameterα
Output: self-trained parser model

parser model← train1(WSJ)
reranker model← train2(WSJ)
parsed NANC ← rrp(parser model, reranker model, NANC)
combined data← α× WSJ+ parsed NANC

self-trained parser model← train1(combined data)
return self-trained parser model

Algorithm 3: Pseudocode for self-training with reranking parser

amount of labeled training data (seed size) they used was 10,000 sentences fromWSJ, though many experi-

ments used only 500 or 1,000 sentences. They found that underthese settings, self-training did not yield a

significant gain.

In a closely related study, self-training and co-training were evaluated for part of speech tagging in Clark

et al. (2003). Their conclusions are quite similar — co-training helps only when there are limited amounts of

training data. Self-training either has a small positive effect, no effect, or a large negative effect depending

on the specific tagger and seed size.

The unsupervised adaptation experiment by Bacchiani et al.(2006), initially presented in Roark and

Bacchiani (2003), is the only previous successful instanceof self-training for parsing that we have found.

The authors use a parser trained onBROWN to parseWSJ along with additional unlabeled sentences from

other years of theWSJ. The new parses are mixed into theBROWN training data as in Algorithm 2. This

technique improves performance on theWSJ test set from 75.7% to 80.6%. Our experiments tend to focus on

the opposite direction — usingWSJ to parseBROWN.

3.1.1 Experiments

Our first self-training experiment uses the training portion of WSJ as our labeled data and variable amounts

of NANC as the unlabeled data. We replace the general functions in Algorithm 1 with their more specific

counterparts. Lettrainn(ℓ) be a function which trains thenth stage of the parser from labeled sentencesℓ

and returns the new model. Letparsen(u,m) be a function which parses unlabeled sentencesu using model

m and returns its parses of the sentences. As before,n indicates which stage to use, so the function for the

reranking parser looks like:
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rrp(m1, m2, u) = parse2(parse1(u, m1), m2)

wherem1 is the generative parser’s model andm2 is the reranker’s model. To replicate the results of

Charniak (1997), we first use only the first stage parser. Thus, we usetrain1 for train andparse1 for as the

label function (Algorithm 2). The “+” and “×” operators warrant some discussion. TheWSJ training data

(sections 2-21) is combined with theNANC data in the following way: The count of each parsing event is

the (optionally weighted) sum of the counts of that event in Wall Street Journal andNANC. Bacchiani et al.

(2006) show that count merging is more effective than creating multiple models and calculating weights for

each model (model interpolation). Intuitively, this corresponds to concatenating our training sets, possibly

with multiple copies of each to account for weighting.2 Note that the selection step has been removed. We

refer to this scenario as “parser-best self-training” since we use the best parse according to the first stage

parser.

Algorithm 3 shows the pseudocode for self-training with a reranker (“reranker-best self-training”). Here,

our experiments depart from previous work. The primary difference is that the reranking parser is used to

parseNANC instead of the first stage parser. Note that while both stagesare trained fromWSJ only the first

stage is retrained from the combination ofWSJ andNANC data. We attempted to retrain the reranker using

the self-trained sentences, but found no significant improvement.

We evaluated the first stage models created by parser-best and reranker-best self-training by parsing held

out WSJ data (section 22). Table 3.1 shows the difference in performance when using parser-best versus

reranker-best models. Adding parser-best sentences ofNANC reproduces previous self-training efforts and

confirms that this strategy is not beneficial. However, we seea large improvement from adding reranker-best

sentences. For our remaining experiments, we only use reranker-best self-training.

One may expect to see a monotonic improvement from this technique, but this is not quite the case, as

seen when we add 1,000,000 sentences. This may be due to some sections ofNANC being less similar to

WSJor containing more noise (NANC is quite noisy, including portions which are indistinguishable from line

noise). Another possibility is that these sections containharder sentences which we cannot parse as accurately

and thus are not as useful for self-training.

We also attempt to discover the optimal number of sentences to add fromNANC. Much of the improve-

ment comes from the addition of the initial 50,000 self-trained trees. Recall that the experiments in (Steed-

man et al., 2003a) use a comparatively small amount of unlabeled data.3 As we add more data, it appears that

the maximum benefit to parsing accuracy by strictly adding reranker-best sentences is about 0.7% and that

f-scores asymptotes around 91.0%. We return to this when we consider the relative weightings ofWSJ and

NANC data.

So far, we have only evaluated the first stage parser with the self-trained models. We now turn to the

performance of the reranking parser. One hypothesis we considered is that the rerankedNANC data had

incorporated some of the features from the reranker. If thiswere the case, we would not see an improvement

2This implementation has the unfortunate requirement that all weights must be integers, of course. Combining corpora according to
arbitrary distributions takes a bit of engineering and employed in Chapter 5.

3Most experiments perform 100–120 rounds of self- or co-training, adding 30 unlabeled sentences per round.
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Sentences ofNANC added Parser-best Reranker-best
(baseline) 0 90.3 90.3

50,000 90.1 90.7
250,000 90.1 90.7
500,000 90.0 90.9
750,000 89.9 91.0

1,000,000 90.0 90.8
1,500,000 90.0 90.8
2,000,000 — 91.0

Table 3.1:f-scores after adding either parser-best or reranker-best sentences fromNANC to WSJtraining data.
While the reranker was used to produce the reranker-best sentences, we performed this evaluation using only
the first stage parser (parse1) to parse all sentences from section 22. We did not train a model where we added
2,000,000 parser-best sentences.

WSJsection
Sentences ofNANC added 1 22 24

(baseline) 0 91.8 92.1 90.5
50,000 91.8 92.4 90.8

250,000 91.8 92.3 91.0
500,000 92.0 92.4 90.9
750,000 92.0 92.4 91.1

1,000,000 92.1 92.2 91.3
1,500,000 92.1 92.1 91.2
1,750,000 92.1 92.0 91.3
2,000,000 92.2 92.0 91.3

Table 3.2:f-scores from evaluating the reranking parser on three held-out sections after adding reranker-best
sentences fromNANC to WSJ training. These evaluations were performed on all sentences.

when evaluating a reranking parser on the same models. In Table 3.2, we see that our improvements from

using self-trained parses and from using the reranker are orthogonal.

Up to this point, we have only considered giving our true training data a relative weight of one. A relative

weight of n is equivalent to usingn copies of a corpus, i.e. an event that occurredx times in the corpus

would occurx× n times in the weighted corpus. Thus, larger corpora dominatesmaller corpora of the same

relative weight in terms of event counts. Increasing the weight of theWSJ data should improve, or at least

not hurt, parsing performance. Indeed, this is the case for both the parser (Figure 3.1a) and reranking parser

(Figure 3.1b). We considered assigningWSJ a relative weight of 1 through 5 while varying the number of

sentences included fromNANC.4 Putting more weight on theWSJ trees ensures that the counts of our events

are closer to our more accurate data source while still incorporating new statistics fromNANC. While it

appears that the performance still levels off after adding about one million sentences fromNANC, the curves

corresponding to higherWSJweights achieve a higher asymptote.

Looking at the performance of these weighting schemes across sections 1, 22, and 24, we decided that the

best combination of training data is to giveWSJa relative weight of 5 and use the first 1,750,000 reranker-best

4We arbitrarily chose a relative weight of 5 as our stopping point. However, we expect that there are diminishing returns for higher
weights.
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Model Parser alone Reranking parser
Charniak and Johnson (2005) — 91.0
Current baseline (WSJ) 89.7 91.3
WSJ+ NANC 91.0 92.1

Table 3.3:f-scores on all sentences inWSJsection 23. “WSJ+ NANC” represents the system trained onWSJ

training (with a relative weight of 5) and 1,750,000 sentences from the reranker-best list ofNANC.

sentences fromNANC.

Finally, we evaluate our new model on the test section of WallStreet Journal in Table 3.3. We note that the

baseline system (i.e. the parser and reranker trained purely onWSJ) has improved by 0.3% over Charniak and

Johnson (2005). The improvement from self-training is significant in both macro and micro tests (p < 10−5).

We have shown that self-training can provide a substantial benefit when the training and testing data are

drawn from the same domain. This study has raised the question of whether the parsing models are too finely

tuned for parsingWSJat the expense of portability to other genres. Such worries have merit. The next section

should alleviate these concerns. In it, we show that self-training and reranking are also effective means of

improving performance across domains in addition to withinthem.

3.2 Parser Portability

Parser portability studies examine how well parsers trained on one domain (source domain) perform on a

different one (target domain). Unfortunately, there is little consensus in the field exactly what the tasks of

parser portability and parser adaptation entail. We defineparser portabilityas the task where we are given no

labeled in-domain data for the target domain. When we do haveaccess to some amount of labeled in-domain

data, we call the taskparser adaptation.

Naturally, there is always a penalty for changing domains ifthe source and target domains do not suf-

ficiently overlap. Thus, parser portability informs us about the generality of the parser as well as being an

approximate measure of distance between the source and target domains. As mentioned in Section 1.3, these

studies have often been done by training parsers onWSJand evaluating them onBROWN (Ratnaparkhi, 1999;

Gildea, 2001; Bacchiani et al., 2006). For ease of comparison, we use the same setup. We also use theGENIA

andSWBD corpora as alternative more distant target domains (Section 3.2.2).

Our first experiment examines the performance of the self-trained parsers. While the parsers are created

entirely from labeledWSJ and unlabeledNANC data, they perform extremely well onBROWN development

(Table 3.4). The trends are the same as in the previous section: AddingNANC data improves parsing perfor-

mance on theBROWN development section considerably, improving thef-score from 83.9% to 86.4%. As

moreNANC data is added, thef-score appears to approach an asymptote. TheNANC data appears to help

reduce data sparsity and fill in some of the gaps in theWSJmodel. Additionally, the reranker provides further

benefit and adds an absolute 1-2% to thef-score. The improvements appear to be orthogonal, as our best

performance is reached when we use the reranker and add 2,500,000 self-trained sentences fromNANC.
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Figure 3.1: Effect of giving more relative weight toWSJ training data on parser and reranking parserf-score.
Higher WSJ weights generally improve parsing accuracy. Evaluations were done from all sentences from
section 1.
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f-score
Model Parser Reranking Parser
BaselineBROWN 86.4 87.4
BaselineWSJ 83.9 85.8
WSJ+ 50,000 sentencesNANC 84.8 86.6
WSJ+ 250,000 sentencesNANC 85.7 87.2
WSJ+ 500,000 sentencesNANC 86.0 87.3
WSJ+ 750,000 sentencesNANC 86.1 87.5
WSJ+ 1,000,000 sentencesNANC 86.2 87.3
WSJ+ 1,250,000 sentencesNANC 86.3 87.5
WSJ+ 1,500,000 sentencesNANC 86.2 87.6
WSJ+ 1,750,000 sentencesNANC 86.0 87.5
WSJ+ 2,000,000 sentencesNANC 86.1 87.7
WSJ+ 2,500,000 sentencesNANC 86.4 87.7
WSJ+ self-trainedBROWN 85.6 86.1

Table 3.4: Effects of addingNANC sentences toWSJ training data onf-score. The parser and reranking
parsers were evaluated onBROWN development data. The reranker model was trained onWSJ.

The results are even more surprising when we compare againsta parser5 trained on the labeled training

section of theBROWN corpus, with parameters tuned against its held-out section(top line in Table 3.4).

Despite having no access to in-domain example trees, theWSJ based parser is able to match thef-score of

theBROWN based parser.

Recall that increasing the relative weight ofWSJ sentences versusNANC sentences was effective when

testing onWSJ in the previous section. However, when testing on theBROWN development section, this

reweighting did not appear to have a significant effect. We believe this is because the true distribution was

closer toWSJ in the previous section so it made sense to emphasize it. Here, theBROWN development data

does not follow the same distribution asWSJ.

The model trained onWSJ+2,500,000 sentences ofNANC is the best model for parsingBROWN of the

ones we have considered. We also note that this “best” parseris different from the “best” parser for parsing

WSJ, which was trained onWSJwith a relative weight of 5 and 1,750,000 sentences fromNANC. For parsing

BROWN, the difference between these two parsers is not large, though. We have shown that self-training is a

valuable technique for improving parser portability. Our next section discusses the portability of the reranker

briefly.

Bacchiani et al. (2006) applies self-training to parser adaptation to utilize unlabeled in-domain data. The

authors find that it helps quite a bit when adapting fromBROWN to WSJ. They use a parser trained from the

BROWN train set to parseWSJ and add the parsedWSJ sentences to their training set. We perform a similar

experiment, using ourWSJ-trained reranking parser to parse theBROWN training division (ignoring its parse

annotations) and testing onBROWN development. Parserf-score was boosted from 83.9% to 85.6% when we

added the parsedBROWN sentences to our training set. Adding in 1,000,000 sentences from NANC as well,

we saw a further increase to 86.3%. Adding self-trained sentences fromBROWN improves performance over

5In this case, only the parser is trained onBROWN. The reranker is mismatched, but still helps in all cases. InSection 3.2.1, we
compare against a fullyBROWN-trained reranking parser as well.
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Parser model Parser aloneWSJ-reranker BROWN-reranker
WSJ 82.9 85.2 85.2
WSJ+ NANC 87.1 87.8 87.9
BROWN 86.7 88.2 88.4

Table 3.5: Performance of various combinations of parser and reranker models when evaluated onBROWN

test set. TheWSJ+NANC parser with theWSJ reranker comes close to theBROWN-trained reranking parser.
TheBROWN reranker provides only a small improvement over itsWSJcounterpart for all three parser models,
which is not statistically significant.

the pureWSJbaseline, but is unsurprisingly not as good as the pureBROWN model (which uses gold labels).

3.2.1 Reranker Portability

We have shown that theWSJ-trained reranker is actually quite portable to theBROWN fiction domain in

Table 3.4. The baselineWSJ parser achieves 85.8% with the reranker and 83.9% without. WhenNANC is

added, performance improves from 86.4% to 87.7% when we use the reranker. This may be surprising given

the large number of features — over a million in the case of theWSJ reranker — which have been tuned to

adjust for errors made in then-best lists by the first stage parser. It would seem the corrections learned by the

reranker are not as domain-specific as we might expect. The reranker’s regularization process during training

may encourage it to use only the more general features.

To compare against a model fully trained onBROWN data, we created aBROWN reranker. The resulting

reranker model had approximately 700,000 features — about half as many as theWSJ trained reranker. This

may be due to the smaller size of theBROWN training set or because the feature schemas for the reranker

were developed onWSJ data. We evaluated three models (fullyWSJ-trained, the self-trainedWSJ, and fully

BROWN-trained) on the testing section ofBROWN, with and without the reranker. As seen in Table 3.5, the

BROWN reranker does not provide a significant improvement over theWSJreranker for parsingBROWN data.

If no labeledBROWN data is available, theWSJ+NANC model with theWSJreranker is our best bet for parsing

BROWN and achieves anf-score of 87.8%. The fullyBROWN-trained reranking parser is only slightly better

at 88.4%.

3.2.2 Porting to more distant domains

As further evidence that self-training improves parser portability, we present the results of applying theWSJ

models to two domains which have much less in common withWSJthanBROWN. We briefly present results on

SWBD (transcribed telephone conversations) and then provide a more in-depth study forGENIA (biomedical

article abstracts). Table 3.6 shows our evaluation of the original WSJ and self-trainedWSJ models on the

SWBD development section. We see that while the parser’s performance is low, self-training and reranking

continue to provide orthogonal benefits. The improvements represent a 12% error reduction and use no in-

domain data. Naturally, in-domain labeled examples and speech-specific handling (e.g. disfluency modeling)

would dramatically improve accuracy as well. Additionally, there are likely better choices of unlabeled

corpora thanNANC if our goal is to parseSWBD. We now turn to our study ofGENIA where we explore using
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Parser model Parser Reranking parser
WSJ 74.0 75.9
WSJ+ 1,750,000NANC sentences 75.6 77.0

Table 3.6: Parser and reranking parserf-score performance on theSWBD development corpus. TheNANC

data and reranker improvements are orthogonal, but less dramatic than they are on theBROWN corpus. This
is likely becauseSWBD is considerably less similar toWSJ than theBROWN corpus.
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Figure 3.2: Reranking parserf-score on development data for four different self-training scenarios as a
function of number of self-training sentences.

different unlabeled corpora for self-training.

We did several experiments onGENIA development data using different unlabeled corpora for self-

training. As before, we useNANC but for this experiment, we also try two different in-domaincorpora:

BIOBOOKS and MEDLINE (descriptions of these corpora can be found in Section 2.3).These results are

summarized in Figure 3.2. We show thef-score for four different self-training scenarios using the reranking

parser as a function of number of self-training sentences. As before, the reranker was trained solely onWSJ

data. The “WSJ (baseline)” line is the raw reranking parser with no self-training. At 80.4%, it is clearly the

worst of the lot. On the other hand, it is already comparable to the best previous result (80.2%) for biomedical

data from the parser by Lease and Charniak (2005), as reported by Clegg and Shepherd (2007).6 The parser

by Lease and Charniak (2005) is the first stage Charniak parser with access to an external in-domain tagger.

6We say comparable since the 80.4% is on the development whilethe 80.2% is on test (GENIA beta 2). However, these two data sets
are similar in difficulty.
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Parser Reranking parser
System Precision Recall f-score Precision Recall f-score
Lease and Charniak (2005) — — 80.2 — — —
WSJ 79.3 76.6 77.9 82.4 78.7 80.5
WSJ+ 266,000MEDLINE sentences 85.0 81.9 83.4 86.3 82.4 84.3

Table 3.7: Comparison of theMEDLINE self-trained parser against previous best onGENIA beta 2.

We use the parser’s internal tagger which has been trained onWSJ but we achieve similar performance due

to the introduction of the 50-best reranker. If we self-train on NANC, our performance goes up to 81.4%,

regardless of how much parsedNANC is incorporated.

Our best results come from self-training onMEDLINE instead ofNANC. As seen in Figure 3.2, even a

thousand sentences ofMEDLINE is enough to drive our results up to a new level and accuracy continues to

improve until about 150,000 sentences at which point it is relatively flat. However, as adding about 270,000

sentences is fractionally better than 150,000 sentences, we opted for the higher number of self-training sen-

tences for our results on the test set.

The WSJ+BIOBOOKS line comes from interesting idea that failed to work. We mention it in the hope

that others might be able to succeed where we have failed. We reasoned that biology textbooks would be a

particularly good “bridging corpus.” After all, they are written to introduce someone ignorant of a field to

the ideas and terminology within it. Thus, one might expect that the English of a Biology textbook would

be intermediate between the more typical English of a news article and the specialized English native to the

biomedical domain.

To test this, we created a biology textbook corpus (BIOBOOKS). We observe in Figure 3.2 that for all

quantities of self-training data one does better withMEDLINE than BIOBOOKS. For example, at 37,000

sentences theBIOBOOKS corpus is only able to achieve anf-score of 82.8% while theMEDLINE corpus is

at 83.4% with the same amount of additional sentences. Furthermore,BIOBOOKS levels off in performance

while MEDLINE has significant improvement left in it. Thus, while the hypothesis seems reasonable, we were

unable to make it work.

Our evaluation on theGENIA test set is shown in Table 3.7. We weighted the originalWSJ equally with

self-trainedMEDLINE data. We did not perform any tuning to find out if there is some better weighting.

Given that reweighting was not helpful when evaluating onBROWN (Section 3.2), it is unlikely to help here

sinceGENIA is quite different fromWSJ. Clegg and Shepherd (2007) do not provide separate precision and

recall numbers for the Lease and Charniak (2005) system. However, we can see that theMEDLINE self-

trained reranking parser achieves anf-score of 84.3%, which is an absolute reduction in error of 4.1%. This

corresponds to an error rate reduction of 20% over the Lease and Charniak (2005) baseline. Also note that,

as before, our improvements come from a combination of self-training and using the out-of-domain trained

reranker.

If labeled data is available, our accuracy is even higher. Table 3.8 gives our results on the more modern and

significantly larger version of theGENIA treebank.7 The “WSJ + 266,000MEDLINE sentences” model from

7Experiments up to this point have been on the “GENIA beta 2” corpus.
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Parser model Reranker modelf-score
WSJ — 74.9
WSJ WSJ 76.8
WSJ+ MEDLINE (parsed byWSJ) WSJ 80.7
GENIA — 83.6
GENIA WSJ 84.5
GENIA GENIA 85.7
WSJ+ MEDLINE (parsed byGENIA) GENIA 87.6
GENIA + MEDLINE (parsed byGENIA) GENIA 87.6

Table 3.8: Evaluations on the largerGENIA data set (10,848 sentences across all divisions).

Table 3.7 corresponds to the third line in this table (“WSJ+ GENIA (parsed byWSJ)”). As before, we receive

a significant boost from both the reranker and self-training. The table shows that as labeledGENIA data is

used in more steps (base parser training, reranker training, and as a corpus for self-training) performance

improves substantially. Despite the success of our self-trainedWSJ model from Table 3.7 which obtains an

f-score of 80.7 on this dataset, once labeled data is available performance shoots up to 83.6 even without a

reranker. Using an out-of-domainWSJ reranker gives us about an additional 1% inf-score and switching to

an in-domainGENIA reranker provides another 1% improvement. Self-training using thatGENIA reranking

parser increases thef-score to 87.6%. Perhaps surprisingly, this level of accuracy can be achieved even if

the parser is trained usingWSJ and the self-trainedMEDLINE corpus (as parsed byGENIA). Using out-of-

domainWSJ data here does not hurt performance presumably since it is overwhelmed by the larger amount

of self-trainedMEDLINE data and because theGENIA reranker is able to correct enough of its mistakes.

3.3 Parser Adaptation

We now turn to the scenario where we have some labeled in-domain data. The most obvious way to incorpo-

rate labeled in-domain data is to combine it with the labeledout-of-domain data. We have already seen the

results Gildea (2001) and Bacchiani et al. (2006) achieve inTable 1.1.

We explore various combinations ofBROWN, WSJ, andNANC corpora. Because we are mainly inter-

ested in exploring techniques with self-trained models rather than optimizing performance, we only consider

weighting each corpus with a relative weight of one for this experiment. The models generated are tuned on

section 24 fromWSJ. The results are summarized in Table 3.9.

While bothWSJandBROWN models benefit from a small amount ofNANC data, adding more than 250,000

NANC sentences to theBROWN or combined models causes their performance to drop. For example, theWSJ

+ BROWN + 250,000NANC model achieves anf-score of 88.1% with the reranking parser, but only 87.7%

if an additional 250,000 sentences fromNANC are added. Accuracy continues to fall as moreNANC data is

included. This is not surprising since adding “too much”NANC overwhelms the more accurateBROWN or

WSJcounts. By weighting the counts from each corpus appropriately, this problem can be avoided.

Another way to incorporate labeled data is to tune the parserback-off parameters on it. Bacchiani et

al. (2006) report that tuning on held-outBROWN data gives a large improvement over tuning onWSJ data.
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f-score
Parser model Parser Reranking parser
WSJalone 83.9 85.8
WSJ+ 2,500,000NANC 86.4 87.7
BROWN alone 86.3 87.4
BROWN + 50,000NANC 86.8 88.0
BROWN + 250,000NANC 86.8 88.1
BROWN + 500,000NANC 86.7 87.8
BROWN + 1,000,000NANC 86.6 87.8
WSJ+ BROWN 86.5 88.1
WSJ+ BROWN + 50,000NANC 86.8 88.1
WSJ+ BROWN + 250,000NANC 86.8 88.1
WSJ+ BROWN + 500,000NANC 86.6 87.7
WSJ+ BROWN + 1,000,000NANC 86.6 87.6

Table 3.9:f-scores from various combinations ofWSJ, NANC, andBROWN corpora onBROWN development.
The reranking parser used theWSJ-trained reranker model. TheBROWN parsing model is naturally better than
the WSJ model for this task, but combining the two training corpora results in a better model (as in Gildea
(2001)). Adding small amounts ofNANC further improves the results.

The improvement is mostly (but not entirely) in precision. We performed a similar experiment usingWSJas

training data, using eitherWSJ or BROWN data for parameter tuning to create parsing and reranker models

(Figure 3.3). We do not see the same improvement as Bacchianiet al. (2006) on the non-self-trained parser

(x = 0 NANC sentences) but this is likely due to differences in the parsers . However, we do see a similar

improvement for parsing accuracy once the self-trainedNANC data has been added. The reranking parser

generally sees an improvement, but it does not appear to be significant. From these two experiments, it seems

better to use labeled in-domain data for training rather than setting parameters.

3.4 Self-Training Extensions

There have been two follow-up studies on self-training which give us additional data points of self-training’s

capabilities. Reichart and Rappoport (2007) showed that one can self-train with only a generative parser if

the seed size is small. The conditions are similar to those inSteedman et al. (2003a), but only one iteration of

self-training is performed (i.e. all unlabeled data is labeled at once).8 The authors show that self-training is

beneficial for in-domain parsing and parser adaptation. In their case, they are able to demonstrate a reduction

in the number of labeled sentences required to achieve a specific f-score.

Foster et al. (2007) use self-training to improve performance onBNC. Rather than usingNANC as their

unlabeled corpus, they use one million raw sentences from the completeBNC. They are able to improve

performance on the 1,000 sentenceBNC test set from 83.9% to 85.6% after adding the automaticBNC parses.

Similarly, they are able to improve performance on theWSJ test set from 91.3% to 91.7%. This is smaller

than the 0.8% improvement that we get from adding 1.7 millionNANC parses9 and reinforces our point that

8Performing multiple iterations presumably fails because the parsing models become increasingly biased.
9In both cases, performance has leveled off on the development set, so it is safe to assume that we would not see a similar improvement
from BNC if an additional 700,000 automatically parsedBNC sentences were added.
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Figure 3.3: Precision and recallf-scores when testing onBROWN development as a function of the number
of NANC sentences added under four test conditions. “BROWN tuned” indicates thatBROWN training data
was used to tune the parameters (since the normal held-out section was being used for testing). For “WSJ

tuned,” we tuned the parameters from section 24 ofWSJ. Tuning onBROWN helps the parser, but not for the
reranking parser.

picking a self-training corpus that matches the test set well is important. We return to this issue in Chapter 5.



Chapter 4

Analysis

While the success of self-training has demonstrated its merit, it remains unclear why self-training helps in

some cases but not others. Our goal is to better understand when and why self-training is beneficial. We

perform a variety of tests, covering the global behavior of the parser (Section 4.1), sentence-level changes

(Section 4.2), and parser agreement between theBROWN and self-trainedWSJmodels (Section 4.3). Next, we

explore four hypotheses for why self-training helps in Section 4.4. At a high level, the hypotheses are (1) self-

training helps after a phase transition, (2) self-trainingreduces search errors, (3) specific classes of reranker

features are needed for self-training, and (4) self-training improves because we see new combinations of

words. We summarize our analysis in Section 4.5.

4.1 Global changes

It is important to keep in mind that while the reranker seems to be key to our performance improvement, the

reranker per se never sees the extra automatically parsed sentences. It only sees the 50-best lists produced by

the first stage parser. Thus, the nature of the changes to these lists are important.

We have already noted that the first stage parser’s one-bestf-score has significantly improved onWSJ

when self-trained sentences from the reranking parser are added to training data (see Table 3.1). In Table 4.1,

we see that the 50-best oracle score also improves from 95.5%(for the original first stage parser) to 96.4%

(for our final model). We do not show it in the table, but if we self-train using first stage parser’s one-best,

there is no change in oracle score. The oracle scores on theBROWN development section are shown in

Table 4.2. While theWSJ parser initially has relatively low oraclef-scores, adding sentences fromNANC

produces a parser with comparable oracle scores as the parser trained fromBROWN training. TheBROWN

and self-trainedWSJmodels have essentially the same potential for good parses of the BROWN corpus. Thus,

the self-trained models have better oracle scores than the original WSJ model for both theWSJ andBROWN

domains. Overall, the oracle scores onBROWN are 2-3% lower than those onWSJ, probably due to the

increased variability of theBROWN corpus.

The first stage parser also becomes more “decisive” after self-training. The average (geometric mean) of

27
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Model 1-best 2-best 10-best 25-best 50-best
Baseline (WSJ) 89.0 91.0 94.1 95.3 95.9
WSJ+ 250,000NANC 89.8 91.4 94.6 95.5 96.1
WSJ×5 + 1,750,000NANC 90.4 91.9 94.8 95.8 96.4

Table 4.1: Oraclef-scores of topn parses produced by the baselineWSJ parser, a small self-trained parser,
and the “best” parser onWSJsection 24.

Model 1-best 2-best 10-best 25-best 50-best
WSJ 82.6 84.8 88.9 90.7 91.9
WSJ+ 2,500,000NANC 86.4 88.5 92.1 93.5 94.3
BROWN 86.3 88.4 92.0 93.3 94.2

Table 4.2: Oraclef-scores of topn parses produced by the baselineWSJparser, a combinedWSJandNANC

parser, and the baselineBROWN parser on theBROWN development section.

log2(Pr(1-best parse) / Pr(50th-best parse)) (i.e. the ratios between the probabilities in log space) increases

from 11.959 for the baseline parser to 14.104 for the final parser. In other words, the probability of the top

parse increases relative to the 50th-best parse. We have seen earlier that this additional confidence is deserved,

as the first stage one-best is much better. Additionally, with more data available, the self-trained parser backs

off to smoothing less often which also has the effect of increasing the probabilities of parses.

4.2 Sentence-level analysis

Until this point we have looked at bulk properties of then-best lists fed to the reranker. We now turn to

studying the performance of individual sentences. In particular, we analyzed the original and self-trained

parsers’ behavior on 5,039 sentences from sections 1, 22 and24 of the Penn treebank. Specifically, we

classified each sentence into one of three classes: those where the self-trained parser’sf-score increased

relative to the baseline parser’sf-score, those where thef-score remained the same, and those where the

self-trained parser’sf-score decreased relative to the baseline parser’sf-score. We charted the distribution

of sentences into these classes with respect to four factors: sentence length, the number of unknown words

(i.e., words not appearing in sections 2–21 of the Penn treebank) in the sentence, the number of coordinating

conjunctions (CC) in the sentence, and the number of prepositions (IN) in the sentence. The distributions of

classes (better, worse, no change) with respect to each of these factors individually are graphed in Figures

4.1a through 4.1d.

Figure 4.1a shows how the self-training affectsf-score as a function of sentence length. The top line

shows that thef-score of most sentences remain unchanged. The middle line is the number of sentences that

improved theirf-score, and the bottom are those which got worse. So, for example, for sentences of length

30, about 80 were unchanged, 25 improved, and 22 worsened. Itseems clear that there is no improvement for

either very short or very long sentences. (For long sentences the graph is hard to read. We show a regression

analysis later in this section that confirms this statement.) While we did not predict this effect, in retrospect

it seems reasonable. The parser was already doing very well on short sentences. The very long ones are
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Figure 4.1: Effect of self-trained model on performance forfour different variables.
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Feature Estimate Pr(> 0)
(Intercept) -0.25328 0.3649
BinnedLength(10,20] 0.02901 0.9228
BinnedLength(20,30] 0.45556 0.1201
BinnedLength(30,40] 0.40206 0.1808
BinnedLength(40,50] 0.26585 0.4084
BinnedLength(50,200] -0.06507 0.8671
CCs 0.12333 0.0541

Table 4.3: Predictors for the question: “does the self-trained parser improve thef-score of the parse with the
highest probability?”

hopeless, and the middle ones are just right. We call this theGoldilocks effect.

As for the other three of these graphs, their stories are by nomeans clear. Figure 4.1b seems to indicate

that the number of unknown words in the sentence doesnot predict that the reranker will help. Figure 4.1c

might indicate that the self-trained parser improves prepositional-phrase attachment, but the graph looks

suspiciously like that for sentence length, so the improvements might just be due to the Goldilocks effect.

Finally, the improvement in Figure 4.1d is hard to judge.

To get a better handle on these effects, we performed predictor selection within a selection model using the

same four factors. As Figure 4.1a makes clear, the relative performance of the self-trained and baseline parsers

does not vary linearly with sentence length, so sentence lengths were binned (with each bin of length 10).

Because the self-trained and baseline parsers produced equivalent output on 3,346 (66%) of the sentences,

we restricted attention to the 1,693 sentences on which the self-trained and baseline parsers’f-scores differ.

The results are shown in Table 4.3.

The regression analysis is trying to model the log odds as a sum of linearly weighted factors. That is:

log

(

P (1|x)

1− P (1|x)

)

= α0 +

m
∑

j=1

αjfj(x)

In Table 4.3, the first column gives the name of the factor. Thesecond displays the change in the log-odds

resulting from this factor being present (in the case ofCCs andINs, multiplied by the number of them) and

the last column is the probability that this factor is reallynon-zero. “(Intercept)” refers toα0 in the equation.

Note that there is no row for either PPs or unknown words. Thisis because we also asked the program

to do a model search using the Akaike Information Criterion (AIC) over all single and pairwise factors. The

model it chooses predicts that the self-trained parser is likely to produce a better parse than the baseline only

for sentences of length 20–40 or sentences containing several CCs. It did not include the number of unknown

words and the number ofINs as factors because they did not receive a weight significantly different from

zero, and the AIC model search dropped them as factors from the model.

In other words, the self-trained parser is more likely to be correct for sentences of length 20–40 and as

the number ofCCs in the sentence increases. The self-trained parser doesnot improve prepositional-phrase

attachment or the handling of unknown words.

This result is mildly perplexing. It is fair to say that neither we, nor anyone we talked to, thought con-

junction handling would be improved. Conjunctions are about the hardest things in parsing, and we have no
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grip on exactly what it takes to help parse them. Conversely,everyone expected improvements on unknown

words, as the self-training should drastically reduce the number of them. It is also the case that we thought PP

attachment might be improved because of the increased coverage of preposition-noun and preposition-verb

combinations that work such as Hindle and Rooth (1993) show to be so important.

Currently, our best conjecture is that unknowns are not improved because the words that are unknown

in the WSJ are not significantly represented in the LA Times we used for self-training. CCs are difficult

for parsers because each conjunct has only one secure boundary. This is particularly the case with longer

conjunctions, those ofVPs andSs. One thing we know is that self-training always improves performance of

the parsing model when used as a language model. We thinkCC improvement is connected with this fact

and our earlier point that the probabilities of the 50-best parses are becoming more skewed. In essence the

model is learning, in general, whatVPs andSs look like so it is becoming easier to pull them out of the

stew surrounding the conjunct. Conversely, language modeling has comparatively less reason to helpPP

attachment. As long as the parser is doing it consistently, attaching thePP either way will work almost as

well.

4.3 Portability Studies

We perform several types of analysis to measure the differences and similarities between theBROWN trained

and self-trainedWSJ reranking parsers. Despite their different training sources, these two parsers are ex-

tremely close in performance onBROWN. While the two parsers agree on a large number of parse brackets

(Section 4.3.1), there are categorical differences between them (Section 4.3.2). In Section 4.3.3, we perform

feature selection to better understand the circumstances in which each parser does better.

4.3.1 Parser Agreement

In this section, we compare the output of theWSJ+NANC-trained andBROWN-trained reranking parsers. We

useevalbto calculate how similar the two sets of output are on a bracket level by treating one set of parses as

candidate parses and the other as gold.1 Table 4.4 shows the results. The two parsers agree on a good portion

of the brackets and achieved an 88.0%f-score between them. Additionally, the two parsers agreed on the

entire parse almost half the time and have approximately onecrossing bracket on average. The part of speech

tagging agreement is fairly high as well. Considering they were trained from different corpora, this seems

like a high level of agreement. It would be nice to perform a finer-grained analysis of this to better determine

the nature of the disagreements.

4.3.2 Statistical Analysis of f-score differences

We are interested in whether the differences between the various parsers produced while adapting theWSJ-

trained parser to theBROWN corpus are statistically significant. To test this, we conducted randomized per-

mutation tests for the significance of the difference in corpusf-score (recall Section 2.4). The null hypothesis

1We can choose these arbitrarily since all of these metrics are symmetric.
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Bracketing agreementf-score 88.0%
Complete match 44.9%
Average crossing brackets 0.94
POS tagging agreement 94.9%

Table 4.4: Agreement between theWSJ+NANC parser with theWSJ reranker and theBROWN parser with the
BROWN reranker. Complete match is how often the two reranking parsers returned the exact same parse.
Though created by different sets of data, the two parsers come up with surprisingly similar results on the
bracket level.

Parser/Reranker modelWSJ+NANC/WSJ BROWN/WSJ BROWN/BROWN

WSJ/WSJ 0.025 (0) 0.030 (0) 0.031 (0)
WSJ+NANC/WSJ 0.004 (0.1) 0.006 (0.025)

BROWN/WSJ 0.002 (0.27)

Table 4.5: The difference inf-score between different combinations of parsers and rerankers, and the signifi-
cance of the difference in parentheses as estimated by a randomization test with106 samples. “x/y” indicates
that the first stage parser was trained on data setx and the second stage reranker was trained on data sety.
Differences between combinations that are not significantly different are shown in bold font.

is that the two parsers being compared are in fact behaving identically, so permuting or swapping the parse

trees produced by the parsers for the same test sentence should not affect the corpusf-scores. By estimating

the proportion of permutations that result in an absolute difference in corpusf-scores at least as great as

that observed in the actual output, we obtain a distribution-free estimate of significance that is robust against

parser and evaluator failures. The results of this test are shown in Table 4.5. The “x/y” notation indicates

that the first stage parser was trained on data setx and the second stage reranker was trained on data set

y. The table shows that theBROWN reranker is not significantly different from theWSJ reranker (the differ-

ence between theBROWN andWSJ rerankers is significant with ap-value= 0.27 and thus not statistically

significant). We can also see that the difference between theWSJ+NANC andBROWN parsing models is not

statistically significant if theWSJ reranker is used for both (p-value= 0.1). The difference between the

WSJ-trained reranking parser (WSJ+NANC/WSJ) andBROWN-trained reranking parser (BROWN/BROWN) is,

however, statistically significant (p-value≈ 0).

4.3.3 Feature selection for regression

In order to better understand the difference between the fully BROWN-trained and the self-trainedWSJ

reranking parsers onBROWN data, we constructed a logistic regression model of the difference between

the two parsers’f-scores on the development data using the R statistical package.2 Of the 2,078 sentences

in the development data, 29 sentences were discarded because evalb failed to evaluate at least one of the

parses.3 A Wilcoxon signed rank test on the remaining 2,049 paired sentence levelf-scores was significant

atp = 0.0003. Of these 2,049 sentences, there were 983 parse pairs with the same sentence-levelf-score. Of

2http://www.r-project.org/
3This occurs when an apostrophe is analyzed as a possessive marker in the gold tree and a punctuation symbol in the parse tree, or
vice versa.
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Feature Estimate z-value Pr(> |z|)
(Intercept) 0.054 0.3 0.77
# INs -0.134 -4.4 8.4e-06 ∗ ∗ ∗
ID=Letters, bibliography, memories 0.584 2.5 0.011 ∗
ID=General fiction 0.697 2.9 0.003 ∗∗
ID=Mystery 0.552 2.3 0.021 ∗
ID=Science fiction 0.376 0.9 0.33
ID=Adventure and Western fiction 0.642 2.7 0.0055 ∗∗
ID=Romance and Love story 0.624 2.7 0.0069 ∗∗
ID=Humor 0.040 0.1 0.90

Table 4.6: The logistic model ofBROWN/BROWN f-score> WSJ+NANC/WSJ f-score identified by model
selection. The feature “#INs” is the number prepositions in the sentence, while ID identifies theBROWN

subcorpus that the sentence comes from. Stars indicate significance level.

Category Description # SentencesBROWN WSJ+NANC ∆
F Popular Lore 271 87.3 89.6 2.28
G Letters, bibliography, memories 281 87.6 87.1 -0.45
K General fiction 333 87.2 85.9 -1.29
L Mystery 318 88.7 88.3 -0.45
M Science fiction 76 87.7 88.8 1.17
N Adventure and Western fiction 378 89.7 89.0 -0.64
P Romance and Love story 338 88.0 86.6 -1.40
R Humor 83 84.6 87.0 2.45

Table 4.7: Performance ofBROWN-trained reranking parser vs. bestWSJ+NANC reranking parser on various
categories of theBROWN development division. Both rerankers useWSJ-trained models.

the 1,066 sentences for which the parsers produced parses with differentf-scores, there were 580 sentences

for which theBROWN/BROWN parser produced a parse with a higher sentence-levelf-score and 486 sentences

for which theWSJ+NANC/WSJ parser produced a parse with a higherf-score. We constructed a generalized

linear model with a binomial link to predict whenBROWN/BROWN f-score> WSJ+NANC/WSJf-score. For

explanatory variables, we used sentence length, the numberof prepositions (IN), the number of conjunctions

(CC), and theBROWN subcorpus ID. The goal of the last class of features is to determine if there are certain

genres withinBROWN that are harder forWSJ to parse. Model selection (using the “step” procedure) dis-

carded all but theIN andBROWN ID explanatory variables. The final estimated model is shownin Table 4.6.

The WSJ+NANC/WSJ parser becomes more likely to have a higherf-score than theBROWN/BROWN parser

as the number of prepositions in the sentence increases. TheBROWN/BROWN parser is more likely to have a

higherf-score on sections K (general fiction), N (adventure and western fiction), P (romance and love story),

G (letters and memories) and L (mystery) sections of theBROWN corpus. The three sections ofBROWN not

in this list are F (popular lore), M (science fiction), and R (humor) which contain too few sentences to result

in significant effects. The performance on individual categories of theBROWN corpus is shown in Table 4.7.

This table confirms that theBROWN based model performs better on categories with sufficient sentences with

the exception of category F (“popular lore”).
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4.4 Four Hypotheses

The question of why self-training helps in some cases (e.g. Section 3 and Reichart and Rappoport (2007;

Foster et al. (2007)) but not others (Charniak, 1997; Steedman et al., 2003a) has inspired various theories.

We investigate four of these to better understand the circumstances which govern self-training’s success.

4.4.1 Phase Transition

.

The phase transition hypothesis is that once a parser has achieved a certain threshold of performance, it

can label data sufficiently accurately. Once this happens, the labels will be “good enough” for self-training.

To test the phase transition hypothesis, we intentionally degrade the parser’s performance to see if it can

still self-train. We do this by using the same parser as our earlier self-training experiments in Section 3 but

train on only a fraction ofWSJto see if self-training is still helpful. This is similar to some of the experiments

by Reichart and Rappoport (2007) but with the use of a reranker and slightly larger seed sizes. The self-

training protocol is the same as in (Charniak, 1997; McClosky et al., 2006a; Reichart and Rappoport, 2007):

we parse the entire unlabeled corpus in one iteration. We start by making a random subset of theWSJtraining

sections (2–21), accepting each sentence with probabilityk. We create two subsets ofWSJ (k ∈ {0.1, 0.5}).

This approach to testing the phase transition hypothesis does not include other parsers or other methods of

performance degradation. It is possible that we might see a phase transition in these cases (James Henderson,

personal communication).

With the sampled training section and the standard development data, we train a parser and a reranker.

In Table 4.8, we show the performance of the parser with and without the reranker. For reference, we show

the performance when using the complete training division as well. Unsurprisingly, both metrics drop as we

decrease the amount of training data. These scores represent our baselines for this experiment.

Using these parser models, we parse one million sentences from NANC, both with and without the

reranker. We combine parsed sentences with the sampled subsets ofWSJtraining and train new parser models

from them.4

Finally, we evaluate these self-trained models (Table 4.9). The numbers in parentheses indicate the change

from the corresponding model made without self-training. As in Reichart and Rappoport (2007), we see large

improvements when self-training on a small seed size (10%) without using the reranker. We still see signif-

icant improvements in most cases when the seed size is 50%, but the absolute values of these improvements

are smaller. However, using the reranker to parse the self-training and/or evaluation sentences further im-

proves results. From Section 3.1.1, we know that when 100% ofthe training data is used, self-training does

not improve performance unless the reranking parser is usedto parseNANC.

From this we conclude that there is no such threshold phase transition in this case. High performance is

not a requirement to successfully use self-training for parsing, since there are lower performing parsers which

can self-train and higher performing parsers which cannot.The higher performing Charniak and Johnson

4We do not weight the originalWSJ data, though our expectation is that performance would improve if WSJ were given a higher
relative weight.
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% WSJ # sentences Parserf-score Reranking parserf-score
10 3,995 85.8 87.0
25 9,903 87.9 89.3
50 19,975 89.0 90.4
100 39,832 89.9 91.5

Table 4.8: Parser and reranking parser performance on sentences≤ 100 words in sections 1, 22, and 24 when
trained on different amounts of training data. %WSJ is the probability of selecting a sentence fromWSJ

training (this is why the 10% column doesn’t have exactly 10%of the sentences, etc.). Note that the full
amount of development data is still used as held out data.

% WSJ ParsedNANC with reranker? Parserf-score Reranking parserf-score
10% No 87.7 (+1.9) 88.7 (+1.7)
10% Yes 88.4 (+2.6) 89.0 (+2.0)
50% No 89.3 (+0.3) 91.0 (+0.6)
50% Yes 89.7 (+0.7) 91.0 (+0.6)

Table 4.9: Effect of self-training using only a portion ofWSJ as labeled data. The parser model is trained
from WSJand one million parsed sentences fromNANC. The first column indicates whether the millionNANC

sentences were parsed by the parser or reranking parser. Thesecond and third columns differ in whether the
reranker is used to parse the test sentences (WSJ sections 1, 22, and 24, sentences 100 words and shorter).
Numbers in parentheses are the improvements over the corresponding non-self-trained parser.

(2005) parser without reranker achieves anf-score of 89.0 on section 24 when trained on all ofWSJ. This

parser does not benefit from self-training unless paired with a reranker. Contrast this with the same parser

trained on only 10% ofWSJ, where it gets anf-score of 85.8 (Table 4.9) or the small seed models of Reichart

and Rappoport (2007). Both of these lower performing parsers can successfully self-train. Additionally, we

now know that while a reranker is not required for self-training when the seed size is small, it still helps

performance considerably (f-score improves from 87.7 to 89.0 in the 10% case and 89.3 to 91.0 in the 50%

case).

4.4.2 Search Errors

Another possible explanation of self-training’s improvements is that seeing newly labeled data results in

fewer search errors (Daniel Marcu, personal communication). A search error would indicate that the parsing

model could have produced better (more probable) parses if not for heuristics in the search procedure. The

additional parse trees may help produce sharper distributions and reduce data sparsity, making the search

process easier. To test this, first we present some statistics on then-best lists (n = 50) from the baselineWSJ

trained parser and self-trained model. We use each model to parse sentences from held-out data (sections 1,

22, and 24) and examine then-best lists.

We compute statistics of theWSJ and self-trainedn-best lists with the goal of understanding how much

they intersect and whether there are search errors. On average, then-best lists overlap by 66.0%. Put another

way, this means that about a third of the parses from each model are unique, so the parsers do find a fair

number of different parses in their search. The next question is where the differences in then-best lists lie

— if all the differences were near the bottom, this would be less meaningful. LetW andS represent the
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Model f-score
WSJ 91.5
WSJwith search help 91.7
Self-trained 92.0

Table 4.10: Test of whether “search help” from the self-trained model impacts theWSJ trained model.WSJ

with search help is made by adding self-trained parses not proposed by theWSJ trained parser but to which
the parser assigns a positive probability. TheWSJ reranker is used in all cases to select the best parse for
sections 1, 22, and 24.

n-best lists from the baselineWSJ and self-trained parsers, respectively. Thetopm(ℓ) function returns the

highest scoring parse in then-best listℓ according to the reranker and parser modelm.5 Almost 40% of the

time, the top parse in the self-trained model is not in theWSJmodel’sn-best list, (tops(S) /∈ W ) though the

two models agree on the top parse roughly 42.4% of the time (tops(S) = topw(W )). Search errors can be

formulated astops(S) /∈ W ∧ tops(S) = topw(W ∪ S). This captures sentences where the parse that the

reranker chose in the self-trained model is not present in the WSJ model’sn-best list, but if the parse were

added to theWSJmodel’s list, the parse’s probability in theWSJmodel and other reranker features would have

caused it to be chosen. These search errors occur in only 2.5%of then-best lists. At first glance, one might

think that this could be enough to account for the differences, since the self-trained model is only several

tenths better inf-score. However, we know from Section 4.2 that on average, parses do not change between

the WSJ and self-trained models and when they do, they only improve slightly more than half the time. For

this reason, we run a second test more focused on performance.

For our second test we help theWSJ trained model find the parses that the self-trained model found. For

each sentence, we start with then-best list (n = 500 here) from theWSJtrained parser,W . We then consider

parses in the self-trained parser’sn-best list,S, that are not present inW (in other words, we take the set

S − W ). For each of these parses, we determine its probability under theWSJ trained parsing model. If

the probability is non-zero, we add the parse to then-best listW , otherwise we ignore the parse. In other

words, we find parses that theWSJ trained model could have produced but didn’t due to search heuristics. In

Table 4.10, we show the performance of theWSJ trained model, the model with “search help” as described

above, and the self-trained model onWSJ sections 1, 22, and 24. TheWSJ reranker is used to pick the best

parse from eachn-best list.WSJwith search help performs slightly better thanWSJalone but does not reach

the level of the self-trained model. From these experiments, we conclude that reduced search errors can only

explain a small amount of self-training’s improvements.

4.4.3 Non-generative reranker features

We examine the role of specific reranker features by trainingrerankers using only subsets of the features.

Our goal is to determine whether some classes of reranker features benefit self-training more than others.

We hypothesize that features which are not easily captured by the generative first stage parser are the most

beneficial for self-training. If we treat the parser and reranking parser as different (but clearly dependent)

5Recall that the parser’s probability is a reranker feature so the parsing model influences the ranking.
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f-score
Feature set # featuresOriginal parser Self-trained parser
GEN 448,349 89.8 90.4
NON-GEN 885,492 90.5 91.1
EDGE 601,578 90.2 91.0
NON-EDGE 732,263 90.3 91.1
ALL 1,333,519 90.5 91.3

Table 4.11: Sizes andf-scores of reranker feature subsets. Reranking parserf-scores are on all sentences in
section 24. Recall that the original parser without a reranker gets anf-score of 89.0% on this section.

views, this is a bit like co-training. If the reranker uses features which are captured by the first stage, the

views may be too similar for there to be an improvement.

We consider two classes of features (GEN and EDGE) and their complements (NON-GEN and NON-

EDGE).6 GEN consists of features that are roughly captured by the first stage generative parser: rule rewrites,

head-child dependencies, etc.EDGE features describe items across constituent boundaries. This includes the

words and parts of speech of the tokens on the edges between constituents and the labels of these constituents.

This represents a specific class of features not captured by the first stage. These subsets and their sizes are

shown in Table 4.11. For comparison, we also include the results of experiments using the full feature set, as

in Section 3.1.1, labeledALL . TheGEN features are roughly one third the size of the full feature set.

We evaluate the effect of these new reranker models on self-training (Table 4.11). For each feature set,

we do the following: We parse one millionNANC sentences with the reranking parser. Combining the parses

with WSJ training data, we train a new first stage model. Using this newfirst stage model and the reranker

subset, we evaluate on section 24 ofWSJ. GEN’s performance is weaker while the other three subsets achieve

almost the same score as the full feature set. This confirms our hypothesis that when the reranker helps in

self-training it is due to features which are not captured bythe generative first stage model.

4.4.4 Unknown Words

Given the large size of the parsed self-training corpus, it contains an immense number of parsing events which

never occur in the training corpus. The most obvious of theseevents is words — the vocabulary grows from

39,548 to 265,926 words as we transition from theWSJ trained model to the self-trained model. Slightly less

obvious is bigrams. There are roughly 330,000 bigrams inWSJ training data and approximately 4.8 million

new bigrams in the self-training corpus.

One hypothesis (Mitch Marcus, personal communication) is that the parser is able to learn a lot of new

bilexical head-to-head dependencies (biheads) from self-training. The reasoning is as follows: Assume the

self-training corpus is parsed in a mostly correct manner. If there are not too many new pairs of words in

a sentence, there is a decent chance that we can tag these words correctly and bracket them in a reasonable

fashion from context. Thus, using these parses as part of thetraining data improves parsing because should

we see these pairs of words together in the future, we will be more likely to connect them together properly.

6A small number of features overlap hence these sizes do not add up.
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We test this hypothesis in two ways. First, we perform an extension of the feature selection similar to

that in Section 4.2. This is done via a generalized linear regression model intended to determine which

features of parse trees can predict when the self-training model will perform better. We consider many of the

same features (e.g. bucketed sentence length, number of conjunctions, and number of unknown words) but

also consider two new features: unknown bigrams and unknownbiheads. Unknown items (words, bigrams,

biheads) are calculated by counting the number of items which have never been seen inWSJtraining but have

been seen in the parsedNANC data. Given these features, we take thef-scores for each sentence when parsed

by the WSJ and self-trained models and look at the differences. Our goal is to find out which features, if

any, can predict thesef-score differences. Specifically, we ask the question of whether seeing more unknown

items indicates whether we are more likely to see improvements when self-training.

The effect of unknown items on self-training’s relative performance is summarized in Figure 4.2. For

each item, we show the total number of incorrect parse nodes in sentences that contain the item. We also

show the change in the number of correct parse nodes in these sentences between theWSJ and self-trained

models. A positive change means that performance improved under self-training. In other words, looking

at Figure 4.2a, the greatest performance improvement occurs, perhaps surprisingly, when we have seen no

unknown words. As we see more unknown words, the improvementfrom self-training decreases. This

is a pretty clear indication that unknown words are not a goodpredictor of when self-training improves

performance.

A possible objection that one might raise is that using unknown biheads as a regression feature biases

our results if they are counted from gold trees instead of parsed trees. Seeing a bihead in training causes the

otherwise sparse biheads distribution to be extremely peaked around that bihead. If we see the same pair of

words in testing, we are likely to connect them in the same fashion. Thus, if we count unknown biheads from

gold trees, this feature may explain away other improvements: When gold trees contain a bihead found in

our self-training data, we almost always see an improvement. However, given the similar trends in Figures

4.2b and 4.2c, we propose that unknown bigrams can be thoughtof as a rough approximation of unknown

biheads.

The regression analysis reveals that unknown bigrams and unknown biheads are good predictors of

f-score improvements. The significant predictors from Section 4.2 such as the number of conjunctions or

sentence length continue to be helpful whereas unknown words are a weak predictor at best. These results are

apparent in Figure 4.2: as stated before, seeing more unknown words does not correlate with improvements.

However, seeing more unknown bigrams and biheads does predict these changes fairly well. When we have

seen zero or one new bigrams or biheads, self-training negatively impacts performance. After seeing two or

more, we see positive effects until about six to ten after which improvements taper off.

To see the effect of biheads on performance more directly, wealso experiment by interpolating between

the WSJ and self-trained models on a distribution level. To do this,we take specific distributions (see Sec-

tion 2.1) from the self-trained model and have them overridethe corresponding distributions in a compatible

WSJ trained model. From this we hope to show which distributionsself-training boosts. According to the

biheads hypothesis, the biheads distribution (which captures information about head-to-head dependencies)

should account for most of the improvement.
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(a) Effect of unknown words on performance
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(b) Effect of unknown bigrams on performance
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(c) Effect of unknown biheads on performance

Figure 4.2: Change in the number of incorrect parse tree nodes betweenWSJ and self-trained models as a
function of number of unknown items. Seeing any number of unknown words results in fewer errors on
average whereas seeing zero or one unknown bigrams or biheads is likely to hurt performance.
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f-score Model
89.8 ∗ WSJ(baseline)
89.8 ∗ WSJ+ NANC M

89.9 ∗ WSJ+ NANC T

89.9 ∗ WSJ+ NANC L

90.0 ∗ WSJ+ NANC R

90.0 WSJ+ NANC MT

90.1 WSJ+ NANC H

90.2 WSJ+ NANC LR

90.3 WSJ+ NANC LRT

90.4 WSJ+ NANC LMRT

90.4 WSJ+ NANC LMR

90.5 WSJ+ NANC LRH

90.7 ⊛ WSJ+ NANC LMRH

90.8 ⊛ WSJ+ NANC (fully self-trained)

Table 4.12: Performance of the first stage parser under various combinations of distributions from theWSJ

andWSJ+NANC (self-trained) models on sections 1, 22, and 24. Distributions areL (left expansion),R (right
expansion),H (head word),M (head phrasal category), andT (head POS tag).∗ and⊛ indicate the model is
not significantly different from baseline and self-trainedmodel, respectively.

The results of swapping these distributions is shown in Table 4.12. For each new model,∗ indicates

that the model’s performance is not significantly differentthan the baselineWSJ model and⊛ that it is not

significantly different than the self-trained model.H (biheads) is the strongest single feature and the only

one to be significantly better than the baseline. Nevertheless, it is only 0.3% higher, accounting for 30% of

the full self-training improvement. In general, the performance improvements from distributions are additive

(+/− 0.1%). Self-training improves all distributions, so biheads are not the full picture. Nevertheless, they

remain the strongest single feature.

4.5 Summary

The experiments in this chapter have clarified many details about the nature of self-training for parsing. We

have shown that the phase transition hypothesis does not explain when self-training is effective. Reduced

search errors are responsible for some, but not all, of the improvements in self-training. We have confirmed

that non-generative reranker features are more beneficial than generative reranker features since they make the

reranking parser more different from the base parser. Finally, we have found that while unknown bigrams and

biheads are a significant source of improvement, they are notthe sole source of it. Since unknown words do

not correlate well with self-training improvements, we believe it is the unknown bigrams and biheads which

aid the parser in self-training. Our belief is that new combinations of words we have already seen guides the

parser in the right direction. Additionally, these new combinations result in more peaked distributions which

decreases the number of search errors.

However, while these experiments and others get us closer tounderstanding self-training, we still lack

a complete explanation. Naturally, the hypotheses tested are by no means exhaustive. Additionally, we



41

have only considered generative constituency parsers hereand a good direction for future research would

be to see if self-training generalizes to a broader class of parsers. We suspect that using a generative

parser/discriminative reranker paradigm should allow self-training to extend to other parsing formalisms and

related tasks.

Finally, we believe that there are actually two different types of self-training happening, depending on the

amount of labelled data available. Recall that in Reichart and Rappoport (2007) where only a small amount

of labeled data was used, self-training was possible without the use of a reranker (see also our experiments in

Section 4.4.1). Reichart and Rappoport (2007) showed that the number of unknown words in a sentence was

a strong predictor of when self-training benefits. When a large amount of labeled data is available, unknown

words are no longer correlated with these gains, but unknownbigrams and biheads are. Our theory is that

when using a small amount of training data, unknown words areuseful since we have not seen very many

words yet and the increased lexical coverage is key. As the amount of training data increases, we see fewer

new words but the number of new bigrams and biheads remains high. We postulate that this difference may

help explain the shift from unknown words to unknown bigramsand biheads. We hope to further investigate

the role of these unknown items by seeing how our analyses change under different amounts of labeled data

relative to unknown item rates.



Chapter 5

Automatic Domain Adaptation

Until this point, our experiments have been designed given the identity of the domain being parsed. We have

assumed we (i.e. human agents) can easily determine which domains would be useful as training data or

for self-training. In many cases, this is not an unreasonable assumption. For example, the bioinformatics

community’s desire for highly accurate parses has producedthe GENIA corpus as well as numerous other

resources. However, relatively few domains have received this type of treatment and there are still many

applications where this assumption does not hold. For example, consider the task of parsing text on an

arbitrary web page. Each web page is potentially a differentdomain with a different optimal mixture of

training corpora. Our goal is to explore methods of automatically creating parsing models tailored to specific

target text, ideally without a significant drop in accuracy.

To study this, we create an extension to the standard semi-supervised parser adaptation task allowing for

multiple source domains rather than just one. For example, suppose that we need to parse theBROWN corpus

and we’re given newswire text, biomedical abstracts, and automatically parsed Gutenberg books as possible

training data. It is clear that the newswire text is helpful,(as seen in Section 3.2) the Gutenberg books are

likely to help despite their automatic nature, and biomedical abstracts are probably not be as useful and may

even hurt performance. However, the optimal mixture (i.e. weightings) of these training corpora is far from

clear. In earlier experiments, we were able to tune our weightings based on development data (albeit in a time

consuming manner). For this scenario, we are not allowed anyin-domain development data.1 We refer to this

task asmultiple-source domain adaptation.

Multiple-source domain adaptation also has applications to two issues that come up when applying self-

training. We have shown earlier in Chapter 3 that self-training is a valuable tool for improving parser portabil-

ity and parser adaptation. In our previous earlier experiments, the texts and base parsers used for self-training

were selected by hand. Currently, no mechanism exists for automatically determining this. The choice of

target domain can have a significant effect on parsing performance (as seen in Figure 3.2) thus selecting the

correct training corpora is an important task. Our formulation of the problem allows us to answer all of these

questions using the same framework.

1We note, though, that like other tasks, performance on this task should improve in the presence of in-domain data when available.

42
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Our proposed solution,Any Domain Parsing, is based on the assumption that the target domain is a

mixture of the source domains. That is, using a combination (linear, in this case) of the statistics from each

source domain, we can create a new parsing model specificallyfor the target domain. Each source domain is

treated atomically, though in theory they could be split to increase granularity.2 We divide the task into two

steps. The first step,domain detection, is to weight the importance of each source domain with regards to the

target domain text. For the example mentioned in the second paragraph where the target domain is theBROWN

corpus, this might mean giving a weight of 0.6 to the newswiretext, 0.3 to the automatically parsed Gutenberg

books, and 0.1 to the biomedical journal article abstracts.Given these weights, we linearly combine each

source domain and create a new parsing model in the second step (model combination). Domain detection

is the focus of our exploration.3 Broadly put, we learn a model of how domain differences influence parsing

accuracy. This is done by taking several computational measures of domain differences (domain divergence

measures) between the target text and each source domain. We use thesemeasures as features in a regression

model. The regression model predicts the accuracy of the model produced by the source domain mixture on

the target domain. To parse the target text, one simply uses the best predicted scoring source domain mixture.

We show that our method is able to predict these accuracies quite well and that the source domain mixtures it

suggests are among the best we have seen for parsing the target text in question.

Before delving into the details of our model, we note that thetwo step approach described above is not

the only way do multiple-source domain adaptation, of course. One could imagine other approaches where

existing resources are augmented or selected rather than used atomically (note, though, that some of these

approaches would simply correspond to a more sophisticatedmodel combination function). Additionally,

while we use regression in our first step, there are additional ways of formulating the regression problem as

well as classification-based approaches one could use instead. As an example of another way to phrase the

regression problem, imagine that each domain is a point in some space. The axes of these spaces are the

relative weights of each source domain and moving around in the space corresponds to choosing different

mixtures of source domains. One could use multi-dimensional regression to learn where a new corpus should

map into this domain mixture space and then perform model combination as before. However, this has the

downside that it results in a small number of training data points (one data point per target domain) which

would create severe data sparsity. Our formulation of the regression allows for an essentially unbounded

number of possible training data points.

Note that in this chapter, our experiments only use the first-stage parser. This is because our approach

is specific to models with easily blendable models. However,while reranker models cannot be linearly

interpolated like generative parsing models, the scores intheir outputs can still be blended. Our two stage

detect-and-combine framework is thus still applicable. A simpler approach would be to use a single reranker

model for all domains. While this may seem unsatisfying, from earlier experiments (Sections 3.2.1 and 3.2.2)

we can see that using theWSJ-trained reranker improves performance for many domains. It is likely that a

reranker trained from all available domains would perform even better across multiple domains. As with the

first-stage parser, we could simultaneously train rerankermodels for all available domains while explicitly
2Splitting could be done using the divisions given in each corpora, e.g. article boundaries inWSJ. Alternatively, the splits could be
created automatically via syntactically-driven clustering.

3However, we will discuss some possible variations of the model combination step.
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learning which features were domain-specific (Daumé III, 2007; Finkel and Manning, 2009).

In Section 5.1, we detail recent work on similar tasks. Domain detection, the first step of our system,

is covered in Section 5.2. Section 5.3 describes the second step where the weights from domain detection

are used as input to a model mixing procedure to produce a new parsing model. We describe an evaluation

strategy in Section 5.4. Since multiple-source domain adaptation is a new parsing task, we have created some

baselines and upper bounds to give a sense of current approaches to the task (Section 5.4.1). The results

of our experiments are detailed in Section 5.5 where we show that our system outperforms all non-oracle

baselines. In our discussion (Section 5.6), we describe howto apply our model to the questions raised in this

section.

5.1 Related work

The closest work to ours is Plank and Sima’an (2008) where unlabeled text is used to group text withinWSJ

into subdomains. The authors create a model for each subdomain which weights trees from its subdomain

more highly than others. The weights are based on probabilities from ann-gram language model. Given the

domain specific models, they consider two parser combination strategies. The first approach is to pick a single

model to parse the target domain. The second technique parses sentences using models from all subdomains

and creates a single tree from their outputs (along similar lines to Sagae and Lavie (2006)). Unfortunately,

these methods do not result in a statistically significant improvement.

Multiple source domain adaptation has been done for other tasks, e.g. classification in (Blitzer et al.,

2007; Daumé III, 2007; Dredze and Crammer, 2008) and is related to multitask learning. Daumé III (2007)

shows that an extremely simple method delivers solid performance on a number of domain adaptation classi-

fication tasks. This is achieved by making a copy of each feature for each source domain plus the “general”

pseudodomain (for capturing domain independent features). This allows the classifier to directly model which

features are domain-specific and share the statistics of therest. Finkel and Manning (2009) demonstrate the

hierarchical Bayesian extension of this where domain-specific models draw from a general base distribution.

This is applied to classification (named entity recognition) as well as dependency parsing. Dredze and Cram-

mer (2008) approach this problem by combining multiple confidence-weighted linear classifiers. All of these

works have the nice property that they extend naturally to any number of source domains. However, it is

not obvious how work on classifiers can be applied to our parsing model (though it would fit nicely with a

parsing model based on classifiers such as Ratnaparkhi (1999)). Additionally, these works describe how to

train models in many different domains but sidestep the problem of domain detection. Thus, our work could

be combined with theirs.

Our domain detection step draws on work in parser accuracy prediction (Ravi et al., 2008; Kawahara and

Uchimoto, 2008). These works aim to predict the parser performance on a given target sentence. Ravi et al.

(2008) frame this as a regression problem. Kawahara and Uchimoto (2008) treat it as a binary classification

task and predict whether a specific parse is at a certain levelof accuracy or higher. Some examples of features

used in these systems include sentence length, estimates oflexical and orthographic difficulty (rarer/unknown

words and more sentence-internal punctuation marks like commas tend to make parsing less accurate), and
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Test
Train BNC GENIA BROWN SWBD ETT WSJ Average
GENIA 66.3 83.6 64.6 51.6 69.0 66.6 67.0
BROWN 81.0 71.5 86.3 79.0 80.9 80.6 79.9
SWBD 70.8 62.9 75.5 89.0 75.9 69.1 73.9
ETT 72.7 65.3 75.4 75.2 81.9 73.2 73.9
WSJ 82.5 74.9 83.8 78.5 83.4 89.0 82.0
Average 74.7 71.6 77.1 74.7 78.2 75.7 75.3

Table 5.1: Cross-domain parser performance (first stage parser only). Averages are macro-averages. Unsur-
prisingly, most domains perform the best when parsing themselves (the lone exception isETT which is better
parsed byWSJpossibly due to decreased sparsity). On average,WSJ is the most accurate.GENIA andSWBD

have the highest variation.

structural information such as the counts of labels in the parse tree. While accurately predicting the accuracy

of a sentence is not our primary concern, we are interested inthe relative performance of parsing under

different source model combinations and we incorporate several of their features. Ravi et al. (2008) show that

their system can be used to return a ranking over different parsing models which we extend to the multiple

domain setting. They also demonstrate that training their model onWSJ allows them to accurately predict

parsing accuracy on theBROWN domain. In contrast, our models are trained with multiple domains in mind

giving them a better sense of which factors influence cross-domain performance.

5.2 Domain detection

The goal of this subtask is to predict the relative proportions of our source domains which should be used

to parse a given set of target text. Our input consists of a vector of labeled source domainsC (each ideally

its own domain, though this is not required) and unlabeled target textt. Our goal is to produce domain

divergence functions which assign weights to the labeled corpora,detect : C× t→ w wherew is a weight

vector of positive real numbers with the same cardinality asC. Higher weights inw should indicate that the

corresponding source domain is more similar to the target text.

Imagine a very simple approach to this problem involving a basic notion of how domains differ (e.g.

cosine similarity between vectors of common word frequencies). We’ll refer to these notions asdomain

divergence measures. The approach is to weight each source domain in proportion to its “closeness” to the

target text where closeness is determined by the domain divergence measure.

While this method is a good first approximation to a solution,it is likely to run into difficulties. Our

problems can be summarized by the phrase “not all corpora arecreated equally” — that is, some corpora are

larger, more accurate, and/or more general. Smaller corpora result in less accurate predictions for domain

divergence measures due to data sparsity. Regarding accuracy, while we hope that all our labeled corpora are

of comparable accuracy and their annotations standardized, our system should also be able to make effective

use of self-trained corpora. Our system needs a mechanism toensure that our self-training corpora obtain a

reasonable weight relative to the hand-labeled corpora. Finally, regarding generality, we can see in Table 5.2
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thatWSJperforms quite well over a range of different corpora whereas GENIA works well only within its own

domain. There is also the issue that this strategy ties us to asingle domain divergence measure when better

performance may be achieved by a combination of domain divergence measures.

To handle these issues, our approach follows a machine learning-inspired route to automatically learn

per-corpora biases and which features are useful for predicting cross-domain performance with a regression

model. Ourdetect function uses the predictions of the regression model to determine its results. Each input

to the regression model describes a mixture of source domains (i.e. a distribution over them) and the domain

divergences between those source domains and the target text in question. Regression outputs are thef-score

of the parsing model created from the source domain mixture on the target text. By using multiple domain

divergence measures, we allow them to complement each other, possibly providing more reliable estimates

of domain divergence. Our system is similar to Ravi et al. (2008) inasmuch as they both use regression to

predictf-scores and some of our features are similar.

Our inputs to the regressor can be any function of the source domain mixture (s) and the surface form of

the target text (t):

predict(s, t) = y

wherey is the predictedf-score. Assuming we can build such a model with reasonable accuracy, the question

remains: How would this be useful for the problem of creatingthedetect function? If we have a set of source

domain models,S, we can use our regression function to select the best model from this set:

detect(C, t) = arg max
s∈S

predict(s, t)

where all source domains in each source domain mixtures are contained inC. However, we can also

attempt to optimize our regression functionpredict if it is convex and otherwise we can find local maxima.

Now ourarg max function can (in theory) select any source domain mixture:

detect(C, t) = arg max
s

predict(s, t)

In terms of practical performance, these techniques do not differ significantly if one has a sufficiently

large set of source domain models.

In the following subsections, we provide further details ofthe regression model. Our regression model

itself is a generalized linear model (GLM), as outlined in Section 5.2.1. Section 5.2.2 describes the domain

divergence functions and other functions of the source domain.

5.2.1 Regression model

One of the simplest forms of regression is the linear regression model. Linear regression learns functions

where the output is linear combination of the inputsx:

y = aT x + b

When fitting the model to a set of inputs and outputs, the variablesa andb are adjusted. Linear regression

assumes a linear relationship between the inputs and outputand that all inputs are independent. In practice,



47

linear regression works best among all the regression models that we explored so the linear relationship

appears to be at least a reasonable assumption overall. It ispossible that a more sophisticated regression

model which mapped each feature onto its own scale would perform better.

For completeness, we describe the other regression models that we explored. The generalized linear

model allows us to break down the first assumption. In this case, we use a link function,g, which allows us

to map the inputs nonlinearly:

y = g−1(ax + b)

Note that if the link function is the identity, generalized linear regression reduces to linear regression. The

link function in a generalized linear model is actually an estimation of the distribution of errors between our

prediction and the mean of the output:

E[y] = µ = g(ax + b)

In our specific case, this would be beneficial if the components of x (i.e. our domain divergence measures

along with the other features) were not on a linear scale and applying the link function resulted in a linear

between inputs and outputs. However, it would still requirethat they all be on the same scale. Naturally,

if one has prior knowledge that a component ofx is on a specific nonlinear scale, one can preprocess that

component to make it more amenable to linear regression.

Prediction and estimation are fairly straightforward. Thelearned function can be used immediately to

predict new outputs for a given input. These models are typically estimated using least squares methods

to obtain the maximum likelihood estimate. More details on the actual data points for this estimation is

forthcoming. The next section describes what each data point looks like and Section 5.5.2 where explain the

origin of the points.

In our experiments, we explored several different familiesof error distributions including Gaussian (which

uses the identity link function), gamma, inverse gamma, andPoisson. As stated earlier, the Gaussian error

distribution outperformed the others. In pilot studies, wealso explored other forms of regression such as

Locally Weighted Projection Regression (LWPR) (Vijayakumar et al., 2005). LWPR essentially works by

clustering the data points and finding local linear approximations of each cluster. However, LWPR did not

perform as well as linear regression in our pilot studies. Our regression training dataset is somewhat small

which may have made it tricky for LWPR to find decent clusters.Additionally, LWPR is stochastic and for

this task we prefer to have a more stable prediction function.

5.2.2 Domain divergence measures and other features

We describe the possible features which are designed to helpthe regression model determine if a particular

source domain mixture is well suited for a specific target domain. Some of these features directly connect

the two (domain divergence measures) whereas others serve as general information about the source domain

mixture. The latter allow the regression model to capture nonlinear patterns about good source domain

mixtures (e.g. how many/which source domains should be used, how uniform the distribution should be,

etc.).



48

As stated earlier, domain divergence measures are designedto approximate how different the target do-

main is from a specific source domain. Only the surface form ofthe target text and automatic analyses are

available (e.g. we can tag or parse the target text but cannotuse gold tags or trees). Our features make use of

word frequency, vocabularies, sentence lengths, and simplen-gram language models.

While this section describes all the features that we explored, we note that our feature selection step

selected only three of them (COSINETOP50, UNKWORDSREV, andENTROPY from uniform). The rest of

the details are here for completeness.

Word frequencies and vocabulary are an important indicatorof domain. We can use a spatial representa-

tion to summarize the vocabulary of a corpus as a single vector. Vector space approaches map each source

domain to a point in a metric space allowing distances between domains to be measured using standard

methods (Euclidean, Manhattan, cosine similarity etc.). Naturally, there are a large number of ways that the

contents of a corpus can be mapped into vector space. A commonmethod is to represent each corpus as a

vector of frequencies of thek most frequent words (Schütze, 1995). To find thek most frequent words across

corpora, we take the count of all words in each corpus dividedby the number of tokens in the corpus and sum

these counts across all corpora. This ensures that our list of the most frequent words are not dominated by

the words in our larger corpora. The vectors are normalized to ensure that they all have the same magnitude.

Typically, one applies dimensionality reduction (e.g. singular value decomposition) to these points to focus

on the most salient differences, though in our case we do not have enough points to warrant dimensionality

reduction. Under this setup, this method assigns high similarity to domains with a large amount of overlap

in the high-frequency vocabulary items. We create these vectors and use cosine similarity (i.e. the angle

between the two vectors) to determine the divergence between two domains:

similarity( ~A, ~B) =
~A · ~B

‖ ~A‖ ‖ ~B‖

We refer to these features as COSINETOPK where K∈ (5, 50, 500, 5000) indicates how many of the most

frequent words we include in our vector. We show the top 50 words across our corpora in Figure ref-

fig:Top50Words. An example of the raw values from the COSINETOP5000 domain divergence measure

can be found in Figure 5.2a. Note howWSJ is fairly similar to almost all domains whereasSWBD is similar

only to itself. Additionally, we can use cosine similarities over vectors of punctuation (COSINEPUNC). Do-

mains differ in their usage of punctuation (e.g. we would expectWSJ to use quotation marks more than other

corpora) so these statistics may provide a fast way of distinguishing gross differences in domain.

Another way of comparing the vocabularies across domains isto determine how many words would be

unknown if one built a vocabulary from a different domain. This can be done on the word type or word

token level. We opt for the word token level since unknown words pose problems for parsing each time they

occur. The domain divergence measure UNKWORDS computes the percentage of word tokens in the target

domain that are unknown given the source domain’s vocabulary. UNKWORDSREV is the same idea with the

source and target domains swapped (i.e. percentage of wordsin the source domain that are never seen in

the target domain). The raw values of the latter feature can be seen in Figure 5.2b. The broad trend of this

chart is thatGENIA andMEDLINE are similar to each other but very dissimilar from everything else. Other

domains tend to have about a 5–15% unknown word rate with themselves and 20–25% unknown word rate
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which cells n’t has said do one there all

Figure 5.1: Fifty most frequent words across all corpora sorted by decreasing frequency. Unsurprisingly,
nearly all of these words are closed-class words. “cells” appears due to its high frequency in theMEDLINE

corpus.

with non-medical domains.

We also consider language models as domain divergence measures. Given a language model and some

input text, a language model estimates the probability of producing the input text. Thus, given a collection

of domains we can make a language model for each domain and findthe probability of generating the target

domain text from each source domain. The most common form of language models usen-grams (c.f. (Chen

and Goodman, 1996; Goodman, 2001; Brants and Franz, 2006)) which assume that generating each word in a

sentence is only conditioned on the previousn−1 words. More sophisticated approaches (Chelba and Jelinek,

1998; Roark, 2001; Charniak, 2001; Xu et al., 2002) take syntax into account and generate all possible trees

which have the sentence as the leaves. The probability of each sentence is the sum of the probabilities of

each of its possible trees. We could potentially use a syntax-based language model which would allow us to

make full use of the syntactic trees in our training data. Using a language model for domain detection may

be able to make better use of context than the other approaches. For experiments, we use simple Kneser-

Ney smoothed trigram model with an open vocabulary from SRILM.4 We create three domain divergence

measures corresponding to the three scores from the language model (perplexity, perplexity ignoring sentence

boundaries, and log probability).

A quick study of sentence lengths revealed that these may vary substantially across domains (see Ta-

bles 2.1 and 2.2). We allow our model to capture this information by introducing two domain divergence

measures, AVERAGELENGTH and AVERAGELENGTHDIRECTED. Both features examine the difference be-

tween the average sentence lengths. The former feature returns the absolute value of these differences.

Note that since domain divergence measures merely measure the similarity between each source domain

and target text, the raw values of measures must remain constant across all source domains mixtures parsing

the same target text. In other words, the raw domain divergence measures fail to distinguish any source

domains from each other. Naturally, this is undesirable. Thus, our computed domain divergence measures

must connected to their corresponding source domain mixture weight in some way. The best method which

we have found is to divide the mixture weight of the source domain by the divergence. When the source is

not used, the adjusted divergence is zero regardless of the raw divergence (which is reasonable). Given the

choice between two source domains, we obtain a higher adjusted divergence score from the source domain

with the smaller divergence measure, thus encouraging our system to use the more similar (i.e. less divergent)

source domains. Thus, we apply this procedure to all domain divergence measures. For the remainder of this

chapter, domain divergence measures will refer to their computed values unless explicitly stated.

In addition to the domain divergence measures, we include several features which are purely a function

4SRILM is available fromhttp://www.speech.sri.com/projects/srilm/
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GENIA 0.894 0.998 0.860 0.676 0.887 0.881
MEDLINE 0.911 0.977 0.875 0.697 0.895 0.897
BROWN 0.976 0.862 0.999 0.828 0.917 0.960
GUTENBERG 0.982 0.868 0.977 0.839 0.929 0.957
SWBD 0.779 0.663 0.825 0.992 0.695 0.789
ETT 0.971 0.896 0.937 0.766 0.992 0.959
WSJ 0.968 0.880 0.963 0.803 0.941 0.997
NANC 0.983 0.888 0.979 0.801 0.950 0.987

(a) Divergences from COSINETOP5000. Higher values are more similar.
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GENIA 33.3 10.8 40.5 45.8 43.1 38.9
MEDLINE 32.5 21.5 36.5 45.4 42.0 35.5
BROWN 14.3 38.5 10.7 21.5 22.7 18.3
GUTENBERG 16.0 36.9 14.3 23.7 23.2 20.0
SWBD 9.0 30.6 6.1 4.6 11.1 11.4
ETT 18.1 35.3 17.4 22.1 10.3 16.6
WSJ 23.1 41.1 22.5 30.1 25.4 14.2
NANC 20.4 39.8 19.3 27.1 24.5 18.3

(b) Divergences from UNKWORDSREV. Lower values are more similar.

Figure 5.2: Raw values from two domain divergence measures.We use the training division for the source
domains and the development division for the target text — this is why the charts are not symmetric even
for symmetric measures like cosine similarity. This is alsowhy, for example, theWSJsource domain doesn’t
have cosine similarity 1 with theWSJ target text. Cells have been colored from white (more similar) to black
(less similar). For self-trained corpora (GUTENBERG, MEDLINE, andNANC) we do not list the base parser
used to parse it since neither of these divergence measures use information from syntactic trees and thus gave
the same scores regardless of base parser.
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of the source domain mixture. From pilot studies, we learnedthat models with a large number of source

domains tended to perform well. We created several featureswith this in mind to allow the regression model

to capture the relevant properties. One feature, “# source domains used,” lets the regressor learn a weight for

adding or removing an arbitrary source domain. In case this is too coarse we create aNONZERO feature for

each source domain which is 1 when the source domain is given positive weight. To capture the uniformity of

the distribution of source domains, we introduce theENTROPYwhich measures the entropy of the distribution

over source domains. Finally, to provide the regression model with a control for how much self-trained data

is used, we create a feature which measures the percent of thesource domain mixture which consists of

self-trained corpora.

5.3 Model combination

Given parsing models for each source domain,m1, . . . ,mN , and a mixing distribution,λ1, . . . , λN , over the

source domains as input, this step combines them into a new parsing model. As mentioned before,mix(m, λ)

creates a new model by linearly interpolating modelsm using weightsλ. In this model, the probability of

parsing evente is

Pmix(e) ∝ λ1C1(e) + λ2C2(e) + · · ·+ λNCN (e)

whereCk(e) is the count of evente in parsing modelmk. This approach performsmixing by countsbut

we could also domixing by models: (Bacchiani et al., 2006)

Pmix(e) = λ1P1(e) + λ2P2(e) + · · ·+ λNPN(e)

wherePk(e) is the probability of evente in parsing modelmk. While these both have similar forms, they

make different predictions. As in Bacchiani et al. (2006), we expect mixing by counts to perform better than

mixing by models.

One detail to consider is that models may be mixed completelyor on a per-component basis (in this case,

component refers to one of the five distributions that make upthe parsing model described in Section 2.1).

For example, we could allow for a different mixing distribution for the left and right expansion components

(L andR) than for the biheads component (H). This is potentially useful since the left and right expansion

components are more likely to be shared across models than the biheads component because the latter encodes

more lexical information. To do mixing at this level, we would need to train separate regression functions for

each component which may be too computationally expensive.Alternatively, we could select only a subset

of distributions to mix. In future work, we plan to investigate parser portability on a per-component level.

This could result in better model combination strategies.

5.4 Evaluation

Multiple-source domain adaptation is a new task for parsingand thus some thought must be given to evalu-

ation methodology. We describe two evaluation scenarios which differ in how foreign the target text is from
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Train Test
Source Target Source Target
C \ {t} C \ {t} C \ {t} {t}

(a) Out-of-domain evaluation

Train Test
Source Target Source Target

C C \ {t} C {t}

(b) In-domain evaluation

Table 5.2: List of domains allowed in single round of evaluation. In each round, the evaluation corpus ist.
C is the set of all target domains. For example, when training adomain detection system in the in-domain
scenario, one may build models using all domains and evaluate them on any domain exceptt. One detail not
shown is that any derived corpora are removed as well (i.e. ift = WSJ, we must removeNANC as well since
NANC is created from aWSJbase parser).

our source domains. Schemas for these evaluation scenariosare shown in Table 5.2. Note that training and

testing here refer to training and testing of our regressionmodel,not the parsing models which are trained in

the conventional fashion.

In the first scenario,out-of-domain evaluation, one target domain is completely removed from consider-

ation and only used to evaluate proposed models at test time.The regressor is trained on training points that

use any of the remaining corpora,C \ {t}, as sources or targets. For example, ift = WSJ, we can train the

regressor on all data points which don’t useWSJ (or any self-trained corpora derived fromWSJ) as a source

or target domain. At test time, we are given the text ofWSJ’s test set. From this, our system creates a parsing

model using the remaining available corpora for parsing theraw WSJ text.

This evaluation scenario is intended to evaluate how well our system can adapt to an entirely new domain

with only raw text from the new domain (for example, parsing biomedical text when none is available in our

list of source domains). Ideally, we would have a large number of web pages or other documents from other

domains which we could use solely for evaluation. Unfortunately, at this time, only a handful of domains

have been annotated with constituency structures under thesame annotation guidelines. Instead, we hold

out each hand-annotated domain,t, (including any automatically parsed corpora derived fromthat source

domain) as a test set in a round-robin fashion.5 For each round of the round robin we obtain anf-score and

we report the mean and variance of thef-scores for each model.

The second scenario,in-domain evaluation, allows the target domain,t, to be used as a source domain in

training but not as a target domain. This is intended to evaluate the situation where the target domain is not

actually that different from our source domains. The in-domain evaluation can approximate how our system

would perform when, for example, we haveWSJas a source domain and the target text is news from a source

other thanWSJ. Thus, our model still has to learn thatWSJand the North American News Text corpus (NANC)

are good for parsing news text likeWSJwithout seeing any direct evaluations of the sort (WSJandNANC can

be used in models which are evaluated on allothercorpora, though).

5Thus, the schemas in Table 5.2 are schemas for each round.
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5.4.1 Baselines

Given that this is a new task for parsing, we needed to create baselines which demonstrate the current ap-

proaches to multiple-source domain adaptation. One approach is to take all available corpora and mix them

together uniformly.6 The UNIFORM baseline does exactly this using the available hand-built training corpora.

SELF-TRAINED UNIFORM uses self-trained corpora as well in its mixtures. In the out-of-domain scenario,

these exclude the held out domain. When used in the in-domainsetting, the held out domain is included.

These baselines are similar to the ALL and WEIGHTED baselines in Daumé III (2007).

Another simple baseline is to use the same parsing model regardless of target domain. This is essentially

how large heterogeneous document collections are generally handled currently. We use theWSJcorpus since

it is the best single corpus for parsing all six domains (see Table and Section 3.2). We refer to this baseline as

FIXED SET: WSJ. In the out-of-domain scenario, we fall back to SELF-TRAINED UNIFORM when the target

domain isWSJwhile the in-domain scenario uses theWSJmodel throughout.

There are several interesting oracle baselines as well which serve to measure the limits of our approach.

These baselines examine the resultingf-scores of models and pick the best model according to some criteria.

The first oracle baseline is SINGLE CORPUSwhich parses each corpus with the training corpus that max-

imizes performance on the test corpus. In almost all cases, this baseline selects each corpus to parse itself

when possible.7 This baseline roughly corresponds to a human picking the appropriate source domain in each

case (though it could easily outperform the human given someof the surprises we have seen).

Our second oracle baseline, BEST SEEN, chooses the best parsing model from all those explored for each

test set. Recall that while training the regression model inSection 5.2.1, we needed to explore many possible

source domain mixtures which approximate the complete space of mixed parsing models. To the extent that

we can fully explore the space of mixed parsing models, this baseline represents an actual upper bound for

model mixing approaches. Since fully exploring the space ofpossible weightings is intractable, it is not a true

upper bound. Nevertheless, we believe that we have obtainedsufficient samples (we elaborate on this when

we describe our sampling strategy in Section 5.5.2). While it is theoretically possible to beat this baseline,

(indeed, this is the mark of a good domain detection system) it is far from easy. We provide SINGLE CORPUS

and BEST SEEN for both in-domain and out-of-domain scenarios. The out-of-domain scenario restricts the

set of possible models to those not including the target domain.

Finally, we searched for the BEST OVERALL MODEL. This is the model with the highest averagef-score

across all six target domains. This baseline can be thought of as an oracle version of FIXED SET: WSJ

and demonstrates the limit of using a single parsing model regardless of target domain. Naturally, the very

nature of this baseline places it only in the in-domain evaluation scenario. Since it was able to select the

model according tof-scores on our six target domains, its performance on domains outside that set is not

guaranteed.

To provide a better sense of the space of mixed parsing models, we also provide the WORST SEEN

6Accounting for corpus size so that the larger corpora don’t overwhelm the smaller ones.
7For corpora that are too small to have both training and testing divisions, (BNC in our case) this baseline has to choose a different
corpus. Additionally,WSJactually performs better at parsingETT than the training portion ofETT — this is most likely due to the
small size ofETT.
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baseline which picks the worst model available for a specifictarget corpus.8

5.5 Experiments

We discuss the specifics of our experiments in this section. We start with our rationale for the selection of

source and target domains (Section 5.5.1). Next, we describe our strategy for randomly sampling parsing

models and empirical evidence that we have enough samples despite the sampling space’s high dimension-

ality in Section 5.5.2. In Section 5.5.3, we describe a greedy strategy for picking which features (domain

divergence measures and other features) to include in our regression model. The results of our experiments

with baseline comparisons are described in Section 5.5.5. Finally, we conclude this chapter with some dis-

cussion (Section 5.6).

5.5.1 Corpora

We had a variety of goals for selecting the source and target domains which ultimately resulted in nine source

domains and six target domains. The breakdown of how corporaare used is shown in Table 5.3. The primary

goal was to cover as many source domains as possible. Ideally, we would include a large number of self-

trained texts and each hand-labeled corpus would have at least one self-trained text derived from it. Initially,

we were concerned that the space of parsing models would be too large. We opted towards fewer corpora

to make experiments more reproducible by other researchers. While there is essentially an infinite amount

of raw text that we could use for self-training, we selected only four self-trained texts to use. We include

GUTENBERG as a self-trained corpus as parsed byWSJ. ParsingGUTENBERG with WSJ rather than the

presumably more closely matchedBROWN surprisingly resulted in better performance during pilot studies.

We also include two versions of the self-trainedMEDLINE corpus — one parsed byGENIA, the other parsed

by WSJ — to see if our system can learn preferences between the two. Lastly, we include theNANC corpus

as parsed byWSJ. We omitted theBIOBOOKS corpus given its relatively small size and lower performance

on GENIA. When training parsing models from self-trained corpora, we need to trees to use for tuning. Since

these need to be gold trees, we use the development portion ofbase parser’s corpus. In other words, the

parsing model forMEDLINE (by WSJ) usesWSJ’s development section for tuning. Finally, note that thereis a

mismatch in the number of source and target domains sinceBNC is too small to be used as a source domain.

Self-trained corpora shouldn’t be used as target domains astheir trees are not necessarily correct.

As mentioned in Section 2.3, the corpora in this chapter havebeen preprocessed to standardize many of the

differences in annotation. Thus, results on them are slightly different than in previous chapters. Nevertheless,

we do not expect these changes to significantly impact overall performance.

5.5.2 Sampling parsing models

We wish to sample parsing models which have varied performance across all corpora to use as training data

for our regression model. We present here a simple strategy which empirically achieves our goal. First, we

8This turns out to beGENIA for all corpora other thanGENIA andSWBD when the target domain isGENIA.
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Corpus Source domain Target domain
BNC •
BROWN • •
ETT • •
GENIA • •

MEDLINE •
SWBD • •
WSJ • •

NANC •
GUTENBERG •
MEDLINE •

Table 5.3: List of source and target domains. Indented rows indicate self-trained corpora parsed using the
non-indented row as a base parser.

sample the number of source domains to use. We draw values from an exponential distribution until we find

one between two and the maximum number of source domains (nine, in our case). Using an exponential

distribution encourages this number to be closer to two while still allowing for the occasional nine. This

means that we try many different subsets of source domains. Theλ parameter for the exponential distribution

was adjusted by hand to place most probability mass on smaller numbers of source domains and we found

thatλ = 0.4 produces a reasonable curve.

Once we know the number of source domains, we sample their names uniformly at random without

replacement from the list of all source domains. Finally, wesample the weights for the source domains

uniformly from a simplex. The dimension of the simplex is thesame as the number of source domains so we

end up with a probability distribution over the sampled source domains.

In total, we created 1,040 sampled source domain mixtures and their corresponding parsing models.

Each of these parsing models is evaluated on each of the six target domains giving us 6,240 data points

total. To ensure that the simple cases are covered, we made 40configurations which include each single

source domains and several simple combinations of source domains. The above strategy was used to create

500 samples. For the remaining 500 samples, we made a small modification. Since our evaluation scheme

excludes one target domain and all corpora derived from it, if we select the corpora to use uniformly at

random, there is a good chance that the model could be excluded for a large number of target domains. To

work around this, we rotated through the set of target domains, holding out each target domain and any

derived corpora each time. This guarantees that each model is usable for at least one target domain.

As stated before, this is a large space and we were initially concerned about covering it. To alleviate these

concerns, we show a graph of the cumulative oracle score for each corpus (Figure 5.3). Each data point is

the average of thef-scores of the best parsing models seen for the six target domains (they need not be the

same model). In other words, for each of the six target domains, the oracle is allowed to pick the best of the

first k models when plotting thekth point. The shape of Figure 5.3 implies that we have coveredthe space

well. After the first 200 samples, the cumulative oraclef-score does not increase much meaning that we find

models which perform well for each domain quickly. This curve shows the performance for thein-domain

cumulative oraclef-score — that is, where models trained on the target domain are included. The curve for
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Figure 5.3: Cumulative oraclef-score (averaged over all target domains) as more models arerandomly
sampled. Most of the improvement comes the first 200 samples indicating that our samples are sufficient to
cover the space of good source domain mixtures.
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the more conservativeout-of-domaincumulative oraclef-score has a similar shape but is nearly completely

flat after the 400 samples instead of 200. In both cases, we sample more than enough points to reach a

performance plateau.

5.5.3 Model and feature selection

In order to explore many different regression models and features for said models without hill climbing

on our test data, we created a tuning scenario. Since the out-of-domain evaluation scenario holds out one

target domain, this gives us six test evaluation rounds. Foreach of these six rounds, we hold out one of

the remaining five target domains for tuning. This gives us 30tuning evaluation rounds and we tune our

parameters by optimizing our aggregate performance over all of them. A model that performs well in this

situation has proven that it has useful features which transfer to unknown target domains.

The next step is to determine the loss function to optimize. Our primary guide isoraclef-score losswhich

is determined as follows. We take all test data points (i.e. points that evaluated on target domain) and predict

theirf-scores. In particular for this measure, we are interested in the point with the highest predictedf-score.

We take its actualf-score and call that thecandidatef-score. When tuning, we know the truef-scores of all

test points. The difference between the highestf-score (the oraclef-score for this dataset) and the candidate

f-score is the oraclef-score loss. Ties need to be handled correctly to avoid degenerate models. If there

is a tie for highest predictedf-score, the candidatef-score is the one with thelowestactualf-score. This

approach is conservative but ensures that regression models which give everything the same predictedf-score

do not receive zero oraclef-score loss.

Since oraclef-score loss is only concerned with a single data point, we usetwo other loss functions to

ensure a good holistic fit. The first is the commonmean squared errorwhere we sum the squared differences

between the predicted and truef-scores. To encourage fits which do better on points with higher truef-scores,

we also introducemodified mean squared error:
∑

{predicted,true}

|true− predicted|1+true

Modified mean squared error interpolates betweenL1 andL2 loss as data points increase in their truef-score.

Thus, errors on points with higher truef-scores are more heavily penalized.

Armed with a tuning regime and loss functions to guide us, we can now use them to select regression

models and features for those models. We created a parallelized best-first feature searcher which performs

best-first search. We provided it with several seed parameter settings (one for each domain divergence mea-

sure). These settings are evaluated in parallel to determine their oraclef-score loss. At each stage, the setting

with the lowest loss is expanded by toggling all possible settings (e.g. if the setting included the COSINE-

TOP5000 divergence measure, we create a copy of the setting without that domain divergence measure).

These new settings are evaluated and the cycle repeats. If weexhaust all expansions of the setting with the

lowest loss, we backtrack to the next best scoring setting.

For demonstration purposes, Table 5.4 provides an example regression input data point. It includes

two domain divergence measures (COSINETOP5000 and UNKWORDSREV), the source domain distribution,

whether each source domain is non-zero and the three other features of the source domain distribution.
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Description Value Description Value
% WSJ — COSINETOP5000:WSJ 0.000
% BROWN 6.9% COSINETOP5000:BROWN 0.083
% GENIA 27.4% COSINETOP5000:GENIA 0.405
% SWBD — COSINETOP5000:SWBD 0.000
% ETT — COSINETOP5000:ETT 0.000
% NANC 55.7% COSINETOP5000:NANC 0.696
% GUTENBERG 10.0% COSINETOP5000:GUTENBERG 0.119
% MEDLINE (by WSJ) — COSINETOP5000:MEDLINE (by WSJ) 0.000
% MEDLINE (by GENIA) — COSINETOP5000:MEDLINE (by GENIA) 0.000
usedWSJ? FALSE UNKWORDSREV: WSJ 0.000
usedBROWN? TRUE UNKWORDSREV: BROWN 0.321
usedGENIA? TRUE UNKWORDSREV: GENIA 0.599
usedSWBD? FALSE UNKWORDSREV: SWBD 0.000
usedETT? FALSE UNKWORDSREV: ETT 0.000
usedNANC? TRUE UNKWORDSREV: NANC 2.057
usedGUTENBERG? TRUE UNKWORDSREV: GUTENBERG 0.421
usedMEDLINE (by WSJ)? FALSE UNKWORDSREV: MEDLINE (by WSJ) 0.000
usedMEDLINE (by GENIA)? FALSE UNKWORDSREV: MEDLINE (by GENIA) 0.000
# source domains used 4
ENTROPY 1.591
% self-trained corpora 65.7%

Table 5.4: An example regression input data point withSWBD as the target text. Percentages and booleans
have been color-coded. Features in the left half of the tableare functions solely of the source domain mixture
whereas the right half has features which are functions of the target text as well. Only two domain divergence
measures are listed (COSINETOP5000 and UNKWORDSREV) but in practice many others are available.

The best setting we found uses only three features:ENTROPYwith the COSINETOP50 and UNKWORD-

SREV domain divergence measures. We evaluated over 6,000 settings for the GLM model, though this setting

was found very early on (within the first 200 settings) so we have some degree of confidence that this is one of

the best settings. The setting gets an average 0.37 oraclef-score loss on the 30 tuning datasets. The average

unmodified and modified mean squared errors are 0.48 and 0.96 respectively. These settings make a reason-

able schema for a regression model — it uses two relatively orthogonal domain divergence measures (see

Figure 5.2.2) andENTROPY feature allows it to prefer more uniform distributions and encourages it to use

more source domains. TheENTROPY feature is especially valuable when considering the high performance

of the Self-trained Uniform baseline (see Table 5.5).

5.5.4 Maximizing the regression function

Once we have trained our regression function, we can use it toselect the model with the highest predicted

f-score on the target domain. However, as mentioned in Section 5.2, we can also attempt to search for an even

better model by maximizing the regression function. Recallthat the regression function takes information

about the source domain distribution and the target text as input. Here, we hold the target text constant and

create a proxy function which takes weights (i.e. unnormalized probabilities) for the source domains. This

proxy function computes the correct input to the regressionfunction by normalizing its input and calculating

any features of the source domain distribution (e.g. # source domains used, entropy, etc.). The proxy function
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returns the predictedf-score on the target text. We optimize the proxy function with the L-BFGS-B con-

strained numerical optimizer package (Byrd et al., 1995; Zhu et al., 1997). We prefer a numerical optimizer

with constraints since it allows us to constrain all parameters to be non-negative.

Unfortunately, due to features likeENTROPY and ”# source domains used,” the proxy function is highly

non-convex. We are likely to get trapped in local maxima whenoptimizing it. To alleviate this, we perform ten

numerical optimizations, each initialized from one of the points with the ten best predictedf-scores. We then

use whichever optimized setting results in the highest predictedf-score. In practice, the predictedf-scores

from these ten optimizations do not differ too greatly from each other. They tend to be about 0.5%-1% higher

than the original predictedf-score. When actually evaluating these new settings in the tuning scenario, they

show a small improvement over the previous non-optimized settings. The improvement, however, is probably

not statistically significant. Nevertheless, we maximize the regression function for our final results.

The most exciting aspect of this experiment is that in several cases, the settings discovered by the opti-

mizer are better than any we have seen from sampling. This indicates to us that the model is guiding us well

towards better source domain mixtures. It is difficult to determine if there are global maxima in the proxy

function which would result in significantly improved performance. Our hypothesis is that we would need a

more sophisticated regression model rather than better numerical optimization here to close the gap between

our system and the best seen settings. This takes into account the assumption that the best seen settings are

in fact close to the best settings for this type of model combination, as supported by Section 5.5.2.

5.5.5 Results

We present an overview of our final results for out-of-domainand in-domain evaluation in Table 5.5. The

results include thef-score averaged over the six target domains and the standarddeviation. More detailed

results on individual target domains can be seen in Figures 5.4 and 5.5. As stated earlier, these experiments

use only the first-stage parser and thus have lower performance than some of our previous experiments.

Our system, Any Domain Parsing, is the best non-oracle system for both tasks. For out-of-domain eval-

uation, our system is only 0.3% worse than the best seen models for each target domain. For the in-domain

scenario, we are within 0.6% of the BEST SEEN models. Additionally, our model is 0.7% better than the

BEST OVERALL MODEL. Recall that the BEST OVERALL MODEL is the single model with the best perfor-

mance across all six target domains. By beating this baseline, we show that there is value in customizing

parsing models to the target domain.

Our baselines reveal some interesting properties of our task and corpora. In both situations, the FIXED

SET: WSJ baseline performs fairly poorly. Not surprisingly, assuming all of our target domains are close

enough toWSJ works badly for our set of target domains and it does particularly bad onSWBD andGENIA.

On average, the UNIFORM baseline does slightly better for out-of-domain and over 3%better for in-domain.

UNIFORM actually does fairly well for out-of-domain except onGENIA. In general, using more source

domains is better which partially explains the success of UNIFORM. This seems to be the case since even if a

source domain is terribly mismatched with the target domain, it may still be able to fill in some holes left by

the other source domains. Of course, if it overpowers more relevant domains, performance may suffer. The

SELF-TRAINED UNIFORM baseline uses even more source domains which are also the largest ones. In both
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Oracle Baseline or model Averagef-score
• Worst seen 62.0± 6.1
• Single corpus 81.0± 2.9

Fixed set:WSJ 81.2± 3.1
Uniform 81.4± 3.6
Self-trained Uniform 83.4± 2.5
Any Domain Parsing 84.0± 2.5

• Best seen 84.3± 2.6

(a) Out-of-domain evaluation

Oracle Baseline or model Averagef-score
Fixed set:WSJ 82.3± 4.4
Uniform 85.4± 2.4

• Single corpus 85.6± 2.9
Self-trained Uniform 86.1± 2.0

• Best overall model 86.2± 1.9
Any Domain Parsing 86.9± 2.4

• Best seen 87.5± 2.1

(b) In-domain evaluation

Table 5.5: Baselines and final results for each multiple-source domain adaptation evaluation scenarios. Re-
sults aref-scores, averaged over all six target domains with their standard deviation. Our model, Any Domain
Parsing, is the best non-oracle based system.

evaluations, this dramatically improves performance and is the second-best non-oracle system. This baseline

provides more evidence as to the power of self-training for improving parser adaptation. If we excluded all

self-trained corpora, our performance on this task would besubstantially worse. The BEST SINGLE CORPUS

is poor in the out-of-domain scenario primarily because theactual best single corpus is excluded by the task

specification in most cases. When we move to in-domain, this baseline improves but is still worse than SELF-

TRAINED UNIFORM on average. It beats SELF-TRAINED UNIFORM primarily on WSJ, SWBD, andGENIA

indicating that these three domains are best when not diluted by others. Perhaps surprisingly, BEST SINGLE

CORPUSand FIXED SET: WSJ perform similarly in the out-of-domain setting. This is becauseWSJ is the

best single corpus to use in most cases. FIXED SET: WSJends up doing slightly better because it is forced to

fall back to uniform when evaluating onWSJ. By definition, the WORST SEENbaseline does terribly, almost

20% worse then BEST SINGLE CORPUS. We omit this baseline from Figures 5.4 and 5.5 to avoid skewing

the scale.

5.5.6 Analysis

For the in-domain evaluation, our biggest loss comes from our evaluation onGENIA. At the same time, our

results onWSJare near the best seen models for both scenarios — for the out-of-domain evaluation, it actually

performs better than the BEST SEEN baseline (although not by a significant margin). In Table 5.6, we show

the weights on the linear regression model for theGENIA and WSJ evaluation rounds to give examples of

bad and good regression models. We note that the magnitudes of weights are not directly comparable across

groups of features (i.e. weights for COSINETOP50 are on a different scale than UNKWORDSREV). However,

it is meaningful to compare weights of features within groups and across evaluation scenarios.

This discrepancy in performance warrants some exploration. In the out-of-domain scenario,GENIA and

MEDLINE (by GENIA) are excluded, but the regressor learns that it should favorMEDLINE (by WSJ) and gives

it the highest weights among COSINETOP50 and UNKWORDSREV. Note that self-trained corpora tend to

have higher weights. Presumably this is because the self-trained corpora are larger and thus applicable to a

large number of target domains. In the in-domain evaluation, both versions ofMEDLINE are available. The

regressor assigns a higher weight to theMEDLINE which usesWSJ as its base parser — this is most likely
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the main factor in why it produces a suboptimal parsing modelin this evaluation. The question remains, why

would it assign a higher weight toMEDLINE (by WSJ)? The answer seems to be because self-trained corpora

incorporate many of the statistics of their base parser. Thus, MEDLINE (by WSJ) acts in many ways like a

larger version ofWSJ. Since we aren’t allowed to evaluate onGENIA when testing on it, the regressor only

knows how well the models do on other target domains. By and large, the other target domains are more like

WSJthanGENIA (this is certainly the case from an unknown word point of view— recall Figure 5.2b). Thus,

the regressor believes it should trustMEDLINE (by WSJ) more.

We had hoped that our system would be able to handle the case where the same raw corpus has been

parsed by multiple base parsers. Given the above, it is clearthat this is a limitation of our model. One

problem is that from a domain divergence standpoint, the twoMEDLINE corpora are nearly identical since

these features only look at surface words. Adding tree-based domain divergence measures (e.g. syntactic

language models) may improve the situation, though there isno guarantee. The easiest solution is to only

include each raw corpus once and to use the best model as the base parser. In the next section, we discuss

how to select the best base parser for raw corpus and we are confident that it would selectGENIA over WSJ

to parseMEDLINE. If the experiment was repeated withoutMEDLINE (by WSJ), we suspect that the resulting

model forGENIA would improve significantly.

One may be concerned that thesignof the weights for the COSINETOP50 and UNKWORDSREV features

is the same even though they are on reversed scales.9 Indeed, this was an unexpected finding. To investigate,

we created two regression models to isolate the features. The first used only UNKWORDSREV andENTROPY

as features while the second used only COSINETOP50 andENTROPY as features. When UNKWORDSREV

and COSINETOP50 operate on their own, their feature weights do obtain different signs (UNKWORDSREV

is positive while COSINETOP50 is negative). Thus, the reason that they both have positive weights in the

original model is the result of feature interactions. The model without COSINETOP50 performs nearly as

well as the one with it, so it seems that UNKWORDSREV is doing most of the work while COSINETOP50 is

acting as a small correction factor.

5.6 Discussion

We have shown that for both evaluation conditions, our system is excellent at predicting the effects of domain

divergence on parsing accuracy. Now we return to the questions that we raised at the start of this chapter.

Any Domain Parsing suggests a combination of source domainsto use when we wish to parse a new text.

However, while we know that self-trained corpora can dramatically improve performance, we also hoped to

create a tool for determining the best corpus to self-train on. We posit that our model can be used here as

well: Simply choose the raw text with the highest predictedf-score. Treat each raw text as a candidate target

text and determine the best mixture of source domains to parse it along with its predictedf-score. Since our

system translates domain divergences into loweredf-score performance, it should assign a higherf-score to a

more similar domain. This approach also answers our other main questions regarding self-training — namely,

9COSINETOP50 has a raw divergence score of 1.0 when the two domains are identical according to the measure and 0.0 when they
are completely orthogonal. UNKWORDSREV has the opposite behavior and ranges from 0.0 (high similarity) to 1.0 (low similarity).
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GENIA WSJ

Out In Out In Feature
1.548 1.715 2.464 1.946 COSINETOP50: BROWN

1.192 1.226 1.878 1.521 COSINETOP50: ETT

— 1.341 2.047 1.684 COSINETOP50: GENIA

— 1.833 2.987 2.556 COSINETOP50: MEDLINE (by GENIA)
2.659 2.851 — 2.690 COSINETOP50: MEDLINE (by WSJ)
0.747 0.814 1.094 0.956 COSINETOP50: SWBD

2.254 2.482 — 2.767 COSINETOP50: WSJ

2.492 2.724 — 2.874 COSINETOP50: NANC

1.982 2.151 — 2.317 COSINETOP50: GUTENBERG

1.568 1.729 2.514 1.913 UNKWORDSREV: BROWN

1.015 1.119 1.791 1.422 UNKWORDSREV: ETT

— 0.930 1.783 1.558 UNKWORDSREV: GENIA

— 1.699 3.361 2.512 UNKWORDSREV: MEDLINE (by GENIA)
2.635 2.530 — 2.640 UNKWORDSREV: MEDLINE (by WSJ)
0.716 0.808 1.101 0.941 UNKWORDSREV: SWBD

2.291 2.437 — 2.707 UNKWORDSREV: WSJ

2.472 2.683 — 2.868 UNKWORDSREV: NANC

1.931 2.183 — 2.354 UNKWORDSREV: GUTENBERG

2.199 2.643 4.601 2.463 Entropy
77.537 77.527 76.826 75.123 Intercept

Table 5.6: Regression weights learned for theGENIA and WSJ evaluations round for out-of-domain and
in-domain scenarios. ‘—’s indicate that this domain was excluded since it was the target domain in an out-
of-domain evaluation.
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which parsing model should we use to parse our raw text and howshould self-trained data be combined with

hand-annotated corpora?

There are a number of practical concerns should this system actually be employed to perform large-scale

parsing of heterogeneous domains. Making a new model for each article is likely to be prohibitively ex-

pensive. However, as we have seen, making a small number of randomly sampled models is likely to be

sufficient. This step would be necessarily to generate training data to train an initial regression model. Sub-

sequent models could be mixed on demand, using existing models when they’re sufficiently close (closeness

can be measured by KL divergence or the difference in predictedf-scores on the text in question among other

methods). To determine which raw texts to use, one might cluster the articles by topic or syntactically. Alter-

natively, using the domain divergence measures, it may be possible to frame the problem as a multi-cut graph

problem where edges represent divergences and the goal is tominimize divergences within each cluster.

One interesting question is how much variation our model sees in corpora with multiple domains such as

BROWN or BNC. As in Ravi et al. (2008), we would need a mechanism of dividing up corpora into smaller

units which could be articles, groups of articles, or simplycontiguous blocks of sentences. One segmented,

we can could ask our model to calculate the best source domainmixture for each segment. If these source

domain mixtures vary significantly, it would be interestingif improved corpora can be obtained for these

corpora. As stated earlier, Plank and Sima’an (2008) attempted to automatically uncover these subdomains

for WSJwithout much success but our approach is sufficiently different that it is worth looking into.



Chapter 6

Conclusion

In this dissertation, we have described a semi-supervised method for statistical natural language parsing called

self-training. Self-training for parsing works by treating the parse trees of raw sentences from a supervised

parser as correct. One would not expect this to work well in general and, indeed, this is not the case (Charniak,

1997; Steedman et al., 2003a). We have shown that when the generative parser is used in conjunction with

a discriminative reranker, self-training produces a parser with state-of-the-art accuracy. Additionally, self-

training has proved to be extremely valuable for improving the parser portability and parser adaptation tasks.

Unlabeled data can be effectively leveraged to help cover domains which lack sufficient labeled training data.

We have addressed the issue of how to best parse completely new target texts given multiple source

domains with our Any Domain Parsing model. To our knowledge,the problem of multiple source parser

adaptation has not been tackled before. Without an automatic mechanism for performing this task, a human

would have to select the best model for the text to be parsed. While this is feasible in some cases, there are

many cases (e.g. parsing the web where there are a large number of domains which may change frequently)

where it is less obvious what the best mixture of source domains might be. Our model learns which properties

of domain divergence influence parsing accuracy. It uses this information to suggest combinations of source

domains which perform extremely well in practice. Our high accuracies on both evaluation scenarios is in

part due to the use of self-trained corpora and our crossdomain performance would certainly suffer without

them.

Looking beyond this work, there are some broader issues which suggest future avenues of investigation.

Syntactic parsing is but one of many tasks in natural language processing and machine learning. It is possible

that other tasks which lend themselves to a two-stage generative/discriminative framework may benefit from

self-training as well. Additionally, despite our work on analyzing self-training, we do not yet know the

effect of self-training on other parsers with different formalisms. It would be interesting to investigate how

well self-training and Any Domain Parsing work for CCG, LTAG, and so on. Finally, the machine learning

community has proposed many new semi-supervised learning techniques, generally involving discriminative

models. The challenge in this case is finding ways of integrating these techniques into parsing frameworks.

However, the parsing accuracy for English is quite good, at least for the level of annotation used in this

dissertation. The main challenge for parsing lies in other languages. Other languages may have complex

66
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morphological systems, (e.g. Turkish, Czech, and Hungarian) difficult segmentation problems, (e.g. Chinese

and Japanese), or a large amount of dialectal variation (e.g. Arabic). In theory, the techniques described in

this thesis should be applicable to other languages and we leave this to future studies.
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